

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS MESTRADO EM MATEMÁTICA

KELTON SILVA BEZERRA

UM TEOREMA DE RIGIDEZ PARA HIPERSUPERFÍCIES CMC COMPLETAS EM VARIEDADES DE LORENTZ

FORTALEZA-CE 2009

KELTON SILVA BEZERRA

UM TEOREMA DE RIGIDEZ PARA HIPERSUPERFÍCIES CMC COMPLETAS EM VARIEDADES DE LORENTZ

Dissertação submetida à Coordenação do Curso de Pós-Graduação em Matemática da Universidade Federal do Ceará, como requisito parcial para obtenção do grau de Mestre em Matemática.

Área de concentração: Geometria Diferencial

Orientador: Prof. Dr. Antônio Caminha

Muniz Neto

FORTALEZA-CE

2009

B469t Bezerra, Kelton Silva

Um teorema de rigidez para hipersuperfícies CMC completas em variedades de Lorentz/ Kelton Silva Bezerra. 2009.

79 f.

Orientador: Prof. Dr. Antônio Caminha Muniz Neto

Área de concentração: Geometria Diferencial

Dissertação (Mestrado) - Universidade Federal do Ceará, Departamento de Matemática, Fortaleza, 2009.

 $CDD\ 516.36$

Aos meus pais Joaquim e Clara, aos meus irmãos Kelson(in memoriam) e Keila, e à pequenina Maria Eduarda.

Agradecimentos

Meus primeiros agradecimentos são para Deus e para minha família, em especial aos meus pais por terem acreditado em mim.

Agradeço também ao professor Antônio Caminha Muniz Neto, pela orientação, incentivo e paciência.

Agradeço aos professores Abdênago de Barros e Henrique de Lima por terem aceito o convite para participar da banca examinadora de minha dissertação.

Não posso deixar de citar meus conterrâneos Halyson, Ernani, Manoel, Aurineide, Wilson, Rondinele, Cícero e Paulo Alexandre.

Também agradeço aos meus amigos de graduação Mauro, Henry e Islândio.

Agradecimentos especiais para os professores Afonso Norberto, pelo apoio, e Barnabé Pessoa Lima, pela inestimável ajuda durante os dois anos em que se dispôs a me orientar.

À Andrea pela solicitude e eficiência.

À CAPES pelo apoio financeiro.

Resumo

O objetivo deste trabalho é apresentar um teorema de classificação para hipersuperfícies completas e de curvatura média constante em variedades de Lorentz de curvatura seccional constante, sob certas limitações da curvatura escalar. Para isto usaremos a fórmula de Simons, que nos dá uma relação entre as transformações de Newton P_r e o laplaciano da norma ao quadrado do operador de Weingarten A, e um princípio do máximo devido H. Omori e S. T. Yau. Como primeira aplicação obtemos uma classificação das hipersuperfícies tipo-espaço completas e de curvatura média constante no espaço de De Sitter, com curvatura escalar $R \geq 1$. Concluímos também que toda hipersuperfície tipo-espaço completa e de curvatura média constante positiva do espaço de Lorentz-Minkowski, com curvatura escalar não-negativa, é um cilindro sobre uma curva plana e, a menos de isometrias, determinamos tal curva.

Palavras-chave: Variedade de Lorentz. Espaço de De Sitter. Espaço de Lorentz-Minkowski.

Abstract

Our aim in this work is to show a classification theorem for complete CMC hypersurfaces in Lorentz manifolds of constant sectional curvature, under certains bounds on the scalar curvature. To this end we use Simons formula, wich gives a relation between Newton tranformations and the Laplacian of the squared norm of the Weingarten operator A, as well as a maximum principle due to H. Omori and S. T. Yau. We obtain, as a first application, a classification of complete spacelike CMC hypersurfaces of the De Sitter space, having scalar curvature $R \geq 1$. We also conclude that all complete spacelike hypersurfaces with positive constant mean curvature and nonegative scalar curvature in the Lorentz-Minkowski space are cylinders over a plane curve and, up to isometries, we determine this curve.

Keywords: Lorentz manifold. De Sitter space. Lorentz-Minkowski space.

Sumário

1	Preliminares		11
	1.1	Variedades Pseudo-Riemannianas	11
	1.2	Imersões Isométricas	15
	1.3	Cilindros Sobre Curvas Planas	18
2	As	r-ésimas Curvaturas Médias	25
	2.1	Transformações de Newton	30
3	A F	'órmula de Simons	33
4	O lema de Omori-Yau		42
	4.1	O Cut Locus	42
	4.2	O Teorema de Comparação do Hessiano	46
	4.3	O Laplaciano da Função Distância	51
	4.4	A Fórmula de Bochner	55
	4.5	O Teorema de Comparação do Laplaciano	57
	4.6	O Lema de Omori-Yau	61
5	Res	ultados Principais	72
Bibliografia			77

Introdução

Tem sido crescente nas últimas décadas o interesse pelo estudo da estrutura das hipersuperfícies tipo-espaço em variedades de Lorentz de curvatura seccional constante. Para o caso particular do espaço de De Sitter \mathbb{S}_1^n , A. J. Goddard conjecturou em [10] que hipersuperfícies completas tipo-espaço de curvatura média constante são totalmente umbílicas. Com trabalhos independentes de S. Montiel [13] e J. L. Barbosa e V. Oliker [3], isto mostrou-se verdade somente para hipersuperfícies compactas. Para o caso não-compacto, A. Brasil, A. Colares e O. Palmas forneceram em [4] novos exemplos de hipersuperfícies completas não-totalmente-umbílicas com curvatura média constante no espaço de De Sitter.

Em [1], Akutagawa prova o seguinte

Teorema 0.1. Seja $\psi: M^n \to \mathbb{S}^{n+1}_1$ uma hipersuperfície tipo-espaço completa imersa no espaço de De Sitter com curvatura média H satisfazendo $H^2 < 4(n-1)/n^2$. Então ψ é umbílica.

Em [13] Montiel classifica todas as hipersuperfícies tipo-espaço completas e umbílicas do espaço de De Sitter \mathbb{S}^{n+1} como sendo da forma

$$M^n = \{ x \in \mathbb{S}^{n+1}; \langle x, w \rangle = \tau \},\$$

onde $\langle w,w\rangle=\sigma=1,0$ ou -1 e $\tau^2>\sigma.$ Além disso, o único caso onde M^n é compacta ocorre quando $\sigma=-1.$

Neste trabalho provamos o seguinte teorema (ver [5]) de classificação de hipersuperfícies tipo-espaço completas e de curvatura média constante em variedades de Lorentz de curvatura seccional constante não-negativa, sob certas limitações da curvatura escalar:

Teorema 0.2. Seja $x: M^n \to \overline{M}_c^{n+1}, c \geq 0$, uma hipersuperfície tipo-espaço

completa de curvatura média constante H. Se M tem curvatura escalar $R \geq c$, então:

- (a) $R = c \ em \ M$.
- (b) Se c = 0 e $H \neq 0$, então $S_j = 0$ para todo $2 \leq j \leq n$.
- (c) Se c > 0, então M é totalmente geodésica e fechada.

Como primeira aplicação, obtemos:

Se $x: M^n \to \mathbb{S}^{n+1}_1$ é uma hipersuperfície tipo-espaço completa de curvatura média H constante e curvatura escalar $R \geq 1$, então

$$x(M) = \{ p \in \mathbb{S}_1^{n+1}; \langle p, w \rangle = 0 \},$$

onde $w \in \mathbb{L}^{n+2}$ é tal que $\langle w, w \rangle = -1$.

Quando o ambiente é o espaço (n+1)-dimensional de Lorentz-Minkowski \mathbb{L}^{n+1} , chegamos à seguinte conclusão:

Se $x: M^n \to \mathbb{L}^{n+1}$ é uma hipersuperfície tipo-espaço completa de curvatura média constante H>0 e curvatura escalar R não-negativa, então x(M) é um (n-1)-cilindro sobre uma curva plana γ . Mais ainda, a menos de isometrias de \mathbb{L}^{n+1} , tem-se

$$\gamma(x_1,...,x_n) = (x_1,0,...,0,g(x_1)),$$

onde

$$g(x_1) = \frac{\sqrt{|c|}}{nH} - \sqrt{\left(x_1 - \frac{\sqrt{c^2 - 1}}{nH}\right)^2 + \frac{1}{n^2H^2}}$$

 $e \ c \in \mathbb{R} \ \acute{e} \ arbitr\'{a}rio \ e \ tal \ que \ |c| \ge 1.$

Capítulo 1

Preliminares

Em todo este trabalho, salvo menção em contrário, M^n denotará uma variedade Riemanniana n-dimensional com métrica $g = \langle , \rangle$, conexão de Levi-Civitta ∇ e tensor curvatura R. O anel comutativo das funções suaves (ou de classe C^{∞}) sobre M será denotado por $C^{\infty}(M)$. O espaço dos campos diferenciáveis sobre M será denotado por $\mathfrak{X}(M)$. Já \overline{M}^n denotará uma variedade pseudo-Riemanniana n-dimensional com conexão de Levi-Civitta $\overline{\nabla}$ e tensor curvatura \overline{R} . Para simplificar a notação, também denotaremos por $g = \langle , \rangle$ a métrica pseudo-Riemanniana de \overline{M} .

1.1 Variedades Pseudo-Riemannianas

Seja V um espaço vetorial real de dimensão finita. Uma forma bilinear simétrica $b=\langle,\rangle:V\times V\to\mathbb{R}$ é dita

- (a) Positiva definida, quando $\langle v, v \rangle > 0$ para todo $v \in V \setminus \{0\}$.
- (b) Negativa definida, quando $\langle v, v \rangle < 0$ para todo $v \in V \setminus \{0\}$.
- (c) Não-degenerada, quando $\langle v, w \rangle = 0$ para todo w implica v = 0.

Se b é uma forma bilinear simétrica sobre V, um subespaço W de V é dito $n\~ao$ -degenerado se $b_{|W\times W}:W\times W\to \mathbb{R}$ for não-degenerada.

O índice de uma forma bilinear simétrica b sobre V é a maior dimensão de um subespaço W de V tal que $b_{|W \times W}: W \times W \to \mathbb{R}$ seja negativa definida.

Dados uma forma bilinear simétrica b sobre V e um subespaço W de V, definimos o complemento ortogonal W^{\perp} de W em V por

$$W^{\perp} = \{ v \in V; \langle v, w \rangle = 0, \forall w \in W \}.$$

Lema 1.1. Seja b uma forma bilinear simétrica sobre o espaço vetorial de dimensão finita V, e W um subespaço de V. Então:

- (a) b é não-degenerada se, e somente se, sua matriz com respeito a uma (e portanto a toda) base de V for invertitvel.
- (b) Se W é não-degenerado então $\dim(W) + \dim(W^{\perp}) = \dim V$ e $(W^{\perp})^{\perp} = W$.
- (c) W é não-degenerado se, e somente se, $V=W\oplus W^{\perp}$. Em particular, W é não-degenerado se, e somente se, W^{\perp} for não-degenerado.

Demonstração. Veja o capítulo 2 de [14].

Se $b = \langle , \rangle$ é uma forma bilinear simétrica e não-degenerada sobre o espaço vetorial real V, dizemos que um vetor $v \in V \setminus \{0\}$ é

- Tipo-tempo, quando $\langle v, v \rangle < 0$;
- Tipo-luz, quando $\langle v, v \rangle = 0$;
- Tipo-espaço, quando $\langle v, v \rangle > 0$.

De modo análogo se define o que significa um subespaço não-degenerado W de V ser tipo-tempo, tipo-luz e tipo-espaço. Se $v \in V \setminus \{0\}$ não for tipo-luz, define-se o sinal $\epsilon_v \in \{-1, 1\}$ de v dado por

$$\epsilon_v = \frac{\langle v, v \rangle}{|\langle v, v \rangle|}.$$

A norma de $v \in V$ é dada por $|v| = \sqrt{\epsilon_v \langle v, v \rangle}$, e v é unitário se |v| = 1. É um resultado padrão de álgebra linear que V admite uma base ortonormal $\{e_i\}$ com repeito a b, isto é, tal que $\langle e_i, e_j \rangle = \epsilon_i \delta_{ij}$, onde ϵ_i denota o sinal de e_i . Desse modo, a expansão de $v \in V$ com respeito a $\{e_i\}$ é dada por

$$v = \sum_{i=1}^{n} \epsilon_i \langle v, e_i \rangle e_i.$$

Seja V um espaço vetorial real, $b = \langle , \rangle$ uma forma bilinear simétrica e nãodegenerada de índice 1 sobre V, e $\Upsilon = \{u \in V; \langle u, u \rangle < 0\}$. Para cada $u \in \Upsilon$, definimos o cone tipo-tempo de V contendo u por $C(u) = \{v \in \Upsilon; \langle u, v \rangle < 0\}$.

Lema 1.2. Sejam $v, w \in \Upsilon$. Então:

- (a) O subespaço $\{v\}^{\perp}$ é tipo-espaço e $V = span\{v\} \oplus span\{v\}^{\perp}$. Assim, Υ é a união disjunta de C(v) e C(-v).
- (b) $|\langle v, w \rangle| \ge |v||w|$, com igualdade se e somente se v e w forem colineares.
- (c) Se $v \in C(u)$ para algum $u \in \Upsilon$, então $w \in C(u) \Leftrightarrow \langle v, w \rangle < 0$. Portanto, $w \in C(v) \Leftrightarrow v \in C(w) \Leftrightarrow C(v) = C(w)$.

Demonstração. Veja o capítulo 5 de [14].

Definição 1.3. Um tensor métrico \overline{g} sobre uma variedade diferenciável \overline{M} é um 2-tensor covariante e simétrico sobre \overline{M} , tal que \overline{g}_p é não-degenerada para todo $p \in \overline{M}$. Uma variedade pseudo-Riemanniana \overline{M} é um par $(\overline{M}, \overline{g})$, onde \overline{M} é uma variedade diferenciável e $\overline{g} = \langle , \rangle$ é um tensor métrico de índice constante sobre \overline{M} .

Daqui para frente, sempre que não houver perigo de confusão, escreveremos \overline{M} em vez de $(\overline{M}, \overline{g})$, \langle , \rangle em vez de \overline{g} e ν para o índice de \overline{M} .

Para o caso especial $\nu=1$ e dim $\overline{M}\geq 2$, \overline{M} é dita uma Variedade de Lorentz, e \langle , \rangle é então chamada uma métrica de Lorentz de \overline{M} . Se $\nu=0$, \overline{M} é simplesmente uma variedade Riemanniana.

Denotaremos por \mathbb{L}^{n+1} o espaço euclidiano \mathbb{R}^{n+1} munido com a métrica de Lorentz correspondente à forma quadrática

$$q(x) = x_1^2 + \dots + x_n^2 - x_{n+1}^2.$$

Em outras palavras, se $p \in \mathbb{L}^{n+1}$ e $v, w \in T_p \mathbb{L}^{n+1} \cong \mathbb{R}^{n+1}$, então

$$\langle v,w\rangle = v_1w_1 + \ldots + v_nw_n - v_{n+1}w_{n+1}.$$

 \mathbb{L}^{n+1} é conhecido como o espaço (n+1)-dimensional de Lorentz-Minkowski.

Outro exemplo de variedade de Lorentz é o espaço (n+1)-dimensional de De Sitter \mathbb{S}_1^{n+1} , isto é,

$$\mathbb{S}^{n+1}_1 \ = \ \{p \in \mathbb{L}^{n+2}; \langle p, p \rangle = 1\},$$

onde \mathbb{L}^{n+2} denota o espaço de Lorentz-Minkowski (n + 2)-dimensional.

Afirmamos que \mathbb{S}_1^{n+1} é uma subvariedade de Lorentz de \mathbb{L}^{n+2} . De fato, $f: \mathbb{L}^{n+2} \to \mathbb{R}$ dada por $f(x) = \langle x, x \rangle$ é uma função diferenciável tal que $\mathbb{S}_1^{n+1} = f^{-1}(1)$. Note que para todo $X \in \mathfrak{X}(\mathbb{L}^{n+2})$,

$$\langle \nabla f, X \rangle = df(X) = X(f) = X\langle x, x \rangle = 2\langle \nabla_X x, x \rangle = 2\langle X, x \rangle = \langle X, 2x \rangle,$$

ou seja, $\nabla f(x)=2x$, para todo $x\in\mathbb{L}^{n+2}$. Em particular, $\nabla f(x)\neq 0$ para todo $x\in\mathbb{S}_1^{n+1}$, e assim \mathbb{S}_1^{n+1} é uma hipersuperfície pseudo-Riemanniana de \mathbb{L}^{n+2} , com

$$N(x) = \frac{\nabla f(x)}{|\nabla f(x)|} = \frac{2x}{\sqrt{\langle 2x, 2x \rangle}} = x$$

sendo um vetor normal unitário e globalmente definido em \mathbb{S}_1^{n+1} . Como $\langle N, N \rangle \equiv 1$, \mathbb{S}_1^{n+1} é uma subvariedade Lorentziana de \mathbb{L}^{n+2} .

De modo semelhante à curvatura R de uma variedade Riemanniana M, a curvatura \overline{R} de \overline{M} é definida pelo 3-tensor $\overline{R}:\mathfrak{X}(\overline{M})\times\mathfrak{X}(\overline{M})\times\mathfrak{X}(\overline{M})\to\mathfrak{X}(\overline{M})$ dado por

$$\overline{R}(X,Y)Z = \overline{\nabla}_X \overline{\nabla}_Y Z - \overline{\nabla}_Y \overline{\nabla}_X Z - \overline{\nabla}_{[X,Y]} Z.$$

Dados $p \in \overline{M}$ e $v, w \in T_p \overline{M}$ gerando um subespaço não-degenerado bidimensional de $T_p \overline{M}$, segue do item (a) do lema 1.1 que $\langle v, v \rangle \langle w, w \rangle - \langle v, w \rangle^2 \neq 0$, de modo que faz sentido a

Definição 1.4. Sejam \overline{M} uma variedade pseudo-Riemanniana, $p \in \overline{M}$ e $\sigma \subset T_p \overline{M}$ um subespaço bidimensional não-degenerado de $T_p \overline{M}$. O número

$$K(\sigma) = \frac{\langle \overline{R}(v, w)w, v \rangle}{\langle v, v \rangle \langle w, w \rangle - \langle v, w \rangle^2}$$

independe da base escolhida $\{v,w\}$ de σ , e é denominado a curvatura seccional de \overline{M} em p segundo σ .

Definição 1.5. Dizemos que a variedade pseudo-Riemanniana \overline{M} tem curvatura seccional constante quando os números $K(\sigma)$ acima independem de p e do subespaço bidimensional não-degenerado σ de $T_p\overline{M}$.

Se \overline{M} tem curvatura seccional constante c, então (corolário 3.43 de [14])

$$\overline{R}(X,Y)Z = c(\langle Y,Z\rangle X - \langle X,Z\rangle Y). \tag{1.1}$$

Definição 1.6. Seja \overline{M} uma variedade de Lorentz. Uma aplicação τ , que associa a cada $p \in \overline{M}$ um cone tipo-tempo τ_p em $T_p\overline{M}$, é suave quando, para cada $p \in \overline{M}$, existem uma vizinhança aberta U de p e $V \in \mathfrak{X}(U)$ tais que $V(q) \in \tau_q$ para todo $q \in U$. Caso uma tal aplicação exista, diz-se que \overline{M} é temporalmente orientável.

Proposição 1.7. Uma variedade de Lorentz \overline{M} é temporalmente orientável se, e somente se, existir um campo vetorial tipo-tempo globalmente definido $K \in \mathfrak{X}(\overline{M})$.

Demonstração. Se existe um campo K de vetores tipo-tempo sobre \overline{M} , basta definir $\tau(p) = C(K(p))$. Reciprocamente, seja τ uma orientação temporal de \overline{M} . Como τ é diferenciável, cada ponto $p \in \overline{M}$ possui uma vizinhança U em \overline{M} na qual está definida um campo de vetores tipo-tempo K_U , com $K_U(q) \in \tau(q)$, para cada $q \in U$. Sejam agora $\{U_\alpha\}$ uma cobertura aberta de \overline{M} e $\{f_\alpha\}$ uma partição da unidade estritamente subordinada a $\{U_\alpha\}$. Então o campo

$$K = \sum_{\alpha} f_{\alpha} K_{U_{\alpha}}$$

está bem definido sobre \overline{M} e com a ajuda do lema 1.2 pode-se verificar que K é tipo-tempo. \square

A partir de agora, a escolha de uma aplicação τ como acima, ou de um campo tipo-tempo K a ela associado, será denominada uma orientação temporal para \overline{M} .

Seja τ uma orientação temporal para \overline{M} , e $V \in \mathfrak{X}(\overline{M})$. Se $V(q) \in \tau_q$ para todo $q \in \overline{M}$, diz-se que V aponta para o futuro. Então, segue da própria definição de cones tipo-tempo que todos os campos vetoriais sobre \overline{M} que apontam para o futuro são tipo-tempo. Além disso, se K for uma orientação temporal para \overline{M} , o item (c) do lema 1.2 garante que um campo vetorial tipo-tempo V sobre \overline{M} aponta para o futuro se e só se $\langle V, K \rangle < 0$.

1.2 Imersões Isométricas

Sejam (M^n,g) uma variedade Riemanniana e $(\overline{M}^{n+1},\overline{g})$ uma variedade pseudo-Riemanniana. Uma imersão isométrica $x:M^n\to \overline{M}^{n+1}$ é uma imersão tal que $x^*\overline{g}=g$.

Dada uma imersão isométrica $x:M^n\to \overline{M}^{n+1}$, diz-se que M é uma hipersuperfície de \overline{M} . Se \overline{M} é de Lorentz, M é chamada uma hipersuperfície tipo-espaço de \overline{M} .

Proposição 1.8. Se M^n é uma hipersuperfície tipo-espaço de uma variedade de Lorentz temporalmente orientada \overline{M}^{n+1} , então M admite um campo vetorial normal unitário (suave) $N \in \mathfrak{X}(M)^{\perp}$, apontando para o futuro. Em particular, M é orientável.

Demonstração. Fixe um campo $K \in \mathfrak{X}(\overline{M})$ que dá a orientação temporal de \overline{M} e observe que, para todo $p \in M$, o conjunto de todos os vetores tipo-tempo $v \in T_p \overline{M}$ é a união disjunta de C(K(p)) e C(-K(p)).

Tome, em cada $p \in M$, um vetor unitário $N(p) \in T_p M^{\perp}$. Desde que N(p) é tipo-tempo, trocando N(p) por -N(p) se necessário, podemos supor que $N(p) \in C(K(p))$. Este processo define unicamente um campo vetorial normal unitário N sobre M, apontando para o futuro, e então resta apenas mostrar que N é suave.

De fato, fixe $p \in M$ e tome um referencial móvel $\{e_i\}$ sobre uma vizinhança aberta e conexa U de p em M. Então $\widetilde{N} = K - \sum_{i=1}^{n} \langle K, e_i \rangle e_i$ é suave e normal a M em U, com

$$\langle \widetilde{N}, \widetilde{N} \rangle = \langle \widetilde{N}, K \rangle = \langle K, K \rangle - \sum_{i=1}^{n} \langle K, e_i \rangle^2.$$

Como $\langle K, K \rangle = \sum_{i=1}^{n} \langle K, e_i \rangle^2 - \langle K, N \rangle^2$, temos $\langle \widetilde{N}, \widetilde{N} \rangle = -\langle K, N \rangle^2 < 0$. Portanto, $\widetilde{N}(q) \in C(K(q))$ para cada $q \in U$, e $N = \frac{\widetilde{N}}{|\widetilde{N}|}$ é suave.

Dada uma imersão isométrica $x:M^n\to \overline{M}^{n+1}$, identificaremos M com $x(M)\subset \overline{M}$ e T_pM com $dx_p(T_pM)\subset T_{x(p)}\overline{M}$. Assim, identificando p com x(p) por simplicidade, T_pM será visto como um subespaço vetorial de $T_p\overline{M}$. Com estas identificações, sabe-se que a conexão de Levi-Civitta ∇ de M é dada por $\nabla_X Y=(\overline{\nabla}_X Y)^T$, para todos $X,Y\in\mathfrak{X}(M)$, onde o T sobrescrito denota a componente tangente. Assim,

$$\overline{\nabla}_X Y = \nabla_X Y + \alpha(X, Y),$$

onde $\alpha: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}^{\perp}(M)$ é a segunda forma fundamental (vetorial) de x. Desde que α é $C^{\infty}(M)$ -bilinear e simétrica, definindo

$$\langle AX, Y \rangle = \langle \alpha(X, Y), N \rangle,$$

onde N é um campo normal unitário sobre M, obtemos um campo A: $\mathfrak{X}(M) \to \mathfrak{X}(M)$ de operadores lineares auto-adjuntos $A_p: T_pM \to T_pM$, $p \in M$. Cada operador A_p é denominado o operador de Weingarten da imersão x. É imediato verificar que

$$AX = -\overline{\nabla}_X N \ e \ \alpha(X,Y) = \epsilon_N \langle AX, Y \rangle N.$$

A proposição a seguir nos fornece equações fundamentais que relacionam os tensores de curvatura de M e \overline{M} e a segunda forma fundamental. Para uma demonstração, ver por exemplo [7].

Proposição 1.9. Seja $x:M^n\to \overline{M}^{n+1}$ uma imersão isométrica e sejam $X,Y,Z,W\in\mathfrak{X}(M)$. Então:

(a) (Equação de Gauss)

$$\langle R(X,Y)Z,W\rangle = \langle \overline{R}(X,Y)Z,W\rangle$$

$$+\epsilon_N[\langle AX,W\rangle\langle AY,Z\rangle - \langle AX,Z\rangle\langle AY,W\rangle].$$

(b) (Equação de Codazzi)

$$(\overline{R}(X,Y)N)^T = (\nabla_X A)Y - (\nabla_Y A)X.$$

Usaremos agora a equação de Gauss para determinar o tensor curvatura do espaço de De Sitter \mathbb{S}^{n+1}_1 . Observe que o operador de Weingarten da inclusão $i:\mathbb{S}^{n+1}_1\to\mathbb{L}^{n+2}$ é dado por

$$A(X) = -\nabla_X N = -\nabla_X x = -X$$

onde N=x é o campo posição, que sabemos ser normal a $\mathbb{S}_1^{n+1}.$ Assim, para

 $X,Y,Z,W\in\mathfrak{X}(\mathbb{S}^{n+1}_1)$, segue da equação de Gauss que

$$\langle R(X,Y)Z,W\rangle \ = \ \langle \overline{R}(X,Y)Z,W\rangle - \langle A(X,Z),A(Y,W)\rangle$$

$$+ \langle A(X,W),A(Y,Z)\rangle$$

$$= \ -\langle A(X,Z),A(Y,W)\rangle + \langle A(X,W),A(Y,Z)\rangle$$

$$= \ -\langle A(X,Z),N\rangle\langle A(Y,W),N\rangle$$

$$+ \langle A(X,W),N\rangle\langle A(Y,Z),N\rangle$$

$$= \ -\langle A(X),Z\rangle\langle A(Y),W\rangle + \langle A(X),W\rangle\langle A(Y),Z\rangle$$

$$= \ -\langle X,Z\rangle\langle Y,W\rangle + \langle X,W\rangle\langle Y,Z\rangle$$

$$= \ \langle \langle Y,Z\rangle X - \langle X,Z\rangle Y,W\rangle .$$

Como $W \in \mathfrak{X}(\mathbb{S}^{n+1}_1)$ é arbitrário, segue que o tensor curvatura de \mathbb{S}^{n+1}_1 é dado por

$$R(X,Y)Z = \langle Y,Z\rangle X - \langle X,Z\rangle Y,$$

e assim \mathbb{S}^{n+1}_1 tem curvatura constante igual a 1.

Para ambientes de curvatura seccional constante tem-se o seguinte

Corolário 1.10. Sejam $x:M^n\to \overline{M}_c^{n+1}$ uma imersão isométrica de M^n em um ambiente \overline{M}^{n+1} de curvatura seccional constante $c,\ e\ X,Y,Z,W\in\mathfrak{X}(M)$. Então:

$$\langle R(X,Y)Z,W\rangle = c[\langle X,W\rangle\langle Y,Z\rangle - \langle X,Z\rangle\langle Y,W\rangle]$$

$$+ \epsilon_N[\langle AX,W\rangle\langle AY,Z\rangle - \langle AX,Z\rangle\langle AY,W\rangle]$$

e

$$(\nabla_X A)Y = (\nabla_Y A)X.$$

Demonstração. Isto é uma consequência imediata da proposição anterior e da equação 1.1.

1.3 Cilindros Sobre Curvas Planas

Definição 1.11. Seja M uma variedade Riemanniana. A escolha de um subespaço linear k-dimensional $D_p \subset T_pM$ em cada ponto $p \in M$ é chamada uma distribuição tangente k-dimensional em M, ou simplesmente uma distribuição, se não houver risco de confusão. Uma distribuição é chamada suave se $D = \coprod_{p \in M} D_p$ for um subfibrado suave do fibrado tangente TM.

Suponha $D \subset TM$ uma distribuição suave. Uma subvariedade $N \subset M$ é chamada uma variedade integral de D se $T_pN = D_p$ em cada $p \in M$. Nós dizemos que D é involutiva se dados campos diferenciáveis X, Y em um aberto U de M tais que $X_p, Y_p \in D_p$ para todo $p \in U$, então o colchete de Lie [X, Y] é tal que $[X, Y]_p \in D_p$, para todo $p \in U$. Dizemos que D é integrável se cada ponto de M pertence a uma variedade integral de D.

Definição 1.12. Uma folheação de dimensão k em uma variedade Riemanniana n-dimensional M é uma coleção de subvariedades k-dimensionais imersas, disjuntas e conexas (chamadas as folhas da folheação) cuja união é M e tal que em uma vizinhança de cada ponto $p \in M$ existe uma carta (U, φ) com a propriedade que $\varphi(U)$ é um produto de abertos conexos $U' \times U'' \subset \mathbb{R}^k \times \mathbb{R}^{n-k}$, e cada folha da folheação intersecta U em um conjunto vazio ou em uma união enumerável de "k-fatias" da forma $x_{k+1} = c_{k+1}, ..., x_n = c_n$. (Uma tal carta é chamada uma carta "flat" para a folheação.)

Para mais detalhes sobre o conteúdo das duas definições acima veja, por exemplo, [12].

Exemplo 1.13. A coleção de todos os subespaços afins k-dimensionais de \mathbb{R}^n paralelos a \mathbb{R}^k é uma folheação k-dimensional de \mathbb{R}^n .

Seja $f:M^n \to \overline{M}^{n+p}$ uma imersão isométrica, e seja x um ponto de M. O subespaço de T_xM dado por

$$\Delta(x) = \{X \in T_x M : \alpha(X, Y) = 0, \forall Y \in T_x M\}$$

é chamado o subespaço de nulidade relativa de f em x. A dimensão $\nu(x)$ de $\Delta(x)$ é chamada o *índice de nulidade relativa* de f em x. Observe que se $\nu(x) \equiv \nu$ é constante em M então $x \mapsto \Delta(x)$ é uma distribuição ν -dimensional em M, chamada a distribuição de nulidade relativa.

A seguite proposição é encontrada no capítulo 5 de [7].

Proposição 1.14. Para uma imersão isométrica $f: M^n \to \overline{M}^{n+p}$, nós temos:

- (a) A distribuição de nulidade relativa é suave em qualquer aberto onde ν é constante.
- (b) O conjunto $\Omega = \{x \in M : \nu(x) = \min_{x \in M} \nu(x)\}$ é aberto.

Demonstração. (a) Assuma que $\dim \Delta(x) = m$ para todos os pontos de um aberto U de M. Desde que

$$\Delta^{\perp}(x) = span\{A_{\xi}X : X \in T_x M, \xi \in T_x M^{\perp}\},\$$

dado $x_0 \in U$, existem $X_1,...,X_{n-m} \in T_{x_0}M$ e $\xi_1,...,\xi_{n-m} \in T_{x_0}M^{\perp}$ tais que

$$\Delta(x_0)^{\perp} = span\{A_{\xi_j}X_j\}_{1 \le j \le n-m}.$$

Tome extensões locais suaves de $X_1,...,X_{n-m}$ e $\xi_1,...,\xi_{n-m}$ em TM e TM^{\perp} , respectivamente. Por continuidade, os campos de vetores $\{A_{\xi_j}X_j\}$, $1 \leq j \leq n-m$, permanecem linearmente independentes em uma vizinhança $V \subset U$ de x_0 , e assim geram Δ^{\perp} . Nós concluímos que Δ^{\perp} é uma distribuição suave em U, e assim o mesmo vale para Δ .

(b) Segue imediatamente do argumento acima.

Na notação da proposição acima, $x \mapsto \Delta(x), x \in \Omega$, é chamada distribuição de nulidade relativa mínima.

Os seguintes dois teoremas também são encontrados em [7].

Teorema 1.15. (Ferus). Seja $f:M^n\to \overline{M}_c^{n+p}$ uma imersão isométrica, e seja $\Theta\subset M$ um aberto onde o índice de nulidade relativa ν é igual a alguma constante m. Então, em Θ nós temos:

- (a) A distribuição de nulidade relativa Δ é suave e integrável, e as folhas são totalmente geodésicas em M e \overline{M} .
- (b) Se $\gamma:[0,b]\to M$ é uma geodésica tal que $\gamma([0,b))$ está contido em uma folha de Δ , então $\nu(\gamma(b))=m$.
- (c) As folhas da distribuição de nulidade relativa mínima são completas sempre que M é completa.

Demonstração. (a) Sejam $X, Y \in \Delta$ e $Z \in TM$. Então

$$(\nabla_Z^{\perp}\alpha)(X,Y) = \nabla_Z^{\perp}\alpha(X,Y) - \alpha(\nabla_Z X,Y) - \alpha(X,\nabla_Z Y) = 0.$$

Usando a equação de Codazzi nós obtemos

$$0 = (\nabla_X^{\perp} \alpha)(Z, Y) = -\alpha(Z, \nabla_X Y).$$

Assim $\nabla_X Y \in \Delta$. Isto implica que Δ é involutiva com folhas totalmente geodésicas em M e \overline{M} , uma vez que

$$\overline{\nabla}_X Y = \nabla_X Y + \alpha(X, Y) = \nabla_X Y \in \Delta.$$

(b) Seja L a folha de Δ que contém $\gamma([0,b))$, e seja Z um campo paralelo ao longo de γ tal que $Z(\gamma(b)) \in \Delta(\gamma(b))$. É suficiente mostrar que $Z(\gamma(0)) \in \Delta(\gamma(0))$. Se isto é verdade, então $\nu(\gamma(0)) \geq \nu(\gamma(b))$, e assim $\nu(\gamma(0)) = \nu(\gamma(b))$. A seguinte definição será útil: para cada $X \in \Delta$, seja $C_X : \Delta^{\perp} \to \Delta^{\perp}$ dada por

$$C_X Y = -P(\nabla_Y X),$$

onde $P:T\Theta\to\Delta^\perp$ é a projeção ortogonal. Então vale o fato: para cada $W\in\Delta^\perp(\gamma(0))$, existe um único campo Y ao longo de $\gamma|_{[0,b)}$ tal que

$$(1) Y(0) = W$$

(2)
$$\frac{D}{dt}Y + C_{\gamma'}Y = 0, \ 0 \le t < b,$$

e Y estende-se suavemente a t = b.

Isto é um problema de Cauchy para uma equação diferenciável ordinária linear de primeira ordem, e assim seguem-se a existência e a unicidade. Derivando (2) em relação a t,

$$0 = \frac{D^2}{dt^2}Y + \frac{D}{dt}C_{\gamma'}Y$$
$$= \frac{D^2}{dt^2}Y + \left(\frac{D}{dt}C_{\gamma'}\right)Y - C_{\gamma'}^2Y$$
$$= \frac{D^2}{dt^2}Y + cY,$$

onde foi usado na última igualdade que o operador $C_{\gamma'}$ ao longo de γ satisfaz a equação diferencial

$$\frac{D}{dt}C_{\gamma'} = C_{\gamma'}^2 + P(R(\cdot, \gamma')\gamma'),$$

sendo R o tensor curvatura de M (para mais detalhes, veja a proposição 5.1 em [7]). Portanto, Y é uma solução de uma equação diferencial ordinária linear

de segunda ordem com coeficientes constantes em [0, b), e assim estende-se a t = b, o que prova o fato acima.

Sejam agora X uma extensão de γ' em Δ e Y como no fato acima. Então

$$\nabla_{\gamma'}^{\perp} \alpha(Y, Z) = (\nabla_X^{\perp} \alpha)(Y, Z) + \alpha \left(\frac{D}{dt}Y, Z\right)$$

$$= (\nabla_Y^{\perp} \alpha)(X, Z) + \alpha \left(\frac{D}{dt}Y, Z\right)$$

$$= -\alpha(\nabla_Y X, Z) + \alpha \left(\frac{D}{dt}Y, Z\right)$$

$$= \alpha \left(C_{\gamma'}Y + \frac{D}{dt}Y, Z\right) = 0.$$

Em particular, $\|\alpha(Y,Z)\|$ é constante ao longo de γ e anula-se em $\gamma(b)$, uma vez que $Z(\gamma(b)) \in \Delta(\gamma(b))$. Daí $\alpha(Y(\gamma(0)), Z(\gamma(0))) = 0$, e assim $Z(\gamma(0)) \in \Delta(\gamma(0))$, como queríamos.

Seja agora $\gamma: \mathbb{R} \to \mathbb{R}^2$ uma curva regular suave parametrizada pelo comprimento de arco. Consideremos $f: \mathbb{R}^n \to \mathbb{R}^{n+1}$ dada por $f(t_1, ..., t_n) = (\gamma(t_1), t_2, ..., t_n)$. Segue então que a matriz jacobiana de f é

Como os dois primeiros vetores-linhas da matriz $(n+1) \times n$ acima nunca se anulam simultaneamente, seu posto é n, e assim f é uma imersão. De fato, f é isométrica, como conclui-se facilmente usando-se que $(\gamma'_1)^2 + (\gamma'_2)^2 = 1$. Uma tal imersão é chamada um *cilindro sobre a curva plana* γ . O teorema a seguir, devido a Hartman e Nirenberg, garante que qualquer imersão isométrica de \mathbb{R}^n em \mathbb{R}^{n+1} tem esta forma, isto é, pode ser escrita como

$$\gamma \times I : \mathbb{R} \times \mathbb{R}^{n-1} \to \mathbb{R}^2 \times \mathbb{R}^{n-1} = \mathbb{R}^{n+1}.$$

onde γ é uma curva plana e $I:\mathbb{R}^{n-1}\to\mathbb{R}^{n-1}$ é a identidade.

O lema a seguir é uma adaptação, ao teorema seguinte, da proposição 5.5 do livro de Dajczer [7].

Lema 1.16. Seja $f: M_c^n \to \overline{M}_c^{n+1}$, $n \ge 1$, uma imersão isométrica. Então $\nu \ge n-1$.

Demonstração. Escolhendo uma base $X_1, ..., X_n$ para T_xM consistindo de direções principais, com curvaturas principais correspondentes $\lambda_1, ..., \lambda_n$, segue da equação de Gauss que

$$c = c + \lambda_i \lambda_i$$

para $i \neq j$, isto é, $\lambda_i \lambda_j = 0$ para $i \neq j$.

Suponha que algum λ_i , digamos λ_1 , é não-nulo. Então $\lambda_2 = \dots = \lambda_n = 0$. Daí, para qualquer $Y \in T_x M$ e $2 \le j \le n$ tem-se

$$\langle \alpha(X_j, Y), N \rangle = \langle A(X_j), Y \rangle = \langle \lambda_j X_j, Y \rangle = 0,$$

onde N é um campo normal unitário numa vizinhança de $x \in M$. Como estamos em codimensão um, temos $\alpha(X_j,Y)=0$, provando que $\{X_2,...,X_n\}\subset \Delta(x)$, e assim $\nu(x)\geq n-1$.

Se todos os λ_i são nulos, então um cálculo análogo ao feito acima nos dá $\{X_1,...,X_n\}\subset \Delta(x)$ e assim $\nu(x)=n$.

Teorema 1.17. Seja M^n uma variedade Riemanniana completa e "flat", e seja $f: M^n \to \mathbb{R}^{n+1}$ uma imersão isométrica. Então f(M) é um cilindro sobre uma curva plana.

Demonstração. Considerando o recobrimento universal $\pi: \mathbb{R}^n \to M^n$ e trocando f por $f \circ \pi$, podemos supor que $M^n = \mathbb{R}^n$.

Pelo lema 1.16 temos $\nu \geq n-1$. Se $\nu = n$ então f é totalmente geodésica, e f(M) é um cilindro sobre uma reta, isto é, um plano. Se este não é o caso, segue do item (a) do teorema 1.15 que o aberto não-vazio $\Omega = \{x \in \mathbb{R}^n; \nu(x) = n-1\}$ é folheado por hiperplanos completos que são, consequentemente, paralelos. Agora nós podemos estender a folheação para \mathbb{R}^n . Fixe $x_0 \in \Omega$, e seja r_t a reta em \mathbb{R}^n passando por x_0 e perpendicular as folhas L_x da folheação. Tome $Y \in \Delta(x_0)$, e seja Y_t seu transporte paralelo ao longo de r_t em \mathbb{R}^n . É claro que $Y_t \in \Delta(r_t)$. Daí,

$$\frac{D}{dt}Y_t = \frac{D}{dt}Y_t + \alpha(r'_t, Y_t) = 0,$$

e assim Y_t é constante em \mathbb{R}^{n+1} . Este fato e o item (a) do teorema 1.15 implicam que as imagens $f(L_x)$ são subespaços afins (n-1)-dimensionais paralelos de \mathbb{R}^{n+1} . Como r_t é perpendicular as folhas, nós concluímos que $\gamma(t) = f(r_t)$ é a curva plana desejada.

Capítulo 2

As r-ésimas Curvaturas Médias

Pela proposição 1.8, toda hipersuperfície tipo-espaço $x:M^n\to \overline{M}^{n+1}$ de uma variedade de Lorentz, temporalmente orientada e (n+1)-dimensional \overline{M} , é orientável. Além disso, podemos escolher em M um campo diferencável de vetores normais N, unitário, tipo-tempo e globalmente definido. Se A denota a segunda forma fundamental de x com respeito a N então, em $p\in M$, A reduzse a um operador linear auto-adjunto $A_p:T_pM\to T_pM$. Para $1\leq r\leq n$, seja $S_r(p)$ a r-ésima função simétrica elementar nos autovalores de A_p ; desta maneira nós obtemos n funções suaves $S_r:M\to\mathbb{R}$, tais que

$$\det(tI - A) = \sum_{k=0}^{n} (-1)^k S_k t^{n-k}, \qquad (2.1)$$

onde $S_0 = 1$ por definição. Se $p \in M$ e $\{e_k\}$ é uma base de T_pM formada por autovetores de A_p , com autovalores correpondentes $\{\lambda_k\}$, vemos imediatamente que

$$S_r = \sigma_r(\lambda_1, ..., \lambda_n),$$

onde $\sigma_r \in \mathbb{R}[X_1,...,X_n]$ é o r-ésimo polinômio simétrico elementar nas indeterminadas $X_1,...,X_n$, isto é,

$$\sigma_r(X_1, ..., X_n) = \sum_{1 \le i_1 < ... < i_r \le n} X_{i_1} ... X_{i_r}.$$

Note em particular que vale a relação

$$2S_2 + |A|^2 = S_1^2, (2.2)$$

onde $|A|^2 = \langle A, A \rangle = tr(A^2)$. De fato,

$$S_1^2 - 2S_2 = \left(\sum_i \lambda_i\right)^2 - 2\sum_{i < j} \lambda_i \lambda_j$$
$$= \sum_i \lambda_i^2$$
$$= |A|^2.$$

Suponha agora que o espaço ambiente \overline{M} tenha curvatura seccional constante c. Dado $p \in M$, seja $\{e_1, ..., e_n\}$ um referencial ortonormal (um referencial geodésico, por exemplo) numa vizinhança de p tal que $\{e_1(p), ..., e_n(p)\}$ seja uma base ortonormal de T_pM formada por autovetores de A_p . Se R é a curvatura escalar de M, segue da equação de Gauss que

$$R = \frac{1}{n(n-1)} \sum_{i \neq j} \langle R(e_i, e_j) e_j, e_i \rangle$$

$$= \frac{1}{n(n-1)} \sum_{i \neq j} \langle c + \langle A(e_i, e_i), A(e_j, e_j) \rangle - ||A(e_i, e_j)||^2 \rangle$$

$$= c + \frac{1}{n(n-1)} \sum_{i \neq j} (\langle A(e_i, e_i), A(e_j, e_j) \rangle - ||A(e_i, e_j)||^2 \rangle.$$

Como $\langle N, N \rangle = -1$ e a codimensão é 1, segue que $A(e_i, e_j) = -\langle A(e_i, e_j), N \rangle N$. Assim, temos em p

$$\langle A(e_i, e_i), A(e_j, e_j) \rangle = -\langle A(e_i, e_i), N \rangle \langle A(e_j, e_j), N \rangle$$
$$= -\langle A_p(e_i), e_i \rangle \langle A_p(e_j), e_j \rangle$$
$$= -\lambda_i \lambda_i,$$

e por um argumento análogo, $||A(e_i, e_j)||^2 = 0$ se $i \neq j$.

Segue então que

$$R = c - \frac{1}{n(n-1)} \sum_{i \neq j} \lambda_i \lambda_j$$
$$= c - \frac{2}{n(n-1)} S_2,$$

ou seja,

$$2S_2 = n(n-1)(c-R). (2.3)$$

Para $1 \le r \le n$, nós definimos a r-ésima curvatura média H_r de x por

$$H_r = \frac{(-1)^r}{\binom{n}{r}} S_r = \frac{1}{\binom{n}{r}} \sigma_r(-\lambda_1, ..., -\lambda_n).$$

Em particular, $H_1 = H$ é a curvatura média de x. Tais funções satisfazem certas desigualdades algébricas muitos úteis, usualmente conhecidas como desigualdades de Newton. Uma prova delas para números reais positivos pode ser encontrada em [11]. Aqui, nós daremos uma versão mais geral delas, devida a A. Caminha, junto com uma condição *sharp* para a igualdade. Para a prova, precisamos do seguinte lema:

Lema 2.1. Se $f \in \mathbb{R}[x]$ é um polinômio com $k \geq 1$ raízes reais, contadas as multiplicidades, então f' tem pelo menos k-1 raízes reais, contadas as multiplicidades. Em particular, se todas as raízes de f são reais, o mesmo ocorre com f'.

Demonstração. Seja $\alpha \in \mathbb{R}$ uma raiz de multiplicidade $k \geq 1$ de f, isto é, $f(x) = (x - \alpha)^k g(x)$, com $g(\alpha) \neq 0$. Derivando obtemos

$$f'(x) = k(x - \alpha)^{k-1}g(x) + (x - \alpha)^k g'(x)$$

= $(x - \alpha)^{k-1}(kg(x) + (x - \alpha)g'(x)).$

Como $kg(\alpha) + (\alpha - \alpha)g'(\alpha) \neq 0$, segue que α é raiz de multiplicidade k-1 de f'.

Agora sejam $\alpha_1, ..., \alpha_l \in \mathbb{R}$ as raízes distintas de f, isto é,

$$f(x) = (x - \alpha_1)^{k_1} \cdots (x - \alpha_l)^{k_l} g(x),$$

onde $k_1, ..., k_l$ são inteiros positivos e $g(\alpha_i) \neq 0$, i = 1, ..., l. Como vimos acima, α_i é raiz de multiplicidade $k_i - 1$ de f'. Contadas as multiplicidades, f tem $k = k_1 + ... + k_l$ raízes reais. Supondo, sem perda de generalidade, que $\alpha_1 < ... < \alpha_l$, obtemos mais l - 1 raízes para f', distintas dos α_i , aplicando o Teorema do Valor Médio aos intervalos $[\alpha_i, \alpha_{i+1}]$. Assim, f' tem pelo menos $(k_1 - 1) + ... + (k_l - l) + (l - 1) = k - l + l - 1 = k - 1$ raízes reais.

Proposição 2.2. Sejam n > 1 inteiro, $e \lambda_1, ..., \lambda_n$ números reais. Defina, para $0 \le r \le n$, $S_r = S_r(\lambda_i)$ como acima, $e H_r = H_r(\lambda_i) = \binom{n}{r}^{-1} S_r(\lambda_i)$.

(a) Para $1 \le r < n$, tem-se $H_r^2 \ge H_{r-1}H_{r+1}$. Além disso, se a igualdade ocorre para r=1 ou para algum 1 < r < n, com $H_{r+1} \ne 0$ neste caso, então $\lambda_1 = \ldots = \lambda_n$.

- (b) Se $H_1, H_2, ..., H_r > 0$ para algum $1 < r \le n$, então $H_1 \ge \sqrt{H_2} \ge \sqrt[3]{H_3} \ge ... \ge \sqrt[r]{H_r}$. Mais ainda, se a igualdade ocorre para algum $1 \le j < r$, então $\lambda_1 = ... = \lambda_n$.
- (c) Se, para algum $1 \le r < n$, tem-se $H_r = H_{r+1} = 0$, então $H_j = 0$ para todo $r \le j \le n$. Em particular, no máximo r-1 dos λ_i são diferentes de zero.

Demonstração. Para provar (a) nós usamos indução sobre o número n>1 de números reais. Para n=2, temos somente r=1, e a desigualdade segue de

$$H_1^2 - H_0 H_2 = (\frac{1}{2}S_1)^2 - S_2$$

$$= (\frac{1}{2}(\lambda_1 + \lambda_2))^2 - \lambda_1 \lambda_2$$

$$= \frac{1}{4}((\lambda_1 + \lambda_2)^2 - 4\lambda_1 \lambda_2)$$

$$= \frac{1}{4}(\lambda_1 - \lambda_2)^2 \ge 0,$$

valendo a igualdade se e só se $\lambda_1 = \lambda_2$. Suponha agora que as desigualdades sejam verdadeiras para n-1 números reais, com igualdade para r=1 ou 1 < r < n e $H_{r+1} \neq 0$ se e só se todos os λ_i são iguais. Dados $n \geq 3$ números reais $\lambda_1, ..., \lambda_n$, seja

$$f(x) = (x + \lambda_1)...(x + \lambda_n) = \sum_{r=0}^{n} {n \choose r} H_r(\lambda_i) x^{n-r}.$$

Então

$$f'(x) = \sum_{r=0}^{n-1} (n-r) \binom{n}{r} H_r(\lambda_i) x^{n-r-1}.$$

Como as raízes de f são todas reais, o mesmo ocorre com f', de modo que existem números reais $\gamma_1, ..., \gamma_{n-1}$ tais que

$$f'(x) = n(x + \gamma_1)...(x + \gamma_{n-1})$$

$$= n \sum_{r=0}^{n-1} S_r(\gamma_i) x^{n-r-1}$$

$$= \sum_{r=0}^{n-1} n \binom{n-1}{r} H_r(\gamma_i) x^{n-r-1}.$$

Desde que $n\binom{n-1}{r} = (n-r)\binom{n}{r}$, comparando os coeficientes temos que $H_r(\lambda_i) = H_r(\gamma_i)$ para $0 \le r \le n-1$. Daí, segue da hipótese de indução que, para

 $1 \le r \le n-2$,

$$H_r^2(\lambda_i) = H_r^2(\gamma_i) \ge H_{r-1}(\gamma_i) H_{r+1}(\gamma_i) = H_{r-1}(\lambda_i) H_{r+1}(\lambda_i).$$

Além disso, se a igualdade ocorre para os λ_i com r=1, respectivamente 1 < r < n-1 e $H_{r+1}(\lambda_i) \neq 0$, ela também ocorre para os γ_i com r=1, respectivamente 1 < r < n-1 e $H_{r+1}(\gamma_i) \neq 0$. Segue então da hipótese de indução que $\gamma_1 = \ldots = \gamma_{n-1}$, e assim $\lambda_1 = \ldots = \lambda_n$.

Por fim, temos que mostrar que $H_{n-1}^2(\lambda_i) \geq H_{n-2}(\lambda_i)H_n(\lambda_i)$, com igualdade para $H_n \neq 0$ se e só se todos os λ_i são iguais. Se $\lambda_i = 0$ para algum $1 \leq i \leq n$, temos $H_n(\lambda_i) = 0$ e a desigualdade é óbvia. Se não, $H_n \neq 0$ e

$$H_{n-1}^{2} \ge H_{n-2}H_{n} \Leftrightarrow \left[\binom{n}{n-1}^{-1} \sum_{i} \frac{H_{n}}{\lambda_{i}} \right]^{2} \ge \left[\binom{n}{n-2}^{-1} \sum_{i < j} \frac{H_{n}}{\lambda_{i}\lambda_{j}} \right] H_{n}$$
$$\Leftrightarrow (n-1) \left(\sum_{i} \frac{1}{\lambda_{i}} \right)^{2} \ge 2n \sum_{i < j} \frac{1}{\lambda_{i}\lambda_{j}}.$$

Por simplicidade, façamos $\alpha_i = \frac{1}{\lambda_i}$. Assim, a desigualdade acima equivale a

$$(n-1)(\sum_{i=1}^{n} \alpha_i)^2 \ge 2n \sum_{i < j} \alpha_i \alpha_j.$$

Fazendo $T(\alpha_i) = (n-1)(\sum_{i=1}^n \alpha_i)^2 - 2n \sum_{i < j} \alpha_i \alpha_j$, nós temos

$$T(\alpha_i) = n(\sum_{i=1}^n \alpha_i)^2 - (\sum_{i=1}^n \alpha_i)^2 - 2n \sum_{i < j} \alpha_i \alpha_j$$

$$= n[(\sum_{i=1}^n \alpha_i)^2 - 2 \sum_{i < j} \alpha_i \alpha_j] - (\sum_{i=1}^n \alpha_i)^2$$

$$= n \sum_{i=1}^n \alpha_i^2 - (\sum_{i=1}^n \alpha_i)^2 \ge 0,$$

onde usamos a desigualdade de Cauchy-Schwarz para os vetores $u = (\alpha_1, ..., \alpha_n)$ e v = (1, ..., 1). Assim, vale a igualdade se e só se existe $t \in \mathbb{R}$ tal que u = tv, isto é, se e só se todos os α_i (e então todos os λ_i) são iguais.

Para a prova de (b), observe que $H_1 \geq H_2^{\frac{1}{2}}$ segue de (a), pois aqui temos $H_1, H_2 > 0$. Suponha então que $H_1 \geq H_2^{\frac{1}{2}} \geq ... \geq H_k^{\frac{1}{k}}$ para algum $2 \leq k < r$. Então,

$$H_k^2 \ge H_{k-1}H_{k+1} \ge H_k^{\frac{k-1}{k}}H_{k+1}.$$

Dividindo por $H_k^{\frac{k-1}{k}}$, obtemos $H_k^{\frac{1}{k}} \geq H_{k+1}^{\frac{1}{k+1}}$. Segue imediatamente das desigualdades acima que se $H_k^{\frac{1}{k}} = H_{k+1}^{\frac{1}{k+1}}$ para algum $1 \leq k < r$, então $H_k^2 = H_{k-1}H_{k+1}$. Assim, o item (a) nos dá $\lambda_1 = \ldots = \lambda_n$.

Para provar o item (c), podemos supor r < n-1, pois o caso r = n-1 é direto. Pelo item (a), $H_{r+1}^2 \ge H_r H_{r+2}$, e como $H_r = H_{r+1} = 0$, vale a igualdade, de sorte que se $H_{r+2} \ne 0$, segue ainda de (a) que $\lambda_1 = ... = \lambda_n = \lambda$. Mas $H_r = 0 \Rightarrow \lambda = 0 \Rightarrow H_{r+2} = 0$ (veja a definição dos H_r), uma contradição. Assim $H_{r+2} = 0$, e analogamente $H_{r+3} = ... = H_n = 0$. Para finalizar, é suficiente notar que o polinômio f(x) do item (a) é, neste caso,

$$f(x) = \sum_{j=0}^{n} S_j x^{n-j} = \sum_{j=0}^{r-1} S_j x^{n-j}.$$

2.1 Transformações de Newton

Para $0 \le r \le n$ nós definimos a r-ésima transformação de Newton P_r em M por $P_0 = I$ (o operador identidade) e, para $1 \le r \le n$, pela relação de recorrência

$$P_r = (-1)^r S_r I + A P_{r-1}.$$

Segue facilmente por indução que

$$P_r = (-1)^r (S_r I - S_{r-1} A + S_{r-2} A^2 - \dots + (-1)^r A^r),$$

de modo que o Teorema de Cayley-Hamilton nos dá $P_n=0$. Além disso, sendo P_r um polinômio em A para todo r, P_r também é auto-adjunto e comuta com A. Assim, todas as bases de T_pM diagonalizando A em $p\in M$ também diagonalizam todos os P_r em p. Seja $\{e_k\}_{k=1}^n$ uma tal base. Denotando por A_i a restrição de A a $\{e_i\}^\perp\subset T_pM$, segue-se, como em 2.1, que

$$\det(tI - A_i) = \sum_{k=0}^{n-1} (-1)^k S_k(A_i) t^{n-1-k},$$

onde

$$S_k(A_i) = \sum_{(1 \leq j_1 < \dots < j_k \leq n)_{j_s \neq i}} \lambda_{j_1} \cdots \lambda_{j_k}.$$

Proposição 2.3. Com as notações acima, para $0 \le r \le n$,

(a)
$$P_r e_i = (-1)^r S_r(A_i) e_i$$
,

(b)
$$tr(P_r) = (-1)^r (n-r) S_r$$
,

(c)
$$tr(AP_r) = (-1)^r(r+1)S_{r+1}$$
,

(d)
$$tr(A^2P_r) = (-1)^r (S_1S_{r+1} - (r+2)S_{r+2}).$$

Demonstração. Vamos à prova do item (a). Fixemos $1 \le i \le n$ e façamos indução em r. Para r = 0 temos $P_0e_i = e_i = (-1)^0e_i = (-1)^0S_0(A_i)e_i$. Para r = 1,

$$P_{1}(e_{i}) = (-1)^{1}S_{1}e_{i} + AP_{0}e_{i}$$

$$= [-(\lambda_{1} + \dots + \lambda_{n}) + \lambda_{i}]e_{i}$$

$$= [-\lambda_{1} - \dots - \widehat{\lambda_{i}} - \dots - \lambda_{n}]e_{i}$$

$$= (-1)^{1}S_{1}(A_{i})e_{i}.$$

Suponhamos então, por hipótese de indução, que $P_k(e_i) = (-1)^k S_k(A_i) e_i$, para $0 \le k < n$. Assim,

$$P_{k+1}(e_i) = (-1)^{k+1} S_{k+1} e_i + A P_k e_i$$

$$= (-1)^{k+1} S_{k+1} e_i + (-1)^k S_k(A_i) \lambda_i e_i$$

$$= (-1)^{k+1} S_{k+1} e_i + (-1)^k (S_{k+1} - S_{k+1}(A_i)) e_i$$

$$= (-1)^{k+1} S_{k+1}(A_i) e_i.$$

Segue então que

$$tr(P_r) = \sum_{i=1}^{n} \langle P_r e_i, e_i \rangle$$
$$= (-1)^r \sum_{i=1}^{n} S_r(A_i)$$
$$= (-1)^r (n-r) S_r,$$

o que prova (b). Usando a expressão acima obtemos

$$tr(AP_r) = tr(P_{r+1}) - tr((-1)^{r+1}S_{r+1}I)$$

$$= (-1)^{r+1}(n-r-1)S_{r+1} + (-1)^r nS_{r+1}$$

$$= (-1)^r S_{r+1}(-n+r+1+n)$$

$$= (-1)^r (r+1)S_{r+1},$$

e obtemos (c). Finalmente, da expressão que define P_{r+1} segue que $AP_{r+1}=(-1)^{r+1}S_{r+1}A+A^2P_r$, de modo que

$$tr(A^{2}P_{r}) = tr(AP_{r+1}) - tr((-1)^{r+1}S_{r+1}A)$$

$$= (-1)^{r+1}(r+2)S_{r+2} + (-1)^{r}S_{r+1}S_{1}$$

$$= (-1)^{r}(S_{1}S_{r+1} - (r+2)S_{r+2}),$$

o que prova (d) e conclui a demonstração.

Capítulo 3

A Fórmula de Simons

Seja \overline{M}_c^{n+1} uma variedade de Lorentz de curvatura seccional constante c, e seja M^n uma hipersuperfície tipo-espaço de \overline{M} de curvatura média H constante e conexão de Levi-Civitta ∇ . Nosso objetivo é encontrar uma expressão para o laplaciano da função $u=\frac{1}{2}tr(A^2)$, onde A é o operador de Weingarten da imersão de M em \overline{M} . Para tanto, precisamos da seguinte definição:

Definição 3.1. Dados S e T endomorfismos autoadjuntos de $\mathfrak{X}(M)$, denotamos

$$\langle S, T \rangle = tr(S \circ T) = \sum_{i=1}^{n} \langle S(T(E_i)), E_i \rangle = \sum_{i=1}^{n} \langle SE_i, TE_i \rangle,$$

onde $\{E_1, ..., E_n\}$ é um referencial ortonormal em M.

Usando que a matriz de mudança entre bases ortonormais é ortogonal, prova-se facilmente que $\langle S, T \rangle$ independe do referencial ortonormal $\{E_i\}$.

Sendo assim,

$$u = \frac{1}{2}tr(A^2) = \frac{1}{2}\langle A, A \rangle = \frac{1}{2}\sum_{i=1}^{n}\langle AE_i, AE_i \rangle.$$

Definição 3.2. A derivada covariante $\nabla A: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ do operador A é definida por $\nabla A(X,Y) = \nabla_Y(AX) - A(\nabla_Y X)$.

Proposição 3.3. Vale a relação $tr(\nabla A) = grad(trA)$.

Demonstração. Dado $p \in M$, seja $\{E_i\}_{i=1}^n$ um referencial ortonormal que diagonaliza A em p, e sejam $\lambda_1(p), ..., \lambda_n(p)$ os autovalores associados aos vetores

 $E_1(p),...,E_n(p)$, respectivamente. Então, para todo $X \in \mathfrak{X}(M)$,

$$\langle grad(trA), X \rangle = X(trA)$$

$$= \sum_{i=1}^{n} X \langle AE_i, E_i \rangle$$

$$= \sum_{i=1}^{n} \langle \nabla_X (AE_i), E_i \rangle + \sum_{i=1}^{n} \langle AE_i, \nabla_X E_i \rangle. \quad (3.1)$$

Além disso, usando a compatibilidade da conexão de Levi-Civitta de M com a métrica e o fato de A ser autoadjunto, conclui-se sem dificuldades que

$$\langle \nabla A(X,Y), Z \rangle = \langle \nabla A(Y,Z), X \rangle,$$
 (3.2)

para quaisquer $X, Y, Z \in \mathfrak{X}(M)$.

Sendo assim,

$$\langle tr(\nabla A), X \rangle = \langle \sum_{i=1}^{n} \nabla A(E_i, E_i), X \rangle$$

$$= \sum_{i=1}^{n} \langle \nabla A(E_i, E_i), X \rangle$$

$$= \sum_{i=1}^{n} \langle \nabla A(E_i, X), E_i \rangle$$

$$= \sum_{i=1}^{n} \langle \nabla_X (AE_i) - A(\nabla_X E_i), E_i \rangle$$

$$= \sum_{i=1}^{n} \langle \nabla_X (AE_i), E_i \rangle - \sum_{i=1}^{n} \langle \nabla_X E_i, AE_i \rangle. \tag{3.3}$$

Observando que em p

$$\langle \nabla_X E_i, A E_i \rangle(p) = \langle (\nabla_X E_i)(p), \lambda_i(p) E_i(p) \rangle$$
$$= \lambda_i(p) \langle \nabla_X E_i, E_i \rangle(p) = \frac{\lambda_i(p)}{2} X \langle E_i, E_i \rangle(p) = 0,$$

segue de 3.1 e 3.3 que

$$\langle grad(trA), X \rangle(p) = \langle tr(\nabla A), X \rangle(p).$$

Como $p \in X$ são arbitrários, segue-se o resultado.

Estudemos as possíveis simetrias do operador

$$\nabla^2 A: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$$
.

onde

$$(\nabla^2 A)(X, Y, Z) = (\nabla_Z(\nabla A))(X, Y),$$

para quaisquer $X, Y, Z \in \mathfrak{X}(M)$. $\nabla^2 A$ é chamado a segunda derivada covariante do operador de Weingarten A.

Segue da Equação de Codazzi que $(\nabla A)(X,Y)=(\nabla A)(Y,X),$ de modo que

$$(\nabla^{2}A)(X,Y,Z) = (\nabla_{Z}(\nabla A))(X,Y)$$

$$= \nabla_{Z}((\nabla A)(X,Y)) - (\nabla A)(\nabla_{Z}X,Y) - (\nabla A)(X,\nabla_{Z}Y)$$

$$= \nabla_{Z}((\nabla A)(Y,X)) - (\nabla A)(Y,\nabla_{Z}X) - (\nabla A)(\nabla_{Z}Y,X)$$

$$= (\nabla_{Z}(\nabla A))(Y,X) = (\nabla^{2}A)(Y,X,Z). \tag{3.4}$$

Portanto, há simetria nas duas primeiras variáveis.

Vejamos agora o que ocorre se permutamos a terceira variável com uma das duas primeiras. Desde que

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$
$$= \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{\nabla_Y Y} Z + \nabla_{\nabla_Y X} Z,$$

onde R é a curvatura de M, e posto que

$$\begin{split} (\nabla^2 A)(X,Y,Z) &= (\nabla_Z(\nabla A))(X,Y) \\ &= \nabla_Z((\nabla A)(X,Y)) - (\nabla A)(\nabla_Z X,Y) - (\nabla A)(X,\nabla_Z Y) \\ &= \nabla_Z(\nabla_Y(AX) - A(\nabla_Y X)) - \nabla_Y(A(\nabla_Z X)) \\ &+ A(\nabla_Y(\nabla_Z X)) - \nabla_{\nabla_Z Y}(AX) + A(\nabla_{\nabla_Z Y} X), \end{split}$$

obtemos

$$(\nabla^{2}A)(X,Y,Z) - (\nabla^{2}A)(X,Z,Y) = \nabla_{Z}(\nabla_{Y}(AX)) - \nabla_{Z}(A(\nabla_{Y}X))$$

$$- \nabla_{Y}(A(\nabla_{Z}X)) + A(\nabla_{Y}(\nabla_{Z}X))$$

$$- \nabla_{\nabla_{Z}Y}(AX) + A(\nabla_{\nabla_{Z}Y}X)$$

$$- \nabla_{Y}(\nabla_{Z}(AX)) + \nabla_{Y}(A(\nabla_{Z}X))$$

$$+ \nabla_{Z}(A(\nabla_{Y}X)) - A(\nabla_{Z}(\nabla_{Y}X))$$

$$+ \nabla_{\nabla_{Y}Z}(AX) - A(\nabla_{\nabla_{Y}Z}X)$$

$$= -\nabla_{\nabla_{Z}Y}(AX) + \nabla_{\nabla_{Y}Z}(AX)$$

$$+ \nabla_{Z}(\nabla_{Y}(AX)) - \nabla_{Y}(\nabla_{Z}(AX))$$

$$+ A(\nabla_{\nabla_{Z}Y}X - \nabla_{\nabla_{Y}Z}X)$$

$$- \nabla_{Z}(\nabla_{Y}X) + \nabla_{Y}(\nabla_{Z}X),$$

ou seja,

$$(\nabla^{2}A)(X,Y,Z) - (\nabla^{2}A)(X,Z,Y) = R(Z,Y)AX - A(R(Z,Y)X).$$
(3.5)

Definimos $\Delta A : \mathfrak{X}(M) \to \mathfrak{X}(M)$ como $\Delta A(X) = tr(Y \to ((\nabla^2 A)(X, Y, Y)))$, para todo $X \in \mathfrak{X}(M)$. Isto significa que a expressão de ΔA numa vizinhança em M que admite um referencial ortonormal $\{E_1, ..., E_n\}$ é

$$\Delta A(X) = \sum_{i=1}^{n} (\nabla^2 A)(X, E_i, E_i).$$

Usando as simetrias 3.4 e 3.5, obtemos

$$(\nabla^{2}A)(X, E_{i}, E_{i}) = (\nabla^{2}A)(E_{i}, X, E_{i})$$

$$= (\nabla^{2}A)(E_{i}, E_{i}, X) + R(E_{i}, X)AE_{i} - A(R(E_{i}, X)E_{i})$$

$$= (\nabla_{X}(\nabla A))(E_{i}, E_{i}) + R(E_{i}, X)AE_{i} - A(R(E_{i}, X)E_{i}).$$

Como as derivações comutam com as contrações, M tem curvatura média H constante e tr(A) = -nH, temos que

$$\sum_{i=1}^{n} (\nabla_X(\nabla A))(E_i, E_i) = tr(\nabla_X(\nabla A)) = \nabla_X(tr(\nabla A))$$
$$= \nabla_X(grad(trA)) = -n\nabla_X(grad(H)) = 0,$$

onde usamos a proposição 3.3 na terceira igualdade. Portanto,

$$\Delta A(X) = \sum_{i=1}^{n} R(E_i, X) A E_i - A \left(\sum_{i=1}^{n} R(E_i, X) E_i \right).$$

Por outro lado, a equação de Gauss para hipersuperfícies tipo-espaço numa variedade de Lorentz de curvatura constante c nos dá que, para quaisquer $X, Y, Z \in \mathfrak{X}(M)$,

$$R(X,Y)Z = -c\langle X,Z\rangle Y + c\langle Y,Z\rangle X + \langle AX,Z\rangle AY - \langle AY,Z\rangle AX,$$

e assim

$$\Delta A(X) =$$

$$= \sum_{i=1}^{n} (-c\langle E_{i}, AE_{i}\rangle X + c\langle X, AE_{i}\rangle E_{i} + \langle AE_{i}, AE_{i}\rangle AX - \langle AX, AE_{i}\rangle AE_{i})$$

$$- \sum_{i=1}^{n} A(-c\langle E_{i}, E_{i}\rangle X + c\langle X, E_{i}\rangle E_{i} + \langle AE_{i}, E_{i}\rangle AX - \langle AX, E_{i}\rangle AE_{i})$$

$$= -ctr(A)X + cAX + tr(A^{2})AX - A^{3}X$$

$$+cnAX - cAX - tr(A)A^{2}X + A^{3}X$$

$$= cnHX + (tr(A^{2}) + cn)AX + nHA^{2}X.$$

Como Ae A^2 são autoadjuntos, deduz-se da expressão acima que ΔA também é autoadjunto.

Para obtermos a Fórmula de Simons precisamos de mais um resultado.

Definição 3.4. Sejam $A, B: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ 2-tensores em M. O produto interno de A e B é a função $\langle A, B \rangle: M \to \mathbb{R}$ dada por

$$\langle A, B \rangle(p) = \sum_{i,j=1}^{n} \langle A(p)(E_i, E_j), B(p)(E_i, E_j) \rangle,$$

onde $\{E_k\}_{k=1}^n$ é uma base ortonormal de T_pM .

Prova-se que \langle , \rangle define de fato um produto interno no espaço dos 2-tensores em $\mathfrak{X}(M)$ e que independe da escolha da base ortonormal $\{E_k\}_{k=1}^n$.

Proposição 3.5. Se $A:\mathfrak{X}(M)\to\mathfrak{X}(M)$ e $B:\mathfrak{X}(M)\to\mathfrak{X}(M)$ são 1-tensores em M, então

$$\Delta \langle A, B \rangle = \langle \Delta A, B \rangle + \langle A, \Delta B \rangle + 2 \langle \nabla A, \nabla B \rangle.$$

Demonstração. Consideremos um referencial geodésico $\{E_k\}_{k=1}^n$ em $p \in M$. Assim, em p

$$\langle A, B \rangle = tr(A^*B) = \sum_{i=1}^n \langle A^*(B(E_i)), E_i \rangle = \sum_{i=1}^n \langle AE_i, BE_i \rangle,$$

de modo que

$$\Delta \langle A, B \rangle = \sum_{i=1}^{n} E_{i}(E_{i}\langle A, B \rangle)$$

$$= \sum_{i,j=1}^{n} E_{i}(E_{i}\langle AE_{j}, BE_{j} \rangle)$$

$$= \sum_{i,j=1}^{n} E_{i}(\langle \nabla_{E_{i}}AE_{j}, BE_{j} \rangle + \langle AE_{j}, \nabla_{E_{i}}BE_{j} \rangle)$$

$$= \sum_{i,j=1}^{n} \{\langle \nabla_{E_{i}}\nabla_{E_{i}}AE_{j}, BE_{j} \rangle + \langle \nabla_{E_{i}}AE_{j}, \nabla_{E_{i}}BE_{j} \rangle\}$$

$$+ \sum_{i,j=1}^{n} \{\langle \nabla_{E_{i}}AE_{j}, \nabla_{E_{i}}BE_{j} \rangle + \langle AE_{j}, \nabla_{E_{i}}\nabla_{E_{i}}BE_{j} \rangle\}$$

$$= \sum_{i,j=1}^{n} \langle \nabla_{E_{i}}\nabla_{E_{i}}AE_{j}, BE_{j} \rangle + 2\sum_{i,j=1}^{n} \langle \nabla_{E_{i}}AE_{j}, \nabla_{E_{i}}BE_{j} \rangle$$

$$+ \sum_{i,j=1}^{n} \langle AE_{j}, \nabla_{E_{i}}\nabla_{E_{i}}BE_{j} \rangle. \tag{3.6}$$

Por outro lado, como $\nabla_{E_i} E_j(p) = 0$ para i,j=1,...,n

$$\langle \Delta A, B \rangle = \sum_{i=1}^{n} \langle (\Delta A) E_i, B E_i \rangle$$

$$= \sum_{i=1}^{n} \left\langle \sum_{j=1}^{n} \nabla^2 A(E_i, E_j, E_j), B E_i \right\rangle$$

$$= \sum_{i,j=1}^{n} \langle \nabla_{E_j} A(E_i, E_j) - A(\nabla_{E_j} E_i, E_j) - A(E_i, \nabla_{E_j} E_j), B E_i \rangle$$

$$= \sum_{i,j=1}^{n} \langle \nabla_{E_j} A(E_i, E_j), B E_i \rangle.$$

Além disso, segue da equação de Codazzi que

$$\nabla_{E_j} A(E_i, E_j) = \nabla_{E_j} (\nabla_{E_j} A E_i - A(\nabla_{E_j} E_i))$$

$$= \nabla_{E_j} \nabla_{E_j} A E_i - \nabla_{E_j} A(\nabla_{E_j} E_i)$$

$$= \nabla_{E_i} \nabla_{E_i} A E_i - \{\nabla_{\nabla_{E_i} E_i} A E_j + A([E_j, \nabla_{E_i} E_i])\}.$$

Logo

$$\langle \Delta A, B \rangle(p) = \sum_{i,j=1}^{n} \langle \nabla_{E_i} A(E_j, E_i), BE_j \rangle(p)$$

$$= \sum_{i,j=1}^{n} \langle \nabla_{E_i} \nabla_{E_i} AE_j, BE_j \rangle(p), \qquad (3.7)$$

e analogamente,

$$\langle A, \Delta B \rangle(p) = \sum_{i,j=1}^{n} \langle AE_j, \nabla_{E_i} \nabla_{E_i} BE_j \rangle(p).$$
 (3.8)

Por definição, temos ainda que

$$\langle \nabla A, \nabla B \rangle(p) = \sum_{i,j=1}^{n} \langle \nabla A(E_i, E_j), \nabla B(E_i, E_j) \rangle(p)$$

$$= \sum_{i,j=1}^{n} \langle \nabla_{E_j} A E_i - A(\nabla_{E_j} E_i), \nabla_{E_j} B E_i - B(\nabla_{E_j} E_i) \rangle(p)$$

$$= \sum_{i,j=1}^{n} \langle \nabla_{E_j} A E_i, \nabla_{E_j} B E_i \rangle(p), \qquad (3.9)$$

onde usamos que o referencial é geodésico em p.

Finalmente, por 3.6, 3.7, 3.8 e 3.9 obtemos

$$\Delta \langle A, B \rangle = \langle \Delta A, B \rangle + \langle A, \Delta B \rangle + 2 \langle \nabla A, \nabla B \rangle.$$

Prosseguindo a busca pela Fórmula de Simons, segue da proposição 3.5 que

$$\begin{split} \Delta u &= \frac{1}{2} \Delta (trA^2) &= \frac{1}{2} \Delta \langle A, A \rangle \\ &= \frac{1}{2} (\langle \Delta A, A \rangle + \langle A, \Delta A \rangle + 2 \langle \nabla A, \nabla A \rangle) \\ &= \langle A, \Delta A \rangle + |\nabla A|^2. \end{split}$$

Desenvolvendo $\langle A, \Delta A \rangle$, obtemos

$$\langle A, \Delta A \rangle = \sum_{i=1}^{n} \langle AE_i, (\Delta A)E_i \rangle$$

$$= \sum_{i=1}^{n} \langle AE_i, cnHE_i + (trA^2 + cn)AE_i + nHA^2E_i \rangle$$

$$= cnHtrA + (trA^2)^2 + cntrA^2 + nHtrA^3$$

$$= -cn^2H^2 + (trA^2)^2 + cntrA^2 + nHtrA^3,$$

e finalmente,

$$\Delta u = |\nabla A|^2 - cn^2 H^2 + (trA^2)^2 + cntrA^2 + nHtrA^3, \qquad (3.10)$$

equação conhecida como Fórmula de Simons.

Relembrando as transformações de Newton P_r , $0 \le r \le n$, temos que $P_1 = -S_1I + A = nHI + A$. Segue então que $AP_1 = nHA + A^2$ e $A^2P_1 = nHA^2 + A^3$. Tomando o traço destes operadores, obtemos

$$tr(P_1) = n^2 H + tr(A),$$

 $tr(AP_1) = -n^2 H^2 + tr(A^2),$
 $tr(A^2 P_1) = nHtr(A^2) + tr(A^3).$

Levando em conta que tr(A) = -nH, segue da primeira equação acima que

$$cnHtr(P_1) = cn^3H^2 - cn^2H^2.$$
 (3.11)

Já a segunda equação nos dá

$$cntr(AP_1) = -cn^3H^2 + cntr(A^2)$$
(3.12)

e

$$tr(A^2)tr(AP_1) = -n^2H^2tr(A^2) + (tr(A^2))^2.$$
 (3.13)

Ademais, a terceira equação nos dá

$$nHtr(A^2P_1) = n^2H^2tr(A^2) + nHtr(A^3).$$
 (3.14)

Segue então de 3.10 que a soma dos segundos membros de 3.11, 3.12, 3.13 e $3.14 \in \Delta u - |\nabla A|^2$. Portanto, como $nH = -S_1$ e $tr(A^2) = |A|^2$, temos

$$\Delta u - |\nabla A|^2 = -cS_1 tr(P_1) + cntr(AP_1) + |A^2| tr(AP_1) - S_1 tr(A^2 P_1)$$
$$= |A^2| tr(AP_1) - S_1 tr(A^2 P_1) + c[ntr(AP_1) - S_1 tr(P_1)],$$

ou seja, vale o seguinte

Teorema 3.6. Seja \overline{M}_c^{n+1} uma variedade de Lorentz de curvatura seccional constante c, e seja M^n uma hipersuperfície tipo-espaço de \overline{M} de curvatura

média H constante. Se A denota o operador de Weingarten da imersão de M em \overline{M} e $u=\frac{1}{2}tr(A^2)$, então

$$\Delta u = |\nabla A|^2 + |A^2|tr(AP_1) - S_1tr(A^2P_1) + c[ntr(AP_1) - S_1tr(P_1)],$$

onde ∇A é derivada covariante do operador A.

Por abuso de notação, também chamaremos esta expressão de Fórmula de Simons. Em vista da proposição 2.3, esta fórmula é mais manejável que a fórmula 3.10.

Capítulo 4

O lema de Omori-Yau

4.1 O Cut Locus

Em tudo o que se segue, as variedades Riemannianas serão sempre supostas conexas.

Seja M^n uma variedade Riemanniana completa, com métrica $g=\langle,\rangle$. Fixado $p\in M$, se $\gamma:[0,+\infty)\to M$ é uma geodésica normalizada em M, tal que $\gamma(0)=p$, sabemos que para t>0 suficientemente pequeno tem-se $d(p,\gamma(t))=t$, isto é, $\gamma_{|[0,t]}$ é minimizante. Por outro lado, se $\gamma_{|[0,t_0]}$ não for minimizante, então $\gamma_{|[0,t_1]}$ não será minimizante para todo $t_1\geq t_0$. Por fim, se $(t_k)_{k\geq 1}$ é uma sequência de números reais positivos tal que $t_k\to t_0$ e $\gamma_{|[0,t_k]}$ é minimizante para todo $k\geq 1$, então a continuidade da função distância a partir de p, juntamente com $d(p,\gamma(t_k))=t_k$ para todo $k\geq 1$ garante que $d(p,\gamma(t_0))=t_0$, isto é, $\gamma_{|[0,t_o]}$ é minimizante. Portanto, o conjunto dos $t\in [0,+\infty)$ tais que $\gamma_{|[0,t]}$ é minimizante é um intervalo da forma $[0,t_0]$ para algum $t_0>0$ ou $[0,+\infty)$. Estas considerações motivam a seguinte

Definição 4.1. Seja M uma variedade Riemanniana completa. Dados $p \in M$ e $v \in T_p M$ unitário, seja $\gamma_v : [0, +\infty) \to M$ o raio geodésico normalizado $\gamma_v(t) = \exp_p(tv)$. Se o conjunto dos $t \in (0, +\infty)$ tais que γ_v é minimizante em [0,t] for um intervalo da forma $[0,t_0]$, dizemos que $\gamma_v(t_0)$ é o **ponto mínimo** de p na direção de v. O **cut locus** Cut(p) de p em M é definido como o conjunto dos pontos mínimos de p em M (em alguma direção).

Se M é compacta e $p \in M$, seja $d: M \to \mathbb{R}$ a função distância a partir de

p. Como tal função é contínua, $d(M) \subset \mathbb{R}$ é compacto e, portanto, limitado. Dado $v \in T_pM$ unitário, não existir um ponto mínimo de p na direção v significa que $d \circ \gamma_v : [0, +\infty) \to \mathbb{R}$ é tal que $d \circ \gamma_v(t) = t$ para todo $t \in [0, +\infty)$. Esta função é ilimitada, com imagem contida em d(M), um absurdo. Assim, se M é compacta e $p \in M$, sempre existe o ponto mínimo de p na direção v, para todo $v \in T_pM$ unitário.

A seguinte proposição pode ser encontrada no livro de do Carmo ([8]).

Proposição 4.2. Seja $\gamma:[0,l] \to M$ uma geodésica normalizada. Se $\gamma(l)$ é o ponto mínimo de $p = \gamma(0)$ ao longo de γ , então ao menos uma das alternativas a seguir se verifica:

- (a) $\gamma(l)$ é o primeiro ponto conjugado a p ao longo de γ .
- (b) Existe outra geodésica minimizante α ligando p a $\gamma(l)$, com $\{\alpha\} \neq \{\gamma\}$. Reciprocamente, se ao menos uma das alternativas acima se verifica, então existe $t_0 \in (0, l]$ tal que $\gamma(t_0)$ é o ponto mínimo de p ao longo de γ .

Exemplo 4.3.

Se $p \in \mathbb{S}^n$, como as geodésicas da esfera unitária são os grandes círculos, segue que $Cut(p) = \{-p\}$. Note que neste caso o cut locus coincide com o lugar dos pontos conjugados.

Exemplo 4.4.

Se M é completa, simplesmente conexa e tem curvatura seccional nãopositiva, segue do Teorema de Hadamard que, dado $p \in M$, $\exp_p : T_pM \to M$ é um difeomorfismo, de modo que M é vizinhança normal de cada um de seus pontos. Assim, se $v \in T_pM$ é unitário, $\gamma_v(t) = \exp_p(tv)$ é minimizante em $[0, +\infty)$, de onde concluímos que $Cut(p) = \emptyset$, para todo $p \in M$.

Corolário 4.5. Se M é completa e $p, q \in M$, então $q \in Cut(p) \Leftrightarrow p \in Cut(q)$. Mais precisamente, se q é o ponto mínimo de p ao longo da geodésoca γ , então p é o ponto mínimo de q ao longo da geodésica $-\gamma$.

Demonstração. Se q é o ponto mínimo de p ao longo de γ , segue da proposição anterior que ou q é o primeiro ponto conjugado a p ao longo de γ ou existe uma outra geodésica minimizante α ligando p a q, com $\{\alpha\} \neq \{\gamma\}$. No primeiro caso, p é o primeiro ponto conjugado a q ao longo da geodésica $-\gamma$. No segundo

caso, $-\gamma$ e $-\alpha$ são duas geodésicas minimizantes com traços distintos ligando q a p. Portanto, aplicando a recíproca da proposição anterior ao ponto q, segue que o ponto mínimo de q ao longo de $-\gamma$ não ocorre depois de p. Como γ é minimizante e $l(-\gamma) = l(\gamma)$, segue que p é tal ponto mínimo.

Corolário 4.6. Seja M uma variedade Riemanniana completa. Se $p \in M$ e $q \in M \setminus Cut(p)$, então existe uma única geodésica minimizante ligando p a q, e q não é o primeiro ponto conjugado a p ao longo da mesma.

Demonstração. Pelo Teorema de Hopf e Hinow, existe uma geodésica minimizante $\gamma:[0,l]\to M$, com $\gamma(0)=p,\ \gamma(l)=q$. Suponha que exista outra geodésica minimizante α ligando p a q ou que q seja o primeiro ponto conjugado a p ao longo de γ . Pela recíproca da proposição anterior, existe $t_0\in(0,l]$ tal que $\gamma(t_0)$ é o ponto mínimo de p ao longo de γ . Como $q\in M\backslash Cut(p)$, deve ser $t_0< l$. Mas aí γ não é minimizante em [0,l], uma contradição.

Seja T_1M o fibrado tangente unitário de M e defina a **função-corte** $c:T_1M\to\mathbb{R}\cup\{+\infty\}$ pondo

$$c(p,v) = \begin{cases} t_0, & \text{se } \gamma_v(t_0) \text{ for o ponto mínimo de } p \text{ na direção } v; \\ +\infty, & \text{senão.} \end{cases}$$

Introduza em $\mathbb{R} \cup \{+\infty\}$ a topologia cuja base de abertos é dada juntando os intervalos abertos $(a,b) \subset \mathbb{R}$ com os conjuntos da forma $(a,+\infty] = (a,+\infty) \cup \{+\infty\}$. A seguinte proposição também é encontrada em [8].

Proposição 4.7. Dada uma variedade Riemanniana completa M, a funçãocorte $c: T_1M \to \mathbb{R} \cup \{+\infty\}$ é contínua.

Fixado $p \in M$, a **função-corte** em p é a função $c_p : \mathbb{S}_1^{n-1}(0) \subset T_pM \to \mathbb{R} \cup \{+\infty\}$, dada para $v \in T_pM$ unitário por $c_p(v) = c(p,v)$. Em particular, segue da proposição acima que a função-corte em p também é contínua, pois $c_p = c \circ i$, com $i : \mathbb{S}_1^{n-1} \subset T_pM \to T_1M$ dada por i(v) = (p,v).

Corolário 4.8. Dado $p \in M$, o cut locus Cut(p) é fechado em M.

Demonstração. É imediato que

$$Cut(p) = \{\gamma(t); t = c(p, \gamma'(0))\},\$$

onde $\gamma:[0,+\infty)\to M$ é uma geodésica normalizada com $\gamma(0)=p$. Seja $\gamma_j(t_j)$, com $t_j=c(p,\gamma_j'(0))$, uma sequência em Cut(p) tal que $\gamma_j(t_j)\to q\in$

M. Devemos mostrar que $q \in Cut(p)$. Como $|\gamma'_j(0)| = 1$, passando a uma subsequência se necessário, podemos supor que a sequência $\gamma'_j(0)$ converge para um vetor unitário $v \in T_pM$. Seja γ a geodésica com $\gamma(0) = p$ e $\gamma'(0) = v$. Então, como exp_p e c são contínuas,

$$q = \lim \gamma_{j}(t_{j}) = \lim \gamma_{j}(c(p, \gamma'_{j}(0)))$$

$$= \lim \exp_{p}(c(p, \gamma'_{j}(0))\gamma'_{j}(0)) = \exp_{p}(c(p, \gamma'(0))\gamma'(0))$$

$$= \gamma(c(p, \gamma'(0))) \in Cut(p),$$

como queríamos.

Se M é completa, fixado $p \in M$, o Teorema de Hopf e Rinow garante que todo $q \in M$ pode ser ligado a p por uma geodésica minimizante. Portanto, $M \setminus Cut(p)$ é aberto e estrelado em relação a p. Definindo

$$E_p = \{ v \in T_p M; \exp_p(tv) \in M \setminus Cut(p), \forall 0 \le t \le 1 \}, \tag{4.1}$$

é imediato que E_p é estrelado em relação a $0 \in T_pM$. Afirmamos que $E_p \subset T_pM$ é aberto. De fato, seja $(v_n) \subset T_pM \setminus E_p$ tal que $v_n \to v \in T_pM$. Como $v_n \in T_pM \setminus E_p$, para todo $n \in \mathbb{N}$ existe $0 \le t_n \le 1$ tal que $\exp_p(t_nv_n) \in Cut(p)$. A menos de uma subsequência, $t_n \to t \in [0,1]$, de modo que $t_nv_n \to tv$. Daí, como \exp_p é contínua e Cut(p) é fechado, $\exp_p(tv) \in Cut(p)$, ou seja, $v \in T_pM \setminus E_p$. Isto nos dá que $T_pM \setminus E_p$ é fechado, isto é, E_p é aberto.

Proposição 4.9. $\exp_p: E_p \to M \backslash Cut(p)$ é um difeomorfismo.

Demonstração. É claro que $\exp_p(E_p) = M \setminus Cut(p)$. Seja agora $q \in M \setminus Cut(p)$ e $\gamma(t) = \exp_p(tv)$ a única geodésica normalizada e minimizante ligando $p = \gamma(0)$ a $q = \gamma(l)$. Pelo corolário 4.6, q não é conjugado a p ao longo de γ . Portanto, $v \in T_pM$ não é ponto crítico de \exp_p , que é assim um difeomorfismo local sobre $M \setminus Cut(p)$. Basta, pois, mostrarmos que \exp_p é injetiva em E_p . Suponha que existam $v, w \in E_p$ distintos, tais que $\gamma(t) = \exp_p(tv)$ e $\alpha(t) = \exp_p(tw)$ ligam p a $q = \gamma(1) = \alpha(1)$. Segue de $q \in M \setminus Cut(p)$ que ao menos uma dentre α e γ , digamos γ , não é minizante até q. Logo, existe $0 < t_0 < 1$ tal que $\exp_p(t_0v) = \gamma(t_0) \in Cut(p)$, contradizendo o fato de que v (e portanto t_0v) pertence a E_p .

Corolário 4.10. Para cada $p \in M$, Cut(p) tem medida de Lebesgue nula em M.

Demonstração. Se $\rho: M \setminus Cut(p) \to \mathbb{R}$ é a função distância a partir de p, então a função $\rho \circ \exp_p: E_p \to \mathbb{R}$ é dada por

$$(\rho \circ \exp_p)(v) = d(p, \exp_p(v)) = |v|,$$

e daí diferenciável em $E_p \setminus \{0\}$. Pela proposição anterior, $\exp_p : E_p \to M \setminus Cut(p)$ é um difeomorfismo, de maneira que ρ é diferenciável em $M \setminus (Cut(p) \cup \{p\})$. Mas como ρ é Lipschitziana em M (para ver isto, use a desigualdade triangular da métrica de M), segue do teorema de Rademacher (Evans [9]) que ρ é diferenciável q.t.p (quase todos os pontos). Logo, $Cut(p) \cup \{p\}$ tem medida de Lebesgue nula em M.

4.2 O Teorema de Comparação do Hessiano

Em tudo o que se segue, fixado $p \in M$ denotamos por $\rho : M \setminus (Cut(p) \cup \{p\}) \to \mathbb{R}_+^*$ a função distância a partir de p, isto é, $\rho(q) = d(p,q)$. Vimos na prova do corolário 4.10 que ρ é suave, com

$$\rho(q) = |(\exp_p)^{-1}(q)| = |v|, \tag{4.2}$$

se $v \in E_p$ é tal que $q = \exp_p(v)$.

Proposição 4.11. Seja $\gamma[0,a] \to M \setminus Cut(p)$ uma geodésica normalizada partindo de p. Então

$$\nabla \rho(\gamma(t)) = \gamma'(t), \forall 0 < t \le a. \tag{4.3}$$

Em particular, $|\nabla \rho| = 1$.

Demonstração. Seja $\gamma(t) = \exp_p(tv)$, $0 \le t \le a$, e $q = \gamma(t_0)$. Se $w \in T_qM$, $w \perp \gamma'(t_0)$, segue da proposição 4.9 que existe $W \in T_v(T_pM)$ tal que $(d\exp_p)_{t_0v}W = w$, $\operatorname{com}\langle W,v\rangle = 0$, pelo lema de Gauss. Tomemos então $\alpha: (-\epsilon,\epsilon) \to E_p$ tal que $|\alpha(s)| = t_0$, $\alpha(0) = t_0v$ e $\alpha'(0) = W$ (por exemplo, α pode ser um arco de círculo de raio t_0). Segue da unicidade da geodésica minimizante que liga $\exp_p(\alpha(s))$ a p que

$$\rho(\exp_n(\alpha(s)) = t_0.$$

Derivando em relação a s,

$$0 = \langle \nabla \rho(q), (d \exp_p)_{t_0 v} W \rangle = \langle \nabla \rho(q), w \rangle.$$

Como a igualdade acima é válida para todo $w \perp \gamma'(t_0)$, segue que $\nabla \rho(q)$ é um múltiplo de $\gamma'(t_0)$. Mas desde que $\rho(\gamma(t)) = t$, para $0 \le t \le a$, derivando em relação a t obtemos

$$\langle \nabla \rho(\gamma(t)), \gamma'(t) \rangle = 1, \forall 0 < t \le a,$$

e daí
$$\nabla \rho(\gamma(t)) = \gamma'(t)$$
 para $0 < t \le a$.

Proposição 4.12. Seja M^n uma variedade Riemanniana completa e considere $\gamma: [0,a] \to M$ uma geodésica normalizada partindo de p e que não intersecta Cut(p). Se $0 < t_0 \le a$ e $X \in T_{\gamma(t_0)}M$ é ortogonal a $\gamma'(t_0)$, então

$$(Hess\rho)_{\gamma(t_0)}(X,X) = \langle J', J \rangle(t_0), \tag{4.4}$$

onde J é o campo de Jacobi ao longo de γ tal que J(0) = 0 e $J(t_0) = X$.

Demonstração. Como Cut(p) é fechado em M, podemos tomar uma geodésica $\alpha: (-\epsilon, \epsilon) \to M \setminus Cut(p)$ tal que $\alpha(0) = \gamma(t_0)$ e $\alpha'(0) = X$. Desde que α é uma geodésica,

$$(Hess\rho)_{\alpha(t)}(\alpha'(t), \alpha'(t)) = \alpha'(t)(\alpha'(t)\rho) - (\nabla_{\alpha'(t)}\alpha'(t))\rho$$

$$= \alpha'(t)(\alpha'(t)\rho)$$

$$= \alpha'(t)((\rho \circ \alpha)'(t))$$

$$= (\rho \circ \alpha)''(t),$$

de modo que

$$(Hess\rho)_{\gamma(t_0)}(X,X) = (\rho \circ \alpha)''(0). \tag{4.5}$$

Seja $\beta = ((\exp_p)_{|E_p})^{-1} \circ \alpha : (-\epsilon, \epsilon) \to E_p \ e \ \varphi : (-\epsilon, \epsilon) \times [0, t_0] \to M \setminus Cut(p)$ a variação geodésica de $\gamma_{|[0, t_0]}$ dada por

$$\varphi(s,t) = \exp_p(\frac{t}{t_0}\beta(s)),$$

com campo variacional (de Jacobi) J. De $\varphi(s,0)=p$ para todo s temos J(0)=0; de $\varphi(s,t_0)=\alpha(s)$ temos $J(t_0)=\frac{\partial \varphi}{\partial s}(s,t_0)|_{s=0}=\alpha'(0)=X$. Observe que pela equação de Jacobi, $\langle J,\gamma'\rangle''=\langle J'',\gamma'\rangle=-\langle R(\gamma',J)\gamma',\gamma'\rangle=0$, de modo que $\langle J,\gamma'\rangle(t)=at+b$. Como $\langle J(0),\gamma'(0)\rangle=\langle J(t_0),\gamma'(t_0)\rangle=0$ e $t_0\neq 0$, temos a=b=0, e assim $\langle J,\gamma'\rangle\equiv 0$ ao longo de γ .

Por outro lado, sendo $E:(-\epsilon,\epsilon)\to\mathbb{R}$ o funcional energia de φ , segue da expressão dada para ρ no início desta seção que

$$(\rho \circ \alpha)(s) = l(\varphi_s) = \int_0^{t_0} |\frac{\partial \varphi}{\partial t}(s, t)| dt$$
$$= \sqrt{t_0} (\int_0^{t_0} |\frac{\partial \varphi}{\partial t}(s, t)|^2 dt)^{\frac{1}{2}}$$
$$= \sqrt{t_0} E(s)^{\frac{1}{2}},$$

onde usamos na última igualdade o fato de φ_s estar parametrizada proporcionalmente ao comprimento de arco. Portanto,

$$(\rho \circ \alpha)'(s) = \frac{\sqrt{t_0}}{2} E(s)^{-\frac{1}{2}} E'(s)$$

е

$$(\rho \circ \alpha)''(s) = -\frac{\sqrt{t_0}}{4}E(s)^{-\frac{3}{2}}E'(s)^2 + \frac{\sqrt{t_0}}{2}E(s)^{-\frac{1}{2}}E''(s).$$

Por outro lado, a fórmula da primeira variação da energia nos dá

$$\frac{1}{2}E'(0) = -\int_0^{t_0} \langle J, \frac{D\gamma'}{dt} \rangle dt + \langle J, \gamma' \rangle \mid_0^{t_0} = 0,$$

uma vez que $J \perp \gamma'$. Logo, aplicando a fórmula da segunda variação da energia à última relação acima, obtém-se

$$(\rho \circ \alpha)''(0) = \frac{\sqrt{t_0}}{2} E(0)^{-\frac{1}{2}} E''(0)$$

$$= \frac{\sqrt{t_0}}{2} \frac{\sqrt{t_0}}{\rho(\gamma(t_0))} 2\{I_{t_0}(J, J) + \langle J', \gamma' \rangle \mid_0^{t_0}\}$$

$$= I_{t_0}(J, J) = \langle J', J \rangle(t_0),$$

como queríamos.

Estamos agora em condições de enunciar e provar o resultado mais importante desta seção, o **Teorema de Comparação do Hessiano**.

Teorema 4.13. Sejam M^n e \overline{M}^n variedades Riemannianas completas e γ : $[0,a] \to M, \overline{\gamma}: [0,a] \to \overline{M}$ geodésicas normalizadas que não intersectam respectivamente $Cut(\gamma(0))$ e $Cut(\overline{\gamma}(0))$. Se

$$K_M(\gamma'(t), X) \leq K_{\overline{M}}(\overline{\gamma}'(t), \overline{X}),$$

para todos $t \in [0, a]$, $X \in T_{\gamma(t)}M$ e $\overline{X} \in T_{\overline{\gamma}(t)}\overline{M}$, ortogonais respectivamente a $\gamma'(t)$ e $\overline{\gamma}'(t)$, e se ρ e $\overline{\rho}$ denotam respectivamente as funções-distância em M e \overline{M} a partir de $\gamma(0)$ e $\overline{\gamma}(0)$, então, para $0 < t \le a$, tem-se

$$(Hess\rho)_{\gamma(t)}(X,X) \geq (Hess\overline{\rho})_{\overline{\gamma}(t)}(\overline{X},\overline{X}),$$
 (4.6)

para todos $X \in T_{\gamma(t)}M$ e $\overline{X} \in T_{\overline{\gamma}(t)}\overline{M}$, unitários e ortogonais respectivamente a $\gamma'(t)$ e $\overline{\gamma}'(t)$.

Demonstração. Fixe $0 < t_0 \le a$. Pela proposição anterior, temos

$$(Hess\rho)_{\gamma(t_0)}(X,X) = \langle J', J \rangle(t_0),$$

onde J é o campo de Jacobi ao longo de γ tal que J(0)=0 e $J(t_0)=X$. Note em particular que $\langle J,\gamma'\rangle=0$ em $[0,t_0]$. Analogamente,

$$(Hess\overline{\rho})_{\overline{\gamma}(t_0)}(\overline{X},\overline{X}) = \langle \overline{J}',\overline{J}\rangle(t_0),$$

onde \overline{J} é o campo de Jacobi ao longo de $\overline{\gamma}$ tal que $\overline{J}(0) = 0$ e $\overline{J}(t_0) = \overline{X}$, com $\langle \overline{J}, \overline{\gamma}' \rangle = 0$ em $[0, t_0]$. Agora, como $\overline{\gamma}$ não encontra $Cut(\overline{\gamma}(0))$ em $(0, t_0]$, temos que $\overline{\gamma}(t)$ não é conjugado a $\overline{\gamma}(0)$ ao longo de $\overline{\gamma}$, para $0 < t \le t_0$. Portanto, segue da primeira versão do Teorema de Rauch que

$$(Hess\rho)_{\gamma(t_0)}(X,X) = \langle J', J \rangle(t_0) \ge \frac{|J(t_0)|^2}{|\overline{J}(t_0)|^2} \langle \overline{J}', \overline{J} \rangle(t_0)$$

$$= \frac{|X|^2}{|\overline{X}|^2} (Hess\overline{\rho})_{\overline{\gamma}(t_0)} (\overline{X}, \overline{X})$$

$$= (Hess\overline{\rho})_{\overline{\gamma}(t_0)} (\overline{X}, \overline{X}).$$

Corolário 4.14. Nas notações e hipóteses do teorema anterior, tem-se

$$(\Delta \rho)(\gamma(t)) \geq (\Delta \overline{\rho})(\overline{\gamma}(t)), \forall 0 < t \leq a. \tag{4.7}$$

Demonstração. Sejam $\{X_i\}_{i=1}^n$ e $\{\overline{X}_i\}_{i=1}^n$ bases ortonormais respectivamente de $T_{\gamma(t)}M$ e $T_{\overline{\gamma}(t)}\overline{M}$, com $X_n = \gamma'(t)$ e $\overline{X}_n = \overline{\gamma}'(t)$. Observe que como γ é geodésica e $\nabla \rho(\gamma(t)) = \gamma'(t)$ para $0 < t \le a$, segue que

$$(Hess\rho)_{\gamma}(\gamma', \gamma') = \langle \nabla_{\gamma'} grad.\rho, \gamma' \rangle = \langle \nabla_{\gamma'} \gamma', \gamma' \rangle = 0,$$

para $0 < t \le a$. É claro que vale a mesma expressão para $\overline{\rho}$ e $\overline{\gamma}$. Pelo teorema anterior,

$$(Hess\rho)_{\gamma(t)}(X_i, X_i) \geq (Hess\overline{\rho})_{\overline{\gamma}(t)}(\overline{X_i}, \overline{X_i}),$$

para i=1,...,n-1. Agora, basta somar membro a membro as desigualdades acima.

Para o corolário a seguir, convencionamos $\frac{\pi}{2\sqrt{k}} = +\infty$ se $k \leq 0$. Uma função $f: M \to \mathbb{R}$ é dita convexa se Hessf for positivo semidefinido em M.

Corolário 4.15. Seja M uma variedade Riemanniana completa, com curvatura seccional $K_M \leq k$. Fixado $p \in M$, seja $\rho(q) = d(p,q)$. Se

$$R < \min\{d(p, Cut(p)), \frac{\pi}{2\sqrt{k}}\},$$

então a função ρ é convexa em $B_M(p;R)$.

Demonstração. Tome R > 0 satisfazendo a desigualdade acima. Seja $\overline{M} = \mathbb{M}_k^n$ a forma espacial de curvatura seccional constante k, e ρ_k a função distância a partir de um ponto fixo em \mathbb{M}_k^n . Se $\gamma:[0,a] \to B_M(p;R)$ é uma geodésica normalizada com $\gamma(0) = p$, então, nas notações do Teorema de Comparação do Hessiano, segue que

$$(Hess\rho)_{\gamma(t)}(X,X) \ge (Hess\rho_k)_{\overline{\gamma}(t)}(\overline{X},\overline{X}) = \langle \overline{J}',\overline{J}\rangle(t) = s'_k(t)s_k(t),$$

onde

$$s_k(t) = \begin{cases} \frac{\sin(t\sqrt{k})}{\sqrt{k}}, & \text{se } k > 0; \\ t, & \text{se } k = 0; \\ \frac{\sinh(t\sqrt{-k})}{\sqrt{-k}}, & \text{se } k < 0. \end{cases}$$

É agora imediato verificar que $s'_k s_k > 0$ para todos $k \le 0$ e t > 0; se k > 0, tem-se

$$s'_k(t)s_k(t) = \frac{1}{\sqrt{k}}\sin(t\sqrt{k})\cos(t\sqrt{k}) = \frac{1}{2\sqrt{k}}\sin(2t\sqrt{k}) > 0,$$

para $0 < 2t\sqrt{k} < \pi$, isto é, $0 < t < \frac{\pi}{2\sqrt{k}}$. Por fim, como $(Hess\rho)_{\gamma}(\gamma', \gamma') = 0$, concluímos, fazendo X percorrer uma base ortonormal de $\{\gamma'\}^{\perp}$, que $Hess\rho \ge 0$ em $B_M(p;R)$.

4.3 O Laplaciano da Função Distância

Seja M^n uma variedade Riemanniana orientada e completa, com elemento de volume dM, e $p \in M$ fixado. Sempre que não houver perigo de confusão, denotaremos simplesmente por \exp_p o difeomorfismo $(\exp_p) \mid_{E_p} : E_p \to M \setminus Cut(p)$.

Se $K \subset M$ é compacto e m denota a medida de Lebesgue de M, segue de m(Cut(p)) = 0 que

$$Vol(K) = \int_{K} dM = \int_{K \setminus Cut(p)} dM = \int_{L} (\exp_{p})^{*} dM, \qquad (4.8)$$

onde $L=(\exp_p)^{-1}(K\backslash Cut(p))\subset E_p$. Afim de explicitar $(\exp_p)^*dM$, seja $v\in T_pM$ unitário e $t_0>0$ tal que $t_0v\in E_p$. Seja ainda $\{e_1=v,e_2,...,e_n\}$ uma base ortonormal positiva de T_pM e, para $2\leq i\leq n$,

$$J_i(t) = (d \exp_p)_{tv}(te_i),$$

o campo de Jacobi ao longo da geodésica normalizada $\gamma(t) = \exp_p(tv)$, $0 \le t \le t_0$, com $J_i(0) = 0$ e $J_i'(0) = e_i$. Usando o Lema de Gauss, é fácil provar que $\langle J_i, \gamma' \rangle(t) = 0$ para $0 \le t \le t_0$, de modo que, para $0 < t \le t_0$,

$$((\exp_{P})^{*}dM)_{tv}(e_{1},...,e_{n}) = dM_{\exp_{p}(tv)}((d\exp_{p})_{tv}e_{1},...,(d\exp_{p})_{tv}e_{n})$$

$$= \frac{1}{t^{n-1}}dM_{\exp_{p}(tv)}(\gamma'(t),J_{2}(t),...,J_{n}(t))$$

$$= \frac{1}{t^{n-1}}\sqrt{\det B(t)},$$

onde B é a família a 1-parâmetro de matrizes quadradas de ordem n-1, tais que $B(t)_{ij} = \langle J_i(t), J_j(t) \rangle$ para $0 < t \le t_0$ (note que B é obtida extraindose a primeira linha e a primeira coluna da matriz de Gramm da n-upla $(\gamma'(t), J_2(t), ..., J_n(t))$).

Denotando, para $v \in T_pM$ unitário e $0 \le t < c_p(v)$,

$$A(t,v) = \begin{cases} 1, & \text{se } t = 0; \\ \frac{1}{t^{n-1}} \sqrt{\det B(t)}, & \text{se } 0 < t < c_p(v), \end{cases}$$

segue do que vimos acima que, para $0 < t < c_p(v)$, A(t,v) é suave em t e em v. Note que como γ é minizante em uma vizinhança de p e $\gamma(t) \notin Cut(p)$, $\forall 0 \le t \le t_0$, segue que $\gamma_{|[0,t]}$ é minimizante para todo $0 \le t \le t_0$. Assim, segue da recíproca da proposição 4.2 que γ é a única geodésica minimizante

ligando $\gamma(t)$ a $\gamma(0)$, donde $\gamma(t)$ não é conjugado a $p = \gamma(0)$ ao longo de γ , e daí $\{\gamma'(t), J_2(t), ..., J_n(t)\}$ é base positiva de $T_{\gamma(t)}M$ para todo $0 < t < c_p(v)$. Portanto, A(t, v) > 0 para $v \in T_pM$ unitário e $0 \le t < c_p(v)$.

Sendo du_i a 1-forma dual de e_i em T_pM , segue do que fizemos acima que

$$((\exp_p)^* dM)_{tv} = A(t, v) du_1 \wedge \dots \wedge du_n. \tag{4.9}$$

Por outro lado, denotando por $d\sigma$ o elemento de volume canônico da esfera unitária $\mathbb{S}_1^{n-1}(0) \subset T_pM$, segue do teorema de integração em coordenadas polares que

$$(du_1 \wedge \dots \wedge du_n)_{tv} = t^{n-1}dt \wedge d\sigma,$$

e daí

$$((\exp_p)^* dM)_{tv} = A(t, v)t^{n-1}dt \wedge d\sigma. \tag{4.10}$$

Em particular, A(t, v) independe da base $\{e_2, ..., e_n\}$ escolhida para o complemento ortogonal de v em T_pM .

Exemplo 4.16.

Examinemos brevemente os cálculos acima no caso particular em que $M = \mathbb{M}_k$, a forma espacial de curvatura seccional constante k. Neste caso (com as notações acima), sabemos que o campo de Jacobi J ao longo de γ , com J(0) = 0 e J'(0) = w, onde $w \perp \gamma'(0)$, é dado por

$$J(t) = s_k(t)w(t),$$

onde w(t) denota o transporte paralelo de w ao longo de γ e s_k é dada por

$$s_k(t) = \begin{cases} \frac{\sin(t\sqrt{k})}{\sqrt{k}}, & \text{se } k > 0; \\ t, & \text{se } k = 0; \\ \frac{\sinh(t\sqrt{-k})}{\sqrt{-k}}, & \text{se } k < 0. \end{cases}$$

Se $\{e_1 = \gamma'(0), e_2, ..., e_n\}$ é uma base ortonormal positiva de T_pM , $w_i(t)$, $2 \le i \le n$, é o transporte paralelo de e_i ao longo de γ e $J_i(t) = s_k(t)w_i(t)$, segue que $B(t)_{ij} = \langle J_i(t), J_j(t) \rangle = s_k^2(t)\delta_{ij}$, de modo que

$$A(t,v) = \frac{1}{t^{n-1}} s_k(t)^{n-1}. (4.11)$$

Portanto, se 0 < R < d(p, Cut(p)), temos

$$Vol(B_{\mathbb{M}_k}(p,R)) = \int_{B(p,R)\subset T_p\mathbb{M}_k} (\exp_p)^* d\mathbb{M}_k$$
$$= \int_0^R \int_{\mathbb{S}_1^{n-1}} s_k(t)^{n-1} d\sigma dt$$
$$= \omega_n \int_0^R s_k(t)^{n-1} dt,$$

onde ω_n denota o volume (n-1)-dimensional da esfera unitária $\mathbb{S}_1^{n-1} \subset T_p \mathbb{M}_k$.

Exemplo 4.17.

Seja $\mathbb{M}_k = \mathbb{S}^2 \subset \mathbb{R}^3$ a esfera unitária centrada na origem de \mathbb{R}^3 . Vamos usar a fórmula acima para calcular a área de $B(p, \frac{\pi}{2}), p \in \mathbb{S}^2$ (a área de um hemisfério). Como no nosso caso k = 1, temos $s_k(t) = \sin(t)$. Como $\omega_2 = 2\pi$, segue que

$$Vol(B(p, \frac{\pi}{2})) = 2\pi \int_0^{\frac{\pi}{2}} \sin(t)dt = 2\pi,$$

resultado que já esperávamos. Note que neste caso, $d(p, Cut(p)) = \pi$.

Para o que se segue, precisamos do seguinte lema:

Lema 4.18. Seja $I \subset \mathbb{R}$ um intervalo e $B: I \to GL_n(\mathbb{R})$ um caminho diferenciável de matrizes ivertíveis. Então

$$\frac{d}{dt}\det B(t) = (\det B(t))tr(B'(t)B(t)^{-1}).$$

Demonstração. Seja $B(t)=(b^1(t),...,b^n(t))$, onde $b^j(t)$ denota a j-ésima coluna de B(t). Se $(b^i)'(t)=\sum_{j=1}^n a_{ij}(t)b^j(t)$, então, suprimindo t quando conveniente,

$$\frac{d}{dt} \det B(t) = \sum_{i=1}^{n} \det(b^{1}, ..., (b^{i})', ..., b^{n})$$

$$= \sum_{i=1}^{n} \det(b^{1}, ..., a_{ii}b^{i}, ..., b^{n})$$

$$= (\det B) \sum_{i=1}^{n} a_{ii} = (\det B)tr(a_{ij})$$

$$= (\det B)tr(B'B^{-1}).$$

Note que $B' = B \cdot a^{\top}$.

Proposição 4.19. Seja M^n uma variedade Riemanniana completa e orientada, e $p \in M$ fixado. Se $\gamma : [0,a] \to M \setminus Cut(p)$ é a geodésica normalizada $\gamma(t) = \exp_p(tv)$, então, para $0 < t \le a$,

$$\Delta \rho(\gamma(t)) = \frac{n-1}{t} + \frac{A'(t,v)}{A(t,v)}, \tag{4.12}$$

onde 'denota a derivada em relação a t.

Demonstração. Fixe $0 < t_0 \le a$ e seja $q = \gamma(t_0)$, de modo que $\rho(q) = t_0$, onde ρ é a função distância a partir de $p = \gamma(0)$. Seja ainda $\{e_1 = \gamma'(t_0), e_2, ..., e_n\}$ uma base ortonormal positiva de T_qM e, para $2 \le i \le n$, J_i o campo de Jacobi ao longo de γ tal que $J_i(0) = 0$ e $J_i(t_0) = e_i$. Pela proposição 4.12, temos

$$\Delta \rho(q) = (Hess\rho)_q(e_1, e_1) + \sum_{i=2}^n (Hess\rho)_q(e_i, e_i)$$
$$= \sum_{i=2}^n \langle J_i', J_i \rangle (t_0),$$

onde $(Hess\rho)_q(e_1,e_1)=0$, pois γ é geodésica.

Agora, para $2 \leq i \leq n$ tem-se $J_i(t) = (d \exp_p)_{tv}(tJ_i'(0))$, onde $J_i'(0) \in T_{t_0v}(T_pM) \approx T_pM$ é o vetor tal que $(d \exp_p)_{t_0v}(t_0J_i'(0)) = e_i$. Como $\langle J_i, \gamma' \rangle(t) = 0$ em $[0, t_0]$, derivando obtemos $\langle J_i'(0), \gamma'(0) \rangle = 0$, com $J_i'(0) \neq 0$, senão $J_i \equiv 0$. Afirmamos que $\{J_2'(0), ..., J_n'(0)\}$ são linearmente independentes, e portanto uma base (não necessariamente ortogonal) do complemento ortogonal de $v = \gamma'(0)$ em T_pM . De fato, sejam $\alpha_2, ..., \alpha_n$ em \mathbb{R} tais que $\sum_{i=2}^n \alpha_i J_i'(0) = 0$. Então, $J(t) = \sum_{i=2}^n \alpha_i J_i(t)$ é um campo de Jacobi ao longo de γ tal que J(0) = 0 e J'(0) = 0. Daí, $J \equiv 0$ e, em particular, $\sum_{i=2}^n \alpha_i e_i = \sum_{i=2}^n \alpha_i J_i(t_0) = 0$, de modo que $\alpha_2 = ... = \alpha_n = 0$.

Seja $\{v, E_2, ..., E_n\}$ uma base ortonormal e positiva de T_pM , e

$$E_i = \sum_{j=2}^n a_{ij} J_j'(0), \forall 2 \le i \le n.$$

Então, calculando como anteriormente e denotando $c = \det(a_{ij})$, temos

$$A(t,v) = ((\exp_p)^* dM)_{tv}(v, E_2, ..., E_n)$$

$$= \det(a_{ij})((\exp_p)^* dM)_{tv}(v, J_2'(0), ..., J_n'(0))$$

$$= \frac{\det(a_{ij})}{t^{n-1}} dM_{\exp_p(tv)}(\gamma'(t), J_2(t), ..., J_n(t))$$

$$= \frac{c}{t^{n-1}} \sqrt{\det B(t)},$$

onde $B(t)_{ij} = \langle J_i(t), J_j(t) \rangle$, para $2 \leq i, j \leq n$ e $0 < t \leq t_0$. Note ademais que $B(t_0) = I$, a matriz identidade. Portanto,

$$A(t_0, v) = \frac{c}{t_0^{n-1}}$$

e, pelo lema anterior,

$$A'(t_0, v) = -\frac{(n-1)c}{t_0^n} \sqrt{\det B(t_0)} + \frac{c}{t_0^{n-1}} \frac{(\det B)'(t_0)}{2\sqrt{\det B(t_0)}}$$

$$= -\frac{(n-1)c}{t_0^n} + \frac{c}{2t_0^{n-1}} (\det B(t_0)) tr(B'(t_0)B(t_0)^{-1})$$

$$= -\frac{(n-1)c}{t_0^n} + \frac{c}{2t_0^{n-1}} trB'(t_0).$$

Derivando $B(t)_{ij} = \langle J_i(t), J_j(t) \rangle$, obtemos

$$trB'(t_0) = \sum_{i=2}^{n} 2\langle J'_i, J_i \rangle(t_0) = 2\Delta \rho(q),$$

de maneira que

$$A'(t_0, v) = -\frac{(n-1)c}{t_0^n} + \frac{c}{t_0^{n-1}} \Delta \rho(q).$$

Agora, basta calcular $\frac{A'(t_0,v)}{A(t_0,v)}$

4.4 A Fórmula de Bochner

Afim de dar continuidade às ideias das duas últimas seções, precisamos de um resultado auxiliar, devido a S. Bochner, que encontrará outras aplicações posteriormente. É o propósito desta seção estabelecê-lo.

Para o teorema a seguir, se $T:V\to V$ é um operador linear auto-adjunto em um espaço vetorial real de dimensão finita com produto interno, denotamos $\|T\|^2=tr(T^2)$, o quadrado da norma de Hilbert-Schmidt de T. Assim, sendo $\{e_1,...,e_n\}$ uma base ortonormal de V, segue que

$$||T||^2 = \sum_{i=1}^n \langle T^2(e_i), e_i \rangle = \sum_{i=1}^n |T(e_i)|^2.$$
 (4.13)

Teorema 4.20. (Bochner). Seja M^n uma variedade Riemanniana e $f: M \to \mathbb{R}$ uma função suave. Então

$$\frac{1}{2}\Delta|\nabla f|^2 = Ric(\nabla f, \nabla f) + \langle \nabla f, \nabla(\Delta f) \rangle + ||Hessf||^2.$$

Demonstração. Fixe $p \in M$ e seja $\{e_i\}$ um referencial móvel num aberto U, geodésico em $p \in U$. Então, temos em p

$$\frac{1}{2}\Delta|\nabla f|^{2} = \frac{1}{2}\sum_{i}(Hess|\nabla f|^{2})(e_{i}, e_{i})$$

$$= \frac{1}{2}\sum_{i}e_{i}(e_{i}\langle\nabla f, \nabla f\rangle) = \sum_{i}e_{i}\langle\nabla_{e_{i}}\nabla f, \nabla f\rangle$$

$$= \sum_{i}\langle\nabla_{e_{i}}\nabla_{e_{i}}\nabla f, \nabla f\rangle + \sum_{i}|\nabla_{e_{i}}\nabla f|^{2}$$

$$= \sum_{i}\langle\nabla_{e_{i}}\nabla_{e_{i}}\nabla f, \nabla f\rangle + \|Hessf\|^{2}, \tag{4.14}$$

onde usamos a equação 4.13 na última igualdade. Agora, para $X \in \mathfrak{X}(M)$, temos que

$$\sum_{i} \langle R(X, e_i) \nabla f, e_i \rangle = \sum_{i} \langle \nabla_X \nabla_{e_i} \nabla f - \nabla_{e_i} \nabla_X \nabla f - \nabla_{[X, e_i]} \nabla f, e_i \rangle. \quad (4.15)$$

Como o referencial é geodésico em p, temos que $(\nabla_X e_i)(p) = 0$, e daí

$$\sum_{i} \langle \nabla_{X} \nabla_{e_{i}} \nabla f, e_{i} \rangle = \sum_{i} X \langle \nabla e_{i} \nabla f, e_{i} \rangle = X(\Delta f) = \langle X, \nabla(\Delta f) \rangle \quad (4.16)$$

em p. Utilizando novamente que o referencial é geodésico em p, juntamente com o fato de Hessf ser um operador linear auto-adjunto, obtemos sucessivamente em p

$$\langle \nabla_{e_{i}} \nabla_{X} \nabla f + \nabla_{[X,e_{i}]} \nabla f, e_{i} \rangle = e_{i} \langle \nabla_{X} \nabla f, e_{i} \rangle - \langle \nabla_{X} \nabla f, \nabla_{e_{i}} e_{i} \rangle$$

$$+ \langle \nabla_{e_{i}} \nabla f, [X,e_{i}] \rangle$$

$$= e_{i} \langle \nabla_{e_{i}} \nabla f, X \rangle + \langle \nabla_{e_{i}} \nabla f, \nabla_{X} e_{i} - \nabla_{e_{i}} X \rangle$$

$$= \langle \nabla_{e_{i}} \nabla_{e_{i}} \nabla f, X \rangle$$

$$+ \langle \nabla_{e_{i}} \nabla f, \nabla_{e_{i}} X \rangle - \langle \nabla_{e_{i}} \nabla f, \nabla_{e_{i}} X \rangle$$

$$= \langle \nabla_{e_{i}} \nabla_{e_{i}} \nabla f, X \rangle. \tag{4.17}$$

Substituindo 4.16 e 4.17 em 4.15, segue que

$$\sum_{i} \langle R(X, e_i) \nabla f, e_i \rangle = \langle X, \nabla(\Delta f) \rangle - \sum_{i} \langle \nabla_{e_i} \nabla_{e_i} \nabla f, X \rangle,$$

ou ainda

$$\sum_{i} \langle \nabla_{e_i} \nabla_{e_i} \nabla f, X \rangle = Ric(X, \nabla f) + \langle X, \nabla(\Delta f) \rangle.$$

Basta agora fazer $X = \nabla f$ na última relação acima, substituindo o resultado em 4.14.

4.5 O Teorema de Comparação do Laplaciano

Comecemos esta seção com o seguinte resultado de Álgebra Linear.

Lema 4.21. Seja V^n um espaço vetorial real n-dimensional com produto interno e $T:V\to V$ um operador linear auto-adjunto. Se $\dim(KerT)\geq k$, $0\leq k\leq n$, então

$$||T||^2 \geq \frac{1}{n-k} (trT)^2$$

com igualdade se e só se a restrição de T ao complemento ortogonal de KerT for um múltiplo do operador identidade.

Demonstração. Seja $\{e_1,...,e_n\}$ uma base de V formada por autovetores de T, com $T(e_i)=\lambda_i e_i$ para $1\leq i\leq n$ e $\lambda_i=0$ para i>n-k. Então, pela desigualdade de Cauchy-Schwarz temos

$$||T||^{2} = \sum_{i=1}^{n-k} \lambda_{i}^{2} \ge \frac{1}{n-k} (\sum_{i=1}^{n-k} \lambda_{i})^{2}$$
$$= \frac{1}{n-k} (trT)^{2},$$

ocorrendo a igualdade se e só se $\lambda_1 = ... = \lambda_{n-k}$.

Proposição 4.22. Seja M^n uma variedade Riemanniana completa e orientada, $p \in M$ e $\gamma : [0, a] \to M \setminus Cut(p)$ a geodésica normalizada $\gamma(t) = \exp_p(tv)$. Nas notações da seção 3.3, se $f(t) = tA(t, v)^{\frac{1}{n-1}}$, então, para $0 < t \le a$, tem-se

$$\Delta \rho(\gamma(t)) = (n-1)\frac{f'(t)}{f(t)} \tag{4.18}$$

e

$$(n-1)\frac{f''(t)}{f(t)} + Ric(\gamma'(t), \gamma'(t)) \le 0,$$
 (4.19)

ocorrendo a igualdade se e só se a restrição de $(Hess\rho)_{\gamma(t)}$ ao complemento ortogonal de $\gamma'(t)$ em $T_{\gamma(t)}M$ for um múltiplo da identidade.

Demonstração. Note primeiro que como A é suave e A(0,v)=1, temos $f:[0,a]\to\mathbb{R}$ suave. Por outro lado, como $|\nabla\rho(\gamma(t))|=1$ para $0< t\leq a$, segue da fórmula de Bochner que

$$0 = \frac{1}{2}\Delta|\nabla\rho|^2 = Ric(\nabla\rho,\nabla\rho) + \langle\nabla\rho,\nabla(\Delta\rho)\rangle + |Hees\rho|^2.$$

Seja $g(t) = f(t)^{n-1} = t^{n-1}A(t, v)$. Segue da proposição 4.19 que

$$\begin{split} \frac{g'(t)}{g(t)} &= \frac{(n-1)t^{n-2}A(t,v) + t^{n-1}A'(t,v)}{t^{n-1}A(t,v)} \\ &= \frac{n-1}{t} + \frac{A'(t,v)}{A(t,v)} \\ &= \Delta \rho(\gamma(t)). \end{split}$$

Mas desde que $g = f^{n-1}$, temos $g' = (n-1)f^{n-2}f'$, e daí

$$\Delta \rho(\gamma(t)) = \frac{g'(t)}{g(t)} = (n-1)\frac{f'(t)}{f(t)}.$$
 (4.20)

Por outro lado,

$$\langle \nabla \rho, \nabla(\Delta \rho) \rangle_{\gamma(t)} = \langle \gamma'(t), \nabla(\Delta \rho) \rangle_{\gamma(t)} = \frac{d}{dt} \Delta \rho(\gamma(t)) = (\frac{g'}{g})'(t). \tag{4.21}$$

Portanto, derivando 4.20 e omitindo t quando conveniente, obtemos

$$(\frac{g'}{g})' = (n-1)\frac{f''}{f} - (n-1)(\frac{f'}{f})^2$$

$$= (n-1)\frac{f''}{f} - (n-1)(\frac{\Delta\rho}{n-1})^2.$$

Logo, 4.21 se escreve

$$\langle \nabla \rho, \nabla(\Delta \rho) \rangle_{\gamma(t)} = (n-1) \frac{f''}{f} - (n-1) (\frac{\Delta \rho}{n-1})^2,$$

relação que substituída na fórmula de Bochner fornece finalmente

$$0 = Ric(\gamma', \gamma') + (n-1)\frac{f''}{f} + |Hess\rho|^2 - \frac{(\Delta\rho)^2}{n-1}.$$

Mas desde que $(Hess\rho)_{\gamma(t)}(\gamma',\gamma')=0$ e $\gamma'\neq 0$, temos que $\dim[Ker(Hess\rho)]\geq 1$. Como $\Delta\rho=tr(Hess\rho)$, segue do lema anterior que $|Hess\rho|^2-\frac{(\Delta\rho)^2}{n-1}$, donde segue 4.19.

Observação 4.23. Para $M = \mathbb{M}_k$, uma forma espacial de curvatura seccional constante k, denotemos por $\widetilde{\rho}$, \widetilde{f} e \widetilde{A} os objetos correspondentes na notação acima. Segue de 4.11 e da definição de \widetilde{f} que $\widetilde{f}(t) = s_k(t)$. De $s_k'' + ks_k = 0$, segue que

$$Ric(\widetilde{\gamma}',\widetilde{\gamma}') + (n-1)\frac{\widetilde{f}''}{\widetilde{f}} = (n-1)k + (n-1)\frac{s_k''}{s_k} = 0.$$

Lema 4.24. (Sturm). Sejam $f, g : [0, a] \to \mathbb{R}$ funções suaves, tais que f(0) = g(0) = 0 e f'(0) = g'(0) > 0. Se $k \in \mathbb{R}$ é tal que $f''(t) + kf(t) \ge 0$ e g''(t) + kg(t) = 0, ou f''(t) + kf(t) = 0 e $g''(t) + kg(t) \le 0$ para todo $t \in [0, a]$, então:

- 1. $g(t) > 0 \Rightarrow f(t) > 0$, isto é, o primeiro zero de f não ocorre antes do primeiro zero de g.
- 2. Onde g for positiva, temos $\frac{f}{g}$ não-decrescente e $f \geq g$.

Demonstração. As condições sobre f e g garantem a existência de $\epsilon > 0$ tal que $f, g \geq 0$ em $(0, \epsilon)$. Mostremos primeiro que se f e g forem positivas $(0, t_0)$ então $\frac{f}{g}$ é não-decrescente. Para tanto, defina $F(t) = \frac{f(t)}{g(t)}$ para $t \in (0, t_0)$. Então $F'(t) \geq 0$ se e só se $f'(t)g(t) - f(t)g'(t) \geq 0$. Basta agora observar que (f'g - fg')(0) = 0 e, em qualquer caso,

$$(f'g - fg')'(t) = f''(t)g(t) - f(t)g''(t)$$

 $\geq -kf(t)g(t) - f(t)(-kg(t)) = 0.$

Suponha agora que existe $t_0 \in (0, a]$, tal que g > 0 em $(0, t_0]$, f > 0 em $(0, t_0)$ e $f(t_0) = 0$. Como $F' \ge 0$ em $(0, t_0)$ e, pela regra de L'Hôspital,

$$\lim_{t \to 0^+} F(t) = \frac{f'(0)}{g'(0)} = 1,$$

temos $f(t) \ge g(t)$ em $(0, t_0)$, e daí em $[0, t_0]$. Em particular, $f(t_0) \ge g(t_0) > 0$, uma contradição. Isto termina a prova do item (a) e, por consequência, também a de (b).

O próximo resultado é conhecido como Teorema de Comparação do Laplaciano. Novamente aqui, convencionamos $\frac{\pi}{\sqrt{k}} = +\infty$ se $k \leq 0$.

Teorema 4.25. Seja M^n uma variedade Riemanniana completa e orientada, $p \in M$ e $\gamma[0, a] \to M \setminus Cut(p)$ uma geodésica normalizada partindo de p. Dado $k \in \mathbb{R}$, escolha sobre \mathbb{M}_k um ponto arbitrário p_0 e uma geodésica normalizada $\widetilde{\gamma}: [0, a] \to \mathbb{M}_k$, partindo de p_0 . Se $Ric_M \geq k$, então

$$(\Delta \rho)(\gamma(t_0)) \leq (\Delta \widetilde{\rho})(\widetilde{\gamma}(t_0)), \tag{4.22}$$

para todo $t_0 < \min\{a, \frac{\pi}{\sqrt{k}}\}$. Ademais, há igualdade se e só se $K_M(\gamma'(t), X) = k$ para $0 \le t \le t_0$ e todo $X \in T_{\gamma(t)}M$ não colinear com $\gamma'(t)$.

Demonstração. Seja $v = \gamma'(0)$ e $f(t) = tA(t,v)^{\frac{1}{(n-1)}}$. A função correspondente em \mathbb{M}_k é, como vimos acima, $\tilde{f} = s_k$. Nas condições da proposição anterior, para obtermos a desigualdade do enunciado basta mostrar que

$$\frac{f'}{f} \le \frac{\widetilde{f'}}{\widetilde{f}}.\tag{4.23}$$

Para tanto, note que

$$0 \geq Ric_M(\gamma', \gamma') + (n-1)\frac{f''}{f} \geq (n-1)(k + \frac{f''}{f}),$$

isto é, $f'' + kf \le 0$. Ademais, f(0) = 0 é

$$f'(0) = \frac{d}{dt}(tA(t,v)^{\frac{1}{(n-1)}})|_{t=0} = A(0,v)^{\frac{1}{(n-1)}} = 1.$$

Para $\widetilde{f}=s_k$ temos que $\widetilde{f}''+k\widetilde{f}=0,\ \widetilde{f}(0)=0$ e $\widetilde{f}'(0)=1$. Se $0< t_0<\min\{a,\frac{\pi}{\sqrt{k}}\}$, temos $f,\widetilde{f}>0$ em $(0.t_0]$. Portanto, pelo Lemma de Sturm, $F=\frac{\widetilde{f}}{f}$ é não-decrescente, isto é, $F'\geq 0$ em $(0,t_0]$. Isto nos dá 4.23.

Se houver igualdade em $t=t_0$, é imediato do Lemma de Sturm que deve ser $f=\widetilde{f}$ em $[0,t_0]$. Daí, pela proposição 4.22, para todo $t\in(0,t_0]$ a restrição de $(Hess\rho)_{\gamma(t)}$ ao complemento ortogonal de $\gamma'(t)$ em $T_{\gamma(t)}M$ deve ser um múltiplo da identidade. Portanto, os autovalores não nulos de $Hess\rho$ são iguais a

$$\frac{\Delta\rho(\gamma(t))}{n-1} = \frac{f'(t)}{f(t)} = \frac{\widetilde{f}'(t)}{\widetilde{f}(t)} = \frac{s'_k(t)}{s_k(t)}.$$

Segue daí que se $X \in T_{\gamma(t)}M$, com $\langle X, \gamma'(t) \rangle = 0$, então

$$\nabla_X \gamma' = \frac{s_k'}{s_k} X.$$

Afirmamos agora que é possível estender X ao longo de γ , de modo que $[X, \gamma'] = 0$. De fato, para isto ocorrer devemos ter $\nabla_{\gamma'} X = \frac{s_k'}{s_k} X$. Sendo $e_1, ..., e_n$ campos ortonormais paralelos ao longo de γ e $X(t) = \sum_i a_i(t) e_i(t)$, basta escolhermos as funções a_i tais que $a_i' = \frac{s_k'}{s_k} a_i$.

Por fim, para |X|=1, segue da afirmação acima que

$$K_{M}(X, \gamma') = -\langle R(X, \gamma')\gamma', X \rangle$$

$$= -\langle \nabla_{\gamma'}\nabla_{X}\gamma' - \nabla_{X}\nabla_{\gamma'}\gamma' + \nabla_{[X,\gamma']}\gamma', X \rangle$$

$$= -\langle \nabla_{\gamma'}(\frac{s'_{k}}{s_{k}}X), X \rangle$$

$$= -(\frac{s'_{k}}{s_{k}})^{2} - (\frac{s'_{k}}{s_{k}})'\langle X, X \rangle$$

$$= -\frac{s''_{k}}{s_{k}} = k.$$

4.6 O Lema de Omori-Yau

Se M^n é uma variedade Riemanniana fechada e $f:M\to\mathbb{R}$ é uma função suave, então existe $p\in M$ tal que f assume seu valor máximo (respectivamente mínimo) em p. Portanto, $\nabla f(p)=0$ e $\Delta f(p)\leq 0$ (respectivamente $\Delta f(p)\geq 0$). Nesta seção provaremos um análogo deste resultado para funções suaves sobre variedades completas não necessariamente compactas, o Lema de Omori-Yau.

Seja M^n uma variedade Riemanniana completa, com conexão de Levi-Civitta ∇ e tensor curvatura R; denote ainda por Δ o laplaciano de M. Para $p \in M$ fixado, seja $\rho(x) = d(x, p)$ a função distância a partir de p.

Se $\gamma:[0,l]\to M$ é uma geodésica normalizada ligando pa x, seja

$$K_{\gamma}(x) = \min_{0 \le k \le l} \left\{ \frac{n-1}{l-k} - \frac{1}{(l-k)^2} \int_k^l (t-k)^2 Ric(\gamma'(t)) dt \right\}, \quad (4.24)$$

onde Ric denota a curvatura de Ricci de M. Afirmamos que $K_{\gamma}(x)$ está bem definido. De fato,

$$\frac{1}{(l-k)^2} \int_{k}^{l} (t-k)^2 Ric(\gamma'(t)) dt \leq \frac{1}{(l-k)^2} \sup_{t \in [0,l]} Ric(\gamma'(t)) \int_{k}^{l} (t-k)^2 dt$$
$$= \left(\frac{l-k}{3}\right) \sup_{t \in [0,l]} Ric(\gamma'(t)),$$

de modo que

$$K_{\gamma}(x) \geq \min_{0 \leq k \leq l} \left\{ \frac{n-1}{l-k} - \left(\frac{l-k}{3}\right) \sup_{t \in [0,l]} Ric(\gamma'(t)) \right\}.$$

Observe que o mínimo acima existe. Basta ver a expressão entre chaves como uma função de k, digamos g=g(k), que claramente é contínua em [0,l) e satisfaz

$$\lim_{k \to l^{-}} g(k) = +\infty.$$

Caso $x \in M \setminus Cut(p)$, tome γ como sendo a única geodésica minimizante ligando p a x, e seja $K(x) = K_{\gamma}(x)$. Caso contrário, ponha

$$K(x) = \inf_{\gamma} K_{\gamma}(x),$$

onde o ínfimo é tomado sobre todas as geodésicas minimizantes γ ligando p a x.

Lema 4.26. Para todo $x \in M \setminus Cut(p)$, tem-se $\Delta \rho(x) \leq K(x)$.

Demonstração. Sejam $\gamma:[0,l]\to M$ a única geodésica minimizante ligando p a x, com comprimento $l=\rho(x)$, e $J_1,...,J_{n-1}$ os únicos campos de Jacobi ao longo de γ , se anulando em $\gamma(0)$ e tais que $J_i(l)=e_i(l)$, onde $\{e_1,...,e_{n-1},e_n=\gamma'\}$ é um referencial ortonormal e paralelo ao longo de γ . Como $J_i(0)=0$ e $\langle J_i,\gamma'\rangle_x=0$ segue da proposição 4.12 que

$$(Hess\rho)_x(J_i, J_i) = \langle J_i', J_i \rangle_x,$$

e assim

$$(\Delta \rho)(x) = \sum_{i=1}^{n} \langle \nabla_{e_i}(\nabla \rho), e_i \rangle_x$$

$$= \sum_{i=1}^{n-1} \langle \nabla_{e_i}(\nabla \rho), e_i \rangle_x$$

$$= \sum_{i=1}^{n-1} (Hess\rho)_x(e_i, e_i)$$

$$= \sum_{i=1}^{n-1} (Hess\rho)_x(J_i, J_i)$$

$$= \sum_{i=1}^{n-1} \langle J'_i, J_i \rangle_x.$$

Por outro lado, a equação de Jacobi nos dá $\langle J_i'', J_i \rangle = -\langle R(\gamma', J_i) \gamma', J_i \rangle$, de modo que

$$I_{l}(J_{i}, J_{i}) = \int_{0}^{l} \{\langle J'_{i}, J'_{i} \rangle - \langle R(\gamma', J_{i}) \gamma', J_{i} \rangle\} dt$$
$$= \int_{0}^{l} \{\langle J'_{i}, J'_{i} \rangle + \langle J''_{i}, J_{i} \rangle\} dt$$
$$= \int_{0}^{l} \langle J'_{i}, J_{i} \rangle' dt = \langle J'_{i}, J_{i} \rangle_{x}.$$

Logo,

$$\Delta \rho(x) = \sum_{i=1}^{n-1} I_l(J_i, J_i).$$

Fixado $0 \leq k \leq l,$ se $f: [0,l] \rightarrow \mathbb{R}$ é dada por

$$f(t) = \begin{cases} 0, & \text{se } 0 \le t \le k; \\ \frac{t-k}{l-k}, & \text{se } k \le t \le l. \end{cases}$$

então f é suave por partes tal que f(0) = 0 e f(l) = 1. Como $\langle J_i, \gamma' \rangle = 0$, $V_i = fe_i$ é um campo diferenciável por partes ao longo de γ com $\langle V_i, \gamma' \rangle = 0$, $J_i(0) = V_i(0) = 0$ e $J_i(l) = V_i(l) = e_i(l)$, segue do Lema do Índice que

$$\Delta \rho(x) \leq \sum_{i=1}^{n-1} I_l(fe_i, fe_i) = \int_0^l \sum_{i=1}^{n-1} \{ \langle (fe_i)', (fe_i)' \rangle - \langle R(\gamma', fe_i) \gamma', fe_i \rangle \} dt$$

$$= \int_0^l \{ \sum_{i=1}^{n-1} (f')^2 - f^2 Ric(\gamma'(t)) \} dt$$

$$= \frac{n-1}{(l-k)^2} \int_k^l dt - \frac{1}{(l-k)^2} \int_k^l (t-k)^2 Ric(\gamma'(t)) dt$$

$$= \frac{n-1}{l-k} - \frac{1}{(l-k)^2} \int_k^l (t-k)^2 Ric(\gamma'(t)) dt.$$

Basta agora tomar o mínimo sobre todos os $0 \le k \le l$.

Lema 4.27. Se a curvatura de Ricci de M é limitada inferiormente, então K(x) é limitada superiormente por uma constante que não depende de x, para todo $x \in M$.

Demonstração. Podemos supor $Ric \geq \alpha$, com $\alpha < 0$ a ser escolhido posteriormente. Se $\gamma: [0, l] \to M$ é uma geodésica normalizada ligando p a x, então

$$K_{\gamma}(x) \leq \min_{0 \leq k \leq l} \left\{ \frac{n-1}{l-k} - \frac{\alpha}{(l-k)^2} \int_{k}^{l} (t-k)^2 dt \right\}$$

$$= \min_{0 \leq k \leq l} \left\{ \frac{n-1}{l-k} - \frac{\alpha(l-k)}{3} \right\}. \tag{4.25}$$

Vamos estudar a função

$$f(y) = \frac{n-1}{l-y} - \frac{\alpha(l-y)}{3}, y \neq l, \alpha < 0.$$

Derivando, obtemos

$$f'(y) = \frac{n-1}{(l-y)^2} + \frac{\alpha}{3},$$

e um cálculo simples nos dá que f'(y) = 0 se e só se

$$y = y_1 = l - \sqrt{-\frac{3(n-1)}{\alpha}}$$

ou

$$y = y_2 = l + \sqrt{-\frac{3(n-1)}{\alpha}}.$$

Observe agora que

$$f'(y) < 0 \Leftrightarrow \frac{n-1}{(l-y)^2} < -\frac{\alpha}{3}$$

$$\Leftrightarrow -\frac{3(n-1)}{\alpha} < (l-y)^2$$

$$\Leftrightarrow \sqrt{-\frac{3(n-1)}{\alpha}} < |l-y|$$

$$\Leftrightarrow y \in (-\infty, y_1) \cup (y_2, +\infty),$$

e analogamente

$$f'(y) > 0 \Leftrightarrow y \in (y_1, y_2), y \neq l.$$

Assim, y_1 é um mínimo global para $f|_{(-\infty,l)}$, e tomando $|\alpha|$ suficientemente grande temos $0 \le y_1 < l$. Por fim, como $\lim_{y\to l^-} f(y) = +\infty$ segue de 4.25 que

$$K_{\gamma}(x) \leq f(y_1) = \frac{n-1}{\sqrt{-\frac{3(n-1)}{\alpha}}} - \frac{\alpha}{3}\sqrt{-\frac{3(n-1)}{\alpha}},$$

o que conclui a demonstração.

Lema 4.28. Seja $\gamma:[0,l]\to M$ uma geodésica minizante, tal que $\gamma(0)=q$ e $\gamma(l)\in M\backslash Cut(q)$. Então existe um aberto U contendo $\{\gamma\}$ tal que para todo $x\in U$ há em U no máximo uma geodésica minimizante ligando x a q.

Demonstração. Suponha, sem perda de generalidade, γ normalizada. Por contradição, se nenhum tal U existir, então para todo $j \geq 1$ existe $x_j \in M$ tal que $\lim_{j \to +\infty} d_M(x_j, \{\gamma\}) = 0$ e x_j é ligado a q por ao menos duas geodésicas minimizantes distintas, digamos α_j , $\beta_j : [0, t_j] \to M$ com $|\alpha'_j(0)| = |\beta'_j(0)| = 1$. Ademais, como para todo ponto de uma bola normal B_q centrada em q o raio geodésico a partir de q é a única geodésica minimizante que o liga a q, temos $x_j \in M \backslash B_q$ para todo $j \geq 1$.

Passando a uma subsequência, se necessário, podemos supor que existem $0 < t_0 \le l$ e $v, w \in T_qM, |v| = |w| = 1$, tais que

$$x_j \to \gamma(t_0), \alpha'_j(0) \to v, \beta'_j(0) \to w.$$

Pela continuidade da função distância temos que $t_j \to t_0$, de modo que para $0 \le t \le t_0$ temos que $\gamma_v(t) = \exp_q(tv)$ e $\gamma_w(t) = \exp_q(tw)$ são geodésicas minimizantes ligando q a $\gamma(t_0)$. Há agora dois casos a considerar:

- $v \neq \gamma'(0)$ ou $w \neq \gamma'(0)$: suponha, sem perda de generalidade, $v \neq \gamma'(0)$. Então $\gamma(t_0)$ é ligado a q pelas geodésicas minimizantes distintas γ e γ_v . Portanto, pela proposição 4.2 existe $\tilde{t} \in (0, t_0]$ tal que $\gamma(\tilde{t})$ é o ponto mínimo de q ao longo de γ , contradizendo nossas hipóteses.
- $v = w = \gamma'(0)$: então

$$\lim_{j} \exp_q(t_j \alpha_j'(0)) = \exp_q(t_0 \gamma'(0)) = \lim_{j} \exp_q(t_j \beta_j'(0)).$$

Como γ é minimizante e $\gamma(l) \in M \setminus Cut(q)$, novamente pela propsição 4.2 temos que $\gamma(t_0)$ não é conjugado a q ao longo de γ , e portanto $t_0\gamma'(0)$ não é um ponto crítico de \exp_q . Logo, \exp_q é injetiva numa vizinhança de $t_0\gamma'(0)$, de sorte que, para j suficientemente grande, temse $t_j\alpha'_j(0) = t_j\beta'_j(0)$, uma contradição.

Teorema 4.29. Seja M^n uma variedade Riemanniana completa $e f : M \to \mathbb{R}$ uma função de classe C^2 em M, limitada superiormente. Então, para todo $p \in M$, existe uma sequência $(p_k)_{k\geq 1}$ em M tal que

$$\lim_{k \to +\infty} f(p_k) = \sup_{M} f, \tag{4.26}$$

$$|\nabla f(p_k)| = \frac{2(f(p_k) - f(p) + 1)\rho(p_k)}{k(\rho(p_k)^2 + 2)\log(\rho(p_k)^2 + 2)}$$
(4.27)

e

$$\Delta f(p_k) \leq \frac{2(f(p_k) - f(p) + 1)(\rho(p_k)K(p_k) + 1)}{k(\rho(p_k)^2 + 2)\log(\rho(p_k)^2 + 2)} + \frac{4(f(p_k) - f(p) + 1)\rho(p_k)^2}{k^2(\rho(p_k)^2 + 2)^2[\log(\rho(p_k)^2 + 2)]^2}.$$
(4.28)

Demonstração. Para k inteiro positivo, seja

$$g(x) = \frac{f(x) - f(p) + 1}{[\log(\rho(x)^2 + 2)]^{\frac{1}{k}}}.$$

Temos g contínua, e se $f(x) \leq \lambda$ para todo $x \in M$,

$$g(x) \le \frac{\lambda - f(p) + 1}{[\log(\rho(x)^2 + 2)]^{\frac{1}{k}}},$$

de modo que

$$\lim \sup_{\rho(x) \to +\infty} g(x) \le 0. \tag{4.29}$$

Afirmamos que g assume seu máximo em algum $p_k \in M$. De fato, desde que g(p) > 0, segue de (4.29) que existe R > 0 tal que $\rho(x) > R \Rightarrow g(x) < g(p)$. Como $\overline{B(p,R)}$ é limitado e fechado, e M é completa, o Teorema de Hopf e Rinow nos dá que $\overline{B(p,R)}$ é compacto. Por continuidade, g assume um máximo p_k em $\overline{B(p,R)}$, e portanto um máximo global. Em particular, $f(p_k) - f(p) + 1 > 0$.

Consideremos agora dois casos separadamente:

 $1^{\circ} \underline{caso}$. $p_k \in M \setminus Cut(p)$: para $v \in T_xM$, desde que (omitindo x por clareza),

$$v(g) = \frac{v(f)}{[\log(\rho^2 + 2)]^{\frac{1}{k}}} - \frac{2(f - f(p) + 1)\rho v(\rho)}{k(\rho^2 + 2)[\log(\rho^2 + 2)]^{\frac{1}{k} + 1}},$$
 (4.30)

obtemos em p_k

$$0 = \nabla g = \frac{\nabla f}{[\log(\rho^2 + 2)]^{\frac{1}{k}}} - \frac{2(f - f(p) + 1)\rho\nabla\rho}{k(\rho^2 + 2)[\log(\rho^2 + 2)]^{\frac{1}{k} + 1}},$$
 (4.31)

e, desde que $|\nabla \rho|=1$, obtemos a equação 4.27.

Para o laplaciano, a equação 4.30 nos dá

$$v(v(g)) = \frac{v(v(f))}{[\log(\rho^2 + 2)]^{\frac{1}{k}}} - \frac{2\rho v(f)v(\rho)}{k(\rho^2 + 2)[\log(\rho^2 + 2)]^{\frac{1}{k} + 1}}$$

$$- \frac{2\{\rho v(f)v(\rho) + (f - f(p) + 1)[v(\rho)^2 + \rho v(v(\rho))]\}}{k(\rho^2 + 2)[\log(\rho^2 + 2)]^{\frac{1}{k} + 1}}$$

$$+ \frac{4(f - f(p) + 1)\rho^2 v(\rho)^2}{k(\rho^2 + 2)^2[\log(\rho^2 + 2)]^{\frac{1}{k} + 2}} \left(\frac{1}{k} + 1 + \log(\rho^2 + 2)\right). \quad (4.32)$$

Portanto, em p_k ,

$$\begin{split} 0 \geq \Delta g &= \frac{\Delta f}{[\log(\rho^2+2)]^{\frac{1}{k}}} - \frac{4\rho \langle \nabla f, \nabla \rho \rangle}{k(\rho^2+2)[\log(\rho^2+2)]^{\frac{1}{k}+1}} \\ &- \frac{2(f-f(p)+1)(1+\rho\Delta\rho)}{k(\rho^2+2)[\log(\rho^2+2)]^{\frac{1}{k}+1}} \\ &+ \frac{4(f-f(p)+1)\rho^2}{k(\rho^2+2)^2[\log(\rho^2+2)]^{\frac{1}{k}+2}} \left(\frac{1}{k}+1+\log(\rho^2+2)\right). \end{split}$$

Lembrando que $|\nabla \rho| = 1$, segue da equação 4.31 que em p_k

$$\langle \nabla f, \nabla \rho \rangle = \frac{2(f - f(p) + 1)\rho}{k(\rho^2 + 2)\log(\rho^2 + 2)},$$

e substituindo essa relação no que fizemos acima, obtemos em p_k que

$$\begin{split} \Delta f & \leq \frac{8(f-f(p)+1)\rho^2}{k^2(\rho^2+2)^2[\log(\rho^2+2)]^2} + \frac{2(f-f(p)+1)(1+\rho K)}{k(\rho^2+2)\log(\rho^2+2)} \\ & - \frac{4(k+1)(f-f(p)+1)\rho^2}{k^2(\rho^2+2)^2[\log(\rho^2+2)]^2} - \frac{4(f-f(p)+1)\rho^2}{k(\rho^2+2)^2\log(\rho^2+2)} \\ & = \frac{2(f-f(p)+1)(1+\rho K)}{k(\rho^2+2)\log(\rho^2+2)} \\ & + \frac{4(f-f(p)+1)\rho^2}{k^2(\rho^2+2)^2[\log(\rho^2+2)]^2} [2-(k+1)-k\log(\rho^2+2)] \\ & \leq \frac{2(f-f(p)+1)(1+\rho K)}{k(\rho^2+2)\log(\rho^2+2)} + \frac{4(f-f(p)+1)\rho^2}{k^2(\rho^2+2)^2[\log(\rho^2+2)]^2}, \end{split}$$

que é justamente a desigualdade 4.28.

 2° caso. $p_k \in Cut(p)$: então $p \in Cut(p_k)$. Se γ é uma geodésica minimizante ligando $p_k = \gamma(0)$ a p, tal que p é o ponto mínimo de p_k ao longo de γ , então $q \notin Cut(p_k)$ para todo $q \in \{\gamma\}$, $q \neq p, p_k$. Fixado um tal $q = \gamma(l)$, pelo lema 4.28, nós podemos tomar um aberto U contendo $\{\gamma \mid_{[0,l]}\}$, tal que para todo $x \in U$ há no máximo uma geodésica minimizante ligando q a x.

Denotando por $\overline{\rho}_q$ a função distância a partir de q na variedade U, tem-se $\overline{\rho}_q$ suave numa vizinhança de p_k , pois $p_k \neq q$ e $p_k \notin Cut(q)$. Por definição de distância, é claro que $\overline{\rho}_q(x) \geq \rho_q(x)$, para todo $x \in U$.

Afirmamos agora que a função $\overline{g}: U \to \mathbb{R}$ dada por

$$\overline{g}(x) = \frac{f(x) - f(p) + 1}{\{\log[(\overline{\rho}_q(x) + \rho(q))^2 + 2]\}^{\frac{1}{k}}}$$

também atinge seu máximo em p_k . De fato, segue de g atingir seu máximo em p_k que, para $x \in U$,

$$\overline{g}(p_k) = \frac{f(p_k) - f(p) + 1}{\{\log[(\overline{\rho}_q(p_k) + \rho(q))^2 + 2]\}^{\frac{1}{k}}} \\
= \frac{f(p_k) - f(p) + 1}{[\log(\rho(p_k)^2 + 2)]^{\frac{1}{k}}} = g(p_k) \\
\ge g(x) = \frac{f(x) - f(p) + 1}{[\log(\rho(x)^2 + 2)]^{\frac{1}{k}}} \\
\ge \frac{f(x) - f(p) + 1}{\{\log[(\overline{\rho}_q(x) + \rho(q))^2 + 2]\}^{\frac{1}{k}}} = \overline{g}(x),$$

onde usamos na última desigualdade que

$$\overline{\rho}_q(x) + \rho(q) \ge \rho_q(x) + \rho(q) \ge \rho(x),$$

pela desigualdade triangular. Portanto, $\nabla \overline{g}(p_k) = 0$ e $\Delta \overline{g}(p_k) \leq 0$.

Observe que o que difere as expressões de g e \overline{g} é a troca de $\rho(x)$ por $\overline{\rho}_q(x) + \rho(q)$. Como $\rho(q)$ é constante, de modo análogo à expressão 4.30, segue que para $v \in T_xU$ e omitindo x por clareza, temos

$$\begin{array}{lcl} v(\overline{g}) & = & \frac{v(f)}{\{\log[(\overline{\rho}_q + \rho(q))^2 + 2]\}^{\frac{1}{k}}} \\ & - & \frac{2(f - f(p) + 1)(\overline{\rho}_q + \rho(q))v(\overline{\rho}_q)}{k[(\overline{\rho}_q + \rho(q))^2 + 2]\{\log[(\overline{\rho}_q + \rho(q))^2 + 2]\}^{\frac{1}{k} + 1}} \end{array}$$

Portanto, em p_k

$$0 = \nabla(\overline{g}) = \frac{\nabla f}{\{\log[(\overline{\rho}_q + \rho(q))^2 + 2]\}^{\frac{1}{k}}} - \frac{2(f - f(p) + 1)(\overline{\rho}_q + \rho(q))\nabla\overline{\rho}_q}{k[(\overline{\rho}_q + \rho(q))^2 + 2]\{\log[(\overline{\rho}_q + \rho(q))^2 + 2]\}^{\frac{1}{k} + 1}}.$$

Como $|\nabla \overline{\rho}_q| = 1$, obtemos

$$|\nabla f(p_k)| = \frac{2(f(p_k) - f(p) + 1)(\overline{\rho}_q(p_k) + \rho(q))}{k[(\overline{\rho}_q(p_k) + \rho(q))^2 + 2]\log[(\overline{\rho}_q(p_k) + \rho(q))^2 + 2]}.$$

Como $\overline{\rho}_q(p_k) + \rho(q) = \rho(p_k)$, obtemos

$$|\nabla f(p_k)| = \frac{2(f(p_k) - f(p) + 1)\rho(p_k)}{k(\rho(p_k)^2 + 2)\log(\rho(p_k)^2 + 2)},$$

que é justamente 4.27. De maneira semelhante obtemos 4.28.

Para provar 4.26 é suficiente provar que $\limsup f(p_k) = \sup_M f$. Se isto fosse falso, existiriam $x \in M$ e $\delta > 0$ tais que $f(x) > \limsup f(p_k) + \delta$. Então, para todo k suficientemente grande, teríamos $f(x) > f(p_k) + \delta/2$. Agora, desde que

$$\frac{f(x) - f(p) + 1}{[\log(\rho(x)^2 + 2)]^{\frac{1}{k}}} \longrightarrow f(x) - f(p) + 1, k \longrightarrow \infty,$$

tem-se

$$\frac{f(x) - f(p) + 1}{[\log(\rho(x)^2 + 2)]^{\frac{1}{k}}} > f(x) - f(p) + 1 - \delta/4$$

para todo k suficientemente grande. Por outro lado, como f é limitada superiomente, para todo k suficientemente grande tem-se

$$f(x) - f(p) + 1 > f(p_k) - f(p) + 1 + \delta/2 > \frac{f(p_k) - f(p) + 1}{\lceil \log(\rho(p_k)^2 + 2) \rceil^{\frac{1}{k}}} + \delta/4.$$

Portanto, novamente para todo k suficientemente grande, obtemos

$$g(x) = \frac{f(x) - f(p) + 1}{[\log(\rho(x)^2 + 2)]^{\frac{1}{k}}}$$
> $f(x) - f(p) + 1 - \delta/4$
> $\frac{f(p_k) - f(p) + 1}{[\log(\rho(p_k)^2 + 2)]^{\frac{1}{k}}} = g(p_k),$

uma contradição.

Corolário 4.30. Seja M^n uma variedade Riemanniana completa, com curvatura de Ricci limitada inferiormente, e $f: M \to \mathbb{R}$ uma função de classe C^2 limitada superiormente. Então existe uma sequência $(p_k)_{k\geq 1}$ de pontos de M tais que

$$f(p_k) > \sup_{M} f - \frac{1}{k}, |\nabla f(p_k)| < \frac{1}{k}, \Delta f(p_k) < \frac{1}{k}.$$

Demonstração. Sendo $C_1 = \sup_M f$, segue de 4.27 que

$$|\nabla f(p_k)| \leq \frac{2(C_1 - f(p) + 1)}{k} \cdot \frac{\rho(p_k)}{\rho(p_K)^2 + 2} \cdot \frac{1}{\log(\rho(p_k)^2 + 2)}$$

$$\leq \frac{2(C_1 - f(p) + 1)}{k} \cdot \frac{1}{2\sqrt{2}} \cdot \frac{1}{\log 2},$$

e daí

$$\lim_{k \to +\infty} |\nabla f(p_k)| = 0. \tag{4.33}$$

Se f assume seu máximo em algum ponto $p \in M$, tomamos $p_k = p$ para todo k, e nada mais há a fazer. Senão, desde que (M,d) é um espaço métrico, a sequência $(p_k)_{k\geq 1}$, cuja existência é assegurada pelo teorema anterior, é tal que $\lim_{k\to +\infty} \rho(p_k) = +\infty$. Assim, como $Ric_M >> -\infty$, segue do lema 4.27 que, para todo k suficientemente grande, $K(p_k) \leq C_2$ para alguma constante positiva C_2 que não depende de k. Portanto, segue de 4.28 que

$$\Delta f(p_k) \leq \frac{2(C_1 - f(p) + 1)}{k} \left(\frac{C_2 \rho(p_k) + 1}{\rho(p_k)^2 + 2}\right) \frac{1}{\log(\rho(p_k)^2 + 2)}$$

$$+ \frac{4(C_1 - f(p) + 1)}{k^2} \left(\frac{\rho(p_k)}{\rho(p_k)^2 + 2}\right)^2 \frac{1}{[\log(\rho(p_k)^2 + 2)]^2}$$

$$\leq \frac{2(C_1 - f(p) + 1)C_3}{k \log 2} + \frac{C_1 - f(p) + 1}{2k^2 \log^2 2},$$

de modo que

$$\lim \sup_{k \to +\infty} \Delta f(p_k) \leq 0. \tag{4.34}$$

A conclusão do corolário segue agora de 4.26, 4.33 e 4.34, passando a uma subsequência, se necessário.

Corolário 4.31. (Lema de Omori-Yau). Seja M^n uma variedade Riemanniana completa com curvatura de Ricci limitada inferiormente e $f: M \to \mathbb{R}$ uma função de classe C^2 , limitada inferiormente. Então existe uma sequência $(p_k)_{k\geq 1}$ de pontos de M tais que

$$f(p_k) < \inf_M f + \frac{1}{k}, |\nabla f(p_k)| < \frac{1}{k}, \Delta f(p_k) > -\frac{1}{k}.$$

Demonstração. Aplique o corolário anterior à função -f.

Corolário 4.32. (Akutagawa). Seja M^n uma variedade Riemanniana completa, com curvatura de Ricci limitada inferiormente. Se $f: M \to \mathbb{R}$ é uma função não-negativa de classe C^2 , tal que $\Delta f \geq a f^{\beta}$ para algum par de números reais a > 0 e $\beta > 1$, então $f \equiv 0$.

Demonstração. Seja $\phi: \mathbb{R}_+^* \to \mathbb{R}_+^*$ uma função suave a ser escolhida posteriormente, e $g = \phi \circ f$. Então $\nabla g = \phi'(f) \nabla f$ e

$$\Delta g = div(\phi'(f)\nabla f) = \phi'(f)div(\nabla f) + \langle \nabla \phi'(f), \nabla f \rangle$$

$$= \phi'(f)\Delta f + \phi''(f)\langle \nabla f, \nabla f \rangle$$

$$= \phi'(f)\Delta f + \phi''(f)|\nabla f|^{2}$$

$$= \phi'(f)\Delta f + \frac{\phi''(f)}{\phi'(f)^{2}}|\nabla g|^{2},$$

de modo que

$$-\frac{\phi''(f)}{\phi'(f)^2}|\nabla g|^2 + \Delta g = \phi'(f)\Delta f.$$

Fazendo $\phi(t) = \frac{1}{(1+t)^{\alpha}}, \, \alpha > 0$, é simples concluir que

$$\phi'(t) = -\alpha\phi(t)^{\frac{\alpha+1}{\alpha}}, \frac{\phi''(f)}{\phi'(f)^2} = \left(\frac{\alpha+1}{\alpha}\right) \frac{1}{\phi(f)},$$

e daí, substituindo na equação acima, obtemos

$$\left(\frac{\alpha+1}{\alpha}\right)|\nabla g|^2 - \phi(f)\Delta g = \alpha\phi(f)^{\frac{2\alpha+1}{\alpha}}\Delta f \ge a\alpha \frac{f^{\beta}}{(1+f)^{2\alpha+1}}.$$

Se agora tomamos $\alpha = \frac{\beta - 1}{2} > 0$, segue que

$$\left(\frac{\alpha+1}{\alpha}\right)|\nabla g|^2 - g\Delta g \ge a\alpha \left(\frac{f}{1+f}\right)^{\beta}. \tag{4.35}$$

Desde que $g \notin C^2$ e limitada inferiormente $(g \ge 0)$, segue do corolário 4.31 que existe uma sequência $(p_k)_{k>1}$ de pontos em M tal que

$$g(p_k) < \inf_M g + \frac{1}{k}, |\nabla g(p_k)| < \frac{1}{k}, \Delta g(p_k) > -\frac{1}{k}.$$

Substituindo isto em 4.35, obtemos

$$\frac{\alpha+1}{\alpha k^2} + \frac{1}{k} \left(\inf_{M} g + \frac{1}{k} \right) \ge a\alpha \left(\frac{f(p_k)}{1 + f(p_k)} \right)^{\beta}. \tag{4.36}$$

Afirmamos que $f(p_k) \to \sup_M f$. De fato, suponha que exista $p \in M$ tal que $g(p) = \inf_M g$, ou seja, $\phi(f(p)) = \inf_M g$. Então $f(p) = \sup_M f$, caso contrário existiria $p_0 \in M$ com $f(p_0) > f(p)$ e então, como ϕ é estritamente decrescente, $g(p_0) = \phi(f(p_0)) < \phi(f(p)) = g(p) = \inf_M g$, um absurdo. Daí, $\phi(f(p_k)) = g(p_k) \to g(p) = \phi(f(p))$. Como ϕ^{-1} é contínua, temos $f(p_k) \to f(p) = \sup_M f$.

Suponha por outro lado que g não assuma seu ínfimo em M, isto é,

$$g(p) > \inf_{M} g, \forall p \in M.$$

Assim, dado $p \in M$ existe k_0 tal que $k > k_0 \Rightarrow g(p_k) < g(p)$, ou seja,

$$k > k_0 \Rightarrow \phi(f(p_k)) < \phi(f(p)) \Rightarrow f(p_k) > f(p).$$

Daí, $\lim_{k\to+\infty} f(p_k) = \sup_M f$.

Portanto, fazendo $k\to +\infty$ em 4.36, concluímos que $\sup_M f=0,$ e desde que $f\geq 0,$ temos $f\equiv 0.$

Capítulo 5

Resultados Principais

No que segue, \overline{M}_c^{n+1} denota uma variedade de Lorentz completa de curvatura seccional constante c. O Seguinte teorema e seus corolários são devidos a A. Caminha ([5]).

Teorema 5.1. Seja $x:M^n\to \overline{M}_c^{n+1},\ c\geq 0$, uma hipersuperfície tipo-espaço completa de curvatura média constante H. Se M tem curvatura escalar $R\geq c$, então:

- (a) $R = c \ em \ M$.
- (b) Se c = 0 e $H \neq 0$, então $S_j = 0$ para todo $2 \leq j \leq n$.
- (c) Se c > 0, então M é totalmente geodésica e fechada.

Demonstração. Pela Fórmula de Simons,

$$\frac{1}{2}\Delta|A|^2 = |\nabla A|^2 + tr(AP_1)|A|^2 - S_1 tr(A^2 P_1)
+ c[ntr(AP_1) - S_1 tr(P_1)],$$
(5.1)

e pela proposição 2.3,

$$tr(AP_1)|A|^2 - S_1 tr(A^2 P_1) = -2S_2 |A|^2 - S_1(-1)(S_1 S_2 - 3S_3)$$
$$= -2S_2 |A|^2 + S_1^2 S_2 - 3S_1 S_3$$
(5.2)

е

$$ntr(AP_1) - S_1 tr(P_1) = -2nS_2 - S_1(-1)(n-1)S_1$$
$$= -2nS_2 + (n-1)S_1^2.$$
 (5.3)

Agora, aplicando a segunda desigualdade de Newton (proposição 2.2), temos

$$\frac{S_1 S_3}{\binom{n}{1}\binom{n}{3}} = \frac{S_1 S_3}{n\binom{n}{3}} = H_1 H_3 \le H_2^2 = \frac{S_2^2}{\binom{n}{2}^2},$$

de modo que um simples cálculo nos dá

$$3S_1S_3 \le \frac{2(n-2)}{n-1}S_2^2. \tag{5.4}$$

Por outro lado, segue da primeira desigualdade de Newton que

$$(n-1)S_1^2 - 2nS_2 = (n-1)n^2 \left(\frac{S_1^2}{n^2} - \frac{2S_2}{n(n-1)}\right)$$
$$= (n-1)n^2(H_1^2 - H_2) \ge 0.$$
 (5.5)

Vamos agora interpretar a condição sobre R em termos de $|A|^2$: de 2.3 nós temos $S_2 \leq 0$. Assim, segue de 2.2 que

$$|A|^2 - S_1^2 = -2S_2 \ge 0. (5.6)$$

Substituindo 5.2, 5.3, 5.4 e 5.5 em 5.1, lembrando que $c \geq 0$ e que $S_1 = -nH = constante, \text{ obtemos sucessivamente}$

$$\frac{1}{2}\Delta(|A|^2 - S_1^2) = \frac{1}{2}\Delta|A|^2 \ge -2S_2|A|^2 + S_1^2S_2 - \frac{2(n-2)}{n-1}S_2^2
= -2S_2\left(|A|^2 - \frac{S_1^2}{2} + \left(\frac{n-2}{n-1}\right)\left(\frac{S_1^2 - |A|^2}{2}\right)\right)
= -2S_2\left(\frac{|A|^2}{2} + \left(\frac{|A|^2 - S_1^2}{2}\right) - \left(\frac{n-2}{n-1}\right)\left(\frac{|A|^2 - S_1^2}{2}\right)\right)
= -2S_2\left(\frac{|A|^2}{2} + \frac{|A|^2 - S_1^2}{2(n-1)}\right)
= -2S_2\left(\frac{n|A|^2 - S_1^2}{2(n-1)}\right)
= (|A|^2 - S_1^2)\left(\frac{n|A|^2 - S_1^2}{2(n-1)}\right)
= \frac{n}{2(n-1)}(|A|^2 - S_1^2)\left(|A|^2 - \frac{S_1^2}{n}\right)
\ge \frac{n}{2(n-1)}(|A|^2 - S_1^2)^2.$$
(5.7)

Nosso propósito é aplicar o corolário 4.32 à função $|A|^2 - S_1^2$ em 5.7. Para isto, precisamos saber se a curvatura de Ricci de M é limitada inferiormente. Tome $p \in M$, um vetor unitário $v \in T_pM$ e uma base ortonormal $\{e_1,...,e_{n-1},e_n=v\}$ de T_pM . Pela Equação de Gauss

$$(n-1)Ric_{p}(v) = \sum_{i < n} R(e_{i}, e_{n}, e_{n}, e_{i})$$

$$= \sum_{i < n} (c + \langle A(e_{i}, e_{i}), A(e_{n}, e_{n}) \rangle - ||A(e_{i}, e_{n})||^{2})$$

$$= (n-1)c$$

$$+ \sum_{i < n} (-\langle A(e_{i}, e_{i}), N \rangle \langle N, A(e_{n}, e_{n}) \rangle + \langle A(e_{i}, e_{n}), N \rangle^{2})$$

$$= (n-1)c + \sum_{i < n} (-\langle A_{p}e_{i}, e_{i} \rangle \langle A_{p}e_{n}, e_{n} \rangle + \langle A_{p}e_{i}, e_{n} \rangle^{2})$$

$$= (n-1)c - (S_{1} - \langle A_{p}e_{n}, e_{n} \rangle) \langle A_{p}e_{n}, e_{n} \rangle + \sum_{i < n} \langle A_{p}e_{i}, e_{n} \rangle^{2}$$

$$\geq (n-1)c + \langle A_{p}e_{n}, e_{n} \rangle^{2} - S_{1}\langle A_{p}e_{n}, e_{n} \rangle$$

$$= (n-1)c + \left(\langle A_{p}e_{n}, e_{n} \rangle - \frac{1}{2}S_{1}\right)^{2} - \frac{1}{4}S_{1}^{2}$$

$$\geq (n-1)c - \frac{S_{1}^{2}}{4}.$$

$$(5.8)$$

Assim, aplicando o corolário 4.32 com $\beta=2$, nós temos $|A|^2=S_1^2$ em M. Por 2.2, isto é o mesmo que $S_2=0$, ou, por 2.3, R=c em M, o que nos dá o item (a).

Como em 5.7 temos agora a igualdade, segue que $\nabla A=0$ e de 5.4 que $H_1H_3=H_2^2=0.$ Como usamos que

$$c[ntr(AP_1) - S_1tr(P_1)] = c[(n-1)S_1^2 - 2nS_2]$$
$$= c(n-1)n^2(H_1^2 - H_2) \ge 0,$$

segue que $cH_1^2=cH_2=0$ em M. Se c=0 e $H_1=H\neq 0$ então $H_3=0$, e como $H_2=0$, segue do item (c) da proposição 2.2 que $S_j=0$ em M, para todo $2\leq j\leq n$, que é justamente (b).

Se c>0 então $H_1^2=H_2=0$ em M, ou seja, $S_1^2=S_2=0$. De $2S_2+|A|^2=S_1^2$ segue que A=0, isto é, M é totalmente geodésica. Mais ainda, 5.8 nos dá

$$Ric_p(v) \ge c - \frac{S_1^2}{4(n-1)} = c > 0,$$

para todo $p \in M$ e todo $v \in T_pM$, |v| = 1. Segue então do Teorema de Bonnet-Myers que M é fechada (compacta sem bordo), com $diam(M) \le \pi \sqrt{\frac{1}{c}}$, o que conclui a demonstração do teorema.

Corolário 5.2. Seja $x: M^n \to \mathbb{S}^{n+1}_1$ uma hipersuperfície tipo-espaço completa de curvatura média constante H no espaço de De Sitter. Se M tem curvatura escalar $R \geq 1$, então

$$x(M) = \{ p \in \mathbb{S}_1^{n+1}; \langle p, w \rangle = 0 \},$$

para algum $w \in \mathbb{L}^{n+2}$ tal que $\langle w, w \rangle = -1$.

Demonstração. Em [3] e [13] os autores caracterizaram hipersuperfícies tipoespaço fechadas CMC de \mathbb{S}_1^{n+1} como sendo totalmente umbílicas. Mais precisamente, tais hipersuperfícies são dadas por

$$M_{\tau,w} = \{x \in \mathbb{S}_1^{n+1}; \langle x, w \rangle = \tau\},$$

para algum $\tau \in \mathbb{R}$ e algum $w \in \mathbb{L}^{n+2}$ tal que $\langle w, w \rangle = -1$. Pelo item (c) do teorema anterior, M é fechada e totalmente geodésica, de modo que $A \equiv 0$.

Determinemos o operador de Weingarten A com respeito a $M_{\tau,w}$. A aplicação diferenciável $f: \mathbb{S}^{n+1}_1 \to \mathbb{R}$ dada por $f(x) = \langle x, w \rangle$ é tal que $f^{-1}(\tau) = M_{\tau,w}$. Um cálculo direto nos dá que $\nabla f(x) = w^T$, onde w^T é a componente tangencial de w. Em particular, se $x \in M_{\tau,w}$ então, para todo $v \in T_x M_{\tau,w}$,

$$df_x(v) = \langle w^T, v \rangle = \langle w, v \rangle = \langle w - \tau x, v \rangle,$$

pois $v \in T_x(\mathbb{S}^{n+1}_1) = \{u \in \mathbb{L}^{n+2}; \langle u, x \rangle = 0\}$. Daí, como $\langle w - \tau x, x \rangle = 0$ se $x \in M_{\tau,w}$, temos $\nabla f(x) = w - \tau x$, para todo $x \in M_{\tau,w}$, e portanto,

$$N(x) = \frac{w - \tau x}{\sqrt{|\langle w - \tau x, w - \tau x \rangle|}}$$
$$= \frac{w - \tau x}{\sqrt{\tau^2 + 1}}$$

é um campo normal unitário para $M_{\tau,w}$. Sendo assim, o operador de Weingarten é dado por

$$A(v) = -\overline{\nabla}_v N = -\overline{\nabla}_v \left(\frac{w - \tau x}{\sqrt{\tau^2 + 1}}\right)$$

$$= -\frac{1}{\sqrt{\tau^2 + 1}} (\overline{\nabla}_v w - \tau \overline{\nabla}_v x)$$

$$= \frac{\tau}{\sqrt{\tau^2 + 1}} \overline{\nabla}_v x$$

$$= \frac{\tau}{\sqrt{\tau^2 + 1}} v,$$

onde $\overline{\nabla}$ é a conexão de Levi-Civitta de \mathbb{S}_1^{n+1} .

Portanto, como sabemos que $A \equiv 0$, temos que $\tau = 0$, e o resultado seguese.

Corolário 5.3. Seja $x: M^n \to \mathbb{L}^{n+1}$ uma hipersuperfície tipo-espaço completa de curvatura média constante H > 0. Se a curvatura escalar R de M é não-negativa, então x(M) é um cilindro sobre uma curva plana γ . Além disso, a menos de isometrias de \mathbb{L}^{n+1} , temos

$$\gamma(x_1,...,x_n) = (x_1,0,...,0,g(x_1)),$$

onde

$$g(x_1) = \frac{\sqrt{|c|}}{nH} - \sqrt{\left(x_1 - \frac{\sqrt{c^2 - 1}}{nH}\right)^2 + \frac{1}{n^2H^2}}$$

 $e \ c \in \mathbb{R} \ \acute{e} \ arbitr\'{a}rio \ e \ tal \ que \ |c| \ge 1.$

Demonstração. Note que $S_1 = -nH \neq 0$, e segue-se então do item (b) do teorema 5.1 que $S_2 = ... = S_n = 0$. Logo, se $\lambda_1, ..., \lambda_n$ são os autovalores do operador de Weingarten A associados à base ortonormal $\{e_i\}_{i=1}^n$, apenas um λ_i , i = 1, ..., n, é não-nulo, digamos $\lambda_1 \neq 0$. Assim, se N é o campo normal unitário e tipo-tempo que dá a orientação de M, segue que $\lambda_i = \langle Ae_i, e_i \rangle = \langle \alpha(e_i, e_i), N \rangle$. Isto nos dá que $\alpha(e_1, e_1) \neq 0$ e $\alpha(e_j, e_j) = 0$ para j = 2, ..., n. Portanto, $\{e_2, ..., e_n\}$ é uma base para o subespaço de nulidade relativa

$$\Delta(x) = \{ X \in T_x M : \alpha(X, Y) = 0, \forall Y \in T_x M \},$$

para todo $x \in M$. Ou seja, a nulidade relativa ν de M é identicamente n-1. Daí, pelo teorema 1.15 (de Ferus), a distribuição de nulidade relativa é suave e integrável, e as folhas são completas e totalmente geodésicas em M^n e \mathbb{L}^{n+1} . Segue então do argumento da prova do teorema 1.17 (ver capítulo 5 de [7]), que M é um cilindro sobre uma curva plana.

Por outro lado, em [3] mostra-se que toda hipersuperfície tipo-espaço completa M^n de \mathbb{L}^{n+1} é o gráfico

$$(x_1,...,x_n) \mapsto (x_1,...,x_n,f(x_1,...,x_n))$$

de alguma função $f: \mathbb{R}^n \to \mathbb{R}$ com norma do gradiente $|\nabla f| < 1$. Mais ainda, mostra-se também em [3] que a curvatura média H de M é dada por

$$nH = -div\left(\frac{\nabla f}{\sqrt{1-|\nabla f|^2}}\right).$$

Daí, a menos de isometrias de \mathbb{L}^{n+1} nós podemos assumir que M é o gráfico de $f(x_1,...,x_n)=g(x_1)$. Assim, $\nabla f=(g',0,...,0)$, de modo que segue facilmente da equação acima que

$$nH = -\frac{g''}{[1 - (g')^2]^{\frac{3}{2}}}.$$

Multiplicando ambos os membros da equação acima por g', obtemos a EDO

$$nHg' + \frac{g'g''}{[1 - (g')^2]^{\frac{3}{2}}} = 0.$$

Integrando de 0 a x_1 e assumindo sem perda de generalidade que g(0) = 0, nós temos

$$\int_0^{x_1} \left(nHg' + \frac{g'g''}{[1 - (g')^2]^{\frac{3}{2}}} \right) dx_1 = \left(nHg + \frac{1}{\sqrt{1 - (g')^2}} \right) \Big|_0^{x_1}$$

$$= nHg(x_1) + \frac{1}{\sqrt{1 - g'(x_1)^2}} - \frac{1}{\sqrt{1 - g'(0)^2}}$$

$$= 0,$$

ou seja,

$$nHg + \frac{1}{\sqrt{1 - (q')^2}} = c,$$

onde $c=1/\sqrt{1-g'(0)^2}$ é tal que $|c|\geq 1$. Agora é só checar que

$$g(x_1) = \sqrt{\alpha^2 + \beta^2} - \sqrt{(x_1 - \alpha)^2 + \beta^2}$$

é a soulção da EDO acima, onde $\alpha = \sqrt{c^2 - 1}/(nH)$ e $\beta = 1/(nH).$

Referências Bibliográficas

- [1] Akutagawa, K., On spacelike hypersurfaces with constant mean curvature in the De Sitter space, Math. Z. 196 (1987), 13-19.
- [2] Aledo, J., Hipersuperficies espaciales completas de curvatura media constante en el espacio de De Sitter, Tesina de Licenciatura, Universidad de Murcia, 1998.
- [3] Barbosa, J. L. M. e Oliker, V., Spacelike hypersurfaces with constant mean curvature in Lorentz spaces, Matem. Contemp. 4 (1993) 27-44.
- [4] Brasil Jr, A., Colares, A. G. e Palmas, O., Complete spacelike hypersurfaces with constant mean curvature in the De Sitter space: a gap theorem, Illinois J. Math. 47 (2003) 847-866.
- [5] Caminha, A., A rigidity theorem for complete CMC hypersurfaces in Lorentz manifolds, Elsevier, Differential Geometry and its aplications. (2006) 651-659.
- [6] Cheng, S. Y. e Yau, S. T., Hypersurfaces of constant scalar curvature, Math. Ann. 225 (1977), 195-204.
- [7] Dajczer, M., Submanifolds and Isometric Immersions, Publish or Perish, Houston, 1990.
- [8] do Carmo, M. P., Riemannian Geometry, Birkähuser, Boston, 1992.
- [9] Evans, L. e Gariepy, R., Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992.
- [10] Goddard, A. J., Some remarks on the existence of spacelike hipersurfaces of constant mean curvature, Math. Proc. Cambridge Philos. Soc. 82 (1977) 489-495.

- [11] Hardy, G., Littlewood, J. E. e Pólya, G., *Inequalities*, Cambridge Mathematical Library, Cambridge, 1989.
- [12] Lee, John M., Introduction to Smooth Manifolds, Springer, 2003.
- [13] Montiel, S., An integral inequality for compact spacelike hypersurfaces in the De Sitter space and aplications to the case of constant mean curvature, Indiana Univ. Math. J. 37 (1988) 909-917.
- [14] O'Neill, B., Semi-Riemannian Geometry, with applications to Relativity, Academic Press, 1983.