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RESUMO

A quinta geração (5G) de comunicações móveis foi projetada para expandir os recursos das redes

sem fio e, consequentemente, fornecer suporte otimizado a vários casos de uso e requisitos de

projeto. Em vista disso, conjuntos massivos de antenas de múltiplas-entradas e múltiplas-saídas

e a operação na faixa de frequência de ondas milimétricas (mmWave) são importantes soluções

técnicas capazes de suportar um aprimoramento expressivo da capacidade de tráfego de dados,

uma demanda reconhecidamente relevante de 5G. Nesse contexto, a presente tese investiga

técnicas de gerenciamento de recursos de rádio para explorar essas tecnologias e superar seus

principais desafios, como condições de propagação hostis, aquisição de informações sobre

o estado do canal (CSI) e complexidade de implementação do transceptor. Além disso, as

soluções propostas baseiam-se nas principais especificações técnicas do projeto de parceria para

a terceira geração (3GPP), com o objetivo de considerar aspectos práticos da implementação.

Na primeira parte desta tese, dedicada ao projeto de formatação híbrida de feixes com base no

esquema de divisão espacial e multiplexação conjunta, propomos uma estrutura para explorar

um feedback limitado da CSI e reduzir a interferência intercelular, considerando diferentes

condições de propagação em mmWave. Na segunda parte deste documento, investigamos uma

estrutura de controle de potência do enlace de subida compatível com o projeto centrado em

feixes da interface aérea da tecnologia de acesso por rádio de 5G. O esquema de sinalização

proposto entre estações base permite um controle flexível da potência de transmissão capaz de

aumentar a eficiência energética, aprimorando a taxa de dados do sistema e reduzir o consumo de

energia, limitando a interferência nas células vizinhas. Esta tese explora diferentes paradigmas de

aprendizado de máquina (ML) para otimizar a implantação da rede 5G. Investigamos como o ML

pode ajudar na descoberta de propriedades desconhecidas do canal sem fio e no estabelecimento

de estratégias bem-sucedidas de RMM a partir do conhecimento determinado pela interação com

a rede. Análises numéricas são apresentadas para validar os métodos propostos e demonstrar

que, apesar das limitações impostas pelas especificações técnicas do 3GPP, como restrições de

hardware e sinalização disponível, as soluções propostas melhoram o desempenho do sistema e

atendem a requisitos de engenharia relevantes, como melhoria da taxa de dados e aprimoramento

da eficiência energética com reduzidas sobrecarga de sinalização e complexidade computacional.

Palavras-chave: Gerenciamento de recursos de rádio. Formatação híbrida de feixes. Controle

de potência. Aprendizado de máquina.



ABSTRACT

The fifth generation (5G) of mobile communications has been envisioned to expand the capabili-

ties of wireless networks and, consequently, to provide optimized support to several use cases

and design requirements. In view of this, massive multiple-input multiple-output antenna arrays

and the operation at the millimeter wave (mmWave) frequency range are important technical

solutions able to support an expressive enhancement of the data traffic capacity, a recognizably

relevant demand of 5G. In this context, the present thesis investigates radio resource management

(RRM) techniques to explore these technologies and to overcome their main challenges, such

as hostile propagation conditions, demanding channel state information (CSI) acquisition, and

transceiver implementation complexity. Moreover, the proposed solutions rely on the main

technical specifications from the third partnership project (3GPP) aiming to consider practical

implementation aspects. In the first part of this thesis, devoted to the hybrid beamforming design

based on the joint spatial division and multiplexing scheme, we propose a framework to exploit

a limited CSI feedback and to reduce the inter-cell interference considering different mmWave

propagation conditions. In the second part of this document, we investigate an uplink power

control framework compliant with the beam-centric design of the air interface of 5G radio access

technology. The proposed signaling scheme among base stations allows a flexible transmit power

control able to increase the energy efficiency by the enhancement of the system data rate and to

reduce the power consumption while limiting interference to neighbor cells. This thesis explores

different machine learning (ML) paradigms to optimize 5G network deployment. We investigate

how ML can help to uncover unknown properties of the wireless channel and establish successful

RRM strategies from the knowledge determined by the interaction with the network. Numerical

analyses are presented to validate the proposed methods and to demonstrate that, despite the

limitations imposed by the 3GPP technical specifications, such as hardware restrictions and

available signaling, the proposed solutions improve system performance and achieve relevant

engineering requirements, such as data rate improvement and energy efficiency enhancement

with reduced signaling overhead and computational complexity.

Keywords: Radio resource management. Hybrid beamforming. Power control. Machine

learning.
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1 INTRODUCTION

The Fifth Generation (5G) of mobile communication has been designed to notably

expand the capabilities of wireless networks and, consequently, enable a more connected society.

The research and development of 5G started almost a decade ago and involves a coordinated

global effort from academia and industry to determine technologies able to provide optimized

support to a wide range of use cases and requirements [1].

5G networks, differently from its predecessors, are envisioned to support remarkably

different types of use cases. According to the International Mobile Communications for 2020 and

Beyond (IMT-2020) [2], a set of recommendations from the International Telecommunications

Union (ITU) for 5G, the next generation of wireless networks supports three main use cases:

– Enhanced Mobile Broadband (eMBB): it is an extension of mobile broadband under

current communication standards; it addresses human-centric connectivity, requiring high

data rates and improved Quality of Experience (QoE) [3].

– Massive Machine Type Communication (mMTC): it requires the support to an extensive

number of devices; moreover, it also demands the control of a highly dynamic and sporadic

Machine Type Communication (MTC) traffic, huge signaling overhead, and Radio Access

Network (RAN) congestion [4].

– Ultra Reliable Low Latency Communication (URLLC): it has rigorous requirements of

latency, reliability, and availability due to the critical applications involved, such as remote

medical surgery, traffic safety control, and industrial manufacturing automation [5].

The major engineering requirements that must be achieved in 5G networks can

be briefly summarized as extremely high data rate, high traffic volume, ubiquitous coverage,

very low latency, ultra-reliability, high energy efficiency, and a massive number of devices and

heterogeneous connections [6, 7, 8]. Therefore, the overall technical goals of 5G networks are

set to support these requirements at similar cost and energy consumption levels compared with

Fourth Generation (4G) networks.

To address these demands, the Third Generation Partnership Project (3GPP) started

years ago the development of technical specifications to allow the employment of more advanced

solutions. The first phase of 5G standards constitutes the 3GPP 38 series Release 15 [9]. It

comprises the 5G core and a new radio-access technology, which is known as New Radio (NR).

The Release 15 is composed of the non-standalone and standalone 5G radio specifications. The

first one has the control plane connection to the core network through Long Term Evolution
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(LTE), while the second one does not rely on LTE core [10]. Thus, the difference between them

primarily affects higher layers and the interface to the core network.

The second phase of 5G is being standardized by 3GPP in Release 16. It brings

3GPP IMT-2020 submission for a full 3GPP 5G system [11]. In addition to enhancing the

previous release features, Release 16 focuses on enabling full support for the Industrial Internet

of Things (IIoT). Then, the focus of Release 16 is on new features for URLLC, while the main

focus of Release 15 was on eMBB [12].

More 5G system enhancements are set to follow in Release 17 in the next years.

The scope has recently been approved and scheduled for delivery in 2021 [13]. Release 17 is

thought to lead to the introduction of new features for the three main use case families (eMBB,

URLLC, mMTC) as well as customizing new use cases emerging in the market [14]. Therefore,

the evolution of 5G technical specifications focuses on the enhancement of features introduced

in previous releases and on the development of new features to further expand the applicability

of 5G networks.

The 5G specifications provide several features to meet the challenging requirements

from IMT-2020. Some of the most important technical solutions considered in the deployment

of 5G and relevant to the development of this thesis are

– wider transmission bandwidths and, consequently, higher frequency carriers [15];

– massive Multiple Input Multiple Output (MIMO) antenna arrays [16];

– beam-centric design [17].

In the following, we discuss how these technologies motivated and influenced the

development of the studies carried out in this thesis.

1.1 Key Technologies

Among the design requirements outlined previously, the need for very high traffic

capacity recognizably got relevant research attention in the last years [18, 19, 20]. The develop-

ment of technologies and architectures to properly serve the continuing demands of customers

imposes the joint effort of researchers and regulators to accommodate standards and technologies

respecting the spectrum and cost limitations [21, 22, 23].

The exploration of wider bandwidths is an effective and straightforward method to

provide the foreseen data rate demands. However, the available bandwidth at lower frequencies

is limited, and the spectrum shortage is an unavoidable issue. Consequently, it motivated the use
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of higher frequencies because of the large amount of free spectrum. [24].

On one hand, LTE supports a maximum bandwidth of 100 MHz, considering carrier

aggregation, and is expected to operate below 6 GHz. Specifically, its highest frequencies are

3.5 GHz for licensed spectra and 5 GHz for unlicensed spectra [17]. On the other hand, NR is

envisioned to support several channel bandwidths and operate licensed spectra from sub-1 GHz

up to 52.6 GHz, as specified in 3GPP Release 15 [25]. These carrier frequencies are divided

within two possible ranges. The frequency range 1 (FR1) corresponds to the interval 0.41−7.125

GHz and the frequency range 2 (FR2) is associated with the carrier frequencies between 24.25

and 52.6 GHz, which belongs to the Millimeter Wave (mmWave) spectrum [26]. The supported

channel bandwidths in NR are 100 MHz in FR1 and 400 MHz in FR2 [25]. If even larger

bandwidths are to be supported, carrier aggregation can be used [27]. A tight integration of NR

and LTE is envisioned in order to efficiently aggregate the traffic between them, as it can be seen

in Figure 1.

NR has a scalable waveform numerology to enable diverse services on this wide

range of frequencies and bandwidths with different subcarrier spacings. In 3GPP Release 15, five

subcarrier spacings are specified: 15 kHz, 30 kHz, 60 kHz, 120, and 240 kHz [25]. The choice

of the subcarrier spacing depends on various factors, such as service requirements, hardware

impairments, mobility, performance and implementation complexity [26]. A small subcarrier

spacing provides a relatively long cyclic prefix in absolute time at a reasonable overhead while

higher subcarrier spacing is required to handle the increased phase noise at higher carrier

frequencies [27].

Although exploration of the mmWave spectrum at FR2 is very appealing, its imple-

mentation involves many challenges. The propagation conditions are hostile because diffraction

Figura 1 – Licensed carrier frequency ranges associated with LTE and NR.
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and material penetration incur a greater loss in higher frequencies [28]. Moreover, the mmWave

propagation is characterized by fast channel fluctuations. For a given mobile velocity, chan-

nel coherence time is linear in the carrier frequency, meaning that it will be very small in the

mmWave range. Consequently, from a system level perspective, it implies in a highly intermittent

connectivity scenario [29]. Thus, it is crucial to the understanding of mmWave propagation the

realization of experimental measurements and the development of empirically-based propagation

channel models, as it can be seen in [30, 31, 32] and references therein.

The strong attenuation observed in the mmWave propagation can be compensated by

means of advanced multiantenna techniques, which is one of the motivating factors for the beam-

centric design in NR. The very small wavelengths of mmWave signals combined with advances in

low-power CMOS Radio Frequency (RF) circuits enable large numbers of miniaturized antenna

elements to be placed in small dimensions. These multiple antenna systems can be used to form

very high gain and electrically steerable arrays to overcome path loss conditions [33]. Therefore,

an appropriate beamforming scheme with a great number of antennas allows focusing the signal

in a desired direction to overcome the unfavorable channel propagation conditions. Although

the spatial resolution increases, it imposes difficulties on initial access, handoff and interference

management [34].

The extensive usage of antenna elements, formally called massive MIMO, is con-

sidered an essential technology to provide very high data rates, spectral efficiency, enhanced

link reliability, and coverage to the next generation of broadband networks [35]. The concept,

introduced in [36] and further developed in [37], uses a massive number of antenna elements at

the transmitter, which achieves multiplexing and throughput gains of Multi User (MU)-MIMO

by serving many UEs within the same time-frequency resource [38, 39, 40, 41].

Massive MIMO systems consider the BS equipped with a number of antennas much

larger than the number of active UEs per time-frequency resource. This arrangement smooths

out the channel responses due to spatial diversity, and the effects of fast fading are significantly

reduced. If the BS has an “infinite” number of antennas the small scale randomness decreases

due to law of large numbers [37]. However, the deployment of massive MIMO involves several

issues that were not relevant in classical MIMO. The classical solution requires one RF chain per

antenna element [42], but it increases implementation complexity, hardware cost, and energy

consumption in massive MIMO [43].

Hybrid beamforming has emerged with the promise of having transceivers with a
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massive number of antennas connected to very few RF chains. Essentially, hybrid beamforming

replaces the fully digital precoding by analog beamforming at RF domain and digital precoding

at baseband. The transmitter side uses the baseband digital precoder to process data streams and

so produces outputs that are upconverted to the RF segment and mapped via an analog precoder

to be transmitted by the BS antenna elements. At the receiver side, an analog combiner merges

RF signals from UEs’ antennas to create outputs that are downconverted to baseband and further

combined, producing a signal for detection/decoding [43].

The air interface of NR is beam-based, which means that the channels and signals

can be beamformed for data transmission and control-plane procedures. The large number of

antenna elements can be used to extend coverage, enable massive MIMO, and allow interference

avoidance by spatial separation [17].

The acquisition of Channel State Information (CSI) is a fundamental feature to

support NR beam-centric design. In general, CSI can be acquired by means of codebook-style

feedback or through Time Division Duplex (TDD) channel reciprocity [12]. 3GPP Release 15

provides two types of codebook-based CSI feedback. The Type I CSI reporting is similar to the

full-dimensional MIMO codebooks in LTE Release 13. It consists in the selection of up to eigth

beams from an oversampled grid of Discrete Fourier Transform (DFT) beams. The Type II CSI

reporting is similar to the LTE Advanced Release 14 CSI codebook but allowing the selection of

more beams and having finer granularity in the amplitude and phase quantization [26]. Compared

with Type I, there is also an amplitude scaling factor for each beam which can be wideband or a

combination of wideband and frequency selective.

Therefore, the impact of the CSI acquisition on a hybrid beamforming scheme in a

mmWave propagation scenario is a relevant research question that we investigate Chapter 2.

Besides the enhancement of the data rate, another relevant 5G design requirement

evaluated in this thesis is the improvement of the energy efficiency. The 5G networks must be

designed to improve the data rate at similar or lower transmit power consumption [18]. That is,

with an increasing number of connected devices, maximizing the data rate by simply increasing

the transmission power is not sustainable [44].

Therefore, the UPC constitutes an essential design problem for 5G networks. This

important Radio Resource Management (RRM) technique provides mechanisms to increase

the energy efficiency by the enhancement of the system data rate and to reduce the power

consumption while limiting interference to neighbor cells [45].
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4G LTE supports several solutions based on well-founded technical literature to the

UPC problem with distinct objectives regarding different deployment scenarios and services [46,

47, 48]. NR UPC follows a structure similar to LTE, i.e., it is based both on signal strength

measurements performed by the UE itself (open-loop power control paradigm) as well as by

measurements performed bt the BS, which are used to determine transmit power commands

that are fed back to the UE as part of the downlink control signaling (closed-loop power control

paradigm) [45].

Despite the advances promoted by LTE, the new use cases introduced in 5G, such as

eMBB, URLLC, and mMTC, impose challenging requirements compared with the demands of

the previous generation [17]. Hence, the 5G radio access technology is expected to expand the

capabilities of wireless networks to fulfill these hard demands.

NR has as one innovative aspect the beam-centric design of channels and signals.

Therefore, a large number of antenna elements at the transmitters and receivers are used for

beamforming to enhance coverage and to improve the interference mitigation [17]. Consequently,

the UPC problems in 5G NR can exploit such design flexibility, but will witness more challenging

design requirements compared to classical solutions.

Then, the development of a new UPC framework to support 5G NR demands

mentioned previously requires more sophisticated tools. In this context, the design of an UPC

solution compliant with the beam-centric design paradigm of the NR radio access technology is

a relevant research topic and is the focus of Chapter 3.

In the following, it is analyzed how Machine Learning (ML) emerges as a powerful

source of mechanisms to optimize 5G network deployment. That is, it is reviewed how ML can

help to uncover unknown properties of wireless networks, identify correlations, and suggest

novel ways to meet knowledge from the network to meet the ambitious 5G design requirements.

1.2 Machine Learning Applications in 5G

ML is a promising tool to assist network operators in making the 5G vision con-

ceivable as the emergence of new use cases imposes ambitious design requirements and the

systems reach notable levels of complexity [49, 50]. It is critical to enhance intelligence in the

5G networks to overcome the increasingly configuration issues and to provide more flexible

features such as self-configuration, self-optimization, and self-healing [51, 52, 53]. In addition

to the references mentioned previously, the authors of [54, 55, 56, 57] summarize a wide range



25

of ML-based models along with the corresponding applications in 5G networks.

ML is the set of algorithms which use statistical techniques to allow machines to

improve its decision-making capabilities as they acquire more knowledge [50]. That is, it provides

techniques able to detect anomalies, forecast future scenarios, get insights on complex systems

from the available data, discover hidden patterns, and find potential solutions by interacting

with the environment [51, 50]. According to the behavior of the learning agents and the nature

of the data used in the learning system, ML algorithms are typically classified into three main

categories, namely Supervised Learning (SL), Unsupervised Learning (UL), and RL.

SL algorithms aim to determine a general rule to map inputs into outputs. The main

idea is to train a learning model with labeled data indicating the inputs with their corresponding

target outputs. In the following, this model is used to determine the most adequate outputs from

inputs different of those considered in the training step [58]. Therefore, the objective is to acquire

the generalization ability, which refers to the capability to determine appropriate outputs for new

inputs [59].

SL algorithms require a large amount of data to train, test, and validate their learning

models since the number of samples influences the algorithm robustness [50]. Therefore, from a

Physical (PHY) and Medium Access Control (MAC) layer perspective, training a SL model using

over-the-air feedback is prohibitively expensive in terms of signaling control overhead [60].

UL algorithms consider the situation where there is not supervisor and the agent

learns by itself. That is, the agent collects data through measurements from the system and tries

to extract useful knowledge without any external guidance [59]. Therefore, the input information

on UL algorithms does not possess labeled data. The UL agent has to find the hidden patterns

and relationships in the data based on its own knowledge [50].

UL is also a promising ML paradigm application in 5G networks since its main

objective is to make the agent capable of learning without any supervision or human intervention.

Compared with SL, UL does not require large training data, which implies a reduced signaling

overhead. However, UL learning process is quite complex as compared to SL, which implies a

higher computational cost [4].

Among the various tasks which could be performed exploring the UL paradigm, stand

out dimensionality reduction and clustering [4]. The manipulation of high-dimensional data is

often cumbersome in practical data analysis. Thus, the dimensionality reduction allows reducing

dimensionality while preserving intrinsic information contained in the data [59]. Clustering
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aims to categorize input samples into cluster without any supervision. Usually, similar samples

are supposed to belong to the same cluster, and dissimilar samples are supposed to belong to

different clusters [59].

Clustering is frequently used in network design, as it can be seen in [49, 50, 51, 52]

and references therein. Therefore, it plays a prominent role throughout this thesis. Chapter 2

investigates different techniques to cluster UEs in a efficient way according to some 5G design

criteria, such as data rate enhancement.

The RL paradigm aims to determine the most suitable actions to take in a given

system in order to maximize a reward function. The learning agent does not have examples of

optimal actions, but it must instead discover them by a trial and error process [58]. At each

decision time, the learning agent chooses an action available at a current state, then, the system

determines the reward function and the new state. The goal is the determination of the best policy

to maximize the reward function by selecting the most proper action in a given state [50].

In the RL paradigm, actions may affect not only the immediate reward but also the

next states and the subsequent rewards. Thus, the trial-and-error search and delayed reward are

important distinguishing features of RL compared with SL and UL [61]. Another challenge

that arises in RL is the trade-off between exploration and exploitation. That is, the learning

agent has to exploit what it has already experienced in order to obtain reward, but it also has to

explore other actions in order to make better action selections in the following decisions. Neither

exploration nor exploitation can be pursued exclusively without failing at the task [61].

RL is a relevant tool to empower networks with autonomous algorithms provided

with adaptability and capable of taking advantage of experience when making decisions [52].

Chapter 3 investigates how a learning agent can determine suitable transmit power control

commands based on the knowledge acquired with its dynamic interaction with the environment.

The proposed UPC strategy yields a proper utilization of limited resources to improve energy

efficiency based on the RL paradigm.

1.3 Main Contributions

This thesis investigates RRM techniques in the context of 5G networks and based on

ML paradigms. The proposed solutions prioritize the practical implementation aspects, relying

on the main technical specifications from 3GPP Release 15. Thus, it is researched how ML

techniques can be implemented considering the limitations imposed by these conditions, such as
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hardware restrictions and the information available in view of the existing signaling.

Therefore, flexible frameworks are designed to overcome these restrictions and bring

relevant 5G engineering requirements, such as as data rate improvement, energy efficiency

enhancement, interference mitigation, and reduced signaling overhead.

The first part of this thesis is focused on the development of a hybrid beamforming

scheme on a mmWave scenario. The main contributions of this investigation can be summarized

as follows:

– design of a hybrid beamforming scheme under limited feedback channels;

– development of a user selection framework based on UL with reduced CSI feedback;

– comprehensive simulation campaign to investigate the performance of the proposed fra-

meworks under different system conditions;

– computational complexity analysis of the proposed user clustering framework.

The second part of this thesis develops a beam-centric UPC framework aiming at the

enhancement of the energy efficiency. It is considered a multi-cell mmWave massive MIMO

scenario. The most relevant contributions of this research can be outlined as follows:

– development of a flexible power control strategy that takes into account the coordination

among multiple beams and the limitation aspects from 3GPP;

– formulation of UPC framework based on the multi-agent RL paradigm, i.e., design of

states, actions, and rewards compliant with the 3GPP specifications;

– development of a signaling scheme that allows cooperation among entities endowed with

intelligence in a multi-cell system;

– evaluation of the performance of the proposed UPC framework through numerical simula-

tions.

1.4 Thesis Organization

The content of this thesis is organized in four chapters, including this introductory

chapter. The chapters cover different aspects of RRM in mmWave massive MIMO communi-

cations systems. Every chapter is meant to be self-contained so that the reader can read them

independently without loss of information.

Figure 2 presents the thesis structure, highlighting the goals and the most relevant

concepts addressed in each chapter. The main topics covered in Chapters 2 and 3 are described

by their main design requirements, the key technologies investigated, and the ML paradigms
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employed. In the following, we briefly describe the contents of the remaining chapters.

Chapter 2 proposes a hybrid beamforming design with reduced CSI feedback scheme.

We explored a beam sweeping procedure to collect channel measurements and CSI feedback

report. Thereby, the BS can perform an adequate estimation of the channel characteristics with

reduced signaling overhead. Consequently, it is required short pilot sequences and very few

Precoding Matrix Indicators (PMIs) to properly describe channel behavior. Moreover, it is also

evaluated different user selection strategies based on an unsupervised learning framework that

exploits the CSI provided by the proposed beam sweeping scheme. User selection algorithms

based on hard and fuzzy clustering paradigms are compared in terms of computational complexity

and ability to explore the reduced CSI to reduce MU interference and improve total data rate.

Chapter 3 proposes an UPC framework compliant with the technical specifications

of the 5G wireless networks. The fundamentals of RL are exploited to develop a power control

algorithm able to learn a strategy that maximizes the total data rate on the uplink channel and

mitigates the neighbor cell interference. The BS uses a set of commands to specify by how much

the UE transmit power should change. After implementing such commands, the UE reports a

Figura 2 – Thesis Organization.
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set of information to its serving BS, which uses them to predict the next commands to achieve

a suitable UE transmit power level. The BS converts the UE reports into rewards according

to a predefined cost function, which impacts the long-term behavior of the UE transmit power.

Besides the evaluation of the impact of the design parameters on its behavior, the proposed UPC

is compared in terms of computational complexity and required signaling with two classical

power control solutions.

Chapter 4 summarizes the main conclusions of this thesis and discusses some rese-

arch perspectives for future works.
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2 HYBRID BEAMFORMING DESIGN BASED ON UNSUPERVISED LEARNING

In this chapter, it is proposed a hybrid beamforming design with reduced Channel

State Information (CSI) feedback. Each Base Station (BS) uses a beam sweeping procedure to

provide channel measurements at User Equipment (UEs). Such measurements are fed back to

the BS to perform an adequate estimation of the channel characteristics with reduced signaling

overhead. Consequently, it is required short pilot sequences and very few Precoding Matrix

Indicators (PMIs) to properly describe channel behavior. Furthermore, it is also evaluated

different user selection strategies based on an Unsupervised Learning (UL) framework that

exploits the channel information provided by the considered beam sweeping scheme. The

performance evaluation indicates that the proposed user clustering based on fuzzy c-means can

efficiently explore the reduced CSI. The proposed hybrid beamforming scheme successfully

reduces the Multi User (MU) interference and achieves significant gains in total data rate as

channel conditions and interference environment become more challenging.

The remainder of this chapter is organized as follows. Section 2.1 discusses related

works and the main contributions of this chapter. Section 2.2 describes the principal assumptions

about the signal model. Section 2.3 presents the proposed channel measurement technique,

which is based on beam sweeping. Section 2.4, discusses the proposed hybrid precoding scheme

with limited CSI feedback. Finally, performance results are shown in Section 2.5, and the main

remarks are drawn in Section 2.6.

2.1 Literature Review and Contributions

Hybrid beamforming is a viable approach for the deployment of massive Multiple

Input Multiple Output (MIMO) systems operating at Millimeter Wave (mmWave) carrier fre-

quencies due to the reduction of the number of Analog to Digital Converters (ADCs) and Radio

Frequency (RF) chains [62]. Several studies, such as [63] and [64], evaluated how it can provide

successful strategies to improve the energy efficiency of Fifth Generation (5G) systems. The

authors of [63] investigated optimization solutions based on hybrid beamforming to overcome

conventional digital precoding algorithms in terms of energy and cost efficiency. The authors

of [64] formulated a joint optimization problem of computation and communication power

consumption for MU massive MIMO systems. Unlike the conventional approaches, which only

consider the communication power, it is noticed that the energy efficiency of massive MIMO
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systems reduces with the increase in the number of antennas and RF chains.

A major challenge of massive MIMO systems is the determination and feedback of

CSI among transmit and receive antennas, which requires a considerable amount of spectral

resources [65]. Without this information, the system is not capable of delivering very high data

rates and consequently, 5G requirements cannot be reached. Several hybrid beamformers have

been established under the assumption of perfect CSI at the BS [66, 67, 68, 69]. However, a real

system must employ procedures that exploit reference signals and take into account the hybrid

structure to estimate the CSI [43]. In Time Division Duplex (TDD) systems, the instantaneous

CSI at the transmitter can be achieved using time reciprocity of the uplink and downlink channels.

Therefore, a large amount of antenna elements either the UEs or at the BS increases the length

of the training sequences, which reduces the spectral efficiency [43]. In Frequency Division

Multiplexing (FDD) systems, the overhead is even more intense, since it is required the downlink

training and uplink feedback increases with the number of antenna elements [43]. Therefore, it

is necessary for the design of hybrid beamforming systems with reduced CSI volumes to relieve

the signaling overhead. The authors of [70] first proposed hybrid beamformers using average

CSI for a Single User (SU)-MIMO system. For the massive MIMO case, a scheme called Joint

Spatial Division and Multiplexing (JSDM) was proposed in [71].

The JSDM scheme provides a two-stage precoder which naturally suits the hybrid

beamforming structure. The first stage is an analog beamforming based on the slowly varying

second-order channel statistics. The UEs with similar transmit channel covariance eigenspace are

grouped together and an analog precoder based on block diagonalization mitigates the inter-group

interference [71]. As a consequence, the downlink training can be parallelly conducted in the

different groups, which can be thought as virtual sectors. It leads to a reduction of downlink

training and uplink feedback overhead proportional to the number of groups since each UE only

needs to feedback the intra-group channels. The second stage uses a standard MU-MIMO digital

precoder based on the instantaneous knowledge of the resulting reduced dimensional channel

matrix to distinguish UEs inside each virtual sector.

The authors of [72] extended the JSDM scheme by the evaluation of different

approaches to partition the UE population into groups, namely the k-means algorithm applied

to the Grassmanian manifold and the fixed quantization of the Grassmanian manifold based

on the minimum chordal distance. In [73], it is evaluated an improved k-means user grouping

scheme which instead of chordal distance, considers the weighted likelihood as the metric to
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partition UEs. This study is extended in [74] with the evaluation of novel grouping metrics and

clustering algorithms, such as k-medoids and hierarchical clustering. The aforementioned works

were based on the one cluster scattering model, i.e., the multi-path components arrive at the BS

under a very constrained angular range. Therefore, the UEs can be conveniently separated in the

first precoding stage since they are associated with multi-paths that are disjoint in the angular

domain. However, this channel assumption does not hold in more realistic scenarios.

In our study, we consider a mmWave channel model in an urban environment [75],

where we can observe spatially correlated multi-paths. In this context, the transmit channel

covariances tend to be partially overlapped among themselves. Consequently, the partitioning of

UEs is more difficult. The qualitative principle of JSDM, that establishes the mutual orthogonality

between the eigenspaces of the groups served on the same time-frequency resource, reduces the

number of feasible partitions, limiting the reduction of signaling and feedback overhead. To

overcome this issue, we investigate a more flexible partitioning strategy, called fuzzy clustering,

which considers that each UE can have a membership degree in more than one virtual sector.

Consequently, in the cases in which it is hard to decide that UEs belong to only one virtual sector,

fuzzy clustering can reach a better decision.

Most of the previous works also assumed that the BS has perfect knowledge of the

UE channel covariance matrix, which can be accurately learned and tracked since it is slowly-

varying over long periods of time. It is considered an explicit CSI feedback, where each UE

sends to the BS a representation of a CSI as observed by the UE, such as the transmit covariance

matrix. The UE may also perform some additional processing of the observed channel covariance

matrix and feedback their dominant eigenvectors.

In our study, we investigate a more realistic scheme of CSI feedback based on the

measurement and report framework specified in 5G NR physical layer standard [76]. We consider

an implicit feedback scheme, where each UE sends back a set of PMIs to the BS, which point to

the index of the codewords selected by the UE in a codebook known at both UE and BS sides,

and their respective weights, which are used in the recomposition of estimated channel matrices,

respectively.

Motivated by the above discussion, we investigate a low-complexity hybrid beamfor-

ming algorithm for downlink massive MIMO mmWave systems and assume the availability of

only limited feedback of CSI between UEs and the BS. The main contributions of this chapter

can be summarized as follows:
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1. evaluation of a channel measurement technique based on beam sweeping;

2. evaluation of the JSDM scheme considering a realistic mmWave channel model and

different urban environments;

3. evaluation of UE selection algorithms based on an UL, i.e., different UEs partitioning

schemes considering hard and fuzzy clustering.

Notation: bold lowercase and uppercase letters represent column vectors and matri-

ces, respectively. (·)T and (·)H stand for transpose and Hermitian of a matrix, respectively. | · |,
‖ · ‖2, ‖ · ‖F denote the absolute value, the Euclidean norm, and the Frobenius norm, respectively.

vec(·) represents the vectorization of a matrix into a column vector. Calligraphic upper-case

letters denote sets, and for them | · | denotes set cardinality. E{·} denotes expectation operator.

2.2 Signal Model

We consider a downlink channel of a massive MIMO system employing Orthogonal

Frequency Division Multiple Access (OFDMA). The system is composed of one BS that services

J UEs. The BS has a Uniform Rectangular Array (URA) composed of Uv vertical and Uh

horizontal antenna elements, where the total number of antennas U =UvUh, and R RF chains

available so that R≤U . Each UE is equipped with a single omnidirectional antenna. In each

time slot, K UEs out of the entire set of J UEs are selected to compose a Space Division Multiple

Access (SDMA) group G which receives data sharing a same frequency-time Resource Block

(RB) in space. In each resource, the transmitter uses its U antennas to send a data stream to

each of the selected UEs. The remaining (J−K) UEs have their data stored in a buffer. Thus,

considering an appropriate time interval, all UEs, including the (J−K) UEs not selected in a

certain round, will be scheduled later and receive data, i.e., all UEs will empty their buffers

and consume all information. The multiple streams are spatially multiplexed using a precoder

matrix that mitigates the MU interference. The symbol transmitted to the k-th UE is defined by

xk, where it is assumed that E{xkx∗k}= 1,∀k ∈ {1,2, · · · ,K}.
The RB is defined as a set of contiguous and equally spaced subcarriers in the

frequency domain and a set of consecutive symbols in the time domain. This group of symbols

corresponds to a subframe, that represents the Transmission Time Interval (TTI). We define

the subcarrier width and the TTI duration according to the carrier frequency, considering the

achievable Signal to Noise Ratio (SNR) subject to phase noise and channel delay spread [77].

More details on this topic are provided in Section 2.5. The downlink channel matrix between
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the BS and the k-th UE is denoted by Hk ∈ CUv×Uh , and its vectorized form is defined as

hk = vec(Hk) ∈ CUvUh×1 . The channel vector of a given RB is associated with its middle

subcarrier and first transmitted Orthogonal Frequency Division Multiplexing (OFDM) symbol in

a TTI.

The hybrid beamforming is defined as fk = FRF,kfBB,k, where FRF,k ∈ CU×R repre-

sents the analog precoder matrix while fBB,k ∈ CR×1 is the digital precoding vector. The analog

precoder matrix has elements with equal magnitude and phase defined as constant to a specific

range of RBs. The digital precoder is implemented in the baseband domain, so it is RB specific.

Therefore, the prior-filtering receive symbol yk at the k-th selected UE is

yk = hT
k fk
√

Pk xk +
K

∑
j 6=k

hT
k f j
√

P j x j + zk, (2.1)

where Pk is the transmit power allocated to the stream associated to the k-th UE, the second term

on the right-hand side of (2.1) represents the inter-cell interference, and zk is the Additive White

Gaussian Noise (AWGN), defined as C N (0,σ2), with mean zero and variance σ2.

2.3 Channel Measurement and CSI Feedback

In order to determine the precoders appropriately, the BS should have knowledge

about the CSI. Herein, we exploit the codebook-based CSI feedback Type II framework, specified

in 5G NR physical layer [76] to measure and report CSI to the BS. This codebook type has

a higher resolution than Type I because it enables the UE to describe the CSI as a linear

combination of multiple beams while the type I only considers the strongest beams [78]. This

is a very attractive 5G New Radio (NR) feature since we need a very good description of the

channel in MU-MIMO scenarios to avoid spectral efficiency losses due to excessive intra-cell

interference. Moreover, the codebook structure is a product of two matrices which is similar to

the hybrid beamforming. There is a wideband matrix, that could be implemented by the analog

beamforming, while the second matrix is designed according to the subband channel, that could

be implemented by the digital beamforming.

The CSI acquisition by the BS happens when the UE reports the PMIs and their

respective weights. The overall process starts with the BS transmitting Channel State Information

Reference Signal (CSI-RS) by means of a beam sweeping procedure. Each UE collects the

received signals and estimates the amplitude scaling and the phase rotation of the beams. At

each UE, there is a beam grouping selection to report only the best beams and weights to the BS.
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We show in the following how to estimate the weights and the theoretical estimation quality.

Let us consider a vector s ∈ CL×1 that defines a CSI-RS with length L. The vector

transmission is repeated over U TTIs, and every time slot is associated to a given beam direction.

Since we consider a low mobility scenario, the correlation observed in the channel vectors

between the first and U-th TTI is sufficiently high to afford the suitability of this procedure.

The received signal r j,b ∈ CL×1 at the j-th UE corresponds to the b-th beam during the beam

sweeping, and its signal model can be written as

r j,b =
√

P j,b shT
j w∗bα j,b

+ z j, (2.2)

where P j,b is the power associated to the CSI-RS of the j-th UE at the b-th beam, h j ∈ CU×1

is the channel vector of the j-th UE, wb ∈ CU×1 is the b-th column of the Discrete Fourier

Transform (DFT)-based codebook W ∈ CU×U and z j ∈ CL×1 is an AWGN vector distributed as

C N (0,σ21). The projection of the channel vector h j onto the column wb of the codebook W

is represented as the scalar α j,b.

The UE wants to estimate α j,b,∀b = {1,2, ...,U}, to properly decide the group of

beams that will represent the CSI. The more beams are chosen, the more precise is the CSI

representation, but the overhead increases. Therefore, we need to find a good operational point

where the set of reported beams offers enough resolution (and consequently the BS can separate

the UEs) yet the overhead has minimal impact on the spectral efficiency.

The estimated channel vector projection α̂ j,b of the j-th UE onto the b-th beam wb

given the codebook and the knowledge of CSI-RS can be written as

α̂ j,b =
1√

P j,b‖s‖2 sHr j,b. (2.3)

The performance of the estimator can be derived as follows

E{|α j,b− α̂ j,b|2}=
(

1√
P j,b‖s‖2

)2

E{‖sHz j‖2}=
(

1√
P j,b‖s‖2

)2

E{sHz jzH
j s}

=

(
1√

P j,b‖s‖2

)2

sHE{z jzH
j }s =

(
1√

P j,b‖s‖2

)2

σ
2
j sHIs =

σ2
j

P j,bL
.

(2.4)

Eq. (2.4) shows that the performance will increase as the SNR, P j,b/σ2
j , of the beam

increases. Moreover, the length L of the CSI-RS also impacts on the estimation: the longer it is,

the more accurate is the estimation.
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The performance of the beam sweeping channel measurement is evaluated in terms

of the Normalized Mean Square Error (NMSE) of the j-th UE, which is defined as

NMSE j =
1
C

C

∑
c=1

‖ α− α̂ j,c ‖2
2

‖ α ‖2
2

, (2.5)

where C is the number of Monte Carlo runs, α = [α j,1 · · · α j,U ]
T ∈CU×1 is the set of projections

of the channel vector h j onto the codebook W, and α̂ j,c = [α̂ j,1 · · · α̂ j,U ]
T ∈ CU×1 is the set of

estimated projections of the channel vector onto the codebook W for a given Monte Carlo run.

The j-th UE measures the projection of its channel h j on the beam patterns configured

by the DFT-based codebook W and, among those beam patterns, recommends a suitable set

for subsequent data transmission. In the proposed scheme, each UE determines a set of beams

b = [b1 · · · bN ]
T with the N ≤U highest weights, since this is the set of beams that provides

more information about the estimated instantaneous CSI of the UE. The N selected beams are fed

back to the BS as a vector of PMIs together with the vector a = [α̂ j,b1 · · · α̂ j,bN ]
T corresponding

to the set of N highest weights associated to the beams’ indices.

The BS uses the reported beams and their corresponding weights to estimate the

channel by means of a linear combination. Therefore, the estimated channel ĥk ∈ CU×1 at the

BS is defined as

ĥ j =
N

∑
n=1

α̂ j,bnwbn, (2.6)

where wbn refers to the bn-th column of the codebook W =
[
w1 · · · wU

]
.

The conventional CSI feedback employed in [71, 79, 72] considers the report of the

channel covariance matrix R j. Given the j-th UE, its channel vector on the t-th TTI is ht, j ∈CU×1.

Thus, the transmit covariance matrix R j ∈ CU×U can be approximated and expressed as

R j =
1
T

T

∑
t=1

ht, jhH
t, j, (2.7)

where T is the TTI window size and indicates the number of channel vector ht, j samples

considered in the averaging process. Note that the report of the covariance matrix would

consume many communication resources. That is, the amount of information associated to the

CSI feedback is determined by the number of antenna elements U at the BS and by the number

of UEs J in the system. Therefore, the total amount of resources needed for reporting the whole

R j matrices is proportional to U2J. If we consider a massive MIMO BS and a high number

of UEs, this feedback scheme implies a huge signaling overhead. Consequently, this would

potentially decrease system spectral efficiency.
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A practical communication system has limited resources and must prioritize carrying

data instead of signaling. To provide a CSI feedback with reduced signaling overhead, we exploit

the PMI representation of a codebook and their weights instead of explicitly informing the whole

covariance matrix. In this case, the signaling amount is determined by the number N of reported

PMIs (rather than the number of antennas elements) and by the number of J UEs. Therefore, the

proposed CSI feedback scheme provides a signaling load proportional to 2NJ. Since N�U ,

the proposed approach provides a CSI signaling load lower than the conventional second order

channel statistic feedback. However, it can be less robust as the device does not estimate the

full channel or second order channel statistics. In the following, we evaluate the impact of the

proposed CSI report with limited signaling on the hybrid beamforming design.

2.4 Proposed Hybrid Beamforming Design

In the following, we detail the proposed hybrid beamforming design. The JSDM

strategy admits the analog precoders dependent only on the second-order channel statistics. In

our study, we consider the analog precoder based on the channel measurements as described by

Eq. 2.3.

2.4.1 Analog Precoder Design

The pre-beamforming is considered as a generalization of the sectorization, since we

partition J UEs into K clusters indicated as C i, ∀i = {1, · · · ,K} with approximately the same

channel characteristics. The central characteristic of the i-th cluster is indicated by its centroid ci.

The analog precoder has constant amplitude elements, so only phase shifting is

performed in the analog domain. Therefore, we only consider the phases of the elements of the

centroids. Considering this assumption, the analog precoder FRF ∈ CU×K is defined from the

centroids of the clusters and can be written as

FRF = [c̃1 c̃2 . . . c̃K] , (2.8)

where c̃i = [c̃i,1 · · · c̃i,U ]
T ∈ CU×1, with each element defined as c̃i,u = exp(ci,u)

The original approach of JSDM proposed in [72] employs the k-means algorithm to

partition the UE population based on channel covariance matrix of all UEs available at the BS,

which represents a huge signaling overhead. To overcome this issue, we evaluate a partitioning

process with limited CSI feedback. Besides, we also consider a more refined version of the
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k-means, called k-means++, and compare it to an algorithm called Fuzzy C-Means (FCM),

which considers a different paradigm of clustering based on fuzzy logic. To the best of our

knowledge, FCM has not been applied previously with the JSDM framework. The strategy

adopted in the partitioning of UEs into clusters determines the characteristics of the centroids,

and, consequently, the analog precoder. The behavior of the clustering algorithms and how the

centroids are calculated are detailed in the following.

2.4.1.1 Clustering Based on K-means++

The k-means++ method aims to partition UEs into clusters so that each UE belongs

to the cluster with the nearest central characteristic. Thereby, UEs with similar transmit channel

characteristics are put on the same cluster. The k-means++ replaces the poor initialization step

of k-means with a more sophisticated one [80].

Conventionally, the average channel covariance eigenspace is the channel charac-

teristic considered in the UE partitioning strategies. The eigendecomposition of the transmit

covariance matrix R j can be written as

R j = E j∆ jE−1
j , (2.9)

where E j ∈ CU×U defines the matrix composed of eigenvectors and ∆ j ∈ CU×U is the diagonal

matrix of eigenvalues. The dominant eigenvector h̃ j ∈ CU×1 associated to highest eigenvalue of

R j is used as a baseline CSI feedback scheme.

Herein, the property that characterizes each UE in the partitioning process performed

by the clustering algorithm is the estimated channel ĥ j, defined according to Eq. (2.6). So instead

of measuring the covariance matrix, the BS uses the vectors of weights and PMI to represent

the UE’s CSI. Therefore, we consider that the information used by the BS to partition UEs into

clusters is the linear combination of the projection of the instantaneous channel vector on the

codebook W.

The vector ĥ j, defined at Eq. (2.6), is associated to each UE and has the same length

in comparison to the conventional approach. However, the signaling overhead required to achieve

ĥ j is significantly smaller than reporting the dominant eigenvector.

The first step of the k-means++ algorithm is the initialization of centroids. The

conventional approach of the k-means algorithm determines the initial centroids from the

characteristic ĥ j from K UEs randomly sorted out of the entire set of J UEs in the system. This
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process is simple, but may cause convergence of the centroids to the local optima. To overcome

this issue, the k-means++ considers a more refined initialization of centroids.

In the beginning, i.e., at iteration t = 0, an arbitrary first centroid is randomly chosen

from the entire set of UEs in the system. Therefore, the first centroid c(t)1 is defined as the

estimated channel ĥ j (also called characteristic vector) of the sorted UE j. The other (K−1)

centroids are determined as the estimated channel of the UEs which have the highest weighted

probability function ϒ j defined as

ϒ j =
‖ ĥ j− c(t)i ‖2

2

∑
j 6= j?
‖ ĥ j− c(t)i ‖2

2

. (2.10)

where i is the index of the closest centroid and j? is the first selected UE of the cluster i′.

Then, in the initialization process we select UEs which are furthest away from each

other. In the following, the algorithm proceeds as the standard k-means algorithm [80]. Each

iteration of the algorithm consists in a clustering assignment followed by a centroid update. In

the assignment step, we calculate the distance among the estimated channel of the entire set of

UEs and the centroids of clusters C i, ∀i ∈ {1, · · · , K}. The UE closest to the centroid of the i-th

cluster is determined according to

j? = min
j
‖ ĥ j− c(t)i ‖2

2 . (2.11)

The set of components of the i-th cluster is updated, C
(t)
i = C

(t−1)
i ∪{ j?}. In the

following, the centroid ci is updated as the average of the estimated channels of all UEs that

belong to the i-th cluster, which can be written as

c(t)i =
1∣∣∣C (t)
i

∣∣∣ ∑
j∈C (t)

i

ĥ j. (2.12)

We define a threshold ε > 0 and test at every iteration t if there is no significant

change of the centroids in comparison to the previous iteration, i.e.,

K

∑
i=1
‖ c(t)i − c(t−1)

i ‖2
2≤ ε. (2.13)

In the centroid update step, new centroids ci are computed for each cluster from the

subset of UEs in C i using Eq. (2.12). The assignment and centroid update steps are carried out

until we reach a convergence. The output of the algorithm is a clustering of the UEs into K

disjoint clusters and a set of vectors {c1, · · · ,cK} obtained as the centroids of the clusters.
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In the following, we summarize the main procedures of the k-meanss++ clustering

in Algorithm 1. Based on that description, the computational complexity of this algorithm is

given by O(KJUT ) . For more details on this analysis, see Appendix A.1.

Algoritmo 1: K-means++ Clustering.
1 t← 0;
2 initialize the first centroid ;
3 for i ∈ {2, . . . ,K} do
4 calculate the weighted probability function ϒ j as defined in (2.10) for all UEs in

{1, . . . ,J} excluding the UEs already chosen;

5 associate the centroid c(t)i to the estimated channel ĥ j of the UE j the with highest
value of ϒ j;

6 end
7 while condition (2.13) holds or the maximum number of iterations is achieved do
8 t← t +1;
9 for j ∈ {1, . . . ,J} do

10 for i ∈ {1, . . . ,K} do
11 assign j to the closest cluster C

(t)
i according to (2.11) ;

12 end
13 end
14 for i ∈ {1, . . . ,K} do
15 update centroid c(t)i according to (2.12);
16 end
17 end

2.4.1.2 Clustering Based on Fuzzy C-Means

The k-means++ algorithm considers that each UE only belongs to one cluster, i.e., the

frontiers among clusters are crisp, clearly defined. However, several factors may complicate the

creation of disjoint virtual sectors, such as spatially correlated multi-path and user agglomerations

within geographically overlapping areas. To overcome such issues, we investigate a more flexible

partitioning strategy, called FCM [81]. This clustering algorithm considers that each UE j

in a given iteration t belongs to a cluster C
(t)
i with a given degree µ

(t)
i j that characterizes its

membership grade, i.e., a given UE can belong to several clusters with a degree of pertinence

specified by membership grades between 0 (does not belong to the cluster C
(t)
i ) and 1 (completely

belongs to the cluster C
(t)
i ). These values are organized in the membership matrix U(t) ∈ RK×J
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so that the sum of degrees of pertinence for each UE to all K clusters yields to 1:

K

∑
i=1

µ
(t)
i j = 1, (2.14)

where µ
(t)
i j is the element at the i-th row and j-th column of the matrix U(t).

The FCM algorithm divides a set of J UEs into K subsets, and determines a cluster

center in each group such that a function of dissimilarity measure, i.e., a quadratic error distortion,

is minimized [81]. Therefore, it considers the degree of membership as a weighting factor of the

Euclidean distance between the UE characteristic vector ĥ j and the cluster centroid c(t)i . In a

given iteration t, the objective function can be written as

ν
(t) =

(
µ
(t)
i j

) f
‖ ĥ j− c(t)i ‖2

2, (2.15)

where f ≥ 1 is the exponent of fuzziness.

In the first step, the membership matrix U(t) is initialized with random values between

0 and 1 such that the constraints established in Eq. (2.14) are satisfied. In the following, the

algorithm iteratively determines the cluster centroids c(t)i and updates the value of the objective

function. The centroids are calculated according to

c(t)i =

J
∑
j=1

(
µ
(t)
i j

) f
ĥ j

J
∑
j=1

(
µ
(t)
i j

) f
. (2.16)

If the objective function is above a tolerance value, |ν(t)−ν(t−1)| > ε ′, the mem-

bership matrix U(t) is updated at each iteration t according to

µ
(t)
i j =

 K

∑
k=1

(
‖ ĥ j− c(t)i ‖2

‖ ĥ j− c(t)k ‖2

) 2
f −1


−1

. (2.17)

In our proposal, each UE j is assigned to the cluster C i with the highest membership

degree. Therefore, the number of clusters effectively created in FCM is K′, which can be equal

to or smaller than K = R. In order to simplify our notation, from that point on we will simply

denote the number of clusters by K. However, when refering to FCM, one should consider that

K is in fact K′.

In the following, we summarize the main procedures of the FCM clustering in

Algorithm 2. Based on that description, the computational complexity of this algorithm is given

by O(K2JUT ) For more details on this analysis, see Appendix A.2.
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Algoritmo 2: FCM Clustering.
1 t← 0;
2 initialize the membership matrix U(t) with random values in the range [0,1];
3 while |ν(t)−ν(t−1)| ≤ ε ′ or the maximum number of iterations is achieved do
4 for i ∈ {1, . . . ,K} do
5 calculate centroid c(t)i according to (2.16);
6 end
7 for j ∈ {1, . . . ,J} do
8 for i ∈ {1, . . . ,K} do
9 compute the objective function ν(t) according to (2.15);

10 end
11 end
12 t← t +1;
13 for i ∈ {1, . . . ,K} do
14 for j ∈ {1, . . . ,J} do
15 update the membership matrix U(t) as defined in (2.17);
16 end
17 end
18 recompute the objective function ν(t) according to (2.15);
19 end

2.4.2 Digital Precoder Design

In the following, given the clustering of UEs, we select one UE j from each cluster

C i that together compose an SDMA group G containing K UEs. In our study, we consider that

the BS randomly selects one UE from each cluster to compose the SDMA group G , ignoring

any metric associated to channel characteristics. The random choice is the simplest approach,

however disregards any spatial channel compatibility.

We define the group channel matrix HG ∈CK×U based on the channel vectors of the

scheduled UEs that compose the SDMA group. It can be written as

HG =
[
h1 h2 . . . hK

]
. (2.18)

Therefore, given the group channel matrix HG and the analog precoder FRF, the

equivalent channel matrix Heq ∈ CK×K is given by

Heq = HG FRF. (2.19)

The digital precoding matrix FBB ∈ CK×K is defined as the Zero Forcing (ZF). The

ZF precoding is conceived to decorrelate the transmit signals so that the signal at every receiver
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output is free of interference. The precoding matrix FBB is defined as

FBB =
HH

eq(HeqHH
eq)
−1

‖HH
eq(HeqHH

eq)
−1 ‖F

. (2.20)

The total power constraint is enforced by normalizing the digital and analog filters,

such that ‖FRFFBB
√

PG ‖2
F = PRB, where PG ∈ RK×K is the diagonal power matrix resulting of

the combination of the power matrices of each UE belonging to the SDMA group and PRB is the

power available for a given RB. We consider that the number of clusters is equal to the number

of RF chains and the total number of streams, i.e., K. Therefore, the dimensions of FRF and FBB

are compatible with the dimension of F, so that F = FRFFBB ∈ CU×K .

The receive vector of the group ŷG ∈ CK×1 is given by

ŷG = HG FRFFBB
√

PG xG + zG , (2.21)

where xG ∈ CK×1 is the group symbol vector and the zG ∈ CK×1 is the group noise vector.

Defining Q = HG FRFFBB
√

PG ∈ CK×K , the average Signal to Interference-plus-

Noise Ratio (SINR) Γi perceived by the i-th stream can be calculated as

Γi =
|Qii|2

K
∑
j 6=i
|Qi j|2 + σ2

z

, (2.22)

where σ2
z is the noise power and Qi j is the element of Q at i-th row and j-th column.

The data rate of the i-th stream is calculated according to Shannon’s capacity for-

mula [82] and is given by

ψ i = β log2(1+Γi), (2.23)

where β is the bandwidth of the RB.

2.5 Performance Evaluation

In this section, we evaluate the proposed hybrid beamforming design based on JSDM

with limited CSI feedback. For our simulations, we consider a single cell system with a carrier

frequency of 28 GHz and a bandwidth of 100 MHz. Based on the 5G numerology proposed

in [77], these parameters imply a total set of 125 RBs, each one composed of 12 subcarriers

equally spaced of 60 kHz. In our simulations, from the entire set of RBs, we consider a set of

25 active RBs. Furthermore, the number of subframes per frame is 10, each subframe has 14
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symbols, and the TTI duration is 0.25 ms. We adopt the 3D Quasi Deterministic Radio Channel

Generator (QuaDRiGa) as our channel model [83, 84] (version 2.0.0-664) and references therein.

This channel model extends the Wireless World Initiative for New Radio (WINNER) channel

model, including new features to make it as realistic as possible. QuaDRiGa supports 3-D

propagation, 3-D antenna patterns, time evolving channel traces of arbitrary length, scenario

transitions, and variable terminal speeds. General parameters of the simulations are listed in

Table 1.

Tabela 1 – General Simulation Parameters

Parameter Value

Min. dist. BS-UE (2D) 20 m
Angle sector 60◦

BS height 10 m
UE height 1.5 m
UE track linear
UE speed 3 km/h
BS antenna model 3GPP-mmWave [75]
BS vertical antennas 8
BS horizontal antennas 8
UE antenna model omnidirectional
UE antennas 1
Total transmit power 35 dBm
Noise figure 9 dB
Noise spectral density −174 dBm/Hz
Simulation time 16.25s
Simulation rounds 50

Fonte: Created by the author.

QuaDRiGa is a generic channel model, which uses the same method for generating

channel coefficients in different environments. That is, it uses the same method for generating

channel coefficients in different environments. Each environment is described by several of

individual parameters, such as number of clusters, path loss exponents, shadow fading standard

deviation and decorrelation distance, root-mean-square delay spread, angular spread, cross-

polarization ratio. Reference [84] provides a detailed description of all these parameters. The

main channel model parameters of the Urban Micro (UMi)-Line of Sight (LOS) and UMi-Non

Line of Sight (NLOS) environments are provided in [75].

We consider a population of J = 60 UEs distributed in a single cell according to
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two different possible organizations, as indicated in Figure 3. In the first one, called hotspot

disposition, the UEs are distributed into 4 hotspots with the same amount of UEs per hotspot.

As it can be seen in Figure 3a, the hotspots are uniformly distributed in a 60◦ sector and are

distant 175 meters from the BS. The UEs are randomly distributed inside each hotspot, which

are modeled as circles of radius equal to 25 meters. The second one, called random disposition,

considers a random distribution of UEs inside a 60◦ sector obeying the minimum distance to the

BS specified in Table 1. In this disposition, as it can be seen in Figure 3b, the UEs are casually

distributed, making partitioning of UEs into clusters much more complex in comparison to the

hotspot disposition.

Figura 3 – Schemes of distribution of UEs considered in the evaluation of the clustering algo-
rithms.

(a) Hotspot Disposition. (b) Random Disposition.

Fonte: Created by the author.

Figure 4 shows the performance of the beam sweeping channel measurement in

terms of NMSE for different values of SNR and pilot sequence lengths L = {8, 16, 32, 64,

128} in the UMi-LOS scenario. The increase of the pilot sequence length provides the UE

more knowledge about the channel characteristics. Consequently, there is a better estimation

of channel vector projections onto the codebook entries. We also observe that the performance

increases as the SNR of the beam increases. The performance of the estimator is in agreement

with the established at Eq. (2.4).

The first scenario of evaluation considers the UMi-LOS channel and the hotspot

disposition of UEs indicated by Fig. 3a. The BS uses the k-means++ algorithm to partition
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Figura 4 – NMSE of the estimated channel vector for different pilot sequence lengths.
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the UEs into a different number of clusters, namely K = {2,4,6,8,10}. The effect of the

limited feedback is evaluated by varying the number of PMIs and weights reported to the BS

in N = {1,2,4,8}. Then, after the determination of the elements of each cluster C i, the BS

randomly schedules one UE from each cluster to compose the SDMA group, i.e., the set of K

UEs that will share the same time-frequency resource. In the following, the digital precoder FBB

is determined according to Eq. (2.20).

Figure 5 shows the Cumulative Distribution Function (CDF) of the total data rate

of the proposed solution of reduced feedback (Prop) compared with the conventional signaling

Figura 5 – Evaluation of proposed signaling scheme with different number of reported PMIs in
comparison with the original report of CSI based on the covariance matrix.
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scheme employed with JSDM based on the covariance matrix [71, 79, 72] . In this initial

evaluation, we partition UEs into K = 4 clusters using the k-means++ algorithm. We observe an

increase in total data rate when the number of PMI changes from N = 1 to N = 2. Therefore,

there is an enhancement from 22.5 Mbps to 29 Mbps at the 50th percentile of the total data rate,

which represents a gain of almost 30%. The clustering algorithm divides more effectively UEs

according to their channel compatibilities, i.e., the algorithm forms cluster with UEs that have

similar channel characteristics. Consequently, the scheduling selects UEs with better estimated

channel conditions. However, we observe only a marginal total data rate growth when the number

of PMIs is increased from N = 2 to N = 4 PMIs. Hence, the CSI provided by N = 4 PMIs does

not provide more meaningful information in comparison with the knowledge supplied by the

report of N = 2 PMIs in this scenario, since it is considered a UMi-LOS channel, characterized

by low angular spread and low rank.

Therefore, the evaluated scheme with limited feedback of CSI reduces significantly

the signaling overhead and achieves levels of the total data rate near to the conventional signaling

approach. The CSI feedback scheme achieves 90% of total data rate observed in the conventional

feedback scheme at the 50th percentile. The conventional JSDM feedback reports the entire

channel covariance matrix of each UE R j ∈ C64×64, a signaling amount almost a thousand times

higher than the reported CSI using the vectors of PMIs and estimated weights (b,a ∈ C2×1).

In the following, we expand the evaluation of the behavior of the hybrid beamforming

scheme in scenarios with different levels of complexity to partition UEs. That is, we further

investigate the impact of different channel conditions and UEs distributions in space.

In Figure 6, we show the 10th, 50th and 90th percentiles of the total data rate of the

JSDM scheme considering the clustering procedure based on the k-means++ algorithm described

in Section 2.4.1.1. The behavior of the total data rate varies according to the number K of clusters

considered in the partitioning process and the number N of PMIs. The total data rate increases

from K = 2 to K = 4 when the highest value is achieved. From K = 6 there is reduction of

the total data rate, i.e., the higher the value of K, the more significant is the reduction. As the

number of clusters becomes greater than the number of hotspots artificially established in the

disposal of UEs (depicted at Fig. 3a), the process of partitioning becomes more challenging and

the interference between the clusters increases. Thus, there is an overlap among the centroids

and a poorer conditioning of the equivalent channel Heq.

Figure 6 also depicts the impact of the CSI feedback on the system performance, i.e.,
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the behavior of the total data rate as a function of the number of PMIs. The CSI feedback with

only 1 PMI has the lowest total data rates in all conditions (i.e., for all values of K), since the

amount of information provided is insufficient to ensure a proper separation of UEs. Thus, the

BS requires more information to perform an efficient clustering. As it can be seen for 10th, 50th

and 90th percentiles, there is an improvement of the total data rate when the BS CSI feedback

increases from 1 to 2 PMIs. The lowest relative gain between 1 and 2 PMIs occurs when the

Figura 6 – Total data rate in the UMi-LOS channel and hotspot distribution of UEs considering
k-means++ as the clustering algorithm.

(a) 10th percentile.

(b) 50th percentile.

(c) 90th percentile.

Fonte: Created by the author.
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partitioning of UEs is done into 4 clusters, despite the highest absolute value. This happens

because the scenario is biased towards partitioning into 4 hotspots. As partitioning becomes

more challenging, the information added with that second PMI makes partitioning more efficient.

Hence the higher relative rate gains are observed for the highest values of K.

However, we cannot assume that the increase in the number of PMIs will always

improve the total data rate or that it will happen in the same way to all number of clusters. As

it can be seen, the increase of signaling to 4 or 8 PMIs may result in different variations of the

average total data rate, which depends on the number of clusters and the number of original

hotspots. There is a decrease of the total data rate with a higher signaling when the number

of clusters is smaller than or equal to the number of hotspost ( K ≤ 4) because the additional

information provided with 4 or 8 PMIs does not improve the clustering process. The increase

in the amount of PMIs implies a greater amount of beams being combined. It is observed an

increment of the frequency of selection of certain beams, which reduces the differences between

the centroids of the clusters. Consequently, it increases the interference among clusters, which is

not compensated by the additional information provided. On the other hand, we observe that

the increase in the number of PMIs to 4 or 8 improves the total data rate when the number of

clusters is higher than the number of hotspots (K > 4). In this case, a greater number of PMIs

is required in order to make a more adequate partitioning of users since the number of clusters

does not correspond to the most suitable number of subsets of UEs, i.e., the number of hotspots.

Therefore, it is a more challenging task and requires more information.

Figure 7 indicates the average of the maximum correlation among the centroids,

calculated using the expression |cT
i ci′|/(||ci|| ||ci′||) ,∀i, i′ = {1, · · · , K}, considering different

number of clusters K = {2,4,6,8,10} and different number of PMIs N = {1,2,4,8}. The

increase in the number of PMIs implies that a larger number of linearly combined columns of

the codebook is used to describe the instantaneous channel. Consequently, the beams become

wider, increasing the superposition among the centroids and consequently the interference among

the UEs that compose the SDMA group. Therefore, the increment of the interference reduces

the SINR and, consequently, the total data rate. We observe that the highest total data rate is

achieved when the number of clusters is equal to the number of hotspots, i.e., K = 4. As we

move away from this value and consider K > 4, there is an increase in the correlation among the

centroids, and, consequently, interference arises among UEs sharing time-frequency resources.

Figure 7 indicates an increase in the correlation among the centroids when we try to partition
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the population into more clusters, since the possibility of intersecting beams, even narrow ones,

increases with the number of clusters. Therefore, the combination of this interference and the

insufficient amount of information compromises the clustering at the BS and results in extremely

reduced total data rates compared to other CSI report configurations.

The second scenario of evaluation still considers the hotspot disposition of UEs.

However, we now analyze the k-means++ clustering algorithm with limited CSI considering the

Figura 7 – Correlation in the UMi-LOS channel and hotspot distribution of UEs considering
k-means++ as the clustering algorithm.

(a) 10th percentile.

(b) 50th percentile.

(c) 90th percentile.

Fonte: Created by the author.
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Figura 8 – 50th percentile of the total data rate in UMi-NLOS channel and hotspot distribution of
UEs considering k-means++ as the clustering algorithm.

Fonte: Created by the author.

UMi-NLOS channel. This condition turns the partioning of UEs more difficult, since we can

observe spatially correlated multi-paths. For simplicity sake, from now on we only analyze the

50th percentile because the trends observed in the other percentiles are maintained. Figure 8

shows the 50th percentile of the total data rate considering different number of clusters, namely

K = {2,4,6,8,10}, and different amounts of PMIs and weights reported to the BS, namely

N = {1,2,4,8}. The NLOS environment considers the effect of more clusters of scatterers and

higher angular spread as indicated in [75]. The average total data rate is smaller compared to the

LOS scenario and more PMIs are required to achieve suitable total data rates. We had already

mentioned the inability to obtain adequate information with only 1 PMI. That is, the lack of

information and less channel directivity burdens the clustering algorithm, consequently the total

data rate has lower levels. If we consider the feedback of 2 PMIs, the average total data rate

increases, as observed previously in the UMi-LOS scenario. In the UMi-LOS the enhancement is

of the order of 90%, while in the UMi-NLOS it is observed an average improvement of 35%. This

reduction in the 50th percentile of the total data rate is a consequence of the more challenging

channel conditions. In the UMi-LOS scenario, we observe a limitation on the improvement of

the total data rate with the increase of the amount of PMIs, i.e., considering more information

feedback does not turns the partitioning process more efficient. In UMi-NLOS scenario, the

increase in the signaling to 4 PMIs represents an improvement in the 50th percentile of the total

data rate. It is also important to note that the gain limitation with increased signaling for 8 PMIs

is still observed. Therefore, the value of PMIs to provide useful information to the BS perform

clustering is directly influenced by channel conditions, i.e., harsh scattering environments need

more information.
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Previously, we considered a set of 60 UEs organized into 4 hotspots. We evaluate the

k-means++ clustering algorithm with a variable number of clusters, namely K = {2,4,6,8,10},
and the maximum value of total data rate is achieved when K = 4. Therefore, the information

provided allows the creation of clusters when the UE population is organized into spatially uni-

form circles. To further evaluate the information supplied by the proposed channel measurement

based on beam sweep to the BS, the third scenario considers the UE randomly distributed inside

an angular sector of 60◦. Thus, the number of clusters is not known in advance.

Figure 9 depicts the 50th percentile of the total data rate considering different number

of clusters, namely K = {2,4,6,8,10}, and different amounts of PMIs and weights reported to

the BS, namely N = {1,2,4,8}, in a UMi-LOS scattering environment. The total data increases

as the number of clusters rises until K = 6. Above this value, the total data rate stabilizes.

Therefore, the BS receives enough information to partition the UEs properly with a limited

interference until this clustering requirement. The increase in the number of clusters in which

we divide the UEs makes the process more difficult so that the total data rate holds, but the

rate per UE in the SDMA is reduced. Hence, as the value of K increases more information is

required to partition UEs properly, which explains the highest total data rates achieved with

higher amounts of PMIs. For K = 2, the 50th percentile of the total rate for the different PMI

values are practically the same. Therefore, the increase in the signaling does not improve the

system performance. Partitioning of UEs in this scenario can be done satisfactorily with only 1

PMI. At the other extreme, when we try to partition the UEs into K = 10 clusters, there is a 20%

gain in the total rate as a result of a better knowledge of the UEs’ channel conditions.

In the previous scenarios, we included different conditions to make the partitioning

Figura 9 – 50th percentile of the total data rate in the UMi-LOS channel and random distribution
of UEs considering k-means++ as the clustering algorithm.

Fonte: Created by the author.
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of UEs into clusters harder. We added each of these adversities and evaluate their impact on the

k-means++ clustering algorithm. In the following, we consider these conditions simultaneously,

i.e., UMi-NLOS channel and a random distribution of UEs in the sector of the cell and consider

a more robust clustering algorithm. In addition to the k-means++, we evaluate the FCM with an

exponent of fuzziness f = 2, that considers a paradigm of clustering based on the fuzzy logic.

Figure 10 compares the k-means++ and FCM clustering algorithms in terms of

the 50th percentile of the total data rate considering different number of clusters, namely

K = {2,4,6,8,10}, and different amounts of PMIs and weights reported to the BS, namely

N = {1,2,4,8}. As it can be seen in Figure 10a, the k-means++ algorithm shows a behavior

very similar to the described previously, i.e., the need of information increases as the difficulty

to partition UEs increases. However, the total data rate reduces as the number of clusters

increases, even if more PMIs are considered. That results indicates a limitation of the k-means++

algorithm to create mutually orthogonal clusters in a channel characterized by spatially correlated

Figura 10 – Comparison for the 50th percentile of the total data rate in the UMi-NLOS scenario
for different clustering algorithms considering the UEs randomly distributed.

(a) k-means++ clustering algorithm.

(b) FCM clustering algorithm.

Fonte: Created by the author.
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multi-paths.

The FCM algorithm employs a more flexible partitioning strategy so that in the

most challenging condition, when K = 10, there is an increment of 30% of the total data rate

in comparison to k-means++, as it can be seen in Figure 10b. The FCM algorithm keeps the

total rate at stable levels, while k-means++ presents a performance degradation with the increase

in the number of clusters. Moreover, it exploits the information feedback more efficiently −
the best rate-signaling trade-offs are achieved with 4 PMIs. Therefore, the FCM algorithm

allows achieving the highest performance in terms of clustering results, especially when the

clusters are not well separated due to the random distribution of UE and they are overlapped as a

consequence of the scattering environment.

2.6 Chapter Remarks

In this study, we investigated a limited CSI feedback scheme to allow the implemen-

tation of a hybrid beamforming scheme based on an UL framework. We use a beam sweeping

channel measurement collect the best PMIs and report them to BS. The hybrid beamforming

design based on JSDM considered for comparison requires the report of the covariance matrix of

each UE to the BS, so that the total amount of resources needed for reporting the whole channel

covariance matrix is proportional to U2J, where U is the number of antennas and J is the number

of UEs in the system. The proposed CSI feedback scheme, on its turn, requires a signaling

load proportional only to 2NJ, where N is the number of reported PMIs. Since N �U , it is

observed a meaningful signaling reduction, as well as an adequate representation of the channel

statistics for the hybrid beamforming design in massive MIMO systems when compared to the

conventional report of channel covariance matrix.

Moreover, we also evaluate different user selection strategies based on an UL fra-

mework that exploits the CSI provided by the evaluated beam sweeping scheme. Our results

indicate that the user selection based on fuzzy c-means is able to efficiently utilize the reduced

CSI. The proposed hybrid beamforming scheme reduces the multi-user interference and achieves

significant gains in total data rate as the channel conditions and interference environment become

more challenging. The performance evaluation indicates that the proposed user clustering based

on fuzzy c-means can efficiently explore the reduced CSI. It achieves an enhancement of 25% in

the total data rate compared with k-means++ on the most challenging conditions.
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3 UPLINK POWER CONTROL DESIGN BASED ON REINFORCEMENT LEAR-

NING

In this chapter, it is proposed an Uplink Power Control (UPC) framework compliant

with the technical specifications of the Fifth Generation (5G) wireless networks. We apply the

fundamentals of Reinforcement Learning (RL) to develop a power control algorithm able to

learn a strategy that mitigates the inter-cell interference and, consequently, enhances the total

data rate on the uplink channel. The Base Station (BS) uses a set of commands to specify by

how much the User Equipment (UE) transmit power should change. After implementing such

commands, the UE reports a set of information to its serving BS, and this, in turn, predicts

the next commands to achieve a suitable UE transmit power level. The BS converts the UE

reports into rewards according to a predefined reward function, which impacts the long-term

behavior of the UE transmit power. The simulation results indicate a near-optimum performance

of the proposed framework in terms of total transmit power, total data rate, and network energy

efficiency. It provides a self-exploratory power control strategy that overcomes Soft Dropping

Power Control (SDPC) with similar signaling levels.

The remaining of this chapter is organized as follows. Section 3.1 discusses related

works and the main contributions of this chapter. Section 3.2 describes the main system model

assumptions and Section 3.3 describes the 5G New Radio (NR) specifications to deploy UPC.

Section 3.4 reviews the fundamental concepts of RL. Then, Section 3.5 presents the proposed

framework for UPC. Section 3.6 describes the comparison algorithms. Simulation results are

discussed in Section 3.7. Finally, the main remarks of this chapter are drawn in Section 3.8.

3.1 Literature Review and Contributions

The application of the RL into UPC problems constitute a self-organized solution

capable of finding autonomously suitable transmit power levels. Consequently, it can reduce

inter-cell interference and increase system total data rate properly. It is a suitable technique and

has been relevant in numerous studies in the field. In [85], the authors proposed a power control

framework to manage the interference in a cognitive radio network. They modeled the wireless

network as a multi-agent system, where the agents interact directly with the environment and

learn a strategy, also called policy, to manage the power levels. In their model, the BSs represent

the decision-maker entities which manage the radio resources allocated to their associated UEs.

However, they focused on the downlink operation and presented only preliminary results without
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considerations about Third Generation Partnership Project (3GPP) specifications. We highligth

that the RL-based UPC solution proposed here is compatible with 5G NR specifications, such as

required signaling, power control commands, and hardware constraints.

In [86], the authors considered a more realistic cognitive radio network, modeled

as a Wireless Regional Area Network (WRAN) compliant with the 802.22 [87] standards.

Therein, they considered the downlink and uplink operation and situations of complete and

incomplete information about the environment. The results indicated that a multi-agent RL

system could automatically learn a policy to successfully manage the interference, without

introducing signaling overhead into the system.

In [88], a decentralized UPC based on the multi-agent RL combined with a Fractional

Power Control (FPC) mechanism was proposed for Long Term Evolution (LTE)-based multi-tier

networks. In their study, each UE decides the transmit power based on the channel conditions,

namely, the uplink path loss. In this framework, each UE learns independently the transmit

power without the need to wait for control signaling from an associated BS. It is shown that the

solution reduces the signaling in uplink transmission. However, due to the limited computational

resources of the UEs, it also reduces the processing capability of the decision-maker entity. In

our approach, the entity endowed with intelligence is the BS, which has enough computational

capacity to control several power control mechanisms working in parallel and in real-time.

The authors of [89] also investigated a learning-based power control based on an FPC

mechanism in LTE systems. They presented a data-driven framework to model the interference

patterns in Orthogonal Frequency Division Multiple Access (OFDMA)-based networks. Based

on the measurement of these interference patterns, the proposed learning algorithms defined

an optimal setting of the cell-specific power control parameters. Therein, the authors assumed

that all path loss variables must be interpreted in a time-scale sense so that it averages the effect

of fast-fading. In other words, the UPC mechanism proposed in [89] can compensate for path

loss and large-scale variations such as shadowing, but does not adequately handles fast-fading.

In scenarios where these effects are prominent, this simplification may render an inappropriate

representation of the channel conditions, restricting the success of that UPC solution.

The works mentioned previously ([88, 89]) are based on the FPC mechanism. They

employed the Open Loop Power Control (OLPC) paradigm, i.e., they defined the transmit power

according to large-scale channel conditions, namely, path loss measurements. The conventional

FPC solution identifies UEs based only on the path loss, which is not entirely proper in dense
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deployment scenarios. Such approaches do not consider interference conditions while allocating

power to the UEs, usually resulting in high interference situations [90].

To overcome these issues, in our proposal we perform transmit power adjustment

according to the Closed-Loop Power Control (CLPC) paradigm. That is, we consider the impact

in the system of the power commands taken previously. Moreover, we establish a cooperation

among BSs to improve the mitigation of the inter-cell interference. This is achieved by means of

a multi-agent RL approach. In [91], the authors proposed a UPC framework in which the UEs

intelligently learn the best action, i.e., the selection of the transmit power from a pre-specified

power set. In their model, the decision-maker performs a CLPC mechanism that perceives as a

useful policy the actions that improve the Signal to Interference-plus-Noise Ratio (SINR) levels

above a given threshold. The authors used a Deep Reinforcement Learning (DRL) method,

called Deep Q-Network (DQN) [92]. Differently from conventional Q-learning, which uses

a lookup table to store knowledge, the DQN employs a deep neural network to represent this

information. The lookup table approach is shown to be more computationally efficient than

the neural network. On the other hand, the neural network has reduced memory requirements

compared to the lookup table approach [86]. In [93], the authors also designed a distributed UPC

framework based on a DQN. The proposed strategy learns a policy that guides transmitters to

adjust their power levels according to the CLPC paradigm under practical constraints, such as

delayed information exchange and incomplete Channel State Information (CSI).

The DRL-based techniques have achieved remarkable attention in the last years, as it

can be seen in [94, 95, 96]. They can provide suitable learning strategies in complex and broad-

scale networks, where RL may not be able to discover an optimal strategy in a reasonable time.

In this model, the neural network is trained frequently based on distinct experiences obtained

during the interactions with the environment, which incurs in high computational complexity.

However, the system model assumptions of our study result in a UPC problem

where the advantages of DRL do not become good enough to outweigh the critical disadvantage

of its use. Hence, our RL-based solution presents lower signaling and lower computational

complexity than DRL-based techniques. Moreover, RL-based techniques do not require training,

being able to provide real-time learning. Therefore, we turn our attention to a multi-agent RL-

based solution combined with the CLPC paradigm that is compliant with the 5G NR technical

specifications [97, 98, 99, 100, 101, 102, 103].

The main difference of the NR UPC framework compared to its predecessor LTE is
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on the use of multiple control loops associated with beams. Specifically, each control loop may

be associated with a specific pair of transmit and receive beams. For instance, one electronic

device may have a beam associated with two Multiple Input Multiple Output (MIMO) layers (or

even more) so that the device can manage multiple control loops at the same time. Without proper

coordination among the loops, the multiple processes produce sub-optimal power solutions [17].

To the best of our knowledge, despite the relevance of the beam-centric power

control to the management of interference in NR networks, we have not found in the literature

studies investigating this problem considering practical implementation aspects. Therefore, it

is a relevant research topic the development of flexible power control strategies to take into

account the coordination among multiple beams and the technical specifications from 3GPP. We

summarize the main contributions of this chapter as follows:

1. development of a UPC framework compliant with the technical specifications from 3GPP

release 15;

2. formulation of a beam-based transmit power control based on the principles of Machine

Learning (ML), specifically on RL paradigm;

3. development of a signaling scheme to allow cooperation among the entities endowed with

intelligence in a NR multi-cell system;

4. comparison of the proposed UPC frameworks with two classical algorithms, namely the

optimum solution power control (OSPC) and the soft dropping power control (SDPC), in

terms of total transmit power, total data rate, and network energy efficiency.

3.2 System Model

3.2.1 Overall Scenario and Channel Model

We consider a multi-cell wireless network consisting of C cells. Each cell has one

BS equipped with V antennas and serves J UEs equipped with U antennas each. We assume

uplink transmission, and all cells share the same frequency band. The UEs inside a cell are

synchronized with their corresponding BS and periodically measure their associated beam pairs.

The scenario under consideration assumes that each UE is served by only one BS. Figure 11

represents the considered scenario.

The discrete received signal model at the BS of the c-th cell due to the j-th UE is
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represented as

y j,c = gH
j,cH j,cf j,cP j,cx j,c︸ ︷︷ ︸

useful signal

+
J

∑
j′ 6= j
j′=1

gH
j,cH j,cf j′,cP j′,cx j′,c

︸ ︷︷ ︸
intra-cell interference

+
J

∑
j′=1

C

∑
c′ 6=c
c′=1

gH
j,cH j,cf j′,c′P j′,c′x j′,c′

︸ ︷︷ ︸
inter-cell interference

+ gH
j,cz︸︷︷︸

filtered noise

, (3.1)

where g j,c ∈ CV×1 is the receive beamforming vector, H j,c ∈ CV×U is the Millimeter Wave

(mmWave) channel matrix, f j,c ∈ CU×1 is the transmit beamforming vector, P j,c is the transmit

power, x j,c is the transmitted symbol, and z ∈ CV×1 is the Additive White Gaussian Noise

(AWGN) vector with zero mean and variance σ2.

We assume a narrow band block-fading MIMO channel, which is constant within a

time-frequency resource block. The channel follows a geometric model with limited number ϒ

of scatterers [104]. Each scatter contributes with a single path between UE and BS. Therefore,

the channel matrix H j,c ∈ CV×U between the j-th UE and the BS of c-th cell can be written as

H j,c =
√

φ j,c

ϒ

∑
l=1

V lwBS(ϑ
UE
l, j,c,θ

UE
l, j,c)wUE

H(ϑ BS
l, j,c,θ

BS
l, j,c), (3.2)

Figura 11 – Multi-cell wireless network. Solid lines indicate the useful signals and dashed lines
indicate the interference signals.
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where φ j,c denotes the path loss between the j-th UE and the BS of the c-th cell and V l is

the complex gain of the l-th scatter. The azimuth ϑUE
l, j,c,ϑ

BS
l, j,c ∈ [0,2π] and the elevation

θUE
l, j,c,θ

BS
l, j,c ∈ [0,π] are the Angle of Departure (AoD) and Angle of Arrival (AoA) at the BS and

UE, respectively.

We assume Uniform Rectangular Arrays (URAs) at BSs and UEs. There are V v

vertical antenna elements and V h horizontal antennas elements at each BS, such that V =V vV h.

Similarly, each UE has Uv vertical antenna elements and Uh horizontal antennas elements, such

that U =UvUh The array response at a BS and at a UE are expressed, respectively, as

wBS(ϑ
BS
l, j,c,θ

BS
l, j,c) =

1√
V
[1, . . . ,e

(
(V v−1) 2πΛ

λ
cosθ BS

l, j,c+(V h−1) 2πΛ

λ
sinϑ BS

l, j,c sinθ BS
l, j,c

)
] (3.3)

wUE(ϑ
UE
l, j,c,θ

UE
l, j,c) =

1√
U
[1, . . . ,e

(
(Uv−1) 2πΛ

λ
cosθUE

l, j,c+(Uh−1) 2πΛ

λ
sinϑUE

l, j,c sinθUE
l, j,c

)
] (3.4)

where Λ is the antenna element spacing and λ is the signal wavelength.

The receive and transmit beamforming follow the so-called hybrid structure, which

are defined as g j,c = G̃u and f j,c = F̃v, respectively. We define G̃ ∈ CV×B and F̃ ∈ CU×B as

the truncated receive and transmit beam codebooks representing a set of B selected beam pairs.

These beams are chosen from the set of suitable beam pairs B.

The receive and transmit codebooks are modeled according to the Discrete Fourier

Transform (DFT) matrices G ∈ CV×V and F ∈ CU×U , respectively. The beams are be associated

with the column vectors of the receive and transmit codebooks, gbRx and fbT x , respectively . They

can be written as

gbRx =
1√
V

[
1, e−2π

1
V , · · · , e−2π

(bRx−1)
V

]T
, (3.5)

fbT x =
1√
U

[
1, e−2π

1
U , · · · , e−2π

(bT x−1)
U

]T
, (3.6)

where gbRx ∈ CV×1 is the bRx-th column of the receive beam codebook G and fbT x ∈ CU×1 is the

bT x-th column of the transmit beam codebook G.

The vectors u ∈ CB×1 and v ∈ CB×1 correspond to the dominant left and right

singular vectors of the equivalent channel Ĥ j,c ∈ CB×B, defined as

Ĥ j,c = G̃HH j,cF̃. (3.7)

Therefore, the singular value vectors u and v define the weights that combine the transmit and

receive beams, respectively.
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Each individual uplink transmission is carried out from a specific antenna port, the

identity of which is known by the system [17]. Each antenna port has its own specific Reference

Signal (RS), which is used by the device to estimate the CSI. Therefore, the d-th antenna port

associated with the selected beam pairs B of the link between the j-th UE and the BS of the c-th

cell can be written as

hd, j,c = uHĤ j,cv. (3.8)

3.2.2 Beam Sweeping Scheme

We employ the beam sweeping scheme proposed in [105] to determine the set B

of the most suitable transmit-receive beam pairs. The suitability of a beam pair is determined

according to the connectivity provided by the transmitter and receiver beam directions and it

does not necessarily correspond to transmitter and receiver beams that are physically pointing

directly to each other [17].

The beam sweeping operation covers a spatial area with a set of beams according to

pre-specified intervals and directions. It is carried out an exhaustive search in a set of directions

(each one identified by a beamforming vector) that covers the whole angular space. The BS

sequentially transmits Synchronization Signal (SS) blocks, that compose a SS burst set, and each

SS block can be mapped to a certain angular direction, as it can be seen in Fig. 12.

The evaluation of the quality of the received signal at the UE is based on the Signal

to Noise Ratio (SNR), i.e., the average of the received power on SS divided by the noise power.

Figura 12 – Model of multiple time-multiplexed SS blocks within an SS burst set period for a
higher frequency band.
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The selected beam pairs for t-th signaling period between the BS and the j-th UE of the c-th cell

are defined according to the B highest values of SNR, which can be written as

γ t,bRx,bT x =
‖gH

bRx
H j,c,qfbT x‖

σ2 . (3.9)

We consider a signaling period, of duration TSS, divided into two time windows, as

shown in Fig. 13. The first one contains a set of SS blocks with a duration TBS. It performs a

beam sweeping procedure, i.e, the search of the best set of transmit-receive beam pairs. The

second window is dedicated to data transmission using the selected beam pairs. During this

period, of duration TD, each UE reports periodically the measured SNR to the BS. The BS

measures all possible combinations of transmit and receive beams from the codebooks F and G,

respectively, during the transmission of the SS blocks. We assume that the AoDs and AoAs are

constant over the beam sweeping period TBS, which varies from 5 to 160 ms [17].

We define the SINR of the d-th antenna port described by Eq. (3.8) between the j-th

UE and the BS of the c-th cell as

Γd, j,c =
Pd, j,c|gH

d, j,cH j,cfd, j,c|2
J
∑

j′=1

C
∑

c′ 6=c
c′=1

D
∑

d′ 6=d
d′=1

Pd′, j′,c′|gH
d, j,cH j,cfd′, j′,c′|2 +σ2

, (3.10)

where the intra-cell interference mentioned in Eq. (3.1) is not considered since we assume a

single active UE per time-frequency resource.

Figura 13 – Model of signaling period.
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3.3 NR Specifications to Uplink Power Control

NR UPC is the set of procedures that manage the transmit power of uplink physical

channels, namely Physical Uplink Shared Channel (PUSCH), Physical Uplink Control Channel

(PUCCH), and Physical Random Access Channel (PRACH), to guarantee suitable communica-

tion [101]. We seek to determine the minimum transmit signal power necessary for appropriate

decoding of the information conveyed through the physical channel [17]. Furthermore, the UPC

procedures must also limit the interference to the other uplink transmissions.

Several factors, such as the channel attenuation, noise, and interference at the receiver

side, influence the transmit power mechanisms. Moreover, modulation and coding schemes

also affect the transmit power since the number of bits per sub carrier changes due to the link

adaptation [17]. All these factors have distinct impacts on the power control behavior, that is

subject to the characteristics of each uplink physical channel.

The power control behavior is designed to ensure that the transmit power does not

exceed the power limit denoted as PCMAX [97]. Then, the transmit power control of an uplink

physical channel for a given carrier has a generic structure which can be written as

P = min{PCMAX,E(·)}, (3.11)

E(·) is an expression that characterizes the behavior of the transmit power control. The parame-

ters of E(·) are determined according to the characteristics of the uplink physical channel.

In addition to the maximum per-carrier transmit power, there is a limit on the

maximum UE output power denoted here as PTMAX. For a UE configured for NR transmission

on multiple carriers, the PCMAX of each carrier needs to be scaled down to ensure that the eventual

transmit power of the UE over all configured uplink carriers does not exceed the maximum

allowed value.

The transmit power control expressions of the uplink physical channels are tho-

roughly detailed in [101]. The PUSCH is used for the transmission of Uplink Shared Channel

(UL-SCH) data and control information. Thus, compared to PRACH and PUCCH, it presents a

relation between power control and link adaptation that allows more flexibility. Consequently,

the power control of the PUSCH has a greater scope of mechanisms and encompasses what

can be done in PUCCH and PRACH. Therefore, the UPC framework developed in this chapter

considers the PUSCH expression (3.12) as the baseline power control. It can be concisely written,
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in dBm scale, as

P = min{PCMAX,P0(τ)+ξ (τ)Φ(κ) +10log10(2
u
β )+∆+δ (υ)}, (3.12)

where

– P0(·) is the target received power;

– τ indicates the transmission type, a network configurable parameter which specifies the

factors that compose the target received power;

– 0 < ξ (·)≤ 1 is the path loss compensation factor;

– Φ(·) is the estimation of the uplink path loss;

– κ is a RS index, e.g., CSI-RS or SS block;

– u is the subcarrier spacing parameter;

– β is the bandwidth of the resource assignment;

– ∆ models the required received power according to number of resource bits per resource

element according to the modulation scheme and channel coding rates;

– δ (·) is the power adjustment due to the closed loop power control;

– υ determines the closed loop process index.

Eq. (3.12) indicates that the PUSCH power control is composed by two mechanisms,

namely OLPC, which defines the support for fractional path loss compensation, where the device

estimates the uplink path loss, and CLPC, which determines explicit power control commands

provided by the network.

In the OLPC, the UE transmit power is adjusted according to estimates of the uplink

path loss based on downlink measurements, as it can be seen by expression P0(τ)+ξ (τ)Φ(κ).

The transmit power is adjusted to achieve the target P0(τ), which is a network configurable

parameter regulated to provide a target data rate, given the noise and interference levels at the

receiver. The UE estimates the downlink path loss Φ(τ) using the RS index τ for the active

downlink. A UE does not simultaneously maintain more than four path loss estimates per

transmission [101].

The parameter ξ (τ) determines the compensation level of the path loss Φ(κ). The

full path loss compensation, which is determined when we assume ξ (τ) = 1, ensures that the

received SINR matches the requirement for the Modulation and Coding Scheme (MCS) selected

by the network, assuming that the UE transmit power does not reach its maximum value. The

fractional path loss compensation, controlled by the parameter 0 < ξ (τ)< 1, requires a relatively

lower transmit power, implying less interference to the other cells. However, the received power,
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and consequently, the SINR, decreases as the path loss increases. The data rate is also reduced

to compensate this effect by switching to a lower rate MCS. The benefit of fractional path

loss compensation is reduced interference to neighbor cells. This comes at the price of more

considerable variations in the service quality, with reduced data rate availability for UEs closer

to the cell border. Consequently, in our study, we assume full path loss compensation to ensure

service quality stability, requiring a CLPC mechanism to manage the uplink interference.

The transmit power should be proportional to the bandwidth assigned for the trans-

mission, as indicated by the term 10log10(2
uβ ) in Eq. (3.12). The transmit power must be

proportional to the size of the resource block with a 15 kHz numerology, where the subcarrier

width is defined as ∆ f = 2u ·15 kHz. In our study, we assume a fixed bandwidth for the PUSCH

transmission. Therefore, this term can be omitted from the power control expression.

The term ∆ models the impact of the number of bits per resource element and

channel-coding rates on the transmit power. This model is expressed as

∆ = 10log(21.25ζ −1)+10log(ρ), (3.13)

where ζ is the number of information bits per resource element, ρ models the impact of data

transmission on PUSCH, and ρ = 1 when the PUSCH includes UL-SCH data. In our study, we

assume that the PUSCH received power is matched to a certain MCS given by the selected value

of P0(τ). In this case, according to [106], we must turn off the ∆ function by setting its value to

zero.

In the CLPC, the UE transmit power is adjusted according to power control com-

mands provided by the BS. This regulation is determined based on prior network measurements

of the received uplink power [17]. The term δ (υ) is the power control command and represents

the closed loop solution. Such commands are carried out in the Transmit Power Control (TPC)

field within uplink scheduling grants (Downlink Control Information (DCI) formats 0−0, 0−1,

and 2−2 [101]). Each power control commands consists of 2 bits corresponding to four different

steps: −1 dB, 0 dB, +1 dB, and +3 dB. These steps are associated with TPC command field

values 0, 1, 2 and 3, respectively. Each command specifies the value in dB that a UE should add

to its current transmit power.

The parameters κ and υ in Eq. (3.12) are directly associated with the selected beam

pairs. The uplink path loss estimate Φ(κ) should reflect the path loss of the antenna port

associated with a set κ of B uplink beam pairs to be used for the PUSCH transmission. If

the uplink path loss estimation is not provided by higher layer parameters, the UE calculates
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Φ(κ) using a RS index from the correspondent SS/Physical Broadcast Channel (PBCH) block.

Therefore, the beam sweeping procedure also provides the necessary information to estimate

uplink path loss. Each UE is limited to monitor up to κmax = 4 parallel path loss estimation

processes [101].

The network also provides a mapping from the possible Sounding Resource Indicator

(SRI) values provided in the scheduling grant to the different values of κ . After a beam

management process to determine the best set of beam pairs, and consequently, the correspondent

antenna ports, the path loss estimate is then used in the power control expression.

Figure 14 represents this procedure for a case with 4 parallel path loss estimation

processes. In this example, the UE is scheduled for PUSCH transmission with the SRI of the

scheduling grant set to the antenna port number 2. Hence, the transmit power of the scheduled

PUSCH transmission is determined based on the path loss estimate based on the measurements

on RS#2. Consequently, the parameters κ and υ are directly associated to the antenna port index

d.

Therefore, based on the assumptions previously described, the transmit power of the

d-th antenna port of the j-th UE in the c-th cell is represented as a simplification of the Eq. (3.12)

and can be written as

PPUSCH
d, j,c = min{PCMAX,P0(τ)+ξ j,c(τ)Φ j,c(d) +δ j,c(d)}. (3.14)

In the following, we detail the main concepts of RL used in the development of the

proposed UPC framework.

Figura 14 – Signaling scheme of the multiple power estimation process.
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3.4 Fundamentals of Reinforcement Learning

The Markov Decision Process (MDP) model represents the theoretical basis of

RL [61]. It provides a mathematical framework to describe scenarios where the decision-maker

entity, hereafter referred to as an agent, does not have precise control of all outcomes, i.e., the

environment behavior is partially deterministic and partially random [49]. An MDP model is a

discrete-time stochastic optimal control problem described in terms of the tuple {S ,A ,Π ,R},
where S is the finite set of environment states, A is the finite set of actions available to the agents,

Π : S ×A ×S → [0,1] is a state transition probability function, and R : S ×A ×S → R is

a reward function.

Therefore, an MDP model describes the relationship between the agent and the

environment using the concepts of state, action, transition function, and reward in a sequence

of time steps [107]. The state st ∈S in a discrete time step t is a value (or a set of values)

that models the information that the agent has about the environment. The action at ∈A is an

adjustment parameter used by the agent to interact with the environment. The state transition

function Π(st ,at ,st+1) defines the probability of transition from a state st to state st+1 according

to the action at taken by the agent. The reward rt is a scalar function which indicates the

immediate payoff from taking an action at in a state st [61].

The interaction between the agent and the environment can be modeled as the

transition from state st to st+1 restricted to the set of all possible states S . The transition is a

consequence of an action at chosen in a set of available actions A and associated with a reward

rt+1. The behavior of the agent is described by its policy, i.e., how the agent chooses its actions

according to the state of the environment. Figure 15 represents the interaction among these

elements.

Figura 15 – Interaction between RL elements.
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The goal of MDP is the determination of the best policy, i.e., the most appropriate

selection of actions according to the state s of the environment that maximizes its expected

discounted reward. The optimal value associated with the discounted rewards achieved from an

initial state s0 can be written as

X (s) = max
π

[
E

(
∞

∑
t=1

ϕ
trt

)]
, (3.15)

where π : S → A represents the mapping between actions and states used to determine rt ;

ϕ ∈ [0,1) is the discount factor, a parameter that encodes an increasing uncertainty about the

rewards. It bounds the sum which otherwise might grow indefinitely.

The Bellman’s principle of optimality establishes that an optimal policy has the

property that whatever the initial state s0 and initial action a0 are, the remaining actions must

constitute an optimal policy with regard to the state resulting from the first action a0 [108].

Therefore, the optimal value function is unique and can be described as

X (s) = max
a

{
E[r(s,a,s′)]+ϕ ∑

s′∈S
Π(s,a,s′)X (s′)

}
. (3.16)

Hence, the optimal policy can be specified as the determination of the action a that

maximizes the expected discounted sum from a given state s, which can be defined as

π
?(s) = argmax

a

{
E[r(s,a,s′)]+ϕ ∑

s′∈S
Π(s,a,s′)X (s′)

}
. (3.17)

In this work, we consider a model-free approach based on RL, since we cannot

deduce the state transition probability function due to the dynamics of the wireless environment.

The agent must find the desirable policy by taking into consideration the value of a state-

action value function Q : S ×A → R. The function Q(st ,at) determines the overall expected

discounted reward when starting in a state st and selecting an action at .

Among the several RL algorithms, we highlight the Q-learning algorithm, which is

an off-policy temporal difference algorithm initially proposed in [109]. This algorithm works by

updating an estimate of the state-action value function based on the iterations of the agent with

the environment. The state-action values are updated according to

Q(st+1,at+1) = (1−η)Q(st ,at) +η

[
rt+1 +ϕ max

at+1∈A
Q(st+1,at+1)

]
, (3.18)

where η ∈ [0,1] is the learning rate and ϕ ∈ [0,1] is the discount factor, which trades off the

instantaneous and future rewards.
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The learning process occurs through the balance between exploration, i.e., the sample

of unseen parts of the state-action space, and exploitation of the accumulated knowledge [61].

We consider an adaptive ε-greedy algorithm strategy. Every time an agent takes an action at ,

it has a probability ε t to be random (exploration) and a probability (1− ε t) to select an action

at based on previous experience (exploitation). The value of ε t is gradually reduced over time

from an initial value εmax until it reaches a minimum value εmin. The agent has to store the

state-action values to be able to learn from the interactions with the environment. In our study, we

build a matrix Q ∈ R|S |×|A | to store the Q(st ,at) values. This mechanism has low requirements

of computational memory in discrete state and action sets, and do not require any complex

computational operation of training to store the acquired knowledge.

The generalization of the MDP to the multi-agent case is called Stochastic Game

(SG) [110]. In a system composed of I agents, the SG is described by the tuple {S ′,A ′,Π ′,R′},
where S ′ =S 1 × ·· · × S I is the joint finite set of environment states; A ′ =A 1 × ·· · × A I

is the joint finite set of actions available to the agents; Π ′ : S ′×A ′×S ′→ [0,1] is the joint

state transition probability function; R′ : S ′×A ′×S ′ → R is a reward function. In our

study, we assume a model-free distributed Q-learning algorithm for multi-agent RL. We adopt

the decentralized learning paradigm, i.e., each agent acts independently, without a centralized

coordination among them. Each agent i maintains a local policy π i and a local state-action value

function Qi(si
t ,a

i
t) based on the iteration of the agent depending only on its own action. We

summarize the interactions between the i-th agent and the environment in Algorithm 3.

Algoritmo 3: Pseudo code of the multi-agent Q-learning algorithm.
1 let t = 0;
2 sort the initial state;
3 while stop condition not reached do
4 sort an uniform random number o ∈ [0,1];
5 determine ε t ;
6 if (o < ε t) then
7 select randomly an action ai

t ∈A i;
8 else
9 select an action ai

t ∈A i which has the maximum Qi(si
t ,a

i
t);

10 end
11 execute the action ai

t observe the new state si
t+1;

12 calculate the associated reward ri
t(s

i
t ,a

i
t ,s

i
t+1);

13 update the matrix Qi with the Qi(si
t ,a

i
t) value calculated according to Eq. (3.18);

14 t = t +1;
15 end
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3.5 Proposed Uplink Power Control Framework

Our main contribution in comparison to the previous solutions mentioned in Sec-

tion 3.1 is the joint power optimization of multiple antenna ports per UE using an RL-based

technique since we consider multiple-antenna transmission/reception.

In our framework, each cell regards its BS as an agent, and the remaining of the

system (other BSs, UEs, and UL-SCH) represents the environment. The behavior of each agent

depends not only on the associated BS’s actions, but also on the actions taken by neighboring

BSs, since all cells use the same frequency and suffer from inter-cell interference. In other words,

the states, actions, and rewards from different cells that are coupled, and influence each other.

The state of the BS of the c-th cell at the t-th iteration is a tuple of D powers

associated with each antenna port st,c = {P1,c, · · · ,PD,c}. The index j is omitted for sim-

plification purposes, since we consider only one UE per resource. These powers are mo-

deled as discrete values in dBm and are limited to minimum and maximum values, i.e.,

st,c ∈ Sc = {{Pmin
1,c , · · · ,Pmin

D,c }, · · · ,{Pmax
1,c , · · · ,Pmax

D,c }}. The power limits for the d-th antenna

port are defined according to

Pmin
d,c = PSINR

d,c −ξ c(τ)Φc(d), (3.19)

Pmax
d,c = PCMAX−ξ c(τ)Φc(d), (3.20)

where PSINR
d,c is the power required to ensure minimum SINR at the d-th antenna port of the c-th

cell, Γmin
d,c .

The action of the c-th agent at the t-th iteration is a set of TPC commands, defined as

at,c = {δ 1, · · · ,δD}. The TPC command δ d is associated with the d-th antenna port and limited

to the options {−1,0,+1,+3} defined in [101, Table 7.1.1-1].

We consider a reward function based on a performance indicator of the network to

quantify the effects of power variation of the antenna ports. The proposed reward function is a

convex sum of the cell’s data rates, and can be written as

rt,c = ρc

J

∑
j=1

D

∑
d=1

β log2(1+Γd, j,c)+
C

∑
c′=1
c′ 6=c

ρc′

(
J

∑
j=1

D

∑
d=1

β log2(1+Γd, j,c′)

)
, (3.21)

where β is the resource block’s bandwidth and ρc ∈ [0,1] is a weight factor that determines how

much the data rate of the c-th cell impacts the reward. These values are also shared among cells
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and their sum equals to one, i.e., ∑
C
c=0 ρc = 1. Hence, the reward function depends on the SINR

level Γd, j,c and on the level of cooperation among the neighbor cells.

This expression represents a weighted average of the system’s capacity taking into

account all cells. In turn, the weights of this average represent the degree of importance that

the agent considers for a given cell. The first term of Eq.(3.21) represents the performance

indicator parameter related to the relationship between UEs and BS of a given cell. In other

words, it describes the direct impact of the entity endowed with intelligence (the BS is the

decision maker) on the associated UEs in the cell where it is the main entity. The second term

of Eq.(3.21) measures the impact of the agent decision on the data rate of the other cells of the

network. Therefore, a given action could be measured as beneficial if the data rate of the other

cell increases. Thus, strategies that result in a reduction of the multi-user interference become

interesting to the agents, even if the data rate of its cell remains the same or presents a reduction.

After an initial parameter configuration to define the power limits described by

Eqs. (3.19) and (3.20), the process of taking actions and calculating rewards is carried out. The

mapping between the states, actions and rewards is initially performed in an exploratory fashion.

This means the BSs and UEs exchange commands and rewards, in order to learn the relationship

between the set of actions A and states S to the observed rewards described by Eq. (3.18).

Once this mapping is completed, the BS exploits it to choose the appropriate TPC command and

send it to each UE. If any change in the scenario occurs, the mapping is updated, and another

solution is provided. Such an update requires minimal signaling.

We assume an adaptive ε-greedy method [109] to update ε values. That is, the value

of ε is gradually reduced over discrete time steps t according to

ε t =
εmax

1+ zt
, (3.22)

where εmax is the initial exploration rate, and z is a fixed parameter that guarantees a given value

to ε at the t-th iteration. In the beginning of the each experiment, each agent explores intensely

its state-action space and updates its matrix Qc, i.e., [Qc]st ,at = Q(st,c,at,c). Thus, the algorithm

starts with a relative high exploration rate, which is reduced at each time step. In the end, the

probability of exploitation is higher than a minimum predetermined threshold, e.g., 90%.
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3.5.1 Signaling Scheme

Figure 16 represents the signaling scheme of the proposed UPC framework. Each cell

has one BS that serves one UE per resource. At the step (1) , each cell c defines the dimensions

and the initial assessments of the matrix Qc ∈ R|S c|×|A c|, which stores the state-action values

Q(st,c,at,c) resultant of the interactions of the c-th BS with the environment. Therefore, it is

defined the spaces of states and actions, i.e., the sets S c and A c, respectively.

The cardinality of the set of states S c is defined according to the number of power

intervals and the number of antenna ports. The number of power intervals is a function of the

Figura 16 – Representation of the proposed UPC framework considering reception/transmission
of measurement/information from/to another BS.
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step size among transmit power levels and the power limits Pmin
d,c and Pmax

d,c , and can be written as

|S c|=
(

Pmax
d,c −Pmin

d,c

χ

)D

(3.23)

where χ is the size of the power step.

The cardinality of the set of actions A c is a function of the number of TPC commands

and antenna ports, since each action ac
t is defined as a set of TPC commands sent to the antenna

ports. Thus, it can be written as

|A c|= ι
D (3.24)

where ι is the number of TPC commands.

At the step (2), each BS sends a set of TPC commands to the associated UE. We

assume uplink scheduling grants according to the DCI format 0− 1, where there are 2 bits

reserved to adjust PUSCH transmission power [17]. We consider this format since it supports

multi-antenna fields, like number of antenna ports, SRI, and Sounding Reference Signal (SRS)

request. These values are defined according to the ε-greedy algorithm. Hence, each agent

determines an action modeled by the tuple ac = {δ 1, · · · ,δD} which defines the update of the

UEs’ transmit power levels.

Then, at the step (3), each BS observes the new power of its associated UE according

to the SRS transmission. Then, at step (4), the BSs share their uplink measurements based on

the SRS transmissions of the associated UE. Based on this measurements, at step (5), each BS

calculates the reward associated with the action taken at time step (2). Then, each BS updates the

mapping between the spaces of actions and rewards at time step (6). Finally, at step (7), based

on the updated mapping, each BS determines the next TPC commands, i.e., the next update of

the power of the associated UE.

3.5.2 Pseudo Code of the Proposed UPC Framework

In the following, Algorithm 4 summarizes the main steps of the proposed RL-based

framework. These instructions are carried out independently by each agent. The main loop

(instructions between lines 3 and 9) determines the sequential selection of actions according to

the epsilon-greedy policy. The instruction with the greatest computational complexity is defined

at line 9, as it requires the search for the maximum value in the matrix Qc. We define the stop

condition when t is equal to the total number of iterations T . This approach is also considered
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in the comparison algorithms. Thus, the computational complexity of the proposed framework

based on the pseudo-code Algorithm 4 is O(TC|Sc||Ac|). For more details see Appendix B.

3.6 Comparison Algorithms

We compare the performance of the proposed UPC framework with two classical

solutions found in the literature.

3.6.1 Optimal Solution Power Control

The Optimum Solution Power Control (OSPC) algorithm aims at minimizing the

transmit power with SINR constraints and considering fixed transmit and receive beam pairs.

This strategy has been initially studied in [111] and extended from single data stream Multiple

Input Single Output (MISO) systems to multiple data streams MIMO systems in [112]. These

studies investigated a joint optimization of precoder and transmit power. In our study, we

consider the transmit and receive beams determined by the beam sweeping scheme described in

Section 3.2.2. Thus, the OSPC algorithm is focused on the determination of the optimal transmit

Algoritmo 4: Proposed RL-based UPC framework.
1 let t = 0;
2 sort the initial power levels of each cell st,c = {P1,c, · · · ,PD,c} ∈S c;
3 while stop condition not reached do
4 sort an uniform random number o ∈ [0,1];
5 determine ε t according to Eq. (3.22);
6 if (o < ε t) or (t = 0) then
7 select randomly an action at,c = {δ 1, · · · ,δ D} ∈A c;
8 else
9 select the action at,c = {δ 1, · · · ,δ D} ∈A c with the maximum Q(st,c,at,c);

10 end
11 compute the transmit power update defined by the action at,c;
12 verify if the antenna port power limits Pmin

d,c and Pmax
d,c are respected;

13 execute the transmit power updates;
14 calculate the associated reward rt,c(st,c,at,c,st+1,c) according to Eq.(3.21);
15 update the matrix Qc with the Q(st,c,at,c) value according to Eq. (3.18);
16 t = t +1;
17 end
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power. This optimization problem can be formally written as

max min
d,c

Γd,c

Γ
Target
d,c

s.t
D

∑
d=1

Pd,c ≤ PCMAX

(3.25)

where Γ
Target
d,c is the SINR target at the d-th antenna port of the UE at the c-th cell. If the ratio

Γd,c

Γ
Target
d,c

≥ 1, then the SINR targets are feasible. Otherwise, we have infeasible targets and is

necessary lowering the SINR target values [112]. If the SINR target is not adjusted, we observe

an increase of the transmit power to achieve the target since the ratio is monotonically increasing

with Pd,c. Based on our simulations, the highest feasible SINR target at the considered scenario

is defined as Γ
Target
d, c = Γmax

d, c = 6 dB.

The authors of [111, 112] demonstrated that, given the optimal transmit power vector

at the c-th cell, defined as pc = [P1,c, · · · ,PD,c]
T ∈ RD×1, Eq. (3.25) can be rewritten as

pc
Γ

Target
d,c

Γd,c
=DcΘ

T
c pc +Dcσσσ (3.26)

where Dc = diag

{
Γ

Target
1,c

‖gH
c Hcfc‖2

, · · · ,
Γ

Target
D,c

‖gH
c Hcfc‖2

}
, σσσ is a vector of noise powers on the antenna

ports, and Θc, called coupling matrix, is defined as

[Θc]bRx,bT x =

‖g
H
bRx

H j,c,qfbT x‖2, if bT x 6= bRx.

0, otherwise.
(3.27)

Multiplying both sides of Eq. (3.26) by the vector 1 and considering the constraint

of Eq. (3.25), simplified to ||pc||1 = PCMAX, we achieve

Γ
Target
d,c

Γd,c
=

1
PCMAX

1TDcΘ
T
c pc +

1
PCMAX

1TDcσσσ (3.28)

We can combine Eqs (3.26) and (3.28) to compose the following eigensystem

Ξ cpExt
c =

Γ
Target
d,c

Γd,c
pExt

c , (3.29)
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where pExt
c is the extended transmit power vector, defined as pExt

c = [P1,c, · · · ,PD,c,1]T ∈
R(D+1)×1, and Ξ c is the extended coupling matrix, defined as

Ξ c =

 DcΘT
c Dcσσσ

1
PCMAX

1TDcΘT
c

1
PCMAX

1TDcσσσ

 . (3.30)

The ratio
Γ

Target
d,c

Γd,c
is the reciprocal eigenvalue of the nonnegative extended coupling

matrix Ξ c. It represents meaningful values if the conditions pExt
c > 0 and

Γ
Target
d,c

Γd,c
> 0 are fulfilled.

According to the Perron-Frobenius theorem [113], for any nonnegative real matrix there exists a

nonnegative vector pExt
c ≥ 0 and an eigenvalue emax such that

Ξ cpExt
c = emaxpExt

c . (3.31)

Thus, the maximal eigenvalue emax =
Γ

Target
d,c

Γd,c
and the associated eigenvector are always nonnega-

tive. No other eigenvalue fulfills the positivity requirement since the relationship among transmit

power and the ratio
Γ

Target
d,c

Γd,c
is monotonic [114]. Based on that, they provide the optimal solution

to the problem described by Eq. (3.25).

Therefore, the optimal transmit powers are the first D components of the dominant

eigenvector of Ξ c, scaled such that its last component equals one [111, 112]. In our study,

to ensure a fair comparison between the algorithms, we limited the transmit power values

to the same intervals defined in the proposed framework. That is, Pd,c ∈ [Pmin
d,c ,P

max
d,c ] and

D
∑

d=1
Pd,c ≤ PCMAX. Algorithm 5 summarizes the main commands of the OSPC scheme. These

instructions are carried out independently by each agent. The main loop (instructions between

lines 3 and 9) determines the sequential selection of actions according to the eigen system

discussed previously. The computational complexity of this strategy based on the pseudo-code

Algorithm 5 is O(TCD2VU)+O(TCD3). For more details see Appendix B.

3.6.2 Soft Dropping Power Control

Initially proposed in [115], the so called SDPC is an iterative power allocation

algorithm which promotes a self-regulation of the target SINR. Figure 17 describes the behavior

of the target SINR Γ
Target
d,c according to the transmit power Pd,c. The target SINR varies from a



79

Algoritmo 5: Optimal Solution Power Control.
1 let t = 0;
2 define SINR targets Γ

Target
d,c ;

3 while stop condition not reached do
4 define matrix Ξ c;
5 solve eigensystem described by Eq. (3.29);
6 verify if the antenna port power limits Pmin

d,c and Pmax
d,c are respected;

7 t← t + 1;
8 end

maximum value ΓMax
d,c to a minimum value ΓMin

d,c as the transmit power goes from a minimum

PMin
d,c to a maximum value PMax

d,c . The target SINR gradually decreases as the required transmit

power rises. This behavior increases the probability of determining a feasible power allocation

such that the target SINR of all antenna ports can be reached. The antenna ports with worse

quality, which demand higher power, aim at lower SINR values while antenna ports with better

channel quality, which demand lower power, aim at higher SINR values.

The target SINR in linear scale Γ̂
Target
d,c of the d-th antenna port at the c-th cell is

Figura 17 – Behavior of the target SINR as a function of a variable transmit power.
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Fonte: Created by the author.
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defined according to

Γ̂
Target
d,c =



Γ̂
Max
d,c , if P̂d,c ≤ P̂Min

d,c

Γ̂
Max
d,c

(
P̂d,c

P̂min
d,c

)ε

, if P̂Min
d,c < P̂d,c < P̂Max

d,c

Γ̂
Min
d,c , if P̂d,c ≥ P̂Max

d,c

(3.32)

where Γ̂
Min
d,c and Γ̂

Max
d,c are the minimum and the maximum SINR in linear scale, respectively; P̂Min

d,c

and P̂Max
d,c denote the minimum and the maximum transmit power in linear scale, respectively;

P̂d,c(t +1) is the transmit power in linear scale; and ε =
log10(Γ

Min
d,c /ΓMax

d,c )

log10(P
Max
d,c /PMin

d,c )
.

Therefore, the transmit power P̂d,c(t +1) associated with the UE from the c-th cell

and the d-th antenna port at the (t +1)-th iteration is updated as follows

P̂d,c(t +1) = P̂d,c(t)

[
Γ

Target
d,c (t)

Γd,c(t)

]ϖ

, (3.33)

where ϖ is a feedback parameter that controls the fraction of the difference between the target and

the current SINRs that should be compensated at each iteration. It is defined as ϖ = (1− ε)−1

to ensure convergence [116, 117].

Algorithm 6 summarizes the main commands of the SDPC scheme. At each Monte

Carlo simulation, we randomly sort the initial power, i.e., PPUSCH
d,c (0) ∈ [Pmin

d,c ,P
max
d,c ]. According

to our simulation results, the feasible SINR limits are Γmin
d,c = 0 dB and Γmax

d,c = 6 dB.

Then, each antenna port has its transmit power iteratively updated according to

Eq. (3.33) until the stop condition is reached. In our simulations, it is defined as the total number

of iterations. If the achieved power Pd,c is over PMax
d,c or under PMin

d,c , it is constrained as follows

Pd,c(t +1) = min{PMax
d,c ,max{Pd,c,Pd,c}}. (3.34)

Algorithm 6 summarizes the main steps of the SDPC algorithm. These instructions

are carried out independently by each agent. The computational complexity of this strategy

based on the pseudo-code Algorithm 6 is O(TCD). For more details see Appendix B.
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Algoritmo 6: Soft Dropping Power Control.
1 let t = 0;

2 determine the initial power levels of each antenna port P̂d,c ∈ [P̂min
d,c , P̂

max
d,c ];

3 define SINR limits Γ̂
min
d,c and Γ̂

max
d,c ;

4 while stop condition not reached do
5 calculate target SINR according to Eq. (3.32);
6 update transmit power according to Eq. (3.33);
7 verify if transmit power limits are respected;
8 t← t + 1;
9 end

3.7 Performance Evaluation

In this section, we evaluate the performance of the proposed UPC framework. We

consider a simulation scenario with three cells, where each cell has one BS, one associated UE,

and two antenna ports. The UEs are randomly positioned in the central region of their respective

cells. Each UE moves along a linear track towards the cell border at a constant speed and a

random direction, as it can be seen in Fig. 18.

Figura 18 – Simulation scenario.
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The cells share the same frequency band composed of 12 subcarriers, where ortho-

gonal uplink transmission is assumed. The subcarrier spacing is 120 kHz, since we assumed a

numerology based on µ = 3, and the frequency carrier is 28 GHz. In this numerology, one time

slot has a duration of 0.125ms. In this work, a time slot is referred to as an iteration.

The path loss follows the Urban Macro (UMa)-Non Line of Sight (NLOS) mo-

del [75, Table 7.4.1-1]. The shadowing is modeled as log-normal distribution with a standard

deviation of 4 dB. The noise power is modeled as 10log10(290 ·10−23 ·β ) dBm, where β is the

bandwidth [118]. The main simulation parameters are listed in Table 2.

We evaluate the proposed RL-based UPC framework in terms of (i) uplink transmit

power, (ii) data rate, and (ii) energy efficiency.

The data rate of the c-th cell, based on the Shannon’s capacity formula, can be

Tabela 2 – General Simulation Parameters

Parameter Value

Inter site distance 200 m
Minimum distance BS-UE (2D) 25 m
Angle sector 60◦

BS height 15 m
UE height 1.5 m
UE track linear
UE speed 5 km/h
BS antenna model omnidirectional
BS antennas 8×8
UE antenna model omnidirectional
UE antennas 2×2
Max. transmit power per carrier 24 dBm
Carrier frequency 28 GHz
Bandwidth 1.44 MHz
Number of subcarriers 12
Subcarrier spacing 120 kHz
Number of subframes 10
Number of symbols 14
Azimuth angle range [−60◦,60◦]
Elevation angle range [60◦,120◦]
Number of paths 10
Simulation rounds 100

Fonte: Created by the author.
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expressed as

ψc =
D

∑
d=1

β log2(1+Γd,c), (3.35)

the index j is omitted for simplification purposes, since we consider only one UE per resource.

Thus, the SINR defined by Eq. (3.10) as Γd, j,c is simplified to Γd,c. Moreover, the total data rate

is defined as

Ψ =
C

∑
c=1

D

∑
d=1

β log2(1+Γd,c). (3.36)

The Energy Efficiency (EE) of the c-th cell is defined as the ratio of its achievable

data rate over the uplink transmit power. It can be written as

ωc =

D
∑

d=1
β log2(1+Γd,c)

D
∑

d=1
Pd,c

. (3.37)

The Network Energy Efficiency (NEE) is defined as ratio between the system achie-

vable data rate over the total transmitted power, it is expressed as

Ω =

C
∑

c=1

D
∑

d=1
β log2(1+Γd,c)

C
∑

c=1

D
∑

d=1
Pd,c

. (3.38)

The performance evaluation of the proposed RL-based UPC framework is organized

into three parts. In the first part, we analyze the impact of the main RL design parameters. Then,

in the second part, we evaluate the impact of the reward function on the main system performance

metrics. Finally, in the third part, we compare the proposed framework with its most appropriate

design parameter setting with classical power control algorithms.

3.7.1 RL Design Parameters

Without loss of generality, we assume a UE power class 3, i.e., the maximum uplink

transmit power per carrier is defined as PCMAX = 24dBm [119]. Therefore, each antenna port

can assume one value from a total of 25 discrete power levels, separated in steps of 1 dBm.

The state of the agent of the BS at the c-th cell can be written as st,c ∈ Sc =

{{Pmin
1,c ,P

min
2,c }, · · · ,{Pmax

1,c ,Pmax
2,c }}. Consequently, each agent has a total of |S c| = 252 = 625

states. The maximum and minimum power limits are described by Eqs. (3.19) and (3.20). Notice
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that the sum of the powers of the antenna ports cannot exceed the maximum power PCMAX for

each UE.

The Q-learning algorithm determines the best policy for adjusting the transmit

power of each antenna port, defined by {δ1,δ2}. Recall that we consider TPC in the set

{−1,0,+1,+3} [101, Table 7.1.1-1]. Therefore, each agent has an action space with a total of

|A c|= 42 = 16 actions.

Our initial purpose is to evaluate the impact of the main Q-learning design parameters,

namely, exploration rate, learning rate, and discount factor in the network performance in terms

of NEE. In the practice, this tuning process will be required at the beginning of the operation of

the UPC to determine the most appropriate set of design parameters in terms of NEE.

We assume an adaptive ε-greedy algorithm where the value of the exploration rate

(ε) is gradually reduced over discrete time steps t according to Eq. (3.22). Therefore, in the

proposed simulation setting, ξ is a fixed parameter that guarantees ε t = 0.50 when t = 2,000.

Figure 19 describes the behavior of the proposed adaptive ε-greedy algorithm. In the beginning

of each experiment, the agent explores intensely the state-action space and updates its Q-table

Qc. In the end, the probability of exploitation is higher than 90%.

Equation (3.18) indicates the role of the learning rate (η) and the discount factor (ϕ)

on the determination of the Q(st,c,at,c) values. We rewrite it to emphasize the impact of these

Figura 19 – Proposed behavior of the exploration rate according to the adaptive ε-greedy
algorithm described by Eq. (3.22).
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parameters:

Q(st+1,at+1)︸ ︷︷ ︸
new value

= Q(st ,at)︸ ︷︷ ︸
old value

+ η

rt+1 +ϕ max
at+1∈A

Q(st+1,at+1)︸ ︷︷ ︸
estimate of the optimal future value

− Q(st ,at)

 , (3.39)

where the learning rate determines how much the most recent information replaces older infor-

mation and the discount factor determines the impact of estimate of optimal future values on the

new Q value.

Figure 20 shows the average NEE achieved with the proposed RL-based UPC

framework with different design parameter settings. We consider the reward function with

ρc = ρc′ = 0.5. Figure 20b indicates the behavior of the proposed adaptive ε-greedy algorithm

described by Eq. (3.22). In comparison, we evaluate a fixed ε-greedy algorithm, whose results

are depicted at Fig. 20a. In this case, the exploration rate remains constant at ε = 0.50. We

consider distinct values of learning rate η ∈ [0,1] and discount factor ϕ ∈ [0,1).

The adaptive ε-greedy algorithm achieves NEE levels higher than the fixed ε-greedy

algorithm for most of the evaluated configurations since it enhances the quality of the learned

policies due to the balancing between exploration and exploitation. In the beginning, the

exploration rate has higher values, which allows the agent to explore the spaces of actions and

states. Consequently, the agent is able to discover the impact of different decisions. The level of

interaction with the environment reduces as the agent analyzes the impact of its decisions. At

the end of the simulation, with lower exploration rate values, the agent takes the most suitable

actions. Therefore, when evaluating the settings with the highest levels of energy efficiency,

there is a gain of 75% for the adaptive ε-greedy algorithm.

Both ε-greedy algorithms achieve the highest values of NEE with similar ranges of

learning rate and discount factor values, namely η → 0 and ϕ→ 0. Small values of learning rate

means agents prioritizing the exploitation of prior knowledge while small values of discount

factor mean an agent tends to consider the current reward value. Thus, this setting of design

parameters results in a learning system is strongly influenced by the acquired knowledge and the

reward function.

Therefore, according to the presented results the most appropriate design parameter

setting to increase the NEE corresponds to set η = 0.20 and ϕ = 0.10. Table 3 summarizes the

main Q-learning parameters considered in the performance evaluation provided in the following.
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Figura 20 – Average NEE achieved with the proposed RL-based UPC framework with different
design parameter settings.
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(b) Adaptive ε-greedy
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Tabela 3 – Main RL Design Parameters

Parameter Value

Number of iterations 21,000
Discount factor (ϕ) 0.10
Learning rate (η) 0.20
Initial exploration rate (εmax) 0.95
Number of states 625
Number of actions 16

Fonte: Created by the author.

3.7.2 Evaluation of the Proposed Reward Function

In the following, using the parameter setting defined in Table 3, we assess the

proposed power control solution in terms of the total transmitted power and the achieved data

rate. Our analysis is focused on the impact of the reward function in the proposed power

management policy.

In order to reduce the degrees of freedom in our problem, we rewrite the reward

function as a convex sum of data rates, where the first term contains the data rate of the cell

whose agent directly manages the transmit power and the second term accounts the data rate

of the other cells in the system. This adaptation aims to simplify the determination of the best

set of design parameters and to reduce the sensitivity of the learning system. Thus, the reward

functions of the agents in our simulation model can be written as

rt,c = ρ

D

∑
d=1

β log2(1+Γd,c)+(1−ρ)
C

∑
c′=1
c′ 6=c

D

∑
d=1

β log2(1+Γd,c′), (3.40)

where ρ is the design parameter that regulates how the agent behavior is impacted by the gains

or losses of the data rates of the other cells. Moreover, it also determines the level of cooperation

among the agents in the learning process.

Figure 21a examines the total transmit power (in dBm) as a function of the number

of iterations. We apply a Simple Moving Averaging (SMA) with a window of 500 iterations to

smooth the curves. All BSs operate their agents simultaneously according to the reward functions

described by Eq. (3.40). The proposed UPC framework decreases the total transmission power

over the iterations in comparison with the initial level from 1 dBm to 2 dBm, varying according

to the value of ρ . Therefore, the learning process resulting from the interaction with the system

promotes an energy efficient resource management policy.
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The behavior of the total transmit power varies according to the value of the design

parameter ρ . On the one hand, when ρ = 1.0, the algorithm attempts to maximize the data

rate of each cell and this parameter is influenced solely by its transmission power. Therefore,

the algorithm increases the powers of all UEs indistinctly. Each UE updates its powers auto-

nomously, without any explicit observation of how its behavior affects the remaining of the

system. Consequently, this parameter configuration reaches the highest power levels, namely

24 dBm. On the other hand, when ρ < 1.0, each agent maximizes its own expression of the

Figura 21 – Evaluation of the proposed RL-based UPC design considering different values of the
design parameter ρ .

(a) Total transmit power

(b) Total data rate

Fonte: Created by the author.
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weighted sum of the data rates, thus allowing to measure the impact of its decisions in the other

cells. Figure 21a reveals power management policies with data rates of other cells allow UE

transmissions at a lower power level than the power level obtained by policies with ρ = 1.0.

In comparison with ρ = 1.0, there is a reduction of 1 dBm in the total transmit power when

ρ = 0.8.

Figure 21b shows the total data rate (in Mbps) as a function of the number of ite-

rations. The overall system data rate decreases when ρ = 1.0 because UEs tend to transmit t

maximum power, thus reducing the SINR. The cooperation among agents is capable of signifi-

cantly improving the system conditions. The curves show that ρ = 0.9 promotes an enhancement

of 15% of the total data rate in comparison with ρ = 1. The best performance of the system in

terms of total rate is seen when ρ = 0.6, which increases in 20% the total data rate in comparison

with the worst case.

Figure 22 indicates the average NEE in the last 2,000 iterations achieved by the

proposed RL-based UPC considering different values of ρ . We observe higher levels of the

NEE when ρ < 1. Considering this parameter setting, the proposed UPC framework reduces the

transmit power and increases the total data rate. However, it requires an exchange of information

between cells. That is, the enhancement of the network efficiency in at least 20% comes at the

cost of a signaling exchange among BSs. The NEE with ρ = 0.6 is 40% higher than when ρ = 1.

Therefore, the design parameter ρ = 0.60 achieves the highest NEE in the considered scenario.

Figura 22 – Network energy efficiency achieved by the proposed RL-based UPC considering
different values of the design parameter of cooperation among agents ρ .

Fonte: Created by the author.
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Note that the determination of the most suitable design parameter value ρ to obtain

the highest levels of NEE depends on the simulation scenario, being predominant the UE’s

location within the cell. On one hand, UEs located at the cell edge experience high inter-cellular

interference. In this case, lower values of ρ represent the best choice, as this configuration seeks

to balance reward’s objectives more cooperatively, leading to lower levels of interference. On

the other hand, UEs close to the BS are less affected. In this case, higher ρ values can be chosen

without the negative effects described above, since the increase in power does not significantly

increase the levels of inter-cellular interference.

We have performed an exhaustive search for the parameter ρ to determine its behavior

in a given scenario and to validate the proposed technique. However, from a practical point of

view, the development of an adaptive strategy for this parameter would be worth to investigate.

This is one of our prospects for future works.

3.7.3 Comparison with Classical Algorithms

In the following, we compare the performance of the proposed UPC framework,

hereafter referred as Reinforcement Learning Power Control (RLPC), with two classical solutions

found in the literature and described in Section 3.6.

Figure 23a shows the behavior of the total transmit power (in dBm) as a function of

the number of iterations. In the initial iterations, the RLPC presents the highest total transmit

power. It exceeds the levels obtained by SDPC by 0.5 dBm. However, this disadvantage

is reversed as the agents interact with the environment and the knowledge acquired is used

in decision making. At the end of the simulation, the RLPC outperforms the SDPC, with a

significant reduction of the total transmit power (1.5 dBm), and its transmit power levels approach

that observed with OSPC.

The proposed RLPC has a slower convergence, but finds a power solution able to

reduce the interference and increase the SINR. Consequently, we observe a continuous increment

of the total data rate, that enhances 20% compared with SDPC and approaches the optimal

solution, as it can be seen in Figure 23b.

Figure 24 depicts the behavior of the NEE as a function of the number of iterations.

The SDPC is not able to learn new strategies from the interaction with the environment. Thus, it

cannot approach to the optimal solution. The RLPC provides a self-exploratory energy-efficient

solution which enhances its network energy efficient approximately 95%, achieving 75% of the
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Figura 23 – Comparison of the proposed RL-based UPC design with classical algorithms.
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performance of the optimal solution.

The RLPC has computational complexity higher than that of SDPC, since it requires

the determination of the largest value of the Q table, while SDPC only requires a comparison of

two scalar values. The computational disadvantage of RLPC is compensated by the significant

reduction in transmit power and the substantial increase in the data rate in comparison with

SDPC. OLPC obtains the best results in all analyzed parameter settings. This occurs at a

high computational cost resulting from the eigendecomposition operation involving a high-

dimensional matrix. In addition, OLPC requires an intense signaling, since the entire channel
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Figura 24 – Comparison of the proposed RL-based UPC design with classical algorithms in
terms of NEE.
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matrix, precoders, decoders and SINR targets must be informed at each iteration. The RLPC

algorithm involves a much lower signaling level, requiring only the parameter ρ (on the beginning

of the process) and the data rate. Table 4 summarizes the main comparison aspects of the

algorithms under analysis.

Tabela 4 – Comparison Among Uplink Power Control Algorithms.

Algorithm Signaling Complexity

SDPC Low Low
RLPC Low High
OSPC High High

Fonte: Created by the author.

3.8 Chapter Remarks

The proposed UPC framework based on multi-agent RL for a 5G NR network

provides a self-exploratory energy-efficient solution. It enabled the system to learn a suitable set

of transmit power commands to enhance the total data rate on the uplink channel under neighbor

cell interference mitigation.

Based on the principles of the Q-learning algorithm, it is defined that each BS is

an entity endowed with intelligence, that dynamically interacts with the environment determi-
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ning transmit power commands executed by their associated UEs. After implementing such

commands, each UE reports a Quality of Service (QoS) indicator to its corresponding BS. In ad-

dition, the BSs share among themselves their respective QoS indicators. This set of information

characterizes the knowledge acquired by each learning agent. This knowledge is mapped into a

reward, according to a predefined cost function, which impacts the long-term behavior of the

transmit power.

Simulation results show that the proposed UPC framework provides a QoS similar to

the conventional solutions while significantly reducing the UE’s power consumption. Moreover,

higher sum rates and increased NEE are attained when the framework considers the cooperation

among BSs.
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4 CONCLUSIONS AND PERSPECTIVES

This thesis investigated Radio Resource Management (RRM) techniques in the

context of Fifth Generation (5G) networks and based on Machine Learning (ML) paradigms.

It considered practical implementation aspects, relying on the main technical specifications

from the Third Generation Partnership Project (3GPP) Release 15. Despite the limitations

imposed by these conditions, such as hardware restrictions and available signaling, the proposed

solutions met relevant engineering design requirements with reduced signaling overhead and

computational complexity. The main contributions and research perspectives for each chapter

are summarized in the following.

Chapter 2 described a hybrid beamforming design under limited feedback require-

ments. The Base Station (BS) performs a beam sweeping procedure to collect Channel State

Information (CSI) as a function of Precoding Matrix Indicators (PMIs). The hybrid beamforming

design based on Joint Spatial Division and Multiplexing (JSDM), considered for comparison,

requires the report of the covariance matrix of each User Equipment (UE) to the BS so that

the total amount of resources needed for reporting the whole channel covariance matrix is

proportional to U2J, where U is the number of transmit antennas and J is the number of UEs

in the system. The proposed solution, on its turn, requires a signaling load proportional only

to 2NJ, where N is the number of reported PMIs. Since N �U , it is observed a meaningful

signaling reduction, as well as an adequate representation of the channel statistics for the hybrid

beamforming design in a Millimeter Wave (mmWave) massive Multiple Input Multiple Output

(MIMO) system when compared to the conventional report of the channel covariance matrix.

Chapter 2 also investigated how the Unsupervised Learning (UL) paradigm provides

clustering algorithms able to exploit the channel information provided by the codebook-based

Type II CSI feedback. The simulations results indicated that the partitioning UEs based on Fuzzy

C-Means (FCM) was able to explore more efficiently the reduced CSI feedback in the most

challenging channel conditions. However, this algorithm has higher computational complexity

than the conventional solution based on k-means++. The proposed hybrid beamforming scheme

reduced the Multi User (MU) interference and achieved significant gains in total data rate as the

channel conditions and interference environment become more challenging.

Some of the research perspectives for the studies performed at Chapter 2 include the

investigation of other UL paradigms other than centroid-based clustering, such as connectivity-

based clustering, density-based clustering, and grid-based clustering. Moreover, the application
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of dynamic clustering algorithms to update the number of clusters according to channel conditions

or system requirements could bring flexibility to the network operation. We also consider as a

relevant perspective the investigation of more advanced scheduling algorithms, considering the

optimization of some design parameters, such as data rate and power.

Chapter 3 proposed an Uplink Power Control (UPC) framework compliant with

the technical specifications from 3GPP Release 15. Based on the fundamentals of multi-agent

Reinforcement Learning (RL), it was developed a beam-based power control algorithm able to

learn a strategy that mitigates the inter-cell interference and, consequently, enhances the total

data rate on the uplink channel.

Based on the Q-learning algorithm, it was defined that each BS is an entity endowed

with intelligence, that dynamically interacts with the environment determining the transmit

power commands executed by their associated UEs. After implementing such commands, the

proposed signaling scheme defines that each UE reports a Quality of Service (QoS) indicator

to its corresponding BS. In addition, the BSs share among themselves their respective QoS

indicators. This set of information characterizes the knowledge acquired by each learning agent.

This knowledge is mapped into a reward, according to a predefined cost function, which impacts

the long-term behavior of the transmit power. The simulation results indicate a near-optimum

performance of the proposed framework in terms of total transmit power, total data rate, and

network energy efficiency. The proposed signaling scheme provided a self-exploratory transmit

power control strategy that overcomes the classical Soft Dropping Power Control (SDPC)

algorithm with similar signaling levels.

Some of the research perspectives for the studies performed in Chapter 3 include

the development of an adaptive update of the RL parameters learning rate and discount rate

and the investigation of an offline step to initialize Q-table and speed up the convergence of

the proposed UPC algorithm. Another relevant research aspect is the application of Deep

Reinforcement Learning (DRL) algorithms into the proposed UPC framework, considering the

practical limitations imposed by the standard.

As the 5G standard is being completed, academia and industry began to consider

the development of the next generation of wireless networks. The Sixth Generation (6G) is

expected to achieve even higher data rates and require broader frequency ranges. ML will

occupy an even more prominent position in the development of 6G networks as the scenarios

will become extremely complex and the need for computational efficiency is expected to increase
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significantly. Therefore, the content of this thesis contribute to the standardization of ML

embedded communications to advance the ML techniques into 6G.
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APÊNDICE A – COMPUTATIONAL COMPLEXITY OF CLUSTERING

ALGORITHMS

We evaluate the computational complexity of the applied algorithms based on an

asymptotic analysis using the Big-O notation [120]. The time complexity evaluation is performed

according to the pseudo-codes of the considered algorithms described in Algorithms 1 and 2.

A.1 K-means++ Clustering

According to pseudo-code presented in Algorithm 1, in line 2 it is defined the

initialization of the first centroid c(t)1 . The computational complexity of this operation is O(U),

since the elements of estimated channel ĥ j ∈CU×1 are copied to the centroid vector c(t)1 ∈CU×1.

The initialization of the other centroids c(t)i ∈ {2, . . . ,K} is performed from line 3 to line 6. A

loop of (K−1) iterations is defined in line 3. At each iteration, in line 4 is calculated the weighted

probability function ϒ j which has complexity O(JU). In the following, line 5 determines the

association of the estimated channel ĥ j of UE j with highest ϒ j to the centroid c(t)i which

has complexity O(U)+O(J). Therefore, the initialization of centroids has a computational

complexity defined as (K−1)(O(JU)+O(U)+O(J)) = O(KJU).

After the initialization of centroids, the algorithm performs iterations composed

of a clustering assignment followed by a centroid update until the termination condition is

achieved. The group assignment step associates each UE j to cluster C i according to (11) and

has complexity O(KJU). The centroid update is defined according to (12) as the average of

the estimated channels of all UEs that belongs to each cluster and has complexity O(KJU).

Assuming a limit of T iterations, the computational complexity of the commands between lines

7 and 17 is defined as T (O(KJU)+O(KJU)) = O(KJUT ).

Therefore, the computational complexity of the k-means++ clustering algorithm

based on the pseudo-code Algorithm 1 is O(KJU)+O(KJUT ) = O(KJUT ).

A.2 FCM Clustering

According to pseudo-code presented in Algorithm 2, in line 2 it is defined the initiali-

zation of the membership matrix U(t) with random values in the range [0,1]. The computational

complexity of this command is O(KJ) since U(t) ∈ RK×J . In the following, the algorithm iterati-

vely determines the cluster centroids and the value of the objective function. The definition of
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centroids ci ∈CU×1 is performed according (16) in a loop of K iterations and has a computational

complexity of K(O(JU)+O(J)+O(1)) = O(KJU)+O(KJ) = O(KJU).

After the definition of centroids, in line 9 is calculated the objective function ac-

cording to (15). This operation involves the squared norm which has a complexity O(U) and

must be repeated in two loops of J and K iterations, respectively. Therefore, the computational

complexity of the operation between lines 7 and 11 is KJ(O(U)) = O(KJU).

In the following, the membership matrix is updated according to (17). The operation

defined in line (11) has computational complexity K(O(U)+O(U)) = O(KU) and is repeated

KJ due to the loops defined in line 13 and 14. Therefore, the computational complexity associated

with this update operation is given by KJ(O(KU)) = O(K2JU).

Assuming a limit of T iterations, the computational complexity of the commands

between lines 3 and 19 is defined as T (O(K2JU)+O(KJU)) = O(K2JUT ). Therefore, the com-

putational complexity of the FCM clustering algorithm based on the pseudo-code Algorithm 2 is

O(KJU)+O(K2JUT ) = O(K2JUT ).
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APÊNDICE B – COMPUTATIONAL COMPLEXITY OF POWER CONTROL

ALGORITHMS

B.1 Computational Complexity of the RLPC ALgorithm

Line 2 in Algorithm 1 defines the initialization of power levels of all D antenna

ports in each cell. These powers are modeled as discrete values and are limited to minimum

and maximum values (Pmin
d,c and Pmax

d,c ) determined by Eqs. (3.19) and (3.20), respectively. The

number of possible power values is a function of the step size χ among transmit power levels and

the power limits. Thus, initialization of power levels requires the sort of D values in a space of

possible states (powers) with cardinality given by Eq. (3.23). A loop of C iterations is required

to initialize the power levels on all cells. Therefore, the computational complexity related to this

line is O
(

C
∑

c=1
|Sc|

)
= O

 C
∑

c=1

(
Pmax

d,c −Pmin
d,c

χ

)D
.

For simplification purposes, we consider the space of states in all cells with the same

size |Sc|=
(

Pmax
d,c −Pmin

d,c

χ

)D

. Then, the computational complexity becomes O(C|Sc|).

The main loop involves the commands between lines 4 and 16. This loop is executed

T times until the stop condition is determined. Line 4 determines the sort of a random number.

This operation has complexity CO(1) = O(C), since it is repeated by all agents. In the following,

line 5 requires the calculation of the learning rate εt according to Eq. (3.22). This operation

involves the calculation of scalar values, which has complexity CO(1) = O(C). In one hand, if

the condition (e < εt) or (t = 0) is true, it is sorted a random set of actions from the space of

action, as defined in line 7, which has computational complexity O
(

C
∑

c=1
|Ac|

)
= O(CιD) (ι is

the number of TPC commands). It is assumed that all agents have the same space of actions.

On the other hand, if the condition (e < εt) or (t = 0) is false, we select an action based on the

evaluation of the maximum element of row Q(st,c, :). Therefore, the operation defined in line 9

has computational complexity CO(|Ac|= O(C|Ac)) = O(CιD).

Line 11 defines the computation of transmit power update of the antenna ports in all

cells. Thus, the computational complexity of this operation is CDO(1)=O(CD). The verification

of the antenna port power limits in line 12 has computational complexity CO(D) = O(CD) and

the execution of transmit power updates in line 13 has complexity CO(D) = O(CD). The

calculation of the reward associated to the performed actions has computational complexity

CO(D) = O(CD). Finally, the update of the matrix Q defined in line 15 has computational
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complexity CO(|Sc||Ac|) = O(C|Sc||Ac|).
The computational complexity of the proposed RL-based uplink PC framework based

on the analyzed pseudo-code is O(C|Sc|) + T (O(C) +O(|Ac|) +O(CD) +O(|Sc||Ac|))→
O(TC|Sc||Ac|).

B.2 Computational Complexity of the OSPC ALgorithm

Line 2 in Algorithm 2 defines the SINR targets of all D antenna ports in all C cells.

This command has computational complexity CD ·O(1) = O(CD). The next command at line

4 specifies the extended coupling matrix of each cell, which requires the operations defined at

Eq. (3.27) and Eq.(3.30). The determination of the coupling matrix Ψc at Eq.(3.30) requires the

manipulation of beamforming vectors and channel matrices, namely wbr ∈CU×1, fbt ∈CV×1, and

H ∈ CU×V , respectively. The operation is repeated D2 times since it is created a squared matrix

with dimension D×D. Thus, the computational complexity is D2 · (O(U)+O(UV )+O(V ))→
O(D2U)+O(D2VU)+O(D2V )→ O(D2UV ), where V and U are the number of receive and

transmit antennas, respectively.

Besides the coupling matrix Ψc, the definition of the extended coupling matrix Λc

also requires the specification of the auxiliary matrix Dc. This matrix requires the computational

of the norm of the vector wH
br

Hfbt to determine the D elements of its main diagonal. Therefore, it

has computational complexity D · (O(U)+O(VU)+O(V ))→ O(DU)+O(DVU)+O(DV )→
O(DVU).

The extended coupling matrix Λc is composed by different blocks of matrices. The

determination of DcΨT
c has computational complexity O(D2), since it requires the multiplication

of matrices of dimension D×D. The determination of
1

PPCMAX
1TDcΨT

c has computational

complexity O(D2) since it involves the multiplication of arrays with dimensions D× 1 and

D×D. The determination of Dcσ also has computational complexity O(D2) since it involves

again the multiplication of arrays with dimensions D× 1 and D×D. The determination of
1

PPCMAX
1TDcσ has computational complexity O(D2) since it involves the multiplication of

arrays with dimensions D×1 and D×D. The composition of the extended coupling matrix has

computational complexity O(D2)+O(D2)+O(D2)+O(D2)→ O(D2).

Thus, the definition of the extended coupling matrix has computational complexity T ·
C ·O(D2VU)+O(DVU)+O(D2)→O(TCD2VU)+O(TCDVU)+O(CT D2)→O(TCD2VU),

where T is the total number of iterations.
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In addition, line 5 requires the eigendecomposition of the extended coupling matrix

Λc, so the computational complexity is T ·C ·O((D+1)3) = O(TCD3). The verification of the

power limits at line 6 has computational complexity T ·C ·D ·O(1) = O(TCD). The implemen-

tation of the power commands has computational complexity T ·C ·D ·O(1) = O(TCD).

Thus, the total number of operations in big O notation is O(CD)+O(TCD2VU)+

O(TCD3)+O(CT D)→ O(TCD2VU)+ O(TCD3).

B.3 Computational Complexity of the SDPC ALgorithm

Line 2 in Algorithm 3 defines the initial transmit power of all D antenna ports in all C

cells. As observed previously, this command has computational complexity CD ·O(1) = O(CD).

The main loop involves the commands between lines 4 and 8. This loop is executed T times

until the stop condition is determined. Line 4 calculates the target SINR Γ
target
c,d according to Eq.

(3.32). This operation has computational complexity C ·D ·O(1) = O(CD).

Line 5 determines the update of the transmit power in all antenna ports of each cell

according to Eq. (3.33). This command has computational complexity C ·D ·O(1) = O(CD).

Line 7 defines the execution of the transmit power updates, which has computational complexity

C ·D ·O(1) = O(CD).

Therefore, the computational complexity of the soft dropping power control based

on the previous pseudo-code is O(CD)+T (O(CD)+O(CD)+O(CD))→ O(TCD).
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