
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=unht20

Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology

ISSN: 1040-7782 (Print) 1521-0634 (Online) Journal homepage: https://www.tandfonline.com/loi/unht20

A 3D Total Variation Diminishing Scheme for
Compositional Reservoir Simulation Using the
Element-Based Finite-Volume Method

Bruno Ramon Batista Fernandes , Alysson Daniel Ribeiro Gonçalves ,
Edilson Pimentel Drumond Filho , Ivens da Costa Menezes Lima , Francisco
Marcondes & Kamy Sepehrnoori

To cite this article: Bruno Ramon Batista Fernandes , Alysson Daniel Ribeiro Gonçalves ,
Edilson Pimentel Drumond Filho , Ivens da Costa Menezes Lima , Francisco Marcondes &
Kamy Sepehrnoori (2015) A 3D Total Variation Diminishing Scheme for Compositional Reservoir
Simulation Using the Element-Based Finite-Volume Method, Numerical Heat Transfer, Part A:
Applications, 67:8, 839-856, DOI: 10.1080/10407782.2014.949196

To link to this article:  https://doi.org/10.1080/10407782.2014.949196

Published online: 20 Dec 2014. Submit your article to this journal 

Article views: 142 View related articles 

View Crossmark data Citing articles: 5 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=unht20
https://www.tandfonline.com/loi/unht20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10407782.2014.949196
https://doi.org/10.1080/10407782.2014.949196
https://www.tandfonline.com/action/authorSubmission?journalCode=unht20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=unht20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10407782.2014.949196
https://www.tandfonline.com/doi/mlt/10.1080/10407782.2014.949196
http://crossmark.crossref.org/dialog/?doi=10.1080/10407782.2014.949196&domain=pdf&date_stamp=2014-12-20
http://crossmark.crossref.org/dialog/?doi=10.1080/10407782.2014.949196&domain=pdf&date_stamp=2014-12-20
https://www.tandfonline.com/doi/citedby/10.1080/10407782.2014.949196#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10407782.2014.949196#tabModule


A 3D TOTAL VARIATION DIMINISHING SCHEME FOR
COMPOSITIONAL RESERVOIR SIMULATION USING
THE ELEMENT-BASED FINITE-VOLUME METHOD

Bruno Ramon Batista Fernandes1, Alysson Daniel Ribeiro
Gonçalves1, Edilson Pimentel Drumond Filho1,
Ivens da Costa Menezes Lima1, Francisco Marcondes2, and
Kamy Sepehrnoori3
1Laboratory of Computational Fluid Dynamics, Federal University of Cear�aa,
Cear�aa, Brazil
2Department of Metallurgical Engineering and Material Science,
Federal University of Cear�aa, Cear�aa, Brazil
3Department of Petroleum and Geosystems Engineering, The University of
Texas at Austin, Austin, Texas, USA

Interpolation function is a key parameter for numerical simulation using finite-difference,

finite-element, and finite-volume methods, especially when the advective terms of the conser-

vation equations are considered. Due to the flow orientation, a first-order interpolation

scheme such as upwind introduces a considerable degree of numerical diffusion in the

numerical solution. In this work, we present a second-order total variation diminishing

scheme in conjunction with 3D compositional reservoir simulation using the element-based

finite-volume method (EbFVM). The results of several case studies using the hexahedron

element are shown in terms of oil, water, and gas production, as well as saturation field.

1. INTRODUCTION

Numerical schemes such as the finite-difference, finite-element, and finite-
volume methods require an evaluation of certain physical properties at different
spatial positions in the computational domain. In general, when using unstructured
grids the physical properties such as pressure, temperature, and number of moles are
stored at the vertices of each element. In order to evaluate any of these properties
inside the element, some interpolation function needs to be used. The way this
interpolation is performed has a major impact on the numerical solution and
on determining the grid refinement, and also in giving rise to numerical dispersion,
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nonphysical oscillations, and other types of error. Consequently, an interpolation
function that can take into account the correct variation of fluid flow and disconti-
nuities, while maintaining numerical stability, can reduce computational time and
obtain accurate numerical solutions.

Baliga and Patankar [1] introduced the control-volume finite-element method
(CVFEM) in conjunction with triangular elements for the solution of advective–
diffusive problems, which in turn gave rise to the cell–vertex approach. They used
the upwind and the exponential interpolation functions to evaluate the gradients
and physical properties of the integration points. The exponential method uses shape
functions which are exponential in the direction of the element’s average velocity and
linear in the normal direction. This method is known as flow-oriented interpolation
(FLO). CVFEM was later renamed the element-based finite-volume method
(EbFVM) [2]. Since EbFVM only borrows the element details and shape functions
from the finite-element method but still performs a material balance in order to obtain
the approximated equations, in this work we will use the later denomination of
EbFVM. Prakash [3] extended the FLO scheme to take into account the source
terms—this new scheme is called FLOS. In aiming to improve skewed grids, many
other schemes have been developed. These were first based on the skew upwind tech-
niques proposed by Raithby [4, 5] for regular grids. Hassan et al. [6] and Schneider and
Raw [7] developed the skew upwind for triangular and quadrilateral grids, respect-
ively. Swaminathan and Voller [8, 9] extended the streamline upwind Petrov–Galerkin
(SUPG) scheme of Brooks and Hughes [10] to EbFVM. This method is termed

NOMENCLATURE

A area, m2

Acc accumulation term

F advective plus diffusive transport

cf rock compressibility, Pa�1

d distance, m

f fugacity, Pa
��kk�kk absolute permeability tensor, m2

Kij
dispersion tensor, m2=s

kr relative permeability

N trilinear shape function or number of

moles, mol

Nv total number of vertices

nc number of components

np number of phases

P pressure, Pa

q well volumetric rate, mol=s

r successive slope ratio

S saturation

t time, s

Vb bulk volume, m3

Vp pore volume, m3

Vt total fluid volume, m3

Vtk partial molar volume, m3=mol

x phase mole fraction

z overall composition

D any physical property evaluated at the

vertex

d any physical property evaluated at the

interface

n mole density, mol=m3

u porosity

k phase mobility, (Pa � s)�1

U hydraulic potential, Pa

w nonlinear function of successive slope

ratio

c specific gravity, Pa=m

m viscosity, Pa � s

Subscripts

i control volume, vertex, or

component

j phase

U upwind vertex

w water component

r reference phase

Superscripts

0 property evaluated on the previous

time occasion
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streamline upwind control volume (SUCV) and uses streamline to evaluate the upwind
influence. Although some of these methods can produce second-order accuracy, such
as SUCV, they provide stable solutions only for first-order accuracy and in general
require special treatment to avoid any downwind influence.

Another class of scheme is the total variation diminishing (TVD) methods that
are known to preserve monotonicity, with higher-order TVD schemes increased accu-
racy. The first flux limiter to preserve monotonicity for one-dimensional advective
problems was developed by Van Leer [11]. The principles behind the preservation of
monotonicity in the TVD scheme were later investigated by Harten [12]. Subsequently,
the TVD region for one dimension in equally spaced meshes was formulated by Sweby
[13], who proved that the limiters of Van Leer, Roe [14], and Chakravarthy and Osher
[15] follow the TVD definition. Sweby [13] also showed that the Lax–Wendroff [16]
and Warming–Beam [17] schemes do not follow the TVD definition.

Several works have adapted the TVD interpolation function from structured to
unstructured grids [18–25]. However, most of these efforts were addressed to cell-
centered grids. Although few authors have suggested that their schemes would also
work for cell–vertex discretization, these were all constructed and applied to
cell-centered unstructured grids. Fernandes et al. [26] recently extended the idea of
Darwish and Moukalled [20] from 2D cell-centered grids to 2D unstructured grids
using EbFVM in conjunction with compositional reservoir simulation using an
implicit pressure explicit composition (IMPEC) approach. To the best of our knowl-
edge, no higher-order TVD interpolation function has been used to date in conjunc-
tion with 3D cell–vertex unstructured meshes. In this work, we investigate the
upwind and TVD methods presented by Fernandes et al. [26] for 3D unstructured
meshes. These interpolation functions are implemented in an in-house compositional
reservoir simulator called UTCOMP [27, 28]. UTCOMP was developed at the Center
for Petroleum and Geosystems Engineering at The University of Texas at Austin for
the simulation of enhanced recovery processes. UTCOMP formulation is based in an
IMPEC approach, multiphase=multicomponent compositional equation of a state
simulator which can handle the simulation of several enhanced oil recovery processes.
EbFVM implemented into the UTCOMP simulator is based on the works of
Marcondes and Sepehrnoori [29], Marcondes et al. [30], and Santos et al. [31].

2. PHYSICAL MODEL

Isothermal, multicomponent, multiphase fluid flow in porous media can be
modeled using three types of equation: material balance, fluid phase equilibrium,
and constraint (see Refs. [27, 28]).

A material balance equation is required for each component in the system. In
reservoir modeling, the phase velocities are usually approximated by a multiphase
version of Darcy’s law. The material balance equation for the i-th component for
a full symmetric absolute permeability tensor can be written as

1

Vb

qNi

qt
� ~rr�

Xnp

j¼1

nj xij kj
��kk�kk � ~rrUj þ/

Xnp

j¼1

njSj Kij � ~rrxij

" #
� qi

Vb
¼ 0; i¼ 1;2; . . . ;nc;ncþ 1;

ð1Þ
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where nc is the number of components except for water, ncþ 1 denotes the water
component, np is the number of phases present in the reservoir, u is the porosity,
Ni is the number of moles of the i-th component, nj and kj are the molar density
and relative mobility of the j-th phase, respectively, xij is the mole fraction of the

i-th component in the j-th phase, ��kk�kk is the absolute permeability tensor, Kij is the

physical dispersion tensor, qi is the molar flow rate of the component i due to well
injection=production, Vb is the volume of control-volume, and Uj is the hydraulic
potential of the j-th phase given by

Uj ¼ Pj � cj Z; ð2Þ

where Pj denotes the pressure of the j-th phase and Z is the depth, which is positive in
the downward direction.

The nonaqueous phases are assumed to be in equilibrium condition,
which can be expressed in terms of the equality of fugacities (f) of the phases, as
follows:

f j
i � f r

i ¼ 0; i ¼ 1; . . . ; nc; j ¼ 2; . . . . . . ; np: ð3Þ

In Eq. (3), f j
i ¼ ln xij /ij

� �
, where uij is the fugacity coefficient of component i in the

j-th phase, and r denotes the reference phase. The restriction of the molar fraction is
used to obtain the solution of Eq. (3):

Xnc

i¼1

xij � 1 ¼ 0; j ¼ 2; . . . ; np;
Xnc

i¼1

ziðKi � 1Þ
1þ nðKi � 1Þ ¼ 0; ð4Þ

where zi is the overall molar fraction of the i-th component, Ki is the equilibrium
ratio for the i-th component, and n is the mole fraction of the gas phase in the
absence of water.

Fugacity and PVT (pressure-volume-temperature) properties are evaluated in
this work using the Peng–Robinson equation of state [32]. The flash procedure used
considers a fixed and known pressure, temperature, and global composition
(isothermal flash) in order to evaluate the phase composition and fluid properties.
It is worth mentioning that the water component is not included in the flash calcula-
tions. Further details of this procedure can be found in Perschke [33].

The closure equation is derived from the volume constraint (i.e., the available
pore volume of each cell must be filled by all phases present in the reservoir). This
constraint gives rise to the following equation:

Xnp

j¼1

Sj ¼ 1; ð5Þ

where Sj is the saturation of the j-th phase, which is defined as a volumetric fraction.
In the UTCOMP simulator, the unknown primary variables are oil pressure

and total number of moles for every component: P, N1,. . .,Nnc, Nw. The oil pressure
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is obtained through a volume balance and is given by

/0cf �
1

Vb

qVt

qP

� �
qP

qt
¼
Xnc

k¼1

Vtk

Xnp

j¼1

~rr � xkjnj

krj

mj

��kk�kk � ~rrUj þ ~rr � /njSj Kkj
~rrxkj

 !

þ
Xnc

k¼1

V tk
qk

Vb
: ð6Þ

In this work, an IMPEC-type formulation [34] is used to solve the set of nonlinear
equations. In this formulation, the pressure is solved at the new time level using
all other variables at the old time level. The new pressure is used to evaluate the mole
balance, and then a flash calculation is performed to evaluate the amount and
composition of phases at the new time step.

3. NUMERICAL DISCRETIZATION

In order to obtain the approximate equations in EbFVM, each element is div-
ided into sub-control volumes, as shown in Figure 1. Next, the material balance
equations and pressure equation (Eq. (1) and (6)) are integrated in time and for each
of these sub-control volumes. In this work we consider only the hexahedron element.
Figure 1b presents a trilinear hexahedron element, sub-control volumes associated
with each vertex, and the integration points for each sub-control volume. Integrating
each term of Eq. (1), for instance, in space and time for each sub-control volume,
and applying the Gauss theorem for the advective and dispersion terms, yieldsZ

t;V

1

Vb

qNk

qt
dtdV ¼

Z
t;A

Xnp

j¼1

xkjnj

krj

mj

��kk�kk � ~rrUj þ /njSjKkj � ~rrxkj

 !
� d~AA dt

þ
Z

t;V

qk

Vb
dtdV ; k ¼ 1; . . . ; nc þ 1: ð7Þ

Integrating the first and second terms of Eq. (7), and evaluating the
fluid properties through an explicit procedure, the following equations for the
above-mentioned terms are obtained:

Accm;i ¼
Vscvm;i

Vb;m

Nm

Dt

� �
i

� Nm

Dt

� �o

i

� �
; m ¼ 1;Nv; i ¼ 1; . . . ; nc þ 1; ð8Þ

Fm;i ¼
Z

A

Xnp

j¼1

kjnjxij
��kk�kk � ~rrUj þ /njSjKij � ~rrxij

� �
� d ~AA

¼
X3

ip¼1

Xnp

j¼1

n0
j x0

ij k
0
j knl

qUj

qxl

����
ip

An þ /n0
j S0

j K0
ijnl

qxij

qxl

����
ip

An

 !
;

m ¼ 1;Nv; n; l ¼ 1; . . . ; 3; i ¼ 1; nc þ 1: ð9Þ

In the above equations, Nv denotes the number of vertices of each element of the grid
and ip denotes each integration point located on each of the three surfaces shown in
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Figure 1b, for each sub-control volume. A similar procedure is performed for the
pressure equation.

Substituting Eqs. (8) and (9) into Eq. (7), the following equation for each
element is obtained:

Accm;i þ Fm;i þ qi ¼ 0; m ¼ 1; . . . ;Nv; i ¼ 1; . . . ; nc þ 1: ð10Þ

Equation (10) denotes the conservation for each sub-control volume of each element.
It is now necessary to assemble the equation of each control volume to obtain the
contribution of each sub-control volume that shares the same vertex. This process
is similar to assembling of the stiffness global matrix in the finite-element method.
Further details of the methodology described above can be found in Marcondes
et al. [30].

From Eq. (9), it can be inferred that is necessary to evaluate the fluxes through
each integration surface of each sub-control volume and the physical properties nj,
xij, and kj. The components of the gradient at each interface are approximated
through the shape functions as in Ref [30]; this involves only physical properties
evaluated at the vertices of each element. On the other hand, to evaluate the fluxes

Figure 1. Hexahedron element illustration. (a) Whole element; (b) all sub-control volumes and their

integration points.
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of each sub-control volume, it is necessary to extrapolate the physical properties (nj,
xij, and kj) from the vertices of the element to each integration surface. In this work,
we consider a first-order upwind and a higher-order TVD using two flux-limiter
schemes. Instead of evaluating each property separately and then multiplying them,
we perform the interpolation for the product of nj, xij, and kj together, as a unique
physical property.

The upwind scheme implemented for EbFVM is very similar to the classic
upwind scheme used in Cartesian grids. We simply need to find the upwind node
for a given interface. Considering for instance the integration point 1 (ip1), in
Figure 1, the product of the physical properties in conjunction with the upwind
scheme at ip1 is given by

ðxijnj kjÞip1 ¼
xij;2nj;2 kj;2 if ��kk�kk � ~rrUj � d ~AAjip1 � 0

xij;1nj;1 kj;1 if ��kk�kk � ~rrUj � d ~AAjip1 > 0;

(
ð11Þ

where the normal area considered in Eq. (11) points outward the sub-control volume
interface.

For TVD schemes, the flux limiter can be interpreted as a blending key pro-
cedure that switches between lower- and higher-order schemes in order to ensure a
monotonic solution. For EbFVM, the expression for an arbitrary property is given
by Fernandes et al. [26] as

df ¼ DU þ w rf

� �
~rrdf � D~rrUf ; ð12Þ

where the subscript f denotes any integration point where the property needs to be
evaluated, 4U is the value of property at the upwind vertex, w is the flux-limiter

function, ~rrdf is the property gradient evaluated at integration point f, D~rrUf is the

distance vector from face f to the upwind vertex, and rf is the successive slope ratio
approximated for EbFVM as

rf ¼
2~rrDU � D~rrUf � ~rrdf � D~rrUf

~rrdf � D~rrUf

; ð13Þ

where ~rrDU is the property gradient at the upwind vertex.
In our approach, the integration point gradients are evaluated through the

shape functions, while the vertex gradients are evaluated using a volumetric mean
of the gradients calculated at the vertices of elements that share that vertex, as sug-
gested by Tran et al. [35]. Figure 2 displays all geometric features involved in a 2D
calculation; the extension to the 3D grid is straightforward.

Two flux limiters in conjunction with Eq. (12) and (13) are investigated:
MINMOD (MM) [36], which is the most diffusive TVD limiter; and Koren’s limiter
[37], which is a very compressive limiter. The expressions used to evaluate both
limiters are given by

MINMOD : wðrf Þ ¼ max 0;min 1; rf

� �� �
; ð14Þ

Koren : wðrf Þ ¼ max 0;min 2; 2rf ;
rf þ 2

3

� �� �
: ð15Þ
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Details of other forms of flux limiter, also termed slope limiters, are available in the
literature [38, 39].

4. RESULTS

The first case study refers to a 2D tracer injection into a quarter of five-spot
configuration. To investigate this case using 3D, a single-element layer grid in the
z-direction is used and the gravitational term in the potential of each phase is not
considered; therefore, we can perfectly mimic 2D flow using the 3D hexahedron
mesh. This is an important case study since we can validate the numerical results
with an analytical solution provided by Abbaszadeh-Dehghani and Brigham [40].
In this case the tracer is injected through water to 0.2 pore volume injected (PVI).
Subsequently, no tracer is injected but water is continuously injected, at the same
volumetric rate, up to 1.6 PVI. The advection and diffusion terms are both con-
sidered for this tracer injection problem. The reservoir data are presented in
Table 1 and the grid configuration used in this case can be seen in Figure 3; the blue
and red arrows denote the injection and production wells, respectively.

The normalized concentration of the tracer produced along time is shown in
Figure 4, where the solutions for the upwind, MINMOD, and Koren schemes are
compared. As expected, from Figures 4a and b one may observe that the upwind
scheme is less accurate than the other two. Figure 4c compares the two TVD
schemes, showing that Koren’s scheme is superior to MINMOD in terms of
numerical accuracy for coarse grids (30� 30 and 50� 50 elements). However, when
the grid is refined the two interpolation functions achieve almost the same tracer
concentration profile.

We use the curves shown in Figure 4 to evaluate the L1-norm error based on
time. These errors are shown in Figure 5, where one can see an almost linear trend
of the error when the grid is refined. Figure 5 also confirms that both TVD
approaches are more accurate than the first-order upwind. It is also verified that
for coarse grids the TVD with Koren’s flux limiter is more accurate than the TVD
with MINMOD. However, when the grid is refined both flux limiters produce the
same error; such behavior is verified in Figure 4c.

Figure 2. Geometric features of TVD scheme for 2D grid.
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The second case study is 3D CO2 flooding into a quarter of five-spot configur-
ation. The reservoir is initially saturated with oil. All reservoir data are presented in
Table 2, which also shows the relative permeability parameters of Corey’s model
[41]. The fluid compositions are shown in Table 3.

Volumetric production rates at surface conditions (289 K and 101.3 kPa) are
shown in Figure 6. In this figure, we compare the oil and gas rates using a 20� 20� 3
hexahedron element mesh (1,764 volumes) for upwind, MINMOD, and Koren
schemes. In order to verify the accuracy of each of these approaches, we also show a
refined Cartesian mesh (60� 60� 6�21,600 volumes) solution using the upwind func-
tion. Figure 6 shows that the Cartesian grid solution falls between the EbFVM solution
with upwind and the TVD solutions. This result suggests that the Cartesian grid
solution is somewhat more accurate than the EbFVM upwind solution, which is
expected because the Cartesian grid is much finer than that used for EbFVM. However,
even when with the element grids being much coarser, the solution for the TVD schemes
can be seen as being more accurate than those obtained using the Cartesian grid.

The gas saturation fields for 400 days of production are shown in Figure 7.
From this figure, one may observe that Koren’s solution is much more compressible
than upwind, even for the Cartesian grid. MINMOD is also more compressible than
the two upwind solutions obtained with EbFVM and Cartesian grids.

Figure 3. Grid configuration for Case 1—Hexahedron 50� 50 elements grid.

Table 1. Fluid and reservoir data for Case 1

Property Value

Length, width, thickness 50.292, 50.292, 0.3048 m

Porosity (fraction) 0.2

Water viscosity 2.49� 10�4 Pa � s
Reservoir pressure 13.79 MPa

Water injection rate 20.39 mol=s

Producer’s bottom hole pressure 13.79 MPa

Initial water saturation 1.00

Longitudinal dispersion coefficient 0.2012 m

Transverse dispersion coefficient 0.0201 m

Injected tracer concentration 200 ppm

3D TVD SCHEME FOR COMPOSITIONAL RESERVOIR SIMULATION 847



The third case study is similar to the second, but now an irregularly shaped res-
ervoir is considered. The main purpose of this case is show the functionality of TVD
schemes associated with irregular reservoirs. The reservoir in question is shown in
Figure 8, where the approximate maximum sizes in each direction are given in feet.

Figure 4. Normalized tracer concentration for Case 1. (a) upwind and MINMOD; (b) upwind and Koren;

and (c) MINMOD and Koren.

Figure 5. L1-norm error of normalized tracer concentration produced for Case 1.
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Oil and gas production rates at standard surface conditions are shown in
Figure 9. From Figure 9a, it will be seen that the oil rate for the finer grid using
upwind increases, as it does for the TVD functions investigated. Although this
change in oil rate is not large, Figure 9b shows wider changes for gas rate. From
Figure 9b, one can clearly see that the gas production rate for the finer grid using
upwind approaches that of the TVD solutions. As expected, these results show that
the TVD scheme implemented in this work is more accurate than the upwind
scheme, even for irregular grids.

Table 2. Reservoir data for Case 2

Property Value

Length, width, thickness 170.69, 170.69, 3048 m

Porosity (fraction) 0.163

Initial water saturation 0.25

Initial pressure 19.65 MPa

Permeability in X-, Y-, Z-directions 1.974� 10�13 m2, 1.974� 10�13 m2,

1.974� 10�14 m2

Formation temperature 400 K

Gas injection rate 14.16� 103 m3=d

Producer’s bottom hole pressure 19.65 MPa

Residual saturation (water, oil–water, oil–gas, gas) 0.25, 0.2, 0.2, 0.05

Relative permeability end points (water, oil, gas) 1.0, 0.7, 0.3

Relative permeability exponents (water, oil–water, oil–gas, gas) 1.5, 2.5, 2.5, 2.5

Table 3. Fluid composition data for Case 2

Component Initial reservoir composition Injection fluid composition

CO2 0.0077 0.96

C1 0.2025 0.01

C2-3 0.1180 0.01

C4-6 0.1484 0.01

C7-14 0.2863 0.01

C15-24 0.1490 —

C25þ 0.0881 —

Figure 6. Volumetric production rates at surface condition for Case 2. (a) Oil; and (b) gas.
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Figure 7. Gas saturation field at 400 days for Case 2. (a) Upwind 1,764 vertices; (b) MINMOD 1,764 ver-

tices; (c) Koren 1,764 vertices; and (d) Cartesian 60� 60� 6.

Figure 8. Grid configuration used for Case 3—hexahedron grid (13,858 vertices; 12,000 elements).
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The gas saturation fields at 500 days of production are shown in Figure 10.
From this figure, no major differences are noted in the gas front for all grids and
interpolation functions investigated.

In order to better observe the effect of interpolation functions, we show the
gas saturation field again at 500 days for a plane-cut that passes through two of
the injection wells. One may observe that the TVD associated with the Koren flux
limiter is the most compressible, followed by TVD with MINMOD (Figure 11).

Figure 9. Volumetric production rates at surface condition for Case 3. (a) Oil; and (b) gas.

Figure 10. Gas saturation field at 500 days for Case 3. (a) Upwind 13,858 vertices; (b) MINMOD 13,858

vertices; (c) Koren 13,858 vertices; and (d) upwind 23,868 vertices.
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The final case study investigated consists of a gas flooding into an irregularly
shaped reservoir which contains a section with negligible absolute permeability (con-
sidered as dead grid blocks). The reservoir fluid is characterized by six hydrocarbon

Figure 11. Gas saturation field at 500 days for Case 3. (a) Upwind 13,858 vertices; (b) MINMOD 13,858

vertices; (c) Koren 13,858 vertices; and (d) upwind 23,868 vertices.

Figure 12. Grid configurations used for Case 4. (a) Hexahedron grid (41,392 vertices; 36,975 elements);

and (b) hybrid grid (42,232 vertices; 4,200 tetrahedrons; 35,715 hexahedrons; 4,200 pyramids).
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components and the reservoir initially contains only oil. The reservoir shape and
grids are shown in Figure 12.

The reservoir data are shown in Table 4 and the fluid composition in Table 5.
The relative permeability parameters for Corey’s model [41] are also given in Table 4.

Figure 13 shows the oil and gas production rates at surface conditions for
case 4. Although the differences in curves for oil rates are negligible, one may
observe major differences in gas rates (Figure 13b). From Figure 13b, one can clearly
see that the finer grid using upwind approaches the TVD solutions, suggesting that
the TVD approaches yield more accurate results than upwind.

Table 4. Reservoir data for Case 4

Property Value

Porosity (fraction) 0.35

Initial water saturation 0.17

Initial pressure 10.34 MPa

Permeability in all directions 9.869� 10�15 m2

Formation temperature 344.26 K

Gas injection rate 28.32� 103 m3=d

Producer’s bottom hole pressure 8.96 MPa

Residual saturations (water, oil–water, oil–gas, gas) 0.3, 0.1, 0.1, 0

Relative permeability end points (water, oil, gas) 0.4, 0.9, 0.9

Relative permeability exponents (water, oil–water, oil–gas, gas) 3.0, 2.0, 2.0, 2.0

Table 5. Fluid composition data for Case 4

Component Initial reservoir composition Injection fluid composition

C1 0.5000 0.7700

C3 0.0300 0.2000

C6 0.0700 0.0100

C10 0.2000 0.0100

C15 0.1500 0.0050

C20 0.0500 0.0050

Figure 13. Volumetric production rates at surface condition for Case 4. (a) Oil; and (b) gas.
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5. CONCLUSIONS

In this work, a TVD scheme using two flux limiters and an upwind scheme
were implemented in conjunction with a cell–vertex approach for compositional
reservoir simulation. The schemes were tested for several case studies and were vali-
dated through the use of both analytical and available numerical solutions using
Cartesian grids under the upwind scheme. The obtained results for the TVD scheme
using both flux limiters demonstrated that the tested and implemented scheme can
accurately overcome numerical dispersion, and that it is a good option for use in
conjunction with irregular grids.

FUNDING

The authors would like to acknowledge the PETROBRAS S=A Company for
their financial support of this work. Also, the authors would like to thank the ESSS
Company for providing Kraken1 to pre- and post-process the results. Finally, Fran-
cisco Marcondes would like to acknowledge CNPq (The National Council for Scien-
tific and Technological Development of Brazil) for its financial support through
grant no. 305415=2012-3.

REFERENCES

1. B. R. Baliga and S. V. Patankar, A New Finite-Element Formulation for Convection-
Diffusion Problems, Numer. Heat Transfer, vol. 3, no. 4, pp. 393–409, 1980.

2. C. R. Maliska, Computational Heat Transfer and Fluid Mechanics, 2nd ed., pp. 322–323,
LTC, Rio de Janeiro, 2004 (in Portuguese).

3. C. Prakash, An Improved Control Volume Finite-Element Method for Heat and Mass
Transfer, and for Fluid Flow Using Equal-Order Velocity-Pressure Interpolation, Numer.
Heat Transfer, vol. 9, no. 3, pp. 253–276, 1986.

4. G. D. Raithby, A Critical Evaluation of Upstream Differencing Applied to Problems
Involving Fluid Flow, Comput. Methods Appl. Mech. Eng., vol. 9, no. 1, pp. 75–103, 1976.

5. G. D. Raithby, Skew Upstream Differencing Schemes for Problems Involving Fluid Flow,
Comput. Methods Appl. Mech. Eng., vol. 9, 2, pp. 153–164, 1976.

6. Y. A. Hassan, J. G. Rice, and J. H. Kim, A Stable Mass-Flow-Weighted Two-
Dimensional Skew Upwind, Numer. Heat Transfer, vol. 6, no. 4, pp. 395–408, 1983.

7. G. E. Schneider, M. J. Raw, and A Skewed, Positive Influence Coefficient Upwinding
Procedure for Control-Volume-Based Finite-Element Convection-Diffusion Compu-
tation, Numer. Heat Transfer, vol. 9, no. 1, pp. 1–26, 1986.

8. C. R. Swaminathan and V. R. Voller, Streamline Upwind Scheme for Control-Volume
Finite Elements, Part I: Formulations, Numer. Heat Transfer, Part B, vol. 22, no. 1,
pp. 95–107, 1992.

9. C. R. Swaminathan and V. R. Voller, Streamline Upwind Scheme for Control-Volume
Finite Elements, Part II: Implementation and Comparison with the SUPG Finite-Element
Scheme, Numer. Heat Transfer, Part B, vol. 22, no. 1, pp. 109–124, 1992.

10. A. N. Brooks and T. J. R. Hughes, Streamline Upwind=Petrov–Galerkin Formulations
for Convection Dominated Flows with Particular Emphasis on the Incompressible
Navier–Stokes Equations, Comput. Methods Appl. Mech. Eng., vol. 32, no. 1–3,

pp. 199–259, 1982.

854 B. R. B. FERNANDES ET AL.



11. B. van Leer, Towards the Ultimate Conservative Difference Scheme. V - A Second-Order
Sequel to Godunov’s Method, J. Comput. Phys., vol. 32, no. 1, pp. 101–136, 1979.

12. A. Harten, High Resolution Schemes for Hyperbolic Conservation Laws, J. Comput.
Phys., vol. 49, no. 3, pp. 357–393, 1983.

13. P. K. Sweby, High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation
Laws, SIAM J. Numer. Anal., vol. 21, no. 5, pp. 995–1011, 1984.

14. P. L. Roe, Some Contributions to the Modelling of Discontinuous Flows, Summer
Seminar on Applied Mathematics, Proceedings of the 15th Summer Seminar on Applied
Mathematics, La Jolla, USA, 1983.

15. S. R. Chakravarthy and S. Osher, High Resolution Applications of the Osher Upwind
Scheme for the Euler Equations, Computational Fluid Dynamics, Proceedings of the 6th

Computational Fluid Dynamics Conference, Danvers, MA, pp. 363–372, 1983.
16. P. Lax and B. Wendroff, Systems of Conservation Laws, Commun. Pure Appl. Math.,

vol. 13, no. 2, pp. 217–237, 1960.
17. R. F. Warming and R. M. Beam, Upwind Second Order Difference Schemes and

Applications in Aerodynamics, AIAA J., vol. 14, no. 9, 1976.
18. C. W. S. Bruner and R. W. Walters, Parallelization of the Euler Equations on Unstruc-

tured Grids, AIAA paper 97–1894, 1995.
19. C. W. S. Bruner, Parallelization of the Euler Equations on Unstructured Grids, Ph.D.

dissertation, Department of Aerospace Engineering, Virginia Polytechnic Institute and
State University, Blacksburg, VA, 1996.

20. M. S. Darwish and F. Moukalled, TVD Schemes for Unstructured Grids, Int. J. Heat
Mass Transfer, vol. 46, no. 4, pp. 599–611, 2003.

21. C. M. Rhie and W. L. Chow, Numerical Study of the Turbulent Flow Past and Airfoil
with Trailing Edge Separation, AIAA J., vol. 21, no. 11, pp. 1525–1532, 1983.

22. C. O. E. Burg, High-Order Variable Extrapolation for Unstructured Finite Volume
RANS Solvers, AIAA Paper 2005–4999, AIAA Computational Fluid Dynamics 2005,
17th AIAA Computational Fluid Dynamics Conference, Toronto, Canada, 2005.

23. L. Li, H. Liao, and L. Qi, An Improved r-Factor Algorithm for TVD Schemes, Int. J.
Heat Mass Transfer, vol. 51, no. 3–4, pp. 610–617, 2008.

24. J. Hou, F. Simons, and R. Hinkelmann, Improved Total Variation Diminishing Schemes
for Advection Simulation on Arbitrary Grids, Int. J. Numer. Methods Fluids, vol. 70, no. 3,
pp. 359–382, 2011.

25. J. Hou, F. Simons, and R. Hinkelmann, A New TVD Method for Advection Simulation
on 2D Unstructured Grids, to be published on Int. J. Numer. Methods Fluids, vol. 71,
no. 10, pp. 1260–1281, 2013.

26. B. R. B. Fernandes, F. Marcondes, and K. Sepehrnoori, Investigation of Several
Interpolation Functions for Unstructured Meshes in Conjunction with Compositional
Reservoir Simulation, Numer. Heat Transfer, Part A, vol. 64, no. 12, pp. 974–993,
2013.

27. Y.-B. Chang, Development and Application of an Equation of State Compositional
Simulator, Ph.D. thesis, Department of Petroleum and Geosystems Engineering, The
University of Texas at Austin, Austin, TX, 1990.

28. Y.-B. Chang, G. A. Pope, and K. Sepehrnoori, A Higher Order Finite-Difference
Compositional Simulator, J. Pet. Sci. Eng., vol. 5, no. 1, pp. 35–50, 1990.

29. F. Marcondes and K. Sepehrnoori, An Element-Based Finite Volume-Method Approach
for Heterogeneous and Anisotropic Compositional Reservoir Simulation, J. Pet. Sci.
Eng., vol. 73, no. 1–2, pp. 99–106, 2010.

30. F. Marcondes, L. O. S. Santos, A. Varavei, and K. Sepehrnoori, A 3D Hybrid Element-
based Finite-Volume Method for Heterogeneous and Anisotropic Compositional
Reservoir Simulation, J. Pet. Sci. Eng., vol. 108, pp. 342–351, 2013.

3D TVD SCHEME FOR COMPOSITIONAL RESERVOIR SIMULATION 855



31. L. O. S. Santos, F. Marcondes, and K. Sepehrnoori, A 3D Compositional Miscible
Gas Flooding Simulator with Dispersion Using Element-Based Finite-Volume Method,
J. Pet. Sci. Eng., vol. 112, pp. 61–68, 2013.

32. D. Y. Peng and D. B. Robinson, The Characterization of the Heptanes and Heavier
Fractions for the GPA Peng–Robinson Programs, Gas Processors Association, Tulsa,
OK, 1978.

33. D. R. Perschke, Equation of State Phase Behavior Modelling for Compositional
Simulator, Ph.D. thesis, Department of Petroleum and Geosystems Engineering, The
University of Texas at Austin, Austin, TX, 1988.
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