

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS MESTRADO EM MATEMÁTICA

ADAM OLIVEIRA DA SILVA

SOBRE A APLICAÇÃO DE GAUSS PARA HIPERSUPERFÍCIES DE CURVATURA MÉDIA CONSTANTE NA ESFERA

FORTALEZA-CE 2009

ADAM OLIVEIRA DA SILVA

SOBRE A APLICAÇÃO DE GAUSS PARA HIPERSUPERFÍCIES DE CURVATURA MÉDIA CONSTANTE NA ESFERA

Dissertação submetida à Coordenação do Curso de Pós-Graduação em Matemática da Universidade Federal do Ceará, como requisito parcial para obtenção do grau de Mestre em Matemática.

Área de concentração: Geometria Diferencial

Orientador: Prof. Dr. Abdênago Alves de

Barros

FORTALEZA-CE

2009

S578s Silva, Adam Oliveira da

Sobre a Aplicação de Gauss para Hipersuperfícies de Curvatura Média Constante na Esfera / Adam Oliveira da Silva. 2009.

42 f.

Orientador: Prof. Dr. Abdênago Alves de Barros

Área de concentração: Geometria Diferencial

Dissertação (Mestrado) - Universidade Federal do Ceará, Departamento de Matemática, Fortaleza, 2009.

 $CDD\ 516.36$

A minha mãe Sandra Maria, meu pai Natalino e a meus irmãos Priscila e Anderson.

Agradecimentos

Primeiramente, agradeço a Deus pelas vitórias obtidas em muitos desafios de minha vida.

A minha mãe Sandra, meu pai Natalino e a meus irmãos Priscila e Anderson pelo apoio que me deram nesta caminhada.

Aos amigos de graduação Dalmi Gama, Rômulo Luis e Ilnara Santos que me deram bastante força para vir fazer mestrado na UFC, e hoje aqui estou.

Ao meu orientador, Prof. Abdênago Barros por ter aceitado meu pedido de orientação, pela paciência e atenção a minha pessoa durante o desenvolvimento desta dissertação.

Aos professores Gervasio Colares e Juscelino Silva por terem aceitado o convite para participarem da banca examinadora.

Aos meus amigos do mestrado, Ernani, Halyson, Manoel, Kelton, Tadeu, João, Edinardo, Calvi Jr., Tiago, Valéria, Leidmar, Thiago Cruz, Leon, Filipe, Deibson e Tiago Veras. Agradeço a estas pessoas pela amizade, pelos momentos divertidos aos quais vivenciamos e pelo apoio nos momentos de dificuldades ajudando-me a superá-las.

Aos amigos do doutorado Marco Antônio, Flávio França, Cícero Aquino, Nazareno e Walber pela amizade e atenção durante o curso, esclarecendo algumas dúvidas que vir a ter em alguma disciplina.

Aos meus amigos de apartamento Aurineide, Claúdio e Márcia, pelo apoio e amizade.

A Andrea, por sua enorme paciência e delicadeza em tentar resolver nossos problemas acadêmicos.

Ao CNPq pelo apoio financeiro.

Resumo

O objetivo desta dissertação é apresentar um resultado similar ao Teorema de Bernstein sobre hipersuperfícies mínimas no espaço euclidiano, isto é, mostrar que tal resultado se generaliza para hipersuperfícies de \mathbb{S}^{n+1} com curvatura média constante, cuja aplicação de Gauss está contida em um hemisfério fechado de \mathbb{S}^{n+1} (Teorema 3.1). Porém, no caso em que a hipersuperfície é mínima, utilizaremos na demonstração deste teorema, um resultado sobre caracterização das hiperesferas de \mathbb{S}^{n+1} entre todas hipersuperfícies de \mathbb{S}^{n+1} em termos de suas imagens de Gauss (Teorema 2.1).

Palavras-chave: Curvatura Média. Aplicação de Gauss.

Abstract

The objective of this dissertation is to show a similar result of Bernstein Theorem about minimal hypersurfaces in Euclidian space, that is, to show that that result is generalized to hypersurfaces of \mathbb{S}^{n+1} with constant mean curvature, whose Gauss image is contained in a closed hemisphere of \mathbb{S}^{n+1} (Theorem 3.1). However, in the case where the hypersurface is minimal, we will use in the proof of this theorem a result about the characterization of the hyperspheres of \mathbb{S}^{n+1} among all complete hypersurfaces in \mathbb{S}^{n+1} in terms of their Gauss images (Theorem 2.1).

Keywords: Mean Curvature. Gauss Map.

Conteúdo

	Inti	roduçã	0	9
1	Preliminares			10
	1.1	Gradie	ente, Divergente e Laplaciano	10
	1.2	Imersõ	ões Isométricas	13
		1.2.1	A segunda forma fundamental	13
		1.2.2	As equações fundamentais de uma imersão isométrica .	17
		1.2.3	Hipersuperfícies totalmente umbílicas de \mathbb{S}^{n+1}	21
2	Caracterização das hiperesferas de \mathbb{S}^{n+1} em termos de suas			
	imagens de Gauss			24
	2.1 A Aplicação de Gauss			24
3	O Teorema principal			36
$\mathbf{B}^{\mathbf{i}}$	Bibliografia			

Introdução

Um dos mais célebres teoremas de superfícies mínimas em \mathbb{R}^3 é o teorema de Bernstein:

Teorema 0.1 (Bernstein [2]) Seja $M \subset \mathbb{R}^3$ uma superfície mínima completa que é dada pelo gráfico de uma função diferenciável e inteira (definida sobre todo \mathbb{R}^2) $f: \mathbb{R}^2 \to \mathbb{R}$. Então, M é um plano.

A prova da conjectura de Bernstein sobre hipersuperfícies mínimas no espaço euclidiano (para dimensões em que é conhecida ver [1], [4], [7]) nos dão a seguinte especulação sobre a geometria de hipersuperfícies mínimas na esfera euclidiana.

Se a imagem de Gauss de uma hipersuperfície mínima compacta M^n na esfera euclidiana \mathbb{S}^{n+1} está em um hemisfério fechado de \mathbb{S}^{n+1} , então M^n é uma hiperesfera grande em \mathbb{S}^{n+1} .

E. de Giorgi [4] e J. Simons [7] têm mostrado que a imagem de Gauss de uma hipersuperfície mínima que não seja uma hiperesfera grande não pode está em um hemisfério aberto. Nomizu, K. e Smyth, B. [6] mostraram que a especulação acima é realmente verdade e se generaliza para hipersuperfícies de curvatura média constante (teorema 3.1). Neste trabalho, mostraremos em detalhes a demonstração deste resultado.

Para provar este resultado, primeiro obtemos uma caracterização das hiperesferas (grandes ou pequenas) de \mathbb{S}^{n+1} entre todas hipersuperfícies completas de \mathbb{S}^{n+1} em termos de suas imagens de Gauss (teorema 2.1).

Capítulo 1

Preliminares

Neste trabalho iremos considerar M^n uma variedade Riemanniana de dimensão n e classe C^{∞} , $\mathcal{D}(M)$ o anel das funções reais de classe C^{∞} definidas em M. Se $p \in M$ então T_pM denotará o espaço tangente a M em p e TM o fibrado tangente de M. Primeiramente iremos definir e apresentar alguns resultados que serão utilizados no decorrer do trabalho.

1.1 Gradiente, Divergente e Laplaciano

Definição 1.1 Seja $f \in \mathcal{D}(M)$. O gradiente de f, denotado por ∇f , \acute{e} o campo de vetores em M, definido pela seguinte condição:

$$\langle \nabla f, X \rangle = X(f), \quad \forall X \in TM.$$

Decorre da definição que se $f,g\in\mathcal{D}(M)$ então:

1.
$$\nabla(f+g) = \nabla f + \nabla g$$

2.
$$\nabla(fq) = q\nabla f + f\nabla q$$

Definição 1.2 Seja $X \in TM$. A divergência de X é a função div $X : M \to \mathbb{R}$, definida por

$$div X(p) = tr[Y(p) \mapsto (\nabla_Y X)(p)],$$

onde tr significa o traço da aplicação.

As propriedades abaixo decorrem diretamente da definição.

1.
$$div(X + Y) = divX + divY$$

2.
$$div(fX) = fdivX + \langle \nabla f, X \rangle$$
,

para quaisquer $X, Y \in TM$ e qualquer $f \in \mathcal{D}(M)$.

Teorema 1.1 (Teorema da Divergência). $Seja X \in C^1(M), M$ uma variedade Riemanniana compacta com bordo. Então

$$\int_{M} div X \ dM = \int_{\partial M} \langle X, \xi \rangle \ dS,$$

onde ξ é o campo unitário normal a ∂M apontando para fora de M.

Definição 1.3 Seja $f \in \mathcal{D}(M)$. O Laplaciano de f é o operador $\Delta : \mathcal{D}(M) \to \mathcal{D}(M)$ definido por

$$\Delta f = div(\nabla f).$$

Usando as propriedades do gradiente e divergente, temos :

1.
$$\Delta(f+g) = \Delta f + \Delta g$$

2.
$$\Delta(fg) = f\Delta g + g\Delta f + 2\langle \nabla f, \nabla g \rangle$$
,

para quaisquer $f, g \in \mathcal{D}(M)$.

Observação 1.1 (Referencial móvel) Seja M^n uma variedade Riemanniana de dimensão n, e $p \in M$. Então existe uma vizinhança $U \subset M$ de p e n campos de vetores linearmente independentes $E_1, ..., E_n \in TM$ ortogonais, tais que, $\langle E_i, E_j \rangle = \delta_{ij}, \forall i, j \in 1, ..., n$.

Proposição 1.1 Se $\{E_1, \ldots, E_n\}$ é um referencial ortonormal local em M, então,

$$\nabla f = \sum_{i=1}^{n} E_i(f) E_i.$$

Demonstração: Escrevendo $\nabla f = \sum_{i=1}^{n} a_i E_i$, temos que

$$E_j(f) = \langle \nabla f, E_j \rangle = \left\langle \sum_{i=1}^n a_i E_i, E_j \right\rangle = a_j.$$

Logo,

$$\nabla f = \sum_{i=1}^{n} E_i(f) E_i.$$

Proposição 1.2 Se $X = \sum X_i E_i$, onde $\{E_1, \dots, E_n\}$ é um referencial local em M, então

$$divX = \sum_{i=1}^{n} (E_i(X_i) - \langle \nabla_{E_i} E_i, X \rangle).$$

Demonstração: Temos

$$divX = \sum_{i=1}^{n} \langle \nabla_{E_i} X, E_i \rangle$$

$$= \sum_{i=1}^{n} \left\langle \nabla_{E_i} \left(\sum_{j=1}^{n} X_j E_j \right), E_i \right\rangle$$

$$= \sum_{i,j=1}^{n} \langle E_i(X_j) E_j, E_i \rangle + \langle X_j \nabla_{E_i} E_j, E_i \rangle.$$

Como $\langle E_i, E_j \rangle = \delta_{ij}$, tem-se que $0 = E_i \langle E_i, E_j \rangle = \langle \nabla_{E_i} E_i, E_j \rangle + \langle E_i, \nabla_{E_i} E_j \rangle, \text{ ou seja, } \langle \nabla_{E_i} E_j, E_i \rangle = -\langle \nabla_{E_i} E_i, E_j \rangle.$ Daí,

$$divX = \sum_{i=1}^{n} E_i(X_i) - \sum_{i,j=1}^{n} X_j \langle \nabla_{E_i} E_i, E_j \rangle$$
$$= \sum_{i=1}^{n} E_i(X_i) - \sum_{i=1}^{n} \langle \nabla_{E_i} E_i, X \rangle$$
$$= \sum_{i=1}^{n} (E_i(X_i) - \langle \nabla_{E_i} E_i, X \rangle).$$

Definição 1.4 Seja $f \in \mathcal{D}(M)$. Definimos a hessiana de f em $p \in M$ como o operador linear $Hessf: T_pM \to T_pM$, dado por

$$(Hessf)Y = \nabla_Y(\nabla f), \quad \forall Y \in TM.$$

Podemos considerar Hessf como um tensor tal que para cada par de campos $X,Y\in TM$, temos

$$(Hessf)(X,Y) = \langle (Hessf)(X), Y \rangle.$$

1.2 Imersões Isométricas

Seja $\psi: M^n \to \overline{M}^{n+m}$ uma imersão de uma variedade diferenciável M de dimensão n em uma variedade Riemanniana \overline{M} de dimensão n+m, isto é, dado $p \in M^n$ temos que $d\psi_p: T_pM \to T_{\psi(p)}\overline{M}$ é injetiva. A métrica Riemanniana de \overline{M} induz de maneira natural uma métrica Riemanniana em M: Se $v_1, v_2 \in T_pM$, define-se $\langle v_1, v_2 \rangle_p = \langle d\psi_p(v_1), d\psi_p(v_2) \rangle_{\psi(p)}$. Nesta situação, ψ passa a ser uma imersão isométrica de M em \overline{M} .

1.2.1 A segunda forma fundamental

Seja $\psi: M^n \to \overline{M}^{n+m}$ uma imersão. Dado $p \in M$, existe um aberto $U \subset M$ contendo p tal que $\psi(U) \subset \overline{M}$ é uma subvariedade mergulhada de \overline{M} . Isto quer dizer que existem uma vizinhança $\overline{U} \subset \overline{M}$ de $\psi(p)$ e um difeomorfismo $\varphi: \overline{U} \subset \overline{M} \to V \subset \mathbb{R}^{n+m}$ em uma aberto V de \mathbb{R}^{n+m} , tal que φ aplica difeomorficamente $\psi(U) \cap \overline{U}$ em um aberto do subespaço $\mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+m}$, onde $0 \in \mathbb{R}^m$.

Para simplificar a notação, identificamos U com $\psi(U)$ e cada vetor $v \in T_q M, \ q \in U, \ \text{com} \ d\psi_q(v) \in T_{\psi(q)} \overline{M}$. Usaremos tais identificações para estender, por exemplo, um campo local (isto é, definido em U) de vetores de M a um campo local (isto é, definido em \overline{U}) de vetores em \overline{M} ; se U é suficientemente pequeno, tal extensão é sempre possível, como se vê facilmente usando o difeomorfismo φ .

Para cada $p \in M$, o produto interno em $T_p\overline{M}$ decompõe $T_p\overline{M}$ na soma direta

$$T_p\overline{M}=T_pM\oplus (T_pM)^{\perp},$$

onde $(T_pM)^{\perp}$ é o complemento ortogonal de T_pM em $T_p\overline{M}$. Se $v \in T_p\overline{M}$, $p \in M$, podemos escrever

$$v = v^T + v^N$$
, $v^T \in T_p M$, $v^N \in (T_p M)^{\perp}$.

Denominamos v^T a componente tangencial de v e v^N a componente normal de v. Tal decomposição é evidentemente diferenciável no sentido que as aplicações de $T\overline{M}$ em $T\overline{M}$ dadas por

$$(p,v) \rightarrow (p,v^T) \quad e \quad (p,v) \rightarrow (p,v^N)$$

são diferenciáveis.

Denotando a conexão Riemanniana de \overline{M} por $\overline{\nabla}$, então se X e Y são campos locais de vetores em M e $\overline{X}, \overline{Y}$ são extensões locais a \overline{M} , definimos

$$\nabla_X Y = (\overline{\nabla}_{\overline{X}} \overline{Y})^{\top}.$$

É possível provar que ∇ é a conexão Riemanniana relativa à métrica induzida de M por ψ .

Queremos definir a segunda forma fundamental da imersão $\psi: M \to \overline{M}$. Para isto convém introduzir previamente a seguinte definição. Se X,Y são campos locais em M,

$$B(X,Y) = \overline{\nabla}_{\overline{X}}\overline{Y} - \nabla_X Y$$

é um campo local em \overline{M} normal a M. B(X,Y) não depende das extensões $\overline{X}, \overline{Y}$. Com efeito, se \overline{X}_1 é uma outra extensão de X, teremos

$$(\overline{\nabla}_{\overline{X}}\overline{Y} - \nabla_X Y) - (\overline{\nabla}_{\overline{X}_1}\overline{Y} - \nabla_X Y) = \overline{\nabla}_{\overline{X} - \overline{X}_1}\overline{Y},$$

que se anula em M, pois $\overline{X} - \overline{X}_1 = 0$ em M; além disto, se \overline{Y}_1 é outra extensão de Y,

$$(\overline{\nabla}_{\overline{X}}\overline{Y} - \nabla_X Y) - (\overline{\nabla}_{\overline{X}}\overline{Y}_1 - \nabla_X Y) = \overline{\nabla}_{\overline{X}}(\overline{Y} - \overline{Y}_1) = 0,$$

pois $\overline{Y} - \overline{Y}_1 = 0$ ao longo de uma trajetória de X.

Portanto, B(X,Y) está bem definida. No que se segue, indicaremos por $\mathfrak{X}(U)^{\perp}$ os campos diferenciáveis em U de vetores normais a $\psi(U) \approx U$.

Proposição 1.3 Se $X,Y\in\mathfrak{X}(U)$, a aplicação $B:\mathfrak{X}(U)\times\mathfrak{X}(U)\to\mathfrak{X}(U)^\perp$ dada por

$$B(X,Y) = \overline{\nabla}_{\overline{X}}\overline{Y} - \nabla_X Y$$

é bilinear e simétrica.

Demonstração: Pelas propriedades de linearidade de uma conexão, concluise imediatamente que B é aditiva em X e Y e que B(fX,Y) = fB(X,Y), $f \in \mathcal{D}(U)$. Resta mostrar que B(X,fY) = fB(X,Y), $f \in \mathcal{D}(U)$. Indicando por \overline{f} uma extensão de f a \overline{U} , teremos

$$B(X, fY) = \overline{\nabla}_{\overline{X}}(\overline{fY}) - \nabla_X(fY)$$
$$= \overline{f}\overline{\nabla}_{\overline{X}}\overline{Y} - f\nabla_XY + \overline{X}(\overline{f})\overline{Y} - X(f)Y.$$

Como em M, $f=\overline{f}$ e $\overline{X}(\overline{f})=X(f)$, concluímos que as duas últimas parcelas se anulam, donde B(X,fY)=fB(X,Y), isto é, B é bilinear. Para mostrar que B é simétrica, utilizaremos a simetria da conexão Riemanniana, obtendo

$$B(X,Y) = \overline{\nabla}_{\overline{X}}\overline{Y} - \nabla_X Y = \overline{\nabla}_{\overline{Y}}\overline{X} + [\overline{X},\overline{Y}] - \nabla_Y X - [X,Y].$$

Como em M, $[\overline{X}, \overline{Y}] = [X, Y]$, concluímos que B(X, Y) = B(Y, X).

Como B é bilinear, concluímos, exprimindo B em um sistema de coordenadas, que o valor de B(X,Y)(p) depende apenas de X(p) e Y(p).

Agora podemos definir a segunda forma fundamental. Seja $p \in M$ e $\eta \in (T_pM)^{\perp}$. A aplicação $H_{\eta}: T_pM \times T_pM \to \mathbb{R}$ dada por

$$H_{\eta}(x,y) = \langle B(x,y), \eta \rangle, \qquad x, y \in T_{p}M,$$

é pela proposição 1.3, uma forma bilinear simétrica.

Definição 1.5 A forma quadrática II_{η} definida em $T_{p}M$ por

$$II_n(x) = H_n(x,x)$$

é chamada a segunda forma fundamental de ψ em p segundo o vetor normal η .

Às vezes se utiliza também a expressão segunda forma fundamental para designar a aplicação B que em cada $p \in M$ é uma aplicação bilinear, simétrica, tomando valores em $(T_pM)^{\perp}$.

Observe que à aplicação bilinear H_η fica associada uma aplicação linear auto-adjunta, chamada aplicação de Weingarten, $A_\eta:T_pM\to T_pM$ por

$$\langle A_{\eta}(x), y \rangle = H_{\eta}(x, y) = \langle B(x, y), \eta \rangle.$$

Proposição 1.4 Seja $p \in M$, $x \in T_pM$ e $\eta \in (T_pM)^{\perp}$. Seja N uma extensão local de η normal a M. Então

$$A_{\eta}(x) = -(\overline{\nabla}_x N)^T.$$

Demonstração: Seja $y \in T_pM$ e X, Y extensões locais de x, y, respectivamente, e tangentes a M. Então, $\langle N, Y \rangle = 0$, e portanto,

$$\langle A_{\eta}(x), y \rangle = \langle B(X, Y)(p), N \rangle = \langle \overline{\nabla}_X Y - \nabla_X Y, N \rangle(p)$$

$$= \langle \overline{\nabla}_X Y, N \rangle(p) = -\langle Y, \overline{\nabla}_X N \rangle(p) = \langle -\overline{\nabla}_x N, y \rangle,$$

para todo $y \in T_pM$.

Sejam K e \overline{K} as curvaturas seccionais de M e \overline{M} , respectivamente, definidas por

$$K(X,Y) = \frac{\langle R(X,Y)X,Y \rangle}{\|X\|^2 \|Y\|^2 - \langle X,Y \rangle^2}$$
$$\overline{K}(\overline{X},\overline{Y}) = \frac{\langle \overline{R}(\overline{X},\overline{Y})\overline{X},\overline{Y} \rangle}{\|\overline{X}\|^2 \|\overline{Y}\|^2 - \langle \overline{X},\overline{Y} \rangle^2}$$

onde

$$R(X,Y)Z = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]} Z,$$
$$\overline{R}(X,Y)Z = \overline{\nabla}_Y \overline{\nabla}_X Z - \overline{\nabla}_X \overline{\nabla}_Y Z + \overline{\nabla}_{[X,Y]} Z.$$

Teorema 1.2 (Gauss) Sejam $p \in M$ e x, y vetores ortonormais de T_pM . Então

$$K(x,y) - \overline{K}(x,y) = \langle B(x,x), B(y,y) \rangle - ||B(x,y)||^2.$$

Demonstração: Pode ser encontrada em [3].

Definição 1.6 Uma imersão $\psi: M \to \overline{M}$ é geodésica em $p \in M$, se para todo $\eta \in (T_pM)^{\perp}$ a segunda forma fundamental II_{η} é identicamente nula em p. A imersão ψ é totalmente geodésica se ela é geodésica para todo $p \in M$.

Proposição 1.5 Uma imersão $\psi: M \to \overline{M}$ é geodésica em $p \in M$ se, e só se, toda geodésica γ de M partindo de p é geodésica de \overline{M} em p.

Demonstração: Sejam $\gamma(0) = p$ e $\gamma'(0) = x$. Sejam N uma extensão local, normal a M, de um vetor normal η em p e X uma extensão local, tangente a M, de $\gamma'(t)$. Como $\langle X, N \rangle = 0$, obteremos em p,

$$H_{\eta}(x,x) = \langle A_{\eta}(x), x \rangle = -\langle \overline{\nabla}_{X} N, X \rangle$$
$$= -X\langle N, X \rangle + \langle N, \overline{\nabla}_{X} X \rangle = \langle N, \overline{\nabla}_{X} X \rangle.$$

Decorre daí que ψ é geodésica em p se, e só se, para todo $x \in T_pM$, a geodésica γ de M que é tangente a x em p satisfaz a condição: $\overline{\nabla}_X X(p)$ não tem componente normal. Portanto, ψ é geodésica em p se, e só se, toda geodésica γ de M partindo de p é geodésica de \overline{M} em p.

Definição 1.7 Uma imersão $\psi: M \to \overline{M}$ é mínima se para todo $p \in M$ e todo $\eta \in (T_pM)^{\perp}$ tem-se que $trA_{\eta} = 0$.

Escolhendo um referencial ortonormal $\eta_1, \eta_2, ..., \eta_m$ de vetores em $\mathfrak{X}(U)^{\perp}$, onde U é uma vizinhança de p onde ψ é um mergulho, podemos escrever, em p,

$$B(x,y) = \sum_{i} H_{\eta_i}(x,y)\eta_i, \quad x,y \in T_pM, \quad i = 1,...,m.$$

Não é difícil verificar que o vetor normal dado por

$$H = \frac{1}{n} \sum_{i} (tr A_{\eta_i}) \eta_i$$

não depende do referencial η_i escolhido. O vetor H é chamado o vetor curvatura média de ψ . É claro que ψ é mínima se, e só se, H(p) = 0 para todo $p \in M$.

1.2.2 As equações fundamentais de uma imersão isométrica

Dada uma imersão isométrica $\psi:M^n\to \overline{M}^{n+m},$ temos em cada $p\in M$ a decomposição

$$T_p\overline{M} = T_pM \oplus (T_pM)^{\perp},$$

que varia diferenciavelmente com p. Isto significa que, localmente, a parte do fibrado tangente $T\overline{M}$ que se projeta sobre M se decompõe em um fibrado tangente TM e em um fibrado normal TM^{\perp} . No que se segue, usaremos sistematicamente as letras latinas X,Y,Z,etc., para indicar os campos diferenciáveis de vetores tangentes e as letras gregas $\xi,\eta,\zeta,etc.$, para indicar os campos diferenciáveis de vetores normais.

Dados X e η , já vimos que a componente tangente de $\overline{\nabla}_X \eta$ é dada por $(\overline{\nabla}_X \eta)^T = -A_{\eta} X$. A componente normal de $\overline{\nabla}_X \eta$, chamada conexão normal ∇^{\perp} da imersão é dada por

$$\nabla_X^{\perp} \eta = (\overline{\nabla}_X \eta)^N = \overline{\nabla}_X \eta - (\overline{\nabla}_X \eta)^T = \overline{\nabla}_X \eta + A_n X.$$

Verifica-se facilmente que a conexão normal ∇^{\perp} possui as propriedades usuais de uma conexão, isto é, é linear em X, aditiva em η , e

$$\nabla_X^{\perp}(f\eta) = f\nabla_X^{\perp}\eta + X(f)\eta, \qquad f \in \mathcal{D}(M).$$

De maneira análoga ao caso do fibrado tangente, introduz-se a partir de ∇^{\perp} uma noção de curvatura no fibrado normal que é chamada curvatura normal R^{\perp} da imersão e definida por

$$R^{\perp}(X,Y)\eta = \nabla_Y^{\perp}\nabla_X^{\perp}\eta - \nabla_X^{\perp}\nabla_Y^{\perp}\eta + \nabla_{[X,Y]}^{\perp}\eta.$$

Proposição 1.6 As seguintes equações se verificam

(a) Equação de Gauss

$$\langle \overline{R}(X,Y)Z,T\rangle = \langle R(X,Y)Z,T\rangle - \langle B(Y,T),B(X,Z)\rangle + \langle B(X,T),B(Y,Z)\rangle.$$

(b) Equação de Ricci

$$\langle \overline{R}(X,Y)\eta,\zeta\rangle - \langle R^{\perp}(X,Y)\eta,\zeta\rangle = \langle [A_n,A_{\zeta}]X,Y\rangle,$$

onde $[A_{\eta}, A_{\zeta}]$ indica o operador $A_{\eta} \circ A_{\zeta} - A_{\zeta} \circ A_{\eta}$.

Demonstração: Ver [3].

Observação 1.2 Dizemos que o fibrado normal de uma imersão é plano (flat) se $R^{\perp} = 0$. Admita que o espaço ambiente \overline{M} tem curvatura seccional constante. Então a equação de Ricci se escreve

$$\langle R^{\perp}(X,Y)\eta,\zeta\rangle = -\langle [A_{\eta},A_{\zeta}]X,Y\rangle.$$

Decorre daí que $R^{\perp}=0$ se, e só se, $[A_{\eta},A_{\zeta}]=0$ para todo η,ζ , isto é, se, e só se, para todo $p\in M$ existe uma base de $T_{p}M$ que diagonaliza simultaneamente todos os A_{η} .

Dada uma imersão isométrica, convém indicar por $\mathfrak{X}(M)^{\perp}$ o espaço dos campos diferenciáveis de vetores normais a M. A segunda forma fundamental da imersão pode então ser considerada como um tensor

$$B:\mathfrak{X}(M)\times\mathfrak{X}(M)\times\mathfrak{X}(M)^{\perp}\to\mathcal{D}(M)$$

definido por

$$B(X, Y, \eta) = \langle B(X, Y), \eta \rangle.$$

A definição de derivada covariante se estende a este tipo de tensor de maneira natural

$$(\overline{\nabla}_X B)(Y,Z,\eta) = X(B(Y,Z,\eta)) - B(\nabla_X Y,Z,\eta) - B(Y,\nabla_X Z,\eta) - B(Y,Z,\nabla_X^{\perp} \eta).$$

Proposição 1.7 (Equação de Codazzi) Com a notação acima

$$\langle \overline{R}(X,Y)Z, \eta \rangle = (\overline{\nabla}_Y B)(X,Z,\eta) - (\overline{\nabla}_X B)(Y,Z,\eta).$$

Demonstração: Ver [3].

Observação 1.3 Se o espaço ambiente \overline{M} tem curvatura seccional constante, a equação de Codazzi se escreve como

$$(\overline{\nabla}_X B)(Y, Z, \eta) = (\overline{\nabla}_Y B)(X, Z, \eta).$$

Se além disto, a codimensão da imersão é um, $\nabla_X^{\perp} \eta = 0$, donde,

$$\overline{\nabla}_X B(Y, Z, \eta) = X \langle A_{\eta} Y, Z \rangle - \langle A_{\eta} (\nabla_X Y), Z \rangle - \langle A_{\eta} Y, \nabla_X Z \rangle
= \langle \nabla_X (A_{\eta} Y), Z \rangle - \langle A_{\eta} (\nabla_X Y), Z \rangle.$$

Portanto, neste caso, a equação de Codazzi se escreve

$$\nabla_X(A_{\eta}Y) - \nabla_Y(A_{\eta}X) = A_{\eta}([X,Y]).$$

Definição 1.8 Seja $\psi: M^n \to M^{n+1}$ uma hipersuperfície e $A: TM^n \to TM^n$ o tensor de Weingarten. A derivada covariante de A é a aplicação $\nabla A: TM^n \times TM^n \to TM^n$ dada por

$$\nabla A(X,Y) = \nabla_Y(AX) - A(\nabla_Y X).$$

Proposição 1.8 Seja $A:TM^n\to TM^n$ o tensor de Weingarten. Então a derivada covariante ∇A é bilinear.

Demonstração: Dados $X, Y, Z \in TM^n$ e $f \in \mathcal{D}(M)$, temos

$$\nabla A(X + fY, Z) = \nabla_Z (A(X + fY)) - A(\nabla_Z (X + fY))$$

$$= \nabla_Z (AX) + \nabla_Z (fAY) - A(\nabla_Z X) - A(\nabla_Z (fY))$$

$$= \nabla_Z (AX) - A(\nabla_Z X) + f\nabla_Z (AY) + Z(f)AY$$

$$-fA(\nabla_Z Y) - Z(f)AY$$

$$= \nabla_A (X, Z) + f(\nabla_Z (AY) - A(\nabla_Z Y))$$

$$= \nabla_A (X, Z) + f\nabla_A (Y, Z).$$

E também,

$$\nabla A(X, Z + fY) = \nabla_{Z+fY}(AX) - A(\nabla_{Z+fY}X)$$

$$= \nabla_{Z}(AX) - A(\nabla_{Z}X) + f(\nabla_{Y}(AX) - A(\nabla_{Y}X))$$

$$= \nabla A(X, Z) + f\nabla A(X, Y).$$

Proposição 1.9 Seja $\psi: M^n \to M^{n+1}$ uma hipersuperfície, onde M^{n+1} tem curvatura seccional constante. Então ∇A é simétrica, isto é,

$$\nabla A(X,Y) = \nabla A(Y,X),$$

para $X, Y \in TM^n$.

Demonstração: Desde que M^{n+1} tem curvatura seccional constante e ψ tem codimensão um, segue-se da equação de Codazzi que

$$\nabla_X(AY) - \nabla_Y(AX) = A([X, Y]) = A(\nabla_X Y) - A(\nabla_Y X),$$

para $X, Y \in TM^n$. Logo

$$\nabla A(X,Y) = \nabla A(Y,X).$$

Definição 1.9 Dado um tensor simétrico $T:TM^n\times TM^n\to TM^n$, definimos o traço de T como sendo

$$trT = \sum_{i=1}^{n} T(E_i, E_i),$$

onde $\{E_1, E_2, ..., E_n\}$ é um referencial ortonormal.

Definição 1.10 Sejam $A:TM \to TM$ e $B:TM \to TM$ 1-tensores na variedade Riemanniana M. O produto interno dos 1-tensores A e B é a aplicação $\langle A,B\rangle:M\to\mathbb{R}$ dada por

$$\langle A, B \rangle(p) = tr(A_p.B_p^*),$$

onde B_p^* é o operador adjunto de B_p .

1.2.3 Hipersuperfícies totalmente umbílicas de \mathbb{S}^{n+1}

Mostraremos aqui, que as únicas hipersuperfícies totalmente umbílicas de \mathbb{S}^{n+1} são as hiperesferas grandes e pequenas de \mathbb{S}^{n+1} . Para isto, precisamos da seguinte definição.

Definição 1.11 (Conexões de métricas conformes) Seja M uma variedade diferenciável. Duas métricas Riemannianas g e \overline{g} em M são conformes se existe uma função positiva $\mu: M \to \mathbb{R}$ tal que $\overline{g}(X,Y) = \mu g(X,Y)$, para todo par $X,Y \in TM$ (em nossos cálculos sempre faremos $\mu(p) = e^{\phi(p)}$, onde $\phi: M \to \mathbb{R}$ é qualquer função definida em M e $p \in M$, tal igualdade está bem definida pois estamos considerando μ positiva).

Sejam ∇ e $\overline{\nabla}$ as conexões Riemannianas de g e \overline{g} , respectivamente. Mostremos a seguinte relação entre as conexões,

$$\overline{\nabla}_X Y = \nabla_X Y + S(X, Y),$$

onde $S(X,Y)=\frac{1}{2}\{X(\phi)Y+Y(\phi)X-g(X,Y)\nabla\phi\}$ e $\nabla\phi$ é calculado na métrica g, isto é, $X(\phi)=g(X,\nabla\phi)$.

De fato, como $\overline{\nabla}$ é obviamente simétrica, pois S é simétrica, basta mostra que $\overline{\nabla}$ é compatível com \overline{g} , isto é, que

$$X\overline{g}(Y,Z) = \overline{g}(\overline{\nabla}_X Y, Z) + \overline{g}(Y, \overline{\nabla}_X Z).$$

Desenvolvendo o primeiro membro da igualdade acima teremos

$$X(e^{\phi}g(Y,Z)) = X(e^{\phi})g(Y,Z) + e^{\phi}g(\nabla_X Y, Z) + e^{\phi}g(Y,\nabla_X Z)$$
$$= e^{\phi}X(\phi)g(Y,Z) + e^{\phi}g(\nabla_X Y, Z) + e^{\phi}g(Y,\nabla_X Z).$$

Para o segundo termo, temos

$$e^{\phi}g(\nabla_XY,Z) + e^{\phi}g(Y,\nabla_XZ) + e^{\phi}\{g(S(X,Y),Z) + g(Y,S(X,Z))\}.$$

Portanto basta mostrar que

$$X(\phi)g(Y,Z) = g(S(X,Y),Z) + g(Y,S(X,Z)).$$

Substituindo a expressão de S(X,Y) teremos,

$$\begin{split} X(\phi)g(Y,Z) &- g\left(\frac{1}{2}\{X(\phi)Y + Y(\phi)X - g(X,Y)\nabla\phi\}, Z\right) \\ &- g\left(Y, \frac{1}{2}\{X(\phi)Z + Z(\phi)X - g(X,Z)\nabla\phi\}\right) \\ &= X(\phi)g(Y,Z) - X(\phi)g(Y,Z) - \frac{1}{2}Y(\phi)g(X,Z) + \\ &+ \frac{1}{2}g(X,Y)g(\nabla\phi,Z) - \frac{1}{2}Z(\phi)g(Y,X) + \frac{1}{2}g(X,Z)g(Y,\nabla\phi) \\ &= 0. \end{split}$$

o que conclui a afirmação.

Definição 1.12 (hipersuperfícies umbílicas) Seja (\overline{M}^{n+1}, g) uma variedade com métrica Riemanniana g e seja $\overline{\nabla}$ a sua conexão Riemanniana. Diz-se que uma imersão $x: M^n \to \overline{M}^{n+1}$ é (totalmente) umbílica se para todo $p \in M$, a segunda forma fundamental B de x em p satisfaz

$$\langle B(X,Y), \eta \rangle(p) = \lambda(p)\langle X, Y \rangle, \quad \lambda(p) \in \mathbb{R},$$

para todo par $X,Y\in TM$ e todo campo unitário η normal a x(M); aqui estamos usando \langle,\rangle para indicar a métrica g em \overline{M} e a métrica induzida por x em M.

Provemos que ao mudarmos a métrica g para uma métrica $\overline{g}=e^{\phi}g$, conforme a g, a imersão $x:M^n\to (\overline{M}^{n+1},\overline{g})$ continua a ser umbílica.

De fato, basta observar que se η é um campo normal unitário a M na métrica g então $\frac{\eta}{\sqrt{e^{\phi}}}$ é um campo normal unitário na métrica \overline{g} . Assim, considerando uma base ortonormal $\{E_1, \ldots, E_n\}$ que diagonaliza o operador segunda forma A_{η} segundo a métrica g, teremos,

$$\left\langle A_{\frac{\eta}{\sqrt{e^{\phi}}}}(E_{i}), E_{j} \right\rangle_{\overline{g}} = -\left\langle \overline{\nabla}_{E_{i}} \left(\frac{\eta}{\sqrt{e^{\phi}}} \right), E_{j} \right\rangle_{\overline{g}}$$

$$= -E_{i} \left(\frac{1}{\sqrt{e^{\phi}}} \right) e^{\phi} \langle \eta, E_{j} \rangle_{g} - \frac{1}{\sqrt{e^{\phi}}} \langle \overline{\nabla}_{E_{i}} \eta, E_{j} \rangle_{\overline{g}}$$

$$= -\frac{1}{\sqrt{e^{\phi}}} \langle \nabla_{E_{i}} \eta + S(E_{i}, \eta), E_{j} \rangle_{\overline{g}}$$

$$= -\frac{e^{\phi}}{\sqrt{e^{\phi}}} \langle \nabla_{E_{i}} \eta, E_{j} \rangle_{g} - \frac{1}{\sqrt{e^{\phi}}} \langle E_{i}, \eta, E_{j} \rangle_{\overline{g}}$$

$$= \sqrt{e^{\phi}} \langle A_{\eta} E_{i}, E_{j} \rangle_{g} - \frac{\eta(\phi)}{2\sqrt{e^{\phi}}} \langle E_{i}, E_{j} \rangle_{\overline{g}}$$

$$= \sqrt{e^{\phi}} \langle A_{\eta} E_{i}, E_{j} \rangle_{g} - \frac{\eta(\phi) e^{\phi}}{2\sqrt{e^{\phi}}} \langle E_{i}, E_{j} \rangle_{g}.$$

Desde que a base que escolhemos diagonaliza o operador $A_{\eta},$ segue para i=j que

$$\overline{k_i} = \frac{1}{\sqrt{e^{\phi}}} k_i - f,$$

onde $f = \frac{\eta(\phi)}{2\sqrt{e^{\phi}}}$ é uma função de M em \mathbb{R} . Assim,

$$\overline{k_i} - \overline{k_j} = \frac{1}{\sqrt{e^{\phi}}} (k_i - k_j).$$

Logo se M^n é uma hipersuperfície umbílica de \mathbb{S}^{n+1} temos que $k_1 = \ldots = k_n$, o que implica pela expressão acima que $\overline{k}_1 = \ldots = \overline{k}_n$, o que prova nossa afirmação.

Uma hiperesfera Σ^n em \mathbb{S}^{n+1} significa a interseção de \mathbb{S}^{n+1} com um hiperplano em \mathbb{R}^{n+2} . Σ^n é chamada uma hiperesfera grande (equatorial) ou pequena (não equatorial), respectivamente, de acordo com os hiperplanos, passando pela origem de \mathbb{R}^{n+2} ou não. Podendo ser um único ponto.

De posse dessas considereções, tomemos a esfera \mathbb{S}^{n+1} através da inversa da projeção estereográfica, a qual sabemos que é conforme, logo implica dos fatos provados acima que se M^n é uma hipersuperfície umbílica de \mathbb{S}^{n+1} , temos que sua imagem pela projeção estereográfica também o é. Desde de que as únicas umbílicas de \mathbb{R}^{n+1} são as esferas n-dimensionais e hiperplanos de \mathbb{R}^{n+1} , segue pela inversa da projeção estereográfica que as únicas hipersuperfícies umbílicas de \mathbb{S}^{n+1} são as grandes e pequenas hiperesferas.

Capítulo 2

Caracterização das hiperesferas de \mathbb{S}^{n+1} em termos de suas imagens de Gauss

Obteremos neste capítulo como principal resultado, uma caracterização das hiperesferas (grandes ou pequenas) de \mathbb{S}^{n+1} entre todas hipersuperfícies completas de \mathbb{S}^{n+1} em termos de suas imagens de Gauss, tendo como referência principal o trabalho de Nomizu, K. e Smyth, B. [6].

2.1 A Aplicação de Gauss

Seja M uma variedade Riemanniana orientável e completa de dimensão n e $\psi: M \to \mathbb{S}^{n+1}$ uma imersão isométrica de M na esfera unitária \mathbb{S}^{n+1} em \mathbb{R}^{n+2} com centro na origem.

Desde que M é orientável, podemos escolher um campo global de vetores unitários ξ , normal a M em \mathbb{S}^{n+1} com respeito a imersão ψ . Para campos de vetores X e Y sobre M, as conexões Riemannianas $\widetilde{\nabla}$ e ∇ de \mathbb{S}^{n+1} e M, respectivamente, são relacionadas por

$$\nabla_X Y = (\widetilde{\nabla}_X Y)^T$$
$$= \widetilde{\nabla}_X Y - \langle \widetilde{\nabla}_X Y, \xi \rangle \xi.$$

Como $\langle Y, \xi \rangle = 0$, temos

$$0 = X\langle Y, \xi \rangle = \langle \widetilde{\nabla}_X Y, \xi \rangle + \langle Y, \widetilde{\nabla}_X \xi \rangle,$$

o qual nos implica

$$\begin{split} \langle \widetilde{\nabla}_X Y, \xi \rangle &= -\langle Y, \widetilde{\nabla}_X \xi \rangle \\ &= \langle Y, -(\widetilde{\nabla}_X \xi)^T \rangle \\ &= \langle Y, AX \rangle. \end{split}$$

Portanto, $\nabla_X Y = \widetilde{\nabla}_X Y - \langle AX, Y \rangle \xi$, onde A é o tensor simétrico do tipo (1,1) sobre M definido por $AX = -(\widetilde{\nabla}_X \xi)^T$.

A aplicação de Gauss $\phi: M^n \to \mathbb{S}^{n+1}$ é definida por $\phi(p) = \xi_{\psi(p)} \in \mathbb{S}^{n+1}$ para cada $p \in M$. $\phi(M)$ é chamada a imagem de Gauss de M. Observe que $\phi(\Sigma^n)$ é um ponto (resp. uma hiperesfera pequena) de \mathbb{S}^{n+1} se Σ^n é uma hiperesfera grande (resp. pequena) de \mathbb{S}^{n+1} .

De fato, se Σ^n é uma hiperesfera grande de \mathbb{S}^{n+1} , temos $\langle \psi(p), v \rangle = 0$ para algum $v \in \mathbb{R}^{n+2}$ unitário e para todo $p \in \Sigma^n$. Logo se $X \in T\Sigma^n$, denotando a conexão de \mathbb{R}^{n+2} por D, temos

$$X\langle \psi(p), v \rangle = 0 \Rightarrow \langle D_X \psi(p), v \rangle = 0 \Rightarrow \langle X, v \rangle = 0 \Rightarrow v = c \, \xi_{\psi(p)},$$

onde c é uma constante. Desde que v é unitário, temos $v=\pm \xi_{\psi(p)}$, para todo $p\in \Sigma^n$, onde o sinal depende da orientação tomada. Portanto, $\phi(\Sigma^n)$ é um único ponto de \mathbb{S}^{n+1} .

Agora, se Σ^n é uma hiperesfera pequena de \mathbb{S}^{n+1} , temos $\langle \psi(p), v \rangle = k_1$, $0 < k_1 \le 1$. Podemos supor $0 < k_1 < 1$, pois se $k_1 = 1$ teríamos $\psi(p) = v$ para todo $p \in \Sigma^n$, logo Σ^n seria um único ponto. Desta forma temos

$$X\langle\psi(p),v\rangle=0 \Rightarrow \langle D_X\psi(p),v\rangle=0 \Rightarrow \langle X,v\rangle=0 \Rightarrow v=k_1\psi(p)+k_2\,\xi_{\psi(p)},$$

para alguma constante k_2 . Observe que,

$$\langle \xi_{\psi(p)}, v \rangle = \langle \xi_{\psi(p)}, k_1 \psi(p) + k_2 \xi_{\psi(p)} \rangle = k_2$$

e
$$1 = ||v||^2 = k_1^2 + k_2^2$$
.

Desde que $0 < k_1 < 1$, temos $0 < k_2 < 1$. Portanto, $\phi(\Sigma^n)$ é uma hiperesfera pequena de \mathbb{S}^{n+1} .

Teorema 2.1 Seja M uma variedade Riemanniana orientável e completa de dimensão $n \geq 2$ imersa isometricamente em \mathbb{S}^{n+1} e ϕ sua aplicação de Gauss.

- i) Se $\phi(M)$ está contida em uma hiperesfera grande de \mathbb{S}^{n+1} , então M está mergulhada como uma hiperesfera grande e assim $\phi(M)$ é um único ponto.
- ii) Se φ(M) está contida em uma hiperesfera pequena de Sⁿ⁺¹, porém não é um único ponto, então M está mergulhada como uma hiperesfera pequena e φ(M) é uma hiperesfera pequena.

Demonstração: Seja $\psi: M^n \to \mathbb{S}^{n+1}$ a imersão mencionada acima. Primeiro observe que das duas condições acima sobre a imagem de Gauss, temos que existe um vetor unitário $v \in \mathbb{R}^{n+2}$ tal que a função $f_v: M^n \to \mathbb{R}$ dada por $f_v(p) = \langle \xi_{\psi(p)}, v \rangle$ é constante sobre M, digamos $0 \le \alpha \le 1$. Defina um campo de vetores Z sobre M por

$$Z_p = v - f_v(p)\xi_{\psi(p)} - l_v(p)\psi(p), \tag{2.1}$$

onde $l_v: M^n \to \mathbb{R}$ é dada por $l_v(p) = \langle \psi(p), v \rangle$. Denotando a conexão de \mathbb{R}^{n+2} por D, temos

$$\widetilde{\nabla}_X \xi = D_X \xi - \langle D_X \xi, \psi \rangle \psi$$

$$= D_X \xi + \langle D_X \psi, \xi \rangle \psi$$

$$= D_X \xi + \langle X, \xi \rangle \psi.$$

Derivando $f_v \equiv \alpha$ sobre M, obtemos, para $X \in TM$

$$0 = X\langle \xi, v \rangle = \langle D_X \xi, v \rangle = \langle \widetilde{\nabla}_X \xi - \langle X, \xi \rangle \psi, v \rangle = \langle -AX, v \rangle = \langle -AX, Z \rangle,$$

desde que $\widetilde{\nabla}_X \xi = (\widetilde{\nabla}_X \xi)^T = -AX$ e $\langle X, \xi \rangle = 0$.

Em outras palavras $\langle AX, Z \rangle = 0$ para todo $X \in TM$. Logo,

$$Z \in \ker A \tag{2.2}$$

desde que $\langle X,AZ\rangle=\langle AX,Z\rangle=0$ para todo $X\in TM$ implica AZ=0. Além disso,

$$\nabla_X Z = \widetilde{\nabla}_X Z - \langle AX, Z \rangle \xi$$

$$= \widetilde{\nabla}_X Z$$

$$= D_X Z + \langle X, Z \rangle \psi$$

$$= -\langle \xi, v \rangle D_X \xi - \langle D_X \psi, v \rangle \psi - \langle \psi, v \rangle D_X \psi + \langle X, Z \rangle \psi$$

$$= -\langle \xi, v \rangle D_X \xi - \langle X, v \rangle \psi - \langle \psi, v \rangle X + \langle X, Z \rangle \psi$$

$$= \langle \xi, v \rangle AX - \langle \psi, v \rangle X.$$

Portanto,

$$\nabla_X Z = (f_v A - l_v I) X, \tag{2.3}$$

onde I é a transformação identidade. Pela equação de Codazzi, (2.2) e (2.3), temos

$$(\nabla_Z A)X = (\nabla_X A)Z$$
$$= \nabla_X (AZ) - A(\nabla_X Z)$$
$$= (l_v A - f_v A^2)X,$$

para cada $X \in TM$, isto é,

$$\nabla_Z A = l_v A - f_v A^2. \tag{2.4}$$

Em particular,

$$Z(trA) = tr(\nabla_Z A) = l_v(trA) - f_v(trA^2).$$
(2.5)

Os zeros do campo de vetores Z ocorrem nos pontos $p \in M$ onde v é ortogonal a $\psi_*(T_pM) \simeq T_pM$. De fato,

$$Z_p = 0 \Leftrightarrow v = f_v(p)\xi_{\psi(p)} + l_v(p)\psi(p).$$

Se $Z \equiv 0$ sobre M, então $\psi(M)$ está contida em uma das hiperesferas determinada pelo sistema de hiperplanos em \mathbb{R}^{n+2} ortogonal a v. De fato, temos

$$\langle X, v \rangle = 0 \; ; \forall \; X \in TM.$$

Logo,

$$\langle D_X \psi, v \rangle = 0 \Rightarrow X \langle \psi, v \rangle = 0 \Rightarrow \langle \psi, v \rangle = cte.$$

Pela completude de M, o conjunto $\psi(M)$ é a própria hiperesfera Σ^n em \mathbb{S}^{n+1} . Em particular, quando $f_v \equiv 1$, isto é, $\xi = v$, temos $Z \equiv 0$ e $\langle \psi, v \rangle \equiv 0$. Assim, $\psi(M)$ é uma hiperesfera grande.

Suponhamos portanto, de agora em diante que $Z \neq 0$ sobre M, e como observamos acima, temos $0 \leq f_v < 1$. Trabalharemos primeiramente com $0 < f_v < 1$. Em virtude de (2.2) e (2.3),

$$\nabla_Z Z = (f_v A - l_v I) Z$$
$$= f_v A Z - l_v Z$$
$$= -l_v Z$$

sobre M. Portanto, $\frac{Z}{\|Z\|}$ é um campo de vetores geodésico sobre a subvariedade aberta $M' = \{p \in M; Z_p \neq 0\}$ de M, onde $\|Z\|$ denota o comprimento de Z. De fato,

$$\nabla_{Z} \frac{Z}{\|Z\|} = \frac{1}{\|Z\|} \nabla_{Z} Z + Z \left(\frac{1}{\|Z\|}\right) Z$$

$$= -\frac{1}{\|Z\|} l_{v} Z - \frac{Z(\langle Z, Z \rangle^{\frac{1}{2}})}{\|Z\|^{2}} Z$$

$$= -l_{v} \frac{Z}{\|Z\|} - \frac{1}{2} \frac{(\|Z\|^{2})^{-\frac{1}{2}} 2\langle \nabla_{Z} Z, Z \rangle}{\|Z\|^{2}} Z$$

$$= -l_{v} \frac{Z}{\|Z\|} + l_{v} \frac{\|Z\|^{2}}{\|Z\|^{2} \|Z\|} Z$$

$$= 0$$

Fixando $p_0 \in M'$, seja γ a geodésica (parametrizada pelo comprimento de arco s e extendida indefinidamente em ambas direções ao longo de M) partindo de p_0 e tangente a Z_{p_0} . Em virtude da observação acima, o campo de vetores Z é tangente a γ ao longo de γ . Considere a função real h definida sobre \mathbb{R} por

$$h(s) = \langle \gamma'(s), Z_{\gamma(s)} \rangle.$$

Seja (a, b) o intervalo maximal (possivelmente semi-infinito ou infinito) contendo 0 para o qual $\gamma((a, b))$ está na componente conexa de M' contendo p_0 . Então

$$\frac{dh}{ds} = \gamma'(s)\langle \gamma'(s), Z_{\gamma(s)} \rangle
= \langle \nabla_{\gamma'(s)} \gamma'(s), Z_{\gamma(s)} \rangle + \langle \gamma'(s), \nabla_{\gamma'(s)} Z_{\gamma(s)} \rangle
= \langle \gamma'(s), (f_v A - l_v I) \gamma'(s) \rangle
= -l_v(\gamma(s)), \quad s \in (a, b)$$
(2.6)

desde que $\gamma'(s)$ é um múltiplo de Z quando $s\in(a,b)$ e $Z\in\ker A$ por (2.2). Assim,

$$\frac{d^{2}h}{ds^{2}} = -\frac{d}{ds} \langle \psi(\gamma(s)), v \rangle
= -\gamma'(s) \langle \psi(\gamma(s)), v \rangle
= -\langle D_{\gamma'(s)} \psi(\gamma(s)), v \rangle
= -\langle \gamma'(s), v \rangle
= -\langle \gamma'(s), Z_{\gamma(s)} \rangle
= -h(s), s \in (a, b).$$
(2.7)

A solução desta equação diferencial com condições inciais $\frac{dh}{ds}(0)=-l_v(\gamma(0))=-l_v(p_0)=-\beta_0$ e $h(0)=\sqrt{1-f_v^2-\beta_0^2}$ é

$$h(s) = C_1 \cos(s) + C_2 \sin(s)$$

para algumas constantes C_1 e C_2 . Observe que

$$C_1 = h(0) = \sqrt{1 - f_v^2 - \beta_0^2}$$

е

$$C_2 = h'(0) = -\beta_0.$$

Logo,

$$h(s) = \sqrt{1 - f_v^2 - \beta_0^2} \cos(s) - \beta_0 \sin(s).$$

Podendo ainda ser escrita como

$$\frac{h(s)}{\sqrt{1 - f_v^2}} = \frac{\sqrt{1 - f_v^2 - \beta_0^2}}{\sqrt{1 - f_v^2}} \cos(s) - \frac{\beta_0}{\sqrt{1 - f_v^2}} \sin(s)$$

$$= \sqrt{1 - \frac{\beta_0^2}{1 - f_v^2}} \cos(s) - \frac{\beta_0}{\sqrt{1 - f_v^2}} \sin(s)$$

$$= \cos(s_0) \cos(s) - \sin(s_0) \sin(s)$$

$$= \cos(s + s_0).$$

Portanto,

$$h(s) = \sqrt{1 - f_v^2} \cos(s + s_0), \qquad s \in (a, b),$$
 (2.8)

onde $s_0 \in (-\frac{\pi}{2}, \frac{\pi}{2})$ é determinado por sen $(s_0) = \frac{\beta_0}{\sqrt{1 - f_v^2}}$. Além disso, seguese de (2.6) que

$$l_v(\gamma(s)) = \sqrt{1 - f_v^2} \operatorname{sen}(s + s_0), \quad s \in (a, b)$$
 (2.9)

e de (2.8)

$$Z_{\gamma(s)} = \sqrt{1 - f_v^2} \cos(s + s_0) \gamma'(s), \qquad s \in (a, b).$$
 (2.10)

Sendo h(0) positivo, segue-se que h é positiva sobre (a, b). De fato, suponha que existe $t \in (a, b)$ tal que h(t) < 0. Pelo Teorema do Valor Intermediário, existe $c \in (0, t)$ tal que h(c) = 0, o que é um absurdo, pois assim teríamos $Z_{\gamma(c)} = h(c)\gamma'(c) = 0$. Sendo assim, segue-se de (2.8) que (a, b) é finito.

A condição de maximalidade sobre o intervalo (a,b) implica que $Z_{\gamma(a)}=0=Z_{\gamma(b)}$, o que significa , em virtude de (2.10) e continuidade, que

$$\cos(a+s_0) = 0 = \cos(b+s_0). \tag{2.11}$$

Fazendo $k(s) = (trA) \circ \gamma(s)$, podemos reescrever (2.5) como

$$\sqrt{1 - f_v^2} \cos(s + s_0) \frac{dk}{ds} = \sqrt{1 - f_v^2} \sin(s + s_0) k(s) - f_v(trA^2)_{\gamma(s)}$$

sobre (a, b), isto é,

$$\sqrt{1 - f_v^2} \frac{d}{ds} (\cos(s + s_0)k(s)) = -f_v(trA^2)_{\gamma(s)}$$
 (2.12)

sobre (a,b).

Desde que $trA^2 = ||A||^2 \ge 0$, segue-se que $\cos(s+s_0)k(s)$ é monótona decrescente sobre (a,b) e se anula em s=a e s=b. Logo, k=0 ao longo de

(a,b) e segue-se de (2.12) que $trA^2=0$ ao longo de $\gamma((a,b))$, se $f_v\neq 0$, e em particular A=0 em $p_0=\gamma(0)$. Assumindo $f_v\neq 0$, temos portanto, que $A\equiv 0$ sobre M'.

Entretanto, Z=0 e $l_v^2=1-f_v^2$ sobre o conjunto aberto $M-\overline{M'}$. De fato, se Z=0, então

$$v = f_v \xi_{\psi(p)} + l_v \psi(p)$$

 $\Rightarrow 1 = ||v||^2 = f_v^2 + l_v^2$
 $\Rightarrow l_v^2 = 1 - f_v^2.$

Logo, da equação (2.3) segue-se

$$0 = \nabla_X Z = (f_v A - l_v I) X.$$

Portanto,

$$f_v A = l_v I$$

$$A = \frac{\sqrt{1 - f_v^2}}{f_v} I.$$

Desde que M é conexa e M' é não-vazio, $A \equiv 0$ sobre M. Além disso, como M é completa, então $\psi(M)$ é uma hiperesfera grande.

Para o caso $Z \neq 0$ e $f_v = 0$, a equação essencial para nossa prova é

$$Z(trA^2) = tr(\nabla_Z A^2) = 2l_v trA^2, \qquad (2.13)$$

o qual facilmente se vê que é uma consequência de (2.4). Desde que $f_v = 0$, as equações (2.6)-(2.10) são válidas para todo $s \in \mathbb{R}$. Usando estas equações e fazendo $u(s) = (trA^2) \circ \gamma(s)$, (2.13) reduz-se a

$$\cos(s+s_0)\frac{du}{ds} = 2\operatorname{sen}(s+s_0)u(s).$$

Observe que,

$$\frac{d}{ds}\left(\operatorname{sen}^{2}(s+s_{0})u(s)\right) = 2\operatorname{sen}(s+s_{0})\cos(s+s_{0})u(s) + \operatorname{sen}^{2}(s+s_{0})\frac{du}{ds}$$

$$= \cos(s+s_{0})\left(2\operatorname{sen}(s+s_{0})u(s) - \cos(s+s_{0})\frac{du}{ds}\right) + \frac{du}{ds}$$

$$= \frac{du}{ds}.$$

Logo,

$$\frac{d}{ds}\left(u(s) - \sin^2(s + s_0)u(s)\right) = 0.$$

Assim,

$$(1 - \operatorname{sen}^{2}(s + s_{0})) u(s) = c$$
$$u(s) = \frac{c}{\cos^{2}(s + s_{0})}$$

sobre $-\frac{\pi}{2} < s + s_0 < \frac{\pi}{2}$ para alguma constante c, e temos uma contradição a menos que c, e portanto, u seja zero. Assim, A = 0 sobre M'. Desde que $f_v = 0$ e Z = 0 sobre M - M', temos $v = l_v \psi(p)$, o que implica $l_v^2 = 1$ sobre M - M'.

Em virtude de (2.4), A = 0 sobre M - M'. Agora segue-se como anteriormente que $\psi(M)$ é uma hiperesfera grande.

Em todos os casos mostramos que M está imersa sobre uma hiperesfera Σ^n em \mathbb{S}^{n+1} . Como M é completa, temos que $\psi: M^n \to \Sigma^n$ é uma aplicação de recobrimento (p.176, Volume I, [5]), e desde que Σ^n é simplesmente conexa se $n \geq 2$, ψ é uma imersão injetiva se $n \geq 2$. Isto completa a prova do teorema.

O que é importante observar, é que o resultado do teorema é global e que não existe um resultado análogo local se a hipótese de completude é retirada.

O exemplo que se segue serve para construir uma ampla classe de hipersuperfícies em \mathbb{S}^{n+1} cuja imagem de Gauss está em uma hiperesfera grande. Existe ainda, uma grande classe de hipersuperfícies mínimas com esta propriedade.

Exemplo: Seja ψ uma imersão de uma variedade (n-1)-dimensional N conexa e orientável em uma hiperesfera grande \mathbb{S}^n de \mathbb{S}^{n+1} . Com e_{n+2} denotando o vetor unitário ortogonal ao hiperplano de \mathbb{S}^n em \mathbb{R}^{n+2} e o ângulo θ como coordenada sobre o círculo unitário \mathbb{S}^1 , a suspensão $f: N \times \mathbb{S}^1 \to \mathbb{S}^{n+1}$ da imersão ψ por geodésicas passando pelos polos norte e sul de \mathbb{S}^{n+1} é definida como

$$f(p, \theta) = \cos \theta \, \psi(p) + \sin \theta \, e_{n+2},$$

onde p é qualquer ponto de N. Escolhendo coordenadas locais $(x^1, ..., x^{n-1})$ sobre N, temos que

$$\begin{cases}
f_*\left(\frac{\partial}{\partial x^i}\right) = \cos\theta \frac{\partial \psi}{\partial x^i}, & \text{se } 1 \leq i \leq n-1; \\
f_*\left(\frac{\partial}{\partial \theta}\right) = -\sin\theta \psi + \cos\theta e_{n+2}.
\end{cases} (2.14)$$

Observe que se $-\frac{k\pi}{2} < \theta < \frac{k\pi}{2}$, onde k é um inteiro ímpar, então $f_*\left(\frac{\partial}{\partial \theta}\right)$ e $f_*\left(\frac{\partial}{\partial x^i}\right)$ são linearmente independentes para todo i=1,...,n-1.

Portanto se $N'=\left\{(p,\theta)\in N\times\mathbb{S}^1, -\frac{k\pi}{2}<\theta<\frac{k\pi}{2}\right\}$, então $f:N'\to\mathbb{S}^{n+1}$ é imersão. Denotaremos por M uma das duas componentes conexas de N'.

Seja η um campo de vetores unitários normal a N em \mathbb{S}^n e B a matriz da segunda forma fundamental em coordenadas $(x^1,...,x^{n-1})$. Se ξ é um campo de vetores unitários normal a M em \mathbb{S}^{n+1} , observemos que ξ é ortogonal a $f(p,\theta)$, $f_*\left(\frac{\partial}{\partial x^i}\right)$ e $f_*\left(\frac{\partial}{\partial \theta}\right)$, e portanto, ortogonal a $\psi(p)$, e_{n+2} e $\frac{\partial \psi}{\partial x^i}$.

De fato, como $\xi \in T_{(p,\theta)}\mathbb{S}^{n+1}$, temos $\xi \perp f(p,\theta)$. Além disso,

$$T_{(p,\theta)}\mathbb{S}^{n+1} = T_{(p,\theta)}M \oplus (T_{(p,\theta)}M)^{\perp} \Rightarrow \xi \in (T_{(p,\theta)}M)^{\perp}$$

e

$$T_{(p,\theta)}M = T_pN \oplus T_\theta\mathbb{S}^1 \Rightarrow \xi \perp T_pN , \ \xi \perp T_\theta\mathbb{S}^1.$$
 Portanto, $\xi \perp f_*\left(\frac{\partial}{\partial x^i}\right)$ e $\xi \perp f_*\left(\frac{\partial}{\partial \theta}\right)$. De (2.14), temos

$$\left\langle \xi, f_* \left(\frac{\partial}{\partial x^i} \right) \right\rangle = 0 \Rightarrow \left\langle \xi, \cos \theta \frac{\partial \psi}{\partial x^i} \right\rangle = 0 \Rightarrow \left\langle \xi, \frac{\partial \psi}{\partial x^i} \right\rangle = 0 \Rightarrow \xi \perp \frac{\partial \psi}{\partial x^i},$$
 para todo $i = 1, ..., n - 1$.

$$\left\langle \xi, f_* \left(\frac{\partial}{\partial \theta} \right) \right\rangle = 0 \Rightarrow -\operatorname{sen} \theta \langle \xi, \psi \rangle + \cos \theta \langle \xi, e_{n+2} \rangle = 0.$$

$$\langle \xi, f(p, \theta) \rangle = 0 \Rightarrow \cos \theta \langle \xi, \psi \rangle + \sin \theta \langle \xi, e_{n+2} \rangle = 0.$$

Das duas últimas equações concluímos que $\langle \xi, \psi \rangle = 0 = \langle \xi, e_{n+2} \rangle$. Portanto, $\xi \perp \psi$ e $\xi \perp e_{n+2}$. Desde que ambos η e ξ são ortogonais a $\frac{\partial \psi}{\partial x^i}$, ψ e e_{n+2} , escolhendo-se a direção de ξ sutilmente temos $\xi_{f(p,\theta)} = \eta_{\psi(p)}$ para todo $(p,\theta) \in M$. Em particular, $\langle \xi, e_{n+2} \rangle = 0$ sobre M, isto é, a imagem de Gauss de M está em uma hiperesfera grande de S^{n+1} . Por outro lado, temos

$$\begin{cases} \frac{\partial^2 f}{\partial x^i \partial x^j} = \cos \theta \frac{\partial^2 \psi}{\partial x^i \partial x^j}, \\ \frac{\partial^2 f}{\partial x^i \partial \theta} = -\sin \theta \frac{\partial \psi}{\partial x^i}, \\ \frac{\partial^2 f}{\partial \theta^2} = -\cos \theta \psi - \sin \theta e_{n+2}. \end{cases}$$

Observe que

$$g_{kj} = \left\langle \frac{\partial f}{\partial x_k}, \frac{\partial f}{\partial x_i} \right\rangle = \cos^2 \theta \left\langle \frac{\partial \psi}{\partial x_k}, \frac{\partial \psi}{\partial x_i} \right\rangle = \cos^2 \theta \overline{g}_{kj},$$

onde g_{kj} e \overline{g}_{kj} são os coeficientes de primeira forma de f e ψ , respectivamente. Além disso,

$$\left\langle A\left(\frac{\partial f}{\partial x_i}\right), \frac{\partial f}{\partial x_j}\right\rangle = \left\langle -\sum_{k=1}^{n-1} h_{ki} \frac{\partial f}{\partial x_k} - h_{ni} \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial x_j}\right\rangle$$
$$= -\sum_k h_{ki} g_{kj}$$
$$= -\sum_k \cos^2 \theta h_{ki} \overline{g}_{kj},$$

onde os h_{ki} são os elementos da segunda forma fundamental de M. Por outro lado,

$$\left\langle A\left(\frac{\partial f}{\partial x_{i}}\right), \frac{\partial f}{\partial x_{j}}\right\rangle = \left\langle \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}, \xi \right\rangle$$

$$= \cos \theta \left\langle \frac{\partial^{2} \psi}{\partial x_{i} \partial x_{j}}, \eta \right\rangle$$

$$= -\cos \theta \left\langle D_{\frac{\partial \psi}{\partial x_{i}}} \eta, \frac{\partial \psi}{\partial x_{j}} \right\rangle$$

$$= -\cos \theta \left\langle \sum_{k=1}^{n-1} \overline{h}_{ki} \frac{\partial \psi}{\partial x_{k}}, \frac{\partial \psi}{\partial x_{j}} \right\rangle$$

$$= -\sum_{k} \cos \theta \overline{h}_{ki} \overline{g}_{kj}.$$

Portanto,

$$h_{ki} = \frac{1}{\cos \theta} \overline{h}_{ki} \qquad i, k = 1, ..., n - 1.$$

Facilmente verifica-se que os outros elementos da matriz de A são todos nulos, do qual segue-se que a matriz da segunda forma fundamental de M em coordenadas $(x^1,...,x^{n-1},\theta)$ é dada por

$$A = \frac{1}{\cos \theta} \left[\begin{array}{cc} B & 0 \\ 0 & 0 \end{array} \right].$$

Consequentemente, M é totalmente geodésica (mínima) se, e somente se, N é totalmente geodésica (mínima).

Capítulo 3

O Teorema principal

O objetivo deste capítulo é apresentarmos uma demonstração do teorema 3.1 devido a Nomizu, K. e Smyth, B. [6], o qual caracteriza as hipersuperfícies da esfera com curvatura média constante cuja aplicação de Gauss está contida em um hemisfério fechado de \mathbb{S}^{n+1} . Para isto, inicialmente vamos calcular o Laplaciano das funções l_v e f_v sobre uma variedade Riemanniana orientável n-dimensional isometricamente imersa em \mathbb{S}^{n+1} , as quais são definidas por $l_v = \langle \psi, v \rangle$ e $f_v = \langle \xi, v \rangle$. Mostraremos que

$$\Delta l_v = -nl_v + nHf_v \tag{3.1}$$

е

$$\Delta f_v = -n\langle \nabla H, v \rangle - trA^2 f_v + nHl_v. \tag{3.2}$$

Para verificarmos isto, seja $\{E_1, E_2, ..., E_n\}$ um referencial ortonormal em torno de $p \in M^n$. Então em p temos,

$$\nabla l_v = \sum_{i=1}^n E_i(l_v) E_i = \sum_{i=1}^n \langle E_i, v \rangle E_i = v^T.$$

Desde que $v^T = v - f_v \xi - l_v \psi$, dados $X, Y \in TM$ temos

$$Hess l_{v}(X,Y) = \langle \nabla_{X}(\nabla l_{v}), Y \rangle$$

$$= \langle D_{X}(\nabla l_{v}), Y \rangle$$

$$= \langle D_{X}v^{T}, Y \rangle$$

$$= \langle D_{X}(v - f_{v}\xi - l_{v}\psi), Y \rangle$$

$$= -\langle D_{X}(f_{v}\xi), Y \rangle - \langle D_{X}(l_{v}\psi) \rangle$$

$$= -\langle f_{v}D_{X}\xi + X(f_{v})\xi, Y \rangle - \langle l_{v}D_{X}\psi + X(l_{v})\psi, Y \rangle$$

$$= -f_{v}\langle D_{X}\xi, Y \rangle - l_{v}\langle X, Y \rangle$$

$$= f_{v}\langle AX, Y \rangle - l_{v}\langle X, Y \rangle.$$

Segue-se que

$$\Delta l_v = tr(Hess l_v)$$

$$= \sum_{i=1}^n Hess l_v(E_i, E_i)$$

$$= \sum_{i=1}^n f_v \langle AE_i, E_i \rangle - l_v \langle E_i, E_i \rangle$$

$$= nHf_v - nl_v,$$

onde H é a curvatura média de M^n .

Analogamente,

$$\nabla f_v = \sum_{i=1}^n E_i(f_v) E_i$$

$$= \sum_{i=1}^n \langle \widetilde{\nabla}_{E_i} \xi, v \rangle E_i$$

$$= \sum_{i=1}^n \langle (\widetilde{\nabla}_{E_i} \xi)^T, v^T \rangle E_i$$

$$= -\sum_{i=1}^n \langle A E_i, v^T \rangle E_i$$

$$= -\sum_{i=1}^n \langle A v^T, E_i \rangle E_i$$

$$= -A(v^T).$$

Agora utilizando a equação de Codazzi no cálculo da hessiana de f_v , temos

$$Hess f_{v}(X,Y) = \langle \nabla_{X} \nabla f_{v}, Y \rangle$$

$$= \langle \nabla_{X} (-A(v^{T})), Y \rangle$$

$$= -\langle (\nabla_{X} A)(v^{T}) + A(\nabla_{X} v^{T}), Y \rangle$$

$$= -\langle (\nabla_{v^{T}} A)(X), Y \rangle - \langle A(\nabla_{X} v^{T}), Y \rangle$$

$$= -\langle \nabla A(X, v^{T}), Y \rangle - \langle \nabla_{X} v^{T}, AY \rangle$$

$$= -\langle \nabla A(X, v^{T}), Y \rangle - \langle \nabla_{X} \nabla l_{v}, AY \rangle$$

$$= -\langle \nabla A(X, v^{T}), Y \rangle - Hess l_{v}(X, AY)$$

$$= -\langle \nabla A(X, v^{T}), Y \rangle - f_{v} \langle AX, AY \rangle + l_{v} \langle X, AY \rangle.$$

Afirmação: Seja A o operador de Weingarten e H a curvatura média de M^n , então para todo $X \in TM$ temos

$$tr(\nabla_X A) = n\langle X, \nabla H \rangle.$$

Prova da afirmação: Seja $\{E_1, E_2, ..., E_n\}$ um referencial ortonormal que diagonaliza A em $p \in M$ e sejam $k_1(p), k_2(p), ..., k_n(p)$ os autovalores associados a $E_1(p), E_2(p), ... E_n(p)$, respectivamente. Em p, temos

$$tr(\nabla_X A) = \sum_{i=1}^n \langle (\nabla_X A) E_i, E_i \rangle$$

$$= \sum_{i=1}^n \langle \nabla_X (A E_i) - A(\nabla_X E_i), E_i \rangle$$

$$= \sum_{i=1}^n \langle \nabla_X (A E_i), E_i \rangle - \sum_{i=1}^n \langle A(\nabla_X E_i), E_i \rangle$$

$$= \sum_{i=1}^n \langle \nabla_X (A E_i), E_i \rangle$$

$$= \sum_{i,j=1}^n \langle X, E_j \rangle \langle \nabla_{E_j} (A E_i), E_i \rangle$$

$$= \sum_{i,j=1}^n \langle X, E_j \rangle [E_j \langle A E_i, E_i \rangle - \langle A E_i, \nabla_{E_j} E_i \rangle]$$

$$= \sum_{i,j=1}^{n} \langle X, E_j \rangle [E_j \langle AE_i, E_i \rangle]$$

$$= \sum_{j=1}^{n} \langle X, E_j \rangle \left[E_j \left(\sum_{i=1}^{n} \langle AE_i, E_i \rangle \right) \right]$$

$$= \sum_{j=1}^{n} \langle X, E_j \rangle (nE_j(H))$$

$$= n \sum_{j=1}^{n} \langle X, E_j \rangle (E_j(H))$$

$$= n \langle X, \nabla H \rangle,$$

onde usamos que

$$0 = k_i(p)\langle \nabla_X E_i, E_i \rangle(p) = \langle \nabla_X E_i, A E_i \rangle(p) = \langle A(\nabla_X E_i), E_i \rangle(p).$$

Portanto, o Laplaciano de f_v é dado por

$$\begin{split} \Delta f_v &= tr(Hess\,f_v) \\ &= \sum_{i=1}^n Hess\,f_v(E_i,E_i) \\ &= \sum_{i=1}^n [-\langle \nabla A(E_i,v^T),E_i\rangle - f_v\langle AE_i,AE_i\rangle + l_v\langle E_i,AE_i\rangle] \\ &= -tr(\nabla_{v^T}A) - f_v\sum_{i=1}^n \langle AE_i,AE_i\rangle + l_v\sum_{i=1}^n \langle E_i,AE_i\rangle \\ &= -n\langle v^T,\nabla H\rangle - \|A\|^2 f_v + nHl_v \\ &= -n\langle v,\nabla H\rangle - trA^2 f_v + nHl_v. \end{split}$$

De agora em diante, concentraremos nosso trabalho no caso de hipersuperfícies de curvatura média constante, isto é, trA = constante sobre M. Podemos reescrever (3.2) como

$$\Delta f_v = -trA^2 f_v + trA l_v. \tag{3.3}$$

De (3.1) e (3.3) temos,

$$\Delta \langle n\xi + trA\psi, v \rangle = n\Delta f_v + trA\Delta l_v$$

$$= -ntrA^2 f_v + ntrAl_v - ntrAl_v + ntrAH f_v$$

$$= -ntrA^2 f_v + (trA)^2 f_v$$

$$= -\{ntrA^2 - (trA)^2\} f_v.$$

Observe que se $\lambda_1, \lambda_2, ..., \lambda_n$ são as raízes características de A, então

$$ntrA^{2} - (trA)^{2} = n\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right) - \left(\sum_{i=1}^{n} \lambda_{i}\right)^{2}$$

$$= n\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right) - \sum_{i=1}^{n} \lambda_{i}^{2} - 2\sum_{i < j} \lambda_{i}\lambda_{j}$$

$$= (n-1)\left(\sum_{i=1}^{n} \lambda_{i}^{2}\right) - 2\sum_{i < j} \lambda_{i}\lambda_{j}$$

$$= \sum_{i < j} (\lambda_{i} - \lambda_{j})^{2}.$$

Portanto,

$$\Delta \langle n\xi + trA\psi, v \rangle = -\sum_{i < j} (\lambda_i - \lambda_j)^2 f_v. \tag{3.4}$$

Teorema 3.1 (Teorema Principal) Seja M uma variedade orientável, conexa e compacta de dimensão $n \geq 2$ imersa na esfera \mathbb{S}^{n+1} com curvatura média constante. Se a imagem de Gauss de M está em um hemisfério fechado de \mathbb{S}^{n+1} , então M está mergulhada sobre uma hiperesfera em \mathbb{S}^{n+1} .

Demonstração: A afirmação sobre a imagem de Gauss de M é equivalente a existência de um vetor unitário constante $v \in \mathbb{R}^{n+2}$ tal que $f_v = \langle \xi, v \rangle \geq 0$ sobre M. Em virtude de (3.4), temos $\Delta h \leq 0$ onde $h = \langle n\xi + trA\psi, v \rangle$. Pelo teorema da divergência, temos

$$\int_{M} \Delta h \ dM = \int_{M} div \nabla h \ dM = \int_{\partial M} \langle \nabla h, \xi \rangle \ ds = 0.$$

Como $\Delta h \leq 0$, temos $\Delta h \equiv 0$ sobre M. Novamente integrando em M e utilizando o teorema da divergência, temos

$$0 = \int_{\partial M} \left\langle \nabla \left(\frac{h^2}{2} \right), \xi \right\rangle ds$$

$$= \int_{M} \Delta \left(\frac{h^2}{2} \right) dM$$

$$= \int_{M} h\Delta \left(\frac{h}{2} \right) + \frac{h}{2} \Delta h + 2 \left\langle \nabla h, \nabla \left(\frac{h}{2} \right) \right\rangle dM$$

$$= \int_{M} h\Delta h + \|\nabla h\|^{2} dM$$

$$= \int_{M} \|\nabla h\|^{2} dM.$$

Desde que $\|\nabla h\|^2 \geq 0$, temos $\nabla h \equiv 0$ em M. Como M é conexa, então h=cte sobre M.

Observe que se M é mínima, temos trA = 0, logo

$$h = \langle n\xi + trA\psi, v \rangle = cte \Rightarrow \langle \xi, v \rangle = cte.$$

Neste caso, o resultado segue-se do teorema 2.1. Suponhamos então $trA \neq 0$. Por (3.4), todo ponto de $W = \{p \in M; f_v > 0\}$ é umbílico. Além disso, $\langle n\xi + trA\psi, v \rangle$ sendo constante sobre M, temos que $l_v = \langle \psi, v \rangle$ é constante sobre $M - \overline{W}$ (pois $f_v \equiv 0$ em $M - \overline{W}$). Portanto, $M - \overline{W}$ está imersa em uma hiperesfera de \mathbb{S}^{n+1} , logo $M - \overline{W}$ é também totalmente umbílica. Assim, M é totalmente umbílica e está imersa em \mathbb{S}^{n+1} . Portanto está mergulhada em uma hiperesfera.

Bibliografia

- [1] Almgren, F., Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math. 85 (1966), 277-292.
- [2] Bernstein, S., Sur un théorème de Géométrie et ses applications aux équations aux dérivées partialles du type elliptique., Comm. de la Soc. Math. de Kharkov (2ième sér.) 15, 38 45 (1915/1917).
- [3] do Carmo, M. P., *Geometria Riemanniana*, 3^a edição, Projeto Euclides, IMPA, Rio de Janeiro, 2005.
- [4] de Giorgi, E., *Una estensione del teorema di Bernstein*, Ann. Della Scuola Normale Superiore di Piza, Scienze Fis. Mat. III, XIX, I (1965), 79-85.
- [5] Kobayashi, S. and Nomizu, K., Foundations of differential geometry, Volumes I-II (John Wiley & Sons, New York 1963 and 1969 [Interscience Tracts]).
- [6] Nomizu, K. and Smyth, B., On the Gauss Mapping for Hypersurfaces of Constant Mean Curvature in the Sphere. Comm. Math. Helv. 44, 484-490 (1969).
- [7] Simons, J., Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968), 62-105.