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Rank-One Tensor Modeling Approach to Joint
Channel and Symbol Estimation in Two-Hop

MIMO Relaying Systems
Bruno Sokal, André L. F. de Almeida and Martin Haardt

Abstract— This paper proposes two semi-blind receives for
joint channel and symbol estimation in MIMO relay-based
communication systems. These receivers are developed for a
two-hop system, assuming a tensor coding at the source and
relay nodes. The central idea of the proposed approach is on the
rank-one tensor modeling of the received signal, which allows the
use of efficient estimation algorithms. The first receiver utilizes
an iterative solution based on the alternating least squares (ALS)
algorithm, while the second provides closed-form estimations
of the channel and symbol matrices from a truncated higher
order singular value decomposition (T-HOSVD). The proposed
approach has a lower complexity compared to the receiver
developed in a previous work, while providing remarkable
performance.

Keywords— MIMO systems, Cooperative communications,
tensor decompositions, semi-blind receiver.

I. INTRODUCTION

The use of relay stations in multiple input multiple output
(MIMO) wireless communication systems has shown to be a
promising technique to combat signal propagation effects, such
as path loss and shadowing, leading to increased capacity and
coverage in wireless communication systems [1], [2], [3]. In
this context, amplify-and-forward (AF) relaying is an attractive
solution, being preferable when complexity and/or latency
issues are of importance [3]. The benefits of relay-assisted
wireless communications strongly rely on the accuracy of the
channel state information (CSI) for all the links involved in
the communication process. Moreover, the use of precoding
techniques at the source and/or destination [4], [5] often
requires the instantaneous CSI knowledge of all links.

Since the pioneering work [6], the use of tensor
decompositions has been widely studied for modeling
wireless communication systems. The practical motivation
for tensor modeling comes from the fact that one can
simultaneously benefit from multiple signal diversities,
like space, time and frequency diversities, for instance.
Moreover, tensor approaches offer the possibility of using
blind/semi-blind techniques for channel and symbol estimation
under uniqueness conditions more relaxed than those with
conventional matrix-based solutions.

In the context of wireless communications, tensor
decompositions have proved useful in the development of
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semi-blind receivers to solve problems of channel and symbol
estimation [7], [8], [9]. In the specific case of MIMO
relaying communication systems, a few works have proposed
tensor modeling based receivers (see, e.g. [10], [11], [12],
[13]). In [13], the authors provide a generalization of [12]
by assuming a full tensor coding at the source and relay
nodes. Therein, two semi-blind receivers are proposed by
exploiting a Nested Tucker model for the received signal
tensor. The first one relies on an iterative alternating least
squares (ALS) algorithm while the second one consists of
a two-stage Kronecker factorization algorithm based on two
successive singular value decompositions (SVDs). The main
limitation of the approach of [13] is the high computational
complexity of the ALS-based receiver, which is intrinsic to the
Nested Tucker model, requiring extensive matrix products and
pseudo-inverse computations at every iteration. On the other
hand, the Kronecker factorization receiver is suboptimal since
it divides channel and symbol estimations in two steps, the
latter being dependent on the accuracy of the first.

In this paper, we present two semi-blind receives for
joint channel and symbol estimation in two-hop MIMO
communication systems. Following the system model and
assumptions of [13], we start from a Nested Tucker tensor
model and recast the received signal after space-time
combining as a rank-one third-order tensor (i.e. a standard
PARAFAC model), whose factors are the source-relay channel,
relay-destination channel, and symbol vectors. An orthogonal
design for the combined source-relay coding structure is
proposed, which translates space-time combining into matched
filtering. Exploiting the conceptual simplicity of the resulting
PARAFAC model, two efficient semi-blind receivers are
derived to jointly estimate the channels and symbols. The first
receiver utilizes an iterative solution based on the alternating
least squares (ALS) algorithm, while the second provides
closed-form estimations of the channel and symbol matrices
from a truncated higher order singular value decomposition
(T-HOSVD). The proposed receivers have a lower complexity
compared to the Nested Tucker based receivers developed
in [13] without performance degradation. Moreover, essential
uniqueness of the channel and symbol matrices is ensured up
to a scalar factor for each matrix.

The rest of this paper is organized as follows. In Section
II, some useful notation and properties are introduced and
the basic material on tensor decompositions is given. In
Section III, we present the system model and formulate the
received signal using the proposed tensor formalism. Section
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Fig. 1. Illustration of a PARAFAC decomposition as a sum of outer products.

IV presents the proposed Tri-ALS and T-HOSVD receivers.
In Section V, simulations are presented and discussed. Finally,
Section VI draws the finals conclusions and perspectives.

II. TENSOR DECOMPOSITIONS

A. Notation and Properties

Scalars are denoted by lower-case letters (a, b, ...), vectors
by bold lower-case letters (a,b, ..), matrix by bold upper-case
letters (A,B, ..), tensors are defined by calligraphic
upper-case letters (A,B, ...). The vec(·) operator vectorizes
a matrix by stacking its columns, while unvec(·) does the
inverse operation. The tensorization of a vector x ∈ CI1I2I3×1

into a third-order tensor yields X I1×I2×I3 . Aᵀ A†A∗AH

stand for transpose, Moore-Penrose pseudo-inverse, conjugate
and hermitian of A, respectively. The operators ⊗, � and
◦ define the Kronecker, Khatri-Rao and the outer product,
respectively. For a fourth order tensor X ∈ CI1×I2×I3×I4 , we
can define two subsets of modes, for example S1 = {I1, I2}
and S2 = {I3, I4} and form a matrix XI1I2×I3I4 , whose
elements are mapped from X according to the little-endian
convention [14]. For an N -th order tensor X ∈ CI1×···×IN ,
its n-mode matrix unfolding X(n) is obtained by taking
S1 = {In} and S2 = {I1 · · · In1

In+1 · · · IN}. The n-mode
product between a tensor X ∈ CI1×···×IN and a matrix
A ∈ CJn×In is defined as Y = X ×1 A, where YJ1×I2×I3 ,
so that Y(n) = AX(n). Consider two third-order tensors
X ∈ CI1×R×I2 and Y ∈ CR×J1×J2 , where the dimension
of the 2-mode of X is equal to the dimension of the 1-mode
of Y . The (2,1)-mode contraction between these two tensors

is symbolized by G = X •12Y , i.e. gi1i2j1j2 =
R∑

r=1
xi1ri2yrj1j2 ,

where G ∈ CI1×I2×J1×J2 . A rank-one third-order tensor is
defined as the outer product of three vectors and is symbolized
by X I1×I2×I3 = a ◦ b ◦ c, with a ∈ CI1×1, b ∈ CI2×1 ,
c ∈ CI3×1. Note that vec(a ◦ b ◦ c) = c⊗ b⊗ a. We make
use of two useful properties involving the Kronecker product.
For matrices A, B and C of compatible dimensions, we have

vec(ABC) = (Cᵀ ⊗A)vec(B). (1)

B. PARAFAC decomposition

The PARAFAC decomposition of X I1×I2×I3 is given by

X = I3,R ×1 A×2 B×3 C, (2)

where I3,R is a diagonal tensor of order 3 and dimension R,
A ∈ CI1×R, B ∈ CI2×R, C ∈ CI3×R are the factor matrices,
and R is the tensor rank. Figure 1 provides an illustration
of the PARAFAC decomposition as a sum of outer products
involving the columns of the corresponding factor matrices.

 X   =    B  C     U 
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  DWI1
R4

I3

R1

I2

R1
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R3

I4

R4

Fig. 2. 3-D illustration of a 4-D Nested Tucker tensor.

The PARAFAC decomposition can be written as a function of
its 1-mode, 2-mode and 3-mode unfoldings as follows

X(1) = A(C �B)ᵀ ∈ CI1×I2I3 (3)

X(2) = B(C �A)ᵀ ∈ CI2×I1I3 (4)

X(3) = C(B �A)ᵀ ∈ CI3×I1I2 . (5)

C. Tucker decomposition

The Tucker decomposition of X ∈ CI1×I2×I3 is given by

X = G ×1 A×2 B×3 C, (6)

where G ∈ CP×Q×R is the core tensor, and A ∈ CI1×P , B ∈
CI2×Q and C ∈ CI3×R, are the factor matrices. The Tucker-2
decomposition is a special case of (6) with C = IR), yielding
X = G ×1 A×2 B. The Tucker-1 decomposition corresponds
to having B = IQ and C = IR), yielding X = G ×1 A.
D. Nested Tucker decomposition

The Nested Tucker decomposition of a fourth-order tensor
X ∈ CI1×I2×I3×I4 with factor matrices as B ∈ CI1×R1 , U ∈
CR2×R3 , D ∈ CI3×R4 and core tensors C ∈ CR1×R2×I2 ,
W ∈ CR3×R4×I4 ; can be written as [13]

X = T (1) •12 T (2) ∈ CI1×I2×I3×I4 , (7)

where the tensors T (1) and T (1) are given by:

T (1) = C ×1 B×2 Uᵀ ∈ CI1×R3×I2 (8)
T (2) = W ×2 D ∈ CR3×I3×I4 . (9)

Note that T (1) and T (2) follows a Tucker-2 and Tucker-1
decompositions, respectively. Therefore, the Nested Tucker
decomposition can be seen as the contraction between
Tucker-1 and Tucker-2 tensors. This decomposition is
illustrated in Figure 2.

III. SYSTEM MODEL

A. Modeling preliminaries

Consider a one-way two hop MIMO relaying system,
where MS and MD denote the number of antennas at
the source and destination, respectively. We assume that
the relay has MR1

receive antennas (operating during the
first hop) and MR2 transmit antennas (operating during the
second hop). Figure 3 provides an illustration of the system
model. The source-relay channel H(SR) ∈ CMS×MR1 and
the relay-destination H(RD) ∈ CMD×MR2 are assumed to
undergo flat Rayleigh fading and are constant during the whole
transmission period. At both the source and relay, space-time
coding is assumed. Let S ∈ CN×R denote the symbol matrix
containing R data streams with N symbols each. At the source,
these R data streams are jointly spread across MS antennas
and P time slots by means of a space-time coding tensor
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Fig. 3. System model.

C ∈ CR×MS×P . A space-time redundancy is then created
since each symbol is repeated P times and loaded into all
MS antennas. The signal received at the relay (in absence of
noise) can be written as

X (SR) = C(1) ×1 S×2 H(SR)ᵀ ∈ CN×MR1
×P . (10)

In the second hop, the source stays silent while the relay
forwards a space-time coded version of the received signal to
the destination. LetW ∈ CMR1

×MR2
×J denote the space-time

coding tensor used at the relay. The coded signal is given as:

X̄ (SR) = X (SR) •12W ∈ CN×P×MR2
×J (11)

In a way similar to the first hop, the role of tensor W is
to jointly spread the received signal across MR2

transmit
antennas and J time frames, where each time frame comprises
P time slots. At the destination, the noiseless received signal
is then given as

X (SRD) = X̄ (SR) ×3 H(RD) (12)

Define H̄(RD) as the space-time coded channel linking the
MR2

relay antennas to the MD destination antennas:

H̄(RD) =W ×2 H(RD) ∈ CMR1
×MD×J (13)

Plugging (11) into (12), and using (13), we get:

X (SRD) =
(
X (SR) •12W

)
×3 H(RD)

= X (SR) •12
(
W ×2 H(RD)

)
= X (SR) •12 H̄(RD) ∈ CN×P×MD×J . (14)

Comparing (14) with (7) we conclude that the signal received
at the destination follows a Nested Tucker model, and the
following correspondences can be established:

(T (1), T (2))⇐⇒ (X (SR), H̄(RD)) (15)

(B,U,D)⇐⇒ (S,H(SR),H(RD)) (16)
(I1, I2, I3, I4)⇐⇒ (N,P,MD, J) (17)

(R1, R2, R3, R4)⇐⇒ (R,MS ,MR1 ,MR2) (18)

Slicing the received signal tensor X (SRD) by fixing the second
and fourth modes (i.e. p and j) yields the following

X
(SRD)
.p.j = SC..pH

(SR)W..jH
(RD)ᵀ ∈ CN×MD (19)

Let xpj
.
= vec(X

(SRD)
.pj. ). Using Property (1), we have:

xpj = (H(RD) ⊗ S)vec(C..pH
(SR)W..j)

= (H(RD) ⊗ S)(Wᵀ
..j ⊗C..p)vec(H(SR)) (20)

Applying again the same property in (20) yields

xpj =
(
vec(H(SR))ᵀ ⊗H(RD) ⊗ S

)
vec(Wᵀ

..j ⊗C..p) (21)

B. Noisy model and rank-one tensor formulation

Let V(SR) ∈ CN×MR1
×P be the additive noise tensor at

the relay. The overall noise at the destination is given by
V(SRD) = V(1) + V(2), where V(1) = V(SR) •12 H̄(RD) ∈
CN×P×MD×J is the filtered noise that is forwarded by the
relay, while V(2) ∈ CN×P×MD×J is the additive noise term
at the destination. Defining X

.
= [x11, . . . ,xP1, . . . ,xPJ ] ∈

CNMD×PJ as a matrix collecting the received signals during
PJ time slots, and including the noise term, we arrive at the
following compact representation

X = YZ + V, (22)

where Y ∈ CNMD×RMR2
MSMR1 and Z ∈

CRMR2
MSMR1

×PJ are “Kronecker-structured” matrices
defined as

Y
.
= vec(H(SR))ᵀ ⊗H(RD) ⊗ S (23)

Z
.
=
[
vec(Wᵀ

..1 ⊗C..1), . . . , vec(Wᵀ
..J ⊗C..P )

]
, (24)

and V ∈ CNMD×PJ is the unfolding matrix of the global
noise, which is constructed in the same way as X.

It is worth drawing a comment on the meaning of matrices
Y and Z. The first involves the Kronecker product of the
unknown factors of our system model (i.e. channel matrices
and symbol matrix), which we seek to estimate. The latter
represents the equivalent space-time coding matrix, accounting
for the combined source-relay coding operations. In other
words, (22) provides an input-output relation. Since the coding
tensors C and W are known at the receiver, a direct approach
to estimate the useful signal matrix Y in the presence of noise
from (22) is to use a least squares (LS) criterion, i.e.

Ŷ = argmin
Y
‖X−YZ‖F , (25)

the solution of which is given by Ŷ = XZ†. Note that Ŷ is a
linearly transformed version of the received signal obtained by
combining (filtering) the columns of the matrix X containing
the space-time samples of the received signal with a zero
forcing filter designed from the effective space-time coding
matrix Z. Let us have a closer look at the structure of Ŷ.
This matrix can be partitioned as follows

Ŷ =

 P(1,1) · · · P(1,MR2
MSMR1

)

...
...

...
P(MD,1) · · · P(MD,MR2

MSMR1
)

 , (26)

i.e., Ŷ can be viewed as a concatenation of MD row blocks
and MR2

MSMR1
column blocks, respectively, where the

(i, j)-th block Pi,j is of size N ×R.
Let pi,j

.
= vec(Pi,j) ∈ CNR×1, and collect all the

vectorized blocks in an NR×MDMR2
MSMR1

matrix

P
.
=
[
p1,1, . . . ,p(MD,1), . . . ,p(MD,MR2

MSMR1
)

]
,

where the index i varies faster than the index j in the
construction of this matrix. Finally, by vectorizing P, we
obtain a vector p ∈ CNRMDMR2

MSMR1
×1 that admits the

following separable Kronecker structure

p = h(SR) ⊗ h(RD) ⊗ s, (27)
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Fig. 4. Rank-one decomposition of the filtered signal tensor.

with h(SR) ∈ CMR1
MS×1, h(RD) ∈ CMDMR2

×1, and s ∈
CNR×1 being the vectorized forms of S, H(RD) and H(SR),
respectively. Since p corresponds to a Kronecker product of
three vectors, its tensorization yields a rank-one third-order
tensor P ∈ CNR×MDMR2

×MR1
MS that can be written as

P = s ◦ h(RD) ◦ h(SR) ∈ CNR×MDMR2
×MSMR1 . (28)

C. Uniqueness
Solving problem (25) requires Z to be full row-rank.

Since Z = Π(W(3) ⊗ C(3))
ᵀΠ, where Π is a permutation

matrix, we have rank(Z) = rank((W(3) ⊗ C(3))
ᵀ) =

rank(W(3))rank(C(3)). Hence, a unique recovery of Ŷ
requires P≥RMS and J≥MR1MR2 . Provided that P is
unique, s, h(RD), and h(SR) can be estimated up to a scalar
factors, i.e., (Ŝ, Ĥ(RD), Ĥ(SR))=(α1S, α2H

(RD), α3H
(SR)),

where α1α2α3 = 1. So, in our system, we assume S(1,1) = 1

and H
(RD)
(1,1) = 1 to remove the scalar factor ambiguity.

D. Coding structure
Its known that choice of the space-time coding structure

affects the receiver performance. In [13], a Vandermonde
structure with random generators was chosen for the coding
tensors C (source) and W (relay). We propose the following
design procedure. Let C(3) ∈ CP×RMS and W(3) ∈
CJ×MR1

MR2 be the 3-mode matrix unlfoldings of the source
and relay coding tensors, respectively. We choose these
matrices as discrete Fourier transform (DFT) matrices, such
that CH

(3)C(3) = IRMS
and WH

(3)W(3) = IMR1
MR2

, i.e.,
P = RMS and J = MR1

MR1
. With this choice, it can be

shown that the equivalent space-time coding matrix Z defined
in (24) is unitary, i.e. ZZH = IRMR2

MSMR1
which means the

solution to problem (25) is equivalent to applying a space-time
matched filter, i.e., Ŷ = XZH. Such an orthogonal design
not only simplifies the receiver processing (by avoiding the
computation of the right-inverse of Z), but also yields a better
performance compared with the structure proposed in [13].

IV. SEMI-BLIND RECEIVERS

We present two semi-blind receiver for joint channel and
symbol estimation, by capitalizing on the rank-one property
of the filtered received signal tensor P .
A. Tri-ALS receiver

The Trilinear (Tri-)ALS algorithm consists of estimating s,
h(RD), and h(SR) in an alternate way by solving the following
three cost functions:

ŝ =argmin
s

||P(1) − s(ĥ(SR) � ĥ(RD))ᵀ|| (29)

ĥ(RD) =argmin
h(RD)

||P(2) − h(RD)(ĥ(SR) � ŝ)ᵀ|| (30)

ĥ(SR) =argmin
h(SR)

||P(3) − h(SR)(ĥ(RD) � ŝ)ᵀ||, (31)

Algorithm 1 Tri-ALS

1: Initialize randomly ĥ
(RD)
0 and ĥ

(SR)
0 ; it = 0;

2: it = it + 1;
3: Calculate an estimate of ŝ

ŝit = P(1)(ĥ
(SR)
it−1 � ĥ

(RD)
it−1 )∗/(||ĥ(SR)

it−1 ||22||ĥ
(RD)
it−1 ||22)

4: Calculate an estimate of ĥ(RD)

ĥ
(RD)
it = P(2)(ĥ

(SR)
it−1 � ŝit−1)∗/(||ĥ(SR)

it−1 ||22||̂sit−1||22)

5: Calculate an estimate of ĥ(SR)

ĥ
(SR)
it = P(3)(ĥ

(RD)
it−1 � ŝit−1)∗/(||ĥ(RD)

it−1 ||22||̂sit−1||22)
6: Return to step 2 and repeat until convergence;
7: Remove the scaling ambiguities;
8: Apply the “unvec” operator to recover Ŝ, Ĥ(RD), Ĥ(SR).

Algorithm 2 T-HOSVD
1: For n = 1, 2, 3:

Compute the SVD of the matrix unfolding P(n);
Ȳ(n) = U(n)Σ(n)V

H
(n)

2: Select the dominant left singular vector from U(n):
ŝ = α1U(1)(:, 1);
ĥ(RD) = α2U(2)(:, 1);

ĥ(SR) = U(3)(:, 1)
Σ(3)V

∗
(3)(1,1)

S(1,1)H
(RD)

(1,1)

;

3: Apply the “unvec” operator to recover Ŝ, Ĥ(RD), Ĥ(SR).

where P(n=1,2,3), are the n-mode unfoldings of the tensor
P , constructed according to equations (3) to (5) with the
following relationship: (A,B,C)⇐⇒ (s,h(SR),h(SR)). The
Tri-ALS algorithm is summarized in Algorithm 1.

B. T-HOSVD receiver

The Truncated (T)-HOSVD algorithm is a closed-form
solution based on subspace estimation. It consists of taking
the HOSVD on the filtered received signal tensor P , which
corresponds to calculating the SVD of its matrix unfoldings.
Since P is a rank-one tensor, its three matrix unfoldings can be
approximated as rank-one matrices. Therefore, s, h(RD), and
h(SR) are obtained from the dominant left singular vectors
of the unfoldings P(1) ∈ CNR×MDMR2

MSMR1 , P(2) ∈
CMDMR2

×NRMSMR1 , and P(3) ∈ CMSMR1
×NRMDMR2 . The

T-HOSVD algorithm is described in Algorithm 2.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the
proposed receivers in terms of symbol error rate (SER),
normalized mean square error (NMSE) for channel estimation,
computational complexity, and convergence, comparing with
the receivers proposed in [13]. We consider 4-QAM
modulation. The results are averaged over 104 Monte Carlo
runs, each run corresponding to an independent realization
of the channels, symbols, and noise. The channel matrices
are assumed to have i.i.d. complex Gaussian entries with
zero-mean and unitary variance.

Figure 5 depicts the performance of the Tri-ALS and
T-HOSVD receiver in comparison with the two receivers
proposed in [13] (namely, ALS Nested Tucker and 2LSKP
receivers), using the proposed DFT structure for the source
and relay coding tensors. It can be noticed the two proposed
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Fig. 5. SER vs. SNR performance.
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receivers reach the same performance as those of [13],
while being less complex, as will be shown in the sequel.
Figure 6 shows the NMSE performance of the estimated
channels. As for the SER performance, the Tri-ALS and
T-HOSVD receivers provide the same performance as the
Nested Tucker based receivers [13]. We can note that in all
cases, the NMSE curves decrease linearly as a function of
the SNR. Now, we evaluate the computational complexity of
the proposed receivers by measuring the number of floating
point operations (FLOPS) required by the different receivers
to accomplish joint channel and symbol estimation. To this
end, the lightspeed MATLAB toolbox [15] was used to count
the number of FLOPS. Figure 7 corroborates the benefits
of the proposed rank-one tensor based receivers in terms of
computational complexity, when compared to the competing
receivers. We can note that the Tri-ALS receiver becomes
much less complex than its competing Nested Tucker based
ALS solution. When it comes to the closed-form receivers,
these results show that the T-HOSVD receiver is more
attractive than the 2LSKP receiver as the number MD of
antennas grows. Another advantage of T-HOSVD over 2LKSP
is related with parallel implementation. Since the T-HOSVD
consists of three independent SVDs, the estimation of the
source-relay, relay-destination and symbol matrices can be
carried out in parallel. This is not the case of 2LSKP, which
consists of two consecutive SVDs steps, where the result of
the second step depends on the output of the first. Figure
8 shows the impact of the proposed DFT-based design for
the source and relay coding tensors on the convergence of
ALS-based receivers. To this end, we compare the proposed
Tri-ALS receiver with the Nested Tucker based ALS receiver.
For the latter, we consider the Vandermonde structure with
random generators, as proposed in [13], and the proposed DFT
coding structure. Note that the proposed one yields a reduction
on the number of iterations to convergence. For high SNR, the
number of iterations reduces approximately from 10 to 3.

VI. CONCLUSIONS

We have proposed a new tensor modeling approach to
the problem of joint channel and symbol estimation in a
two-hop MIMO relaying system. Our approach capitalizes
on a rank-one tensor modeling of the received signal after
space-time combining and yields simple receiver algorithms,
which are less complex than the competing solutions proposed
in the literature. Perspectives for future work include the
generalization to the multi-relay/multihop scenario.
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