
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE ESTATÍSTICA E MATEMÁTICA APLICADA

PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM E MÉTODOS

QUANTITATIVOS

GUSTAVO CARVALHO DE MELO VIRGOLINO

WIND TURBINE POWER CURVE MODELING WITH GAUSSIAN PROCESSES

FORTALEZA

2020



GUSTAVO CARVALHO DE MELO VIRGOLINO

WIND TURBINE POWER CURVE MODELING WITH GAUSSIAN PROCESSES

Dissertação apresentada ao Programa de
Pós-Graduação em Modelagem e Métodos
Quantitativos do Centro de Ciências da
Universidade Federal do Ceará, como requisito
parcial à obtenção do título de mestre em
Modelagem e Métodos Quantitativos. Área
de Concentração: Modelagem e Métodos
Quantitativos.

Orientador: Prof. Dr. Guilherme de Alencar
Barreto.
Coorientador: Prof. Dr. César Lincoln Mattos.

FORTALEZA

2020



Dados Internacionais de Catalogação na Publicação 
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

V81w Virgolino, Gustavo Carvalho de Melo.
    Wind turbine power curve modeling with Gaussian processes / Gustavo Carvalho de Melo Virgolino. –
2020.
    87 f. : il. color.

     Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação
em Modelagem e Métodos Quantitativos, Fortaleza, 2020.
     Orientação: Prof. Dr. Guilherme de Alencar Barreto.
     Coorientação: Prof. Dr. César Lincoln Mattos.

    1. Wind energy. 2. Wind turbine power curve. 3. Gaussian process. 4. Heteroscedastic models. I. Título.
                                                                                                                                                  CDD 510



GUSTAVO CARVALHO DE MELO VIRGOLINO

WIND TURBINE POWER CURVE MODELING WITH GAUSSIAN PROCESSES

Dissertação apresentada ao Programa de
Pós-Graduação em Modelagem e Métodos
Quantitativos do Centro de Ciências da
Universidade Federal do Ceará, como requisito
parcial à obtenção do título de mestre em
Modelagem e Métodos Quantitativos. Área
de Concentração: Modelagem e Métodos
Quantitativos.

Aprovada em: 08/12/2020

BANCA EXAMINADORA

Prof. Dr. Guilherme de Alencar Barreto (Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. César Lincoln Mattos (Coorientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Rafael Izbicki
Universidade Federal de São Carlos (UFSCar)

Prof. Dr. José Ailton Alencar de Andrade
Universidade Federal do Ceará (UFC)



Ad maiorem Dei gloriam.

For my beloved wife, Larissa.



ACKNOWLEDGEMENTS

I profoundly thank God almighty for blessing me with the intellectual gifts necessary

to persevere on my studies and to work on this dissertation. I also thank the Roman Catholic

Apostolic Church and its priests for providing me with invaluable spiritual support to pursue my

goals.

I dearly thank my wife, Larissa Matias Rocha Carvalho, for her love and unconditional

support, always understanding all the long hours spent on this project and pushing me to be the

best I can be. I also thank my mother, Fernanda Carvalho de Melo, for inspiring me to work hard

to reach my goals.

I thank my advisor, Prof. Dr Guilherme de Alencar Barreto, for accepting me as his

student and guiding me on the development of this dissertation. I also thank him for introducing

me to my co-advisor, Prof. D. César Lincoln Mattos, who skillfully introduced me to Gaussian

processes with the proper balance between teaching me the subject and letting me explore it on

my own. I thank both of them for understanding the difficulties I faced about splitting my time

between research and work and helping me through this process.

I thank Delfos Intelligent Maintenance, the company to whom I work, for giving me

the opportunity to pursue my masters degree in parallel with my work. Working at Delfos IM

was critical to the development of my technical expertise on wind turbine power curve modeling

and much of this knowledge is reflected in this dissertation.

I thank my friend José Augusto Fontenelle Magalhães, a former co-worker and

co-author of a published journal paper related to this dissertation. Sharing my ideas and

implementations with another Gaussian process researcher was very important to my studies

about the topic.

I thank the GPflow community for the great help I received from them, which goes

far beyond the great Gaussian processes modeling software provided by them. The discussions

I had with its members were critical to the implementation of all the proposed models in this

dissertation.



“The greatness of the human being consists in

this: that it is capable of the universe.”

(Saint Thomas Acquinas)



RESUMO

Nesta dissertação, o problema de modelagem da curva de potência de turbinas eólicas é

revisitado com o objetivo de propor e avaliar uma nova estrutura de modelagem semiparamétrica,

probabilística e baseada em dados. Para este propósito, processos gaussianos e suas extensões

heterocedásticas e robustas são combinados com funções logísticas, resultando em modelos

que se assemelham à forma sigmoidal esperada para curvas de potência de turbinas eólicas,

permitem previsões probabilísticas, modelam adequadamente o comportamento heterocedástico

do fenômeno e são robustos a outliers. A metodologia de modelagem proposta é comparada

a múltiplas técnicas de modelagem encontradas na literatura técnica e científica de curvas de

potência de turbinas eólicas, a saber, o método de bins, regressão polinomial, redes neurais,

funções logísticas e regressão via processo gaussiano. Usando um rico conjunto de dados de 1

ano de operação de uma turbina eólica, todos os modelos são comparados em múltiplos cenários

relativos às principais características do problema de modelagem de curvas de potência de

turbinas eólicas. Os resultados mostram que a metodologia de modelagem proposta apresenta

resultados competitivos em métricas determinísticas quando comparada aos demais modelos

avaliados, enquanto também exibe as propriedades probabilísticas desejadas, o que lhe confere a

capacidade de representar adequadamente as incertezas intrínsecas ao problema de modelagem

de curvas de potência de turbinas eólicas.

Palavras-chave: Energia eólica. Curvas de potência de turbinas eólicas. Processos gaussianos.

Modelos heterocedásticos.



ABSTRACT

In this dissertation, the wind turbine power curve (WTPC) modeling problem is revisited with

the objective of proposing and evaluating a new semi-parametric, probabilistic and data-driven

modeling framework. For this purpose, Gaussian processes and their heteroscedastic and

robust extensions are combined with logistic functions, resulting in models which resemble

the sigmoidal shape expected for WTPCs, output probabilistic predictions properly modeling

the heteroscedastic behavior of the phenomenon and are robust to outliers. The proposed

modeling framework is compared to multiple modeling benchmarks found in both the technical

and scientific WTPC literature, namely, the method of bins, polynomial regression, neural

networks, logistic functions and standard Gaussian process regression. Using a rich dataset

of 1-year of operational data of a wind turbine, all models are compared in multiple scenarios

concerning the key features of the WTPC modeling problem. The results show that the proposed

modeling framework has competitive results regarding deterministic metrics when compared to

the evaluated benchmark models, while also exhibiting the desired probabilistic properties, which

gives it the ability to properly represent uncertainties intrinsically found in WTPC modeling.

Keywords: Wind energy. Wind turbine power curve. Gaussian processes. Heteroscedastic

models.
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σŷ Standard deviation of the model prediction



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 The Wind Turbine Power Curve . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Scientific Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 24

2 WIND TURBINE POWER CURVE MODELING . . . . . . . . . . . . 25

2.1 A typical WTPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Design Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2.1 Region 1: No Generation, v < vci . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2.2 Region 2: Maximum Power Point Tracking, vci < v < vrated . . . . . . . . . 27

2.1.2.3 Region 3: Rated Power Control, vrated < v < vco . . . . . . . . . . . . . . . 27

2.1.2.4 Region 4: Safety Shutdown, v > vco . . . . . . . . . . . . . . . . . . . . . . 27

2.2 The IEC 61400-12-2 Standard . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Air Density Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Method of Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 The Logistic Function Model . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Asymptotic Behavior and Operational Ranges . . . . . . . . . . . . . . . . 32

2.4.1.1 No generation, v < vci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1.2 Rated Power, vrated < v < vco . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Logistic Models with 2 and 3 Parameters . . . . . . . . . . . . . . . . . . 33

2.4.3 Linearizing Transformation and Parameter Initialization . . . . . . . . . . 33

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 FUNDAMENTALS OF GAUSSIAN PROCESS MODELS . . . . . . . . 35

3.1 Multivariate Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . 35

3.2 GP as a Distribution over Functions . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Mean Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Covariance Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2.1 Squared Exponential Covariance Function . . . . . . . . . . . . . . . . . . 39



3.3 Regression with Noisy Observations . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Likelihoods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2.1 Gaussian Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2.2 Student-t Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3.1 Computational Complexity and Memory Requirements . . . . . . . . . . . . 42

3.3.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 VARIATIONAL INFERENCE APPLIED TO GAUSSIAN PROCESS

MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Variational Inference on GP models . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Kullback-Leiber Divergence . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.2 Evidence Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.3 Variational Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.4 Optimization Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.5 Variational Posterior Approximation . . . . . . . . . . . . . . . . . . . . . 49

4.2 Sparse Variational Gaussian Process Models . . . . . . . . . . . . . . . . 49

4.2.1 Augmented Regression Model . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.2 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2.1 Evidence Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2.2 Variational Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2.3 Computational Complexity and Memory Requirements . . . . . . . . . . . . 52

4.2.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Chained Gaussian Process Models . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Multiple Latent GP Regression Model . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Likelihoods depending on Multiple Latent GPs . . . . . . . . . . . . . . . 56

4.3.2.1 Heteroscedastic Gaussian Likelihood . . . . . . . . . . . . . . . . . . . . . 56

4.3.2.2 Heteroscedastic Student-t Likelihood . . . . . . . . . . . . . . . . . . . . . 57

4.3.2.3 Locally Robust Heteroscedastic Student-t Likelihood . . . . . . . . . . . . . 57

4.3.3 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3.1 Evidence Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



4.3.3.2 Variational Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 PROPOSED MODELING FRAMEWORK . . . . . . . . . . . . . . . . 64

5.1 Modeling Framework Description . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Model Construction Rationale . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.2 Note on Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.3 Parameters Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Benchmark Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Method of Bins (MoB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2 Polynomial Regression (Poly-9) . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.3 Neural Networks - MLP(1,12,1) . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.4 Logistic Function (L3P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.5 Zero Mean GP (0-GP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Wind Turbine Operational Parameters . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.3 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.4 Data Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1 Comparison Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1.1 Root Mean-Squared Error (RMSE) . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1.2 Mean Negative Log Predictive Density (MNLPD) . . . . . . . . . . . . . . 75

5.4.1.3 Fitting and Evaluating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.2 Data-Fitting Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.3 Robustness to Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.4 Heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.5 Seasonal Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



6.1.1 Evaluation of Other Likelihoods . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.2 More Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.3 Alternative Quadrature Methods . . . . . . . . . . . . . . . . . . . . . . . 84

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



20

1 INTRODUCTION

Wind energy plays a significant role in the world’s quest for more sustainable energy

sources. Spread out across the globe, wind turbines (WTs) harvest the kinetic energy from the

wind to generate electric power. The energy conversion process is the result of the interaction of

multiple external and internal phenomena, which are considered below.

The process starts at the WT’s rotor, which rotate by virtue of the aerodynamic forces

developed by the contact of the wind with its blades. The dynamic interaction depends on the air

density, which is a function of the ambient temperature, pressure and humidity. Furthermore,

having rotors with radii greater than 50 m, modern WTs are subjected to all kinds of variations

of the wind flow, characterized not only by its speed but also by its direction, turbulence, shear

and veer. The complexity is even more aggravated by the presence of multiple WTs, which may

cast an aerodynamic shadow over each other, and terrain topographic features such as inclination

and roughness. Finally, the rotor’s blades can also deviate from their ideal aerodynamic shape

due to aging and natural effects such as dirt accumulation and icing.

Inside the WT, as shown in fig. 1, the drive train, i.e., the shafts and gears connecting

the rotor and the generator, transfers the mechanical torque from the former to the latter in a

process involving hard-to-quantify and aging-dependent frictional energy losses, more evidently

perceived in WT models using a gearbox. There are also energy losses in the generator as it

cannot always operate on its optimal state due to the ever-changing mechanical torque provided

by the wind speed despite the feedback control strategy employed by the WT control system.

Summarizing the phenomena discussed above, the energy conversion process can, in

a simplified view, be described by the following equation:

P =
1
2

ηelecηmechCp(λ ,θpitch)πR2v3 cos3
θyaw (1)

where P is the produced power in W, ρ is the air density kg/m3, v is the horizontal wind speed in

m/s, θyaw is the yaw misalignment angle, such that vcosθyaw is the wind speed perpendicular

to the rotor, R is the rotor radius in m, Cp(λ ,θpitch) is the power coefficient, which accounts for

the efficiency of aerodynamic energy conversion in the blades and is a function of the tip speed

ratio λ = ωR/v, where ω is the rotational speed of the rotor in rad/s, and the pitch angle θpitch,

ηelec is electrical energy conversion efficiency of the generator and ηmech is the mechanical

energy conversion efficiency of the drive train. Accounting for all those factors would require

very detailed models capable of interconnecting all of them, and collecting all the information
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Figure 1 – Internal components of a modern WT.

Source - Adapted from Jepsen et al. (2010).

necessary to run them would be infeasible, especially for wind farms with hundreds of WTs.

Usually, physics-based models of the WT energy generation process consist in the description of

isolated components such as the aerodynamics of the rotor and the electromagnetism and control

of the generator.

1.1 The Wind Turbine Power Curve

The wind turbine power curve (WTPC) abstracts those complex interactions as

relationship connecting the wind speed v received by a WT’s rotor to the power P it produces.

It is of central importance for the wind energy industry as it can be used for numerous tasks

such as power assessment and forecasting, capacity factor estimation, WT model selection, and

performance monitoring (SOHONI et al., 2016).

Due to its fundamental role in the aforementioned engineering calculations, the

original equipment manufacturer (OEM) of a WT model is required to provide its WTPC as part

of its technical documentation, as exemplified in fig. 2. Those models, the OEM-WTPCs, are

often obtained from either idealized physical simulations or testing setups. It is usually given as

set of wind speed and power pairs (vi,Pi), that can be used to build a deterministic regression

model in the form P = f (v), resulting in a sigmoidal shaped function.
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Figure 2 – OEM-WTPC for the model SWT-2.3-108, manufactured by Siemens.

Source - SWT-2.3-108 Datasheet.

In practice, however, the ideal conditions are seldom met, as actual WTs operating

in the field are subjected to varying degrees of all the operating conditions presented above. This

results in real observations of wind speed and power data (vi,Pi) which keep the sigmoidal shape,

but deviate from the deterministic model and exhibit noisy behavior around it, generating data

sets with heteroscedasticity and outliers. This challenging modeling task is the main focus of

this dissertation.

1.2 Motivation and Objectives

The main objective of this dissertation consists in proposing and evaluating a new

semi-parametric, probabilistic and data-driven WTPC modeling framework. To accomplish

this goal, the parametric and deterministic logistic function models (VILLANUEVA; FEIJÓO,

2018) are combined with non-parametric and probabilistic Gaussian processes (GPs) models

(RASMUSSEN; WILLIAMS, 2006) and their heteroscedastic and robust extensions (LÁZARO-

GREDILLA; TITSIAS, 2011; SAUL et al., 2016).
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The resulting models are expected to incorporate prior knowledge about the WTPC

by means of the parametric part while being able to adapt to the data with the non-parametric

one. More specifically, the proposed models should present the following characteristics.

1. Resemble the sigmoidal shape expected for the WTPC;

2. Output probabilistic predictions of the electric power P given a wind speed v, accounting

for uncertainties both in the model and in the data;

3. Capable of modeling heteroscedastic behavior of the phenomenon;

4. Be robust to outliers.

To check if the objectives are accomplished, the proposed models are evaluated

regarding multiple wind speed and power data sets (vi,Pi) which are chosen to represent typical

applications of WTPCs. They are also compared to the state of the art in WTPC modeling, such

as polynomial regression, standard logistic functions models, neural networks and standard GP

regression.

As a side objective, this dissertation also aims to discuss the fundamentals of GP

models theory and probabilistic modeling in such a way to make it more understandable by

readers which are not familiar with the topic by focusing on the intuition behind the involved

equations. With this, it is expected that the reader will at least grasp the ideas behind applying

those tools to a real engineering problem and perhaps become capable of transferring the

knowledge to other problems. The author firmly believes that those techniques can successfully

be applied to many technical problems, especially with the ever-increasing amount of data

becoming available in multiple industries.

1.3 Scientific Production

The following journal paper is the result of the studies developed along the course of

this research.

VIRGOLINO, G. C. de M.; MATTOS, C. L. C.; MAGALHÃES, J. A. F.; BARRETO,

G. A. Gaussian processes with logistic mean function for modeling wind turbine

power curves. Renewable Energy, [United Kingdom, v. 162, p. 458–465, 2020.

Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0960148120309150.

Acesso em: 05 dez. 2020.

https://www.sciencedirect.com/science/article/abs/pii/S0960148120309150
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1.4 Organization of the Dissertation

The remainder of this document is organized as follows:

In chapter 2, the WTPC modeling problem is further discussed, starting with a

presentation of the main design parameters and operating ranges of a typical WTPC. The

technical approach for WTPC Modeling, that is, the IEC 61400-12-2 International Standard

(INTERNATIONAL ELECTROTECHNICAL COMMISSION, 2017) is covered, as well as a

revision of related works in the renewable energy literature. It is finished with a more detailed

presentation of the logistic function model as a preparation for the new framework to be proposed.

In chapter 3, the fundamentals of GP modeling are introduced in a general setting.

After a review of the multivariate Gaussian distribution and definition the GP as an extension

of it, the application of GPs to standard regression is considered, highlighting its merits and

difficulties.

In chapter 4, variational inference is discussed as a tool to overcome the challenges

of the standard GP regression. After a review of the variational inference procedure for general

GP models, the sparse variational GP (SVGP) approximation is explored as a way to make

the modeling more flexible and also require less computational and memory resources. It is

finished with the presentation of the Chained GP, which extends the SVGP into a multiple latent

GP regression model, capable of representing more features of the noisy distribution of the

observations such as heteroscedasticity and localized heavy-tailedness.

In chapter 5, the proposed modeling framework of this dissertation is presented,

convering both the theoretical rationale used to construct it and the implementation, initialization

and optimization details of it. A set of benchmark models is selected fromfrom the literature,

and their implementation details are given. After the detailed presentation of a 1-year of WT

operation dataset and its distinct features, multiple experimental results are reported, comparing

the proposed models with the benchmark ones.

In chapter 6, this dissertation is concluded with final remarks about the developed

work and the achieved contributions to the WTPC modeling problem. It also gives a brief

summary of possible future research topics.
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2 WIND TURBINE POWER CURVE MODELING

The WTPC modeling problem can be stated as the construction of a mathematical

model which describes the electric power P produced by a WT in terms of the wind speed

v received by its rotor. Although it appears to be a simple regression problem with a single

input and a single output, the wind speed and power samples (vi,Pi) have its own peculiarities

such as the usual sigmoidal shape, heteroscedastic behavior, i.e, the observed noise intensity on

the power P depends on the wind speed v, and presence of outliers, which makes the WTPC

modeling a challenging task.

In this chapter, the peculiarities of the WTPC modeling problem are discussed. In

section 2.1, the common characteristics of all pitch regulated WTs1 are described in terms of

their main design parameters and the associated operating ranges, emphasizing their impact

on the wind speed and power data (vi,Pi). In section 2.2, the IEC 61400-12-2 Standard

(INTERNATIONAL ELECTROTECHNICAL COMMISSION, 2013) is visited, analyzing the

technical approach to the WTPC modeling task. In section 2.3, the vast contributions to the

topic present in the renewable energy literature are reviewed, drawing inspirations for the new

modeling framework proposed in this dissertation and establishing comparison benchmarks

based on the state of the art. In section 2.4, the logistic function model presented in Villanueva

and Feijóo (2018) is revisited and correlated with the operating ranges of a WT. The chapter is

concluded in section 2.5.

2.1 A typical WTPC

Before discussing the multiple approaches to WTPC modeling, it is important to

analyze how a WTPC works and understand how this relates to the peculiarities of the wind

speed and power data (vi,Pi). Even though every WT has its specificities related to its model and

operating conditions, the typical WTPC of pitch regulated WTs can be generically represented

by a sigmoidal shaped function as in fig. 3 below.
1 Pitch regulated WTs are the most widespread WT architechture in operation today, so this dissertation deliberately

chooses to restrict the focus to them.
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Figure 3 – Typical WTPC of a pitch regulated WT with its design parameters and operating ranges.

Source - Adapted from Sohoni et al. (2016).

2.1.1 Design Parameters

The WTPC in fig. 3 is characterized by four design parameters, namely, the cut-in

wind speed vci, which is the minimum wind speed necessary to enable the WT to generate power,

the rated wind speed vrated, which is the minimum wind speed necessary for the WT to reach

its rated power Prated, i.e., its maximum generation, and the cut-off wind speed vco, which is the

maximum wind speed the WT can withstand before shutting down due to safety reasons.

The rated power Prated is frequently used to define the normalized power p as

p =
P

Prated
, (2)

where P is the generated power for a given wind speed v. This definition allows the comparison

of two WTs with different specificatons by considering the WTPC in terms of the normalized

power p.

2.1.2 Operating Ranges

There are four well-defined regions in fig. 3, called the WTPC operating ranges.

Each operating range has its own peculiarities which must be accurately represented by a WTPC

model. They are described below, with emphasis on how their behaviors impact on the WTPC

modeling problem.
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2.1.2.1 Region 1: No Generation, v < vci

Wind speeds below the cut-in wind speed, v < vci, are not enough to produce

sufficient mechanical torque to start the generator. The WT will not generate any power, i.e.,

P = 0. The WT control system actively seeks to align the WT with the wind direction and

regulate the pitch angle of the blades to favor the start-up process.

2.1.2.2 Region 2: Maximum Power Point Tracking, vci < v < vrated

Wind speeds in the maximum power point tracking (MPPT) operating range are

above the cut-in wind speed v > vci and are sufficiently strong to produce a mechanical torque

capable of starting the power generation, hence P > 0. However, they are not enough to reach the

maximum possible power generation P = Prated, as they are below the rated wind speed, v < vrated.

This operating range and the transition between it and its neighbors is the main responsible for

the typical sigmoidal shape presented by WTPCs.

During MPPT, the WT control system will do its best to maximize the power

production by seeking optimal yaw alignment with the wind direction and optimal pitch angle of

the rotor’s blades to match the wind speed, which is a hard task due to the stochastic nature of the

wind flow. The complex behavior of this operating range results in the deviation and scattering

of the speed and power observations (vi,Pi) around the idealized deterministic WTPC function

P = f (v), thus being of special interest for the modeling task.

2.1.2.3 Region 3: Rated Power Control, vrated < v < vco

Wind speeds above the rated wind speed, v > vrated, are strong enough to supply

sufficient mechanical torque to reach a rated power generation: P = Prated. In fact, as the wind

speed v grows, the mechanical torque provided by it becomes higher than needed, so the WT

control system works to maintain the maximum generation while not overloading the WT by

changing the pitch angle of the rotor’s blades. This controlled behavior is maintained until the

cut out wind speed is reached, v < vco, which marks the transition to the next operating range.

2.1.2.4 Region 4: Safety Shutdown, v > vco

Wind speeds above the cut-out wind speed, v > vco are deemed unsafe for the WT

operation due to the high aerodynamic forces and mechanical torque they produce. The WT
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control system shuts down the power generation, hence P = 0, and take precautionary measures

to minimize the aerodynamic forces applied to the rotor’s blades. This operating range is seldom

reached, thus including it in WTPC modeling would provide little gains and add unnecessary

complexity, and is usually neglected by WTPC models.

2.2 The IEC 61400-12-2 Standard

Recognizing the importance of WTPC modeling, the International Electrotechnical

Commision (IEC) proposed standardized methods which are widely accepted in the wind energy

industry. The IEC-61400-12-2 (INTERNATIONAL ELECTROTECHNICAL COMMISSION,

2013) is an international standard (thereafter referred simply as IEC standard) describing the

data acquisition and model fitting procedures to obtain the WTPCs of individual WTs operating

in the field.

While this dissertation does not aspire to follow the full scope of the IEC standard,

some parts of it are used as either foundations or comparison benchmarks for the WTPC modeling

framework it aims to develop. They are reviewed below with appropriate remarks regarding their

application in this dissertation.

2.2.1 Data Sources

The wind speed and electric power observations (vi,Pi) is the main data needed for

WTPC modeling, and the IEC standard requires them to be registered as 10-minute averages

of continuous measurements. Almost all WT manufactures follow this data recording format,

making it readily available in the WT’s supervisory control and data acquisition (SCADA)

system. As such, it is the main data source used by this dissertation.

The IEC standard also requires 10-minute averaged data for ambient temperature,

pressure and relative humidity (Ti,Bi,φi) to account for varying air density effects. Although this

data (or the air density data) is not guaranteed to be available in the SCADA, it is usual for many

wind farms to have it recorded by one or more meteorological masts installed in the site. This

dissertation makes use this data whenever it is available to apply the air density normalization

methodology proposed by the IEC Standard, which is discussed below.
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2.2.2 Air Density Normalization

IEC standard provides a simple yet effective way to account for the effects of varying

air density in pitch regulated WTs. Given the measurements of the raw wind speed vraw and air

density ρ , the following wind speed normalization is applied:

v = vraw

(
ρ

ρref

)1/3

, (3)

which gives the normalized wind speed v as if the air density was fixed to a reference value

ρref. Hence, the air density effects can be incorporated into the WTPC by modeling it using the

normalized wind speed v. The air density must ρ be either provided directly or computed with

the following equation:

ρ =
1
T

[
B
R0
−φBw

(
1

R0
− 1

Rw

)]
, (4)

where

– ρ is the air density, in kg/m3;

– T is the ambient temperature, in K;

– B is the ambient pressure, in Pa;

– φ is the relative humidity, ranging from 0 to 1, adimensional;

– R0 = 287.05 J/(kg·K) is the gas constant of dry air;

– Rw = 461.50 J/(kg·K) is the gas constant of water vapor;

– Bw is the water vapor pressure, in Pa, given by

Bw = aexp(bT ), (5)

with constants a = 2.05×10−5 Pa and b = 6.31846×10−2 K−1.

2.2.3 Method of Bins

The method of bins (MoB) is proposed by the IEC Standard to obtain a mathematical

model for the WTPC. It is based on the wind speed and power observations (vi,Pi), with the air

density normalization given by eq. (3) already applied for some reference air density ρref. The

method can be implemented with the following steps:

1. Group the observations i in bins bk with width ∆v = 0.5 m/s with the following rule:

bk =

{
i : |vi− k∆v|< 1

2
∆v
}
, k = 0,1, . . . ,50 (6)
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2. For each bin bk, compute the mean of the wind speed v and power P:

v̄k =
1

Nk
∑
i∈bk

vi, (7)

P̄k =
1

Nk
∑
i∈bk

Pi, (8)

where Nk = |bk| is the number of observations in the bin bk;

3. Compose the WTPC P = f (v) by interpolating the mean wind speed and mean power

(v̄k, P̄k) of each bin.

The main merit of the MoB is providing a simple way to build a WTPC model.

However, it has some limitations related to the discretizing behavior induced by the data binning.

The MoB is considered a comparison benchmark for the modeling framework proposed in this

dissertation due to its technical importance for the WTPC modeling task.

2.3 Related Work

The WTPC modeling is a very active topic of research in the renewable energy

literature. Many authors (SOHONI et al., 2016; CARRILLO et al., 2013; LYDIA et al.,

2014; EMINOGLU; TURKSOY, 2019; WANG et al., 2019) provide detailed reviews of the

subject, reflecting the richness of modeling paradigms, with techniques ranging from the well-

established polynomial regression to the application of modern machine learning algorithms.

More specifically, Sohoni et al. (2016) classifies the WTPC models as follows.

Discrete: models that inspired by method of bins discussed in section 2.2.3 and

discretize the wind speed measurements vi into intervals and analyze the mean of the power

measurments Pi on them to characterize the WTPC by interpolation.

Deterministic vs. Probabilistic: A deterministic model considers that given a wind

speed v, the power P is uniquely defined, whereas a probabilistic one accounts for uncertainties

in the power P even for a exactly known wind speed v;

Parametric vs. Nonparametric: A parametric model has a defined functional form

to model the WTPC, whereas a nonparametric one does not. According to this definition, Sohoni

et al. (2016) classify neural networks (NNs) as nonparametric models. Parametric models offer

interpretability in exchange of adaptability, while their nonparametric counterparts do the reverse.

Presumed Shape vs. Curve Fitting vs. Actual Data: Presumed shape models only

use the design parameters to establish the WTPC, while curve fiting models uses WTPC data
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supplied by the WT’s original equipment manufacturer (OEM). Actual data models are built

directly from WT operational data.

Stochastic: Models which consider the temporal dependency between wind speed

and power observations (vi,Pi).

Some examples from the recent WTPC modeling literature are now discussed and

classified based on the criteria proposed above. The objective is not to entirely cover that

vast research topic, but rather to survey it and set similarities, differences and benchmarks for

comparison with the modeling framework proposed by this dissertation.

Comparison Benchmarks: Polynomial regression and neural networks (NNs)

appear in all the considered reviews (CARRILLO et al., 2013; LYDIA et al., 2014; SOHONI

et al., 2016; EMINOGLU; TURKSOY, 2019; WANG et al., 2019), which show how prevalent

they are in the WTPC modeling literature, making them appropriate benchmarks for comparison

with new models. The polynomial regression can be classified as a deterministic, parametric and

actual data model, and is covered in Li et al. (2001), Shokrzadeh et al. (2014), Guo and Infield

(2018), Yan et al. (2019). NNs, in their turn, are deterministic, nonparametric and actual data

models, and are covered in Li et al. (2001), Lydia et al. (2013), Manobel et al. (2018), Bai et al.

(2019), Yan et al. (2019).

Gaussian Processes (GPs): In Pandit and Infield (2019), GPs are applied to WTPC

modeling. The resulting model can be classified as probabilistic, nonparametric and actual data

models. The main focus of that paper is analyzing the many possible stationary covariance

functions that can be used with a GP to model a WTPC, concluding that the squared-exponential

(SE) covariance function is one of the best options available for the task. In Pandit et al.

(2019), GPs are compared do Support Vector Machine models, which in turn can be classifed

as deterministic, nonparametric and actual data. The GP was preferred due to its probabilistic

nature, which is also the option made by this dissertation.

Logistic Functions: Logistic functions are strong parametric model options for

the WTPC modeling task as they generate sigmoidal shaped functions in agreement with the

usual shape of a WTPC, as shown in fig. 3 and discussed in section 2.1.2. Multiple logistic

function models are compared in Villanueva and Feijóo (2018) using data provided by the OEM

of seven different WT models. The logistic function model is very important for this dissertation

development and is discussed in detail in section 2.4.
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2.4 The Logistic Function Model

The logistic function model is one of the base components of the WTPC modeling

framework this dissertation aims to propose and evaluate. As such, it is now analyzed starting

with the best results from Villanueva and Feijóo (2018), which concluded that exponential-based

logistic functions constitute the best option for WTPC modeling. The 6-parameter logistic

function (6PLE) is the most general of them and is given by

P(v) = δ +
(α−δ )

[ε + exp(−β (v− v0))]
1/γ

, (9)

where α is the lower asymptote, δ is the upper asymptote, β is the growth rate, v0 controls the

location shift, γ controls the asymmetry and ε is usually close to 1 and has no clear interpretation.

However, the parameter ε in eq. (9) is redundant and can be eliminated with the following

reparametrization:

– α → δ + ε1/γ(α−δ ),

– v0→ v0 +β−1 logε ,

– β = 1/s,

which gives

P(v) = δ +(α−δ )

[
1+ exp

(
−
(

v− v0

s

))]−1/γ

. (10)

The upcoming analysis will further reduce the number of parameters to three by confronting

them with the WTPC operating ranges described in section 2.1.2.

2.4.1 Asymptotic Behavior and Operational Ranges

The two asymptotes of eq. (10) are given by

P−∞ = lim
v→−∞

P(v) = δ , (11)

P+∞ = lim
v→+∞

P(v) = α. (12)

To interpret the results eq. (11) and eq. (12), recall the following operating ranges.

2.4.1.1 No generation, v < vci

When the wind speed v is less than the cut-in wind speed vci, the wind turbine will

not generate any power: P = 0. Hence, eq. (11) gives

P(v) = 0, ∀v < vci =⇒ P−∞ = δ = 0. (13)
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2.4.1.2 Rated Power, vrated < v < vco

When the wind speed v is above the rated wind speed vrated, the wind turbine will

produce the rated power P = Prated. As stated in section 2.1.2.4, the safety shutdown operating

range is neglected. With those considerations, eq. (12) gives

P(v) = Prated, ∀v > vrated =⇒ P−∞ = α = Prated. (14)

2.4.2 Logistic Models with 2 and 3 Parameters

By combining the results eq. (13) and eq. (14) with eq. (10), and recalling the

definition of normalized power as in eq. (2), the initial logistic model can be reduced to three

free parameters:

p(v) =
[

1+ exp
(
−
(

v− v0

s

))]−1/γ

, (15)

which defines the 3-parameter logistic model (L3P, for short). Applying the restriction γ = 1

keeps the sigmoidal shape of the curve and defines the 2-parameter logistic model (L2P, for

short):

p(v) =
[

1+ exp
(
−
(

v− v0

s

))]−1

. (16)

2.4.3 Linearizing Transformation and Parameter Initialization

Equation (16) can be re-written as

log
(

p(v)−1−1
)
= (v0/s)+(−s−1)v. (17)

The coefficients a = v0/s and b =−s−1 in the right-hand side of eq. (17) can be estimated by

the ordinary least squares (OLS) method. This gives reasonable values for the parameters v0 and

s when γ = 1, providing a way to initialize them closer to their optimal value when fitting the

wind speed and normalized power data (vi, pi).

2.5 Discussion

This chapter discussed multiple details of the WTPC modeling task, starting with

the examination of a typical WTPC of a pitch regulated WT, which was described in terms of

four design parameters and the four operating ranges associated with them. The peculiarities
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of each operating range and their effects on the wind speed and power (vi,Pi) were analyzed,

showcasing the important characteristics that a good WTPC model must be able to express.

The IEC standard (INTERNATIONAL ELECTROTECHNICAL COMMISSION,

2013) was discussed to provide an overview of the technical approach to the WTPC task. The

WT’s SCADA was established as the main data source for the problem, while the wind farm’s

meteorological mast data was considered as an option to account for the effects of varying air

density through normalization. The implementation of the method of the bins, the mathematical

model proposed by the IEC standard, was described to serve as a comparison benchmark in this

dissertation.

A survey of the scientific literature has shown the high interest of the academic

community on the WTPC modeling topic. A methodological classification for the WTPC

models by Sohoni et al. (2016) as reviewed to highlight the vast possibilities to approach the

problem. All the considered reviews showcased polynomial regressions and neural networks,

which indicated them as representative comparison benchmarks. Previous works involving

GPs (PANDIT; INFIELD, 2019; PANDIT et al., 2019) and logistic functions (VILLANUEVA;

FEIJÓO, 2018) were also discussed, as they are the constituting parts of the WTPC modeling

framework this dissertation aims to propose.

Finally, a deep analysis of the logistic function model from Villanueva and Feijóo

(2018) was conducted as a preparation for its usage in the new WTPC modeling framework.

It was firstly shown that one of the 6-parameter logistic function (6PLE) can be eliminated by

reparametrization. Then, the parameters corresponding to their asymptotes were shown to be

constrained by the operating ranges of a WTPC, eliminating two other parameters. It resulted in

the L3P model eq. (15) for the normalized power p. A further simplification led to the L2P model,

whose linearizing transformation allowed for reasonable parameter initialization by means of

ordinary least squares.
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3 FUNDAMENTALS OF GAUSSIAN PROCESS MODELS

The usual strategy to deal the with uncertainties about an unknown function f : X →

R is to assume it follows a parametrical equation depending on a parameter vector θθθ model which

behaves according to a probability distribution. In this setting, the uncertainty comes from the

randomness in the parameter vector θθθ model and is pushed into the function f . This construction

constrains the function f to the hypothesized functional form.

GPs offer a different approach to deal with uncertainties in unknown functions.

Instead of a parametric form, the function f is understood as an “infinitely-long vector” of

function evaluations fff , which is assumed to behave as an “infinite-variate Gaussian distribution”.

This informally defines a probability distribution over the entire function space f : X → R that

is not constrained by a parametric form.

In this chapter, the GP is defined and used to model regression problems with a

presentation largely based on Rasmussen and Williams (2006), aiming to support the application

of it to WTPC modeling, which is mentioned whenever convenient. In section 3.1, the definition

and basic properties of the multivariate Gaussian distribution are reviewed. In section 3.2,

those properties are extended to define the GPs as a distribution over functions. In Section 3.3,

GPs are applied to the regression with noisy observations task. The chapter is finished with a

summarization of the discussed subject in section 3.4.

3.1 Multivariate Gaussian Distribution

GPs can be understood as an infinite-variate Gaussian distribution, and most of its

properties are inherited from it. Hence, it is important to present a brief review of it. The notation

is chosen as a preparation for the transition to GPs.

Let fff ∈ RN be a random vector which follows a multivariate Gaussian distribution,

i.e.:

fff ∼N (mmm,KKK), (18)

where mmm∈RN is the mean vector and KKK ∈RN×N is the covariance matrix, which must be positive

semi-definite (PSD), i.e.,

xxx>KKKxxx≥ 0, ∀xxx ∈ RN . (19)
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The probability density of fff is given by:

p( fff ) = N ( fff |mmm,KKK) =
1√

(2π)N |KKK|
exp
[
( fff −mmm)>KKK−1( fff −mmm)

]
, (20)

where |KKK| is the determinant of the matrix KKK.

The multivariate Gaussian distribution has two fundamental properties,

namely, marginalization and conditioning. To explore them, consider two disjoint subsets

fff 1 ∈ RN1 and fff 2 ∈ RN2 , N1 +N2 = N, of the random vector fff :

fff =

 fff 1

fff 2

∼N (mmm,KKK), mmm =

mmm1

mmm2

 , KKK =

KKK11 KKK12

KKK21 KKK22

 , (21)

with KKK12 = KKK>21. The properties are stated as follows.

– Marginalization: The subsets fff 1 and fff 2 can be analyzed separately, and each of them

follows a multivariate Gaussian distribution:

fff 1 ∼N (mmm1,KKK11), fff 2 ∼N (mmm2,KKK22) (22)

– Conditioning: The analysis of the subset fff 2, given the observation of the subset fff 1,

follows a multivariate Gaussian distribution:

fff 2| fff 1 ∼N (mmm2 +KKK21KKK−1
11 ( fff 1−mmm1),KKK22−KKK21KKK−1

11 KKK>21). (23)

These properties permit a simple yet effective way to use the multivariate Gaussian

distribution to learn from data. Using the marginalization, one can first observe the subset fff 1.

Then, by conditioning, one can analyze the subset fff 2 and incorporate information obtained from

fff 1. To perform this task, the mean vectors mmmi and the covariance matrices KKKi j must be computed,

which will be done by using GPs.

3.2 GP as a Distribution over Functions

The GP definition can now be constructed using the multivariate Gaussian distribution

from section 3.1. The formal mathematical justifications are skipped in favor of a more intuitive

approach which covers what is necessary for the objectives of this dissertation.

Let f : X → R, X ⊆ RD, be a random function1 which follows a GP distribution,

i.e.:

f ∼ G P(µ,κ), (24)
1 f maps inputs xxx ∈X to random output variables f (xxx) ∈ R.
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where µ : X →R and κ : X ×X :→R are the mean and covariance functions, respectively. It

is not possible to express the probability density of a random function directly. Instead, consider a

finite subset of N inputs, {xxxi}i=1,...,N ⊂X , represented as the input matrix XXX =
[
xxxi
]

N×D ∈R
N×D

and the corresponding random output vector fff = f (XXX) =
[

f (xxxi)
]

N×1 ∈ RN . The defining

property of a GP is that for any given input matrix XXX , the corresponding random output vector fff

conditionally follows a multivariate Gaussian distribution, i.e.,

fff |XXX ∼N (mmmXXX ,KKKXXXXXX), (25)

where

mmmXXX = µ(XXX) =
[
µ(xxxi)

]
N×1 ∈ RN , (26)

KKKXXXXXX = κ(XXX ,XXX) =
[
κ(xxxi,xxx j)

]
N×N ∈ RN×N , (27)

are respectively the mean vector and covariance matrix, with the probability distribution of fff |XXX

given by eq. (20). The matrix KKKXXXXXX generated by the covariance function κ must be PSD for any

input matrix XXX . A function with this property is called a PSD kernel function.

The marginalization and conditioning properties are naturally inherited by subsets of

input-output pairs (XXX1, fff 1) and (XXX2, fff 2) of the GP f . By substituting fff i by fff iii|XXX i and fff 222| fff 1 by

fff 222|XXX2, fff 1,XXX1.

The GP definition completes the problem of learning, now in the context of input-

output pairs (XXX1, fff 1) and (XXX2, fff 2), by providing a way to construct the mean vectors mmmi and

covariance matrices KKKi j in eqs. (22) and (23). The marginalization is applied to observations

of fff 1, given XXX1. Then, given a new input set XXX2, the conditioning can be used to incorporate

information obtained from (XXX1, fff 1) to analyze fff 2.

3.2.1 Mean Function

The mean function µ of a GP f is responsible for generating the mean vector mmmXXX of

its random outputs fff in terms of the inputs XXX , which prescribes how the GP f behaves in the

absence of information (no conditioning on previous observations). In the context of learning,

the mean function µ can be used to directly incorporate prior knowledge into the GP f . For

example, when modeling WTPCs, as is the focus of this dissertation, the L3P logistic function

given by eq. (15), with parameter vector φφφ = [v0, s, γ]. The contribution of the mean function µ

can be analyzed in two steps.
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First, consider how a multivariate Gaussian random variable is distributed around its

mean. The mean is also the mode of the distribution, i.e., the more frequently observed value

of it. Hence, when plotted, the observations of input-output pairs (xxxi, f (xxxi)) will be scattered

around (xxxi,µ(xxxi)).

Second, consider the process of learning with a GP f by conditioning in a set of

previous observations (XXX1, fff 1), fff 1 = f (XXX1). As the GP inherits the conditioning property of

the multivariate Gaussian, the expected value of a set of new observations (XXX2, fff 2), fff 2 = f (XXX2)

conditioned on the previous ones will follow (23), which, in GP notation, can be expressed as

Ep( fff 2|XXX222, fff 1,XXX111) [ fff 2] = mmmXXX2 +KKKXXX2XXX1KKK−1
XXX1XXX1

( fff 1−mmmXXX1). (28)

The first term of the sum, mmmXXX2 = µ(XXX2) is the same as the unconditioned mean, and hence

accounts for the prior knowledge provided by the mean function µ to the GP f . The second term

of the sum, KKKXXX2XXX1KKK−1
XXX1XXX1

( fff 1−mmmXXX1), is the effect of the learned information into the conditioned

mean. It is interesting to note that this term is proportional to fff 1−mmmXXX1 = f (XXX1)− µ(XXX1),

which can be understood as the deviation from the prior mean providing information to the new

observations’ mean.

3.2.2 Covariance Function

The covariance function κ of a GP f is responsible for generating the covariance

matrix KKKXXXXXX of its random outputs fff in terms of the inputs XXX , which plays a very important role

in the learning problem.

To simplify the analysis, consider two input-output pairs (xxx1, f (xxx1)) and (xxx2, f (xxx2)).

The covariance between the random outputs, Cov( f (xxx1), f (xxx2)) = κ(xxx1,xxx2), express how they

jointly vary, i.e., how, for example, f (xxx2) should change given that f (xxx1) changed. As it is

computed in terms of the inputs xxx1 and xxx2, this joint variation is specified by (a) the corresponding

input xxxi of each observation, which is given by the data, and (b) the functional form of the

covariance function κ . Hence, the covariance function κ manages how the GP f transfer what

was learned to new observations.
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3.2.2.1 Squared Exponential Covariance Function

The SE covariance function κSE : R×R→ R∗+, whose expression is given by

κSE(xxx1,xxx2) = σ
2
f exp

[
−1

2

D

∑
i=1

(
x1i− x2i

li

)2
]
, (29)

was studied and elected as one of the best options regarding WTPC modeling in Pandit and

Infield (2019), and hence is chosen to be used in this dissertation. It generates a “similarity by

proximity” behavior by increasing the covariance between the random outputs Cov( f (xxx1), f (xxx2))

as the inputs xxx1 and xxx2 becomes closer each other, and decreasing it otherwise.

The hyper-parameters of the SE covariance function are the elements of the θθθ =

[σ2
f , l1, . . . , lD]> vector. The variance σ2

f controls the scale of f , and the length scales li,

i = 1, . . . ,D measures how much two inputs need to move away from each other to become

uncorrelated. When dealing with normalized dimensions, large values of li indicate that the i-th

dimension of the input xxx is less relevant than the others, as its contribution to the sum is smaller –

this is the automatic relevance determination (ARD) property.

3.3 Regression with Noisy Observations

Consider the problem of learning a relationship xxx→ y with a data set in the form

of N observations (xxxi,yi) ∈X ×Y ⊆ RD×R, where the relationship is not exact, but rather

stochastic: given the value of an input xxxi, the output yi is not exactly defined. The inability to

determine the output yi exactly may derive either from incomplete knowledge of how it is related

to xxxi or from the intrinsic randomness of the process.

3.3.1 Regression Model

To tackle the noisy regression problem, assume there is a function f which describes

how noisy observations yi depend on inputs xxxi. The function f is unknown and is modeled as

a GP, i.e., f ∼ G P(µ,κ), which is the model’s prior. Furthermore, the effects of fi = f (xxxi)

on yi as well as the intrinsic randomness of the process is modeled as a probability distribution

p(yi| fi), the model’s likelihood. This distribution is the same for each noisy observations yi. This
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gives the following regression model:

p( fff |XXX) = N ( fff |mmmXXX ,KKKXXXXXX), (30)

p(yyy| fff ) =
N

∏
i=1

p(yi| fi), (31)

where yyy =
[
yi
]

N×1 is the noisy-output vector, fff =
[

f (xxxi)
]

N×1 is the latent function vector, mmmXXX

and KKKXXXXXX are defined as in eqs. (26) and (27). The ability to write the model’s likelihood p(yyy| fff )

as the product of each observation’s likelihood p(yi| fi) defines what is called a factorizing

likelihood, meaning that the noisy observation yi is conditionally independent of any other

random variable given the corresponding latent function evaluation fi.

3.3.2 Likelihoods

Any probability distribution P(y|γγγ), where γγγ =
[
γ j
]

n×1 ∈ Rn is its hyperparameter

vector, can be used as the likelihood, and its choice is a way of making assumptions which can

incorporate domain knowledge to the model. The notation

p(yi| fi) = P(yi|γ j∗ = fi,γγγ
′), γγγ

′ =
[
γ j′, j′ 6= j∗

]
(n−1)×1 ∈ Rn−1 (32)

is used to emphasize how the noisy observations of yi depend on the latent function evaluation

fi through the functional form of the probability distribution P(yi|γγγ). The function fi = f (xxxi)

takes the place of the hyperparameter γ j∗, thus making it dependent on the input xxxi, whereas the

likelihood hyperparameter vector γγγ ′ has a global effect.

Two examples of likelihoods are now considered.

3.3.2.1 Gaussian Likelihood

A very common example in the general and GP specific literature is the Gaussian

likelihood. It is built from the univariate Gaussian distribution as follows.

N (y|µy,σ
2
y ) =

1√
2πσ2

y

exp

[
−1

2

(
y−µy

σy

)2
]
, (33)

p(yi| fi) = N (yi|µy = fi,σ
2
y ), (34)

where

– The likelihood’s mean µ , modeled by the latent function fi, gives the expected value of

the noisy observation yi. It is also referred as the likelihood’s location;
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– The likelihood’s variance σ2
y > 0 is a hyperparameter that globally controls the scattering

of each noisy observation yi around its µy = fi. Its positive square root σy > 0 is also

referred as the likelihood’s standard deviation or the likelihood’s scale.

Using the Gaussian likelihood assumes a symmetric, homoscedastic and lightly-

tailed noise behavior of yi around µ = fi. It is especially attractive because, as will be shown in

sections 3.3.3 and 3.3.4, it generates tractable expressions2 for inference and predictions.

3.3.2.2 Student-t Likelihood

In some applications such as WTPC modeling, the lightly-tailed hypotesis will not

be observed as there can be outliers in the data, which would cause a over-estimation of the

likelihood’s variance σ2
y . For those cases, one can use the Student-t likelihood, which is built

from the localized and scaled Student-t distribution as follows.

T (y|µy,σy,ν) =
Γ
(

ν+1
2

)
Γ
(

ν

2

)√
πνσ2

y

[
1+

1
ν

(
y−µy

σy

)2
]− ν+1

2

, (35)

p(yi| fi) = T (yi|µy = fi,σy,ν), (36)

where

– The likelihood’s location µy, modeled by the latent function fi, gives the expected value of

the noisy observation yi;

– The likelihood’s scale σy > 0 is a hyperparameter that globally controls the scattering of

each noisy observation yi around its µy = fi. Its square root σy, can also be referred as the

standard deviation of scale;

– The likelihood’s degrees-of-freedom ν > 2 is a hyperparameter that globally controls how

heavily-tailed the distribution of each noisy observation yi is. As the degrees-of-freedom

ν increases, the Student-t likelihood approaches the Gaussian likelihood i.e.,

lim
ν→∞

T (y|µy,σy,ν) = N (y|µy,σ
2
y ). (37)

Using the Student-t likelihood assumes a symmetric, homoscedastic and possibly

heavily-tailed noise behavior of yi around µy‘ = fi. The possibility of heavy tails makes it robust,

i.e., able to deal with outliers in the data, at the expense of dealing with intractable expressions3

for the model’s evidence and posterior distributions, as will be shown in sections 3.3.3 and 3.3.4.
2 Expressions whose computation is readily available, not requiring methods such as numerical integration.
3 Expressions whose computation require numerical methods, mainly numerical integrations.
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3.3.3 Inference

By combining eqs. (30) and (31) and marginalizing the latent function vector, one

gets the evidence of the model:

p(yyy|XXX) =
∫

p(yyy| fff )p( fff |XXX)d fff

=
∫

p(yyy| fff )N ( fff |mmmXXX ,KKKXXXXXX)d fff (38)

which can be understood as the model’s capacity to explain the data XXX ,yyy. Although not explicitly

represented, the model’s evidence depends on the parameter vector φφφ of the mean function µ , the

hyperparameter vector θθθ of the covariance function κ and the hyper-parameters of the likelihood

distribution p(yi| fi).

The inference process is done by finding values for the parameters and hyper-

parameters such that they properly explain the available data. Different approaches for learning

the parameters and hyper-parameters, such as gradient-based optimization or cross-validation

criteria are discussed in Rasmussen and Williams (2006). This dissertation follows the optimization

approach by minimizing the negative log-evidence of the model (which is equivalent to maximizing

the model’s evidence).

When using the Gaussian likelihood, the evidence is tractable4. Substituting eq. (34)

into eq. (38) and integrating, the evidence of the model with Gaussian likelihood is given by

p(yyy|XXX) = N (yyy|mmmXXX ,KKKyyy), KKKyyy = KKKXXXXXX +σ
2
y IIIN . (39)

3.3.3.1 Computational Complexity and Memory Requirements

It is important to investigate the gradient-based optimization to verify the computational

complexity and memory requirements of computing the derivatives involved in it. Taking the

negative-log of (20) and substituting the parameters according to eq. (39), the negative log-

evidence is

− log p(yyy|XXX) =
1
2
(yyy−mmmXXX)

>KKK−1
yyy (yyy−mmmXXX)+

1
2

log|KKKyyy|+
n
2

log2π. (40)

4 See footnote 2 in page 41.
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The derivatives w.r.t. the mean function parameter vector φφφ , the covariance function hyperparameter

vector θθθ and the noise variance σ2
y are given by

∂

∂φ j
(− log p(yyy|XXX)) = ααα

∂mmmXXX

∂φ j
, (41)

∂

∂θi
(− log p(yyy|XXX)) =

1
2

tr
[(

KKK−1
yyy −αααααα

>
)

∂KKKyyy

∂θi

]
, (42)

∂

∂σ2
y
(− log p(yyy|XXX)) =

1
2

tr
(

KKK−1
yyy −αααααα

>
)
, (43)

where ααα = KKK−1
yyy (yyy−mmmXXX) and trAAA is the trace of the matrix AAA ∈ RN×N . The matrix inversion

operation KKK−1
yyy present in eqs. (42) and (43) requires a computation with O(N3) complexity

which is performed at each optimization step and demands a O(N2) memory. For large data

sets, the computational complexity and memory requirements can become prohibitively large,

motivating the usage of approximate inference methods.

When using a non-Gaussian likelihood (e.g. Student-t likelihood), eq. (38) must be

numerically integrated, which introduces additional computational complexity. Furthermore,

computing multivariate Gaussian expectations as in eq. (38) requires numerical integration

methods such as N-dimensional Gauss-Hermite quadrature or Monte Carlo quadrature. These

methods usually involve the Cholesky factor of KKKXXXXXX , whose computation also has O(N3)

complexity and O(N2) memory requirements.

3.3.4 Prediction

Once the parameters and hyper-parameters are learned from the data, it is possible

to compute the distribution of the latent function vector fff given the data XXX ,yyy, i.e., the model’s

posterior, by using the Bayes’ rule:

posterior =
likelihood×prior

evidence
, p( fff |XXX ,yyy) =

p(yyy| fff )p( fff |||XXX)

p(yyy|||XXX)
. (44)

For the Gaussian likelihood, eq. (44) is tractable and is given by

p( fff |XXX ,yyy) = N ( fff |mmmXXX +KKKXXXXXX ααα,(KKK−1
XXXXXX +σ

−2
y IIIN)

−1). (45)

Given a set of new inputs xxx′j ∈X , j = 1, . . . ,N′, grouped as the new input matrix

XXX ′ =
[
xxx′j
]

N′×D, the posterior p( fff |XXX ,yyy) can be used to obtain the distribution of the new latent

function evalution vector fff ′ =
[

f (xxx′j)
]

N′×1 conditioned on the new inputs XXX ′ and on the data

XXX ,yyy. In this regard, the following expression is obtained:

p( fff ′|XXX ′,XXX ,yyy) =
∫

p( fff ′′′|XXX ′, fff ,XXX)p( fff |XXX ,yyy)d fff , (46)
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which is called the model’s posterior predictive. The terms in eq. (46) describe how the

information is transferred from the data to the new predictions. More especifically, one can make

the following observations.

– The posterior p( fff |XXX ,yyy) (see eq. (44)) describes what was learned about latent function

evaluation vector fff from the data XXX ,yyy;

– The GP-conditional distribution p( fff ′′′|XXX ′, fff ,XXX) (see eq. (23)) transfers the information

from the latent function evaluation vector fff to the new latent function evaluation vector fff ′

as both are part of the same GP f . It is important to remember that fff was initially studied

without regard to fff ′, which is possible due to the marginalization property;

– The marginalization over fff pushes the uncertainties about fff , which is not directly

observable, to fff ′.

For the Gaussian likelihood, eq. (46) is tractable and given by

p( fff ′|XXX ′,XXX ,yyy) = N ( fff ′|mmmXXX ′+KKKXXX ′XXX ααα,KKKXXX ′XXX ′−KKKXXX ′XXX KKK−1
XXXXXX KKKXXXXXX ′) (47)

Finally, predictions about the noisy observations vector yyy′ =
[
y′j
]

N′×1 can be done

with a further step. By hypothesis, the likelihood is the same for each observation (even for those

yet to be seen). Hence, the model’s predictions for the noisy observation vector yyy′ relative to the

new inputs XXX ′ and conditioned on the data XXX ,yyy is given by

p(yyy′|XXX ′,XXX ,yyy) =
∫

p(yyy′| fff ′)p( fff ′|XXX ′,XXX ,yyy)d fff ′, (48)

where the marginalization over fff ′ pushes the uncertainties about fff ′ to yyy′. For the Gaussian

likelihood, eq. (48) is tractable and given by

p(yyy′|XXX ′,XXX ,yyy) = N ( fff ′|mmmXXX ′+KKKXXX ′XXX ααα,KKKyyy′′′−KKKXXX ′XXX KKK−1
XXXXXX KKKXXXXXX ′), (49)

where KKKyyy′ = KKKXXX ′XXX ′+σ2
y IIIN′ .

3.4 Discussion

In this chapter, the GP was introduced as way to deal with uncertainties about

functions f by looking at it as a ‘infinitely-long vector” of function evaluations fff . This enabled

the construction of the GP as a distribution over the space of functions in the form f : X → R

through the extension of the N-variate Gaussian distribution over the space of vectors fff ∈ RN .

The properties of marginalization and conditioning of the multivariate Gaussian distribution were



45

also extended to the GP, which enables it to be used for learning. Given some inputs XXX and their

function evaluations fff , with fi = f (xxxi), one can use the GP properties to make more accurate

predictions about new function evaluations fff ′ at new inputs XXX ′.

The GP was defined in terms of its mean function µ : X → R and covariance

function κ : X ×X → R and their parallel with the N-variate Gaussian distribution mean

vector mmm ∈ RN and covariance matrix KKK ∈ RN×N was estabilished. The mean function µ was

presented as a way to incorporate prior knowledge about the GP-modeled function f into the

model, whereas the covariance function κ was shown to define how the information obtained in

some function evalutions fff 1 is transferred to the predictions of fff 2.

The regression with noisy observations problem, i.e., learning the stochastic relationship

xxx→ y given N noisy observations pairs (xxxi,yi) ∈ X ×Y , was approached within the GP

framework. It was modeled by a latent function f , supposed to be a GP, and the likelihood, a

probability distribution connecting fi = f (xi) to yi. The inference process on the model was

studied, showing that the computational complexity and memory requirements can make it direct

usage infeasible for large N, even for the Gaussian likelihood which gives tractable expressions.

The predictive distribution was deduced and each element of it was analyzed, showcasing how

the information is transferred from the initial data XXX ,yyy to new observations yyy′ at inputs XXX ′.
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4 VARIATIONAL INFERENCE APPLIED TO GAUSSIAN PROCESS MODELS

The Bayesian inference process consists in applying Bayes’ rule to find the model’s

posterior distribution of latent variables given the data, which, apart from very specific cases,

leads to intractable1 expressions, as pointed out in section 3.3.3 regarding GP models. One option

to deal with this problem is to use variational inference (BLEI et al., 2017), a technique which

transforms the intractable computations in an constrained optimization problem by proposing a

parametric probability distribution, the so-called variational distribution, as an approximation to

the model’s posterior and minimizing the Kullback-Leiber (KL) divergence between them.

In this chapter, variational inference is applied to GP models. As will be shown, it

not only solves the problem of intractable expressions but can also be used to overcome the

computational complexity and memory requirements associated with standard inference. In

section 4.1, the variational inference procedure is discussed specifically for GP models, begining

with a brief review of the definition and properties of the KL divergence. In section 4.2, the

sparse variational GP (SVGP) (TITSIAS, 2009; HENSMAN et al., 2015) model is presented

as an option to make GPs more computationally feasible. In section 4.3, the Chained GP

(SAUL et al., 2016), a model with multiple latent SVGPs, is analyzed, opening the possibilities

of more complex likelihoods able to express more features of the noisy observations such as

heteroscedasticity and localized heavy-tailedness. The chapter is finished with a summarization

of the discussed subject in section 4.4.

4.1 Variational Inference on GP models

In this section, the variational inference procedure (BLEI et al., 2017) is discussed in

the context of the GP models described in chapter 3. It consists in avoiding intractable integrals

needed to compute a model’s evidence such as in eq. (38) and instead expressing it in terms of its

posterior as in eq. (44), which is also unknown. To solve this, the model’s evidence is written in

terms of the KL divergence from a variational distribution to the model’s posterior and is lower

bounded using the Gibbs’ inequality.

The resulting evidence lower bound (ELBO) is then used as an optimization objective,

which gives an approximate inference scheme on the original model’s evidence and also makes

the variational distribution an approximation, in a KL divergence minimizing sense, to the
1 See footnote 3 in page 41.
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original model’s posterior. The variational distribution is chosen in such a way that the resulting

expressions become tractable.

4.1.1 Kullback-Leiber Divergence

Before describing the application of variational inference methods to GP models, it

is useful to record the definition of the KL divergence. Given two probability distributions p(x)

and q(x), the KL divergence2 from q(x) to p(x) is given by

DKL[q(x)‖p(x)] = Eq(x)

[
log

q(x)
p(x)

]
=
∫ (

log
q(x)
p(x)

)
q(x)dx. (50)

The Gibbs’ inequality ensures its non-negativity, i.e.,

DKL[q(x)‖p(x)]≥ 0, (51)

with the equality happening only when q(x) = p(x). Hence, the KL Divergence DKL[q(x)‖p(x)]

can be interpreted as an asymmetric dissimilarity measure between the probability distributions

q(x) and p(x).

Furthermore, given two M-variate Gaussian distributions

p(xxx) = N (xxx|mmmp,KKK p) and q(xxx) = N (xxx|mmmq,KKKq), the KL divergence from q(xxx) to p(xxx) is given

by

DKL[q(xxx)‖p(xxx)] =
1
2

[
tr(KKK−1

p KKKq)+(mmmp−mmmq)
>KKK−1

p (mmmp−mmmq)−M+ log
|KKK p|
|KKKq|

]
, (52)

whose computation has O(M3) complexity and O(M2) memory requirement.

Finally, it can be shown that the KL divergence between the factorizing probability

distributions q(a,b) = q(a)q(b) and p(a,b) = p(a)p(b) is the sum of the KL divergence between

their factors, i.e,

DKL[q(a,b)‖p(a,b)] = DKL[q(a)‖p(a)]+DKL[q(b)‖p(b)]. (53)

4.1.2 Evidence Lower Bound

The deduction of the ELBO starts by isolating the model’s evidence in eq. (44),

which gives

p(yyy|XXX) =
p(yyy| fff )p( fff |XXX)

p( fff |XXX ,yyy)
. (54)

2 Also referred as the relative entropy of q(x) w.r.t. p(x).
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Let q( fff ) be a generic probability distribution, which aims to approximate the model’s

posterior, i.e., the variational posterior. Multiplying and dividing eq. (54) by the variational

distribution q( fff ) and taking the logarithm of both sides, one arrives at the following expression:

log p(yyy|XXX) = log p(yyy| fff )+ log
(

q( fff )
p( fff |XXX ,yyy)

)
− log

(
q( fff )

p( fff |XXX)

)
. (55)

The left-hand side of eq. (55) does not depend on q( fff ). Taking the expectation w.r.t. q( fff ) on

both sides and noting the definition of the KL divergence as in eq. (50):

log p(yyy|XXX) = Eq( fff ) [log p(yyy| fff )]+DKL[q( fff )‖p( fff |XXX ,yyy)]−DKL[q( fff )‖p( fff |XXX)]. (56)

The second term in the right-hand side of eq. (56) is still dependent on the posterior p( fff |XXX ,yyy).

Applying eq. (51) in eq. (56) gives the following inequality:

log p(yyy|XXX)≥ Eq( fff ) [log p(yyy| fff )]−DKL[q( fff )‖p( fff |XXX)], (57)

whose left-hand side is called the model’s evidence lower bound, as it is a lower bound for the

model’s log-evidence log p(yyy|XXX).

4.1.3 Variational Distribution

The variational distribution q( fff ) was purposely left undefined in section 4.1.2,

intending to highlight the flexibility of choosing any valid probability distribution for it. In

the upcoming sections, the variational inference methodology will be applied to extensions of

the GP models of chapter 3 which aim to tackle the problems discussed in section 3.4. In this

context, a clever choice of the variational distribution q( fff ) will be fundamental in the deduction

of tractable3 expressions.

4.1.4 Optimization Objective

As discussed in section 3.3.3, the inference process aims to find values for the

parameters and hyperparameters of the model such that they properly explain the data. Instead

of directly optimizing the model’s log-evidence, as was done previously, the ELBO in eq. (57) is

used as the optimization objective, which indirectly forces the model’s log-evidence to increase.

In general, the ELBO in eq. (57) depends not only on the parameter vector φφφ

of the mean function µ , the hyperparameter vector θθθ of the covariance function κ and the
3 See footnote 2 in page 41.



49

hyperparameters of the likelihood distribution p(yi| fi) but also on any eventual variational

parameters λλλ used to define the variational distribution q( fff ). The gradient based optimization is

performed w.r.t. all of these variables.

4.1.5 Variational Posterior Approximation

As the optimization of the ELBO proceeds, the slack of the inequality in eq. (57)

gets tighter. This slack is precisely the KL divergence from the variational posterior to the true

posterior DKL[q( fff )‖p( fff |XXX ,yyy)] which is then compressed towards 0, although constrained by

the proposed functional form of q( fff ). This grantees that the obtained variational posterior q( fff )

is, under the given restrictions, a good approximation (in a KL divergence sense) to the true and

unknown posterior p( fff |XXX ,yyy), i.e.,

q( fff )≈ p( fff |XXX ,yyy). (58)

As will be shown, this approximation can be used to obtain approximate predictions.

4.2 Sparse Variational Gaussian Process Models

The sparse variational Gaussian process (SVGP) model was proposed in Titsias

(2009) to tackle the computational complexity and memory requirements challenges imposed

by standard GP regression inference, as discussed in the end of section 3.3.3. It was further

developed in Hensman et al. (2015) to also deal with non-Gaussian likelihoods, which is how

this section presents the subject (although using a slightly different notation and development).

Readers looking for the more rigorous theoretical basis of the SVGP are referred to Matthews et

al. (2016), Matthews (2017).

4.2.1 Augmented Regression Model

The SVGP approach can be described as the augmentation of the standard GP

regression model from section 3.3.1 with M pseudo-inputs zzzi ∈ X , M � N, grouped in

the pseudo-input matrix ZZZ =
[
zzzi
]

M×D , and the corresponding inducing variables vector uuu =[
f (zzzi)

]
M×1 , which is connected to the latent function vector fff through the same GP f . Due

to the marginalization property of the GP, the pseudo-inputs ZZZ and the inducing variables uuu do

not change the latent function vector fff behavior. Also, due to the assumption of conditional

independence of noisy observations yyy given their corresponding latent function evaluations fff
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from other variables, the model likelihood can be expressed as

p(yyy| fff ,uuu) = p(yyy| fff ). (59)

4.2.2 Variational Inference

Inference on the SVGP model is done by adapting the variational inference procedure

from section 4.1 to account for the the model augmentation, resulting in a tractable ELBO for

the model’s log-evidence and an approximate model’s posterior. The chosen approximating

variational distribution enables the reduction of the computational complexity and memory

requirements to O(NM2) and O(M2) respectively, which is the main merit of the SVGP.

4.2.2.1 Evidence Lower Bound

The SVGP ELBO is obtained by accounting for the pseudo-inputs ZZZ and inducing

variables uuu. This is done by swapping XXX for XXX ,ZZZ and fff for fff ,uuu in eq. (57), which gives

log p(yyy|XXX ,ZZZ)≥ Eq( fff ,uuu) [log p(yyy| fff ,uuu)]−DKL[q( fff ,uuu)‖p( fff ,uuu|XXX ,ZZZ)], (60)

where q( fff ,uuu) is the variational posterior, which approximates the model’s posterior p( fff ,uuu|XXX ,ZZZ,yyy).

The expectation term Eq( fff ,uuu) [log p(yyy| fff ,uuu)] in eq. (60) can be simplified using

eq. (59) and noting that it is independent of the inducing variables uuu, which gives

Eq( fff ,uuu) [log p(yyy| fff ,uuu)] = Eq( fff ,uuu) [log p(yyy| fff )] = Eq( fff ) [log p(yyy| fff )] . (61)

Substituting eq. (61) in eq. (60) gives

log p(yyy|XXX ,ZZZ)≥ Eq( fff ,uuu) [log p(yyy| fff ,uuu)]−DKL[q( fff ,uuu)‖p( fff ,uuu|XXX ,ZZZ)]. (62)

The right-hand side of eq. (62) is the SVGP ELBO. For factorizing likelihoods as the ones in

eq. (31), it can be expressed as a summation over the data:

log p(yyy|XXX ,ZZZ)≥

(
N

∑
i=1

Eq( fi) [log p(yi| fi)]

)
−DKL[q( fff ,uuu)‖p( fff ,uuu|XXX ,ZZZ)], (63)

where q( fi) is the marginal distribution of each element fi of the latent function evaluation vector

fff .
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4.2.2.2 Variational Distribution

As discussed in section 4.1.3, the variational distribution q( fff ,uuu) needs to be cleverly

chosen to produce tractable expressions for optimization. Aiming to simplify the KL divergence

in eq. (63), the factorization

q( fff ,uuu) = p( fff |XXX ,uuu,ZZZ)q(uuu) (64)

is imposed, with the inducing variables variational distribution q(uuu) independent of the latent

function evalutions fff . This makes the following simplification possible:

DKL[q( fff ,uuu)‖p( fff ,uuu|XXX ,ZZZ)] 1
= Eq( fff ,uuu)

[
log

q( fff ,uuu)
p( fff ,uuu|XXX ,ZZZ)

]
2
= Eq( fff ,uuu)

[
log

p( fff |XXX ,uuu,ZZZ)q(uuu)
p( fff |XXX ,uuu,ZZZ)p(uuu|ZZZ)

]
3
= Eq( fff ,uuu)

[
log

q(uuu)
p(uuu|ZZZ)

]
4
= Eq(uuu)

[
log

q(uuu)
p(uuu|ZZZ)

]
5
= DKL[q(uuu)‖p(uuu|ZZZ)]. (65)

The steps 1-5 of eq. (65) are justified as follows:

1. KL divergence definition, eq. (50);

2. Variational distribution factorization, eq. (64), and conditioning for the GP f , eq. (23);

3. Equal terms cancelation;

4. Marginalization over the latent function evaluations fff since the expression inside the

expectation does not depend on it;

5. KL divergence definition, eq. (50).

Substituing eq. (65) into eq. (63) gives

log p(yyy|XXX ,ZZZ)≥

(
N

∑
i=1

Eq( fi) [log p(yi| fi)]

)
−DKL[q(uuu)‖p(uuu|ZZZ)]. (66)

For mathematical tractability of eq. (66), q(uuu) is chosen to be a M-variate normal

distribution:

q(uuu) = N (uuu|mmmuuu,LLLuuuLLL>uuu ), (67)

where mmmuuu ∈ RM is the variational mean vector and the matrix LLLuuu ∈ RM×M is lower-triangular,

which ensures the variational covariance matrix LLLuuuLLL>uuu is PSD, as required by eq. (20). With this
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choice, both the variational posterior q(uuu) and the prior p(uuu|ZZZ) of the inducing variables uuu are

M-variate Gaussian distributions, which enables the KL divergence from the former to the latter

DKL[q(uuu)‖p(uuu|ZZZ)] to be computed with eq. (52).

The expectation in eq. (66) depends on the marginal distributions q( fi) of the

elements fi from the latent function evaluation vector fff , whose joint distribution q( fff ) can

be obtained by marginalizing q(uuu) in eq. (64), giving

q( fff ) =
∫

p( fff |XXX ,uuu,ZZZ)q(uuu)duuu. (68)

Since both the latent function evaluations fff and the inducing variables uuu are function evaluations

of the same GP f at inputs XXX and pseudo-inputs ZZZ, eq. (23) gives

p( fff |XXX ,uuu,ZZZ) = N ( fff |mmm fff |XXXrrr,uuu,ZZZ,KKK fff |XXX ,uuu,ZZZ), (69)

mmm fff |XXX ,uuu,ZZZ = mmmXXX +KKKXXXZZZKKK−1
ZZZZZZ(uuu−mmmZZZ),

KKK fff |XXX ,uuu,ZZZ = KKKXXXXXX −KKKXXXZZZKKK−1
ZZZZZZKKKZZZXXX .

Substituting eq. (69) into eq. (68) gives

q( fff ) = N ( fff |mmm fff ,KKK fff ), (70)

mmm fff = mmmXXX +KKKXXXZZZKKK−1
ZZZZZZ(mmmuuu−mmmZZZ)

KKK fff = KKKXXXXXX +KKKXXXZZZKKK−1
ZZZZZZ

(
LLLuuuLLL>uuu −KKKZZZZZZ

)
KKK−1

ZZZZZZKKKZZZXXX .

As stated by eq. (70), the joint distribution q( fff ) of the latent function evaluation vector fff is a

N-variate Gaussian distribution. Hence, the marginal distribution of each of its elements fi is

given by

q( fi) = N
(

fi|m fi,k fii
)
, (71)

where the distribution’s mean m fi is the i-th element of the mean vector mmm fff , and distribution’s

variance k fii is the i-th element of the main diagonal of the covariance matrix KKK fff , respectively.

4.2.2.3 Computational Complexity and Memory Requirements

It is now possible to analyze the computational complexity and memory requirements

for the SVGP ELBO given by eq. (66), which requires the evaluation of the following items:

– The KL divergence of two M-variate Gaussians, as in eq. (52). As stated in section 4.1.1,

it has O(M3) computational complexity and O(M2) memory requirement;
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– The distribution described by eq. (70). The matrix inversion only involves M×M matrices,

and hence has O(M3) computational complexity and O(M2) memory requirement. The

matrix products, however, involve N ×M and M ×M matrices, which has O(NM2)

complexity complexity and O(NM) additional memory requirement. Under the assumption

that N�M, the computational complexity is O(NM2) and the memory requirement is

O(NM);

– The summation of N uni-dimensional Gaussian expectations following the marginal

distributions of each fi. For a general likelihood, this results in the evaluation of N

independent quadrature algorithms4. If the likelihood is Gaussian, a closed form expression

is, as usual, available:

‘Eq( fi) [log p(yi| fi)] =−
1
2

[
log(2πσ

2
y )+

(yi−m fi)
2 + k fii

σ2
y

]
. (72)

This leads to a computational complexity of order O(NM2) and a memory requirement of order

O(NM). Selecting a number M of pseudo inputs ZZZ and inducing variables uuu such that M� N

results in computations with much smaller computational and memory requirements than the

standard GP regression inference.

4.2.3 Prediction

As discussed in section 4.1.5, the learned variational posterior q( fff ,,,uuu) can be used to

perform predictions by taking advantage of the equivalent of eq. (58) for the SVGP, i.e,

q( fff ,uuu)≈ p( fff ,uuu|XXX ,ZZZ,yyy). (73)
4 Each summand is a Gaussian expectation with mean m fi and variance k fii depending on i as in eq. (71). The same

quadrature algorithm, e.g. Gauss-Hermite quadrature, can be used to evaluate it for each i, but it need to be run
with different parameters N times.
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Consider, as in section 3.3.4, a set of new inputs grouped in the input matrix XXX ′ and their

corresponding function evalutions fff ′. The SVGP’s (variational) posterior predictives is:

p( fff ′|XXX ′,XXX ,ZZZ,yyy) 1
=
∫

p( fff ′|XXX ′, fff ,XXX ,uuu,ZZZ)p( fff ,uuu, |XXX ,ZZZ,yyy)d fff duuu

2≈
∫

p( fff ′|XXX ′, fff ,XXX ,uuu,ZZZ)q( fff ,uuu)d fff duuu

3
=
∫

p( fff ′|XXX ′, fff ,XXX ,uuu,ZZZ)p( fff | fff ,XXX ,uuu,ZZZ)q(uuu)d fff duuu

4
=
∫

p( fff ′, fff |XXX ′,XXX ,uuu,ZZZ)q(uuu)d fff duuu

5
=
∫

p( fff ′|XXX ′,uuu,ZZZ)q(uuu)duuu

6
= q( fff ′). (74)

The steps 1-6 of eq. (74) are explained as follows.

1. Posterior predictive distribition definition, as in eq. (46);

2. Variational posterior approximation, as in eq. (73);

3. Variational posterior definition, as in eq. (64);

4. Conditional distribution definition;

5. Marginalization property of the GP f . Note that the latent function evaluations fff , the new

function evaluations fff ′ and the inducing variables uuu are all evalutions of from the same

latent GP f ;

6. Similarity with the variational posterior definition, as in eq. (64), swapping fff and XXX for fff ′

and XXX ′, respectively.

The result in eq. (74) allows the computation of q( fff ′′′) from eq. (70) by swapping XXX for XXX ′. It is

also worth noting that it does not depend directly on the data XXX ,yyy, which can be interpreted as

the information obtained through the SVGP framework being concentrated only in ZZZ,uuu.

The prediction of the new noisy observations yyy′ can be approximately computed by

substituing the variational posterior predictive from eq. (74) into an adaptation of eq. (48) for the

SVGP, given by

p(yyy′|XXX ′,XXX ,ZZZ,yyy) =
∫

p(yyy′| fff ′)p( fff ′|XXX ′,XXX ,ZZZ,yyy)d fff ′

≈
∫

p(yyy′| fff ′)q( fff ′)d fff ′. (75)

For a general likelihood, eq. (75) requires numerical integration. In the Gaussian likelihood case,
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the integral is tractable and gives the following analytical expression:

p(yyy′|XXX ′,XXX ,ZZZ,yyy) = N (yyy′|mmmyyy′,KKKyyy′), (76)

mmmyyy′ = mmmXXX ′+KKKXXX ′ZZZKKK−1
ZZZZZZ(mmmuuu−mmmZZZ)

KKKyyy′ = KKKXXX ′XXX ′+KKKXXX ′ZZZKKK−1
ZZZZZZ

(
LLLuuuLLL>uuu −KKKZZZZZZ

)
KKK−1

ZZZZZZKKKZZZXXX ′+ IIIN′σ
2
ε .

4.3 Chained Gaussian Process Models

The variational heteroscedastic Gaussian process (VHGP) model was proposed in

Lázaro-Gredilla and Titsias (2011) to deal with heteroscedastic behavior in the data by adding of

another latent GP to model it. Although successfully being able to represent the dependence of

the scattering of the output y on the input xxx, the VHGP has the same computational complexity

and memory requirements of the standard GP regression from section 3.3.

Expanding on the idea of multiple latent GPs to model more complex features of the

data, the chained Gaussian process was then proposed in Saul et al. (2016). It incorporates the

scalability improvements of the SVGP on each latent GP in a integrated variational inference

scheme, allowing the usage of more detailed likelihoods to model the regression problem in

hand.

4.3.1 Multiple Latent GP Regression Model

Consider L unknown functions f j : X → R, each of them modeled as independent

GPs, i.e., f j ∼ G P(µ j,κ j), grouped in the multi-output function F : X →RL, which describes

how noisy observations yi depend on inputs xxxi. The evaluation of the j-th function f j on the i-th

input xxxi is denoted f j
i = f j(xxxi), and hence the evaluation of the multi-output function F on it can

be expressed as the (row) vector fff i = F(xxxi) =
[

f j(xxxi)
]

1×L =
[

f j
i
]

1×L, the likelihood is given

by the probability distribution p(yi| fff i) = p
(
yi| f 1

i , . . . , f L
i
)
. As in section 3.3.1, the likelihood

probability distribution is the same for each noisy observation yi. This gives the following

regression model:

p( fff j|XXX) = N ( fff j|mmm j
XXX ,KKK

j
XXXXXX), j = 1, . . . ,L (77)

p(FFF |XXX) =
L

∏
j=1

p( fff j|XXX), (78)

p(yyy|FFF) =
N

∏
i=1

p(yi| fff i) (79)
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where yyy =
[
yi
]

N×1 is the noisy-output (column) vector, fff j =
[

f j(xxxi)
]

N×1 =
[

f j
i
]

N×1 is the j-th

latent function (column) vector, FFF =
[

f j(xxxi)
]

N×L =
[

f j
i
]

N×L is the multi-output latent function

matrix, which is built using the latent function vectors fff j as columns or, equivalently, by using

the multi-output function evaluation vectors fff i as its rows, mmm j
XXX and KKK j

XXXXXX are defined as in eqs. (26)

and (27), for each j = 1, . . . ,L. This model is a detailed statement of the one proposed by Saul et

al. (2016), with the extension that the GPs which model the latent functions f j are allowed to

have non-zero mean functions µ j.

In this dissertation, models with L = 2 and L = 3 latent functions f j are considered.

For notational convenience, they will be denoted as f 1 = f , f 2 = g and f 3 = h, respectively. In

the more general case with L = 3, the regression model eqs. (77) to (79) can be written as

p( fff |XXX) = N ( fff |mmm f
XXX ,KKK

f
XXXXXX), (80)

p(ggg|XXX) = N (ggg|mmmg
XXX ,KKK

g
XXXXXX), (81)

p(hhh|XXX) = N (hhh|mmmh
XXX ,KKK

h
XXXXXX), (82)

p(yyy| fff ,ggg,hhh) =
N

∏
i=1

p(yi| fff ,ggg,hhh). (83)

4.3.2 Likelihoods depending on Multiple Latent GPs

In this disseration, the focus is restricted to likelihoods p(yi| fff i) dealing with heteroscedasticity

and localized outliers, which are the main features of the WTPC modeling problem. They can be

constructed as an extension of the ones considered in section 3.3.2 by using additional latent

functions evaluations f j
i to model other hyperparameters of the probability distribution P(yi|γγγ)

in addition to the usual approach of modeling the location hyperparamter.

Three likelihoods are now considered.

4.3.2.1 Heteroscedastic Gaussian Likelihood

The heteroscedastic Gaussian likelihood was initially proposed by in Lázaro-Gredilla

and Titsias (2011) and is built by considering two latent functions f and g to respectively model

the location and scale hyperparameters µ and σy of a univariate Gaussian distribution as in

eq. (33). As the likelihood’s scale needs to be positive, i.e., σy > 0, it cannot be directly modeled

by the latent function g, which can assume negative values. To overcome this constrained,

a positive transforming function t : R→ R+ is used to warp g, which gives the following
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likelihood5:

p(yi| fi,gi) = N (yi|µy = fi,σ
2
y = t(gi)

2), (84)

where the likelihood’s location µy and scale σy have the same interpretation as in eq. (33).

The heteroscedastic Gaussian likelihood still assumes symetric and lightly-tailed

noise behavior for yi around µy = fi, but now but presents heteroscedasticity as the likelihood’s

scale σy is not global and instead depends on xxxi through gi = g(xxxi). Regarding the positive-

transforming function t, the choice t(·) = exp(·) has computational benefits as it leads to some

tractable expressions6 for inference, as will be shown in section 4.3.3.

4.3.2.2 Heteroscedastic Student-t Likelihood

The heteroscedastic Student-t likelihood was initially proposed in Saul et al. (2016)

and is built in the same way as the heteroscedastic Gaussian, only swapping the univariate

Gaussian distribution from eq. (33) for the localized and scaled Student-t distribution from

eq. (35). This gives the following likelihood 7:

p(yi| fi,gi) = T (yi|µy = fi,σy = t(gi),ν), (85)

where the likelihood’s location µy, scale σy and degrees of freedom ν have the same interpretation

a‘s in eq. (35), and t : R→ R+ is some positive-transforming function.

The heteroscedastic Student-t likelihood assumes symmetric and heteroscedastic

behavior for yi. It is robust to outliers due to the possibility of heavy-tailed noise behavior

controlled by the likelihood’s degrees of freedom ν > 2, a hyperparameter with global effect.

Regarding the positive-transforming function t, the choice t(g) = exp(g) does not give tractable

expressions, but is still a valid and useful choice.

4.3.2.3 Locally Robust Heteroscedastic Student-t Likelihood

The locally robust heteroscedastic Student-t likelihood is built as an extension of

the heteroscedastic Student-t likelihood by including one more latent function h to model the

degrees of freedom hyperparameter ν of the Student-t distribution as in eq. (35). Due to the
5 In Lázaro-Gredilla and Titsias (2011), the latent function g is used to model the variance σ2

y hyperparameter,
i.e., σ2

y = t(gi).
6 See footnote 2 in page 41.
7 In Saul et al. (2016), the latent function g is used to model the squared scale σ2

y hyperparameter, i.e., σ2
y = t(gi).
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restriction ν > 2, another transforming function t ′ : R→ [2,∞) is used to warp h, resulting in the

following likelihood:

p(yi| fi,gi,hi) = T (yi|µy = fi,σy = t(gi),ν = t ′(h)), (86)

where the likelihood’s location µy and scale σy have the same interpretation as in eq. (35), and

t : R→ R+ is some positive-transforming function.

The locally robust heteroscedastic Student-t likelihood assumes symmetric and

heteroscedastic behavior for yi. It is robust to outliers due to the possibility of localized heavy-

tailed noise behavior controlled by the likelihood’s degrees of freedom ν > 2, which depends on

xxxi through hi = h(xxxi). The transforming functions t and t ′ can be choosen as t(g) = exp(g) and

t ′(h) = 2+ exp(h).

4.3.3 Variational Inference

As was pointed out in section 3.3.3, exact inference on the GP regression model is

only possible for the Gaussian likelihood and even in this case can have prohibitive computational

complexity and memory requirements. The Chained GP regression model not only deals with

intractable likelihoods but also with multiple GPs, which aggravates the difficulties of exact

inference from the single GP case. Hence, the SVGP framework discussed in section 4.2 is

applied to each GP.

The variational inference methodology is very similar to the one discussed in

section 4.2.2. For each latent function f j, the model is augmented with M j pseudo-inputs

zzz j
i ∈X , grouped in the pseudo-input matrix ZZZ j

i =
[
zzz j

i
]

M j×D, and the corresponding inducing

variables vector uuu j =
[

f j(zzz j
i )
]

M j×1. For notational convenience, define the pseudo-input set

Z̃ZZ = {ZZZ j}L
l=1 and the inducing variable set UUU = {uuu j}L

l=1. In the case where Ml = M,∀l = 1, . . . ,L,

those sets can be expressed as the pseudo-input third-rank tensor Z̃ZZ =
[
ZZZ j]

M×D×L =
[
zzz j

i
]

M×D×L

and the inducing variable matrix UUU =
[
uuu j]

M×L =
[

f j(zzz j
i )
]

M×L. As was the case with the SVGP,

the conditional independence of the observations yyy given their corresponding function evaluations

FFF form other variables allows the model likelihood to be expressed as

p(yyy|FFF ,UUU) = p(yyy|FFF). (87)

This variational inference methodology is very similar to the one proposed in Saul

et al. (2016), but relaxing the original hypothesis of all inducing variables vector uuu j having the
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same size M and sharing the same pseudo-input matrix ZZZ ∈ RM×D, i.e, ZZZ j = ZZZ, ∀ j = 1, . . . ,L.

Below is a detailed deduction of the Chained ELBO, leading to results in accordance with the

original reference.

4.3.3.1 Evidence Lower Bound

The Chained GP ELBO is obtained by accounting for all the latent functions

evaluations FFF , the pseudo-inputs Z̃ZZ and inducing variables UUU . This is done by swapping fff

for FFF , XXX for XXX ,ZZZ and fff for FFF ,UUU in eq. (57), which gives

log p(yyy|XXX , Z̃ZZ)≥ Eq( fff ,UUU) [log p(yyy|FFF ,UUU)]−DKL[q(FFF ,UUU)‖p(FFF ,UUU |XXX , Z̃ZZ)], (88)

where q(FFF ,UUU) is the variational posterior, which approximates the model’s posterior p(FFF ,UUU |XXX , Z̃ZZ,yyy).

As was the case with the SVGP eqs. (59) and (61), the chained GP conditional

independence eq. (87) substituted in eq. (88) gives

log p(yyy|XXX , Z̃ZZ)≥ Eq(FFF) [log p(yyy|FFF)]−DKL[q(FFF ,UUU)‖p(FFF ,UUU |XXX , Z̃ZZ)]. (89)

The right-hand side of eq. (89) is the Chained GP ELBO. For factorizing likelihoods as the ones

in eq. (79), it can be expressed as a summation over the data:

log p(yyy|XXX , Z̃ZZ)≥

(
N

∑
i=1

Eq( fff i)
[log p(yi| fff i)]

)
−DKL[q(FFF ,UUU)‖p(FFF ,UUU |XXX , Z̃ZZ)], (90)

where q(FFF ,UUU) is the variational posterior, which approximates the model’s posterior p(FFF ,UUU |XXX , Z̃ZZ,yyy),

and q( fff i) is the marginal distribution of each row fff i of the latent function evaluation matrix FFF .

4.3.3.2 Variational Distribution

The form of the variational posterior is again chosen to simplify the ELBO in eq. (89),

starting by the KL divergence term. Since the model’s prior distribution p(FFF ,UUU |XXX , Z̃ZZ) factorizes

as in eq. (78), it is possible to take advantage of the KL divergence factorization of eq. (53) by

choosing variational distribution which also factorizes over the latent functions evaluations fff j,

uuu j, i.e.,

q(FFF ,UUU) =
L

∏
l=1

q( fff j,uuu j), (91)

which gives the simplification

DKL[q(FFF ,UUU)‖p(FFF ,UUU |XXX , Z̃ZZ)] =
L

∑
j=1

DKL[q( fff j,uuu j)‖p( fff j,uuu j|XXX ,ZZZl)]. (92)
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Furthermore, imposing a factorization like the one from eq. (64) for each factor

q( fff j,uuu j), i.e,

q( fff j,uuu j) = p( fff j|XXX ,uuu j,ZZZ j)q(uuu j), j = 1, . . . ,L, (93)

permits a simplification similar to eq. (65), giving

DKL[q( fff j,uuu j)‖p( fff j,uuu j|XXX ,ZZZl)] = DKL[q(uuu j)‖p(,uuu j|ZZZl)] (94)

which can be applied to eq. (92), resulting in

DKL[q(FFF ,UUU)‖p(FFF ,UUU |XXX , Z̃ZZ)] =
L

∑
j=1

DKL[q(uuu j)‖p(,uuu j|ZZZl)]. (95)

Substituting eq. (95) into eq. (90) gives

log p(yyy|XXX , Z̃ZZ)≥

(
N

∑
i=1

Eq( fff i)
[log p(yi| fff i)]

)
−

(
L

∑
j=1

DKL[q(uuu j)‖p(uuu j|ZZZl)]

)
. (96)

For mathematical tractability of eq. (96), the factors q(uuu j) are chosen to be M j-variate

Gaussian distributions similarly to eq. (67), i.e.,

q(uuu j) = N (uuu j|mmm j
uuu,LLL

j
uuuLLL j>

uuu ), j = 1, . . . ,L. (97)

This choice enables eq. (95) to be computed as the sum of KL divergences between

M j-variate Gaussian distributions, j = 1, . . . ,L, using the expression of eq. (52). Also, similarly

to eq. (70), the expression for the variational distributions q( fff j) are given by

q( fff j) = N ( fff j|mmm j
fff ,KKK

j
fff ), j = 1, . . . ,L (98)

mmm j
fff = mmm j

XXX +KKK j
XXXZZZ jKKK

j−1

ZZZ jZZZ j(mmm
j
uuu−mmm j

ZZZ j)

KKK j
fff = KKK j

XXXXXX +KKK j
XXXZZZ jKKK

j−1

ZZZ jZZZ j(LLL
j
uuuLLL j>

uuu −KKK j
ZZZ jZZZ j)KKK

j−1

ZZZ jZZZ jKKK
j
ZZZ jXXX

.

To compute expectation terms of eq. (96), one also needs the marginal distributions

q( fff i). Combining eqs. (91) and (94) and marginalizing the inducing variables uuu j gives

q(FFF) =
L

∏
j=1

q( fff j). (99)

Marginalizing all but the i-th row of the latent function evaluation matrix FFF from eq. (99) gives

q( fff i) =
L

∏
j=1

q( f j
i ), (100)
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where q( f j
i ) is the distribution of the i-th element f j

i of the latent function evaluation vector fff j,

which is given by

q( f j
i ) = N ( f j

i |m
j
fi,k

j
fii), j = 1, . . . ,L (101)

where the distribution’s mean m j
fi is the i-th element of the mean vector mmm j

fff , and distribution’s

variance k j
fii is the i-th element of the main diagonal of the covariance matrix KKK j

fff , respectively.

As stated in section 4.3.2, the heteroscedastic Gaussian likelihood with the exponential as the

positive-transforming function has an analytical expression for the expectations, given by

Eq( fi,gi) [log p(yi| fi,gi)] =−
1
2

log(2π)−mgi

− 1
2
[
(y−m fi)

2 + k fii
]

exp(2kgii−2mgi) . (102)

4.3.4 Prediction

As discussed in section 4.1.5, the learned variational posterior q(FFF ,,,UUU) can be used

to perform predictions by taking advantage of the equivalent of eq. (58) for the Chained GP, i.e,

q(FFF ,UUU)≈ p(FFF ,UUU |XXX , Z̃ZZ,yyy). (103)

Consider, again, as in section 3.3.4, a set of new inputs grouped in the input matrix

XXX ′ and their corresponding function evalution vectors fff j′ , grouped in the function evaluation

matrix FFF ′. Like in eq. (74), the model’s (variational) posterior predictive is given by

p(FFF ′|XXX ′,XXX , Z̃ZZ,yyy) =
∫

p(FFF ′|XXX ′,ChainedFFF ,XXX ,UUU , Z̃ZZ)p(FFF ,UUU |XXX , Z̃ZZ,yyy)dFFFdUUU . (104)

Due to the independence between the GPs f j, the term p(FFF ′|XXX ′,FFF ,XXX ,UUU , Z̃ZZ) from eq. (104)

factorize as follows:

p(FFF ′|XXX ′,FFF ,XXX ,UUU , Z̃ZZ) =
L

∏
j=1

p( fff j′|XXX ′, fff j,XXX ,uuu j,ZZZ j). (105)

By definition,

dFFF =
L

∏
j=1

d fff j, dUUU =
L

∏
j=1

duuu j. (106)

Substituting eqs. (105) and (106) and into eq. (104) and using the variational posterior eq. (91)

to approximate the model’s true posterior gives

p(FFF ′|XXX ′,XXX , Z̃ZZ,yyy)≈
∫ L

∏
j=1

p( fff j′|XXX ′, fff j,XXX ,uuu j,ZZZ j)q( fff j,uuu j)d fff jduuu j. (107)
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As the product terms inside the integrals of eq. (107) factorizes, it can be simplified as

p(FFF ′|XXX ′,XXX , Z̃ZZ,yyy)≈
L

∏
j=1

∫
p( fff j′|XXX ′, fff j,XXX ,uuu j,ZZZ j)q( fff j,uuu j)d fff jduuu j. (108)

Simplifying the integrals using the steps used to obtain eq. (74) gives

p(FFF ′|XXX ′,XXX , Z̃ZZ,yyy)≈
L

∏
j=1

q( fff j′) = q(FFF ′), (109)

which means that the variational posterior predictive q(FFF ′) has the same form of the variational

distribution q(FFF), only swapping XXX for XXX ′.

Similarly to eq. (75), the prediction of the new noisy observations yyy′ can be approximated

as

p(yyy′|XXX ′,XXX , Z̃ZZ,yyy) =
∫

p(yyy′|FFF ′)p(FFF ′|XXX ′,XXX , Z̃ZZ,yyy)dFFF ′

≈
∫

p(yyy′|FFF ′)q(FFF ′)dFFF ′. (110)

For a general likelihood, eq. (110) requires numerical integration. In the heteroscedastic Gaussian

likelihood case, part of the integral can be evaluated analytically. Substituting eq. (84) into

eq. (79) for the new noisy observations yyy′ gives

p(yyy′| fff ′,ggg′) =
N′

∏
i=1

N (y′i| f ′i ,exp(g′i)
2) = N (yyy′| fff ′,SSS′), (111)

where SSS′ is a diagonal matrix whose i-th diagonal element is given by s′ii = exp(g′i)
2. Substituting

eqs. (98) and (111) into eq. (109) gives

p(yyy′|XXX ′,XXX , Z̃ZZ,yyy) =
∫

N (yyy′| fff ′,SSS′)N ( fff ′|mmm fff ′,KKK fff ′)q(ggg
′)d fff ′dggg′

=
∫

N (yyy′|mmm fff ′,KKK fff ′+SSS′)q(ggg′)dggg′. (112)

Even though eq. (112) does not give an analytical expression, it reduces the numerical integration

problem to only one latent function vector ggg′, as fff ′ was integrated analytically. This shows the

computational benefits of the heteroscedastic Gaussian likelihood. Furthermore, the mean and

variance of the predictive distribution of the new observations yyy′ are available in closed form as

E[yyy′] = mmm fff ′, (113)

V[yyy′] = KKK fff ′′′+CCC′, (114)

where CCC′ is a diagonal matrix whose i-th diagonal element is given by c′ii = exp(2mg′i
+2kg′ii

),

with mg′i
being the i-th element of the vector mmmggg′ and kg′ii

the i-th element of the main diagonal of

the covariance matrix KKKggg′ , respectively.
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4.4 Discussion

In this chapter, variational inference was presented in the context of GP models as

an option to avoid the intractable expressions needed for Bayesian inference, as described in

section 3.3.3. After a review of the KL divergence definition and properties, the ELBO was

derived for the standard GP regression model from section 3.3.1 with a generic variational

distribution q( fff ). The ELBO was proposed as an optimization objective by optimizing the

model parameters and hyperparameters togheter with the variatioal parameters in a generic

variational inference setting. Finally, it was shown that the variational posterior q( fff ) is a good

approximation (in a KL divergence sense) of the true model’s posterior p( fff |XXX ,yyy).

The SVGP was introduced as a way to deal with the large complexity and memory

requirements of the standard GP regression. It was built by augmenting the standard GP

regression model from section 3.3.1 with M pseudo-inputs ZZZ ∈X M and their corresponding

inducing variables uuu ∈ RM, which formed input-output pairs of the latent GP f , i.e., uuu = f (ZZZ).

The variational inference process was carried on using a factorized variational distribution

q( fff ,uuu) = p( fff |XXX ,ZZZ,uuu)q(uuu), with q(uuu) = N (uuu|mmmuuu,LLLuuuLLL>uuu ), resulting in a tractable ELBO with

much smaller complexity and memory requirements than the traditional GP regression from

section 3.3.3. The predictions p(yyy′|XXX ′,XXX ,ZZZ,yyy) were performed with the variational posterior

predictive q( fff ′), which was obtained as a by-product of the variational inference process.

Finally, the Chained GP was discussed as an extension of the GP regression model

from section 3.3.1 which enabled the modeling of more noisy observations’ features by employing

multiple latent GPs f j, j = 1, . . . ,L. After the introduction of three multi-latent likelihoods built

by extending the likelihoods from section 3.3.2, the SVGP augmentation was applied to each

latent GP f j and variational inference was once again used to derive a tractable ELBO, which

enjoyed the scalability benefits of the SVGP. Predictions p(yyy′|XXX ′,XXX , Z̃ZZ,yyy) for the Chained GP

were also performed with the variational posterior predictive q(FFF ′).
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5 PROPOSED MODELING FRAMEWORK

The previous chapters 3 and 4 have presented multiple theoretical properties of

Chained GP models such as incorporation of prior knowledge, adaptability to the data, representation

of heteroscedastic noise and (local) robustness to outliers, which motivates their usage in the

WTPC modeling problem analyzed in chapter 2. However, there is an already large pool of

modeling options available in the literature, and every new candidate must be compared to the

state-of-art models by evaluating how they perform when applied to real WT operational data.

In this chapter, the modeling framework proposed by this dissertation and benchmark

models are evaluated on computational experiments where all models are fitted in multiple

scenarios related to a rich 1-year of WT operational data. In section 5.1, the proposed modeling

framework is described in depth, covering both the rationale behind its construction and its

computational implementation details. In section 5.2, the benchmark models are formalized and

their computational implementation is presented. In section 5.3, the dataset which will be used

to compare the models is explored emphasizing the multiple features present in it which are of

interest regarding the WTPC modeling problem. In section 5.4, the experimental scenarios are

described and the obtained results are discussed showing how the proposed models compare to

the benchmark ones. The chapter is finished with a summarization of the discussed subject in

section 5.5

5.1 Modeling Framework Description

Given N observations of wind speed and normalized power (vi, pi), the WTPC

modeling can be analyzed as a GP regression problem (see section 3.3) with the wind speed

as the input, XXX = [vi]N×1 ∈ R, with input dimensions D = 1, and the normalized power as the

output, yyy = [pi]N×1. Aiming to model the heteroscedastic behavior of the noise and also to be

robust to outliers, the Chained GP framework is chosen due to the possibility of using the more

complex likelihoods from section 4.3.2.

5.1.1 Model Construction Rationale

As discussed in sections 2.1 and 2.4, the logistic function can represent many

properties of a typical WTPC. This information can be assimilated in the GP regression by

setting the location hyperparameter µy of the likelihood as a latent GP f with the L3P logistic
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mean function from eq. (15). To complete the definition of the latent GP f the SE covariance

function from eq. (29) was chosen to be its covariance function, which gives

µy(xxx) = f (xxx) (115)

f ∼ G P(µ f ,κ f )

µ f (xxx) =
[

1+ exp
(
−
(

v− v0

s

))]−1/γ

κ f (xxx,xxx′) = σ
2
f exp

[
−1

2

(
v− v′

l f

)2
]
,

where xxx = [v] and xxx′ = [v′].

The likelihoods from section 4.3.2 also need a latent GP g to model their scale

hyperparameter σy. Since there’s no strong prior knowledge about them, the constant function

was chosen as its mean functions, and the SE covariance function from eq. (29) as its covariance

functions, which gives

σy(xxx) = exp(g(xxx)) (116)

g∼ G P(µg,κg)

µg(xxx)≡ cg

κg(xxx,xxx′) = σ
2
g exp

[
−1

2

(
v− v′

lg

)2
]
.

The exponential function was chosen as the positive transforming function due to its useful

analytical results for the heteroscedastic Gaussian likelihood. It is also a valid and easy-to-

implement option for the other two likelihoods.

Specifically for the locally robust heteroscedastic Student-t likelihood, the degrees-

of-freedom hyperparameter ν is modeled by another latent GP h, which was built similarly to

the latent GP g as there’s no prior information to incorporate on it, which gives

ν(xxx) = 3+ exp(h(xxx)) (117)

h∼ G P(µh,κh)

µh(xxx)≡ ch

κh(xxx,xxx′) = σ
2
h exp

[
−1

2

(
v− v′

lh

)2
]
.

The warping function t ′(a) = 3+ exp(a) was chosen to make sure that the degrees of freedom

hyperparameter ν satisfies ν > 3. This constraint is also enforced for the heteroscedastic

Student-t likelihood.
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The model follows the assumption of factorizing likelihoods, as in eq. (31), but given

all latent GPs, i.e.,

ppp(((yyy||| fff ,,,ggg,,,hhh))) =
N

∏
i=1

p(yi| fi,gi,hi), (118)

where yi = pi.

Inspired by the method of bins from section 2.2.3, The pseudo-inputs ZZZ f , ZZZg, ZZZh

are chosen to be evenly-spaced from 0 m/s to 25 m/s with increment ∆v = 0.5 m/s, resulting

in M = 51 pseudo-inputs for each latent GP. It is worth noting the presence of the variational

parameters (mmm f
uuu,LLL

f
uuu), (mmm

g
uuu,LLL

g
uuu) and (mmmh

uuu,LLL
h
uuu).

The construction outlined in this section defined three models, namely:

– L3P-HG-GP, using the heteroscedastic Gaussian likelihood;

– L3P-HS-GP, using the heteroscedastic Student-t likelihood;

– L3P-LRHS-GP, using the locally robust Student-t likelihood.

5.1.2 Note on Model Implementation

The models were implemented in GPflow (MATTHEWS et al., 2017), using the

models.SVGP model class and kernels.SeparateIndependent kernel class. The heteroscedastic

Gaussian likelihood had its analytic expressions implemented as custom code by the author, while

the (locally robust) heteroscedastic Student-t likelihoods were implement with Gauss-Hermite

quadratures and Tensorflow Probability’s distributions.StudentT class.

During this dissertation development, the author has actively contributed with the

GPflow community to develop multi-latent likelihoods and refactored the implementation of

Gauss-Hermite quadrature, which culminated in the quadraute.NDiagGHQuad and likelihoods.QuadratureLikelihood

classes. The code has been fully integrated in the GPflow package and has been used to implement

the proposed models.

It is worth noting that GPflow utilizes the whitened representation of the inducing

variables u, which is exemplified below for the latent GP f :

uuu f = mmm f
ZZZ f + chol(KKK f

ZZZ f ZZZ f )vvv
f , vvv f ∼N (mmm f

vvv ,LLL
f
vvv), (119)

where LLL = chol(AAA) is the Cholesky factor of matrix AAA, i.e., LLL is a lower-triangular matrix which

satisfies LLLLLLT = AAA. This representation effectively reparametrizes the variational parameters

(mmm f
uuu,LLL

f
uuu) in terms of the withened variational parameters (mmm f

vvv ,LLL
f
vvv) through the following transformation
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equation:

mmm f
uuu = mmm f

ZZZ f +mmm f
vvv (120)

LLL f
uuu = chol(KKK f

ZZZ f ZZZ f )LLL
f
vvv .

The same is true for latent GPs g and h.

5.1.3 Parameters Initialization

To initialize the L3P mean function parameters, the coefficients a = v0/s and

b =−s−1 from the linearized L2P model, eq. (17), were estimated with OLS, which enabled the

initialization (x0,s,γ) = (−ab−1,−b−1,1). The OLS used a subset of the data satisfying 0.05 <

p< .95 and was implemented with Scikit-Learn’s (PEDREGOSA et al., 2011) linear_model.LinearRegression

class. The constant mean functions were initialized with their constants set to zero, i.e.,

cg = ch = 0.

All covariance functions were initialized with unitary length scale and variance, i.e.,

l f = lg = lh = 1 and σ f = σg = σh = 1. Those are GPflow’s defaults, and they work well when

the data does not have extreme values, which is the case as the wind speed is mostly bounded

between 0 m/s and 20 m/s; and the normalized power, between 0 an 1.

Specifically for the heteroscedastic Student-t Likelihood, the degrees of freedom

hyperparameter was initialized as ν = 4, satisfying ν > 3.

The whitened variational parameters are initialized to zero mean and identity covariance,

i.e., mmm f
vvv = mmmg

vvv = mmmh
vvv = 000M×1 and LLL f

vvv = LLLg
vvv = LLLh

vvv = IIIM. Those are GPflow’s defaults, and they

correspond to the variational posterior initialized as the prior, which does not add any new

knowledge to the model, and hence is a good starting point.

5.1.4 Optimization

For model fitting, the factorized Chained GP ELBO, eq. (96), divided by the number

of observations N, was optimized for 500 iterations of the L-BFGS optimization algorithm

(NOCEDAL; WRIGHT, 2006), using the implementation from Tensorflow Probability’s optimizers.lbfgs_minimize

function.

5.2 Benchmark Models
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5.2.1 Method of Bins (MoB)

The method of bins is included as a WTPC modeling benchmark due to its technical

importance. It was initially presented in section 2.2.3, and were implemented as described

there, but using the normalized power p instead of the raw power measures of P for easiness of

comparison with the other models.

5.2.2 Polynomial Regression (Poly-9)

Polynomial regression is one of the main WTPC modeling benchmarks (LI et al.,

2001; SHOKRZADEH et al., 2014; GUO; INFIELD, 2018; YAN et al., 2019). In the upcoming

experiments, a 9-th degree polynomial relating the wind speed v to the normalized power p is

used, i.e.,

p(v) =
9

∑
i=1

αivi = α0 +α1v+α2v2 + · · ·+α8v8 +α9v9. (121)

The parameter vector φφφ = [α0, α1, . . . , α8,α9]
T is estimated with the OLS method.

For this purpose, the Moore-Penrose pseudoinverse matrix (GOLUB; Van Loan, 2012) is

constructed via singular value decomposition, treating singular values that are smaller than a

given tolerance as zero. The implementation from Scikit-Learn’s (PEDREGOSA et al., 2011)

LinearRegression class was used.

5.2.3 Neural Networks - MLP(1,12,1)

Neural networks are the other main WTPC modeling benchmarks (LI et al., 2001;

LYDIA et al., 2013; MANOBEL et al., 2018; BAI et al., 2019; YAN et al., 2019). In the

upcoming experiments, A multilayer perceptron (MLP) network with the wind speed v as the

input, one hidden layer with 12 hidden neurons with hyperbolic tangent activation function, and

a output layer with linear activation function outputing the normalized power p is used. As usual,

input data to the MLP network was transformed to zero mean and unit variance.

The model was implemented with Tensorflow’s (ABADI et al., 2016) keras module,

and the weights and bias were initialized with the Xavier uniform initializer (GLOROT; BENGIO,

2010) and zeroes, respectively, which are their defaults in Tensorflow. The root mean squared

error (RMSE) was used as the loss function, and the fitting was by optimizing it for 500 iterations

of the BFGS optimization algorithm (NOCEDAL; WRIGHT, 2006), using the implementation
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from Scipy’s (JONES et al., 2001–) minimize function indirectly by employing GPflow’s

(MATTHEWS et al., 2017) ScipyOptimizer wrapper class.

5.2.4 Logistic Function (L3P)

Logistic functions are very import WTPC models due to their capabilities of reflecting

the multiple operational ranges of a typical WTPC, as discussed in sections 2.1 and 2.4, and are

one of the main constituting parts of the models proposed by this dissertation. As such, they are

included as benchmark models using the L3P model, eq. (15).

The model was implemented with Numpy (OLIPHANT, 2006–) functions. The

parameters x0 and s are initialized with the OLS estimates obtained from eq. (17) using a subset of

the data satisfying 0.05 < p < .95, which was implemented with Scikit-Learn’s (PEDREGOSA

et al., 2011) LinearRegression class, and the paramter γ was initialized as 1. Then, the three

parameters were optimized to minimize the RMSE loss function for 500 iterations of the BFGS

optimization algorithm (NOCEDAL; WRIGHT, 2006) implemented in Scipy’s (JONES et al.,

2001–) minimize function.

5.2.5 Zero Mean GP (0-GP)

The GP with zero mean function is the most basic form of GP model that has been

applied to WTPC modeling (PANDIT; INFIELD, 2019; PANDIT et al., 2019), and is the other

main constituting part of the models proposed in this dissertation. As such, it is considered as a

benchmark model.

It is represented in the upcoming experiments by a SVGP (see section 4.2) with the

wind speed as the input, xxx = [v], the normalized power as the output, y = p, and a Gaussian

likelihood as in eq. (34). The mean and covariance functions were set as the constant zero and

the squared exponential covariance functions, respectively, i.e., µ ≡ 0 and κ = κSE - see eq. (29).

Inspired by the MoB from section 2.2.3, The pseudo-inputs ZZZ = [zi]M×1 were evenly-spaced

from 0 m/s to 25 m/s with increment ∆v = 0.5 m/s, resulting in M = 51 pseudo-inputs.

The model was implemented in GPflow (MATTHEWS et al., 2017). For initialization,

the covariance function length scale and variance hyperpameters were set as l f = 1 and σ2
f = 1

respectively; the likelihood variance hyperparameter, as σ2
y = 1; and the whitened variational

parameters, eq. (120), as mmmvvv = 000M×1 and LLLvvv = IIIM.

For model fitting, the factorized SVGP ELBO, given in eq. (63), divided by the
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number of observations N, was optimized for 500 iterations of the L-BFGS optimization

algorithm (NOCEDAL; WRIGHT, 2006), using the implementation from Tensorflow Probability’s

optimizers.lbfgs_minimize function.

5.3 Dataset Description

The WTPC modeling problem has multiple features such as seasonal variability,

heteroscedastic noise and the presence of outliers. As such, having an dataset capable of

expressing all those peculiarities is of great importance for WTPC model comparison. In this

section, a dataset of 1-year of operational data of a WT, kindly provided by Delfos IM (DELFOS

INTELLIGENT MAINTENANCE, 2017–), is described, highlighting the features which will be

used to analyze the WTPC models in the upcoming experiments.

5.3.1 Wind Turbine Operational Parameters

The studied WT has the following operational parameters:

– Rated power: Prated = 2100 kW;

– Cut-in wind speed: vci = 3.0 m/s;

– Rated wind speed: vrated = 11.0 m/s;

– Cut-out wind speed: vco = 25.0 m/s.

5.3.2 Data Sources

The dataset was built by following the recommendations of the IEC standard, as

described in section 2.2.1. The wind speed and power data (vi,Pi) was obtained directly from the

WT SCADA system, and complementary measurements of ambient temperature, pressure and

relative humidity (Ti,Bi,φi) were obtained from the meteorological mast closest to the studied

WT. All data consists in 10-minute averages, for a total of N0 = 51994 valid observations in the

analyzed period of 1 year.

The air density normalization procedure from section 2.2.2 was applied to the wind

speed v, with the reference air density set to ρref = 1.06 kg/m2, which is the usual set-up for

WTPC analysis in this specific wind farm. Also, eq. (2) was used to obtain the normalized power

p, resulting in observations of wind speed and normalized power (vi, pi), which are the main

focus of the upcoming experiments.
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Figure 4 – Dataset A, built using the event log to filter abnormal states. The effects of heteroscedasticity
are clearly visible.

Source - The author.

In addition to the 10-minute data, the event log of the WT was provided. By crossing

it with the data, each observation was classified accordingly to the most severe active alarm

category during the its 10-minute interval. The alarm severity classes are detailed below, in

ascending severity order.

1. Information: alarms which provide information about the WT current operational state;

2. Warning: alarms with warnings about some subsystem in the WT;

3. Power Limitation: alarms which cause the WT to not be able to produce its maximum

power;

4. Stop: alarms which cause the WT to cease operation.

5.3.3 Data Cleaning

The event log brings very useful information about the operational state of the WT.

Noting that observations with alarm severity greater than “Information” represent abnormal

operational conditions which are not suitable for WTPC modeling, the dataset A was built by

filtering them out. The resulting dataset ended up with NA = 47387 observations and is shown in

fig. 4.

However, it is important to acknowledge that event logs are not always available

when modeling the WTPC. As such, the dataset B was built by considering a data-based filter
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Figure 5 –Dataset B, built using the data-based filter. The presence of “Power Limitation” alarms generates
many outliers.

by excluding observations (vi, pi) with normalized power less than zero for wind speeds above

the cut in wind speed, i.e, pi < 0 and vi > vci. The resulting dataset ended up with NB = 51465

observations and is shown in fig. 5.

As can be seen in figs. 4 and 5, the dataset A shows more clearly the heteroscedasticity

effect, while the dataset B has many more outliers, which are generated mainly because of “Power

Limitation”. As such, the dataset B will be used for experiments concerning outliers and A for

the other ones. It is important to note that the heteroscedasticity is present in both datasets, but it

is easier to graphically analyze it in dataset A.

5.3.4 Data Seasonality

In WTPC modeling, the wind speed is usually modeled as a Weibull distribution,

v∼W (λ ,k), whose probability density is given by

p(v) = W (v|λ ,k) = k
λ

( v
λ

)k−1
exp
[
−
( v

λ

)k
]
, v≥ 0, (122)

where k > 0 and λ > 0 are the shape and scale parameters, respectively.

The dataset A was chosen for a in-depth seasonality analysis as it is, in a data

visualization sense, cleaner than dataset B. To investigate how the wind speed v distribution

varies through the year, a Weibull distribution was fitted for the entire year and also each month

individually using the Scipy’s (JONES et al., 2001–) stats.weibull_min.fit function.
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Figure 6 – Monthly seasonality of the wind speed distribution for dataset A. The black lines evidentiate
how the fitted Weibull distribution, whose parameters are annotated on top of each plot, varies for each
month.

Source - The author
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As can be seen in the resulting fig. 6, the wind speed distribution significantly

changes through the year, which is evidentiated by the changes on both distribution parameters

values and also by the graphical changes on the plotted histograms and the probability densities.

This seasonal behavior affects WTPC modeling, as it is not desirable to always have to wait the

acquisition of a full year of data before fitting a model. As such, this feature will be explored in

seasonality experiments, comparing how models fitted for a given month perform in the others.

5.4 Experiments and Results

As pointed out in section 2.3, there are multiple WTPC modeling approaches

available in the literature, which begs the question: how does the proposed modeling framework

from section 5.1 compare to benchmark models such as the ones described in section 5.2?

In this section, those models are evaluated in four experiments concerning their ability to

fit the data and the main features of the datasets A and B described in section 5.3, namely,

heteroscedasticity, robustness to outliers and seasonality. The results are analyzed in terms of

quantitative comparison criteria and also qualitatively through graphical inspection.

5.4.1 Comparison Criteria

Two main criteria are considered to analyze the results of the experiments: the root

mean squared error (RMSE), which can be applied to any model, and the mean negative log

predictive density (MNLPD), which is applicable to probabilistic models only.

5.4.1.1 Root Mean-Squared Error (RMSE)

The RMSE is given by

RMSE =

√
1
N

N

∑
i=1

(ŷi− yi)2, (123)

where N is the number of observations, yi is the value of the i-th output and ŷi is the predicted

value by the model for the i-th input xxxi. For deterministic models, the predicted value ŷi is given

by ŷi = model(xxxi|θθθ model), whereas for probabilistic ones, the expected value of the predictive

distribution is used.

The RMSE is widely used in the WTPC modeling literature and is a easy-to-compute

metric which measures how far the predictions ŷi deviate from the observed outputs yi, placing
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more emphasis on extreme deviations due to the quadratic exponent. As such, it is considered as

the main comparison criteria.

5.4.1.2 Mean Negative Log Predictive Density (MNLPD)

Despite its widespread adoption, the RMSE is not able to fully evaluate probabilistic

models as it focuses only on the expected value of its predictions. As such, it is not capable of

analyzing if a model is able to properly represent the noise behavior of the predictions, and hence

cannot be used to analyze features of the noise distribution such as heteroscedasticity. Aiming

to quantify this very important aspect of WTPC modeling, the MNLPD comparison criteria is

introduced, which is given by

MNLPD =
1
N

N

∑
i=1
− log p(y′i|xxx′i,XXX ,yyy) (124)

where N is the number of observations and p(y′i|xxx′i,XXX ,yyy) is the posterior predictive density of the

outputs y′i given the inputs xxx′i for a model fitted using the input-output data (XXX ,yyy).

5.4.1.3 Fitting and Evaluating

In the upcoming experiments, the models will be fitted to a dataset and then compared

by evaluating a proper comparison criteria on another dataset, which is not necessarily the same

used for model fitting. To clearly distinguish them, following notation is used:

CRITERIA (E|F),

where CRITERIA is either the RMSE or the MNLPD, E is the dataset on which the criteria is

evaluated and F is the dataset used to fit the model currently analyzed models.

5.4.2 Data-Fitting Capabilities

In this experiment, an initial comparison between the WTPC models regarding the

ability to fit the available data is analyzed. All models from sections 5.1 and 5.2 were fitted for

dataset A from section 5.3 and compared in terms of their RMSE evaluated on dataset A. The

results are shown in fig. 7 and in table 1.

As can be seen in table 1, the proposed models (L3P-HG-GP, L3P-HS-GP and

L3P-LRHS-GP) present competitive RMSE scores. All of them were better than the L3P and

Poly-9 benchmark models, and the L3P-HG-GP was very close to the best result, which was
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Figure 7 – Predicted values for all models fitted to dataset A.

Source - The author
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Table 1 – RMSE of dataset A for all models fitted to dataset A.

Model RMSE (A|A)

MoB 4.9305×10−2

Poly-9 5.0119×10−2

MLP(1,12,1) 4.9265×10−2

L3P 5.2048×10−2

0-GP 4.9440×10−2

L3P-HG-GP 4.9295×10−2

L3P-HS-GP 5.0013×10−2

L3P-LRHS-GP 4.9959×10−2

obtained by the MLP(1,12,1). However, it is important to remember that the proposed models are

probabilistic ones and do not aim for the best RMSE exclusively, but to represent the complete

noise behavior of the observations. Also, the proposed models are more complex and hence can

be harder to optimize: it is possible that 500 iterations of the L-BFGS algorithm are not enough

to reach their optima, an investigation which is beyond the scope of this experiment.

Furthermore, analyzing fig. 7, it is clear that the the models Poly-9, MLP(1,12,1) and

0-GP have conceptual problems as they fail to represent the usual WTPC behavior for high wind

speeds (see fig. 3), whereas the MoB and all the L3P-related follow the expected shape. As such,

the proposed models combine the theoretical benefits of the L3P model with the adaptability of

GPs to produce models which can fit the data well while not deviating from the WTPC expected

shape.

5.4.3 Robustness to Outliers

In this experiment, the task of obtaining a WTPC model which represents the normal

operation of a WT without access to operational state labels such as the one obtained through the

event log is analyzed. To simulate this scenario, all models from sections 5.1 and 5.2 were fitted

to the dataset B, which contains more outliers, as depicted in fig. 5, and then compared in terms

of the RMSE evaluated on dataset A, which has way less outliers (see fig. 4). The results are

shown in fig. 8 and in table 2.

The results in table 2 shows that the two of the proposed models, namely, L3P-

HS-GP and L3P-LRHS-GP, have the best RMSE on dataset A, which is the objective of this

experiment. Comparing it to table 1 evidentiate how impactful the presence of outliers can be to

the WTPC modeling problem, which highlights the importance of using robust models such as

the proposed ones.
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Figure 8 – Predicted values for all models fitted to dataset B.

Source - The author
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Table 2 – RMSE of datasets A and B for all models fitted to dataset B.

Model RMSE (A|B) RMSE (B|B)

MoB 5.1326×10−2 7.3952×10−2

Poly-9 5.1889×10−2 7.4556×10−2

MLP(1,12,1) 5.1086×10−2 7.3928×10−2

L3P 5.2654×10−2 7.6071×10−2

0-GP 5.1199×10−2 7.4093×10−2

L3P-HG-GP 5.1033×10−2 7.3982×10−2

L3P-HS-GP 4.9820×10−2 7.6261×10−2

L3P-LRHS-GP 4.9694×10−2 7.6143×10−2

Table 3 – MNLPD of dataset A for all GP models fitted on datasets A and B.

Model MNLPD (A|A) MNLPD (A|B)

0-GP −1.5879 −1.4444
L3P-HG-GP −1.9878 −1.7263
L3P-HS-GP −2.3292 −2.2973

L3P-LRHS-GP −2.3365 −2.3047

The issue can be further analyzed by comparing figs. 7 and 8, which shows that the

presence of outliers in the high wind speed region is responsible for distortions on many of the

considered models, with the exceptions being the L3P, L3P-HS-GP and L3P-LRHS-GP models.

Whilst the L3P component and its strict functional form contributes to it, it is not the single

responsible for this desired behavior as evidentiated the deviations present in the L3P-HG-GP

model, which ends up incorrectly adapting itself to the outliers due to the GP component. In fact,

only the proposed models with Student-t derived likelihoods are robust to outliers, which is in

accordance to the theory.

5.4.4 Heteroscedasticity

In this experiment, the probabilistic WTPC models are analyzed regarding their

ability to represent the heteroscedasticity observed in the data. All GP models from sections 5.1

and 5.2 were fitted to both datasets A and B and compared in terms of the MNLPD evaluated

on dataset A. The other models are not considered as they are deterministic and as such do not

quantify uncertainty. The results are shown in fig. 9 and in table 3.

The heteroscedasticity effect is caracterized by the variation of the separation between

the blue lines in fig. 9 as the wind speed varies. As can be seen in fig. 9, all the proposed models

(L3P-HG-GP, L3P-HS-GP and L3P-LRHS-GP) are able to properly express it, whereas the

benchmark model 0-GP exhibits a constant separation between them as its Gaussian likelihood
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Figure 9 – Predictive probability density for all GP models fitted to datasets A and B. The black lines are
the mean of the predictions µŷ, and the blue lines delimit the symmetric 2 standard deviations interval of
the predictions µŷ±2σŷ.

(a) Dataset A.

(b) Dataset B.

Source - The Author
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Table 4 – Month-based cross-validation statistics for RMSE scores. Q1 and Q3 are the lower and
upper quartiles of the data, respectively.

Model Mean St.Dev. Min. Q1 Median Q3 Max.

MoB 0.0505 0.0064 0.0369 0.0468 0.0507 0.0533 0.0701
Poly-9 1.0187 3.3139 0.0383 0.0509 0.0634 0.2715 23.1293

MLP(1,12,1) 0.0517 0.0084 0.0369 0.0467 0.0509 0.0538 0.0881
L3P 0.0542 0.0061 0.0417 0.0502 0.0536 0.0575 0.0734

0-GP 0.0530 0.0116 0.0371 0.0472 0.0513 0.0541 0.1209
L3P-HG-GP 0.0512 0.0069 0.0371 0.0469 0.0508 0.0544 0.0684
L3P-HS-GP 0.0532 0.0077 0.0375 0.0477 0.0523 0.0594 0.0738

L3P-LRHS-GP 0.0526 0.0078 0.0374 0.0472 0.0518 0.0580 0.0737

is inherently homoscedastic. Those graphical observations are in accordance with values of

MNLPD (A|A) in table 3, where the 0-GP benchmark model has much worse results than the

proposed models.

Comparing figs. 9a and 9b, it is possible to see that the presence of outliers strongly

impacts the L3P-HG-GP model, which exhibits a very large uncertainty for higher wind speeds

when fitted to dataset B. Oppositely, the L3P-HS-GP and L3P-LRHS-GP models are more

robust to them, presenting very similar graphical results independently of the dataset used for

fitting. Those qualitative graphical observations are quantitatively reflected in table 3, where the

MNLPD increases much more for L3P-HG-GP than for L3P-HS-GP and L3P-LRHS-GP when

the fitting dataset is changed.

5.4.5 Seasonal Variations

In this experiments, the impact of seasonal variations of the wind speed distribution

on the WTPC modeling task is analyzed. A cross-validation scheme was adopted by splitting the

dataset A into monthly datasets A1, A2, . . . , A12 and all models from sections 5.1 and 5.2 were

fitted for each them. Then, for each model-month combination, the RMSE of the other months,

i.e., RMSE (Ai|A j), i 6= j, was evaluated, totalizing 12 ·11 = 132 evaluations of the RMSE score

per model. The statistics of this cross-validation procedure are shown in table 4.

The analysis of table 4 shows that the proposed models have very competitive mean

and median results, as they are close to the results of the MoB and MLP(1,12,1), which are

the best performing models in this respect. Moreover, the proposed models also have a smaller

standard deviation than the MLP(1,12,1), which means they behave more consistently across the

months. Furthermore, the maximum cross-validated RMSE of the proposed models is in general
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small (in fact, the L3P-HG-GP is the best performing model in this aspect), which shows that

even in the worst-case, the proposed models are still performing well. All those observations

shows that the proposed modeling framework does not suffer performance impacts from seasonal

variability and generalizes well for different wind speed distributions.

5.5 Discussion

In this chapter, the main objective of this dissertation was achieved with the proposition

of a WTPC modeling framework based on Chained GPs and Logistic function models. The

construction rationale of the models was presented highlighting how the domain knowledge was

incorporated into the model, followed by a detailed explanation of the models implementation,

initialization and optimization procedures.

The benchmark models were formally presented to build a set of state-of-art methodologies

to be compared with the proposed one. The implementation, initialization and optimization

procedures of those models were also briefly explained.

A rich 1-year of WT operation dataset was introduced to serve as a case-study for

comparing the proposed modeling framework to the benchmark models. The WT parameters

and data sources were described and the air density normalization procedure of the IEC Standard

was applied to the data. The available event log allowed thr construction of two datasets A

and B, which were used to exemplify the peculiarities of the WTPC modeling problem such

as heteroscedasticity and the presence of outliers. Finally, an analysis of the wind speed data

seasonality was conducted, showing the importance of considering this aspect when building

WTPC models.

All those pieces were joined together in a series of experiments comparing the models

in terms of data-fitting capabilities, robustness to outliers, heteroscedasticity representation and

ability to deal with seasonal variations. The results of those experiments have shown that the

proposed modeling framework is either on-par or better than the considered benchmark models,

constituting a great resource for WTPC modeling.
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6 CONCLUSION

The WTPC modeling problem is of great interest for both scientific and technical

literature and the wind power industry. Motivated by its importance and also by its peculiarities

such as heteroscedasticity, presence of outliers and data seasonality, this dissertation sought

to add its contributions to this challenging problem by proposing a new probabilistic, semi-

parametric, and data-based modeling framework based on Gaussian processes combined with

logistic function models.

Due to its importance for the proposed modeling framework, the GP theory was

revisited, always emphasizing the practical interpretation of the presented concepts. Aiming to

cope with the large amount of data used WTPC modeling, The SVGP was then introduced to

tackle the scalability issues inherent to the standard GP regression. Finally, the Chained GP was

discussed in order to deal with more complex features in the noisy data distribution such as the

ones found in WTPC modeling.

The proposed modeling framework was put to the test in a series of computational

experiments using a dataset of one year of WT operational data. Those studies showed that the

new models were not only able to give competitive results when compared to selected state-of-art

models regarding deterministic metrics but also to successfully model the characteristics of the

uncertainty intrinsic to the noisy observations.

Therefore, the objectives of this dissertation were successfully achieved. As such,

it is expected that the proposed modeling methodology becomes part of the vast set of WTPC

modeling tools, contributing to the development of the wind energy industry and, consequently,

to the worldwide transition towards a more sustainable energy sources.

6.1 Further Work

The proposed modeling framework developed in this dissertation established a

probabilistic approach to the WTPC modeling problem based on the adaptability of GP models

combined with domain knowledge based choices such as the logistic function as the GP mean

function and likelihoods tailored for the noise features of the WTPC data. Building on top of

those features, some interesting directions of future research are now discussed.
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6.1.1 Evaluation of Other Likelihoods

The likelihoods studied in this dissertation were chosen due to their ability to

represent heteroscedasticity and, in the Student-t distribution based cases, be robust to outliers.

However, they are not able to represent asymmetric distributions, which can be the case for at

least part of the WTPC data. As such, likelihoods based on asymmetric distributions are good

options for future research.

6.1.2 More Inputs

This dissertation followed the more usual approach to WTPC in both technical and

scientific literature of modeling the normalized power p as a function of only one input, the wind

speed v. However, it is also recognized in both literatures that many more variables such as wind

turbulence intensity, wind veer and sheer, yaw misalignment angle and air density. Fortunately,

the proposed modeling framework can be easily extended to include then as additional inputs of

the latent GPs, which opens a very promising research option.

6.1.3 Alternative Quadrature Methods

Although not explicitly evaluated in the experiments of section 5.4, the computational

time and storage requirements for fitting the L3P-LRHS-GP model are much more demanding

than the L3P-HS-GP model. This happens because the former needs to evaluate three-dimensional

Gaussian expectations whilst the latter only needs a two-dimensional one, and the chosen

algorithm to compute them, the Gauss-Hermite quadrature, scales poorly for higher dimensions.

Hence, exploring other options to compute expectations such as the Monte Carlo quadrature or

the Unscented Transform is an important enhancement not only for WTPC modeling, but for

Chained GPs in general.
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