

CONEM 2012 «Engenharia em destaque» Vll Congresso Nacional de Engenharia Mecânica São Luís - Maranhão - Brasil 31 de julho a 03 de agosto www.abcm.org.br/conem2012

ELABORAÇÃO, MONTAGEM, CALIBRAÇÃO E TESTE DE UM SISTEMA DE AQUISIÇÃO DE DADOS PARA TESTE DE CAMPO DE AEROGERADORES DE PEQUENO PORTE

Danilo César Rodrigues Azevedo, <u>dcrazevedo@gmail.com</u>¹ Paulo Alexandre Costa Rocha, <u>paulo.rocha@ufc.br</u>¹ Carla Freitas de Andrade, <u>carla@ufc.br</u>¹ Roberto de Araújo Bezerra, <u>roberto.bezerra@gmail.com</u>¹

¹Universidade Federal do Ceará, Campus do PICI, Bloco 714 S/N, Amadeu Furtado – Fortaleza/CE

Resumo: O levantamento preciso de dados de teste de aerogeradores pode incorrer na descoberta de falhas e acertos de projetos. Um bom sistema de medição deve ter características condizentes com o tipo de experimento a ser realizado. Devem ser avaliadas as características dos instrumentos a compor o sistema, tais como: alcance e taxa de amostragem. Além disso, deve-se sempre ter instrumentos calibrados e protegidos contra agentes que possam danifica-los fisicamente ou alterar os resultados das medições. Neste trabalho pretende-se chegar a um sistema para captar sinais referentes ao torque, rotação e velocidade do vento, capaz de ser disposto em campo, sob o sol ou chuva, para medição contínua em testes de aerogeradores de pequeno porte.

Palavras-chave: Aerogeradores, Energia Eólica, Medição de Desempenho

1. INTRODUÇÃO

A exploração das fontes energia eólica implica na necessidade de identificação prévia das áreas promissoras para aproveitamento eólico e o desenvolvimento do projeto de viabilidade técnico-econômico da usina. Para ser viável, é imperativo que o projeto de uma usina eólica busque sua implantação em locais com abundância em vento, com velocidades médias anuais que maximizem a produção de eletricidade a fim de que possa ser competitivo com outros projetos de geração de energia e ser viável e rentável economicamente.

O desenvolvimento de novos modelos de turbinas, maiores, mais eficientes, é outro fator determinante no sucesso do empreendimento.

É clara a necessidade de técnicas de medições eficientes e a utilização de equipamentos apropriados na aquisição de dados para avaliação dos quesitos acima. Neste trabalho, com o intuito de servir de apoio a outros estudos ligados a este tema (eólica), se montará um sistema de aquisição de dados para a medição das condições de vento, torque e rotação do rotor, para análise da capacidade de geração de aerogeradores de pequeno porte.

Em específico, busca-se a verificação da consistência dos dados, já adquiridos em estudos anteriores, utilizando este mesmo sistema de aquisição, através da calibração dos dispositivos e a posterior correção dos dados.

2. CONCEPÇÃO GERAL

O projeto dos sistemas de aquisição englobava a seleção de dispositivos para aquisição de sinais referentes a torque e rotação, para compor, indiretamente, a potência entregue pelo eixo; e um equipamento para captação de sinais referentes à velocidade do vento e posterior cálculo de energia cinética disponível. Com base nessas duas informações, é possível extrair os valores dos coeficientes de potência (Cp) dos conjuntos de pás testados.

Uma "nacelle" (Figura 1), diferente das convencionais, teve de ser projetada para a ligação dos transdutores. O eixo partido ao meio seria interligado pelo transdutor de torque por meio de dois acoplamentos do tipo mandíbula. Outra peculiaridade é o freio do tipo tambor para resistir ao torque do rotor e assim promover o esforço necessário no eixo do transdutor e obter o sinal de torque.

Figura 1 – Conjunto dinamômetro (nacelle)

Foi fixado paralelamente ao eixo o sensor indutivo responsável pelos sinais de rotação. Para tanto, foi integrada por interferência, à mandíbula de um dos acoplamentos, uma haste cilíndrica de pequeno diâmetro próxima cerca de 1mm do sensor. O sensor pode ser identificado pela coloração verde. A combinação destes dois sinais, torque e rotação, fornece a potência entregue pelo eixo:

$$P = T \cdot \omega$$

Para obter a energia cinética disponível, um anemômetro foi disposto numa torre paralela à dos aerogeradores e situado a uma altura equivalente à do rotor.

Os sinais adquiridos, após convertidos, foram usados para o conhecimento da energia cinética disponível e, combinando a Equação 1 com a Equação 2, temos o valor do coeficiente de potência:

$$C_p = \frac{T \cdot \omega}{\rho A_{Rotor} U_{\infty}^3} = 4a(1-a)^2$$
⁽²⁾

Todos os sinais eram enviados para o sistema que armazenava os dados para pós-processamento e apreciação. Um diagrama de funcionamento pode ser visto na Figura 2 abaixo:

Figura 2 – Diagrama de funcionamento do sistema de medição

2.1 Equipamentos

1) Torquímetro

A opção encontrada para o transdutor de torque foi o modelo importado HBM T22, com erro $\leq \pm 0,3\%$ (figura 3), de boa precisão, medindo de 0 à 200 N.m em até 8.000 RPM. Tais dados são fundamentais para descrição da potência mecânica do eixo (em conjunto com a rotação).

Figura 3 – Transdutor de Torque T22 HBM

2) Tacômetro

Foi selecionado um tacômetro tradicional com limite de leitura de rotação até 10.000 RPM (Figura 4). Trata-se de equipamento simples, baseado em sensor indutivo de proximidade, montado próximo ao eixo de rotação principal, modelo TADIG, T&S Equipamentos de fabricação nacional.

Figura 4 - Tacômetro T&S TADIG

3) Anemômetro

Foi selecionado um anemômetro ultrassônico, o qual permite avaliar a velocidade e direção do vento com alta precisão, mostrado na Figura 5. A escolha por tal equipamento também se deu pela possibilidade de experimentos para avaliação de turbulência no futuro. O equipamento importado, da marca GILL, Windmaster 1590 PK-20 (precisão a 12 m/s <1,5% RMS), funciona por efeito doppler.

Figura 5 – Anemômetro Gill Windmaster

4) Conversores e Data Logger

Para que os dados fossem armazenados de forma ordenada para posterior tratamento matemático, um data logger e dois conversores A/D de quatro canais foram empregados. Pelo arranjo proposto, ainda restaram dois canais de reserva, já que o transdutor de torque exige um, tacômetro um e anemômetro quatro. O Data Logger é importado, da marca PICO Technology, modelo EL 005 Environon. O conversor é de mesma fabricação modelo EL 037. O esquema de montagem do sistema de aquisição, seguindo os manuais, foi conforme a Figura 6:

Figura 6 – Esquema geral de montagem do sistema de aquisição

2.2 Calibração do Torquímetro

Inicialmente, isolou-se o conjunto dinamômetro em uma bancada e acoplou-se uma haste de 1m ao eixo do sistema, fixando-a em seu centro no intuito de neutralizar o torque gerado por esta e, sem submetê-lo a torque algum, registrouse o "zero" do dispositivo. A Figura 7 mostra a montagem.

Figura 7 – Montagem para calibração do torquímetro no conjunto dinamômetro

Em seguida o eixo foi freado, para impedir sua rotação e uma série de cargas foram aplicadas a uma distância conhecida sobre essa haste. A contraprova do teste foi tirada medindo as massas em balança de precisão e checando o desvio no valor medido e calculado.

A Tabela 1 traz os valores obtidos para cada medição em confronto com as massas calculadas. Os gráficos 1 e 2 mostram, respectivamente, a linha de tendência que representa a curva de calibração, bem como a Equação 3 e a linha de tendência que nos mostra o erro percentual para as voltagens registradas no teste.

• Zero [V] = -0,034

- Distância até o centro do eixo [m] = 0,486
- 1 [V/Nm] = 40

Tabela	1 – Da	idos da	calibra	ção do) torquíi	netro
--------	--------	---------	---------	--------	-----------	-------

Medida	Tensão	Torque	Torque	Massa	Massa	Erro
Massa 1	-0,020	0,560	0,596	0,117	0,125	6,00%
Massa 2	0,033	2,680	2,693	0,562	0,565	0,48%
Massa 3	0,042	3,040	3,050	0,638	0,640	0,34%
Massa 4	0,097	5,240	5,314	1,099	1,115	1,39%
Massa 5	0,121	6,200	6,291	1,301	1,320	1,45%
Massa 6	0,351	15,400	15,537	3,231	3,260	0,88%
Massa 7	0,573	24,280	24,569	5,094	5,155	1,18%

Gráfico 1 – Curva de calibração do torquímetro

Gráfico 2 - Curva de tendência de erro do torquímetro

Adicionando uma linha de tendência nos dados registrados, obteve-se a Equação 3 que fornece o valor corrigido do torque para um dado valor de tensão.

Torque Real = 40,441 x (Tensão Medida) + 1,3775

(3)

2.3 Calibração do Tacômetro

Depois de feita a ligação, seguindo as orientações do fabricante, o conjunto tacômetro foi posto em bancada para a calibração. Cogitaram-se duas opções: utilizar um tacômetro de contato ou uma pistola de luz estroboscópica.

Apesar de possuir uma precisão bem mais refinada, o ensaio com tacômetro de contato pode interferir no fenômeno adicionando carga ao eixo. Essa interferência poderia causar distorções na leitura do tacômetro a ser aferido. Um ensaio estroboscópico, por sua vez, não é invasivo por ser feito comparando a frequência de rotação do motor à de pulso da lâmpada da pistola, além de ser extremamente confiável no que diz respeito à nossa necessidade.

Para a execução do ensaio, utilizou-se o Laboratório de Aerodinâmica e Mecânica dos Fluidos do Departamento de Engenharia Mecânica da Universidade Federal do Ceará para montar uma bancada de testes composta por um motor elétrico, uma fonte de tensão e corrente variável, um estabilizador, o sistema de medição, uma lanterna estroboscópica e um computador. A Figura 8 mostra a montagem em detalhes.

Figura 8 - Imagens do ensaio estroboscópio (calibração do tacômetro)

Ao motor foi acoplada uma haste metálica, para o funcionamento do sensor de pulso magnético, e, com o motor funcionando e as luzes apagadas, foram feitas leituras na pistola estroboscópica até visualizar-se a haste parada, e não mais girando. A impressão de repouso ao se observar a haste, dá-se pela igual frequência da pistola estroboscópica e do motor.

Foram efetuadas 9 tomadas variando a rotação e verificando o valor lido no display do tacômetro, o valor na pistola estroboscópica e a corrente registrada pelo Data Logger. Com os resultados obtidos foi construída a Tabela 2, o Gráfico 3, que fornece os valores de rotação reais para uma dada corrente, e o Gráfico 4 que mostra o erro percentual em função da corrente.

- Zero [mA] = 3,985
- Rotação Máxima = 9999 RPM
- Máxima Leitura [mA] = 20
- 625 rot/mA

Tabela 2 - Dados da calibração do Tacômetro

Medida	Corrente	Valor Medido	Valor Real	Erro
Tomada 1	4,134	93,000	92,800	0,22%
Tomada 2	4,206	138,000	137,700	0,22%
Tomada 3	4,271	179,000	178,600	0,22%
Tomada 4	4,396	257,000	257,600	0,23%
Tomada 5	4,489	315,000	314,300	0,22%
Tomada 6	4,548	352,000	351,300	0,20%
Tomada 7	4,691	441,000	441,800	0,18%
Tomada 8	4,703	449,000	449,800	0,18%
Tomada 9	4,809	515,000	514,300	0,14%

Gráfico 3 - Curva de Calibração do Tacômetro

VII Congresso Nacional de Engenharia Mecânica, 31 de julho a 03 de Agosto 2012, São Luis - Maranhão

Adicionando uma linha de tendência nos dados registrados, obteve-se a Equação 4 que fornece o valor corrigido da rotação para um dado valor de tensão.

(4)

Rotação Real = 625,53 x (Corrente Medida) - 2493,1

Gráfico 4 - Erro percentual em função da corrente

2.4 Configuração do sistema

O programa Enviromon, responsável por guiar o Data Logger, foi configurado para receber os sinais analógicos seguindo o formato da saída dos transdutores.

- Tacômetro: 4-20mA
- Torquímetro: 0-10Vcc
- Anemômetro: 0-5Vcc

3 - RESULTADOS

Com os sinais de torque, rotação e velocidade do vento, os cálculos foram feitos para converter o valor do sinal nas respectivas grandezas utilizando uma planilha eletrônica. Com a mesma planilha, também foram calculados os principais parâmetros relacionados a desempenho da turbina: potência do eixo de rotação, coeficiente de potência (Cp) e velocidade específica na ponta das pás (lambda, λ). Na Tabela 3 segue uma parte da planilha.

Tabela 3 -	Amostra dos	dados obtidos n	a Série 5. F	Fonte: CARNE	EIRO, 2011

Data	Hora	U-Sinal	V-Sinal	Torque-Sinal	Rotação-Sinal
31/jan/11	18:47	2,9550	2,3000	- 0,1060	4,080
31/jan/11	18:48	2,9490	2,2660	- 0,1050	4,165
31/jan/11	18:49	2,9370	2,2280	- 0,0870	4,182
31/jan/11	18:50	2,9580	2,2040	- 0,0800	4,201
31/jan/11	18:51	2,9450	2,2560	- 0,0890	4,177
31/jan/11	18:52	2,9250	2,2850	- 0,0780	4,161
31/jan/11	18:53	2,9440	2,2750	- 0,0890	4,135
31/jan/11	19:14	2,9590	2,3360	- 0,0910	4,163
31/jan/11	19:15	2,9750	2,3030	- 0,0810	4,145
31/jan/11	20:00	2,9860	2,2000	- 0,0820	4,207
31/jan/11	20:01	3,0400	2,2250	- 0,1030	4,231

3.1 – Correção do Torquímetro

Com base na Equação 3, os sinais adquiridos nos testes foram convertidos novamente e comparados aos valores tidos como corretos pelos autores. A Tabela 4 fornece alguns dos valores registrados pelo Data Logger referente ao torque da série 5. Em seguida, o Gráfico 5 mostra o comportamento do erro em função do sinal de tensão medido.

Tabela 4	- /	Amostra	dos	dados	de	torque	corrigidos

Torque-Sinal	Torque (Nm)	Torque Corrigido (Nm)	Erro Percentual
- 0,1060	2,88	2,91	1,01%
- 0,1050	2,84	2,87	1,00%

VII Congresso Nacional de Engenharia Mecânica, 31 de julho a 03 de Agosto 2012, São Luis - Maranhão

- 0,0870	2,12	2,14	0,97%
- 0,0800	1,84	1,86	0,96%
- 0,0890	2,20	2,22	0,98%
- 0,0780	1,76	1,78	0,95%
- 0,0890	2,20	2,22	0,98%
- 0,0910	2,28	2,30	0,98%
- 0,0810	1,88	1,90	0,96%
- 0,0820	1,92	1,94	0,96%
- 0,1030	2,76	2,79	1,00%

Gráfico 5 – Erro relativo à calibração do Torquímetro

3.2 - Correção do Tacômetro

Seguindo o mesmo raciocínio, adota-se a Equação 5. Reutilizando os dados dos autores, pode-se montar uma segunda planilha comparativa (Tabela 6.3), expondo os valores e erros adquiridos na rotação. Em seguida, o Gráfico 6 fornece o erro relativo à calibração.

Rotação-Sinal	Rotação (RPM)	Rotação corrigida	Erro Percentual
4,080	59,38	59,06	0,53%
4,165	112,50	112,23	0,24%
4,182	123,13	122,87	0,21%
4,201	135,00	134,75	0,18%
4,177	120,00	119,74	0,22%
4,161	110,00	109,73	0,25%
4,135	93,75	93,47	0,30%
4,163	111,25	110,98	0,24%
4,145	100,00	99,72	0,28%
4,207	138,75	138,50	0,18%
4,231	153,75	153,52	0,15%

Tabela 5 – Amostra dos dados de rotação corrigidos.

Gráfico 6 - Erro relativo à calibração do tacômetro.

VII Congresso Nacional de Engenharia Mecânica, 31 de julho a 03 de Agosto 2012, São Luis - Maranhão

O coeficiente de potência, como já explanado, é uma relação entre o torque de eixo e o torque aerodinâmico. Portanto, será diretamente afetado pelas correções de rotação e momento. Uma terceira planilha (Tabela 6) compara os valores de Cp e o erro acumulado após as correções. Após a correção dos valores, foram levantados os gráficos que relacionam os coeficientes de potência e as velocidades específicas atingidas, Cp x Lambda. Segue abaixo um dos gráficos, referente à série 5, que compara os valores não-corrigidos aos corrigidos.

СР	C _{P Corrigido}	Erro Percentual
6,55	6,58	0,48%
11,58	11,67	0,77%
9,00	9,07	0,77%
7,21	7,26	0,77%
9,50	9,58	0,76%
8,43	8,49	0,71%
7,87	7,92	0,68%
10,31	10,38	0,74%
6,50	6,55	0,68%
6,73	6,78	0,79%
8.97	9.05	0.85%

Fabela	6 –	Amostra	dos	dados	de	Cp	corrigidos.
	~				~~~	~ ~	

Gráfico 7 - Dispersão dos dados de Cp corrigidos e não-corrigidos.

O Gráfico 7 mostra, ponto a ponto, os dados válidos adquiridos pelo sistema. Para esta análise, foram considerados dados válidos aqueles em que se registrou um valor de velocidade no fluxo livre acima de 2 m/s. Devido ao pequeno erro atribuído aos dispositivos, a variação entre os valores medidos e os valores ditos "reais" é muito pequena, não ultrapassando 1,02%.

4 - CONCLUSÃO

O projeto contemplou a montagem e testes de um sistema de aquisição de dados para estudo de aerogeradores de pequeno porte. Neste se propôs um desenho alternativo de nacelle para possibilitar o uso de torquímetro e tacômetros solidários ao eixo do rotor. Uma torre auxiliar para posicionar o anemômetro também foi elaborada e todos os sinais eram enviados para uma caixa de campo equipada com conversores e data logger.

Os testes selecionados foram executados utilizando este mesmo sistema. A manipulação dos dados, após o levantamento das curvas de calibração deram desvios para as leituras de torque e rotação que, combinados, variaram de 0,31% até 1,02%. Após o cálculo dos Cp de cada conjunto testado, viu-se que os resultados medidos subestimam os valores, frente aos corrigidos pela curva de calibração, porém, de forma tão irrisória que se sobrepunham no gráfico de Cp x λ .

A metodologia utilizada para os testes, no que tange à aquisição de dados e suporte eletrônico, incluído instrumentos, cabeamento e demais dispositivos, se mostrou satisfatória para os tipos de rotores testados, porém, para dimensões maiores o que sugere aerogeradores com "nacelles" mais altas (10m de altura ou mais), é considerável a elaboração de torres mais estáveis e a incorporação de um freio eletromagnético capaz de manter o torque constante por controle adaptativo e o sistema de aquisição de dados dentro da própria nacelle. A ideia de um sistema acessado por algum dispositivo sem fio, também deve ser tomada como válida, pois o acréscimo no comprimento dos cabos de transmissão poderia agregar erro devido ao aumento da resistência elétrica.

5 – REFERÊNCIAS

- Alvarez, A. C. C., Rocha, P. A. C., Carneiro F. O. M. (2008), "Aerodynamic Project of a threebladed Wind turbine for low intensity wind, using the blade element momentum theory". Anais do V Congresso Nacional de Engenharia Mecânica, Salvador, BA, Brasil.
- Amaral, P. L. P. G. (2011), "Projeto Construção e Testes de Pás de um Pequeno Aerogerador com perfil NACA 0012". Monografia (graduação) – Universidade Federal do Ceará, Centro de Tecnologia, Departamento de Engenharia Mecânica e de Produção, Fortaleza.
- Barreto, W. A. (2010), "Montagem e Testes das Pás de um Aerogerador de Pequeno Porte Usando o Perfil NACA 6412". Monografia (graduação) Universidade Federal do Ceará, Centro de Tecnologia, Departamento de Engenharia Mecânica e de Produção, Fortaleza.
- Burton, T., Sharpe, D., Jenkins, N., Bossanyi, E. (2001). "Wind Energy Handbook". WILEY.
- Cheatle, K. R. (2006). "The Fundamentals of Test Measurement Instrumentation". ISA.
- Doebelin, E. O. (1989). "Measurement Systems: Application and Design". Hardcover.
- Folha. Disponível em: <> http://www1.folha.uol.com.br/mercado/855129-energia-eolica-deve-crescer-320-nesta-decada-no-brasil-preve-governo.shtml > Acesso em 07/10/2011 às 14:35.
- Fonseca, I. M. (2000). "Sensores, Transdutores e Detectores". Notas de Aula. Universidade São Judas Tadeu. São Paulo,
- Global Wind Energy Council GWEC. Disponível em : <> http://www.gwec.net/index.php?id=125 > Acesso em 07/10/2011 às 14:35.
- Haslan, J., Summers, G., Williams, D. (1981). "Engeineering Instrumentation and Control". Butterworth-Heinemann.
- Inovaçãotecnologica. Disponível em : <> http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=energia-eolica-brasil > Acesso em 07/10/2011 às 17:45.
- Lopes, A. S. (2011), "Projeto, Desenvolvimento, Montagem e Testes de uma Estrutura de Medição de Eficiência de Pequenos Aerogeradores". Dissertação (mestrado) – Universidade Federal do Ceará, Departamento de Engenharia Mecânica e de Produção, Fortaleza.
- Manwell, J., McGowan, J., & Rogers, A. (2002)."Wind Energy Explained". WILEY.
- Méchali, M., Barthelmie, R., Frandsen, S., Jensen, L., Réthorré, P. E. (2009). "Wake effects at Horns Rev an their influence on energy production". Elsam Engineering. RISO National Laboratory.
- Oliveira, A. B. T., "Projeto Construção e Testes de Pás de um Pequeno Aerogerador com Perfil NACA 4412". Monografia (graduação) – Universidade Federal do Ceará, Centro de Tecnologia, Departamento de Engenharia Mecânica e de Produção, Fortaleza, 2011.
- Souza, P. K., Sobrinho, M. D. (2005). "Instrumentos de Medida e Sistemas de Instrumentação". Universidade Federal do Rio Grande do Sul, Instituto de Pesquisas Hidráulicas. Universidade Estadual de São Paulo, Faculdade de Engenharia de Ilha Solteira.