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Abstract
The element-based finite volume method (EbFVM) is well established in computational fluid dynamics; in the last decade, 
it has been extended to several areas of engineering and physics interest, such as electromagnetism, acoustics, and struc-
tural mechanics analysis with complex geometrical shapes. This paper describes the treatment of the conservative EbFVM 
approach for two-dimensional isotropic elastic–plastic rate-independent problems. In particular, we use plane strain and 
plane stress approaches upon incremental thermal and mechanical loads. In order to verify the performance of the EbFVM, 
numerical results are compared with a commercial simulator. Finally, from the present implementation and the comparisons 
performed, we can ensure that EbFVM makes accurate prediction as the traditional numerical approach commonly employed 
for the solution of mechanics problems.

Keywords  EbFVM · Mechanics expansion · Thermal expansion · Nonlinear material

1  Introduction

In general, equations describing continuous mechanics are 
successfully employed for the investigation of the physi-
cal behavior of solids and fluids. Unfortunately, except 
for simple problems, these equations do not have any ana-
lytical solution. However, the development of numerical 
approaches allows us to analyze, through approximate solu-
tions, a large number of complex problems of engineering 
and physics.

Since the advent of digital computers, a wide number of 
discretization techniques have been proposed for the solu-
tion of several partial differential equations. However, the 
most popular numerical methods are finite element (FEM), 
finite difference (FDM), and finite volume (FVM) [1]. Dur-
ing this period, the FEM established itself as the standard 
approach in solid mechanics analysis [2, 3]. On the other 
hand, the FDM and the FVM have been established as very 

efficient procedures in the computational fluid dynamics 
(CFD) [4–6]. In the last few decades, FEM has also been 
improved to model multi-physical problems, such as elec-
tromagnetism and fluid flow [1, 7]. The FVM and FDM have 
also been enhanced and nowadays have been successfully 
applied to a wide number of physical problems as well, for 
instance acoustics [8], solid–fluid iteration [9], and radiative 
heat transfer phenomenon [10]. A key issue that differenti-
ates the FVM from FEM and FDM is the ability of the first 
aforementioned method to guarantee local conservation of 
the physical properties being evaluated [4–6, 11–13]. Such 
behavior is a desired property in any numerical method [5, 
14, 15]; see, for instance, the hybrid finite element method 
[16–19].

The FVM is divided into two main approaches [1, 5], 
which are cell-centered [3, 15] and cell vertex [6, 20, 21]. 
The first procedure is an important variant of the FDM, 
where each element or cell of the grid is a control volume 
and the independent variable is evaluated at geometric center 
of each cell. This approach has been largely used in the con-
text of structured grids, such as Cartesian [22], cylindri-
cal [23], and boundary-fitted coordinates [24]. Despite the 
last type of grid being more suitable to represent complex 
geometries than the other grids mentioned, it still has draw-
backs to model certain complex geometries [5]. This issue 
was overcome with the introduction of unstructured meshes; 
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see, for instance, [25]. The second procedure borrows from 
FEM the idea of elements and shape functions [1]. In cell 
vertex approach the control volume is constructed around 
each node of the grid (Fig. 1) [1, 5]. This methodology 
has advantages over the cell-centered approach, since it is 
well suitable for problems where the unknown has to be 
determined at the boundary of the domain [5] and it also 
can be easily implemented for both structured and unstruc-
tured grids. This method, in the context of the unstructured 
meshes, was initially called CVFEM (control volume-based 
finite element method) [1]. According to Maliska [4], the 
CVFVM nomination gives a wrong idea that we have finite 
element method based on control volumes. He replaced the 
original CVFEM terminology by EbFVM (element-based 
finite volume method), since we still have a conservative 
approach at the control volume level that borrows from finite 
element method the idea of elements and shape functions; 
see, for instance, [26]. From now on, this paper adopts this 
nomenclature.

The pioneer application of the EbFVM was devoted to ana-
lyzing the numericalsolution of Poisson’s equation in the field 
of electromagnetism using triangular elements by Winslow 
[27]. Subsequently, the EbFVM was applied to heat transfer 
and fluid flow problems using triangular elements by Baliga 
and Patankar [13] and quadrilateral elements by Schneider and 
Zedan [28]. To the best of our knowledge, the first application 
of the EbFVM in computational solid mechanics (CSM) was 
performed by Fryer et al. [29] for solving elastic stress–strain 
equations. This was further followed by Bailey and Cross [30] 
for solving three-dimensional linear elastic problems. Later 

on, the EbFVM was extended to nonlinear CSM for two- and 
three-dimensional viscoplasticity by [5, 6], respectively, and 
by Fallah et al. [21] to analyze nonlinear geometrical prob-
lems. It is important to stress that EbFVM has received lot of 
attention in linear elastic CSM applications. On the other hand, 
just few works have addressed the use of EbFVM in nonlin-
ear CSM area. Therefore, this work is considered to make an 
important contribution in this field.

Since the introduction of EbFVM to the CSM field, com-
parative discussions about performance and accuracy of the 
EbFVM over FEM within the CSM area were taken up. The 
pioneering investigative work was performed by Idelson and 
Oñate [31], and more recently by Vaz et al. [32] and Filippini 
et al. [14]. According to these authors, EbFVM is an accu-
rate and stable approach for applications in CSM field. In this 
work, we apply the EbFVM to elastic–plastic rate-independ-
ent cases through the assumption of infinitesimal deforma-
tion using plane strain and plane stress under mechanical and 
thermal expansions. The numerical results are compared with 
the solution provided by the commercial simulator, ABAQUS, 
which uses Galerkin FEM.

2 � Constitutive elastic–plastic relations

In this section, we present the general physical models which 
describe the behavior of elastic–plastic solids under small 
deformation.

2.1 � Stress and deformation tensor relationship 
in the elastic domain

The stress tensor for an isotropic material can be expressed, 
in the context of linear elastic assumption, by means of the 
following equation:

where d�ij is known as the second-rank Cauchy stress incre-
ment tensor, De

ijkl
 is the fourth-rank isotropic elastic modulus 

tensor, and d�e
ij
 is the second-rank elastic strain increment 

tensor. In terms of Lamé’s constants, � , and � , the elastic 
modulus can be represented by

The Lamé’s parameters are related to Young’s modulus E 
and Poisson’s ratio � through the following expression:

The basic relationship for the elastic strain is given by

(1)d�ij = De
ijkl
d�e

kl
,

(2)De
ijkl

= ��ij�kl + �
(
�ik�jl + �il�jk

)
.

(3)� =
�E

(1 + �)(1 − 2�)
and � =

E

2(1 + �)
.

(4)d�e
ij
=

(
�dui

�xj
+

�duj

�xi

)
,

Fig. 1   EbFVM discretization. Element, sub-control volumes, and 
control volumes
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where dui are the incremental displacement vector 
components.

When the variation in the temperature plays an impor-
tant role in problems, which involve elasticity, the follow-
ing thermal deformation tensor:

is added to Eq. (1), where �ij is the thermal expansion ten-
sor of the material, T  is the local temperature, and Tref is the 
reference temperature. From the assumption of isotropy, the 
thermal expansion tensor can be written as

where � is thermal expansion coefficient.
Substituting Eqs. (2) and (5) into Eq. (1), we have the 

following relationship, in terms of Lamé’s constants:

The above expression is known as Duhamel–Neumann for-
mulation [33].

2.2 � Strain tensor decomposition

The plasticity theory is able to characterize the mechani-
cal behavior of materials beyond the boundaries of the 
elastic limit [34]. Basically, this theory can determine 
whether a given stress state falls within the elastic or plas-
tic domain by means of the yield criterion function; in 
case of plasticity, it is able to perform corrections on the 
current stress state using the increment of plastic strain.

In this work, we assume the rate-independent plastic 
model through the assumption of the associative flow 
rule. Additionally, we shall work with the infinitesimal 
strain theory and von Mises yield criterion with isotropic 
hardening law. It is well known from the infinitesimal 
strain theory that the generalized increment of the total 
deformation d�ij can be decomposed by the following 
expression:

where d�p
ij
 is the plastic strain increment. In the context of 

plasticity theory, the plastic strain increment for a general 
case can be written in terms of internal variables as [35]

where g is defined thermodynamically as the plastic poten-
tial function [34] and � is a nonnegative plastic multiplier 
term [36].

(5)d�th
ij
= �ij

(
T − Tref

)
,

(6)�ij = ��ij,

(7)d�ij = 2�d�ij + �d�kk�ij − (2� + 3�)�(T − Tref)�ij.

(8)d�ij = d�e
ij
+ d�th

ij
+ d�

p

ij
,

(9)d�
p

ij
= d�

�g

��ij

2.3 � Continuum plasticity relation for solid materials

If a material yields during a load, the mechanical behavior can 
no longer be described either by Eq. (1) or, in case of thermal 
load, by Eq. (7). The classical plasticity theory addresses this 
issue substituting the elastic deformation tension in Eqs. (1) 
by (8), i.e.,

The yield condition can be mathematically analyzed by 
means of the following expression:

where J2
(
J2 =

1

2
�d
ij
�d
ij

)
 is second invariant of the stress 

deviator tensor 36, 37

and Y(�) is the uniaxial yield stress, which is experimen-
tally determined. Here, we consider the associative flow rule, 
which means f ≡ g.

3 � EbFVM approach

As discussed in Introduction, the EbFVM procedure bor-
rows from FEM the idea of elements and shape functions. In 
particular, the shape functions are applied to interpolate the 
unknowns within each element of the grid. Take, for instance, 
the variable � and the bilinear quadrilateral element (Fig. 1). 
Herein, we can evaluate the variable within each element using 
the following expression:

The shape functions for the bilinear quadrilateral elements 
(Fig. 2) are given by [36]

and its derivatives are written as

(10)d�ij = De
ijkl

(
d�kl − d�th

kl
− d�

p

kl

)
.

(11)f (�ij, �) =

√
3J2(�

d
ij
) − Y(�),

(12)�d
ij
= �ij −

1

3
�ij�kk,

(13)� ≈

4∑
i=1

Ni�i.

(14)N1(�, �) =
1

4
(1 − � − � + ��),

(15)N2(�, �) =
1

4
(1 − � + � − ��),

(16)N3(�, �) =
1

4
(1 + � + � + ��),

(17)N4(�, �) =
1

4
(1 + � − � − ��),
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where |J| is the Jacobian of the transformation, which is 
given by

The integration process that we present next occurs along 
the interface of each sub-control volume. The areas of each 
interface, in x- and y-directions, following a counterclock-
wise orientation are explicitly given by

where h is the thickness of the domain.

3.1 � Momentum conservation

We assume the integral of the simplified momentum equation 
for an arbitrary solid, with a volume V and boundary �S under 

(18)
�Ni

�x
=

1

|J|
(
�y

��

�Ni

��
−

�y

��

�Ni

��

)
,

(19)
�Ni

�y
=

1

|J|
(
�x

��

�Ni

��
−

�x

��

�Ni

��

)
,

(20)|J| =
(
�x

��

�y

��
−

�x

��

�y

��

)
.

(21)nxΔs = h

4∑
i=1

(
�Ni

��
d� +

�Ni

��
d�

)
yi,

(22)nyΔs = −h

4∑
i=1

(
�Ni

��
d� +

�Ni

��
d�

)
xi,

translation and rotation equilibrium [36]. Taking into account 
the above hypotheses, the momentum equation is given by

The force increments in Eq. (23) are suitable for three-
dimensional stress analysis, which is given in Eq. (7). This 
general formula can be reduced for two-dimensional special 
cases, which are plane stress, plane strain, and axisymmetric 
(see details in [1, 7, 34, 36, 37]). For the purpose of this work, 
we rewrite Eq. (7) in a matrix form for plane stress and plane 
strain using Voigt notation [38]

For convenience, the parameters � , 𝛼̄ , and 𝜈̄ are introduced 
in order to define plane stress (�zz = �zy = �zx = 0) and plane 
strain ( �zz = �zy = �zx = 0 ). Additionally, for plane stress, 
we assume 𝜁 = 𝜈̄ = 1 and 𝛼̄ = 𝛼 , and an additional term to 
evaluate the normal strain in z-direction

We consider plane strain if � =
1

1−�
 , 𝛼̄ = (1 + 𝜈)𝛼 , and 

𝜈̄ =
(1−𝜈)2

1−2𝜈
 , with an additional term to evaluate the normal 

stress in z-direction

(23)∮
�S

d�ijnjds = 0.

(24)

⎡⎢⎢⎣

d𝜎xx
d𝜎yy
d𝜎xy

⎤⎥⎥⎦
=

E𝜈̄�
1 − 𝜈2

�
⎡⎢⎢⎣

1 𝜁𝜈 0

𝜁𝜈 1 0

0 0
(1−𝜈)

2𝜈̄

⎤⎥⎥⎦

⎛⎜⎜⎝

⎡⎢⎢⎣

d𝜀xx
d𝜀yy
2d𝜀xy

⎤⎥⎥⎦
−

⎡⎢⎢⎣

1

1

0

⎤⎥⎥⎦
𝛼̄dT

⎞⎟⎟⎠
.

(25)d�zz = −
�

E

(
d�xx + d�yy

)
+ �dT .

(26)d�zz = −
E�

(
d�xx + d�yy

)
(1 − 2�)(1 + �)

+
E�dT

1 − 2�
.

Fig. 2   Bilinear quadrilateral 
element. a Physical plane and b 
computational plane
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In the context of the Voigt notation, it is opportune to 
express the deformation tensor increment as a function of 
the displacement field as follows [38]:

or simply [�] = [L][du] . Therefore, we are able to rewrite 
Eq. (27) by the following equation:

where I represents the identity matrix expressed at the right-
hand side in Eq. (28) using the Voigt notation.

Substituting Eqs. (28) into (23) and adjusting the nota-
tion, we obtain

where the unit normal vector n is defined as

Equation (35) is subtle for the treatment of elastic as well 
as for elastic–plastic problems. In the next section, we apply 
the EbFVM discretization in order to present a consistent 
approach to solve the nonlinear system of equations in elas-
tic–plastic cases.

3.2 � Boundary conditions

In order to achieve the solution of the physical model, 
appropriate boundary conditions have to be applied. They 
are defined by two sets: (I) �Vu , which specifies the pre-
scribed displacement up

i
 and (II) �Vp , where the traction �0i 

is defined. In other terms, we have

where nj is the outward unit vector.

3.3 � Integration procedure for the momentum 
equation

During the numerical integration, we have to ensure that the 
equilibrium condition, Eq. (23), must be satisfied in each 
incremental load, i.e.,

where Fext is the external force and Fint is the interval force 
vector.

(27)
⎡
⎢⎢⎣

d�xx
d�yy
2d�xy

⎤
⎥⎥⎦
=

⎡
⎢⎢⎢⎣

�

�x
0

0
�

�y
�

�y

�

�x

⎤
⎥⎥⎥⎦

�
dux
duy

�
,

(28)[d𝜎] =
[
De

]
[L][du] −

[
De

]
I𝛼̄dT ,

(29)∮ [n]
[
De

]
[L][du] − [n]

[
De

]
I𝛼̄dTds = 0,

(30)n =

[
nx 0 ny
0 ny nx

]
.

(31)ui = u
p

i
on �Su,

(32)�ijnj = �0i on �Sp,

(33)Fext − Fint = 0,

In applications involving thermal variation, we assume 
that the temperature field does not affect the material prop-
erties. Additionally, in order to achieve quadratic conver-
gence, we use a fully Newton–Raphson scheme. In this 
methodology, the tangent modulus, in the left-hand size 
of Eq. (23), must change in order to accommodate the new 
mechanical parameters when the material yields. There-
fore, we rewrite Eq. (23) as

where Dep = De for elastic loading and Dep =
��

��
 for plas-

tic loading; if the material yields during the process, Dep 
is evaluated during the correction of the stress state in a 
process called return mapping [35–37]. This approach is 
discussed in Sect. 4.2.

The EbFVM approach integrates the constitutive equa-
tions in each sub-control volume (scv) of each element. 
Then, the global equations are assembled by using all scv 
that share the same node i. Assuming the notation in [6], 
we can rewrite Eq. (34) as

where

where Aij is the so-called global stiffness matrix [6, 14] 
and Fi, th is the thermal force, which can be written as 
Fi, th = BiΔTi . Notice that the term Bi = 0 when there is no 
thermal effect; otherwise, it is evaluated by

when the thermal variation is present. The external force is 
calculated as

4 � Nonlinear numerical procedure

We present the Newton–Raphson procedure applied to 
non-equilibrium equation at the structural level (or global 
level), as well as to perform corrections over the stress 
state at the material level (integration points).

(34)
∮ [n]

[
Dep

]
[L][du] − [n]

[
De

]
I𝛼̄dTds = Fext − Fint(du),

(35)AijΔuj = Fi, th + Fi,ext − Fi,int(Δu),

(36)Aij = ∮
�Si

[n]i
[
De

][
LNj

]
ds,

(37)Bi = ∮
𝜕Si

[n]i
[
De

]
I𝛼̄

[
Ni

]
ds,

(38)Fn+1
i, ext

= ∮
�Sp

�0ids.
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4.1 � Non‑equilibrium at the nodal level

When a plastic load increment takes place, the equilibrium 
relationship, Eq. (35), is nonlinear. Therefore, assuming a 
state of non-equilibriumfor an initial estimate displacement 
un
i
 , we can rewrite Eq. (35) in a residual form introducing 

the iterative term �u as

The Newton–Raphson approach is commonly used to lin-
earize nonlinear equations, and at the same time, it provides 
a fast convergence rate, since it has quadric convergence 
near the root. During the iterative process, we ensure that 
the equilibrium condition is achieved using

where 
[
�Ri

�uj

] ≡ Aij.
The displacement is updated using the following 

approximation:

and the increment Δun+1
i

 is evaluated using the last con-
verged displacement calculated in the previous increment 
of force u∗

i

The next step is to visit each element and calculate the 
stress increment at each integration point k using Eq. (28), 
which is written in an incremental format as

and the new stress tensor is updated, in each integration 
point k, in terms of the previous converged stress state �∗

k

With the stress field given by Eq. (44) and using Eq. (11), 
we are able to observe if the nature of the stress state is 
elastic or plastic in each integration point of each element. 
As mentioned in Sect. 2.3, if f < 0 , the stress state is elastic. 
Therefore, Eq. (44) represents the current stress field and 
Dep = De , i.e., no corrections are necessary for this case. 
Otherwise, if f ≥ 0 , we must correct the stress state, as 
well as calculate the tangent modulus Dep ( Dep =

��

��
 ). The 

approach responsible for this process is presented in the next 
section (Sect. 4.2), and it is called return mapping.

The next step, in the nonlinear solution process, is to cal-
culate the internal force vector at the nodes. If no yields 
in strength take place, the stress obtained with Eq. (44) is 

(39)Aij�u
n
j
= Fn+1

i, th
+ Fn+1

i, ext
− Fn

i, int
= Rn

i
.

(40)�un
i
= −

[
�Ri

�uj

]−1
Rn
j
,

(41)un+1
i

= un
i
+ �un

i
,

(42)Δun+1
i

= un+1
i

− u∗
i
.

(43)Δ𝜎n+1
k

=

4∑
i=1

[
De

][
LNi

]
k

[
Δun+1

i

]
−
[
De

]
I𝛼̄
[
Ni

]
k
ΔTi,

(44)�n+1
k

= �∗

k
+ Δ�n+1

k
.

going to be used; on the other hand, if the material yields, 
the stress tensor is evaluated with the stress field provided by 
the return mapping. Therefore, independent of whether the 
stress state is elastic or plastic, the new internal force must 
be calculated by integrating the stress tensor evaluated at 
each integration point k of each sub-control volume of each 
element that share the ith node. The following expression is 
applied in order to calculate the internal force:

With this information, the new residual vector is given by

In Eq.  (45), nscv denotes the number of sub-control 
volumes that share the ith node of the grid. The iteration 
process stops if a given convergence criterion is satisfied. 
We adopted the L2 norm of the ratio of the residual R and 
external force vector Fext as a convergence criterion

where � is the tolerance. In this work, � is set to 10−10 for all 
case studies investigated.

The flowchart of the incremental procedure for the solu-
tion of the non-equilibrium momentum equations is shown 
in Fig. 3. This methodology requests the update of the stiff-
ness matrix, at each integration point of the element, at each 
force increment, when yield occurs.

4.2 � Implicit numerical integration of the return 
mapping

The classical rate-independent plastic model with isotropic 
von Mises hardening criterion is adopted in this work. For 
the treatment of the nonlinear equations involved in this 
theory, we assume an implicit integration on time, which is 
linearized with the Newton–Raphson method. The reasons 
for that choice lie on stability and quadratic convergence 
rate near the root. Thus, in case of plasticity, this numerical 
approach is used to correct the stress field when required in 
terms of the plastic parameters. This process is well known 
as return mapping.

It is important to mention that the integration performed 
in this section works for 2D and 3D domains without any 
restriction with exception for plane stress, since we also 
need to ensure that the component �

zz
 is equal to zero. The 

implementation performed in this work for plane stress is 
based on [34].

The stress field calculated in Eq.  (44) is adopted as 
the candidate stress tensor �c

k
 . Once the yield condition is 

(45)Fn+1
i, int

(Δun+1
i

) =

nsvc∑
l=1

∫
�S

�n+1
k

nds.

(46)Rn+1
i

(Δun+1
i

) = Fn+1
i,th

+ Fn+1
i, ext

− Fn+1
i,int

(Δun+1
i

).

(47)
‖R‖
��Fext

��
< 𝜖,
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verified, i.e., Equation (11) gives f ≥0, the stress state is 
numerically corrected assuming the incremental form of 
Eq. (10), which is expressed using the definition of the devi-
atortensor (12), as well as the candidate stress state as [37]

where �c
k
= �∗

k
+ Δ�n+1

k
.

(48)�n+1
k

= �c
k
− DeΔ�k

√
3

2

�d(�n+1
k

)

||�d(�n+1
k

)|| ,

In order to differentiate the return mapping equations, we 
replace the superscript n + 1 per j hereafter, since n + 1 denotes 
the property in the structural iteration and j denotes the local 
iteration at the return mapping. We also rewrite Eqs. (48) and 
(11) in a residual form

(49)
[
De

]−1(
�
j

k
− �c

k

)
+ Δ�

j

k

√
3

2

�d(�
j

k
)

||�d(�
j

k
)|| = Rj

�
,

(50)
√

3J2

(
�
j

k

)
− Y(Δ�

j

k
) = Rj

�
.

Fig. 3   Flowchart for the incre-
mental procedure
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Applying the Newton–Raphson method to Eqs. (49) and 
(50) results in

where J is the Jacobian matrix given by

The new stress state and the new plastic parameter are 
updated as follows:

The above parameters are used to update the residue vectors 
R
j+1
�  and Rj+1

� .
When the numerical iterative processes reach the conver-

gence criterion, we are able to evaluate the tangent modulus (
Dep =

��
j+1

k

��
j+1

k

)
 using the following expression:

where ��j+1

k
= D11��

j+1

k
 . This result leads to Dep = D11 , 

which is the new tangent matrix at the integration point. 
The return mapping algorithm is shown in Fig. 4.

5 � Nonlinear numerical procedure

In this section, we present four case studies to show the per-
formance of the EbFVM for computational solid mechan-
ics with nonlinearity material. These test cases are divided 
into two parts: (1) mechanical expansion and (2) thermal 
expansion, and for each one, we choose different domains, 
i.e., for the mechanical expansion we used the domain illus-
trated Fig. 5a and for the thermal expansion case we used 
the domain described in Fig. 5b.

The mechanical properties of the aluminum, required 
to define the elastic modulus are given by Young’s modu-
lus E = 70 GPa and Poisson’s ratio ν = 0.2. For the thermal 
expansion case study, in addition to the two aforementioned 
parameters, we also defined the thermal expansion coeffi-
cient � = 2.1 × 10−5 . The yield function for the linear plas-
ticity relation was chosen as

(51)
[
��

j+1

k

��
j+1

k

]
= −[J]−1

[
R
j
�

R
j
�

]
,

(52)J =

[ �R�

��

�R�

��
�R�

��

�R�

��

]
.

(53)�
j+1

k
= �

j

k
+ ��

j+1

k
,

(54)�
j+1

k
= �

j

k
+ ��

j+1

k
.

(55)
[
��

j+1

k

��
j+1

k

]
=

[
D11 D12

D21 D22

][
��

j+1

k

0

]
,

(56)Y(�) = �Y + H�� ,

where �Y  is the yield stress, which is given by 
�Y = 0.243 GPa. The angular coefficient was expressed by 
H� = 0.2 GPa and is equal to zero for the case of perfect 
plasticity.

We compare the numerical results with a reference solu-
tion in order to capture the accuracy of both EbFVM and 
FEM approaches. The reference solution was obtained by 
assuming a fine grid for both EbFVM and FEM approaches, 
where the results are expected to be grid independent.

5.1 � Mechanical expansion

In this section we carry out numerical tests using a domain 
that corresponds to a plate with a hole at its center. This 
plate is stretched at its minimum section in the opposite 
directions, as shown in Fig. 5a. We analyze this numeri-
cal experiment from the point of view of perfect and linear 
plastic loads for plane strain and plane stress. For symmetry 
reasons, only one quarter of plate is investigated, i.e., the 
gray region depicted in Fig. 5a.

The boundary conditions are given by prescribed dis-
placements, at the symmetry lines, and uniform surface ten-
sion �0i = 0.1 MPa, at the minimum section. The prescribed 
displacements are fixed in order to avoid rotation and trans-
lation of the domain.

For all simulations, the total load (0.1 MPa) is divided 
into 10 increments and the tolerance of � = 10−10 is applied 
to check the global and local levels (Figs. 3 and 4). We use 
the last increment to present the profile of the equivalent 
stress along the minimum section of the plate. This region 
was chosen since it contains the concentration of the highest 
values of the stress state.

We analyze the convergence rate of the solution with the 
mesh size for both the EbFVM and FEM (via commercial 
simulator). In order to make a fair comparison between the 
two numerical approaches, we imported the mesh used in 
the ABAQUS simulator and applied our in-house simula-
tor. The reference solution is assumed to be the numerical 
result obtained with the mesh with 7000 elements and 7697 
nodes. Additionally, in the EbFVM context, we analyze the 
Newton–Raphson convergence rate at the global level, using 
the last time load step, for the smallest size mesh employed.

Figure 6a, b presents the errorreduction in EbFVM and 
FEM, respectively, as the mesh is refined under the plane 
strain and perfect plasticity assumption.

From Fig. 6a, b, it can be noticed that the numerical 
experiments using EbFVM were able to reach convergence 
rates equivalent to the ones using FEM. In particular, the 
mesh with 951 elements was enough to produce an accept-
able approximated solution for both methods.

Using the mesh with 951 elements, the equivalent 
stress distribution, under plane strain and perfect plasticity 
assumption, is shown in Fig. 7a, b, for EbFVM and FEM, 
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respectively. Similar analyses are performed, for linear plas-
ticity, which is presented in Fig. 8. As an additional verifica-
tion, the von Mises stress state along the minimum section 
of the plate obtained by EbFVM and FEM is compared in 
Fig. 9. In order to verify the convergence rate at the global 
level, the Newton–Raphson convergence for perfect and lin-
ear plasticity is shown in Fig. 10.

It is important to acknowledge that, as we would expect, 
the numerical results of EbFVM and FEM were in good 

agreement, as can be observed in Figs. 6 through 9. Addi-
tionally, the convergence rate of the solution with the mesh 
size showed by EbFVM was analogous to the one achieved 
by FEM (Fig. 6). Quadric convergence was achieved by 
the EbFVM at structural level (Fig. 10), which means this 
approach was able to handle efficiently the proposed non-
linear application.

In order to make a full description of how EbFVM treats 
the two-dimensional CSM problem, we present the results 

Fig. 4   Flowchart for the return 
mapping algorithm
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for plane stress in Figs. 11 through 13 using the finest mesh 
used for the plane strain case. For this case, it was neces-
sary to enforce the normal stress, in z-direction, to be zero 
at the integration point. Therefore, the equivalent stress state 
is presented in Fig. 11 for perfect plasticity and in Fig. 12 
for linear plasticity. Additionally, the von Mises stress pro-
file along the minimum section of the plate is presented in 
Fig. 13.

As observed before, similar behavior already com-
mented for plane strain was verified for plane stress. Once 
again, the results for both approaches are in good agree-
ment with each other and with the reference solution, for 
perfect and linear plasticity. As for the Newton–Raphson 
convergence rate, the results, in the plane stress context, 
for both perfect linear and perfect plasticity are shown in 
Fig. 14. From this numerical information, it is possible 

Fig. 5   Domain definition. a 
Plate with a circular hole and b 
section of cylinder

Fig. 6   Equivalent stress using plane strain and linear plasticity assumption. Analyses of mesh size convergence to the exact solution. a EbFVM 
and b FEM

Fig. 7   Equivalent stress field for plane strain and perfect plasticity assumption. a EbFVM and b FEM
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to verify that five Newton iterations for both mechanics 
problems were more than enough to obtain a converged 
solution, in the last load increment. Additionally, we are 
able to observe quadric convergence for linear and perfect 
plasticity.

5.2 � Thermal expansion

We now investigated the nonlinear problem shown in 
Fig.  5b, taking into account the thermal expansion. In 
order to numerically analyze the plasticity loads due to the 
thermal expansion, we solve separately the energy and the 
mechanical equations. For solving the energy equation, we 
applied the following boundary conditions: prescribed tem-
peratures at the inner radius Tinner = 300 °C and at the outer 
radius Touter = 0 °C, and adiabatic condition at the symmetry 
regions. After the energy equation was solved, we use the 
temperature field as input to solve the mechanical problem. 
In order to avoid rotation and translation of the domain 
shown in Fig. 5b, we apply Dirichlet boundary condition 
( �Su ) fixing the displacement at the symmetrical surfaces.

In order to compare the numerical solution of the EbFVM 
and FEM, we use the equivalent stress evaluated at the cross 
section of the domain, which correspond to the y-axis and 
x =0. The solution of both numerical approaches for perfect 
and linear plasticity for a grid with 800 elements along with 
the reference solutions for FEM and EbFVM is presented 

Fig. 8   Equivalent stress field for plane strain and linear plasticity assumption. a EbFVM and b FEM

Fig. 9   Plane strain. Comparative equivalent stress between EbFVM and FEM. a Perfect plasticity and b linear plasticity
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Fig. 10   Plane strain. Residue versus iterations for the last equilibrium 
increment for perfect and linear plasticity



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:142

1 3

142  Page 12 of 16

in Fig. 15 for plane strain. Unlike the mechanical expansion 
problems described in Sect. 5.1, we applied only one mesh 
with 800 elements.

From Fig. 15, we can once again verify that both numeri-
cal approaches are in good agreement with each other, and 
the results are also close to the reference solution. This can 

be verified in Figs. 16 and 17 that present the equivalent 
stress field using both numerical approaches with perfect 
and linear plasticity for plane strain, respectively.

Our last numerical experiment is devoted to the appli-
cation of the thermal expansion using plane stress. As 
was made for plane strain, we have the comparative study 

Fig. 11   Equivalent stress field for plane stress and perfect plasticity assumption. a EbFVM and b FEM

Fig. 12   Equivalent stress field for plane stress and linear plasticity assumption. a EbFVM and b FEM

Fig. 13   Plane stress. Comparative equivalent stress between EbFVM and FEM. a Perfect plasticity and b linear plasticity
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of equivalent stress profile along the cross section of the 
domain, as can be observed in Fig.  18 for a grid with 
800 elements. Figures 19 and 20 present the von Mises 

equivalent stress field for perfect and linear plasticity using 
plane stress, respectively. Once more, we can verify that 
the results of EbFVM are in good agreement with the ones 
obtained with the FEM.

6 � Conclusions

In this work, we present the application of the EbFVM to 
nonlinear material problems. In particular, we numerically 
analyze the elastic–plastic rate-independent behavior of an 
isotropic material subject to mechanical and thermal expan-
sions, using plane strain and plane stress assumptions. Addi-
tionally, the numerical results are compared with the FEM, 
in order to analyze if the EbFVM approach could handle 
these problems in an efficient and accurate way as the FEM 
does.

The numerical approach using EbFVM was implemented 
using a Newton–Raphson procedure and PETSc solver 
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Plane stress (Perfect plasticity)

Plane stress (Linear plasticity)

Fig. 14   Plane stress. Residue versus iterations for the last equilibrium 
increment for perfect and linear plasticity

Fig. 15   Thermal plane strain. Comparative equivalent stress between EbFVM and FEM. a Perfect plasticity andb linear plasticity

Fig. 16   Plane strain. The von Mises distribution for perfect plasticity. a Using EbFVM and b using FEM



	 Journal of the Brazilian Society of Mechanical Sciences and Engineering (2019) 41:142

1 3

142  Page 14 of 16

Fig. 17   Plane strain. The von Mises distribution for linear plasticity. a Using EbFVM and b using FEM

Fig. 18   Thermal plane stress. Comparative equivalent stress between EbFVM and FEM. a Perfect plasticity and b linear plasticity

Fig. 19   Plane stress. The von Mises distribution for perfect plasticity. a Using EbFVM and b using FEM
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library. It is remarkable that, throughout the results, the 
EbFVM provides stable and accurate solution as good as 
the FEM independently of the load source or the geometri-
cal shape of the domain. The convergence rate of the solu-
tion with the mesh size for both EbFVM and FEM was also 
investigated. From the numerical results, we verified that the 
convergence rate of both numerical approaches was similar.

The results encourage the development of the EbFVM in 
fields that FEM is dominant, such as solid mechanics analy-
sis. While EbFVM has attractive characteristics of being 
conservative at the discrete level, the same in general is not 
followed by the FEM approach.
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