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Resource Allocation for OFDMA Systems
and Energy Harvesting Communications
in Multi-User Offline Scenarios
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Abstract— We formulate the resource allocation problem of
maximizing throughput in an OFDMA (Orthogonal Frequency
Division Multiple Access) downlink network where the BS (Base
Station) adapts the power allocation according to non-causal
(offline) knowledge of the harvested energy and channel state.
The offline case is important from a theoretical point of view
since it provides a bound on the performance of the online
problem (causal). Differently from previous work, that consider
a continuous relation between SNR (Signal-to-Noise Ratio) and
transmit data rate, we employ a discrete mapping that depends
on the required MCSs (Modulation and Code Schemes). Also, we
propose a heuristic algorithm that provides near-optimal results
and achieves a good complexity/performance trade-off.

Keywords— Resource Allocation, Rate Maximization, OFDMA,
MCS, Energy Harvesting, Heuristic.

I. INTRODUCTION

Energy harvesting communications are powered by renew-
able energy sources and experiment an unlimited lifetime
[1]. However, such energy source presents a stochastic nature
since it depends on environmental conditions that determine
the amount of power available to perform transmissions.
Differently from communication devices that work with fixed
power supplies and have assurance of power availability,
EH (Energy Harvesting) devices save any unused energy in
a storage component such as a rechargeable battery. Then,
because batteries have finite storage capacity, we subject our
problem to the battery capacity constraints, that limit the
available power to the maximum value supported by the
battery. Moreover, we apply the energy consumption causality
constraints that limit the used energy to the quantity available
at the moment, despite the knowledge of future energy arrivals.
Both restrictions are known as energy harvesting constraints,
and are present in several works [1]-[4].

Many options of EH sources are available, for example:
solar radiation, natural wind, radio frequency waves, vibration
and thermal energy [1], [2]. Hence, in our study we considered
a BS powered by a photovoltaic system similar to [12].
Also, our EH model follows a first-order stationary Markov
chain, supported by studies on solar energy in [12]-[14]. The
main advantages of EH systems include long term operation
without stable power supplies, decreased need of cabling and
component replacements, and consequently smaller cost per
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project. All these features are present in EH communications,
and motivated the authors of this paper to investigate EH
scenarios related to wireless communications.

More specifically, our problem is in an offline setting,
that means previous knowledge of the EH profile and full
CSI (Channel State Information) at the BS. Even though
previous knowledge of channel gain and harvested energy is
very hard to obtain in practice, solutions for offline scenarios
serve as performance benchmarks to more realistic situations
and offer important insights on the development of solutions
to the online scenario, where energy arrivals and channel
gains are not known beforehand. Furthermore, RRA (Radio
Resource Allocation) appears as a fundamental functionality
in order to improve the use of the scarce radio resources when
network nodes are powered by energy harvesters [2], since the
main purpose of RRA consists in intelligently distribute the
available resources on the goal to satisfy requirements or to
optimize services. In this article we consider the RRA problem
of maximizing the system throughput, that is a typical and
important problem studied in the literature [1]-[4].

II. STATE OF THE ART AND CONTRIBUTIONS

Generally, cooperative communications and relay networks
have been studied in literature, and specially in EH scenarios
[1], [8], [9]. The authors in [1] analyze a source, relay, desti-
nation network in offline (previous knowledge of EH profile)
and online (only casual information) situations, and propose
a solution for the online case through convex optimization.
The studies in [8], [9] present, respectively, optimal and
heuristic solutions for power allocation problems with relay
selection. Moreover, OFDMA systems and EH technology are
the main topics in [5], where the authors develop resource
allocation algorithms for a hybrid EH base station, powered
by fixed and renewable sources. Similarly, [6] introduces a
self-sustainable approach for OFDM receivers in the context
of green networks. Long-established studies in [2], [4] give the
foundations of rate maximization in EH systems, and more
recent work in [10], [11] consider cognitive radio networks
(CRNs) powered by energy harvesters, where [10] optimize
spectral efficiency and [11] focus on secrecy performance.
Finally, the paper in [7] investigates a promising trend in
wireless communications, that includes RF (Radio Frequency)
EH for mobile devices in cloud-based networks.

Though the aforementioned works provide relevant contri-
butions, all these studies support the unrealistic assumption
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of continuous mapping between SNR and transmit data rate,
but, in real systems, the set of possible throughput values
is discrete and finite. Therefore, we implement a discrete
mapping through MCSs, where the achievable transmit rates
are determined by modulation levels and channel coding. Also,
unlike the authors in [1]-[11], who employ a continuous map-
ping due to the ease of using convex optimization methods,
our problem becomes entirely combinatorial with the use of
discrete MCSs, which increases the computational complexity
of the optimal solution. On the other hand, the papers in [1]-
[3] assume an EH profile with discrete values from a finite set.
However, empirical measurements in [12]-[14] demonstrate
that the harvested energy assume continuous values in practice.

Then, the study in [13] proposes the design of a quantizer in
order to work with discrete values of harvested energy. Such
quantization process is acceptable because some harvesters
collect an approximately constant amount of energy through-
out the time [13], what justifies the use of low order quantizers.
Since our problem is combinatorial, we prefer to enhance
diversity by adopting an EH model that accepts continuous
values over a finite range, thus, providing a more precise model
because other approaches are prone to quantization error.
Lastly, as far we know, the problem of rate maximization for
multi-carrier and multi-user systems in EH communications
with discrete MCSs has not been studied in literature, so, we
present a heuristic algorithm to tackle the problem in offline
scenarios and evaluate performance of the proposed solution.
Hence, our contributions can be summarized to:

o Mathematical formulation of resource allocation problem
with realistic model for link adaptation (discrete MCSs);

o More precise EH model based on Markov processes with
states represented by continuous intervals;

o Heuristic solution (offline case) that provides close-to-
optimal results at low computational cost.

III. SYSTEM MODELING

Our scenario consists of a BS located in the center of a
circular cell of radius R that transmits to J users. Moreover,
the system has a total of N OFDM subcarriers, and allows M
possible MCS levels per subcarrier. In our problem, informa-
tion is transfered through 7' transmission time intervals (TTIs),
and for each TTI the BS harvest H; units of energy, where
represents the i-th TTI. Assuming that -, is the needed SNR
to achieve the m-th MCS level, and that «; , ; denotes the
channel gain between subcarrier n and user j for the ¢-th TTI,
we define

2
0" Ym

r —
Pin,jm = Qin j7 6]
n,

as the required power to user j transmit in the subcarrier n
at the TTI 7 with the MCS m. Also, note that ¢ is the noise
power at the receiver in the bandwidth of a subcarrier. Other
important variables are the maximum energy storage capacity
of the battery, Bpax, and the transmit data rate of the m-
th MCS level, r,,, necessary to define the discrete mapping
Ym ¢— T, for the link adaptation, where 7, < ¥m,+1 and
Tm < Tm41-

On the matter of harvest dynamics we consider a Markov
model for solar radiation, and according to [13], [14], we
can assume a first-order stationary Markov chain. Basically,
stationarity means that the states and transition probabilities
do not vary over time. By first-order process we mean that the
current state is the only and direct cause of the next one. These
assumptions simplify the model, since we have a memoryless
system with only one matrix of transition probabilities that
works for any instant in time. This is not the case for wind
energy [13], that needs a generalized Markov model.

Firstly, let S be the number of states in our model, and
P the square matrix of transition probabilities of order S.
Then, we define P, as the probability of transition from
state [ to state k. We also define the vector v = [vy,...,vg]
where vy represents the probability of finding the system in
state k after a large number of transitions, which is called
marginal probability. Finally, following a model similar to
[14], the harvested energy H; is a random number from
an uniform distribution belonging to a continuous interval
[(k — 1)(Hmax/S), k(Hmax/S)] for k = 1,...,5, where
H,ax 1s the maximum energy that can be harvested, and each
interval represents the S possible states of the Markov chain.
This representation of states as continuous intervals simulates
the actual behavior of the harvested energy, that presents a
continuous nature in practice, thus, being an improvement over
the studies in [1]-[3] that consider discrete values of energy.

IV. PROBLEM FORMULATION AND OPTIMAL SOLUTION

Before showing the problem formulation, we define x; 5, jm
as the binary decision variable that assumes 1 when sub-
carrier n with MCS m is assigned to user j at the i-th
TTI. Furthermore, our goal is to determine pin, that is the
allocated power to subcarrier n at interval ¢, and the subcarrier
assignment n «— j, with 7 = {1,..., T}, N ={1,..., N},
J=A{1,...,J}, and M = {1,..., M} being the set of all
TTIs, subcarriers, users, and MCS levels, respectively, where
ieT,neN,jeJ and m € M. The total data rate from
T transmission time intervals is given by

T N J M
Ttotal = Z Z Z Z T"mTin,j,m- (2)

i=1n=1j=1m=1

Since, for a certain TTI ¢, a subcarrier n can assume only
one MCS m and be assigned to a single user j, we write this
restriction as

J M
SN imgm =1, Vi, Vn. 3)

j=1m=1
Once we determined a feasible configuration for x; y, j m.,
the allocated power to subcarrier n at TTI ¢ can be written as
J M

p?,n = Z Z pzr',n,j,mxi»nvjym’ VZ, VTL, (4)

j=1m=1

and we can finally define the energy consumption causality
constraints given by

t N 1 t
Zzping;ZHi,tZL...,T. (5)
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The constraints in equation (5) mean that the BS cannot
use energy packets which are yet to arrive, and that the
used transmit power at TTI ¢ cannot exceed the harvested
power until that TTI. The constant 7 consists in a factor to
convert energy in/from power, i.e., the corresponding energy
is obtained by multiplying 7 by the power. Lastly, we need
to consider that the harvested energy is being stored in the
battery, and that a remaining amount of energy is always left
over. In many situations, a considerable quantity of energy will
be saved for next transmissions, and the next energy packet
added to this saving can exceed the battery capacity. In order
to assure that energy will not be wasted we define

t+1 t N
S Hi—7Y > pt € Brax, t=1,...,T =1, (6)
i=1 i=1n=1

as the battery capacity constraints. Now, we have to maximize
the system throughput by solving the optimization problem:

T N J M
Inﬁx Z Z Z Z TmTimn,j,m, @)

i=1 n=1j=1m=1

subject to
Equations (3), (4), (5) and (6), (8a)
Tin,jm € 10,1}, Vi, Vn, Vj, Vm. (8b)

The problem described above is an ILP (Integer Linear
Programming) mathematical optimization, that in general is
a NP-hard problem. Algorithms based on BB (Branch and
Bound) methods provide optimal results at the cost of high
computational complexity, specially when the number of
constraints and variables is increased. Hence, we obtained
the optimal solution through the IBM ILOG CPLEX solver
[15]. Due to the high computational complexity to obtain
the optimal solution, we propose in the next section a low-
complexity algorithm to solve the problem.

V. HEURISTIC SOLUTION

A classical and optimal bit loading algorithm for point-to-
point links with deterministic power supply is the HH (Hughes
Hartogs) solution [16]. The main idea of this algorithm is to
raise the MCS level of the subcarriers that need less power
to reach the next level. This procedure is repeated in iterative
manner while there is available transmit power or until all
subcarriers achieve the maximum MCS level. Naturally, the
HH algorithm could not be applied in a EH system since using
all the available power on the battery at TTI 7, represented
by b;, is not the best option. In this section, we propose a
solution that limits to /; the maximum used power per TTI .
And instead of starting to load the subcarriers that require the
least power, the heuristic begins loading the subcarriers with
smaller cost per bit, defined by c; , .. Firstly, we calculate
Din,jm using its definition in equation (1), and in the next
step we determine an initial power allocation ¢;',, by taking
the minimum required power of the last MCS level among all
users. Consequently, we obtain an initial subcarrier assignment
Ui, and define p; , . as the required power for the users
selected in this assignment.

Algorithm 1 HH-Based Heuristic Power Allocation

: Calculate p; n,j,m using equation (1)

g, =min(pl, . Vi€ J), Vi, Vn

t Ui, = argmin(p; o, 1V € J), Vi, Vn

p?,n,m :p;n j,m? i’ VTL, Vm7 forj = Ui,n

:for v < 1to 7 do

for n < 1 to N do

m =M
while ¢, > % Z,ivzl 'y do

m=m—1

10: %G n = Pin,m

11: end while

12: Aijn =m

13: end for

14: end for

15: qi = 01 42, Vi

16: AdjustReq(q, X, p®, q*)

17: Arpy—1 =7rm — Tm—1, form=2,..., M

pi,n,mfl = p?,n,m - psi;,n,rnfl7 VZ’ Vn’ form =2,..., M

19: ¢in,m = Apsi'ynﬂm/Arm, Vi, Vn, form=1,...,M — 1

20: ¢;p,p = 00, V2, Vn Ap;nyM =00, Vi, Vn

21: by = h1 + bo p?’n =0, Vi, Vn

WRIPN DD =

22: >\i,n = 1, Vi, Vn )\i,l = 0, Vi

23: for i < 1 to T do

24: d; =0

25: if 7 < T then

26: di = (bi i1 @ — @ Dfmiyr he)/ S ae
27: if d; <0 thend; =0

28: end if

29: if hiy1 4+ di > bmax then d; = brmax — hit1
30: end if

31: end if

32: li=b;—d; Spow=0 p=0 n=1

33: while spow < I; do

34: L

35: )\i,n =Ain+1

36: n = argmin(c; 1,1 : Vk € N)

37: p= Apf-yn’l

38: Cinym = Cinym+1, form=1,... M —1
39: Apin’m :Api’nymﬁ_l, form=1,..., M —1
40: Spow = Spow + P

41: end while

42: if ¢ < T then

43: f = (hi+1 + b’L - Zi;vzl Pz-ayk) - bmax

44: if f >0 and spow < b; then p? = =p2 +p
45: Ain = Nin + 1 ' ’

46: else if f > O then aux = h;41 + b; — bmax
47: AdjustPA(X, u, p?, p*, i, aux)

48: end if

49: bit1 = hit1 +b; — Zﬁ;l p?’n

50: end if

51: end for

. T N
52: Tiotal = 21:1 Zn:1 Tm, for m = XA; n

The for loop from lines 5 to 14 decreases the MCS level
of a subcarrier n until its power becomes smaller than the
average over all subcarriers in TTI 7. Then, the resulting
MCS is stored in \;, and after the loop ends we calculate
q;, that is the total power requirement for each TTL In line
16 we call the procedure AdjustReq, that reduces the MCS
level in overloaded carriers until the power requirement g;
gets smaller than the average over all transmissions. This
procedure is shown in Algorithm 2. These adjustments give a
more accurate estimation of the power to be used in practice,
because it is not worthy to spend resources in subcarriers
that require much power to achieve a higher modulation level.
Alternatively, we prefer to save power for subcarriers that, in
future transmissions, will experience more favorable channel
conditions. Continuing Algorithm 1, we compute the data rate
increase Ary, and the incremental power matrix Ap;,, ., in

325



XXXV SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT2017, 3-6 DE SETEMBRO DE 2017, SAO PEDRO, SP

Algorithm 2 Adjust Requirement

Algorithm 3 Adjust Power Allocation

1: procedure AdjustReq(q, \, p%, q®)

2: forzeltono

3: while ¢; > = Zt 1 gt do

4: n = argmax(q? 't Vk € N)
5: m=Ajn—1

6: qza,n = pi,n,m

7. >"i,n =m

8: a=Yn_idt,

9: end while

10: end for

11: end procedure

order to determine the efficiency ratio ¢; 5, .,,, that measures the
cost per bit for each MCS leap. Since the rate increase Ar,, is
not uniform as m grows, the first subcarriers to be loaded are
chosen by evaluating c; ,, ., which is an improvement over
performing a selection through Ap? , . as the HH algorithm
proposes [16]. Moreover, we set the last increment in ¢; n as
and Ap; ,, ), to infinity for indicating that the final MCS level
has been reached. Then, in line 21 we initialize the power
allocation pf ,, to zero, and define the value of by (available
power at TTI 1) as the sum between h; (available power at
TTI 1 resulting from the conversion to power of the harvested
energy H1) and by (the initial power at the battery). Next, the
MCSs )\;,, are set to one except for ), 1, that is set to zero
because it always starts incremented by 1 in line 35.

Furthermore, we finally run the for loop from lines 23 to
51, that calculates for every ¢+ < T the power decrease d;
applied to b; in order to compute the power limit /; to be
spent on the ¢-th TTIL. The calculation of d; in line 26 is an
intuitive result, since the greater the available power b; and
the requirements for other transmissions (g; for ¢ > 1) are,
the greater is the decrease applied to b; and lower will be
l;- On the other hand, the bigger the requirement ¢; and the
available power for future transmissions (h; for ¢t > ) are, the
smaller is the value of d; and higher will be ;. In fact, the
expression in line 26 is the solution of equation (b; —d;)/q; =
(hiv1+d; —diy1)/qiv1 = -+ - = (hr+dr_1)/qr for d;. This
equation means that the ratio between available power and
required power must be the same for each TTI, thus, applying
the principle of reserving more power to the TTI that needs
it the most. The condition in line 27 is necessary to enforce
the energy consumption causality constraints, because when
d; < 0, this would mean to take power from energy packets
still not accessible. And the extra condition in line 29 adjusts
d; to prevent the violation of the battery capacity constraints.

Thereafter, the while loop from lines 33 to 41 applies
the HH-based method described previously in the beginning
of this section, and obtains the power allocation pf, for
TTI 4 and the corresponding MCSs J; ,. Nevertheless, we
need to calculate f, that represents the battery overflow in
case the current power allocation is enforced. This becomes
necessary because the power increase p is discrete, and the
sum of the allocated power never equals [;. If the overflow
f > 0 and the power sum S, does not exceed what is
available in the battery, we employ the last power increment
p chosen previously. This ensures that f < 0 because of the
condition in line 29, as spqy surpasses l; guarantees that the
battery power limit by, Wwill be observed. Our final option

1: procedure AdjustPA(A, u, p?, p*, i, aux)

2: gn = sortdesc(ay; p, j : Vj € J) Vn, where gn = {gn,; : Vj}
3 wy, = argsortdesc(a; p ;1 V5 € J), Vn, wn ={wy,;:Vj
4 f=1

5: while f > 0 do

6: n = argmax(gy 2 : Vk € N)

7. m = )\i,n

8 J = wn2

9: Ujn = ]

10: p?,n = p§,n,j,m

11: Wn,j = Wn,j11, for j=2,...,J -1

12: gn,j :gn7j+1,forj:2,...,J—1

13: gn,g =0

14: f =aux — 27];’:1 Pe o,

15: end while
16: end procedure

to eliminate the overflow is to call the procedure AdjustPA,
that gradually increases the power consumption by changing
the user to subcarrier assignment stored in u; ,. Since the
achieved MCS is kept the same when changing users, this
procedure has the disadvantage of raising the consumed power
without improving the data rate. However, this is necessary to
always comply with the restrictions in equation (6). This raise
in power is gradual because we choose the users with greater
gains in the second column of g,, ; (the first column contains
values already selected). Given large enough values for N
and J the loop in procedure AdjustPA is guaranteed to finish
and the problem constraints are imposed. This procedure is
presented in Algorithm 3, where sortdesc is a function that
returns a vector sorted in descending order and argsortdesc
returns the indices corresponding to the sorted values. Lastly,
the battery level is updated in line 49 by adding the remaining
amount to the next harvested value, and after the for loop ends
the total data rate is computed in line 52.

VI. SIMULATION RESULTS

On the goal to compare optimal and heuristic solutions, we
performed simulations of the proposed model with M =16, N
=15, J=10,and T =3 to 12. Our choice to vary 7 is justified
by the fact that decisions related to power saving become
more difficult as T increases. The results were obtained by
running 3,000 instances for each set Ay = {T,N,J, M},
counting to a total of 30,000 instances analyzed. The mapping
through MCSs is D = {(v,r): (0,0), (0.3,25), (0.4,39), (0.6,63),
(0.9,101), (1.4,147), (2.1,197), (3.5,248), (5.1,321), (7.8,404),
(12.3,458), (19.1,558), (28.8,655), (42.7,759), (79.4,859),
(109.6,933)}, with 7 in bps. Other important constants were
defined as hpax = 112 mW, by = 208 mW, o2 = 4.74
x 10716 W, with Qv p,; ranging from 1078 to 10719, Also,
the number of states of our Markov model is S = 7, with
each state being an interval of length 16 mW. Initially, the
simulation distributes uniformly J = 10 users inside a circular
area of radius R = 467 m, and establishes a minimal distance
of 70 m between user and BS in order to avoid near-field
effects. Then, we define the Markov chain initial state k
based on the marginal probabilities in v, and determine the
succession of states using the transition probabilities P, ; for
obtaining all the values of h;. After that, we build the matrices
necessary to specify the ILP described in section IV, and
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Fig. 1. Average data rate versus number of TTIs, for M = 16, N = 15,
J =10, T =3 to 12, hmax = 112 mW, bpax = 208 mW, and S = 7.

solve the optimization problem through the CPLEX solver,
that returns the values of x;, ;. The total throughput of
the system is calculated according to equation (2). The sub-
optimal solution is obtained next by running Algorithm 1, and
by applying HH algorithm we obtain a result denoted as naive
solution. Figure 1 shows the results for ten different values
of T', where the performance metric is the average data rate
over all the 3,000 instances evaluated by each solution. And
as T increases the difference between optimal and heuristic
grows, since the error of estimating g; in procedure AdjustReq
is greater as 1" becomes larger. However, our results remain
very close to optimal as the plot indicates. In fact, the average
difference between optimal and heuristic solutions exceeds 1
kbps only for T = 12, as indicated by Figure 2. The best
results are obtained for T' = 3, with average difference of
just 110 bps. The naive solution (HH) has poor performance
when compared to optimal solution, as Figure 2 shows that the
difference for T = 12 is greater than 3.5 kbps. Furthermore,
the complexity/performance gain is high, since for 7' = § the
average execution time of a single scenario is 1338 ms for
optimal solution, and only 16.7 ms for heuristic, that is 80
times faster in this case. All these results were obtained from
a Windows 10 computer with a 2.4 GHz core i7 intel processor
using the software CPLEX.

VII. CONCLUSIONS

In this paper we studied the problem of resource allocation
for rate maximization in OFDMA systems with an EH Base
Station transmitting to several users. Firstly, we formulated the
problem in an offline scenario in the form of an ILP. Secondly,
we proposed a heuristic solution that, according to simulation
results, achieves near-optimal performance at the cost of low
computational complexity in the simulated scenario. We also
implemented the discrete relation between SNR and data rate
through MCSs, that is a more realistic assumption than the
continuous mapping proposed in several studies referenced by
this work. Finally, our EH model follows a Markov chain that,
differently from other models found in literature, has states
represented by continuous intervals, giving the advantage of
simulating the actual nature of the energy arrivals. To the best
of our knowledge, the problem formulation proposed in section
IV has not been presented in literature yet, and the algorithm
in section V introduces a novel solution for problems that deal
with EH technology in wireless communications.

4 T T T T T T T T
—&A— Heuristic
35 || —©— Naive

3t

©
o

n

average rate difference (kbps)
Y

number of TTIs

Fig. 2. Average rate difference versus number of TTIs, for M = 16, N = 15,
J =10, T =3 to 12, hmax = 112 mW, bpax = 208 mW, and S = 7.
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