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Abstract 

This paper discusses aspects of the calculation of likelihood-based confidence intervals for T-year 
floods, with particular reference to (I) the two-parameter gamma distribution; (2) the Gumbel distri- 
bution; (3) the two-parameter log-normal distribution, and other distributions related to the normal by 
Box Cox transformations. Calculation of the confidence limits is straightforward using the Nelder Mead 
algorithm with a constraint incorporated, although care is necessary to ensure convergence either of the 
Nelder-Mead algorithm, or of the Newton-Raphson calculation of maximum-likelihood estimates. 
Methods are illustrated using records from 18 gauging stations in the basin of the River Itajai-Acu, State of 
Santa Catarina, southern Brazil. A small and restricted simulation compared likelihood-based confidence 
limits with those given by use of the central limit theorem; for the same confidence probability, the 
confidence limits of the simulation were wider than those of the central limit theorem, which failed more 
frequently to contain the true quantile being estimated. The paper discusses possible applications of like- 
lihood-based confidence intervals in other areas of hydrological analysis. 

Introduction 

T h e  l i t e ra tu re  o n  the  e s t i m a t i o n  o f  f l oods  o f  g iven  r e t u r n  p e r i o d  is vas t  a n d  

g r o w i n g .  A s p e c t s  d i scussed  c o n c e r n  the  f o l l o w i n g  topics ,  a m o n g  o the r s :  
cho ices  a m o n g s t  p r o b a b i l i t y  d i s t r i b u t i o n s  to  desc r ibe  r e c o r d s  o f  a n n u a l  

f l oods  a t  a g iven  site (Bobee ,  1975; Ki te ,  1977; B o b e e  a n d  Robi ta i l l e ,  1977; 

H o u g h t o n ,  1978); c o m p a r i s o n  o f  p r o c e d u r e s  fo r  e s t i m a t i n g  the  p a r a m e t e r s  

o f  the  selected d i s t r i bu t ions ,  u s ing  the  ava i l ab l e  f l o o d  r e c o r d  fo r  the  site 

( G r e e n w o o d  et al., 1979; L a n d w e h r  et  al., 1979; H o s k i n g  et al., 1985a,b) ;  

use  o f  c o n c o m i t a n t  d a t a  f r o m  n e i g h b o u r i n g  sites wi th  l o n g e r  r e c o r d s  o f  
a n n u a l  f l oods  ( M a t a l a s  a n d  J a c o b s ,  1962; H i r sch ,  1982; G r y g i e r  et al., 
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1989); possible information gain through the use of historic flood marks 
(Benson, 1950; Condie and Lee, 1982; Cohn and Stedinger, 1987); possible 
information gain through the use of  more than one flood event per year 
(Shane and Lynn, 1964; Cunnane, 1973, 1979; Todorovic, 1978); estimation 
of  low-order moments  of  appropriate probability distributions for floods at a 
site without records, by the use of  regression analysis on basin characteristics 
(Thomas and Benson, 1970; Stedinger and Tasker, 1985, 1986; Hosking 
et al., 1985b); the use of  a mathematical model of rainfall-runoff processes to 
transform long rainfall records into an estimated discharge sequence, from 
which extreme floods can be abstracted. All of the techniques discussed under 
these headings have as their principal objectives the estimation, for a site with 
or without flow records, of the flood with T-year return period, i.e. the flood 
which is observed once in T years in the long run. 

An aspect which commonly receives less attention is the calculation of 
confidence intervals for estimates of T-year floods. In addition to the esti- 
mated T-year flood (here denoted by X0) at a particular site, it may also be 
useful to have an interval which includes the true value X 0 with given 
confidence probability. However, where the question of confidence intervals 
is discussed at all, the practice is commonly to assume that the estimate of the 
T-year flood is approximately normally distributed by virtue of the central 
limit theorem. Approximate confidence intervals are then quoted as 
k 0 + zx/(var X0) where z is the appropriate normal deviate, or perhaps as 
X0 + 2x/(var X0) for the 95% interval; this was essentially the approach of 
Lu and Stedinger (1992) using the generalised extreme value distribution. 
However, both computational power and the sophistication of computa- 
tional packages continue to increase rapidly as years pass, and must be used 
to develop the practice of hydrology. The use of methods known to be less 
than fully efficient - such as the method of moments can now rarely be 
justified solely on computational grounds. This paper explores some of  the 
possibilities for the use of likelihood-based confidence intervals as part of the 
procedure for estimating floods with return period T years; the calculation of 
such intervals requires more computational effort than the simple normal 
approximation set out above, but is well within the capabilities of current- 
generation desk-top computers. The theory of  likelihood-based confidence 
intervals, like the normal approximation mentioned earlier, also requires 
that the number (n) of  years of record be large; however, the approximations 
involved in their calculation are quite accurate even for quite small values 
of n, when the normal approximations give inaccurate confidence limits 
(McCullagh and Nelder, 1990). 

This paper reports upon the computing aspects of the calculation of like- 
lihood-based confidence intervals for floods with T-year return period. The 
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value of  T = 100 years is assumed; other values could also have been used. 
Larger values of  T would tend to increase comput ing  times, and conversely, 
but  the longer comput ing  times for larger Tare  not  likely to be substantial. As 
a secondary objective, the paper  explores the performance of  the B o x - C o x  
family of  t ransformat ions  for the est imation of  T-year floods at 18 gauging 
stations in a f lood-prone basin in southern Brazil. 

The statistical basis of  likelihood-based confidence intervals 

It is assumed that  the observed sequence of  n annual  floods at a gauging 
station is a sample of  size n f rom a probabili ty distr ibution of  known form 
f (x ,  0), where 0 is the vector of  model  parameters for the distribution f ( . ) .  The 
vector 0 is taken to have p elements, commonly  p --- 2 or 3. It is also assumed 
that  annual  floods in different years are statistically independent .  Provided 
that  the probabili ty distr ibution is 'correct ' ,  all informat ion in the annual  
floods from the n years of  historic record is contained in the likelihood func- 
tion L(O; x), or equivalently in its logari thm l (0; x) defined by 

n 

l(O;x) = In L(O;x) = ~ ln f(xi, O) (1) 
i=1 

In practice, many  different forms of  probabili ty distr ibution may be con- 
sistent with the data,  each giving rise to its own likelihood function. The 
different log-likelihoods l (.), corresponding to the different candidate prob- 
ability distributions, can also be used to determine whether,  for example, a 
log-normal  distr ibution affords a better representation of  the data  than a 
gamma distr ibution (Atkinson,  1985). This aspect is not  considered in this 
paper,  which assumes that  the appropria te  distr ibution f o r m f ( x ,  0) has been 
identified by likelihood methods  or some other procedure.  

For  the selected distribution f (x ,  0), we denote  by 0 the values of  0 which 
maximise 1 (0; x), satisfying l (0; x) >_ l (0; x) for all 0 values lying within the 
space of  feasible 0 values. Clearly values of  the unknown  parameters  0 that  are 
close to 0 will be more  consistent with the data  (from which t~ was calculated) 
than values of  0 which are remote f rom it; hence we can take as the confidence 
region all those values which lie 'sufficiently close' to 0. Statistical theory 
shows that,  when n is large, the difference between the log-likelihoods at 0 
and at 0 is related to t he  2 distribution. Formally,  the difference 

2 [l (t~; x) - 1 (0; x)] (2) 

is approximately distributed as X 2 with p degrees of  f reedom where, as indi- 
cated above, p is the number  of  elements in the vector of  parameters  O. We can 
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use this result to give a quanti tat ive interpretat ion of 'sufficiently close'. In fact 
if c~ is a selected small probability, say 0.05 or 0.01, and if X2,~ is the tabulated 
value of  X 2 defining an upper-tail  probabili ty of  oL, then the set of  0 values 
which satisfy the condi t ion 

2[ l ( t~ ;x) - l (O;x) ]  <_ X2,~ (3) 

is an approximate  100(1 -c~)% confidence set for the parameters  0, and is 
usually more  accurate in terms of  coverage probabili ty than intervals based 
on the normal  approximat ion.  The use of  (3) is analogous to the use of  the 
t-distribution for defining confidence intervals for the mean # of  a normal  
distribution; this statistic t is there used to define a region 'sufficiently close' to 
the sample mean,  given by I~ - #1 < tsv/n. 

Although the inequality (3) provides a confidence region for the set of  
parameters  0, of  greater interest are the confidence intervals for the quantiles 
of  the d i s t r ibu t ionf (x ,  0): namely those values x0 which satisfy the equat ion 

J x° f ( x ,  0) - = (4) dx P 0 
O(3 

where P = 1 - 1 / T  in the case of  the flood with return period T years. How- 
ever, to every point  0 in the region defined by (3) there corresponds a value X0 
which varies in one-dimensional  ( l-D) space as the parameter  vector 0 varies 
in the p-dimensional  confidence region defined by (3). Thus  by comput ing  X 0 
at points in this p-space, and identifying the largest and smallest X0 values that  
result, we obtain a 100(1 - c~)% confidence interval for the T-year flood X0. 

The calculation of  the confidence region for X 0 can be made  more  efficient if 
a sub-region of  the p-space, within which 0 varies, can be identified, that  
contains the max imum and min imum values of  X0. The following argument  
suggests how this can be done. Suppose that  the distribution f ( x ,  O) is log- 
normal  with two parameters  # and a. Since the T-year flood for this distri- 
but ion is the exponential  of  the T-year flood for a normal  distr ibution with the 
same parameters,  we can work with a normal  distr ibution for which the p- 
space defined by (3) is a 2-D space, in which # and ~r vary. Intuitively, the 
larger # becomes for fixed a, the larger will X0 become, unit  increase in # 
producing unit increase in X0. If  we increase a with # fixed, X0 will also 
increase. Thus,  as # and a vary over their 2-D confidence region given by 
(3), the function X0 = X0(#, or) increases with a for fixed #, and increases with 
# for fixed a. It follows that  the max imum and min imum values of  X0 in the 
confidence region defined by (3) must  correspond to points  (#, o) lying on the 
boundary  of  that  region. Hence, to obtain the max imum and min imum values 
of  X0 which define its 1 0 0 ( 1 -  o~)% confidence interval, it is sufficient to 
calculate X0 = X0(#, ~r) at points  lying on the boundary  of  the 100(1 - c~)% 
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confidence region for (#, or); it is not necessary to calculate X0 -- X0(#, cr) at 
points lying within that region. 

The above intuitive argument can be formalised in the case of the log- 
normal distribution as follows. Denoting by G the expression on the left- 
hand side of (4), and differentiating both sides with respect to # and cr, we have 

(OG/OXo)(OXo/O~) + (OG/Ou) = 0 

(OG/OXo)(OXo/O~) + (OG/O~) = 0 

and, on cancelling non-zero factors, we obtain 

OXo/O~ = 1; OXo/O~ = (X0 - ~) /~  (5) 

In practice we are concerned with upper-tail quantiles such that X0 > #, so 
that both derivatives are positive. Hence the maximum and minimum values 
of X0, as the parameters # and ~ assume different values throughout  their joint 
confidence region, are given by 

Xu = max X0 : OXo/Os = 0; XL = min X0 : OXo/Os = 0 

where s is measured along the curve defining the boundary of  the confidence 
region in (#, ~) space. Detransforming, the quantities exp (Xu) and exp (XL) 
then define the confidence interval for the T-year flood in the original scale of 
measurement. 

Similar arguments hold for the Gumbel distribution with cumulative dis- 
tribution function F(x, #, ~) = exp { -  exp [ - (x  - #)/~]}, for which 

X0 = # - cr In ( -  In P) (6) 

whence OXo/O# = 1 and OXo/Oo = - I n  ( - I n  P), both positive quantities, 
and for the two-parameter gamma distribution. 

Thus, for two-parameter flood frequency distributions f ( x ,  0), likelihood- 
based 100(1 - a)% confidence intervals for T-year floods X0 can be derived by 
identifying the maximum and minimum values of the appropriate quantile of 
the distribution f ( x ,  0), as the point defined by 0 moves along the curve 
defining the boundary of the joint confidence region for 0. When the distribu- 
tion f ( . )  has three parameters, a similar result holds, the confidence region for 
0 now being defined by a surface in 3-D space. 

Computational considerations 

Using the data to be described below, the calculation was restricted to the 
estimation of floods with return period 100 years, for which 95% confidence 
intervals were calculated. Three methods were explored. They are described 
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for the case in which the distribution f ( . )  of annual floods has two parameters, 
01,02; the methods generalise easily for three or more parameters. 

Method  I 

The first method consisted simply of searching along transects, starting at 
the point (01,02) on the likelihood surface where the maximum occurred. 
Thus, starting at the point (01,02), small steps were taken parallel to the 
axes 01 = 0 and 02 = 0, and along lines inclined at 45 ° to these axes; at each 
step, the log-likelihood was calculated to ascertain whether the point lay 
within the confidence region for (01,02) or outside it, this region being defined 
by (3) with p -- 2, a = 0.05 in the case where the vector 0 of parameters has 
two components, 01 and 02. Eight points were therefore identified, lying on or 
very close to the boundary of the confidence region. The values of 01, 02 at 
these eight points were substituted in Eq. (4), which was solved for X0 by a 
Newton-Raphson iteration. The largest and smallest of the eight X 0 values 
then approximately defined the 100(1 - a)% confidence interval (XL, Xu) for 
the T-year f lood\When proceeding along each transect, two step sizes were 
explored: in one case the step sizes were 0.001 times t~ 1 and 0.001 times 02, and 
in the other case ttle step sizes were 0.002 times these values. 

Confidence limits for the T-year flood given by the two step sizes differed by 
very little, all intervals being strongly asymmetric about the estimated value. 
Since this estimation procedure was a first step in an attempt to obtain con- 
fidence limits by a more automatic method, results are not quoted in detail. 
However, the method is straightforward and its computational efficiency can 
probably be improved substantially: for example, by varying the step size 
along each transect, by starting a new transect from the point at which the 
previous transect terminated, and so on. 

Method  H 

This method consisted of both maximising and minimising the solution X0 
of Eq. (4), with respect to the parameters 0, subject to the constraint g(O) = 0 
where, from (3) 

g(O) 2[l (0; x ) l ( O ; x ) ]  2 

The constraint ensures that the search for the maximum and minimum 
values of X0 is made along the boundary of the confidence region for the 
parameters O. The search was made by means of the Nelder-Mead simplex 
algorithm; since this finds the minimum of a function, the value X U (that is, 
the point on the confidence region boundary at which X0 is a maximum with 
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respect to the parameters 0) was found by calculating 

min (-Xo(O){1 + [1 +g2(0)]-1}/2) (7) 
0 

the negative sign ensuring that the function is maximised. Similarly, the value 
of XL, the point on the confidence region boundary for which X0 is a mini- 
mum, was found by calculating 

min {X0(0)[1 + g2(0)]} (8) 
0 

The Nelder-Mead algorithm terminated when (1) the change in every 
parameter of the vector 0 was less than 0.001, or (2) the number of iterations 
of the simplex exceeded a predetermined value, commonly 500. Although the 
use of (8) for the calculation of XL always converged without difficulty, 
calculation of Xu using (7) sometimes failed to converge. Therefore Method 
II was modified as follows. 

Method III 

XL was calculated using (8), but Xu was calculated by replacing (7) by 

min {[1 + g2(O)]/Xo(O)} (9) 
0 

With this modification, the Nelder-Mead algorithm converged for all 18 
basins in Table 1. 

Methods other than those described above are possible but have not been 
explored. For example, one parameter, say 01, could be fixed, and the roots of 
g(O1,02) could be calculated, giving 02; X0 could then be calculated, con- 
ditional on 01, and its maximum and minimum values determined as 01 
takes a series of values. 

Data for stations on the Rio Itajai, SC Brazil 

To explore the calculation of likelihood-based confidence intervals for 
floods with T-year return period, the data were used from 18 gauging 
stations, with annual flow records ranging from 15 to 51 years, on the Rio 
Itajai in the south of Brazil. Except for five stations with 6 years of record or 
less, which were omitted, the data constitute the whole of the published flood 
archive for this basin. The Itajai flows to the Atlantic Ocean, draining a region 
of approximately 15000km 2. The rivers Itajai do Oeste and Itajai do Sul 
combine to form the Itajai-Acu, which is joined by the tributaries Hercilio 
and Benedito on its left bank. Subsequently it joins the Itajai-Mirim to form 
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Table 1 
Gauging stations on the Rio Itajai and its tributaries, used in flood frequency analysis 

River and gauging station Basin area n A Filliben correlation 
(km 2) 

Before After 

Taio 1575 51 0.463 0.9934 0.9956 
Pouso Redondo 130 32 0.573 0.9779 0.9873 
Trombudo 432 20 0.641 0.9851 0.9854 
Adago 163 19 -0.306 0.9076 0.9794 
Itajai, Barracao 364 18 0.789 0.9911 0.9900 
Itajai do Sul, Jar. 720 24 -0.137 0.9630 0.9888 
Itajai-Acu, R. do Sul 5100 36 0.864 0.9940 0.9940 
Hercilio, Ibirama 3314 48 -0.085 0.9118 0.9918 
Neisse Central 195 24 0.314 0.9621 0.9835 
Itajai-Acu, Apiuna 9242 50 0.000 0.9408 0.9943 
Benedito, B. Novo 692 49 0.600 0.9842 0.9900 
Benedito, Timbo 1342 44 0.600 0.9832 0.9916 
ltajai-Acu, Indaial 11151 46 -0.025 0.9440 0.9934 
Testo, R. do Testo 105 33 -0.389 0.9458 0.9875 
ltajai-Acu, Itoupava 11719 15 0.638 0.9925 0.9943 
Garcia 127 32 0.425 0.9890 0.9943 
Luis Alves 204 36 1.072 0.9946 0.9951 
Itajai-Mirim, Brusque 1240 44 -0.270 0.9122 0.9930 

n is the number of years of record; the columns headed 'A' and 'Filliben' are explained in the 
text. 

the Itajai proper, 7 km before it meets the Atlantic Ocean. The lower reaches 
of  the Itajai are subject to extreme flooding. In the floods of  1983 and 1984, 
floods associated with E1 Nifio events caused river levels to rise by more than 
20 m, resulting in extensive damage in the city of  Blumenau, SC. Table 1 lists 
the stations used in the analysis together with the number of  years of  record. 

Calculation of likelihood-based confidence intervals for T-year floods: gamma 
distribution with two parameters 

The two-parameter  gamma distribution 

f ( x ,  #, ~) = (x/#)  "-1 exp ( -x /#) /[#V(~)]  0 _< x < c~ (10) 

was fitted by maximum likelihood, with e; estimated by solving 

In ~ -  0 In F(t~)/0t~ = In A - In G 

A and G being the arithmetic and geometric means of  the data at each gauging 
station. The method used was that due to Greenwood and Durand  (1960). The 
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Table 2 
Two-parameter gamma distribution: comparison of upper 95 % confidence limits, X [~ and X 0 I, 
obtained using Methods II and III 

River, gauging station X~ XIu II g(0) lI g(0) II1 
(m3s -1 ) (m3s -1 ) 

Taio 574.43 575.39 0.0164 0.0081 
Pouso Redondo 162.59 162.54 0.0354 0.0178 
Trombudo 263.32 263.22 0.0396 0.0198 
Itajai do Sul, Jar. 848.47 848.13 0.0396 0.0197 
Testo, R. do Testo 66.04 66.03 0.0227 0.0113 

The values of the constraint g(O) are shown at the point where the criterion (9) was minimised. 

estimate of # was then 2/~.  If the distribution f ( . )  of annual floods 
were known to be gamma distributed, the maximum-likelihood esti- 
mates /2, ~ are known to be sufficient statistics for these parameters, so 
that the estimate of the T-year flood would be distributed with minimum 
attainable variance, whatever the sample size. Of course, we never know if 
the distribution f ( . )  is truly gamma, so benefits associated with statistical 
sufficiency are probably more apparent than real, as in the case considered 
below where the data are transformed to normality by Box-Cox trans- 
formation. 

With the maximum of the log-likelihood surface given by (12, t~), the con- 
fidence region for the true values (#, t~) was given by (3), with 0 = [#, n] and 

= [/2, ~]. Searching along the boundary of this region gave (AVE, XU), the 
confidence interval for X0, the T-year flood. 

In the discussion of Method II above, it was mentioned that the Nelder-  
Mead algorithm for calculating Xu by means of (7) did not always converge, 
although the calculation of X L converged in all cases. In fact, when the two- 
parameter gamma distribution was used, the algorithm converged for only 
five of the 18 stations listed in Table 1. It was this poor performance which led 
to the substitution of (7) by (9). For the five stations for which both mini- 
misation procedures, (7) and (9), converged, the values of Xu are compared 
in Table 2. The values Xt~ and X nI given by the two methods are close. 
Values of g(O), the constraint which forces the minimisation procedure to 
search along the confidence region boundary, are also shown in the table; 
values of g(O) should be near to zero if the constraint is satisfied. Table 2 
does not show values of XL as these were indistinguishable, and values of XL 
given by Method III are shown in Table 3. Table 2 shows that this method 
appeared to search more closely to the curve g(O) -- 0, the values for g(O) 
being about half those given by Method II. 
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Table 3 
Two-parameter gamma distribution: estimates of the 100-year flood, X0, at each of the 18 
basins in Table 1, together with 95% confidence intervals (XL, Xv) 

River, gauging station X L X 0 -¥u 

Taio 433.8 488.5 574.4 
Pouso Redondo 90.0 114.7 162.5 
Trombudo 142.2 181.1 263.2 
Adago 384.0 577.4 589.4 
Itajai, Barracao 478.8 681.7 1168.1 
Itajai, Jararaca 451.8 580.8 848.1 
Itajai-Acu, Rio do Sul 1423.2 1770.4 2400.3 
Hercilio, Ibirama 1565.5 1936.3 2570.9 
Neisse Central 151.5 209.0 337.6 
Itajai-Acu, Apiuna 3227.0 3970.9 5234.1 
Benedito, Benedito Novo 334.7 400.8 510.8 
Benedito, Timbo 802.7 978.9 1279.4 
Itajai-Acu, Indaial 4155.1 5123.5 6770.7 
Testo, Rio do Testo 45.7 53.0 66.0 
Itajai-Acu, Itoupava Seca 2625.5 3644.8 6394.9 
Garcia, Garcia 119.9 159.6 239.4 
Luis Alves, Luis Alves 83.7 98.9 125.1 
Itajai-Mirim, Brusque 413.3 499.8 645.0 

Table 3 shows the 95% confidence intervals (XL, Xu) for the 100-year 
flood X0 at each of the 18 basins shown in Table 1, together with the 
estimates of 2"o. The asymmetry of the 95% interval (XL,Xu)  is notice- 
able in all cases; this contrasts with the symmetry of the approximate 
confidence intervals obtained by assuming that X0 is normally distri- 
buted, by virtue of the Central Limit Theorem. When calculating 
XL by Method III, the values of the constraint g(O) ranged between 
0.0043 and 0.0211; when calculating Xu, g(O) ranged between 0.0081 and 
0.0796. 

On 286 and 386 desk-top computers, the calculation Of XL and Xu was very 
slow, since to calculate them required solution of Eq. (4) and repeated calls on 
a sub-routine for the incomplete gamma function. Furthermore, this sub- 
routine was recompiled at each call. To speed up the calculation, the method 
due to Bobee and Ashkar (1991) was used in which a frequency factor KT is 
calculated by one of two formulae, depending on the value of Cs = 2/x/n.  For 
0 < Cs _< 0.25, KT was calculated using the Wilson-Hilferty transformation 
as  

K-r ------- (2/Cs)({(Cs/6)[ue - (Cs/6)] + 1} 3 - 1) (11) 
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For 0.25 < Cs _< 9.75, the modified Wilson-Hilferty transformation was used 
to give KT: 

K T ~ A {max [H, 1 - (G/6) 2 + (G/6)up] 3 - B} (12) 

where in each case ue is the p th  quantile of the standard normal distribution, 
and where G, 1/A, B and H jhave  polynomial approximations in Cs, as given 
in Bobee and Ashkar (1991, p. 38). Having calculated the frequency factor K v 
by the appropriate method, the solution X0 of Eq. (4) was estimated as 

(KT-~/~ + ~)//~ (13) 

This modification reduced the time of calculation from hours to minutes; in 
the case of the Rio Taio, for example, the time of  about 3 h on a 286 desk-top 
was reduced to 9 min. The changes in the values of XL, -~'0 and X U resulting 
from these modifications were negligible. 

Calculation of likelihood-based confidence intervals for T-year floods: Gumbel 
distribution 

For the Gumbel distribution 

f ( x , a , # ) = a e x p { - a ( x - # ) - e x p [ - a ( x - # ) ] } ,  - c ¢  < x <  c¢ (14) 

the maximum likelihood estimates & and/2 are a solution of  the non-linear 
equations 

1/a= 2 -  E x  e x p ( - a x ) / E  exp ( - a x )  (15) 

exp ( - a # ) =  E exp(-ax)/n (16) 

The first can be solved iteratively for a; substitution of a in the second then 
gives #. The confidence region for 0 = (a, #), around the maximum-likelihood 
estimate 0 = (&,/2), is then given by the inequality (3); Method III was used to 
search along this boundary for the values ArE, Xu defining the confidence 
limits for X0. For the gauging stations listed in Table 1, values of g(O), at 
convergence, ranged from 0.0052 to 0.0657. However, for one of  the stations, 
on Rio do Testo, the calculation of the maximum-likelihood estimates 

= (&,/2) failed initially to converge. Graphical exploration of the likelihood 
surface - easily undertaken on a desk-top computer, and essential for 
thorough analysis - showed no reason why this should be so, and when 
Eq. (15) was modified to give 

1 = a~ - a E x exp ( - a x ) / E  exp (-ax) 
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Table 4 
Gumbel distribution: estimates of the 100-year flood, X0, at each of the 18 basins in Table 1, 
together with 95% confidence intervals (ARE, Xu) 

River, gauging station X L X" 0 X U 

Taio 470.4 512.0 676.9 
Pouso Redondo 96. I 113.3 165.7 
Trombudo 211.4 245.5 783.0 
Adago 506.5 636.9 1308.5 
Itajai, Barracao 597.0 700.3 1997.4 
Itajai, Jararaca 590.4 661.8 1909.9 
Itajai-Acu, Rio do Sul 1697.2 1863.9 9161.3 
Hercilio, Ibirama 2022.6 2192.2 4289.0 
Neisse Central 169.4 207.8 340.3 
Itajai-Acu, Apiuna 3924.8 4279.1 7074.7 
Benedito, Benedito Novo 373.7 397.8 1237.6 
Benedito, Timbo 990.3 1070.5 3978.3 
Itajai-Acu, Indaial 5588.6 6062.3 14781.0 
Testo, Rio do Testo 48.4 57.6 72.0 
Itajai-Acu, Itoupava Seca 3139.5 3703.5 10096.0 
Garcia, Garcia 130.2 154.4 239.1 
Luis Alves, Luis Alves 115.1 125.4 472.8 
Itajai-Mirim, Brusque 599.1 651.4 1737.2 

the iterative solution of  this equation by Newton-Raphson  converged with- 
out difficulty. Failure to obtain a maximum-likelihood solution at the first 
attempt therefore does not necessarily mean that no solution exists. A further 
important point is that, even where the equations 0 In L/O0 = 0 yield no 
solution within the parameter space, points on its boundary may be 
found which satisfy In L(0; x) _> In L(O; x), so yielding maximum-likelihood 
estimates despite the fact that derivatives with respect to 0 are non-zero. 

Table 4 shows the values of the 95% confidence limits (XL,Xu) for the 
maximum-likelihood estimate X0 (also shown) of the 100-year floods at the 
18 sites. The asymmetry of the limits, relative to X0, is again pronounced. 
Agreement with values of  XL, X0 obtained using the gamma distribution was 
reasonable; agreement between values of Xu for the two distributions is less 
so. In both cases, the search leading to X u is in a region of the likelihood 
surface where gradients are small. 

Box-Cox transformations of the data 

As an alternative means of modelling the skewness characterising the flood 
record at each site, the performance of  the family of data transformations 
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proposed by Box and Cox (1964) was explored. This well-known family is a 
transformation from the original scale of measurement, say x, to a new scale y 
in which the data are approximately normally distributed, where the trans- 
formation from x to y is given by 

y = ( x  A - 1 ) / A  f o r a y 0  

y -- In x for A = 0. 

The transformation can be generalised by writing x 4- c~ in place of x, requir- 
ing calculation of the additional parameter a; in this paper, the one-parameter 
form was used. The parameter A of the transformation is estimated by 
maximum likelihood; for a sample of n annual floods x, the log likelihood 
l (0, A, y) of a normally distributed transformed variable y is written down (see 
Eq. (1) above) for a series of  values of A, commonly between - 2  and +2. The 
value of A for which l (0, A, y) is largest gives the maximum-likelihood estimate 
of this parameter. If A is 'sufficiently close' to zero, a log-normal distribution is 
indicated for the data; a value of  A close to one-third would suggest a gamma 
distribution, this value corresponding to the well-known Wilson-Hilferty 
transformation (Kendall and Stuart, 1961) by which the gamma distribution 
is transformed to near-normality. The notion of 'sufficiently close' can be 
quantified by calculating likelihood-based confidence intervals for the esti- 
mate of A; if this interval includes (say) zero, then the data can be transformed 
to near-normality by taking logarithms, so that a log-normal distribution 
describes the data. The confidence interval for the transfor-mation parameter 
A is calculated as follows. In the plot of l (0, A, y) against A, a horizontal line is 
drawn parallel to the A-axis, at a distance X~,~ below the point at which the 
curve l (0, A, y) has its maximum. The two points at which this horizontal line 
cuts the curve l(O, A,y) give the 100(1 - a)% limits for A. If a = 0.05, the 
horizontal line is drawn at a distance X~,0.05 -- 3.841 below the curve maxi- 
mum. The calculation of the confidence limits for A is again an application of  
the inequality in (3) above. 

Advantages of working on a normal scale, if a suitable transformation can 
be found, are that the mean and variance of the transformed y values are 
sufficient statistics for the normal distribution's mean and variance. Theory 
shows that any function of these statistics - such as, for example, a quantile of 
the normal distribution, or the inverse transform of this quantile, which gives 
an estimate of the T-year flood in the original scale of measurement 
estimates its expected value with the minimum-attainable variance. Unfortu- 
nately, the advantage may be more apparent than real, since this expected 
value almost certainly will not coincide with the 'true' T-year flood. However, 
the same is true of whatever distribution is fitted to a record of annual floods. 
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We  conc lude  tha t  there  is no  a pr ior i  r eason  for  the reject ion o f  f lood est ima- 
t ion m e t h o d s  based on  t r a n s f o r m a t i o n  to a no rma l  scale, and  there  m a y  be 
advan tages  in its favour .  

Calculation of likelihood-based confidence intervals for T-year floods: Box-Cox 
transformations to approximate normality 

F o r  each o f  the s ta t ions listed in Table  1, the B o x - C o x  p a r a m e t e r  A was 
calcula ted by maximis ing  the log- l ikel ihood o f  the data ,  cond i t iona l  u p o n  A, 
as descr ibed above.  Es t imates  o f  the A value so ob ta ined  are shown in Table  1, 
toge ther  with the Fil l iben cor re la t ion  coefficients before  and  af ter  t rans-  
fo rmat ion .  Conf idence  intervals  for  the est imates o f  A, no t  presented  here,  
were wide, somet imes  including bo th  zero ( indicat ing the need for  a log 
t r ans fo rm)  and  uni ty  ( indicat ing consis tency with no rma l i t y  on  the original  
scale). Howeve r ,  despi te  the width  o f  these conf idence  intervals,  f lood records  

Table 5 
Estimates of the 100-year flood, X 0, at each of the 18 basins in Table 1, with upper and lower 
95% confidence limits Xu, X L 

River, gauging station XL Xo Xv 

Taio 430.5 481.7 561.1 
Pouso Redondo 86.4 105.9 140.2 
Trombudo 137.7 168.2 225.4 
Adago 450.0 1228.4 3210.1 
Itajai, Barracao 426.0 537.7 746.1 
Itajai, Jararaca 476.3 685.8 1320.4 
Itajai-Acu, Rio do Sul 1296.9 1506.5 1833.1 
Hercilio, Ibirama 1684.2 2293.0 3640.6 
Neisse Central 152.1 211.4 345.2 
Itajai-Acu, Apiuna 3430.0 4530.0 6767.2 
Benedito, Benedito Novo 320.0 371.9 452.1 
Benedito, Timbo 761.5 895.8 1107.2 
Itajai-Acu, Indaial 4450.6 5943.1 9052.9 
Testo, Rio do Testo 47.1 58.0 84.1 
Itajai-Acu, Itoupava Seca 2541.8 3317.4 5069.0 
Garcia, Garcia 117.2 152.6 220.0 
Luis Alves, Luis Alves 77.9 87.2 101.1 
Itajai-Mirim, Brusque 446.2 606.8 996.5 

Limits obtained by (a) Box-Cox transformations to approximate normality (Box-Cox 
parameter A as shown in Table 1); (b) estimation of 99 percentile, with likelihood-based 
confidence limits, on the normal scale; (c) detransformation from normal to original scale of 
measurement. 
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were transformed according to the fitted Box-Cox parameter. For two of the 
18 stations, Apiuna and Ibirama, simulation envelopes (Atkinson, 1985) were 
calculated, and the normal plots for these stations lay comfortably within the 
envelopes. 

Having estimated A, there were essentially three steps in the subsequent 
calculation to obtain confidence limits for the flood with return period 
T =  1 / ( 1 -  P) years: (1) identification of the boundary of the joint con- 
fidence region for the parameters # and cr on the transformed (normal) 
scale, (2) identification of the points (#, a) on this boundary for which the 
P-quantile X~ ~ X~(#, or) has maximum and minimum values, and, trivially, 
(3) detransformation by applying the inverse Box-Cox transformation to 
obtain the confidence interval (XL, Xu) for the estimated T-year flood, X0, 
on the original measurement scale. 

Table 5 shows the 95% limits XL and Xv for the 100-year flood X0 esti- 
mated by this procedure. Results are generally consisent with those given by 
the gamma and Gumbel distributions, with the notable exception of one 
station, Adago. The A parameter for this station was negative and quite 
large, although not the largest; convergence of the Nelder-Mead algorithm 
was always more difficult where A was negative, although convergence was 
achieved in all cases. 

Calculation of likelihood-based confidence intervals for T-year floods: three- 
parameter distributions 

For three-parameter distributions, the difficulty of calculating likelihood- 
based confidence limits is substantially increased. For a three-parameter 
gamma, with ( x -  m) in place of x in (10), an obvious method is to fix m, 

Table 6 
Values of 95% confidence limits XL and X U for the 100-year flood, estimated by X 0, for the 
eight stations for which the Nelder-Mead algorithm converged, when a three-parameter 
gamma distribution was fitted 

River, gauging station X L X 0 Xu 

Taio 427.4 487.9 589.2 
Pouso Redondo 83.0 106.5 181.8 
Trombudo 139.9 173.0 246.9 
Itajai, Barracao 408.7 526.6 796.1 
Itajai, Jararaca 465.0 782.6 1134.4 
Benedito, Benedito Novo 311.1 374.8 512.5 
Benedito, Timbo 737.2 902.5 1266.5 
Itajai-Acu, Itoupava Seca 2453.4 3381.7 9758.6 
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use the Nelder-Mead algorithm to calculate the limits (X[,  X~) conditional 
on m, and then to calculate 

XL = inf X[ ;  Xu = sup X~: 
m m 

This is time-consuming on a small desk-top computer, but should not be 
difficult given greater computer power. Results were only obtained for the 
three-parameter gamma distribution; the Nelder-Mead algorithm converged 
for eight of the 18 basins. No attempt has been made to establish why con- 
vergence failed, and this needs further investigation. Quite possibly, a 
reparameterisation of  the likelihood surface would secure convergence, as 
happened with the flood record from the Rio do Testo. For the eight gauging 
stations at which the Nelder-Mead algorithm converged, 95% confidence 
limits are shown in Table 6. 

Comparison of likelihood-based confidence intervals of lO0-year flood with 
normal-approximation confidence intervals 

Earlier sections of  this work have explored the feasibility of calculating 
likelihood-based confidence intervals for floods X0 with given return period. 
The question then arises of how do likelihood-based confidence intervals 
compare with those given by the central limit approximation confidence 
intervals, namely -('0 + 2v/(varX0)? To answer this question for the distri- 
butions more commonly used in flood frequency analysis is beyond the 
scope of  the present paper. However, as a first attempt at answering this 
question, we derived some preliminary results pertaining to the two- 
parameter log-normal distribution, or, more generally, to the case where a 
Box-Cox transformation to a normal scale is appropriate. 

One hundred samples of size 20 were generated from the N(0, 1) distri- 
bution, and the upper quantile corresponding to a cumulative probability of 
P = 0.99 was estimated, this quantile corresponding to the '100-year flood.' 
For this estimated quantile, X0, we calculated (a) 95% confidence intervals 
using the central limit approximation, as above, and (b) likelihood-based 
(5%) confidence intervals. Despite the apparent remoteness from hydrologi- 
cal reality of the N (0, 1) distribution, it serves to explore the relative sizes of  
confidence intervals for X0 since, after effecting the inverse Box-Cox trans- 
formation, confidence limits calculated using methods (a) and (b) would still 
bear the same relation to each other (in the sense that if the confidence interval 
using method (a) were wider than the confidence interval using method (b), it 
would remain so after detransformation from the normal to the original scale 
of measurement). 
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For the N(0, 1) distribution, the true value of the '100-year' quantile 
(corresponding to cumulative probability P = 0.99) is 2.326347. For each of 
the 100 generated samples, it was therefore possible to verify whether the 
confidence intervals given by (a) and (b) included this 'true' value, and also 
to see how far from the true quantile the maximum-likelihood estimate lay. 
Averaged over the 100 samples generated, the mean value of the estimates X0 
of the P = 0.99 quantile was 2.234 + 0.0423; the true value (2.326347) is 
slightly more than two standard deviations above this value, suggesting that 
small-sample bias may persist for samples of 20. Of more interest, however, 
are the mean widths of the confidence intervals: for the central limit 
approximation, the mean upper and mean lower 95% confidence limits 
were 3.405+0.05877 and 1.171 i0 .02744  respectively, giving a mean 
width of 2.234 + 0.0367. For the likelihood-based confidence intervals, the 
mean upper and mean lower 95% confidence limits were 3.806 ± 0.04997 
and 1.477 ±0.02591, giving a mean difference of 2.329 +0.04532. The 
likelihood-based confidence intervals were therefore on average wider 
than those given by the central limit approximation, and were asymmetric 
relative to the true X0 = 2.326347. Central limit confidence intervals, on the 
other hand, were more nearly symmetric relative to the true X0, but failed 
more frequently to include it; when this happened, the upper confidence limit 
lay below X0, the confidence interval being displaced to its left. 

However, more intensive Monte Carlo study is required before firm 
conclusions can be drawn. This work will need to compare likelihood- 
based confidence intervals with central limit confidence intervals not only 
for the distributions used in flood frequency analysis, but also the effects 
of small sample sizes on each. The validity of the X 2 approximation, used in (3) 
to define the confidence region for the parameters 0, also needs to be explored. 

Discussion 

Theemphas is  of  this paper is on the estimation of confidence intervals for 
floods with T-year return period, using likelihood methods. However, it is 
possible that likelihood-based confidence intervals may rather wider hydro- 
logical application than in the case considered. We speculate on two possible 
applications. 

First, we have considered the case where a good record of annual floods 
exists at a single site (say site A). Frequently, it will be useful, necessary even, 
to exploit the information in longer records at a nearby site B, when esti- 
mating the T-year flood at site A. At the expense of heavier calculation, 
confidence regions for parameters in the marginal distribution at site A can 
be calculated which exploit the record at sites B, the theory being a direct 
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extension of that given earlier (e.g. McCullagh and Nelder, 1990). Having 
obtained such a confidence region, a search along its boundary will 
yield a confidence interval for the T-year flood at site A. Not only will 
this interval exploit information in the longer record at site B, but our 
speculation is that the procedure may provide a means of selecting which of 
the records available for sites B, C , . . . ,  really provide information on the 
T-year flood, X 0, at site A. For if site B provides information, the width 
of the confidence interval for X 0, resulting from its use, should be less than the 
width of the confidence interval for X0 obtained using only the short record at 
site A. Thus it may be that a strategy for information transfer is to use 
information from nearby sites, whereas the use of such records results in 
smaller confidence intervals for X 0 at site A, and to stop using records from 
nearby sites, when their inclusion gives no reduction in the confidence interval 
for X0. 

Second, the calculation of confidence intervals for quantities predicted 
by rainfall-runoff models is receiving considerable attention (Binley and 
Beven, 1991; Binley et al., 1991; Beven and Binley, 1992). These authors 
proposed a 'generalised likelihood uncertainty estimation' (GLUE) 
procedure for calibrating rainfall-runoff models; this appears to work with 
multiple sets of parameter values and allows that, within the limitations of a 
given model structure and errors in boundary conditions and field observa- 
tions, different sets of parameters may be 'equally likely as simulators of a 
catchment.' 

It appears possible to formalise the arguments used by Binley and 
colleagues within the framework of likelihood-based confidence intervals. 
Suppose that a rainfall-runoff model describes runoffy t in the tth time inter- 
val in terms of explanatory variables xt (rainfall; potential evaporation; soil 
moisture; . . .  ;), the model being of the general form 

y, =f (x t ;O)  + e t 

where 0 are model parameters and et is a 'residual.' Given (1) an appropriate 
probability distribution for ~t and (2) observations on Yt and xt, a likelihood 
function L[O; (Yt), (xt)] can be defined, specification of which will be simplified 
if the ~t values are statistically independent. If all of the ¢~t values are used in 
defining L, this simplification is inappropriate, since they will be serially 
correlated. However, it might be possible to formulate the likelihood function 
using only those et values which are sufficiently separated to be considered 
effectively independent (perhaps by using only those et values for points where 
Yt is a maximum, corresponding to flood peaks, or a minimum, corresponding 
to end-of-recession flows, or both). For example, fitting to flood peaks can be 
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effected by defining a Boolean variable, wt say, such that 

wt= 1 i f y t - l < Y t  and Yt+l <Yt 

= 0 otherwise 

with model fitting based upon the criterion Ewt[y t - f ( x t ;  0)] 2. By then allow- 
ing 0 to vary over its joint confidence region, confidence limits can be calcu- 
lated, in theory, for any quantity predicted by the model. 

Finally, the inequality given in (3) uses a 2 approximation for calculating 
the confidence region for 0. This is a large-sample approximation, although 
the literature reports that the approximation is a good one. With the rapidly 
increasing power of computers, it is becoming feasible to calculate the 0 
confidence region exactly, by identifying the smallest region, around the 
point 0 for which L(O) >_ L(O), such that the probability within that region 
is 100(1 - a)%. 
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