

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA HIDRÁULICA E AMBIENTAL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

AMMANDA ARAGÃO ABREU

ANÁLISE COM ACOPLAMENTO HIDROMECÂNICO DA BARRAGEM CIPOADA (CE) CONSIDERANDO A INFLUÊNCIA DE ZONAS NÃO SATURADAS NO COMPORTAMENTO DO MACIÇO COMPACTADO

FORTALEZA 2021

AMMANDA ARAGÃO ABREU

ANÁLISE COM ACOPLAMENTO HIDROMECÂNICO DA BARRAGEM CIPOADA (CE) CONSIDERANDO A INFLUÊNCIA DE ZONAS NÃO SATURADAS NO COMPORTAMENTO DO MACIÇO COMPACTADO

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Civil do Centro de Tecnologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de mestre em Engenharia Civil. Área de concentração: Geotecnia.

Orientador: Prof. Dr. Francisco Chagas da Silva Filho

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

A145a Abreu, Ammanda Aragão.

Análise com acoplamento hidromecânico da barragem Cipoada (CE) considerando a influência de zonas não saturadas no comportamento do maciço compactado / Ammanda Aragão Abreu. – 2021. 166 f. : il. color.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Civil: Geotecnia, Fortaleza, 2021. Orientação: Prof. Dr. Francisco Chagas da Silva Filho.

1. Solos não saturados. 2. Acoplamento hidromecânico. 3. BBM. I. Título.

CDD 624.15

AMMANDA ARAGÃO ABREU

ANÁLISE COM ACOPLAMENTO HIDROMECÂNICO DA BARRAGEM CIPOADA (CE) CONSIDERANDO A INFLUÊNCIA DE ZONAS NÃO SATURADAS NO COMPORTAMENTO DO MACIÇO COMPACTADO

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Civil do Centro de Tecnologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de mestre em Engenharia Civil. Área de concentração: Geotecnia.

Aprovada em: __/__/___.

BANCA EXAMINADORA

Prof. Dr. Francisco Chagas da Silva Filho (Orientador) Universidade Federal do Ceará (UFC)

Prof. Dr. Anderson Borghetti Soares (Examinador interno) Universidade Federal do Ceará (UFC)

Prof. Dra. Márcia Maria dos Anjos Mascarenha (Examinadora externa) Universidade Federal de Goiás (UFG)

Aos meus pais, Rezilda e Glauber.

AGRADECIMENTOS

Agradeço a Deus, pela sua infinita misericórdia em minha vida.

Aos meus pais, Rezilda e Glauber, pelo amor e dedicação ao longo dos anos que passamos juntos. Mesmo distantes fisicamente, sei que espiritualmente estão sempre ao meu lado!

À minha família, meu noivo e meus amigos, por estarem sempre presentes ao longo da minha trajetória, me ajudando, apoiando e sendo meu suporte nos momentos de dificuldades.

Ao meu orientador, Prof. Dr. Francisco Chagas da Silva Filho, pela atenção, dedicação e compreensão ao longo do período de orientação.

A toda a equipe do Laboratório de Mecânica dos Solos e Pavimentação da UFC, por todo o apoio durante a realização dos ensaios.

Aos professores do pós-DEHA, pelos conhecimentos e pela motivação que transmitiram ao longo das disciplinas do mestrado, e aos funcionários do departamento que sempre foram muito prestativos.

Aos professores Anderson Borghetti e Márcia Mascarenha, por aceitarem participar da banca examinadora desta dissertação e pelo tempo dedicado para a avaliação deste trabalho.

Aos meus colegas de mestrado, pelos estudos e momentos de descontração ao longo desses dois anos.

A todos aqueles que contribuíram, direta ou indiretamente, para o desenvolvimento desta dissertação.

À FUNCAP, pelo suporte financeiro.

RESUMO

O acoplamento hidromecânico e a adoção de um modelo constitutivo para solos não saturados em barragens de terra possibilitam uma análise mais realista do seu comportamento, tendo em vista que o fluxo saturado e não saturado ocorre permanentemente durante sua operação, alterando o estado de tensões do maciço e provocando deformações. Essa pesquisa consistiu na realização de uma análise com acoplamento hidromecânico da barragem Cipoada, localizada em Morada Nova (CE), considerando a existência de zonas não saturadas no maciço compactado. Para isto, foi utilizado o modelo BBM (Barcelona Basic Model), que adota uma relação elastoplástica para solos não saturados proposto por Alonso, Gens e Josa (1990). Os parâmetros mecânicos e hidráulicos do solo, necessários para a realização da simulação numérica, foram determinados a partir da execução de uma série de ensaios de laboratório (ensaios de caracterização, papel filtro, cisalhamento direto, adensamento edométrico e permeabilidade). Para a realização dos ensaios de cisalhamento direto e adensamento edométrico optou-se por uma metodologia simplificada, sem o controle da sucção, devido a indisponibilidade de equipamentos com esta tecnologia. A simplificação utilizada consistiu na realização de ensaios com umidade conhecida, nos quais a sucção da amostra ensaiada foi determinada a partir da curva de retenção de água no solo. A análise acoplada da barragem Cipoada foi realizada no programa de elementos finitos CODE BRIGHT (COupled DEformation and BRine, Gas and Heat Transport) e consistiu na simulação do enchimento e do esvaziamento do reservatório, utilizando os volumes reais de armazenamento de água durante os anos de 1992 à 2016. A partir da simulação acoplada executada, foi possível analisar o efeito da variação da poropressão nas tensões e deformações do maciço, bem como analisar a influência das deformações volumétricas na porosidade do solo. Os resultados mostraram que o modelo BBM descreveu de forma satisfatória o comportamento da barragem. Foi verificado em determinados pontos escolhidos no maciço, que durante o enchimento, o solo apresentou plastificação ao ser submetido a uma trajetória de aumento de tensão e diminuição de sucção. Já durante o esvaziamento, nesses pontos, o solo retornou ao domínio elástico ao ser submetido a uma trajetória de redução de tensão e aumento da sucção. Constatou-se, também, que o sistema de drenagem interno da barragem influenciou de forma significativa no comportamento hidromecânico do maciço e um possível funcionamento inadequado acarreta um aumento de até 75% nos deslocamentos totais da barragem.

Palavras-chave: solos não saturados, acoplamento hidromecânico, BBM.

ABSTRACT

The hydromechanical coupling and the adoption of a constitutive model for unsaturated soils in earth dams enable a more realistic analysis of its behavior, considering that the saturated and unsaturated flow occurs permanently during its operation, changing the stress-strain state of the mass soil. This research consisted of an analysis with hydromechanical coupling of the Cipoada dam, located in Morada Nova (CE), considering the existing unsaturated zones in the compacted mass soil. For that purpose, the BBM model (Barcelona Basic Model), which considers an elastoplastic stress-strain relationship for unsaturated soils proposed by Alonso, Gens and Josa (1990) was used. The mechanical and hydraulic parameters for the soil, which are necessaries for carrying out the numerical simulation, were determined from a series of laboratory tests (characterization tests, filter paper, direct shear, oedometer consolidation and permeability). The direct shear and oedometer tests were carried out by considering a simplified methodology where the tests procedures have taken place without the control of the matric suction, due the simplicity of available equipments. The simplification used consisted of carrying out tests with known humidity, in which the suction of the tested sample was determined from the water retention curve in the soil. The coupled analysis of the Cipoada dam was performed by using the CODE BRIGHT (COupled DEformation and BRine, Gas and Heat Transport) software which is based on the finite element method. Numerical simulations of the hydromechanical behavior of the Cipoada Dam considering both filling and the rapid downdrawn of the reservoir for the water storage volumes during observed from 1992 to 2016 were carried out. From the results, it was possible to analyse the effect of the variation of poropressure on the stresses and deformations of the mass soil, as well as the influence of volumetric deformations on soil porosity. The results also have shown that the BBM model has described satisfactorily the expected mass soil behavior. It was observed that during filling the soil has presented yielding when subjected to a trajectory of increased tension and decreased suction. During the simulated rapid downdrawn, the soil has returned to the elastic domain when subjected to a trajectory of reduced tension and increased suction. It was also found that the internal drainage system of the dam had a significant influence on the hydromechanical behavior of the mass soil and its malfunctioning may lead to an increase of up to 75% in the total displacements of the dam.

Keywords: unsaturated soils, hydromechanical coupling, BBM.

LISTA DE FIGURAS

Figura 1 – Superfície de estado para índice de vazios16
Figura 2 – Envoltória de Mohr-Coulomb estendida para solos não saturados17
Figura 3 - Relações entre tensões de pré-adensamento: (a) curvas de compressão para solo
saturado e não saturado; (b) caminho de tensões no plano (<i>p</i> , <i>s</i>)21
Figura 4 – Domínio elástico delimitado pelas curvas de plastificação LC e SI
Figura 5 – Superfície de plastificação proposta por Alonso et al. (1990)
Figura 6 – Trajetórias de tensões utilizadas para a obtenção dos parâmetros do modelo BBM
Figura 7 – Exemplo de curva de retenção de água no solo31
Figura 8 – Curva de retenção para diferentes tipos de solo
Figura 9 – Tipos de fluxo entre solo e papel filtro
Figura 10 – Relação entre a curva de retenção e a função de permeabilidade40
Figura 11 – Representação do acoplamento hidromecânico realizado pelo CODE_BRIGHT 46
Figura 12 – Modelo conceitual elastoviscoplástico proposto por Perzyna (1966)47
Figura 13 – Programa experimental da pesquisa
Figura 14 – Curva de distribuição granulométrica54
Figura 15 – Curva de compactação do solo (energia Proctor Normal)
Figura 16 – Etapas do ensaio de papel filtro57
Figura 17 – Comparativo entre a disposição de papeis filtros sugerida pela ASTM D5298/2016
e o procedimento adotado
Figura 18 – Curva de retenção de água no solo (umidade volumétrica x sucção)59
Figura 19 – Tensões cisalhantes máximas para diferentes valores de sucção61
Figura 20 – Corpos de prova após a realização do ensaio de cisalhamento direto62
Figura 21 - Corpos de prova utilizados para controle de umidade no ensaio de adensamento
edométrico
Figura 22 – Curvas de adensamento do solo64
Figura 23 – Barragem Cipoada
Figura 24 – Localização da barragem Cipoada67
Figura 25 – Seção máxima da barragem Cipoada67
Figura 26 – Anomalias apresentadas no talude de jusante da Barragem Cipoada em 200568
Figura 27 – Geometria modelada da barragem Cipoada69
Figura 28 – Média do volume de água armazenado no reservatório de Cipoada nos meses de

julho	70
Figura 29 – Deformação específica vertical (e_v) versus tensão vertical (σ'_v) [Ensaio	inundado]
	72
Figura 30 – Volume específico versus Tensão p	74
Figura 31 – Superfície LC do solo da barragem Cipoada	75
Figura 32 – Variação de λ com a sucção	76
Figura 33 – Projeções nos planos (p,q) e (p,s) da superfície de plastificação obtida pe	lo modelo
BBM	77
Figura 34 – Curva de retenção de água no solo (grau de saturação x sucção)	80
Figura 35 - Comparação entre os resultados experimentais e os da simulação do	ensaio de
adensamento edométrico (módulo de elasticidade constante)	
Figura 36 - Comparação entre os resultados experimentais e os da simulação do	ensaio de
adensamento edométrico (módulo de elasticidade variável)	83
Figura 37 – Malhas de elementos finitos testadas na análise de convergência	84
Figura 38 – Malha de elementos finitos adotada	85
Figura 39 - Variação do grau de saturação e da poropressão da água ao final do es	nchimento
(Estágio 4)	
Figura 40 - Variação do grau de saturação e da poropressão da água ao final do esv	aziamento
(Estágio 6)	
Figura 41 – Comportamento hidromecânico do ponto A	
Figura 42 – Comportamento hidromecânico do Ponto B	
Figura 43 – Comportamento hidromecânico do Ponto C	90
Figura 44 – Nível de deformações volumétricas no Estágio 6	91
Figura 45 – Tensões verticais no Estágio 6	91
Figura 46 – Deslocamentos verticais dos pontos A e B	92
Figura 47 – Malha deformada da Barragem Cipoada para diferentes estágios (aument	o de 100x)
$\Sigma_{i}^{*} = 40 \text{M}_{i}^{*} = 2 \text{I}_{i}^{*} = 4 \text{even} 1 \text{even} 2 \text{even} \Sigma_{i}^{*} = 4 \text{even} 1 e$	
Figura 48 – variação do grau de saturação no Estágio 4 (condição de não funciona	amento do
Eisune 40 Malha deformada none condicăte de une foncionamente de cistare de	
rigura 49 – Iviana deformada para condição de não funcionamento do sistema de	urenagem
(aumento de 100x)	
rigura 50 – Desiocamentos totais apos o encimiento da barragem (Estagio 4)	90

LISTA DE TABELAS

Tabela 1 – Curvas de calibração para o papel filtro Whatman nº 42
Tabela 2 – Proposições para ajuste da curva de retenção de água no solo
Tabela 3 – Proposições para modelagem da curva de condutividade hidráulica41
Tabela 4 – Equações constitutivas e de equilíbrio consideradas no CODE_BRIGHT44
Tabela 5 - Parâmetros do modelo BBM equivalentes aos parâmetros do modelo de Desai e
Zhang (1987)49
Tabela 6 – Resultados dos ensaios de caracterização e classificação do solo pelo sistema SUCS
Tabela 7 – Parâmetros de resistência do solo saturado60
Tabela 8 – Resumo dos ensaios de cisalhamento direto61
Tabela 9 – Teores de umidade dos corpos de prova dos ensaios de adensamento edométrico não
inundados63
Tabela 10 - Sucção e tensão de pé-adensamento dos corpos de prova dos ensaios de
adensamento edométrico
Tabela 11 – Períodos do cenário modelado no CODE_BRIGHT71
Tabela 12 – Parâmetros elásticos do solo para modelagem no CODE_BRIGHT73
Tabela 13 - Tensões de pré-adensamento, inclinações das retas virgens e das retas de
descompressão
Tabela 14 – Parâmetros do modelo BBM para modelagem no CODE_BRIGHT78
Tabela 15 – Parâmetros elastoviscoplásticos para modelagem no CODE_BRIGHT78
Tabela 16 - Deslocamentos máximos em função de N ocorridos durante o enchimento da
barragem Cipoada79
Tabela 17 – Condutividade hidráulica saturada e permeabilidade intrínseca do solo da barragem
Cipoada80
Tabela 18 – Parâmetros hidráulicos do aterro necessários para a modelagem no
CODE_BRIGHT81
Tabela 19 – Parâmetros hidráulicos do filtro necessários para modelagem no CODE_BRIGHT

1 INTRODUÇÃO	11
1.1. Problema de pesquisa	12
1.2. Objetivos	13
1.3. Estrutura da dissertação	13
2 COMPORTAMENTO HIDROMECÂNICO DE SOLOS NÃO SATURADOS	14
2.1. Comportamento mecânico dos solos não saturados	14
2.1.1. Histórico dos modelos constitutivos para solos não saturados	14
2.1.2. Modelo BBM	19
2.1.2.1. Formulações para o estado de tensões isotrópicas	20
2.1.2.2. Formulações para o estado de tensões triaxiais	25
2.1.2.3. Parâmetros utilizados no modelo BBM	27
2.1.2.4. Limitações e adaptações do modelo BBM	
2.2. Comportamento hidráulico dos solos não saturados	
2.2.1. Curva de retenção de água no solo	
2.2.1.1. Métodos de obtenção da curva de retenção	32
2.2.1.2. Modelos de ajuste para a curva de retenção	
2.2.2. Condutividade hidráulica	
2.3. Análise hidromecânica acoplada	42
2.4. Modelagem computacional: Programa CODE_BRIGHT	43
2.4.1. Formulação numérica	44
2.4.2. Acoplamento do comportamento hidromecânico de solos não saturados	45
2.4.3. Modelo de Perzyna (1966) modificado por Desai e Zhang (1987) utiliz	ado pelo;
CODE_BRIGHT	46
2.4.4. Aplicações do CODE_BRIGHT em solos não saturados	49
3 ENSAIOS DE LABORATÓRIO	
3.1. Programa experimental	
3.2. Ensaios de caracterização geotécnica	53
3.3. Ensaio de papel filtro	55
3.4. Ensaio de cisalhamento direto	59
3.5. Ensaio de adensamento edométrico	62
3.6. Ensaio de permeabilidade	65
3.7. Resumo e notas conclusivas	65

4 ANÁLISE COM ACOPLAMENTO HIDROMECÂNICO DA BARRAGEM CIPOADA
66
4.1. Características gerais e contexto histórico da Barragem Cipoada
4.2. Cenário da Modelagem
4.3. Estimativa dos parâmetros mecânicos e hidráulicos do solo71
<i>4.3.1. Parâmetros elásticos</i>
4.3.2. Parâmetros do modelo BBM
4.3.3. Parâmetros do modelo de Perzyna (1966) modificado por Desai e Zhang (1989)78
4.3.4. Parâmetros hidráulicos
4.4. Validação dos parâmetros
4.5. Escolha da malha de elementos finitos
4.6. Resultados das simulações e discussões85
4.7. Resumo e notas conclusivas
5 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS
5.1. Conclusões
5.2. Sugestões para trabalhos futuros
REFERÊNCIAS
APÊNDICA A – MEMORIAL DE CÁLCULO: ANÁLISE GRANULOMÉTRICA 112
APÊNDICE B – MEMORIAL DE CÁLCULO: LIMITES DE CONSISTÊNCIA 113
APÊNDICE C – MEMORIAL DE CÁLCULO: DENSIDADE REAL
APÊNDICE D – MEMORIAL DE CÁLCULO: ENSAIO DE COMPACTAÇÃO 114
APÊNDICE E – MEMORIAL DE CÁLCULO: ENSAIO DE PAPEL FILTRO 115
APÊNDICE F – MEMORIAL DE CÁLCULO: CISALHAMENTO DIRETO118
APÊNDICE G – MEMORIAL DE CÁLCULO: ADENSAMENTO EDOMÉTRICO 130
APÊNDICA H – MEMORIAL DE CÁLCULO: ENSAIO DE PERMEABILIDADE 164

1 INTRODUÇÃO

Nas últimas décadas, o estudo envolvendo o comportamento dos solos não saturados evoluiu com o intuito de aperfeiçoar projetos e construções, tendo em vista que os solos não saturados estão presentes durante toda a vida útil de uma grande variedade de obras geotécnicas (VILAR, 2004).

Ao longo da história, diversos modelos constitutivos foram elaborados na tentativa de descrever o comportamento dos solos não saturados, podendo citar como pioneiros os trabalhos de Bishop (1959), Matyas e Radhakrishma (1968) e Fredlund *et al.* (1978).

Os modelos constitutivos para solos não saturados têm como objetivo expressar o comportamento mecânico e hidráulico do solo quando este é submetido a variações do seu estado de tensão e do seu grau de saturação, representando assim a variação da sua deformabilidade e da sua resistência com a sucção (CORDÃO NETO, 2005). Dependendo do solo, características como colapso e expansão devem ser consideradas, de modo que a escolha do modelo deve ser baseada no comportamento do solo obtido por meio de ensaios de campo ou de laboratório (CAMAPUM DE CARVALHO *et al.*, 2015).

O desenvolvimento de modelos constitutivos para solos não saturados possibilitou com que cada vez mais problemas geotécnicos pudessem ser simulados numericamente considerando o efeito da sucção no solo. Dependendo do problema analisado, a consideração de um modelo não saturado torna-se essencial para a realização de uma análise realista. Outro fator importante na análise de solos não saturados é a forma como se considera o comportamento mecânico e hidráulico do solo. Comumente são realizadas análises associadas, nas quais o comportamento mecânico é analisado separadamente do comportamento hidráulico. No entanto, sabe-se que tais comportamentos funcionam de forma acoplada, ou seja, a variação do estado de tensões do solo ocorre simultaneamente com a variação do fluxo de água.

Barragens de terra são exemplos de obras geotécnicas em que o acoplamento hidromecânico e a adoção de um modelo constitutivo para solos não saturados possibilitam uma análise mais realista do seu comportamento, tendo em vista que o fluxo saturado e não saturado ocorre permanentemente durante sua operação.

Neste contexto, o presente trabalho busca analisar com acoplamento hidromecânico o comportamento tensão x deformação da barragem Cipoada, localizada no município de Morada Nova (CE), ao longo do seu enchimento e esvaziamento.

1.1. Problema de pesquisa

Barragens de terra são exemplos de obras geotécnicas comumente dimensionadas e analisadas a luz dos princípios da mecânica dos solos clássica, ou seja, em que se considera que o maciço compactado se encontra saturado. Entretanto, as barragens de terra apresentam zonas não saturadas que influenciam de maneira considerável no seu comportamento como um todo. Estas zonas são resultantes do processo de compactação, que não expulsa completamente o ar presente dos vazios do solo, e da presença de sistemas de drenagem internos que durante o enchimento do reservatório conduzem a água infiltrada na barragem para o exterior.

Durante a operação de uma barragem de terra, ocorre a percolação de água pelo aterro, o que provoca a variação do grau de saturação e da sucção do solo, alterando o seu estado de tensões e provocando deformações. Segundo Camapum de Carvalho *et al.* (2015), mais da metade dos problemas registrados em barragens de terra são associados à percolação de água, o que justifica a necessidade de se realizar análises com acoplamento hidromecânico deste tipo de obra geotécnica.

Neste trabalho, serão simulados o enchimento e o esvaziamento da barragem Cipoada considerando o acoplamento hidromecânico e a condição não saturada do solo. As análises foram realizadas no programa CODE_BRIGHT (*COupled DEformation and BRine, Gas and Heat Transport*) e foi utilizado o modelo constitutivo elastoplástico para solos não saturados desenvolvido por Alonso *et al.* (1990) chamado de *Barcelona Basic Model* (Modelo Básico de Barcelona ou modelo BBM).

O modelo BBM prevê que seus parâmetros sejam determinados a partir de ensaios de laboratório com sucção controlada. No entanto, devido a indisponibilidade de equipamentos com esta tecnologia para a realização desta pesquisa, foi utilizada uma simplificação para a obtenção dos parâmetros do modelo, que consistiu na realização de ensaios com umidade conhecida, nos quais as sucções das amostras ensaiadas foram determinadas a partir da curva de retenção de água no solo. Desse modo, a análise acoplada da barragem Cipoada também será utilizada para avaliar e validar a metodologia de simplificação realizada para a obtenção dos parâmetros do modelo BBM.

1.2. Objetivos

O objetivo geral deste trabalho consiste em analisar com acoplamento hidromecânico o enchimento e o esvaziamento da barragem Cipoada, considerando a influência de zonas não saturadas no comportamento do maciço compactado.

Para alcançar o objetivo geral apresentado, foram contemplados os seguintes objetivos específicos:

- a) Determinar experimentalmente os parâmetros do Modelo BBM para o solo da barragem Cipoada a partir de ensaios com umidade conhecida;
- b) Avaliar a metodologia de simplificação utilizada para obtenção dos parâmetros do Modelo BBM;

1.3. Estrutura da dissertação

O presente trabalho encontra-se dividido em cinco capítulos, contendo todas as informações necessárias para o entendimento desta pesquisa.

O Capítulo 1 apresenta a contextualização do tema estudado, o problema que motivou a pesquisa e os objetivos que guiaram a realização deste trabalho.

O Capítulo 2 apresenta uma revisão bibliográfica acerca do comportamento hidromecânico dos solos não saturados, trazendo conceitos clássicos e o estado da arte do assunto estudado.

O Capítulo 3 detalha o programa experimental executado para o desenvolvimento desta pesquisa. Neste capítulo, são apresentados os ensaios realizados e os seus respectivos resultados, bem como também são explanadas as simplificações adotadas nos ensaios sem sucção controlada.

O Capítulo 4 traz a análise hidromecânica acoplada realizada com a barragem Cipoada. Neste capítulo, são apresentadas as características gerais do cenário modelado, a estimativa dos parâmetros necessários para a análise, a validação destes parâmetros e os resultados da simulação realizada.

Por fim, o Capítulo 5 apresenta as principais conclusões referentes aos resultados obtidos e as sugestões para trabalhos futuros.

2 COMPORTAMENTO HIDROMECÂNICO DE SOLOS NÃO SATURADOS

Neste capítulo serão abordados os aspectos mais relevantes para o entendimento do comportamento hidromecânico dos solos não saturados. Inicialmente, os comportamentos mecânico e hidráulico serão abordados separadamente e, em seguida, será explanado o acoplamento entre eles.

No que diz respeito ao comportamento mecânico, será apresentado um histórico dos modelos constitutivos desenvolvidos para os solos não saturados e a descrição detalhada do modelo BBM, que será o modelo utilizado no desenvolvido deste trabalho. A cerca do comportamento hidráulico, serão abordados aspectos sobre a curva de retenção de água e a condutividade hidráulica não saturada dos solos.

Por fim, serão apresentadas as vantagens do acoplamento hidromecânico e a forma como o programa CODE_BRIGHT realiza este acoplamento, tendo em vista que será o programa utilizado nesta pesquisa para a modelagem e simulação da Barragem Cipoada.

2.1. Comportamento mecânico dos solos não saturados

O comportamento mecânico de um material está relacionado com a sua resposta à uma determinada solicitação do ponto de vista de deformabilidade e de resistência (CORDÃO NETO, 2005). O sucesso do conceito de tensões efetivas para os solos saturados possibilitou descrever de forma realista os fenômenos observados na prática para esta condição, e fez com que surgisse a necessidade de se propor expressões que explicassem de forma satisfatória o comportamento dos solos não saturados. Ao longo dos últimos anos, vários modelos constitutivos foram desenvolvidos na tentativa de reproduzir o comportamento mecânico dos solos não saturados, modelos estes que podem ser agrupados em superfícies de estado, expressões analíticas, modelos elásticos e modelos elastoplásticos.

2.1.1. Histórico dos modelos constitutivos para solos não saturados

Uma das primeiras tentativas de descrever o comportamento mecânico dos solos não saturados foi realizada por Bishop (1959), que propôs a generalização do princípio das tensões efetivas para solos não saturados através da introdução de um parâmetro χ que indica a influência da poropressão no valor da tensão efetiva, conforme observado na Equação 1.

$$\sigma' = (\sigma - u_a) + \chi(u_a - u_w) \tag{1}$$

Onde:

 σ ' é a tensão efetiva do solo;

 σ é a tensão total do solo;

 u_a é a pressão do ar nos poros;

uw é a pressão na água dos poros;

 $(u_a - u_w)$ é a sucção mátrica;

χ é o parâmetro que depende do grau de saturação, variando entre zero para solo completamente seco e 1 para solo saturado.

Bishop e Donald (1961) comprovaram a validade da equação apresentada anteriormente através de ensaios de compressão triaxial drenados. Na previsão da resistência ao cisalhamento, a equação proposta por Bishop (1959) apresenta bons resultados, porém não consegue representar o comportamento volumétrico dos solos não saturados (MASCARENHA, 2008). A principal desvantagem da equação sugerida por Bishop (1959) é a consideração do parâmetro χ , por ser de difícil determinação e não representar uma característica fundamental do solo. O parâmetro χ é função da sucção, teor de umidade, história prévia de umedecimento e secagem, histórico de tensões e deformações, grau de saturação, composição de partículas, arranjo de partículas, composição eletrolítica, ou seja, é fortemente dependente de uma gama de fatores, em que muitos são independentes entre si (PEREIRA, 2013).

Matyas e Radhakrishna (1968) sugeriram que o comportamento dos solos não saturados fosse descrito por meio de combinações entre a tensão na fase sólida (σ) e as pressões nos poros do ar (u_a) e da água (u_w). Com isto, propuseram o conceito de superfície de estado, que segundo os autores, representam a resposta do solo submetido a uma determinada solicitação. Estas superfícies podem representar variações de propriedades do solo em função do estado de tensão líquida e da sucção, ou seja, podem representar as variações de índice de vazios, de grau de saturação, coeficientes de empuxo, resistência ao cisalhamento, permeabilidade, módulos de elasticidade, coeficiente de Poisson ou qualquer outra variável que dependa da sucção e da tensão líquida (CORDÃO NETO, 2005). A Figura 1 apresenta um exemplo de superfície de estado para índice de vazios.

Fonte: Cordão Neto (2005) adaptado de Matyas e Radhakrishna (1968).

Fredlund (1973) demonstrou que o estado de tensões em um solo não saturado pode ser definido por três variáveis de tensão, conforme apresentado na Equação 2. Quaisquer duas das variáveis de estado de tensões apresentadas na Equação 2 são independentes. A combinação $(\sigma - u_a)$ e $(u_a - u_w)$ é considerada por Fredlund e Morgenstern (1976) a mais satisfatória para o uso na prática geotécnica, pois nesta combinação os efeitos de pressão total sobre o solo podem ser separados dos efeitos causados na mudança de pressão da água presentes nos poros do solo. Caso ocorra a saturação do solo, a sucção mátrica se anula, recaindo na equação proposta por Terzaghi para o cálculo das tensões efetivas (CAMAPUM DE CARVALHO *et al.* 2015).

$$(\sigma - u_w) = (\sigma - u_a) + (u_a - u_w) \tag{2}$$

Onde:

 $(\sigma - u_w)$ é a tensão efetiva; $(\sigma - u_a)$ é a tensão normal líquida; $(u_a - u_w)$ é a sucção mátrica;

Utilizando a proposta de Matyas e Radhakrisna (1968), Fredlund *et al.* (1978) apresentaram uma superfície de estado para a resistência ao cisalhamento dos solos não saturados (Equação 3).

$$\tau = (\sigma - u_a)tg(\phi) + (u_a - u_w)tg(\phi^b) + c'$$
(3)

Onde:

 τ é a resistência ao cisalhamento não saturada na ruptura;

c' e \u00f6' são os parâmetros efetivos de resistência do solo saturado;

 $(\sigma - u_a)$ é a tensão normal líquida atuante no plano de ruptura;

 $(u_a - u_w)$ é a sucção mátrica de ruptura;

 ϕ^b é o ângulo de atrito que quantifica um acréscimo de resistência devido ao aumento da sucção.

A expressão matemática apresentada na Equação 3 consiste em uma extensão da envoltória de Mohr-Coulomb para solos não saturados, conforme ilustrado na Figura 2.

Figura 2 - Envoltória de Mohr-Coulomb estendida para solos não saturados

Fonte: Cordão Neto (2005).

A proposta inicial de Fredlund *et al.* (1978) considera que o ângulo ϕ^b é constante, entretanto, estudos posteriores mostram que o valor de ϕ^b varia em função da sucção atuante, de modo que a envoltória de ruptura deixa de ser plana e passa a ser curva (DELAGE *et al.*, 1987; ESCARIO E SÁEZ, 1986; FUTAI *et a*l., 2004)

Diversas outras propostas de superfícies de estados estão disponíveis na literatura, podendo-se citar como exemplo as superfícies para índice de vazios e para grau de saturação sugeridas por Fredlund e Morgenstern (1976) e Lloret e Alonso (1985). No entanto, Alonso *et al.* (1990) consideram que modelos constitutivos baseados em superfícies de estado não representam de forma integral o comportamento do solo, pois segundo os autores, estes modelos não consideram a influência da trajetória de carregamento e de molhagem. Bem como, a utilização de uma superfície de estado parte do princípio de que ela é única, o que segundo

resultados experimentais, isto só é válido para simular trajetórias de carregamento monotônicas (WHEELER E KARUBE, 1995).

Outra forma simplificada de analisar o comportamento mecânico dos solos não saturados é a utilização de expressões analíticas. Diversos autores propuseram expressões analíticas que relacionam de forma linear a deformação do solo com a tensão aplicada, como por exemplo Sala e Serratosa (1967), Aitchison *et al.* (1973), Lytton (1977), Johnson (1978), Justo *et al* (1984), entre outros. Entretanto, Silva Filho (1998) ressalta que estas expressões são muito limitadas e o objetivo de sua utilização é apenas reproduzir as deformações de um solo não saturado face à variação de sucção e tensão.

Após a divisão das tensões efetivas no solo não saturado em duas variáveis independentes, tensão normal líquida ($\sigma - u_a$) e sucção ($u_a - u_w$), surgiram os modelos elásticos para solos não saturados. Os modelos constitutivos elásticos são uma tentativa de estender a teoria da elasticidade para os solos não saturados e relacionam diretamente a variação do estado de deformação com o estado de tensão do solo (CAMAPUM DE CARVALHO *et al.* 2015). Pode-se citar como exemplo de modelos constitutivos elásticos o modelo proposto por Coleman (1962), um dos primeiros autores a utilizar as variáveis tensão normal líquida e sucção na formulação de um modelo constitutivo, e o modelo de Fredlund (1979), que propôs um modelo constitutivo elástico incremental para solos não saturados que pode ser entendido como uma extensão da lei de Hooke generalizada.

Os modelos elásticos apresentam como vantagens a sua maior simplicidade de modelagem por métodos numéricos e a relativa facilidade de se obter os parâmetros necessários para a aplicação destes modelos, através de ensaios de laboratório ou superfícies de estado. Como desvantagem, pode-se citar a impossibilidade de simularem deformações irreversíveis, como por exemplo o colapso, o que resulta em uma representação muito simplificada do comportamento do solo (SILVA FILHO E ALMEIDA, 1996).

Após a criação dos modelos elásticos, o avanço da modelagem de solos não saturados se deu pela elaboração de modelos elastoplásticos, que consideram de forma conjunta a deformabilidade e a resistência ao cisalhamento do solo (CORDÃO NETO, 2005).

A modelagem elastoplástica é notoriamente mais realista do que a modelagem elástica (SILVA FILHO E ALMEIDA, 1996), pois os modelos elastoplásticos se baseiam na teoria da plasticidade clássica e nos conceitos de estado crítico, sendo capazes de simular, por exemplo, o fenômeno de colapso. Como exemplos de modelos constitutivos elastoplásticos pode-se citar os modelos de Alonso *et al.* (1990), Balmaceda (1991), Wheeler e Sivakumar (1995) e Futai (1997).

A seguir, será apresentado em detalhes o modelo constitutivo elastoplástico desenvolvido por Alonso *et al.* (1990), que consiste em uma extensão do modelo Cam-Clay modificado para os solos não saturados. Este modelo foi denominado de *Barcelona Basic Model* (BBM) e ficou conhecido como modelo de Barcelona ou modelo BBM.

2.1.2. Modelo BBM

A utilização de duas variáveis de estado independentes para a representação do comportamento mecânico, possibilitou estender modelos constitutivos de sucesso na mecânica dos solos saturados para a condição não saturada, de modo que os solos saturados se tornaram um caso particular da condição não saturada (CORDÃO NETO, 2005). Partindo deste princípio, Alonso *et al.* (1990) utilizou o modelo Cam-Clay Modificado, associado aos efeitos da sucção, para o desenvolvimento de um modelo elastoplástico com o objetivo de explicar o comportamento dos solos não saturados, criando assim o *Barcelona Basic Model* (BBM).

O modelo BBM permite reproduzir o comportamento do solo não saturado quando este é submetido a trajetórias de carregamento e molhagem, sendo possível prever deformações de colapso em trajetórias de molhagem sob altas tensões de confinamento e deformações de expansão sob baixas tensões de confinamento (MASCARENHA, 2008).

Alonso *et al.* (1990) definiram em seu modelo uma superfície de plastificação utilizando quatro variáveis de estado: tensão média líquida, tensão desvio, sucção mátrica e índice de vazios.

O modelo é descrito no espaço (p, q, s) onde s é a sucção mátrica, p é a tensão média útil e q é a tensão desvio. As tensões p e q são calculadas respectivamente pelas Equações 4 e 5.

$$p = \sigma_m - u_a \tag{4}$$

$$q = \sigma_1 - \sigma_3 \tag{5}$$

Onde:

 $\sigma_1 e \sigma_3$ são tensões principais; $\sigma_m é a tensão média [\sigma_m = (\sigma_1 + 2\sigma_3)/3];$ $u_a é a pressão do ar.$

2.1.2.1. Formulações para o estado de tensões isotrópicas

Alonso *et al.* (1990) ao analisarem o comportamento dos solos não saturados submetido a compressão isotrópica com sucção controlada, definiram no plano (p,s) uma região elástica limitada por duas curvas: LC (*loading colapse*) e SI (*suction increase*).

Inicialmente, consideraram que a variação de volume específico de um solo não saturado ao longo do trecho virgem seria dada pela Equação 6.

$$v = N(s) - \lambda(s) ln \frac{p}{p^c}$$
(6)

Onde:

v é o volume específico (v=1+e);

N(s) é o volume específico referente a tensão p^c com sucção s;

 $\lambda(s)$ é o parâmetro de rigidez no trecho virgem para a variação da tensão isotrópica;

 p^c é a tensão de referência para v = N(s).

Os solos não saturados apresentam comportamento elástico com um índice de compressibilidade κ no descarregamento e no recarregamento, de modo que o comportamento elástico do solo pode ser exemplificado pela Equação 7. Alonso *et al.* (1990) verificaram que os solos saturados também apresentaram o mesmo índice de compressibilidade κ e, portanto, admitiram que κ independe da sucção.

$$\Delta v_p = -\kappa \frac{dp}{p} \tag{7}$$

Onde:

 κ é o índice de compressibilidade para o descarregamento e recarregamento da tensão isotrópica, independente da sucção.

A Figura 3 exemplifica como ocorre a variação de volume no estado de tensões isotrópico para duas amostras: uma com sucção constante e outra saturada (*s*=0).

Figura 3 – Relações entre tensões de pré-adensamento: (a) curvas de compressão para solo saturado e não saturado; (b) caminho de tensões no plano (*p*,*s*)

Fonte: Adaptado de Alonso et al. (1990).

O ponto 1 da Figura 3 corresponde a tensão de pré-adensamento da amostra não saturada, denominada de $p_0(s)$, e o ponto 3 denominado de $p_0(0)$ corresponde a tensão de préadensamento da amostra saturada. O volumo específico resultante do caminho de tensões 1-2-3 é dado pela Equação 8.

$$\Delta v_p = v_1 + \Delta v_p + \Delta v_s \tag{8}$$

O descarregamento da sucção do ponto 2 para o ponto 3 ocorre em domínio elástico. Logo, ocorre uma expansão elástica Δv_s devido à saturação que pode ser quantificada por meio da Equação 9.

$$\Delta v_s = -\kappa_s \frac{ds}{(s+p_{atm})} \tag{9}$$

Onde:

 κ_s é a rigidez elástica para a variação de sucção; p_{atm} é a pressão atmosférica.

A Equação 9 apresentada anteriormente é semelhante à Equação 7, só que definida para variações de sucção. Adiciona-se a pressão atmosférica à sucção para evitar que ocorra um valor infinito quando a sucção se aproximar de zero.

Utilizando as Equações 6, 7, 8 e 9, pode-se determinar a tensão de escoamento para uma sucção maior do que zero a partir da Equação 10.

$$p_0(s) = p^c exp\left[\frac{(\lambda(0) - \kappa)ln\left(\frac{p_0(0)}{p^c}\right) + N(s) - N(0) + \kappa_s ln\left(\frac{s + p_{atm}}{p_{atm}}\right)}{(\lambda(s) - \kappa)}\right]$$
(10)

Onde:

 $N(0) e \lambda(0)$ são parâmetros do solo saturado.

Considerando o solo submetido a tensão de referência p^c , a variação de volume durante uma diminuição de sucção é dada pela Equação 11.

$$\Delta v(p^c)_0^s = N(0) - N(s) = \kappa_s ln \frac{s + p_{atm}}{p_{atm}}$$
(11)

Substituindo a Equação 11 na Equação 10, tem-se uma expressão simplificada para o cálculo da tensão de escoamento $p_0(s)$ (Equação 12). Esta equação define a curva de escoamento LC, que considera que o escoamento pode ser realizado por trajetórias com o aumento da tensão p ou por diminuição da sucção s.

$$\left(\frac{p_0(s)}{p^c}\right) = \left(\frac{p_0(0)}{p^c}\right)^{[\lambda(0)-\kappa]/[\lambda(s)-\kappa]}$$
(12)

A curva LC além de representar o aumento da tensão média de escoamento com a sucção, permite descrever o fenômeno de colapso para trajetórias de diminuição de sucção. Alonso *et al.* (1990) propuseram na definição da LC que a rigidez do solo aumenta com a sucção. No entanto, a fim de evitar que a rigidez do solo aumente de forma ilimitada, os autores propuseram a incorporação de uma rigidez anisotrópica máxima, que consiste em um índice de compressibilidade elastoplástico assimptótico calculado pela Equação 13.

$$\lambda(s) = \lambda(0)[(1-r)e^{-\beta s} + r]$$
⁽¹³⁾

Onde:

 β é o parâmetro que controla o aumento da rigidez do solo com a sucção; r é a constante relacionada com a rigidez máxima do solo (dada pela Equação 14).

$$r = \frac{\lambda(s \to \infty)}{\lambda(0)} \tag{14}$$

Sabendo que o solo pode apresentar deformações plásticas decorrentes apenas do aumento da sucção, Alonso *et al.* (1990) propuseram em seu modelo a curva de escoamento SI, definida pela Equação 15. Segundo os autores, sempre que o solo atingir um valor igual ao máximo valor de sucção previamente atingido, deformações plásticas serão geradas. Desse modo, a curva SI delimita a transição do regime elástico para o regime plástico.

$$s = s_0 \tag{15}$$

Onde:

*s*⁰ é a máxima sucção experimentada pelo solo (sucção de plastificação);

A Figura 4 apresenta a região de domínio elástico delimitada pelas curvas de plastificação LC e SI. A determinação das deformações elásticas e plásticas depende da trajetória considerada. Ou seja, qualquer trajetória que ocorra dentro da superfície de plastificação é considerada elástica e produz deformações completamente reversíveis. Caso a trajetória acione as superfícies LC e SI em qualquer direção, ocorre a plastificação, e a trajetória é considerada elastoplástica.

Fonte: Adaptado de Alonso et al. (1990).

A Equação 16 e a Equação 17 calculam a variação de volume específico devido à modificação da sucção para os comportamentos elásticos e elastoplásticos, respectivamente.

$$dv_e = -\kappa_s \frac{ds}{(s+p_{atm})} \tag{16}$$

$$dv_p = -\lambda_s \frac{ds}{(s+p_{atm})} \tag{17}$$

Onde:

 λ_s é o parâmetro de rigidez para o aumento da sucção em estado virgem;

O aumento da tensão p e da sucção s dentro da região elástica causam deformações volumétricas elásticas de compressão. A deformação elástica decorrente do aumento da tensão p está apresentada Equação 18 e a deformação elástica decorrente do aumento da sucção s está apresentada na Equação 19.

$$d\varepsilon_{vp}^{e} = -\frac{dv}{v} = \frac{\kappa dp}{v p}$$
(18)

$$d \mathcal{E}_{vs}^{e} = \frac{\kappa_{s}}{v} \frac{ds}{(s+p_{atm})}$$
(19)

Ao atingir as superfícies de plastificação LC e SI, sob aumento da tensão p e da sucção *s*, respectivamente, ocorrem deformações plásticas. As deformações plásticas decorrentes do acionamento da superfície LC podem ser calculadas pela Equação 20 ou pela Equação 21. Já as deformações plásticas decorrentes da ativação da superfície SI são calculadas pela Equação 22.

$$d\varepsilon_{vp}^{p} = \frac{\lambda(s) - \kappa}{v} \frac{dp_{0}(s)}{p_{0}(s)}$$
(20)

$$d\varepsilon_{vp}^{p} = \frac{\lambda(0) - \kappa}{v} \frac{dp_{0}(0)}{p_{0}(0)}$$
(21)

$$d\varepsilon_{vs}^{p} = \frac{\lambda_{s} - \kappa_{s}}{v} \frac{ds_{0}}{(s_{0} + p_{atm})}$$
(22)

As superficies de plastificação LC e SI são acopladas através de uma lei de endurecimento e dependem da deformação volumétrica total. Ou seja, as deformações plásticas produzidas pelo aumento da tensão p além de movimentarem a superfície LC, também movimentam a superfície SI. Bem como, as deformações volumétricas plásticas produzidas pelo aumento da sucção s além de movimentarem a superfície SI, também movimentam a

superfície LC. A lei de endurecimento é composta pelas Equações 23 e 24.

$$\frac{dp_0(0)}{p(0)} = \frac{v}{\lambda(0) - \kappa} d\varepsilon_v^p \tag{23}$$

$$\frac{ds_0}{s_0 + p_{atm}} = \frac{v}{\lambda_s - \kappa_s} d\varepsilon_v^p \tag{24}$$

2.1.2.2. Formulações para o estado de tensões triaxiais

Ao analisar o comportamento do solo não saturado quando submetido a um estado de tensões triaxiais, Alonso *et al.* (1990) incorporaram ao modelo a tensão desvio q, a fim de incluir o efeito de tensões cisalhantes.

O parâmetro de tensão q produz deformações cisalhantes elásticas que podem ser calculadas pela Equação 25.

$$d\varepsilon_s^e = \frac{1}{3}Gdq \tag{25}$$

Onde:

G é o módulo cisalhante.

O modelo BBM propõe que a superfície de escoamento apresente um aspecto tridimensional em formato de elipse, definida no espaço (p,q,s). Segundo os autores, para cada sucção, existe uma elipse, semelhante ao utilizado no modelo Cam-Clay Modificado. Dessa forma, quando a sucção for nula, a elipse do modelo BBM é igual à proposta pelo modelo Cam-Clay modificado. O crescimento da superfície elíptica pode ocorrer por aumento da tensão de escoamento e aumento do efeito coesivo da sucção. A Equação 26 descreve a superfície de escoamento elíptica definida no espaço (p,q,s).

$$q^{2} = M^{2}(p + p_{s})(p_{0} - p) = 0$$
(26)

Sendo que:

$$p = -p_s = -ks \tag{27}$$

Onde:

q é a tensão desviadora;

k é a constante que descreve o aumento da coesão com o aumento da sucção;

M é a inclinação da linha de estados críticos, calculada pela Equação 28, independente da sucção.

$$M = \frac{6sen\phi'}{3-sen\phi'} \tag{28}$$

A Figura 5 apresenta a superfície tridimensional no espaço (p,q,s) e as suas projeções nos planos (p,q) e (p,s). A projeção no plano (p,q) tem um formato elíptico, sendo esta elipse tanto maior quanto maior for a sucção.

Figura 5 – Superfície de plastificação proposta por Alonso et al. (1990) (a) Vista 3D (b) Projeções nos planos (p,q) e (p,s)

Fonte: Adaptado de Alonso et al. (1990).

O cálculo das deformações cisalhantes admitindo uma lei de fluxo não associada é realizado por meio da Equação 29.

$$\frac{d \,\varepsilon_{p}^{p}}{d \varepsilon_{vp}^{p}} = \frac{2qa}{M^{2}(2p+p_{s}-p_{0})}$$
(29)

Onde:

a é o parâmetro de não associação, utilizado para ajustar o modelo para trajetórias de carregamento k₀.

O parâmetro *a* é utilizado para evitar a superestimação dos valores de k_0 calculados pelos modelos de estados críticos. A Equação 30 calcula o parâmetro *a* de modo que as deformações laterais sejam nulas para um k_0 calculado pela fórmula de Jaky (1948).

$$a = \left(\frac{M(M-9)(M-3)}{9(6-M)}\right) \left(\frac{1}{1-\frac{\kappa}{\lambda(0)}}\right)$$
(30)

2.1.2.3. Parâmetros utilizados no modelo BBM

Os parâmetros utilizados no modelo proposto por Alonso *et al.* (1990) estão relacionados ao estado inicial de tensões e as curvas LC e SI. Estes parâmetros são determinados a partir de ensaios de laboratório. Em resumo, tem-se que:

- a) Os parâmetros p^c, p₀(0), λ(0), κ, r e β são determinados a partir de ensaios de compressão isotrópica, drenados (carregamento e descarregamento) com sucção controlada (conforme apresentado na Figura 6.a);
- b) Os parâmetros s_0 , λ_s e κ_s são determinados a partir de ensaios que envolvam ciclos de aumento e diminuição de sucção, mantendo a tensão constante (conforme apresentado na Figura 6.b);
- c) Os parâmetros G, M e k são determinados a partir de ensaios de cisalhamento drenados, realizados com diferentes valores de sucção (conforme apresentado na Figura 6.c).

Figura 6 - Trajetórias de tensões utilizadas para a obtenção dos parâmetros do modelo BBM

Fonte: Adaptado de Alonso et al. (1990).

2.1.2.4. Limitações e adaptações do modelo BBM

Cordão Neto (2005) cita como limitação do modelo BBM o fato dele prever um aumento indefinido do valor de colapso do solo, o que não é observado em resultados experimentais, já que os ensaios deixam claro a existência de uma tensão limite para a qual o colapso volumétrico decresce. Apesar desta limitação, o modelo BBM mostrou-se eficiente na previsão do comportamento de solos não saturados com baixa atividade e serviu como base para outros trabalhos, como por exemplo o de Balmaceda (1991), Wheeler e Sivakumar (1995) e Futai (1997).

Balmaceda (1991) sugeriu uma modificação da expressão que define a curva de escoamento LC para a consideração da existência do colapso máximo. Wheeler e Sivakumar (1995) também propuseram a modificação da formulação da curva de escoamento LC, bem como da elipse no plano (p,q) de modo a permitir modelar o aumento ou a diminuição da rigidez com a sucção. Futai (1997) sugeriu que as funções de $\lambda(s)$ e N(s) fossem ajustadas a partir de

dados experimentais das linhas de adensamento isotrópico e da superfície LC experimental, de modo que $\lambda(s)$ pudesse ser crescente ou decrescente.

Silva Filho (1998) propôs uma modificação do modelo de Wheeler e Sivakumar (1995) chamada pelo autor de modelo WS modificado. O objetivo da modificação foi tornar o modelo proposto por Wheeler e Sivakumar (1995) mais simples de ser aplicado, através da redução do número de parâmetros. Também foi proposta a utilização do ensaio duplo de adensamento para a determinação dos parâmetros do modelo, de modo que para a aplicação do modelo WS Modificado não fosse necessária a realização de ensaios com sucção controlada.

Alonso *et al.* (1999) observaram que o modelo BBM apresentava dificuldade de representar a resposta de solos muito expansivos, devido sua formulação representar o comportamento do solo utilizando apenas uma visão macroscópica, desconsiderando os fenômenos microscópicos. A fim de corrigir isto, Alonso *et al.* (1999) propuseram uma reformulação do modelo BBM, surgindo assim o *Barcelona Expansive Model* (BExM).

O BExM tem como característica principal considerar a macroestrutura e a microestrutura do solo de forma acoplada, ou seja, deformações de expansão ou contração da microestrutura produzem deformações na macroestrutura (CORDÃO NETO, 2005). A reformulação do modelo BBM representa adequadamente as deformações volumétricas plásticas ocorridas devido à variação da sucção do solo, entretanto as mudanças irreversíveis do grau de saturação devido a esta variação de sucção não são consideradas (MASCARENHA, 2008).

Wheeler *et al.* (2003) observaram que as propostas de Alonso *et al.* (1990) e Alonso *et al.* (1999) consideraram a sucção como a única variável relacionada à condição não saturada do solo. Os autores destacam que o comportamento mecânico do solo não saturado, para ser bem caracterizado, precisa considerar a quantidade de água existente nos vazios do solo, e não só a sucção. Partindo deste princípio, Wheeler *et al.* (2003) propuseram um novo modelo constitutivo elastoplástico para solos não saturação no comportamento tensão-deformação do solo. Assim como o modelo de Wheeler *et al.* (2003), outros modelos foram desenvolvidos visando o acoplamento do comportamento hidromecânico do solo, como por exemplo os modelos de Vaunat *et al.* (2000), Sheng *et al.* (2004) e Li (2007).

2.2. Comportamento hidráulico dos solos não saturados

O comportamento hidráulico dos solos não saturados está diretamente ligado à capacidade de armazenar e à facilidade de transportar fluidos através dos seus poros (CORDÃO NETO, 2005), sendo a água o fluido analisado neste trabalho. A capacidade de armazenar a água dos solos não saturados é descrita pela curva de retenção de água, já a facilidade de transportar a água é descrita pela condutividade hidráulica do solo não saturado.

2.2.1. Curva de retenção de água no solo

A forma como o solo administra a água presente em seus vazios pode ser representada pela curva de retenção, que consiste na relação entre a sucção e a quantidade de água armazenada no solo (GERSCOVICH, 2001). Esta relação é expressa graficamente, podendo o volume de água presente nos poros do solo ser representado em termos de grau de saturação, de teor de umidade gravimétrico (relação entre os pesos de água e de sólidos) e de teor de umidade volumétrico (relação entre o volume de água e o volume total).

Fredlund (2006) considera a curva de retenção como a propriedade determinante para a implementação da mecânica dos solos não saturados na prática da engenharia, o que torna sua correta interpretação tão importante. A curva de retenção de água de um solo é uma função contínua na qual a sucção varia de forma inversa ao teor de umidade ou grau de saturação, sendo nula quando o solo está totalmente saturado e atingindo seu valor máximo quando o grau de saturação tende a zero (CAMPOS, 1984).

A relação entre o teor de umidade e a sucção do solo pode ser representada graficamente descrevendo uma trajetória de secagem ou de saturação. A Figura 7 apresenta os principais elementos da curva de retenção de água de um solo. A umidade de saturação consiste na umidade em que o solo se encontra no estado saturado, e a pressão de entrada de ar corresponde ao valor de sucção que inicia o processo de dessaturação do solo. A umidade residual consiste no teor de umidade a partir do qual é difícil remover a água do solo através de drenagem, ou seja, é necessária uma grande variação de sucção para que haja a remoção. Já o teor de ar residual corresponde à umidade de saturação no processo de umedecimento.

Figura 7 - Exemplo de curva de retenção de água no solo

Fonte: Adaptado de Fredlund e Rahardjo (1993).

A trajetória de saturação (umedecimento ou hidratação) é determinada quando uma amostra seca tem sua sucção reduzida gradualmente ao incrementar-se a umidade, já a trajetória de secagem (ou desidratação) ocorre quando a amostra, previamente saturada, é exposta a uma diminuição de umidade, tendo sua sucção crescente (AGUIAR, 2014). A forma mais comum de determinar a curva de retenção de água no solo é por secagem, devido a sua facilidade. No entanto, para se obter maior representatividade, é recomendado que a trajetória imposta em laboratório reproduza a trajetória de interesse para o problema analisado (CAMAPUM DE CARVALHO *et al.*, 2015).

As curvas de saturação e de secagem não coincidem, conforme pode ser observado na Figura 7, sendo este fenômeno é conhecido como histerese. O fenômeno de histerese ocorre normalmente devido aos seguintes fatores: presença de ar aprisionado no solo, não uniformidade geométrica dos poros, diferente conectividade espacial dos poros durante os processos de saturação ou de secagem, variação do ângulo de contato líquido-solo, história de secagem e de saturação, e solução ou liberação lenta de ar dissolvido na água (CAMPOS, 1984; CAMAPUM DE CARVALHO *et al.*, 2015).

Os principais fatores que influenciam no formato da curva de retenção dos solos são: distribuição granulométrica, estrutura do solo, mineralogia das partículas e distribuição dos poros (ROHM, 1993; CALLE, 2000; AGUIAR, 2014). Além dos fatores citados anteriormente, amplamente aceitos na comunidade geotécnica, Oliveira (2004) apresentou que a umidade de moldagem e a história de tensões dos solos também modifica o formato da curva de retenção.

A Figura 8 apresenta a curva de retenção para diferentes tipos de solos. Pode-se observar que, de maneira geral, os solos granulares tendem a apresentar redução brusca de umidade quando a sucção ultrapassa a pressão de entrada de ar, já os solos finos apresentam curvas mais suaves. Isto acontece pois os solos finos, se comparados com os solos grossos, conseguem reter uma maior porcentagem de água, devido possuírem maiores espaços porosos e uma superfície de adsorção maior (SANTOS *et al.*, 2015).

Figura 8 – Curva de retenção para diferentes tipos de solo

Fonte: Adaptado de Fredlund e Xing (1994).

A curva de retenção tem um papel para os solos não saturados semelhante ao da curva de adensamento para os solos saturados (MARTÍNEZ, 2003) e se tornou um instrumento básico de caracterização dos solos na condição não saturada por possibilitar correlacionar a sucção com um índice físico do solo (ROCHA, 2018). Por estes motivos, a curva de retenção deve ser determinada de forma cuidadosa através de técnicas confiáveis que garantam a acurácia de seus resultados.

2.2.1.1. Métodos de obtenção da curva de retenção

Para a obtenção da curva de retenção de água no solo, faz-se necessário determinar a sucção para diversos teores de umidade. A partir desta determinação, as informações experimentais obtidas são utilizadas em equações de ajuste pré-definidas para a representação da curva de retenção. A sucção do solo é composta por duas parcelas: a sucção mátrica e a sucção osmótica, sendo a soma destas parcelas denominada de sucção total (FREDLUND E RAHARDJO, 1993). A sucção mátrica está associada ao fenômeno da capilaridade e é representada pela diferença entre a poropressão de ar (u_a) e a poropressão de água (u_w), já a sucção osmótica está relacionada com a concentração de solutos nos poros do solo preenchidos de água. A sucção osmótica é passível de ser observada apenas para valores baixos de sucção, já que em sucções acima de 1500 kPa sua contribuição é mínima (FREDLUND e XING, 1994). Desse modo, na Geotecnia, a variação da sucção total está quase que diretamente relacionada com a variação da sucção mátrica, pois a concentração de sais nos poros dos solos não saturados, quando ocorre, é relativamente baixa e praticamente não varia com as alterações ambientais (EDIL *et al.*, 1981; BLIGHT, 1983; FREDLUND e RAHARDJO, 1993; ZHAN, 2003).

A determinação da sucção pode ser realizada através de métodos diretos, que consistem em métodos em que a sucção é medida diretamente a partir de instrumentos que medem a quantidade de energia da água nos poros, e através de métodos indiretos, em que a sucção é obtida a partir da relação com alguma propriedade do solo através de uma calibração (CAMAPUM DE CARVALHO E MURRIETA, 1995). Como exemplo de métodos diretos, pode-se citar os métodos da placa de sucção, câmara de pressão (câmara de Richards) e tensiômetro de alta capacidade. Já como exemplo de método indireto, pode-se citar o ensaio de papel filtro. Uma revisão mais detalhada dos diversos métodos de obtenção da sucção dos solos pode ser encontrada em Fredlund e Rahardjo (1993), Campos (1994), Lee e Wray (1995), Rahardjo e Leong (2006), Delage e Cui (2008), Camapum de Carvalho *et al.* (2015), entre outros.

O método do papel filtro será utilizado neste trabalho para a obtenção da curva de retenção do solo constituinte da barragem Cipoada e, portanto, será melhor detalhado nesta revisão. A metodologia do ensaio consiste na utilização de um papel filtro do tipo quantitativo como instrumento de medida para quantificar indiretamente a sucção mátrica e total atuante no solo (SILVA, 2019). Esta técnica se baseia no princípio de que ao colocar um material poroso capaz de absorver água em contato com um solo úmido, a água será transferida do solo para este material até atingir uma condição de equilíbrio. Nesta condição de equilíbrio, o potencial matricial da água no solo e no material poroso são iguais, embora suas umidades sejam diferentes (MARINHO E OLIVEIRA, 2006).

Diversos autores desenvolveram pesquisas sobre o método do papel filtro e sua utilização, como por exemplo Gardner (1937), Ho (1979), Chandler e Gutierrez (1986),
Marinho (1994), Ridley e Wray (1996), Bulut e Leong (2008), entre outros.

A ASTM D5298/2016: *Standard test method for measurement of soil potential (suction) using filter paper* descreve o procedimento para a realização do método do papel filtro. A metodologia de ensaio consiste em colocar um papel filtro em contato com uma amostra de solo em um recipiente hermeticamente fechado, por um tempo suficiente que garanta o equilíbrio da água presente nos poros da amostra, nos poros do papel filtro e no ar contido no interior do recipiente. Após atingir o equilíbrio, o teor de água do papel filtro é determinado e a sua sucção é inferida a partir de uma curva de calibração (ASTM, 2016).

A Figura 9 apresenta os dois tipos de fluxo possíveis para o método do papel filtro. Quando o papel filtro é disposto em contato com o solo (Figura 9a) ocorre o fluxo capilar, e nesta situação o solo troca livremente água e solutos com o papel. Quando não há contato entre o papel filtro e o solo (Figura 9b), o espaço deixado entre eles oferece uma barreira para os solutos presentes no solo, permitindo somente o fluxo de vapor de água. Quando ocorre o fluxo de vapor, o método do papel filtro mede a sucção total do solo. Quando ocorre o fluxo capilar, a componente osmótica não atua como uma força de retenção adicional para a transferência da água para o papel filtro, portanto, mede-se apenas a sucção mátrica (MARINHO E OLIVEIRA, 2006).

Figura 9 - Tipos de fluxo entre solo e papel filtro

Fonte: Adaptado de Marinho (1994).

Qualquer que seja a forma de realização (com contato ou sem contato), o tempo de equilíbrio é um fator determinante para a correta execução do ensaio (MARINHO, 1994). Fredlund e Rahardjo (1993) consideram que o tempo necessário para se atingir o equilíbrio entre a sucção do solo e a do papel filtro, para ambas as situações apresentadas na figura

anterior, é de 5 a 14 dias. Para Marinho (1994), 7 dias são suficientes para a obtenção das sucções mátricas, pois grande parte da água é absorvida nos primeiros minutos. Já para o equilíbrio da sucção total, pode-se levar mais de 30 dias. A ASTM D5298/2016 recomenda um tempo de equilíbrio de 7 dias para a medição tanto de sucções mátricas como de sucções totais.

O método do papel filtro é um dos mais utilizados para medir a sucção dos solos em laboratório, devido principalmente a sua simplicidade de execução (MARINHO E GOMES, 2011). Aplicando este método, é possível medir a sucção dos solos em uma faixa de 0,1 a 150000 kPa sem necessidade de instrumentos sofisticados, sendo considerada uma técnica de baixo custo (NELSON E MILLER, 1992; LEONG e RAHARDJO, 2002; RAINWATER *et al.*, 2011). Outra vantagem importante deste método de ensaio é que o solo pode ser testado em condições muito próximas ao do solo in situ, pois não se baseia em pressões de ar elevadas, como na técnica de translação de eixos (RIDLEY *et al.*, 2003).

Apesar das vantagens apresentadas, o método do papel filtro apresenta como desvantagem o elevado tempo para obtenção dos resultados do ensaio. Bem como, os resultados são estritamente dependentes da precisão ao se realizar as etapas do ensaio, exigindo habilidade e rapidez de manuseio do operador. Por exemplo, na etapa de pesagem do papel filtro para determinação de sua umidade, a ASTM D5298/16 recomenda que a pesagem seja realizada em uma balança com precisão de 0,0001 gramas, e que o tempo entre a retirada do papel filtro em contato com o solo e a pesagem seja de no máximo 5 segundos, pois o papel filtro perde cerca de 5% de massa quando exposto de 5 a 10 segundos ao ar.

De modo geral, o método do papel filtro é uma técnica simples e confiável para a medição de sucção, desde que seus princípios básicos sejam compreendidos corretamente e um protocolo de laboratório seja cuidadosamente executado (BULUT E LEONG, 2008).

Os papeis filtros mais utilizados neste tipo de ensaio são o Whatman nº 42 e o Schleicher e Schuell nº 589 (LEONG *et al.*, 2002). Nesta pesquisa, será utilizado o papel filtro Whatman nº 42. Exemplos de curvas de calibração encontradas na literatura para este papel estão apresentadas na Tabela 1.

REFERÊNCIA	SUCÇÃO MEDIDA	FAIXA DE UMIDADE [w] (%)	LOG ₁₀ [SUCÇÃO] (kPa)
ASTM D5298	Total/Mátrica	w<45,3	5,327-0,0779w
(2016)	Total/Mátrica	w>45,3	2,412-0,0135w
Chandler <i>et al</i> .	Mátrica	w≤47	4,842-0,0622w
(1992)	Mátrica	w>47	6,050-2,48 Log w
Leong <i>et al</i> .	Mátrica	w<47	4,945-0,0673w
(2002)	Mátrica	w≥47	2,909-0,0229w
Oliveira e Fernando (2006)	Total/Mátrica	w<33	4,83-0,0839w
	Total/Mátrica	w>33	2,57-0,0154w

Tabela 1 - Curvas de calibração para o papel filtro Whatman nº 42

Fonte: Elaborada pela Autora.

2.2.1.2. Modelos de ajuste para a curva de retenção

A representação da curva de retenção por meio de uma função contínua é necessária para a previsão de diversas propriedades dos solos não saturados e para análises numéricas do fluxo de água (CAMAPUM DE CARVALHO *et al.* 2015). Para isto, várias proposições empíricas foram sugeridas ao longo dos anos para simular a curva de retenção, ou seja, encontrar uma função que se ajuste aos dados experimentais obtidos. Estes modelos de ajuste se baseiam, de uma forma geral, no conceito de similaridade entre a curva de retenção e a função de distribuição granulométrica, devido a última está indiretamente relacionada à distribuição acumulativa de volume de vazios (GERSCOVICH, 2001). A Tabela 2 relaciona algumas das proposições para modelagem da curva de retenção.

REFERÊNCIA	EQUAÇÃO	DEFINIÇÃO DAS VARIÁVEIS	
Gardner (1958)	$\Theta = \frac{1}{1 + q \Psi^{\eta}}$	Θ = teor de umidade normalizado [Θ = (θ - θ _r)/(θ _s - θ _r)], em que θ , θ _r e θ _s são, respectivamente, os teores de umidade volumétrico, residual e saturado; Ψ = sucção; η e q = parâmetros de ajuste;	
Brooks e Corey (1964)	$\Theta = \left(\frac{\Psi_{\rm b}}{\Psi}\right)^{\lambda}$	 λ = índice de distribuição de diâmetro de vazios; Ψ_b = sucção de entrada de ar; 	
Visser (1966)	$\Psi = \frac{a \left(\theta_{s}\text{-} \theta\right)^{b}}{\theta^{c}}$	a, b e c = parâmetros de ajuste;	
Farrel e Larson (1972)	$\Psi = \Psi_{\rm b} {\rm e}^{\alpha(1-\Theta)}$	α = parâmetro de ajuste;	
Roger e Hornberger (1978)	$\Psi = a(S_s-b)(S_s-1)$	Correção do modelo de Brooks e Corey (1964) na faixa de baixos valores de sucção; $Ss = \theta/\theta S;$ a e b = parâmetros de ajuste;	
Van Genuchten (1980)	$\Theta = \left(\frac{1}{1 + (\alpha \Psi)^n}\right)^m$	α , m e n = parâmetros de ajuste;	
Williams et al. (1983)	$\ln \Psi = a + b \ln \theta$	a e b = parâmetros de ajuste;	
Saxton <i>et al</i> . (1986)	$\Psi = a\theta^b$	a e b = parâmetros de ajuste;	
McKee e Bumb (1987)	$\Theta = \frac{1}{1 + e^{(\Psi - a)/b}}$	a e b = parâmetros de ajuste;	
Fredlund e Xing (1994)	$\theta = C_{\Psi} \frac{\theta_s}{\ln\left[e + \left(\frac{\Psi}{a}\right)^n\right]^m}$ $C_{\Psi} = 1 - \frac{\ln\left(1 + \frac{\Psi}{\Psi_r}\right)}{\ln\left(1 + \frac{\Psi_o}{\Psi_r}\right)}$	a, m e n = parâmetros de ajuste; e = base do logaritmo neperiano; C_{Ψ} = Capacidade de retenção específica; Ψ_r = sucção residual; Ψ_0 = sucção correspondente à condição de teor de umidade nulo;	

Tabela 2 – Proposições para ajuste da curva de retenção de água no solo

Fonte: Adaptado de Gerscovich (2001)

As proposições para modelagem da curva de retenção, apresentadas anteriormente, consideram algumas simplificações, como por exemplo: assumem que sob condições de pressão no líquido negativa, a curvatura do menisco assume um formato esférico, o que é válido apenas para casos de tubos cilíndricos; não consideram a não uniformidade geométrica dos vazios do solo, pois a relação entre o diâmetro dos vazios e a sucção é considerada unívoca; pressupõe a inexistência de variação de volume do solo durante processos de secagem ou umedecimento (GERSCOVICH, 2001).

Estudos realizados por Gerscovich (2001), Gerscovich e Sayão (2002) e Gerscovich *et al.* (2004) avaliaram que as equações propostas por Gardner (1958), Van Genuchten (1980) e Fredlund e Xing (1994) forneceram um bom ajuste com os dados experimentais de solos brasileiros.

Como alternativa aos modelos empíricos citados, estudos sobre o uso de redes neurais para a estimativa da curva de retenção de água dos solos estão sendo realizados, como por exemplo os trabalhos de SCHAAP e LEIJ (1998), JAIN *et al.* (2004) e D'EMILIO *et al.* (2018). No entanto, os resultados obtidos por estes trabalhos mostram a dependência da qualidade do ajuste com a quantidade de dados disponíveis.

2.2.2. Condutividade hidráulica

A condutividade hidráulica é uma das propriedades físicas mais importantes que governam o movimento da água nos poros do solo, pois expressa a facilidade com que a água nele se movimenta. Segundo Hillel (1971), a condutividade hidráulica é uma propriedade do conjunto solo e fluido, e não apenas uma propriedade do solo.

Nos solos saturados, o fluxo de água é descrito pela Lei de Darcy, tendo-se que o volume de água que atravessa um elemento de solo por unidade de tempo é proporcional ao gradiente hidráulico (CORDÃO NETO, 2005). A definição de uma lei de fluxo para os solos não saturados requer saber como o fluido se desloca em um meio em que os vazios não estão totalmente preenchidos por água. Childs (1969) considera que a água flui somente por vazios preenchidos por água, o que faz com que o fluxo de água não saturado também possa ser descrito pela Lei de Darcy. Entretanto, a condutividade hidráulica não saturada não é constante e varia em função do grau de saturação ou da sucção (RICHARDS, 1931; CHILDS e GEORGE, 1950).

A condutividade hidráulica (k) do solo, também conhecida como coeficiente de

permeabilidade, sofre influência do índice de vazios do solo, da estrutura e anisotropia do sistema, do peso específico e da viscosidade do líquido, e do grau de saturação (PINTO, 2006). Ao passo que a quantidade de água nos poros do solo decresce, maior é a dificuldade para a passagem da água, visto que a percolação não remove todo o ar existente nos poros, permanecendo bolhas de ar contidas pela tensão superficial da água, que constituem obstáculos ao fluxo. A relação entre o coeficiente de condutividade hidráulica e a combinação entre o índice de vazios, grau de saturação ou teor de umidade volumétrico é chamada de função de permeabilidade (MARINHO, 2005).

A determinação da função de permeabilidade pode ser realizada experimentalmente ou a partir de formulações matemáticas. A obtenção experimental pode ser feita através de ensaios de laboratório ou ensaios de campo, sendo que ambos os tipos de ensaios podem ser realizados em regime permanente ou em regime transiente, utilizando amostras indeformadas ou amostras deformadas (HERNANDEZ MONCADA, 2008). Para o regime de fluxo permanente, pode-se citar o método da carga constante, da vazão constante e centrífuga; e para o regime de fluxo transiente, pode-se citar os métodos de absorção, sorção, vazão de passos múltiplos, vazão de passo único, perfil instantâneo e evaporação (GUIMARÃES, 2004).

Apesar da existência dos métodos experimentais citados anteriormente, normalmente a condutividade hidráulica não saturada costuma ser estimada ao invés de medida, devido os ensaios serem de longa duração e requererem equipamentos elaborados (BRISSON *et al.*, 2002). Bem como, a realização desses ensaios apresenta dificuldades relacionadas a definição das condições de contorno e medidas confiáveis do avanço da frente de infiltração da água no solo (CONCIANI *et al.*, 1997).

Para a estimativa da função de permeabilidade, são inúmeras as propostas disponíveis na literatura que relacionam o coeficiente de permeabilidade saturado com a curva de retenção de água no solo. Estas propostas consideram a hipótese que tanto a função de permeabilidade quanto a curva de retenção são funções da distribuição dos tamanhos dos poros do solo, apresentando uma estreita relação entre ambas, como pode ser observado na Figura 10.

Figura 10 – Relação entre a curva de retenção e a função de permeabilidade

Fonte: Adaptado de Fredlund (2000).

Verifica-se na Figura 10 que a condutividade hidráulica dos dois solos (areia e silte argiloso) permanecem constantes até os valores de entrada de ar, e após este ponto, a decrescem rapidamente de forma linear até o valor residual.

A Tabela 3 apresenta algumas proposições disponíveis na literatura que relacionam a função permeabilidade com a curva de retenção.

REFERÊNCIA	EQUAÇÃO	DEFINIÇÃO DAS VARIÁVEIS
Gardner (1958)	$k = \frac{k_{sat}}{1 + \alpha \left(\frac{\psi}{\rho_w g}\right)^n}$	$\Psi = \operatorname{suc} \tilde{a} \tilde{a}$; α e n = parâmetros de ajuste; $\rho_w = \operatorname{densidade} da \operatorname{água}$; $g = \operatorname{acelera} \tilde{a} \tilde{a} gavitacional$;
Brooks e Corey (1968)	$k(\psi) = k_{sat} \left(\frac{\Psi_b}{\psi}\right)^{\eta} \to \psi > \psi_b$ $k(\psi) = k_{sat} \to \psi \le \psi_b$	ψ = sucção ψ _b = sucção de entrada de ar η = parâmetro de ajuste
Arbhabhirama e Kridakorn (1968)	$k = \frac{k_{sat}}{\left(\frac{\Psi}{\Psi_b}\right)^{n'} + 1}$	ψ = sucção ψ _b = sucção de entrada de ar n' = parâmetro de ajuste
Davidson <i>et al.</i> (1969)	$k = k_{sat} e^{\left[\beta(\theta - \theta_s)\right]}$	θ_s = teor de umidade saturado β = parâmetro de ajuste
Campbell (1974)	$k = k_{sat} \left(\frac{\theta}{\theta_s}\right)^{2\beta+3}$	θ_s = teor de umidade saturado β = parâmetro de ajuste
Mualem (1976)	$k_{rel} = \frac{\left[1 - (\alpha \psi)^{mn} (1 + (\alpha \psi)^n)^{-m}\right]^2}{\left[1 + (\alpha \psi)^n\right]^{\frac{m}{2}}} \rightarrow \psi > 0$	$\Psi = sucção$ $k_{rel} = k/k_{sat}$ α , m e n = parâmetros de ajuste;
Mualen e Dagan (1978)	$k_{rel} = S_e^{x} \left(\frac{\int_0^{\theta} \frac{d\theta}{\psi^{1+b}}}{\int_0^{\theta_s} \frac{d\theta}{\psi^{1+b}}} \right)^2$	$\begin{aligned} \Psi &= \operatorname{succ} \tilde{a} o \\ k_{rel} &= k/k_{sat} \\ \theta &= \operatorname{teor} de umidade \\ volumétrico \\ b &= fator de tortuosidade \end{aligned}$
Van Genuchten (1980)	$k(S_e) = k_{sat} S_e^l \left[1 - (1 - S_e^{\frac{1}{m}})^m \right]^2$ $S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r}$	$\theta_r e \theta_s =$ teor de umidade residual e saturado $S_e =$ grau de saturação m = parâmetro de ajuste l = 0,5
Leong e Rahardjo (1998)	$k_{rel} = \Theta^P \to \Theta = \frac{\theta - \theta_r}{\theta_s - \theta_r}$	$k_{rel} = k/k_{sat}$ $\theta_r e \theta_s = teor de umidade$ residual e saturado p = parâmetro de ajuste $\Theta = teor de umidade$ normalizado
Vanapalli e Lobbezoo (2002)	$k_{rel} \approx 10^{(7,9logS^{\gamma})}$ $\gamma = 14,08(I_p)^2 + 9,4(I_p) + 0,75$	$k_{rel} = k/k_{sat}$ S = grau de saturação I _p = índice de plasticidade

Tabela 3 – Proposições para modelagem da curva de condutividade hidráulica

Fonte: Gerscovich e Guedes (2004)

As proposições apresentadas na Tabela 3 necessitam do conhecimento prévio dos teores de umidade saturado, residual, sucção de entrada de ar e condutividade hidráulica saturada. Leong e Rahardjo (1997) citam que a determinação da função permeabilidade através

da curva de retenção apresenta como problemas as dificuldades inerentes da obtenção correta da curva de retenção, como por exemplo em situações que o solo se retrai para altos valores de sucção ou em casos de expansão, e o fato de os pontos da curva de retenção próximos da umidade volumétrica residual serem imprecisos e de difícil determinação.

Gerscovich e Guedes (2004) compararam, para dois solos brasileiros diferentes, os resultados obtidos utilizando as proposições apresentadas na Tabela 3 com resultados obtidos experimentalmente. Os autores notaram uma grande variabilidade na qualidade do ajuste das curvas experimentais, sendo que os menores erros foram observados quando utilizados os modelos baseados na variação da sucção: Brooks e Corey (1968) e Arbhabhirama e Kridakorn (1968).

2.3. Análise hidromecânica acoplada

Em uma análise de tensões e deformações do solo, a adoção do acoplamento do fenômeno hidráulico com o comportamento mecânico torna a análise mais realista, tendo em vista que desse modo é possível considerar o efeito da variação da poropressão nas tensões e deformações, além de ser possível considerar a influência da deformação volumétrica sobre o fluxo de água (DIAS, 2018). Em análises envolvendo solos não saturados, em que a quantidade de água presente nos seus vazios é fator determinante no seu comportamento, o acoplamento hidromecânico torna-se fundamental para a obtenção de resultados mais realistas (ALONSO e CARDOSO, 2010).

O acoplamento hidromecânico pode ser obtido através da relação direta entre uma variável mecânica e a variação de uma propriedade hidráulica do solo. Na literatura, inúmeras são as tentativas de relacionar a permeabilidade intrínseca do solo com o seu estado de tensões, entretanto esta relação é de caráter complexo e apresenta grandes limitações (VASCONCELOS, 2007). Como alternativa de acoplamento, encontra-se na literatura relações entre a variação da permeabilidade intrínseca com a porosidade do solo, podendo citar como exemplo a relação de Kozeny-Carman apresentada na Equação 31 (SOUSA, 2004).

$$K = \frac{\phi^3 (1 - \phi_0)^2}{\phi_0^3 (1 - \phi)^2} K_0 \tag{31}$$

Onde:

K é a permeabilidade intrínseca do solo (m²);

K₀ é a permeabilidade intrínseca inicial do meio poroso;

 ϕ_0 é a porosidade inicial do meio poroso;

Entende-se por permeabilidade intrínseca a propriedade que representa apenas as características do meio poroso, ou seja, independe do fluido (LIBARDI, 2005). Nutting (1930) definiu permeabilidade intrínseca do solo através da Equação 32.

$$K = k \frac{\mu}{r} \tag{32}$$

Onde:

k é a condutividade hidráulica do solo (m/s);

 γ é o peso específico do fluido (Pa/m);

 μ é a viscosidade dinâmica do fluido (Pa.s).

O programa de elementos finitos CODE_BRIGHT resolve a equação de Kozeny-Carman e as equações do problema hidromecânico de maneira acoplada (SOUSA e GUIMARÃES, 2005). Portando, o programa CODE_BRIGHT será utilizado para a modelagem hidromecânica acoplada do enchimento e esvaziamento da barragem Cipoada, que consiste no objetivo geral deste trabalho.

2.4. Modelagem computacional: Programa CODE_BRIGHT

O CODE_BRIGHT (*COupled DEformation BRIne Gas and Heat Transport*) é um programa desenvolvido por Olivella *et al.* (1994) capaz de solucionar problemas acoplados em meios geológicos. O programa foi desenvolvido na Universidade Politécnica da Catalunha com o objetivo inicial de solucionar problemas relacionados a materiais salinos e, posteriormente, sua aplicação foi estendida à modelagem de problemas geológicos geotécnicos (Olivella *et al.*, 1996; Vaunat e Olivella, 2002; Olivella e Vaunat, 2006; Olivella *et al.*, 2008).

O programa utiliza o método dos elementos finitos (MEF) para analisar de maneira acoplada problemas Termo-Hidro-Mecânicos, podendo ser utilizado na análise da construção de aterros, enchimento de barragens, escavações em solo e em rocha, execução de fundações superficiais, pavimentação, problemas de injeção de gás, transporte de solutos, entre outros.

O CODE_BRIGHT está escrito na linguagem FORTRAN e encontra-se em

contínuo desenvolvimento. O programa não possui caráter comercial, entretanto necessita da utilização do programa comercial GiD para o processamento dos dados e visualização dos resultados. Neste trabalho foi utilizada a versão 9 do programa CODE_BRIGHT.

2.4.1. Formulação numérica

O CODE_BRIGHT adota uma formulação multifásica, considerando que o meio poroso é composto por três fases: sólida, líquida e gasosa. A fase sólida é composta pelo grão mineral, a fase líquida é composta pela água e o ar dissolvido, e a fase gasosa é composta por uma mistura de ar seco e vapor de água.

A partir dessa abordagem multifásica e partindo do pressuposto que os efeitos de cada fase são acoplados, o CODE_BRIGHT resolve as seguintes equações governantes: balanço da massa de sólidos, equilíbrio da massa de água, equilíbrio da massa de ar, equilíbrio de momentos, balanço de energia interna e balanço de massa de solutos. Associadas a essas equações, há um conjunto de leis constitutivas e de equilíbrio necessárias, estando elas apresentadas na Tabela 4.

EQUAÇÃO	VARIÁVEL				
	Equações constitutivas				
Lei de Darcy	Fluxo líquido e gasoso (a condutividade depende da porosidade, teor de água e temperatura)				
Lei de Fick	Fluxo de vapor de água e de materiais solúveis				
Lei de Fourier	Fluxo de calor (a condutividade térmica depende da porosidade, teor de água e temperatura)				
Curva de retenção	Variação do grau de saturação				
Modelo constitutivo mecânico	Tensor de tensões				
Densidade da fase	Densidade líquida (depende da pressão, temperatura e concentração de solutos)				
Lei dos gases	Densidade do gás (lei dos gases perfeitos para a mistura de vapor e ar seco)				
Equações de equilíbrio					
Lei de Henry	Fração da massa de ar dissolvido				
Lei Psicrométrica	Fração da massa de vapor (função da temperatura e da pressão capilar)				

Tabela 4 – Equações constitutivas e de equilíbrio consideradas no CODE BRIGHT

Fonte: Adaptado de Olivella e Vaunat (2006).

As equações constitutivas apresentadas estabelecem a ligação entre as variáveis independentes (incógnitas) e as variáveis dependentes. No CODE_BRIGHT, as incógnitas dos problemas simulados são: os deslocamentos (3 direções independentes), a pressão do líquido, a pressão do gás e a temperatura. Como hipóteses adotadas pelo programa, tem-se que: o ar dissolvido está em equilíbrio (descrito pela Lei de Henry); a concentração de vapor está em equilíbrio com a fase líquida (a concentração é expressa pela Lei Psicrométrica); as diferentes fases estão em equilíbrio térmico; o equilíbrio de momentos do meio é reduzido à equação de equilíbrio de tensões; as tensões e deformações são relacionadas a partir de um modelo constitutivo mecânico; as deformações são definidas em termos de deslocamentos, e admite-se um cenário de pequenas deformações (Olivella *et al.*, 2020).

A abordagem numérica realizada pelo CODE_BRIGHT é dividida em discretizações espaciais e temporais. A discretização espacial é realizada utilizando o método dos elementos finitos e a discretização temporal é realizada utilizando o método das diferenças finitas. Para a resolução de problemas não lineares, os processos interativos são executados empregando o método de Newton-Raphson (OLIVELLA e VAUNAT, 2006).

2.4.2. Acoplamento do comportamento hidromecânico de solos não saturados

O CODE_BRIGHT considera que o solo é um meio poroso deformável e as deformações sofridas são resultantes de tensões geradas por carregamentos aplicados ou por variação da sucção. Os carregamentos aplicados ao solo resultam em tensões que geram deformações, fazendo com que haja a variação de volume do elemento de solo e por consequência a variação da sua porosidade. Ao variar a porosidade do solo, varia-se também a sua permeabilidade intrínseca e, consequentemente, a sua sucção. Como a análise realizada no CODE_BRIGHT é acoplada, a variação da sucção do solo também gera deformações, fazendo com que também ocorra a variação de volume, de porosidade e permeabilidade intrínseca.

A Figura 11 apresenta a representação do acoplamento hidromecânico realizado pelo CODE_BRIGHT.

Figura 11 - Representação do acoplamento hidromecânico realizado pelo CODE BRIGHT

Fonte: Adaptado de Faria (2007).

O programa utiliza o modelo BBM desenvolvido por Alonso *et al.* (1990) para representar o comportamento mecânico dos solos não saturados. Já para representar o comportamento hidráulico, o programa utiliza a curva de retenção de água no solo ajustada pelo modelo de Van Genuchten (1980) e a variação da permeabilidade intrínseca com a porosidade calculada pela relação de Kozeny-Carman (Equação 31).

Além dos modelos citados, o CODE_BRIGHT também utiliza a teoria proposta por Perzyna (1966) modificada por Desai e Zhang (1987) para considerar as propriedades viscosas do solo, pois segundo a metodologia de análise do programa, as deformações do solo ocorridas no regime elástico não são dependentes do tempo, mas as deformações ocorridas no regime plástico são. Desse modo, ao considerar as propriedades viscosas do solo, o CODE_BRIGHT realiza uma análise tensão x deformação elastoviscoplástica.

2.4.3. Modelo de Perzyna (1966) modificado por Desai e Zhang (1987) utilizado pelo CODE_BRIGHT

O modelo geral proposto por Perzyna (1966) foi formulado para um comportamento elastoviscoplástico baseado na formulação matemática da teoria da plasticidade, considerando que a deformação total de um material genérico é composta pela soma da deformação elástica e da deformação viscoplástica (Equação 33).

$$\varepsilon = \varepsilon_e + \varepsilon_{vp} \tag{33}$$

A Figura 12 apresenta o modelo conceitual proposto por Perzyna (1966), composto por uma mola (comportamento elástico), um *slider* (comportamento perfeitamente plástico) e um amortecedor (comportamento viscoso). Ao aplicar uma tensão ao sistema apresentado, no instante inicial apenas a mola deforma, tendo em vista que o amortecedor não sofre deformações instantâneas, o que necessariamente faz com que o *slider* também não deforme, já que ele está ligado em paralelo com o amortecedor. O *slider* deformará apenas se a tensão aplicada for maior que a tensão de plastificação do sistema. Caso isso ocorra, o *slider* e o amortecedor apresentarão deformações plásticas. No entanto, a deformação do amortecedor irá acontecer ao longo do tempo, ao passo que ele absorve o excesso de tensão aplicada ao sistema. Desse modo, portanto, considera-se que o sistema se comporta de maneira elastoviscoplástica.

Figura 12 – Modelo conceitual elastoviscoplástico proposto por Perzyna (1966)

Fonte: Elaborado pela Autora.

As deformações viscoplásticas do modelo de Perzyna (1966) são calculadas baseadas na Equação 34.

$$\varepsilon_{vp} = \Gamma\langle\phi(F)\rangle \frac{\delta Q}{\delta \sigma} \quad \langle\phi F\rangle \,definido \, por: \left\{\frac{\langle\phi(F)\rangle = 0 \, se \, F < 0}{\langle\phi(F)\rangle = \phi(F) \, se \, F > 0}\right\} \tag{34}$$

Onde:

F é a função de plastificação;

Q é a função de potencial viscoplástico;

 Γ é a fluidez do material;

 ϕ é a função de fluxo;

A definição da função de plastificação é dada pela Equação 35.

$$\phi(F) = \left(\frac{F}{F_0}\right)^N \tag{35}$$

Onde:

F₀ é um valor de referência (tornando a expressão adimensional);

N é um parâmetro viscoso relacionado com as propriedades de fluência do material;

A definição da função de plastificação depende do modelo constitutivo adotado, tendo em vista que a teoria de Perzyna (1966), assim como a teoria da plasticidade, apenas preconiza a existência de uma função de plastificação.

O parâmetro N é uma constante que leva em conta a sensibilidade do material à uma taxa de aplicação de carga ou deslocamento, devendo ser obtido através de ensaios de fluência (NUNES, 2006). Por definição, N necessariamente precisa ser maior que 1 para que o fluxo viscoso se torne não linear e, segundo Khaleel *et al.* (2001), geralmente varia até 10 para materiais plásticos.

Desai e Zhang (1987) adaptaram o modelo de Perzyna (1966) para materiais geológicos, contemplando leis de fluxo associada e não associada, endurecimento isotrópico e anisotrópico, entre outros aspectos. Baseado nessas modificações, o CODE_BRIGHT utiliza como função de plastificação e função de potencial viscoplástico as Equações 36 e 37, escritas em temos de tensão média p, tensão desviatória q e sucção mátrica s.

$$F(p,q,s) = \alpha \frac{1}{3}q^2 - \mu [-(3p_0(s) + 3ks)^{2-n}(3p + 3ks)^n + (p + ks)^2]\gamma F_s \quad (36)$$

$$Q(p,q,s) = \alpha \frac{1}{3}q^2 - b\mu [-(3p_0(s) + 3ks)^{2-n}(3p + 3ks)^n + (p + ks)^2]\gamma F_s (37)$$

Onde:

 α , μ , γ e n são parâmetros do modelo;

 $p_0(s)$ é a tensão de pré-adensamento em função da sucção;

k é o parâmetro que descreve o aumento da coesão aparente com a sucção;

Fs é função dos invariantes de tensão;

b é o parâmetro de não associação.

As Equações 36 e 37 diferem entre si apenas pela presença do parâmetro de não associação *b*, que define se o fluxo será associado ou não. A Equação 36 se assemelha a formulação do modelo Cam-Clay modificado e, sabendo que o BBM é uma adaptação deste modelo, ela também se assemelha à função de plastificação definida por Alonso *et al.* (1990) expressa na Equação 26. Desse modo, pode-se determinar os parâmetros da Equação 36 por meio da sua equivalência com a Equação 26, assim como mostra a Tabela 5.

Tabela 5 – Parâmetros do modelo BBM equivalentes aos parâmetros do modelo de Desai e Zhang (1987)

MODELO		PAR	ÂMET	ROS	
Desai e Zhang (1987)	n	γ	α	μ	F_s
Equivalente ao modelo BBM	1	-1/9	3	М	1
Fonte: Elaborada pela Autora					

Fonte: Elaborada pela Autora.

O endurecimento é descrito pela Equação 38, que também equivale à Equação 12 do modelo BBM, como mostram as Equações 39 e 40.

$$J_{1}^{0}(s) = 3p^{c} \left(\frac{J_{1}^{0*}}{3p^{c}}\right)^{\frac{\lambda(0)-\kappa}{\lambda(s)-\kappa}}$$
(38)

Em que:

$$J_1^0(s) = 3p_0(s) \tag{39}$$

$$J_1^{0*}(s) = 3p_0(0) \tag{40}$$

2.4.4. Aplicações do CODE_BRIGHT em solos não saturados

Neste tópico serão apresentados alguns trabalhos em que o programa CODE_BRIGHT foi utilizado para a simulação computacional do comportamento de solos não saturados.

Rodrigues (2007) modelou no CODE_BRIGHT um caso histórico de colapso de solo por ascensão do lençol freático que ocorreu em Peneira Barreto (SP) e afetou centenas de construções na cidade. No município fica situada a Usina Hidrelétrica Três Irmãos e é comum a ocorrência de colapsos do solo durante e após o enchimento do reservatório da usina. Por isso, a companhia de energia da cidade realizou uma série de estudos e ensaios de laboratório com o solo da região. Rodrigues (2007), de posse dessas informações, simulou numericamente recalques reais de quatro edificações monitoradas utilizando o modelo BBM. Os resultados mostraram que as deformações por colapso ocorreram pela variação da sucção sem que o solo atingisse a saturação, e que os maiores colapsos aconteceram quando o solo foi gradualmente saturado.

Dias (2011) analisou o comportamento hidromecânico de escavações em condições não saturadas. O autor utilizou o CODE_BRIGHT para simular a escavação de poços executados na cidade do Porto (Portugal) pelo Método de Escavação Sequencial. Foram realizadas análises acopladas, que representaram o cenário hidromecânico resultante do rebaixamento do nível freático ao longo da escavação, e análises puramente mecânicas, em que foi considerado que o rebaixamento do lençol freático ocorreu muito antes da escavação. O autor verificou diferenças importantes de deslocamentos na parte superior e inferior da escavação. A condição não saturada resultou em ganho de resistência e rigidez, ocasionando redução dos esforços na parte inferior da escavação.

Moreno (2011) realizou no CODE_BRIGHT a simulação hidromecânica acoplada da reconstrução, do enchimento e do comportamento da Barragem de Açu (RN). Segundo o autor, as previsões numéricas de deformações, deslocamentos verticais e poropressões obtidas na simulação foram coerentes com dados de instrumentação da barragem.

Askarinejad (2013) simulou os mecanismos de ruptura de encostas desencadeados pela chuva. O objetivo principal do trabalho era analisar os efeitos da poropressão na estabilidade de uma encosta localizada próxima ao Rio Reno (Suíça), onde ocorreram vários deslizamentos desde 2002 devido às chuvas. A análise da estabilidade da encosta foi realizada no CODE_BRIGHT utilizando o modelo BBM, cujos parâmetros foram obtidos a partir de resultados de ensaios de laboratório. Os resultados da simulação foram compatíveis com os dados obtidos da instrumentação da encosta.

Playán (2014) simulou no CODE_BRIGHT a ruptura de um talude de solo não saturado devido à saturação, localizado em Cervinara (Itália). Foi realizada uma análise hidromecânica acoplada e adotado o modelo constitutivo BBM para representar o comportamento mecânico do solo. Foram realizados uma série de ensaios de laboratório com amostras coletadas em campo e foi verificado que o modelo é capaz de reproduzir os resultados obtidos em laboratório.

Conde (2016) simulou no CODE_BRIGHT, utilizando o modelo constitutivo BBM,

o comportamento a longo prazo de um aterro viário construído com areia bem graduada sob condições climáticas diversas e contrastantes. Para a modelagem foram utilizadas as características climáticas das cidades de Ponte da Barca (Minho/Portugal) e Alcáçovas (Alentejo/Portugal), caracterizadas por estarem localizadas em regiões de climas bastante contrastantes. Os resultados obtidos permitiram observar a existência de uma relação direta entre os deslocamentos verticais e a pluviosidade, e a amplitude da variação dos deslocamentos foi proporcional à variação da sucção.

Dias (2018) analisou no CODE_BRIGHT a execução em etapas de um aterro com elementos drenantes sobre solo mole em uma unidade do Distrito Industrial de Suape, em Pernambuco. O autor comparou o comportamento simulado com dados provenientes da instrumentação do aterro. Os resultados mostraram que o CODE_BRIGHT foi capaz de descrever com satisfação o comportamento do aterro e apresentou resultados de deslocamentos verticais mais realistas do que os obtidos por meio de cálculos analíticos.

3 ENSAIOS DE LABORATÓRIO

Neste capítulo serão apresentados os ensaios de laboratório realizados no desenvolvimento desta pesquisa e os seus respectivos resultados. Os ensaios que serão apresentados foram executados com o objetivo de obter os parâmetros necessários para a realização da análise com acoplamento hidromecânico do enchimento e do esvaziamento da barragem Cipoada.

3.1. Programa experimental

A barragem Cipoada, objetivo da análise deste trabalho, está localizada no município de Morada Nova (CE) e consiste em uma barragem de terra homogênea, construída predominantemente com um solo classificado pelo sistema SUCS (Sistema Unificado de Classificação dos Solos) como SC (areia argilosa).

Para a modelagem hidromecânica da barragem Cipoada foi necessário realizar uma série de ensaios de laboratório: ensaios de caracterização, ensaio de papel filtro para determinação da curva de retenção, ensaios de cisalhamento direto para obtenção dos parâmetros de resistência e ensaios de adensamento edométrico para determinação dos parâmetros de deformabilidade do solo. Os ensaios citados foram executados no Laboratório de Mecânica dos Solos e Pavimentação (LMSP) da Universidade Federal do Ceará (UFC), utilizando uma amostra deformada do solo da barragem Cipoada coleta pela equipe do laboratório.

Os resultados dos ensaios de cisalhamento direto e de adensamento edométrico foram utilizados para a obtenção dos parâmetros do modelo BBM. Como já citado anteriormente, o modelo BBM necessita, para sua aplicação, da obtenção de parâmetros de resistência e de compressibilidade que considerem a condição não saturada do solo e que sejam obtidos a partir de ensaios realizados com sucção controlada. No entanto, para o desenvolvimento desta pesquisa, não foi possível a realização deste controle de sucção, tendo em vista a indisponibilidade de equipamentos com esta tecnologia no LMSP. Como alternativa aos ensaios com sucção controlada, foram realizados ensaios com umidade conhecida, nos quais a sucção das amostras ensaiadas foi estimada a partir da curva de retenção. Ao longo deste capítulo serão apresentadas todas as adaptações realizadas em cada ensaio. Uma visão geral do programa experimental desta pesquisa está apresentada na Figura 13.

Fonte: Elaborado pela autora.

3.2. Ensaios de caracterização geotécnica

A amostra de solo coletada foi preparada conforme as orientações da NBR 6457/2016 – Amostras de Solo – Preparação para ensaios de compactação e ensaios de caracterização (Método de Ensaio). Em seguida, a fim de caracterizar o solo estudado, foram realizados os ensaios de análise granulométrica, determinação do limite de liquidez e do limite de plasticidade, determinação da densidade real e de compactação. Os memoriais de cálculo dos ensaios de caracterização citados estão apresentados, respectivamente, nos APÊNDICES A, B, C e D. Tais ensaios foram realizados seguindo as orientações das seguintes normas técnicas:

- a) NBR 7181/2016 Solo Análise granulométrica (Método de ensaio);
- b) NBR 6459/2016 Solo Determinação do limite de liquidez (Método de ensaio);
- c) NBR 7180/2016 Solo Determinação do limite de plasticidade (Método de ensaio);
- d) ME 093/94 Solos Determinação da densidade real;
- e) NBR 7182/2016 Solo Ensaio de Compactação.

A Figura 14 e a Figura 15 apresentam, respectivamente, a curva de distribuição granulométrica do solo analisado e a curva de compactação utilizando a energia Proctor Normal (escolhida por ser uma energia comumente adotada na compactação de aterros de barragens).

Figura 14 - Curva de distribuição granulométrica

Fonte: Elaborado pela autora.

Figura 15 - Curva de compactação do solo (energia Proctor Normal)

Fonte: Elaborado pela autora.

A Tabela 6 apresenta o resumo dos parâmetros geotécnicos obtidos a partir da realização dos ensaios de caracterização e a classificação pelo sistema SUCS do solo estudado.

PARÂMETRO	VALOR
Limite de liquidez (%)	27,8
Limite de plasticidade (%)	14,8
Índice de plasticidade (%)	13
Densidade real	2,67
Massa específica aparente seca máxima (g/cm ³)	1,89
Teor de umidade ótima (%)	12,6
Classificação SUCS	SC

Tabela 6 – Resultados dos ensaios de caracterização e classificação do solo pelo sistema SUCS

Fonte: Elaborado pela autora.

3.3. Ensaio de papel filtro

O ensaio de papel filtro, realizado com o objetivo de determinar a curva de retenção de água no solo, foi executado conforme orienta a ASTM D5298/2016: *Standard test method for measurement of soil potential (suction) using filter paper*, com algumas alterações sugeridas por Marinho (1994). Neste trabalho, optou-se por determinar a curva de retenção de água através do processo de secagem.

Inicialmente, a amostra de solo foi homogeneizada na umidade ótima e acondicionada em um saco plástico lacrado por 24 horas para estabilização da umidade em toda a amostra. Em seguida, obedecendo aos valores de umidade ótima e massa específica aparente seca máxima obtidos no ensaio de compactação, foram compactados corpos de prova (CPs) dentro de anéis de aço com diâmetro interno de 4,9 cm e altura de 2 cm (Figura 16a).

Após a compactação, os corpos de prova foram submetidos à saturação. Para isto, os CPs foram colocados sobre uma bandeja metálica com uma lâmina fina de água, onde atingiram a saturação por capilaridade (Figura 16b). É importante ressaltar que, para a realização desse procedimento, foi necessário proteger a base dos corpos de prova do contato direto com a água, a fim de evitar a perda de material. Essa proteção foi realizada por meio da colocação de uma gaze na base de cada CP (Figura 16c). A saturação foi considerada atingida quando foi possível observar uma lâmina de água no topo dos corpos de prova (Figura 16d).

Após a saturação, os CPs foram retirados da bandeja e colocados para secar

gradualmente (Figura 16e). Os corpos de prova foram submetidos a diferentes tempos de secagem para que atingissem diferentes teores de umidade e, consequentemente, diferentes valores de sucção (tal procedimento foi controlado por meio da pesagem dos CPs). Após o processo de secagem, cada corpo de prova foi colocado em contato com dois papeis filtros do tipo Whatman Nº 42 (Figura 16f). Os CPs foram embalados em três camadas de papel filme (Figura 16g) e em uma camada de papel alumínio (Figura 16h), a fim de isolar o conjunto e evitar a perda de umidade.

Os corpos de prova após serem submetidos aos procedimentos citados anteriormente, foram armazenados dentro de uma caixa de isopor por 7 dias (Figura 16i), tempo sugerido pela ASTM D5298/2016 para a equalização da sucção entre o papel filtro e a amostra de solo.

Passados 7 dias, os CPs foram retirados da caixa de isopor e desembalados. Os papeis filtros em contato com os corpos de prova foram descartados e os papeis filtros superiores foram colocados em cápsulas metálicas para pesagem. Do mesmo modo, os corpos de prova úmidos também foram colocados em cápsulas para pesagem. É importante ressaltar que o processo de desembalar, retirar o papel filtro do corpo de prova, colocá-lo na cápsula e pesá-lo deve ser feito extremamente rápido para garantir o sucesso do ensaio.

Após a pesagem, as cápsulas contendo os papeis filtros foram levadas para a estufa aquecida com temperatura de aproximadamente 105 °C e permaneceram nela por 2 horas secando destampadas. Em seguida, as cápsulas foram tampadas e permaneceram mais 15 minutos na estufa, conforme orienta a ASTM D5298/2016. Já as cápsulas contento os corpos de prova permaneceram 24 horas secando na estufa. Após o processo de secagem, todas as cápsulas foram pesadas novamente. As pesagens efetuadas antes e após a secagem foram realizadas em uma balança de precisão de 0,0001 g (Figura 16j e Figura 16k).

Figura 16 - Etapas do ensaio de papel filtro

(j) Pesagem do papel filtro antes e após ser colocado na estufa por 2h

Fonte: Elaborado pela autora.

(k) Pesagem do corpo de prova antes e após ser colocado na estufa por 24h

A partir das pesagens realizadas, foram determinados os teores de umidade dos corpos de prova e dos papeis filtros correspondentes. Para a determinação da sucção dos papeis filtros, foram utilizadas as curvas de calibração proposta por Chandler et al. (1992), que consistem em curvas específicas para obtenção da sucção mátrica e apresentaram bons

57

resultados nos trabalhos de Leme (2015), Sousa (2019) e Castro (2020). Depois da determinação da sucção dos papeis filtros, foi possível determinar a sucção dos corpos de prova correspondentes, tendo em vista que após a equalização, a sucção do papel filtro é igual a sucção do solo. O memorial de cálculo está apresentado no APÊNDICE E.

Algumas alterações no procedimento sugerido pela ASTM D5298/2016 foram adotadas nesse ensaio. A norma sugere que o papel filtro seja previamente seco em estufa por no mínimo 16h antes da sua utilização, entretanto Marinho (1994) afirma que o procedimento de secar o papel filtro em estufa pode afetar suas características de adsorção. Sendo assim, os papeis filtros utilizados neste ensaio não foram previamente secos em estufa.

Outra alteração realizada foi a quantidade de papeis filtros utilizados por corpo de prova. A ASTM D5298/2016 sugere que sejam utilizados, em cada corpo de prova, 3 papeis filtros posicionados um em cima do outro, sendo que apenas o papel filtro do meio deve ser utilizado para a medição da umidade e, consequentemente, para a medição da sucção. Desse modo, tanto o papel filtro que fica em contato direto com o corpo de prova, como o papel filtro superior, devem ser descartados. No entanto, nesta pesquisa, foram utilizados apenas dois papeis filtros, conforme apresentado na Figura 17. Esta decisão foi tomada após algumas tentativas realizadas com três papeis filtros, que mostraram que o papel superior dificultava a retirada do papel do meio, tornando o seu processo de remoção e pesagem mais lento, o que poderia interferir de forma significativa no resultado do ensaio.

Fonte: Elaborado pela autora.

A Figura 18 mostra a curva de retenção de água no solo apresentada em termos de teor de umidade volumétrico. Os pontos experimentais foram ajustados pelos métodos propostos por Brooks e Corey (1964), Van Genuchten (1980) e Fredlund e Xing (1994). Podese observar que o método proposto por Fredlund e Xing (1994) apresentou o melhor ajuste e o método proposto por Brooks e Corey (1964) apresentou o pior ajuste.

Figura 18 – Curva de retenção de água no solo (umidade volumétrica x sucção)

Fonte: Elaborado pela autora.

3.4. Ensaio de cisalhamento direto

O ensaio de cisalhamento direto foi realizado com o objetivo de obter os parâmetros de resistência do solo saturado (c' e ϕ ') e não saturado (ϕ^b). Para sua execução, foi utilizada como base a ASTM D3080/1998: *Standard test method for direct shear test of soil under consolidated drained conditions*.

A obtenção dos parâmetros de resistência saturados se deu através da realização de um ensaio de cisalhamento direto inundado para as tensões normais de 50, 100 e 200 kPa. Cada corpo de prova foi compactado na umidade ótima e foi submetido à saturação por inundação durante 24 horas. Sabe-se que a inundação não garante a efetiva saturação do corpo de prova, no entanto, neste trabalho, será considerado que a saturação ocorreu.

A velocidade utilizada para romper os CPs foi de 0,12 mm/min, calculada baseada na metodologia de Head (1994). A coesão (c') e ângulo de atrito interno (ϕ ') obtidos para o solo saturado estão apresentados na Tabela 7.

ENSAIO	c' (kPa)	φ' (°)
Inundado	19,76	30,2

Tabela 7 - Parâmetros de resistência do solo saturado

Fonte: Elaborado pela autora.

Sabe-se que o ideal para a obtenção do parâmetro de resistência não saturado ϕ^b é a realização de ensaios com sucção controlada. Entretanto, não se dispunha de equipamento com esta tecnologia para a realização deste ensaio. Como alternativa, foram realizados ensaios com umidade conhecida, em que a sucção do corpo de prova foi estimada por meio da curva de retenção.

Para a determinação de ϕ^b , que descreve o aumento da resistência ao cisalhamento do solo com a sucção, além do ensaio inundado, foram realizados dois ensaios sem inundação, nos quais os corpos de prova foram ensaiados em diferentes teores de umidade, de modo a apresentarem diferentes valores de sucção.

O primeiro ensaio sem inundação foi realizado com os corpos de prova na umidade ótima. Já o segundo ensaio foi realizado com CPs submetidos à secagem ao ar livre por 1 hora após a compactação, o que fez com que apresentassem uma umidade menor que a ótima e por consequência uma sucção maior. Os ensaios não inundados também foram realizados para as tensões normais de 50, 100 e 200 kPa, e todos os corpos de prova foram submetidos ao mesmo tempo de adensamento (2h), a fim de evitar grandes diferenças de perdas de umidade entre eles. É importante ressaltar que nesse período de 2h os deslocamentos verticais estabilizaram para todos os CPs. Ao final de cada ensaio, os corpos de prova foram levados à estufa e posteriormente foram determinadas suas umidades.

Como os ensaios não inundados foram realizados sem controle de sucção, não foram determinados os parâmetros de coesão e ângulo de atrito interno das amostras, pois a sucção pode provocar diferenças significativas nestes parâmetros de resistência. Devido a esta limitação, foram determinadas apenas a tensão cisalhante máxima e a umidade de cada CP.

As tensões cisalhantes máximas, as umidades e as sucções estimadas de cada corpo de prova estão apresentadas na Tabela 8.

Ensaio	TENSÃO NORMAL (kPa)	TENSÃO CISALHANTE MÁXIMA (kPa)	UMIDADE (%)	SUCÇÃO ESTIMADA (kPa)
	50	44,87	-	0
Inundado	100	83,92	-	0
	200	134,13	-	0
	50	55,87	12,40	38,24
Não inundado [1]	100	91,26	12,34	41,36
	200	150,77	12,38	39,27
	50	91,40	10,73	204,54
Não inundado [2]	100	130,85	10,82	188,44
	200	183,40	10,78	195,01

Tabela 8 – Resumo dos ensaios de cisalhamento direto

Fonte: Elaborado pela autora.

A Figura 19 apresenta as tensões cisalhantes máximas para diferentes valores de sucção. Observa-se que para cada tensão normal, foi obtida uma reta cuja inclinação descreve o aumento da tensão cisalhante com o aumento da sucção. Nesta pesquisa, ϕ^b foi adotado como a média das inclinações das retas apresentadas, obtendo-se um ϕ^b de 13,5°. É importante ressaltar que ϕ^b não é um parâmetro constante, pois varia em função da sucção atuante, o que consiste em outra limitação da estimativa realizada.

Figura 19 - Tensões cisalhantes máximas para diferentes valores de sucção

Fonte: Elaborado pela autora.

A Figura 20 apresenta os corpos de prova após a realização dos ensaios descritos anteriormente. O memorial de cálculo destes ensaios está apresentado no APÊNDICE F.

Figura 20 - Corpos de prova após a realização do ensaio de cisalhamento direto

Fonte: Elaborado pela autora.

3.5. Ensaio de adensamento edométrico

O ensaio de adensamento edométrico foi executado com base na NBR 16853/2020: Solo – Ensaio de adensamento unidimensional. Foram realizados 5 ensaios de adensamento edométrico, sendo 1 ensaio inundado e 4 ensaios sem inundação, a fim de se obter a curva de adensamento do solo para diferentes teores de umidade.

Assim como no ensaio de cisalhamento direto, não foi possível realizar o controle da sucção durante os ensaios de adensamento edométrico, de modo que as sucções das amostras ensaiadas foram estimadas a partir da curva de retenção de água no solo.

Os 5 corpos de prova foram compactados manualmente na umidade ótima e foram submetidos aos carregamentos de 12,5 kPa, 25 kPa, 50 kPa, 100 kPa, 200 kPa, 400 kPa e 800 kPa. No ensaio inundado, a inundação ocorreu antes da aplicação da primeira carga e o corpo de prova ficou submetido à saturação por 24 horas.

Nos ensaios sem inundação, após a compactação na umidade ótima, os corpos de prova foram expostos ao ar livre para secarem e atingirem teores de umidade mais baixos e, consequentemente, sucções mais altas. O primeiro corpo de prova foi ensaiado sem tempo de secagem, ou seja, próximo à umidade ótima. Já o segundo CP foi submetido a 1 hora de secagem, o terceiro a 2 horas e o quarto a 2 horas e 30 minutos.

Diferente do ensaio de cisalhamento direto, em que se tem um corpo de prova para

cada tensão normal, no ensaio de adensamento edométrico tem-se um único CP submetido a vários carregamentos. Tal fato faz com que medir a umidade do corpo de prova apenas ao final do ensaio de adensamento não represente bem a umidade do CP ao longo de todos os carregamentos. Por isso, para cada corpo de prova ensaiado, foi adotada uma estratégia de controle de umidade que consistiu na compactação de um corpo de prova auxiliar de mesmas dimensões e submetido ao mesmo tempo de secagem, conforme mostra a Figura 21. No início de cada ensaio, foi medida a umidade do CP auxiliar e, ao final de cada ensaio, foi medida a umidade do CP auxiliar e, ao final de cada ensaio, foi medida a umidade do CP auxiliar e, ao final de cada ensaio, foi medida a umidade secalculadas.

Figura 21 – Corpos de prova utilizados para controle de umidade no ensaio de adensamento edométrico

Fonte: Elaborado pela autora.

A Tabela 9 apresenta os teores de umidade dos corpos de prova auxiliares e dos ensaiados, bem como o teor médio adotado para cada ensaio não inundado realizado.

ESTADO DE	TEOR DE UMIDADE (%)			
SATURAÇÃO	CP AUXILIAR	CP ENSAIADO	TEOR MÉDIO	
Não saturado	13,13	12,59	12,86	
Não saturado	11,75	11,13	11,44	
Não saturado	10,49	9,81	10,15	
Não saturado	10,24	9,70	9,97	

Tabela 9 – Teores de umidade dos corpos de prova dos ensaios de adensamento edométrico não inundados

Fonte: Elaborado pela autora.

A Figura 22 apresenta as curvas de adensamento do solo obtidas através dos ensaios realizados. Assim como no ensaio de cisalhamento direto, será considerado que o ensaio realizado com inundação promoveu a saturação do corpo de prova.

Figura 22 – Curvas de adensamento do solo

A Tabela 10 apresenta as sucções e as tensões de pré-adensamento de cada ensaio realizado. As sucções foram estimadas a partir da curva de retenção de água no solo e as tensões de pré-adensamento foram estimadas graficamente. Observa-se que ao passo que a sucção do solo aumentou, ocorreu o aumento da tensão de pré-adensamento.

ENSAIO	ESTADO DE SATURAÇÃO	UMIDADE (%)	SUCÇÃO (kPa)	TENSÃO DE PRÉ- ADENSAMENTO (kPa)
1	Saturado	-	0	64
2	Não saturado	12,86	20,27	69
3	Não saturado	11,44	107,26	81
4	Não saturado	10,15	335,80	99
5	Não saturado	9,97	389,22	100

Tabela 10 – Sucção e tensão de pé-adensamento dos corpos de prova dos ensaios de adensamento edométrico

Fonte: Elaborado pela autora.

O memorial de cálculo dos ensaios citados e da determinação das tensões de préadensamento estão apresentados no APÊNDICE G.

Fonte: Elaborado pela autora.

3.6. Ensaio de permeabilidade

O ensaio de permeabilidade foi realizado com o objetivo de obter a condutividade hidráulica saturada do solo (*k*) e seguiu as recomendações da NBR 14545/2000: Solo – Determinação do coeficiente de permeabilidade de solos argilosos a carga variável.

O corpo de prova foi compactado na umidade ótima e passou 48 horas submetido à saturação através do processo de inundação. A condutividade hidráulica saturada obtida para o solo ensaiado foi de 6,62 10⁻⁰⁶ m/s e o memorial de cálculo está apresentado no APÊNDICE H.

3.7. Resumo e notas conclusivas

A partir dos ensaios realizados, verificou-se que o solo estudado é uma areia argilosa medianamente plástica que possui as seguintes características geotécnicas: densidade real de 2,67, massa específica aparente seca máxima de 1,89 g/cm³, umidade ótima de 12,6%, coesão efetiva de 19,76 kPa, ângulo de atrito interno efetivo de 30,2°, ângulo de atrito devido à sucção (ϕ^b) igual a 13,5° e condutividade hidráulica saturada de 6,62 10⁻⁰⁶ m/s.

Com base nos resultados dos ensaios realizados, pode-se concluir que:

- O ensaio de papel filtro é um método simples e eficiente para a determinação da curva de retenção de água no solo;
- O método proposto por Fredlund e Xing (1994) para ajuste da curva de retenção é o que mais se adequa para o solo analisado nesta pesquisa;
- Apesar dos ensaios de cisalhamento direto e de adensamento edométrico terem sido realizados sem controle de sucção, os corpos de prova ensaiados se comportaram como era esperado. Observou-se no ensaio de cisalhamento direto um aumento da resistência ao cisalhamento com o aumento da sucção e, no ensaio de adensamento edométrico, foi observado um aumento da tensão de pré-adensamento com o aumento da sucção.

4 ANÁLISE COM ACOPLAMENTO HIDROMECÂNICO DA BARRAGEM CIPOADA

Neste capítulo serão apresentados todos os aspectos referentes à análise hidromecânica acoplada do enchimento e do esvaziamento da barragem Cipoada realizada no programa CODE_BRIGHT. Inicialmente, serão apresentadas as características gerais e o contexto histórico da barragem. Em seguida, será mostrado o cenário da modelagem e a estimativa dos parâmetros mecânicos e hidráulicos do solo, necessários para a simulação. Ao final deste capítulo, serão apresentados os resultados da simulação e suas discussões.

4.1. Características gerais e contexto histórico da Barragem Cipoada

A barragem Cipoada fica localizada no município de Morada Nova (CE) e faz parte da bacia hidrográfica do Banabuiú. Sua construção foi concluída em agosto de 1992 e desde então se tornou um importante elemento da infraestrutura hídrica da região, tendo como finalidade promover abastecimento humano urbano e rural, irrigação e dessedentação animal. A SOHIDRA (Superintendência de Obras Hidráulicas) foi a responsável pela fiscalização da construção do empreendimento, já a operação e a manutenção da barragem ficaram a cargo da COGERH (Companhia de Gestão de Recursos Hídricos).

A Figura 23 apresenta a vista lateral e a vista superior da barragem Cipoada, já a Figura 24 apresenta a sua localização no contexto estadual.

Figura 23 - Barragem Cipoada

(b)Vista superior - Coroamento

(a) Vista lateral - Talude de jusante

Fonte: COGERH (2008).

Fonte: COGERH (2008)

A barragem Cipoada, como já citado anteriormente, é uma barragem de terra homogênea construída com solo classificado do tipo SC. O maciço compactado possui 1130 m de extensão e 20,7 m de altura máxima, formando um reservatório com capacidade de acumulação de 86,09 hm³. A barragem possui um canal vertedouro com cordão de fixação em concreto e uma tomada d'água do tipo galeria, com vazão a uma descarga regularizada de 0,82 m³/s. A Figura 25 apresenta em detalhes a seção máxima da barragem Cipoada.

Fonte: COGERH (2008)

Em 2016, segundo a análise de disponibilidade hídrica realizada pela Agência Nacional de Água (ANA), a taxa anual de evaporação do reservatório foi de 2393 mm e a precipitação anual foi de 854 mm. A demanda de retirada para abastecimento humano urbano foi de 1%, para abastecimento humano rural foi de 15%, para dessedentação animal foi de 27% e para irrigação foi de 57%. O volume útil necessário para o atendimento das demandas apresentadas é de 19% (20 hm³).

A barragem Cipoada não possui instrumentação, contudo, periodicamente é submetida a inspeções de segurança realizadas pela COGERH. Em 2005, após um período chuvoso de grande acúmulo de água no reservatório, foram diagnosticadas diversas anomalias no maciço, como por exemplo erosões profundas, afundamentos e indícios de antiga revência no talude de jusante (Figura 26).

Figura 26 - Anomalias apresentadas no talude de jusante da Barragem Cipoada em 2005

(a) Talude de jusante sem revestimento

(c) Vista geral das erosões no talude de jusante

(b) Afundamentos no talude de jusante

(d) Erosões profundas no talude de jusante

Fonte: COGERH (2008)

O reservatório de Cipoada apresentou sua primeira cheia em 2009 e logo em seguida passou por um período de redução brusca do seu volume de água acumulado, chegando

a operar no volume morto nos anos de 2015, 2016 e 2017. Dados referentes ao volume acumulado do reservatório serão apresentados em detalhes no item a seguir.

Em 2016, de acordo com o Relatório Anual de Segurança de Barragens (RASB), elaborado pela COGERH, a barragem Cipoada apresentou um crescimento relevante de anomalias classificadas como NP1 (nível de perigo de alerta) e obteve uma NPA (nível de perigo das anomalias) de 11, sendo 9 o limite imposto pela COGERH para que a barragem seja classificada como nível de prioridade máxima de intervenção.

No RASB de 2016 foram feitas as seguintes sugestões de reparo: recomposição do material do aterro para corrigir as erosões no talude de jusante, implantação de um sistema de proteção granular no talude de jusante, reconstrução das calhas de drenagem superficial danificadas pelas erosões e reconstrução das demais estruturas danificadas. As obras de reparo da barragem Cipoada iniciaram no final de 2019

4.2. Cenário da Modelagem

A geometria da barragem Cipoada, utilizada para a sua modelagem no CODE_BRIGHT, está apresentada na Figura 27. Na simulação realizada neste trabalho, não se levou em consideração a percolação de água pela fundação, devido não se ter amostras do solo da fundação para a realização de ensaios de laboratório e, consequentemente, para a determinação dos parâmetros mecânicos e hidráulicos necessários para a análise. Esta simplificação pode ser considerada válida devido a barragem Cipoada possuir uma trincheira de interceptação total (*cut-off*) que tem como objetivo justamente evitar ou reduzir a percolação de água pela fundação.

Fonte: Elaborada pela autora.
O enchimento e o esvaziamento da barragem Cipoada foi modelada com base em dados reais de volume de água armazenado no reservatório ao longo da sua história. A Figura 28 apresenta a média do volume armazenado nos meses de julho do período citado. Optou-se pelo mês de julho por ele contemplar o volume de água acumulado durante o período chuvoso do Ceará. Os dados referentes ao volume de água armazenado até 2007 foram coletados no anuário do monitoramento quantitativo dos principais açudes do estado do Ceará (COGERH, 2007) e os dados a partir de 2007 foram coletados no Portal Hidrológico do Ceará (FUNCEME, 2020).

Fonte: Elaborado pela autora.

Como pode ser observado na Figura 28, a primeira e única cheia do reservatório ocorreu em 2009. Após ela, observa-se que o reservatório sofreu uma brusca queda de volume armazenado, saindo de um patamar de 98,6% de volume de água para 0,7% em 2016, passando a operar com o seu volume morto. Fazendo uma associação com os resultados das inspeções apresentadas no item anterior, observa-se que as anomalias expostas na Figura 26, diagnosticadas em 2005, ocorreram logo após o enchimento de 56,2% do reservatório que ocorreu em 2004. Bem como, em 2016, após um grande esvaziamento do reservatório, a barragem atingiu o nível máximo de prioridade de intervenção devido a muitas anomalias diagnosticadas.

Nesse contexto, foi realizada no CODE_BRIGHT a simulação do enchimento que ocorreu de 1992 à 2009 e do esvaziamento que ocorreu de 2009 à 2016. A modelagem deste

cenário foi dividida em estágios, demarcados pelos picos de enchimentos e rebaixamentos apresentados na Figura 28, desconsiderando as variações que ocorreram entre eles.

A Tabela 11 apresenta os estágios modelados. Para o cálculo da altura de água em cada estágio foi utilizado o diagrama cota x área x volume da barragem, disponível no Portal Hidrológico do Ceará (FUNCEME, 2020). O enchimento foi dividido em quatro períodos: 1992 a 1996 (4 anos para o armazenamento de 13,4% de água), 1996 a 1999 (3 anos para o armazenamento de mais 6,4% de água, totalizando 19,8%), 1999 a 2004 (5 anos para o armazenamento de mais 36,4% de água, totalizando 56,2%) e 2004 a 2009 (5 anos para o armazenamento de mais 42,4% de água, totalizando 98,6%). Do mesmo modo, o esvaziamento foi modelado em dois períodos: 2009 a 2013 (redução de 90,7% do volume de água armazenado em 4 anos) e 2013 a 2016 (redução de 7,2% do volume de água armazenado em 3 anos, passando a operar no volume morto).

				_	
ESTÁGIO	ANO	VOLUME ARMAZENADO (%) (m ³)		СОТА	ALTURA DE ÁGUA (m)
0	1992	0,0	0,0	85,8	0,0
1	1996	13,4	11,5	95,0	9,2
2	1999	19,8	17,0	95,8	10,0
3	2004	56,2	48,4	99,9	14,1
4	2009	98,6	84,9	102,9	17,1
5	2013	7,9	6,8	93,1	7,3
6	2016	0,7	0,6	89,7	3,9

Tabela 11 - Períodos do cenário modelado no CODE BRIGHT

Fonte: Elaborado pela autora.

4.3. Estimativa dos parâmetros mecânicos e hidráulicos do solo

A modelagem de um problema hidromecânico acoplado no CODE_BRIGHT necessita da determinação dos parâmetros mecânicos e hidráulicos dos materiais. Como já apresentado no Capítulo 2, o CODE_BRIGHT utiliza uma abordagem elastoviscoplástica para a análise do comportamento dos solos não saturados, sendo necessário também fornecer ao programa parâmetros elásticos, plásticos e viscosos.

4.3.1. Parâmetros elásticos

Os parâmetros elásticos do solo, necessários para a modelagem da barragem Cipoada, são o módulo de elasticidade (módulo de Young) e o coeficiente de Poisson. O módulo de Young (E) foi determinado em função do módulo de elasticidade edométrico (E_{ed}) obtido no ensaio de adensamento. Já o coeficiente de Poisson (v) foi adotado com base na classificação proposta por Teixeira e Godoy (1996).

Para a determinação do módulo de elasticidade edométrico, foi utilizada a Figura 29, que apresenta a variação da deformação específica vertical em função da tensão vertical resultante do ensaio de adensamento inundado. O módulo E_{ed} corresponde ao inverso do coeficiente de compressibilidade e, como pode ser visto na Figura 29, o módulo E_{ed} varia em função do nível de carregamento, aumentando ao passo que o índice de vazios diminui. Optouse por utilizar o ensaio inundado para determinação do módulo de elasticidade por ele fornecer resultados a favor da segurança, tendo em vista que ao longo da operação da barragem, ela apresenta zonas saturadas e não saturadas, sendo os módulos de elasticidade das zonas saturadas menores.

Fonte: Elaborado pela autora.

O CODE_BRIGHT utiliza um módulo de elasticidade único para a análise, o que consiste em uma limitação do programa. Sabendo que a altura da barragem Cipoada é de aproximadamente 20 metros e considerando um peso específico úmido do solo de 20 kN/m³, tem-se um nível de tensão máximo de 400 kPa. Sendo assim, será utilizado o módulo edométrico para a faixa de carregamento de 200 a 400 kPa, que é cerca de 83 MPa.

Com base na lei de Hooke generalizada, pode-se relacionar o módulo de elasticidade edométrico com o módulo de Young a partir da Equação 41. Considerando um coeficiente de Poisson (v) de 0,4, obtém-se um módulo de Young de aproximadamente 39 MPa.

$$E_{ed} = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)}$$
(41)

Os parâmetros elásticos do solo necessários para a modelagem no CODE_BRIGHT estão apresentados na Tabela 12. O memorial de cálculo está apresentado no APÊNDICE G.

PARÂMETROUNIDADEDESCRIÇÃOVALORREFERÊNCIAEMPaMódulo de elasticidade
(Módulo de Young)39Figura 29/Equação 41 υ -Coeficiente de Poisson0,4Teixeira e Godoy
(1996)

Tabela 12 - Parâmetros elásticos do solo para modelagem no CODE_BRIGHT

Fonte: Elaborado pela autora.

4.3.2. Parâmetros do modelo BBM

O modelo BBM é descrito no espaço (p, q, s). Desse modo, neste trabalho, as tensões p e q foram calculadas a partir das Equações 42 e 43 apresentadas a seguir, que consistem nas Equações 4 e 5 reescritas em função da tensão vertical σ_v .

$$p = \frac{(1+2k_0)\sigma_{\nu}}{3}$$
(42)

$$q = (1 - k_0)\sigma_v \tag{43}$$

Onde:

 σ_v é a tensão vertical;

k₀ é o coeficiente de empuxo no repouso, que foi calculado neste trabalho pela fórmula de Jaky (1948).

A partir da realização dos ensaios de adensamento edométrico, foi possível determinar a variação do volume específico v com a tensão p, conforme mostra a Figura 30.

Figura 30 – Volume específico versus Tensão p

A Tabela 13 apresenta as tensões de pré-adensamento (em termos da tensão p) e os parâmetros λ e κ para cada ensaio realizado, que correspondem respectivamente as inclinações das retas virgens e das retas de descompressão das curvas apresentadas na figura anterior.

ENSAIO	ESTADO DE SATURAÇÃO	UMIDADE (%)	SUCÇÃO (kPa)	p (kPa)	λ	κ
1	Saturado	-	-	42,5	0,069	0,0089
2	Não saturado	12,86	20,3	45,9	0,067	0,0092
3	Não saturado	11,44	107,3	53,8	0,062	0,0088
4	Não saturado	10,15	335,8	65,8	0,055	0,0091
5	Não saturado	9,97	389,2	66,5	0,055	0,0094

Tabela 13 – Tensões de pré-adensamento, inclinações das retas virgens e das retas de descompressão

Fonte: Elaborado pela autora.

Observa-se na Tabela 13 que ao aumentar a sucção, as tensões de pré-adensamento aumentaram e as inclinações das retas virgens diminuiriam. Nota-se também que as inclinações das retas de descompressão não sofreram alterações significativas com a variação da sucção,

Fonte: Elaborado pela autora.

confirmando a proposta de Alonso *et al.* (1990) que diz que o parâmetro κ independe da sucção. Desse modo, neste trabalho será considerado o valor médio de 0,009 para κ .

As informações apresentadas na Tabela 13 foram utilizadas para a determinação da superfície LC do solo estudado, conforme pode ser observado na Figura 31. Os pontos experimentais foram ajustados através da Equação 12 proposta pelo modelo BBM.

Figura 31 - Superfície LC do solo da barragem Cipoada

Fonte: Elaborado pela autora.

Para o ajuste da LC, foi necessário determinar $\lambda(s)$ para variados valores de sucção. De acordo com a Equação 13, $\lambda(s)$ depende dos parâmetros $\lambda(0)$, $\beta \in r$, os quais foram determinados nesta pesquisa da seguinte forma: o parâmetro $\lambda(0)$ foi obtido experimentalmente, r foi estimado pela Equação 14 e β foi calculado por ajuste manual, de modo que a LC formulada pelo modelo BBM se aproximasse ao máximo dos pontos experimentais (como apresentado na Figura 31). Ao substituir os parâmetros $\lambda(0)$, $\beta \in r$ na Equação 13, obteve-se a Equação 44, que permite encontrar para cada valor de sucção um respectivo $\lambda(s)$.

$$\lambda(s) = 0.069[(1 - 0.80)e^{-7.2s} + 0.80]$$
(44)

A Figura 32 apresenta os λ obtidos experimentalmente e o ajuste realizado pela Equação 44. Observa-se que os resultados experimentais apresentaram um bom ajuste com o modelo BBM. Alguns autores, como por exemplo Futai (1997), verificaram que para alguns solos muito colapsíveis $\lambda(s)$ cresce com a sucção. Como o solo analisado nesta pesquisa é pouco colapsível, ele se comportou da forma que o modelo BBM propõe.

Figura 32 – Variação de λ com a sucção

Fonte: Elaborado pela autora.

Para a definição da superfície de plastificação elíptica proposta pelo modelo BBM, descrita pela Equação 26, fez-se necessário a determinação de p_s , que corresponde a intercessão de uma elipse com o eixo p devido ao aumento da sucção. A intercessão p_s é calculada pela Equação 27 e é função da constante k, que descreve o aumento da coesão do solo com o aumento da sucção e que deve ser obtida a partir da realização de ensaios de compressão triaxial drenados para diferentes valores de sucção de forma controlada. Tendo em vista a impossibilidade da realização desse tipo de ensaio neste trabalho, foi utilizada a modificação proposta por Silva Filho (1998) no modelo WS modificado para a determinação de p_s .

Na proposta de Silva Filho (1998), a intercessão de uma elipse com o eixo p para uma dada sucção é chamada de $\mu(s)$ e é função de M e de ϕ^b , podendo ser calculada pela Equação 45.

$$\mu(s) = M(s) \tan \phi^{b} s \tag{45}$$

Onde:

μ é a intercessão da elipse com o eixo p para uma determinada sucção;
M é a inclinação da linha de estados críticos, calculada pela Equação 28;
φ^b é o ângulo de atrito devido à sucção mátrica;
s é a sucção mátrica.

A determinação da intercessão $\mu(s)$ por meio da Equação 45 possibilitou a estimativa da constante k e a definição da superfície de plastificação do solo analisado. A Figura 33 apresenta as projeções nos planos (p,q) e (p,s) da superfície de plastificação obtida pelo modelo BBM.

--· Saturado 200 • Não saturado (sucção = 389,2 kPa) Μ - · Linha de estados críticos 150 q (kPa) М 100 50 -120 -70 -20 30 80 p (kPa) 500 SI 400 Sucção (kPa) 300 k 200 LC 100 4 -120 -80 -40 0 40 80 120 p (kPa)

Figura 33 – Projeções nos planos (p,q) e (p,s) da superfície de plastificação obtida pelo modelo BBM

Fonte: Elaborado pela autora.

De modo geral, apresenta-se na Tabela 14 os parâmetros do modelo BBM necessários para a modelagem da Barragem Cipoada no CODE_BRIGHT e os valores utilizadas para cada um.

PARÂMETRO	UNIDADE	DESCRIÇÃO	VALOR	REFERÊNCIA
к	-	Inclinação das retas de descarregamento das curvas de adensamento (independe da sucção)	0,009	Tabela 13
λ(0)	-	Inclinação da reta virgem da curva de adensamento do solo saturado	0,069	Tabela 13
r	-	Parâmetro da curva LC	0,80	Equação 44
β	-	Parâmetro da curva LC	7,2	Equação 44
p_c	MPa	Tensão de referência	0,008	Figura 30
k_2	-	-3k (k é o parâmetro que descreve o aumento da coesão com a sucção)	-0,870	Figura 33
<i>k</i> ₃	-	+3k (k é o parâmetro que descreve o aumento da coesão com a sucção)	0,870	Figura 33

Tabela 14 - Parâmetros do modelo BBM para modelagem no CODE_BRIGHT

Fonte: Elaborado pela autora.

4.3.3. Parâmetros do modelo de Perzyna (1966) modificado por Desai e Zhang (1989)

A Tabela 15 apresenta os parâmetros elastoviscoplásticos do modelo de Perzyna (1966) modificado por Desai e Zhang (1989) que o CODE BRIGHT utiliza em suas análises.

PARÂMETRO	UNIDADE	DESCRIÇÃO	VALOR	REFERÊNCIA
Γο	s ⁻¹	1/viscosidade (fluidez do material)	1000	Olivella <i>et al.</i> (2020)
Ν	-	Parâmetro da função F	6	Tabela 16
b	-	Parâmetro de não associação	0,3	Equação 30
F_0	MPa	Tensão de referência	1	Tabela 5
n	-	Parâmetro da função F	1	Tabela 5
γ	-	Parâmetro da função F	-0,111	Tabela 5
α	-	Parâmetro da função F	3	Tabela 5
$(J1_0^*)_{\rm F}$	MPa	Primeiro invariante de tensão	0,128	Equação 40
$(J1_0^*)_{G}$	MPa	Primeiro invariante de tensão	0,128	Equação 40
μ_{sat}	-	Inclinação da linha de estados críticos	1,208	M (Equação 28)

Tabela 15 - Parâmetros elastoviscoplásticos para modelagem no CODE_BRIGHT

Fonte: Elaborado pela autora.

Os parâmetros F₀, n, γ , α , $(J1_0^*)_F$, $(J1_0^*)_G$, μ_{sat} foram obtidos relacionando as equações do modelo de Desai e Zhang (1989) com as do modelo BBM, conforme já detalhado no Capítulo 3 (Tabela 5).

O modelo BBM admite uma lei de fluxo não associada, cujo parâmetro de não associação é calculado pela Equação 30. Assim sendo, esta equação foi utilizada para calcular o parâmetro de não associação *b* do modelo de Desai e Zhang (1989).

O parâmetro Γ_0 foi determinado com base na orientação do guia de uso do CODE_BRIGHT que diz que deve ser designado a este parâmetro um número suficientemente grande para que a condição de plasticidade seja considerada.

O parâmetro N, como explicado no Capítulo 3, é um parâmetro viscoso do solo que deve ser obtido por meio de ensaios de fluência. Devido a impossibilidade da realização desse tipo de ensaio neste trabalho, foi realizada uma análise paramétrica para a estimativa de N. Sabendo que N necessariamente é um número maior que 1 e que geralmente varia até 10 (KHALEEL *et al.*, 2001), realizou-se a simulação do enchimento da barragem Cipoada utilizando valores de N variando de 2 a 10.

A Tabela 16 apresenta os resultados dos deslocamentos máximos da barragem Cipoada obtidos durante o seu enchimento em função de N. Pode-se observar que para N igual a 2 não houve convergência do modelo, impossibilitando a realização da análise. Nota-se também que ao passo que N aumentou, os deslocamentos máximos diminuíram, variando de aproximadamente 8,7 cm para N igual a 3 e 0,9 cm para N igual a 10.

N Deslocamento máximo (
2	Não converge			
3	8,7			
4	7,5			
5	5,6			
6	3,7			
7	3,0			
8	2,2			
9	1,6			
10	0,9			

Tabela 16 - Deslocamentos máximos em função de N ocorridos durante o enchimento da

Fonte: Elaborada pela Autora.

A média dos deslocamentos máximos apresentados na Tabela 16 foi de 4,1 cm. Nesta pesquisa optou-se por adotar o N que forneceu um deslocamento máximo mais próximo do valor médio encontrado. Neste caso, foi adotado o N igual a 6. A validação desta escolha será apresentada no Item 4.4.

4.3.4. Parâmetros hidráulicos

As propriedades hidráulicas necessários para a modelagem da barragem Cipoada no CODE_BRIGHT são os parâmetros da curva de retenção e a permeabilidade intrínseca do solo. Apesar do método de Fredlund e Xing (1994) ter apresentado o melhor ajuste da curva de retenção para o solo estudado, fez-se necessário utilizar o ajuste proposto por Van Genuchten (1980), por ser o único modelo implementado no CODE_BRIGHT. A Figura 34 ilustra a curva de retenção em termos de grau de saturação do solo modelado.

Figura 34 – Curva de retenção de água no solo (grau de saturação x sucção)

A permeabilidade intrínseca do solo do aterro da barragem foi calculada a partir da condutividade hidráulica saturada obtida experimentalmente, por meio da Equação 32 proposta por Nutting (1930). A Tabela 17 apresenta os resultados alcançados.

Tabela 17 – Condutividade hidráulica saturada e permeabilidade intrínseca do solo da barragem Cipoada

PARÂMETRO	VALOR
Condutividade hidráulica saturada (m/s)	6,62x10 ⁻⁰⁶
Permeabilidade intrínseca (m ²)	6,76x10 ⁻¹³
Fonte: Elaborado pela autora	

A permeabilidade intrínseca do solo do filtro da barragem também foi calculada pela Equação 32, considerando uma condutividade hidráulica saturada de 10⁻² m/s (estimada baseada na proposta de Terzaghi e Peck (1967) para solos altamente permeáveis). O memorial de cálculo da determinação da permeabilidade intrínseca do solo do aterro e do filtro da barragem está apresentado no APÊNDICE H.

A Tabela 18 e a Tabela 19 apresentam, respectivamente, os parâmetros hidráulicos utilizados na modelagem do aterro e do filtro da barragem no CODE_BRIGHT.

PARÂMETRO	UNIDADE	DESCRIÇÃO	VALOR	REFERÊNCIA
P ₀	MPa	Pressão de entrada de ar (Modelo de Van Genuchten)	0,018	Figura 34
λ	-	Parâmetro de ajuste (Modelo de Van Genuchten)	0,106	Figura 34
σ_0	Nm	Tensão superficial da água a 20°C	0,072	Levenspiel (2002)
\mathbf{S}_{rl}	-	Grau de saturação residual	0.27	Figura 34
$\mathbf{S}_{1\mathrm{s}}$	-	Grau de saturação máximo	1	Figura 34
k11	m²	Permeabilidade intrínseca (1º direção principal)	6,76 10 ⁻¹³	Tabela 17
k ₂₂	m²	Permeabilidade intrínseca (2º direção principal)	6,76 10 ⁻¹³	Tabela 17
k ₃₃	m²	Permeabilidade intrínseca (3º direção principal)	6,76 10 ⁻¹³	Tabela 17
φο	-	Porosidade de referência	0,3	Calculada a partir do índice de vazios inicial (ensaio de adensamento)

Tabela 18 – Parâmetros hidráulicos do aterro necessários para a modelagem no CODE_BRIGHT

Fonte: Elaborado pela autora.

PARÂMETRO	UNIDADE	DESCRIÇÃO	VALOR	REFERÊNCIA
k ₁₁	m²	Permeabilidade intrínseca	10-9	Terzaghi e Peck
		(1º direção principal)		(1967) / Eq. 32
k ₂₂	?	Permeabilidade intrínseca	10 ⁻⁹	Terzaghi e Peck
	111-	(2º direção principal)		(1967) / Eq. 32
k33	m ²	Permeabilidade intrínseca	10-9	Terzaghi e Peck
	1117	(3º direção principal)	10	(1967) / Eq. 32

Tabela 19 - Parâmetros hidráulicos do filtro necessários para modelagem no CODE BRIGHT

Fonte: Elaborado pela autora.

4.4. Validação dos parâmetros

A fim de validar os parâmetros estimados no Item 4.3, foi realizada a simulação numérica de um ensaio de adensamento edométrico no CODE_BRIGHT. Nesta simulação, foram utilizadas as dimensões, o índice de vazios inicial e a sucção do corpo de prova do ensaio 2 (apresentado na Tabela 10). Optou-se por simular o ensaio 2 nesta validação por ele contemplar o estado não saturado do solo.

A Figura 35 apresenta a comparação entre os resultados experimentais e os resultados da simulação numérica realizada no CODE_BRIGHT.

Figura 35 – Comparação entre os resultados experimentais e os da simulação do ensaio de adensamento edométrico (módulo de elasticidade constante)

Fonte: Elaborada pela Autora.

Observa-se na Figura 35 que os resultados da simulação não apresentaram um bom ajuste com os resultados experimentais. Justifica-se esta grande diferença pela consideração de um módulo de elasticidade único na simulação, quando na verdade, é sabido que ele varia com a faixa de carregamento. Dessa forma, ao adotar um módulo de elasticidade constante, o solo simulado apresentou um comportamento muito rígido nos carregamentos iniciais, diferente do que foi observado experimentalmente.

A fim de verificar a influência da variação do módulo de elasticidade, foi realizada uma simulação particionada do ensaio de adensamento edométrico, utilizando os módulos de elasticidade experimentais correspondentes a cada faixa de carregamento (disponíveis no APÊNDICE G). A Figura 36 apresenta a comparação entre os resultados experimentais e os da simulação numérica considerando a variação do módulo de elasticidade.

Figura 36 – Comparação entre os resultados experimentais e os da simulação do ensaio de adensamento edométrico (módulo de elasticidade variável)

Fonte: Elaborada pela Autora.

Observa-se na Figura 36 que os resultados da simulação diferem pouco dos resultados experimentais, ao contrário do que foi visto na Figura 35. As pequenas diferenças apresentadas podem ser justificadas pela variação da sucção do solo ao longo do ensaio, já que ele foi realizado sem sucção controlada.

Tendo em vista o bom ajuste apresentado na Figura 36, pode-se validar os parâmetros estimados no Item 4.3 para a modelagem da barragem Cipoada. Bem como, pode-se considerar que os ensaios realizados sem sucção controlada, apesar das suas limitações, produziram resultados satisfatórios.

4.5. Escolha da malha de elementos finitos

O programa CODE_BRIGHT realiza análises de tensões e deformações utilizando o método dos elementos finitos para a resolução das equações governantes do problema. Logo, a precisão dos resultados obtidos depende diretamente da quantidade e do tipo de elementos que compõe a malha de elementos finitos. A barragem Cipoada foi modelada considerando um problema plano de deformações e utilizando uma malha composta de elementos do tipo triangulares. A escolha da quantidade de elementos e de pontos nodais foi definida com base nos resultados de uma análise de convergência.

A análise de convergência realizada consistiu na simulação do enchimento e do esvaziamento da barragem utilizando 4 malhas diferentes, variando em cada uma a quantidade de elementos e de pontos nodais.

A Figura 37 apresenta os resultados de deslocamentos máximos obtidos em cada estágio da simulação para as 4 malhas testadas. Observa-se que as malhas 3 e 4 apresentaram resultados praticamente iguais, indicando a convergência deles. A malha cujos resultados foram mais discrepantes foi a malha 1 (cerca de 6% de diferença dos resultados das malhas 3 e 4). A partir dessas informações, optou-se por utilizar a malha 3 na modelagem da barragem Cipoada, pois ela apresentou resultados praticamente iguais aos da malha 4 utilizando menos elementos e pontos nodais, o que diminui consideravelmente o tempo de processamento computacional.

Figura 37 – Malhas de elementos finitos testadas na análise de convergência

Malha 1: 236 elementos e 154 nós Malha 2: 428 elementos e 265 nós Malha 3: 618 elementos e 371 nós Malha 4: 1326 elementos e 265 nós

Fonte: Elaborada pela Autora.

A Figura 38 apresentada a malha de elementos finitos adotada.

Figura 38 – Malha de elementos finitos adotada

Fonte: Elaborada pela Autora.

4.6. Resultados das simulações e discussões

A Figura 39 e a Figura 40 apresentam, respectivamente, as variações de grau de saturação e de poropressão da água após o enchimento e o esvaziamento do reservatório (Estágio 4 e Estágio 6). Observa-se que, após o enchimento, o espaldar de montante apresentou uma grande zona saturada e o espaldar de jusante permaneceu não saturado, o que era esperado, tendo em vista a existência de um sistema de drenagem interno na barragem (filtro chaminé associado a um tapete drenante). Após o esvaziamento, observa-se que ocorreu a dessaturação do espaldar de montante e este passou a operar na condição não saturada.

Fonte: Elaborado pela Autora.

Figura 40 – Variação do grau de saturação e da poropressão da água ao final do esvaziamento (Estágio 6)

Fonte: Elaborado pela Autora.

Como pôde ser observado, o enchimento e o esvaziamento do reservatório da barragem Cipoada ocasionaram a variação do grau de saturação e a variação da poropressão da água ao longo do maciço, o que consequentemente alterou o estado de tensões do solo e gerou deformações. A fim de exemplificar e avaliar o comportamento hidromecânico da barragem ao longo dos estágios simulados, foram escolhidos os pontos A, B e C apresentados na Figura 39 e na Figura 40 para serem analisados.

O ponto A foi escolhido por estar localizado no espaldar de montante e ter sofrido uma considerável variação de grau de saturação ao longo da operação da barragem, o que consequentemente ocasionou uma considerável variação de sucção. Já o ponto B, localizado a jusante, foi escolhido por ter permanecido não saturado e ter apresentado pequena variação de grau de saturação durante os estágios simulados. Por fim, o ponto C, localizado próximo à fundação da barragem, foi escolhido por ter permanecido saturado ao longo dos estágios de enchimento e de esvaziamento do reservatório.

A Figura 41 apresenta o comportamento hidromecânico do ponto A, relacionando a variação do grau de saturação (Figura 41a) e a variação das deformações volumétricas (Figura 41b) com a variação da porosidade deste ponto.

Figura 41 – Comportamento hidromecânico do ponto A

(b) Variação das deformações volumétricas e da porosidade

Fonte: Elaborado pela Autora.

Observa-se na Figura 41a que, ao longo do enchimento da barragem, ocorreu o aumento do grau de saturação e a diminuição da porosidade do ponto A. Durante o esvaziamento, ocorreu a redução do grau de saturação e uma pequena diminuição da porosidade (consideravelmente menor do que a observada durante o enchimento).

A redução da porosidade do ponto A, tanto no enchimento como no esvaziamento, é resultado das deformações volumétricas sofridas, como pode ser observado na Figura 41b. O enchimento do reservatório provocou a molhagem do solo e, consequentemente, o aumento do seu grau de saturação. Com isto, ocorreu a diminuição da sucção e o aumento do peso específico do maciço, provocando um acréscimo de tensões no ponto A e, consequentemente, a ocorrência de deformações volumétricas. Já no esvaziamento, apesar de ter ocorrido um alívio de tensões no ponto A devido a redução do grau de saturação, a dessaturação do solo provocou o aumento da sucção, o que também gerou deformações volumétricas, só que com uma inclinação mais suavizada. A partir desta mudança de inclinação e tendo em vista que as deformações volumétricas durante o enchimento foram consideravelmente maiores que as do esvaziamento, infere-se que o solo plastificou durante a molhagem.

A luz do modelo BBM, interpreta-se que a trajetória de aumento de tensão e de diminuição de sucção, ocorrida durante o enchimento, ocasionou o acionamento e o deslocamento da LC, justificando o maior nível de deformações. Já no esvaziamento, como ocorreu uma trajetória de redução de tensão e aumento de sucção, o solo retornou ao domínio elástico e sofreu deformações reversíveis.

Assim como foi apresentado para o ponto A, localizado no espaldar de montante, a Figura 42 apresenta o comportamento hidromecânico do ponto B, localizado no espaldar de jusante. Ressalta-se que os eixos dos gráficos da Figura 42 apresentam a mesma variação dos intervalos dos eixos dos gráficos da Figura 41, a fim de possibilitar a comparação do comportamento dos dois pontos em mesma escala.

Figura 42 - Comportamento hidromecânico do Ponto B

(a) Variação do grau de saturação e da porosidade

(b) Variação das deformações volumétricas e da porosidade

Observa-se na Figura 42a que o grau de saturação do ponto B praticamente não variou, o que era esperado, tendo em vista a existência de um sistema de drenagem interno que fez com que o talude de jusante permanecesse não saturado e com pequena variação de sucção ao longo da operação da barragem. Tal fato fez com que a variação da porosidade e o nível de deformações volumétricas no ponto B, tanto no enchimento como no esvaziamento, fossem consideravelmente menores do que as do ponto A. Observa-se também que, assim como no ponto A, ocorreram predominantemente deformações plásticas ao longo do enchimento e deformações elásticas ao longo do esvaziamento.

A Figura 43 apresenta o comportamento hidromecânico do ponto C que, como já foi citado anteriormente, foi escolhido por permanecer saturado ao longo do enchimento e do esvaziamento da barragem. Diferente dos pontos A e B, o ponto C apresenta plastificação no enchimento e no esvaziamento da barragem, como pode ser observado na Figura 43b. Isto ocorreu porque o ponto C não se encontra em uma trajetória de variação de sucção e sim em uma trajetória de variação de carregamento. Como o ponto encontra-se saturado e não há variação da sucção, ele acompanhou a expansão da LC e continuou plastificando.

Fonte: Elaborado pela Autora.

Figura 43 - Comportamento hidromecânico do Ponto C

(b) Variação das deformações volumétricas e da porosidade

Fonte: Elaborado pela Autora.

A Figura 44 apresenta o nível de deformações volumétricas plásticas ao final da simulação realizada (Estágio 6). Verifica-se que as maiores deformações volumétricas ocorreram na região inferior da barragem e que as menores ocorreram próximo a superfície. Pode-se relacionar isto ao fato da região inferior da barragem está submetida aos maiores níveis de tensões, como pode ser visto na Figura 45.

Figura 44 - Nível de deformações volumétricas no Estágio 6

Fonte: Elaborado pela Autora.

Fonte: Elaborado pela Autora.

A Figura 46 apresenta os deslocamentos verticais dos Pontos A e B localizados respectivamente no espaldar de montante e de jusante (ambos na mesma altura). Pode-se observar que o ponto B apresentou deslocamentos verticais menores que os do ponto A. Isto pode ser justificado pelo fato do solo localizado no espaldar de jusante apresentar grau de saturação menor do que o do espaldar de montante e, como consequência disto, possuir maior rigidez e menor deformabilidade.

Figura 46 – Deslocamentos verticais dos pontos A e B

Fonte: Elaborado pela Autora;

A Figura 47 apresenta a malha deformada da barragem Cipoada ao longo dos estágios simulados. Observa-se que os maiores níveis de deformações ocorreram durante o enchimento, principalmente até o estágio 3, a partir do qual não foram apresentadas mudanças significativas. Isto pode ser justificado devido a variação da sucção ser maior no início do enchimento e as zonas da barragem submetidas aos maiores níveis de tensões serem as primeiras a sofrerem molhagem. Dessa forma, no estágio 4, por exemplo, as zonas com maiores níveis de tensões já estavam saturadas e o enchimento deste estágio molhou zonas com níveis menores de tensões, provocando, portanto, menores deformações. Também é possível observar na Figura 47 que o espaldar de montante sofreu maiores deformações que o espaldar de jusante, o que era esperado, tendo em vista que o solo a montante se encontra saturado e, consequentemente, mais deformável.

Figura 47 - Malha deformada da Barragem Cipoada para diferentes estágios (aumento de

Volume armazenado: 0,7%

Fonte: Elaborado pela Autora;

Na inspeção realizada em 2005, detalhada no Item 4.1, foi encontrada surgência de água no talude de jusante, o que pode ter ocorrido devido alguma anomalia do sistema de drenagem. A fim de analisar esta possibilidade, foram simulados o enchimento e o esvaziamento da barragem Cipoada desconsiderando o funcionamento do filtro chaminé e do tapete drenante.

A Figura 48 apresenta a variação do grau de saturação após o enchimento da barragem desconsiderando o funcionamento do sistema de drenagem. Observa-se que apenas uma pequena região da superfície do maciço permaneceu não saturada, diferente do que foi observado na Figura 39a.

Figura 48 – Variação do grau de saturação no Estágio 4 (condição de não funcionamento do sistema de drenagem)

Fonte: Elaborado pela Autora;

A Figura 49 apresenta a malha deformada da barragem sem sistema de drenagem ao longo dos estágios simulados. As deformadas exibidas apresentam o mesmo aumento de 100x das deformadas da Figura 47, o que faz com que seja possível verificar visualmente que as deformações da condição sem sistema de drenagem foram consideravelmente maiores que as da condição com drenagem. Bem como, devido a saturação de praticamente todo o maciço da barragem, tanto o espaldar de montante como o espaldar de jusante sofreram grandes deformações, diferente do que foi visto na Figura 47.

(aumento de 100x)

(d) Estágio 6 Volume armazenado: 0,7%

Fonte: Elaborado pela Autora;

A Figura 50 apresenta os deslocamentos totais sofridos pela barragem após o seu enchimento (Estágio 4) considerando, respectivamente, o funcionamento e o não funcionamento do sistema de drenagem. Como já era esperado, os deslocamentos totais da barragem aumentaram na segunda situação. O deslocamento total máximo para a condição com drenagem foi de aproximadamente 4 cm e para a condição sem drenagem foi de aproximadamente 7 cm, o que corresponde a um aumento de 75%.

Figura 50 – Deslocamentos totais após o enchimento da barragem (Estágio 4)

Fonte: Elaborado pela Autora;

4.7. Resumo e notas conclusivas

Neste capítulo foram apresentadas todas as informações referentes a análise acoplada da barragem Cipoada, que simulou o enchimento do reservatório ocorrido entre o período de 1992 e 2009, e o esvaziamento que aconteceu entre os anos de 2009 e 2016. Para a modelagem da barragem, foi desconsiderada a percolação de água pela fundação do maciço e foi utilizada uma malha de elementos finitos de 618 elementos e 371 nós.

Os parâmetros mecânicos e hidráulicos do solo constituinte da barragem foram estimados a partir dos resultados de ensaios de laboratório realizados com umidade constante, sendo eles posteriormente validados por meio da simulação de um ensaio de adensamento edométrico no CODE_BRIGHT.

A partir dos resultados da simulação do enchimento e do esvaziamento da barragem Cipoada, foi possível concluir que:

- O modelo BBM representou de maneira satisfatória o solo analisado;
- As maiores deformações da barragem ocorreram durante o enchimento,

principalmente nos estágios iniciais;

- A saturação do espaldar de montante ao longo do enchimento diminuiu a rigidez do solo e aumentou a sua deformabilidade;
- O espaldar de jusante, devido a existência de um sistema de drenagem interno, permaneceu não saturado e não sofreu consideráveis variações de grau de saturação ao longo dos estágios simulados, o que fez com que ele apresentasse maior rigidez e menor deformabilidade;
- A não consideração do funcionamento do sistema de drenagem acarretou uma maior deformação do maciço como um todo e um aumento de até 75% dos deslocamentos totais.

5 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

Neste capítulo serão apresentadas as principais conclusões deste trabalho, tendo como base os resultados dos ensaios de laboratório e da simulação numérica realizada. Também serão apresentadas sugestões para trabalhos futuros que visem complementar os resultados e as conclusões desta pesquisa.

5.1. Conclusões

O presente trabalho teve como objetivo geral realizar uma análise com acoplamento hidromecânico da barragem Cipoada ao longo do seu enchimento e do seu esvaziamento, considerando a existência de zonas não saturadas ao longo do maciço. Para a modelagem numérica do solo estudado foi utilizado o modelo constitutivo BBM. Os parâmetros mecânicos e hidráulicos do solo, necessários para a realização da simulação numérica, foram determinados a partir da realização de uma série de ensaios de laboratório (ensaios de caracterização, papel filtro, cisalhamento direto, adensamento edométrico e permeabilidade).

O método do papel filtro, utilizado para a determinação da curva de retenção de água no solo, se mostrou eficiente e de fácil execução, confirmando ser um ensaio simples e vantajoso. Dentre as propostas de ajuste da curva de retenção testadas nesse trabalho, a proposta que apresentou o melhor ajuste com os resultados experimentais foi a de Fredlund e Xing (1994).

Os ensaios de cisalhamento direto e de adensamento edométrico foram utilizados para a determinação dos parâmetros do modelo BBM. No entanto, estes ensaios foram realizados de forma simplificada, sem sucção controlada. A simplificação efetuada consistiu na determinação da sucção das amostras ensaiadas através da curva de retenção de água do solo estudado e apresentou como limitação o fato das umidades das amostras não permanecerem constantes ao longo dos ensaios, devido a perda de umidade do solo por secagem. Apesar desta limitação, o comportamento do solo durante os ensaios de cisalhamento direto e de adensamento edométrico foram condizentes com o esperado. Nos ensaios de cisalhamento direto e de adensamento eda resistência ao cisalhamento do solo com o aumento da sucção e, nos ensaios de adensamento edométrico, observou-se o aumento da rigidez do solo com o aumento da sucção.

Com o objetivo de avaliar e validar os parâmetros do modelo BBM e todos os demais parâmetros mecânicos e hidráulicos estimados para o solo analisado, foi realizada a simulação de um ensaio de adensamento edométrico no CODE_BRIGHT, cujos resultados foram comparados com o comportamento experimental do solo. Verificou-se que, quando considerado um módulo de elasticidade constante, os resultados da simulação não apresentaram bom ajuste com o comportamento do solo obtido experimentalmente. No entanto, quando considerado um módulo de elasticidade variável ao longo dos carregamentos simulados, o comportamento do solo modelado apresentou bom ajuste com o comportamento experimental. Sabendo que o módulo de elasticidade do solo de fato varia com a faixa de carregamento, pôdese validar os parâmetros estimados e concluir que os ensaios com umidade conhecida forneceram resultados satisfatórios apesar das suas limitações.

Os resultados da simulação do enchimento e esvaziamento da barragem Cipoada mostraram que o modelo BBM descreveu de forma satisfatória o comportamento do solo. Analisando pontos escolhidos ao longo do maciço, verificou-se que, durante o enchimento, o solo sofreu plastificação ao ser submetido a trajetórias de aumento de carregamento e diminuição da sucção. Já durante o esvaziamento, o solo retornou ao domínio elástico ao ser submetido a trajetórias de redução de carregamento e aumento da sucção.

O sistema de drenagem da barragem possibilitou que o espaldar de jusante permanecesse não saturado e com pequena variação de sucção ao longo do enchimento e do esvaziamento do reservatório. Este fato fez com que a região à jusante apresentasse deformações volumétricas menores que as obtidas para o espaldar de montante, que sofreu grande variação de grau de saturação e de sucção ao longo dos estágios simulados.

A não consideração do funcionamento do sistema de drenagem fez com que tanto o espaldar de montante como o espaldar de jusante sofressem grande variação de grau de saturação e de sucção. Tal fato ocasionou deformações maiores em todo o maciço e um aumento de até 75% dos deslocamentos totais da barragem, se comparados com os resultados apresentados para a condição com sistema de drenagem.

De modo geral, conclui-se que o acoplamento hidromecânico e a utilização de um modelo constitutivo elastoplástico para solos não saturados possibilitou uma análise mais realista do comportamento da barragem Cipoada, tendo em vista que foi possível considerar o efeito da variação da poropressão nas tensões e deformações do maciço, bem como a influência da deformação volumétrica na porosidade do solo. Desse modo, pode-se avaliar que o tipo de análise realizada nesta pesquisa é uma importante ferramenta no estudo do comportamento dos solos não saturados.

5.2. Sugestões para trabalhos futuros

A fim de aprofundar o estudo no tema abordado são apresentadas a seguir sugestões para trabalhos futuros.

- Obter os parâmetros do modelo BBM através de ensaios com sucção controlada e comparar com os resultados obtidos pelos ensaios com umidade conhecida;
- Realizar ensaios de fluência para a obtenção do parâmetro N da teoria de Perzyna (1966);
- Determinar k₀ de forma experimental;
- Coletar e caracterizar o solo da fundação da barragem Cipoada, a fim de utilizá-lo na simulação e verificar a sua influência;
- Aplicar a metodologia de análise deste trabalho em uma barragem monitorada, com o objetivo de comparar os resultados da simulação numérica com dados de instrumentação;

REFERÊNCIAS

AGÊNCIA NACIONAL DE ÁGUAS (ANA). Reservatórios do Semiárido Brasileiro: hidrologia, balanço hídrico e operação. Relatório Final. Engecorps Engenharia S.A., Brasília, 2016.

AGUIAR, L. A. Análise do Comportamento Mecânico de Solos Compactados e Estabilizados Quimicamente para uso em Barragens. Tese (Doutorado). Universidade de Brasília, Brasília, 281p, 2014.

AITCHINSON, G. D.; PETER, P.; MARTYN, R. Long term observation of deformation in structures founded in expansive clays in South Australia. In: Proceedings of 3rd International Conference on Expansive Soils, Haifa, v. 2, p. 109-113, 1973.

ALONSO, E. E.; VAUNAT, J.; GENS, A. Modelling the mechanical behavior of expansive clays. Engineering Geology, v. 54, n. 199, p. 173-183, 1999.

ALONSO, E.; CARDOSO, R. Behavior of materials for Earth and rockfill dams: **Perspective from unsaturated soil mechanics.** Proceedings of the 8th ICOLD European Club Symposium, Innscruck, Austria, 2010.

ALONSO, E.E.; GENS, A.; JOSA, A. A constitutive model for partially saturated soil. Géotechnique, v. 40, n. 3, p. 405-430, 1990.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). ASTM D3080 – 98 – Standard test method for direct shear test of soil under consolidated drained conditions. USA, 1998.

AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). ASTM D5298: Standard test method for measurement of soil potential (suction) using filter paper. West Conshohocken, PA, USA, 2016.

ARBHABHIRAMA, A.; KRIDAKORN, C. Steady Downward Flow to a Water Table. Water Resources Res., v. 4, 1968.

ASKARINEJAD, A. Failure mechanisms in unsaturated silty sand slopes triggered by rainfaall. PhD Thesis. Iran University of Science and Technology, Iran, 362p, 2013.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 14545/2000 – Solo – Determinação do coeficiente de permeabilidade de solos argilosos a carga variável. Rio de Janeiro, 2000.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 16853: Solo – Ensaio de adensamento unidimensional. Rio de Janeiro, 22p, 2020.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 6457: Amostra de solo: preparação para ensaios de compactação e ensaios de caracterização. Rio de Janeiro, 8p, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 6459: Determinação do limite de liquidez. Rio de Janeiro, 5p, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 7180: Determinação do limite de plasticidade. Rio de Janeiro, 3p, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 7181: Análise granulométrica. Rio de Janeiro, 12p, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 7182: Solo – Ensaio de Compactação. Rio de Janeiro, 9p, 2016.

AYALA, G. R. L. Verificação da estabilidade do talude de montante em barragem de terra submetida a rebaixamento rápido realizada com ensaios em solos não saturados e modelagem numérica. Dissertação (Mestrado em Engenharia Civil). Universidade Federal do Ceará, Fortaleza, 2018.

BALMACEDA, A. R. Suelos compactados – um estúdio teórico y experimental. Tesis Doctoral. Universitat Politecnica de Catalunya, Barcelona, 1991.

BISHOP, A. W. The principle of effective stress. Lecture delivered in Oslo. Norway in 1995, printed in Teknisk Ukeblad, v. 106, m. 39, p. 859-863, 1959.

BISHOP, A. W.; DONALD, I. B. The experimental study of partly saturated soils in the triaxial apparatus. Proceeding 5° International Conference of Soil Mechanics Foundation Engineering. Paris, v. 1, p. 13 - 21, 1961.

BLIGHT, G. E. Aspects of capillary model of unsaturated soils. In: Asian Reg. Conference on Soil Mechanics and Foundation Engineering, Haifa, v. 1, p. 1-7, 1983.

BRISSON, P.; GARGA, V. K.; VANAPALLI, S. K. Determination of unsaturated flow characteristics in mine tailings. In: 55th. Canadian Geotechnical Conference, Niagara, 2002.

BROOKS, R. H.; COREY, A. T. **Properties of porous media affecting fluid flow.** Journal of the Irrigation and Drainage, v. 92, p. 61- 66, 1968.

BROOKS, R. H.; COREY, A. T; Hydraulic Properties of Porous Media. Colorado State University, Fort Collins. Hydrology Paper, v.3, p.27, 1964.

BULUT, R.; LEONG, E. C. **Indirect Measurement of Suction.** Geotechnical and Geological Engineering, 2008.

CALLE, J. A. C. **Análise de ruptura de talude em solo não saturado.** Dissertação (Mestrado). Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 156p, 2000.

CAMAPUM DE CARVALHO, J.; GITIRANA JUNIOR, G. de F. N.; MACHADO, S. L.; MASCARENHA, M. M. dos A.; SILVA FILHO, F. C. da. **Solos não saturados no Contexto Geotécnico**. Associação Brasileira de Mecânica dos Solos e Engenharia Geotécnica, ABMS, São Paulo, 759p, 2015. CAMAPUM DE CARVALHO, J.; MURRIETA, P. S. N. Método para medir sucção em solos não saturados. Encontro de Solos Não Saturados, Rio Grande do Sul, 1995.

CAMPBELL, G. S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Science, v. 117, p. 311- 314, 1974.

CAMPOS, L. E. P. Influência da Sucção na Estabilidade de Taludes Naturais em Solos Residuais. Dissertação (Mestrado). Pontificia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 1984.

CAMPOS, T. M. P. **Equipamentos e técnicas para determinação da sucção no campo.** Anais II Simpósio Solos não saturados, Recife, p.9, 1994.

CASTRO, C. L. de. **Comportamento hidromecânico de solos reforçados com fibras considerando a condição não saturada.** Dissertação (Mestrado em Engenharia Civil). Universidade Federal do Ceará - UFC, Fortaleza, 2020.

CHANDLER, R. J.; CRILLY, M. S.; MONTGOMERY-SMITH, G. A Low-cost Method of Assessing Clay Desiccation for Low-Rise Buildings. Proceedings, Institute of Civil Engineering, v. 2, p. 82–89, 1992.

CHANDLER, R. J.; GUTIERREZ C. I. The Filter Paper Method of Suction Measurement. Géotechnique, v. 1, n. 36, p. 265 - 268, 1986.

CHILDS, E. C.; COLLINS-GEORGE, N. The permeability of porous materials. Roy. Soc. Proc., London, v. 201, p. 392 – 405, 1950.

CHILDS, E.C. An introduction to the physical basis of soil water phenomena. A Wiley – Interscience Pub. John Wiley & Sons Ltd., London, 1969.

COLEMAN, J. Stress strain relations for partly saturated soil. Correspondence to Geotechnique, v. 12, n. 4, p. 348–350, 1962.

COMPANHIA DE GESTÃO DE RECURSOS HÍDRICOS (COGERH). Relatório anual de segurança de barragens (RASB). Governo do Estado do Ceará, 2016.

COMPANHIA DE GESTÃO DOS RECURSOS HÍDRICOS (COGERH). Anuário do monitoramento quantitativo dos principais açudes do estado do Ceará. Governo do Estado do Ceará, 2007.

COMPANHIA DE GESTÃO DOS RECURSOS HÍDRICOS (COGERH). Plano de operação e manutenção. Governo do Estado do Ceará, 2008.

CONCIANI, W.; CARNEIRO, B. J. I.; MACHADO, S. L. **Estimativa da condutividade** hidráulica de solos não saturados através do TDR. 3º Simpósio de solos não saturados, Rio de Janeiro, p. 221-229, 1997.

CONDE, M. do C. C. **Estudo do desempenho a longo prazo de aterros**. Tese (Doutorado). Universidade Nova de Lisboa, Lisboa, Portugal, 2016.

CORDÃO NETO, M. P. Análise hidromecânica de barragens de terra construídas com materiais colapsíveis. Tese (Doutorado). Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, 152 p., 2005.

D'EMILIO, A.; AIELLO, R.; CONSOLI, S.; VANELLA, D.; IOVINO, M. Artificial Neural Networks for Predicting the Water Retention Curve of Sicilian Agricultural Soils. Water, v.10, 2018.

DAVIDSON, J. M.; STONE, L. R.; NIELSEN, D. R.; LARUE, M. E. Field Measurement and use of soil water properties. Water Resources Research, n. 5, p. 1312-1321, 1969.

DELAGE, P.; CUI, Y. J. An evaluation of the osmotic method of controlling suction. Geomechanics and Geoengineering, n.1, v.3, p.1–11, 2008.

DELAGE, P.; SILVA, G. P. R. S.; LAURE, E. Un nouvel appareil triaxial pour lês sols nonsaturés. In: 9th European conference on Soils Mechanics, Dublin, Proceeding, p. 25-28, 1987.

DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. **DNER – ME 093/94 –** Solos - Determinação da densidade real. 1994.

DESAI, C. S.; ZHANG, D. Viscoplastic model for geologic materials with generalized flow rule. International Journal for Numerical and Analytical Methods in Geomechanics, v. 11, p. 603-260, 1987.

DIAS, A. B. de F. Análise acoplada hidromecânica da construção de aterro sobre solo mole em Ipojuca-PE. Tese (Doutorado). Universidade Federal de Pernambuco, Recife, 189p, 2018.

DIAS, C. D. C. Comportamento hidro-mecânico de escavações em condições não saturadas. Dissertação de Mestrado, Universidade do Porto, Porto, Portugal, 2011.

EDIL, T. B.; MOTAN, S. E.; TOHA, F. X. Mechanical behavior and testing methods of unsaturated soils. Laboratory shear strength of soil, ASTM, STP, v. 740, p. 114-129, 1981.

ESCARIO, V.; SÁEZ, J. The shear strength of partly saturated soils. Geotechnique, v. 36, n. 3, 1986.

FARIA, F. X. C. de C. L. Influência da molhagem após compactação no comportamento de um aterro da auto-estrada A10 (BRISA). Dissertação (Mestrado em Engenharia Civil). Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa, 2007.

FARREL, D. A.; LARSON, W. E. **Modelling the Pore Structure of Porous Media**. Water Ressources Research Journal, v. 8, n. 3, p.699-706, 1972.

FREDLUND, D. G. Appropriate Concepts and Technology for Unsaturated Soils. Canadian Geotechnical Journal, v.16, p.121 – 139, 1979.

FREDLUND, D. G. The 1999 R.M. Hardy Lecture: The implementation of unsaturated soil mechanics into geotechnical engineering. Canadian Geotechnical Journal, v. 37, n. 5, p. 963–986, 2000.

FREDLUND, D. G. Unsaturated Soil Mechanics in Engineering Practice. Journal of geotechnical and geoenviromental engineering, 2006.

FREDLUND, D. G. Volume change behavior of unsaturated soils. Tese (Doutorado). University of Alberta, Alberta, 1973.

FREDLUND, D. G.; MORGENSTERN, N. R. Constitutive relations for volume change in unsaturated soils. Canadian Geotechnical Journal., v. 13, n. 3, p. 261-276, 1976.

FREDLUND, D. G.; MORGENSTERN, N. R.; WIDGER, R. A. The shear strength of unsaturated soils. Canadian Geotechnical Journal, v. 15, n. 3, p. 313-321, 1978.

FREDLUND, D. G.; RAHARDJO, H. Soil mechanics for unsaturated soils. John Wiley & Sons, New Jersey, 544p., 1993.

FREDLUND, D.G.; XING, A. **Equations for the soil water characteristic curve**. Canadian Geotechnical Journal, vol. 31, n. 4, p. 521-532, 1994.

FUNDAÇÃO CEARENSE DE METEOROLOGIA E RECURSOS HÍDRICOS (FUNCEME). **Portal hidrológico do Ceará**. Governo do Estado do Ceará, 2020. Disponível em: http://www.hidro.ce.gov.br/. Acesso em: 28 dez. 2020.

FUTAI, M. M.; ALMEIDA, M. S. S.; LACERDA, W. A. **Resistência ao Cisalhamento de Solos Tropicais Não-Saturados**. Anais do 5° Simpósio Brasileiro de Solos Não Saturados, São Carlos, SP, p. 43-54, 2004.

FUTAI, M., M. **Análise de ensaios edométricos com sucção controlada em solos colapsíveis**. Tese (Mestrado), COPPE/UFRJ, Rio de Janeiro – RJ, 1997.

GARDNER, R. A method of measuring the capillary tension of the soil moisture over a wide moisture range. Soil Science, v. 43, p. 277-283, 1937.

GARDNER, W. R. Some Steady-State of the Unsaturated Moisture Flow Equation with application to Evaporation from Water Table. Soil Science, n. 85, v.3, p. 228-232, 1958.

GERSCOVICH, D. M. S. Equações para modelagem da curva característica aplicadas a solos brasileiros. 4º Simpósio brasileiro de solos não saturados, p. 76-93, 2001.

GERSCOVICH, D. M. S.; GUEDES, M. N. Avaliação das relações de condutividade hidráulica em solos brasileiros não saturados. In: 5°. Simpósio Brasileiro de Solos não Saturados, São Carlos, v. 1, p. 249-254, 2004.

GERSCOVICH, D. M. S.; GUEDES, M. N.; TOSCANO, E. Evaluation of Soil-Water Characteristic Curves for Problems of Unsaturated flow in Soils from Brazil. Solos e Rochas, n 1, v. 27, p. 57-67, 2004.

GERSCOVICH, D. M. S.; SAYÃO, A. S. F. J. Evaluation of the soil-water characteristic curve for soils from Brazil. Int. Conf. Unsaturated Soils, ed. Balkema, v. 1, p.295-300, 2002.

GUIMARÃES, A. M. V. Estudo sobre o método da evaporação para determinação da
função de permeabilidade. Dissertação (Mestrado). Escola Politécnica da Universidade de São Paulo, 2004.

HEAD, K. H. Manual of Soil Laboratory Testing. Permeability, Shear Strength and Compressibility Tests. John Wiley & Sons, n. 2, v. 2, New York – Toronto, 1994.

HERNANDEZ MONCADA, M. P. Avaliação de propriedades hidráulicas de solos tropicais não saturados. Tese (Doutorado). Pontificia Universidade Católica do Rio de Janeiro, 2008.

HILLEL, D. Soil and water: Physical principles and processes. Academic Press, INC, New York, 288p, 1971.

HO, D. Y. F. Measurement of Soil Suction Using the Filter Paper Technique. IR-11, Transportation and Geotechnics. Group, Department of Civil Engineering, University Of Saskatchewan, Saskatoon, Sask., Canada, 1979.

JAIN, S. K.; SINGH, V. P.; VAN GENUCHTEN, M. T. Analysis of soil water retention data using artificial neural networks. Journal of Hydrologic Engineering, v.9, p.415–420, 2004.

JAKY, J. **The coefficient of Earth pressure at rest.** Journal of society of Hungarian Architects and Engineers, Budapest, Hungary, p. 355-358, 1944.

JOHNSON, L. D. Predicting potential heave and heave with time in swelling foundation soils. Technical Report S-78-7, U.S. Army Engineer Waterways Experiment Station, CE, Viksburg, Miss, 1978.

JUSTO, J. L.; DELGADO, A.; RUIZ, J. The influence of the stress path in the collapseswelling of soils at the laboratory. In: Proceedings of the 5th International Conference on Expansive Soils, Adelaide, p. 67-71, 1984.

KHALEEL, M. A.; ZBIB, H. M.; NYBERG, E. A. Constitutive modeling of deformation and damage in superplastic materials. International Journal of Plasticity, n. 17, p. 277-296, 2001.

LEE, H. C.; WRAY, W. K. **Techniques to Evaluate Soil Suction – A Vital Unsaturated Soil Water Variable.** Proceedings of the First International Conference on Unsaturated Soil. Paris, France. Balkema, v. 2, p. 615-622, 1995.

LEME, R. F. **Avaliação de uma metodologia para projetos de pequenas barragens de terra no semiárido: construção, ensaios e modelagem numérica.** Tese (Doutorado em Engenharia Civil). Universidade Federal do Ceará - UFC, Fortaleza, 2015.

LEONG, E. C.; HE, L.; RAHARDJO, H. Factors affecting the filter paper method for total and matric suction measurements. Geotechnical Testing Journal, v. 25, n. 3, p. 322 - 333, 2002.

LEONG, E. C.; RAHARDJO, H. **Permeability functions for unsaturated soils.** Journal of Geotechnical and Geoenvironmental Engineering, ASCE, v.123, n.12, p. 1118-1126, 1997.

LEONG, E. C.; RAHARDJO, H. Review of Soil-Water Characteristic Curve Equations. Journal of Geotechnical and Geoenvironmental Engineering, p. 1106-1117, 1998.

LEONG, E.C.; HE, L.; RAHARDJO, H. Factors Affecting the Filter Paper Method for Total Suction Measurements. Geotechnical Testing Journal, v. 25, n.3, p. 322-333, 2002.

LEVENSPIEL, O. Termodinâmica amistosa para engenheiros. Edgard Blücher, São Paulo, 2002.

Li, X. S. Thermodynamics-based constitutive framework for unsaturated soils. 2: A basic triaxial model. Géotechnique, v. 57, n. 5, p. 423-435, 2007.

LIBARDI, P. L. **Dinâmica da água no solo.** Editora da Universidade de São Paulo (USP), São Paulo, 335p, 2005.

LLORET, A.; ALONSO, E. E. States surfaxes for partially saturated soils. Proc. 11th ICSMFE, S. Francisco, USA, p. 557-562, 1985.

LYTTON, R. L. **The characterization of expansive soils in engineering.** In: Symposium on water movement and equilibrium in swelling soils. American Geophysical Union, San Francisco, Californica, 1977.

MARINHO, F. A. M. Os Solos Não Saturados: aspectos Teóricos, Experimentais e Aplicados. Universidade de São Paulo, São Paulo, 200p, 2005.

MARINHO, F. Shrinkage behavior of some plastic clays. PhD Thesis, Imperial College, University of London, 1994.

MARINHO, F.; GOMES, J. The effect of contact on the filter paper method for measuring soil suction. Geotechnical Testing Journal, v. 35, 2011.

MARINHO, F.; OLIVEIRA, O. M. The filter paper method revised. ASTM Geotechnical Testing Journal, USA, 2006.

MARTÍNEZ, G. S. S. **Estudo do comportamento mecânico de solos lateríticos da formação Barreiras.** Tese (Doutorado). Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 266p, 2003.

MASCARENHA, M. M. A. Influência da microestrutura no comportamento hidromecânico de uma argila siltosa não saturada incluindo pequenas deformações. Tese (Doutorado). Departamento de Engenharia Civil, Universidade de Brasília, DF, 158p, 2008.

MATYAS, E.L.; RADHAKRISHNA, H.S. Volume change characteristics of partially saturated soils. Géotechnique, v. 18, n. 4, p. 432-448, 1968.

MCKEE, C. R.; BUMB, A C. Flowtesting coal bed methane production wells in the presence of water and gas. SPE Formation Evaluation, p.599-608, 1987.

MORENO, M. G. M. Modelagem numérica com acoplamento hidro-mecânico da reconstrução enchimento e comportamento da Barragem de Açú/RN após o acidente no

final da construção. 2011. Tese (Doutorado). Universidade Federal de Pernambuco, Recife, 236p, 2011.

MUALEM, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, v. 12, n. 3, p. 513-522, 1976.

MUALEM, Y., DAGAN, G. Hydraulic conductivity of soils: unified approach to the statistical models. Soil Science Society of America Journal, v. 42, p. 392-395, 1978.

NELSON, J. D; MILLER, D. J. Expansive soils – Problems and practice in foundation and pavement engineering. John Wiley & Sons, Inc., p. 259, 1992.

NUNES, F. R. G. Caracterização Mecânica de Misturas Asfálticas Confeccionadas Com Agregados Sintéticos de Argila Calcinada Quanto a Deformação Permanente. Dissertação (Mestrado). Universidade Federal do Ceará, Fortaleza, Ceará, 203p, 2006.

NUTTING, P. G. **Physical analysis of oil sands.** American Association of Petroleum Geologists Bulletin, v. 14, p. 1337-1349, 1930.

OLIVEIRA, O. M. Estudo sobre a resistência ao cisalhamento de um solo residual compactado não saturado. Tese (Doutorado). Escola Politécnica da Universidade de São Paulo, São Paulo, 2004.

OLIVEIRA, O.; FERNANDO, F. M. Evaluation of Filter Paper Calibration. Unsaturated Soils, 2006.

OLIVELLA, S.; CARRERA, J.; GENS, A.; ALONSO, E. E. Non-isothermal Multiphase Flow of Brine and Gas through Saline media. Transport in Porous Media, v. 15, p. 271:293, 1994.

OLIVELLA, S.; GENS, A.; CARRERA, J.; ALONSO, E. E. Numerical formulation for a simulator (Code_Bright) for the coupled analysis of saline media. Engineering Computation, v. 13, n. 7, p. 87-111, 1996.

OLIVELLA, S.; VAUNAT, J. Application of Code_Bright – GiD to geotechnical problems. Proc. 3rd GiD Conference, Barcelona, Spain, p. 10, 2006.

OLIVELLA, S.; VAUNAT, J.; GARITTE, B.; PINYOL, N. Coupled THM problems in geotechnical engineering using Code_Bright – GiD. Proc. 4rd GiD Conference, Ibiza, Spain, p. 10, 2008.

OLIVELLA, S.; VAUNAT, J.; RODRIGUEZ-DONO, A. Code_Bright User's Guide. Department Of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, 2020.

PEREIRA, A. **Comportamento mecânico saturado e não saturado de um solo coluvionar de arenito.** Tese (Doutorado em Engenharia) - Universidade Federal do Rio Grande do Sul. Porto Alegre, p. 305. 2013.

PERZYNA, J. K. Fundamental problems in viscoplasticity. Advances in Applied Mathematics, v. 9, p. 243–377, 1966.

PINTO, C. de S. Curso Básico de Mecânica dos Solos, em 16 Aulas. 3º ed. São Paulo: Oficina de Textos, 2006.

PLAYÁN, N. M. Rotura de um talud em suelo no saturado por mojado. Modelación de um caso a escala. Progecte o tesina d'especialitat. Escola Tècnica Superior d'Enginyeria de Camins, Canals i Ports de Barcelona, 2014.

RAHARDJO, H.; LEONG, E. C. Suction measurements. Proceedings of the 4th International Conference on Unsaturated Soils (UNSAT'2006), Carefree, Arizona, USA, v. 1, p. 81 – 104, 2006.

RAINWATER, N.; MCDOWELL, L.; DRUNUM, E. Measurement of total soil suction using filter paper: investigation of common filter papers, alternative media and corresponding confidence. Geotechnical Testing Journal, v. 35, 2011.

RICHARDS, L. A. Water conducting and retaining properties of soils in relation to irrigation. In: International Symposium on Desert Research, Jerusalem, p. 523-546, 1952.

RICHARDS, L.A. **Capillary Conduction of Liquids through Porous Mediums.** Journal of Applied Physics, v. 1, p. 318-333, 1931.

RIDLEY, A. M.; WRAY, W. K. Suction measurement - A review of current theory and practices. 1st Int. Conf. on Unsaturated Soils, p. 1293-1322, 1996.

RIDLEY, A.; DINEEN, K.; BURLAND, J.; VAUGHAN, P. Soil matrix suction: some examples of its measurements and application in geotechnical engineering. Geotechnique, v. 52, p. 1293-1322, 2003.

ROCHA, B. P. Caracterização geotécnica de solos tropicais não saturados por meio de ensaios de campo. Tese (Doutorado). Universidade de São Carlos - USP, São Carlos, 272p, 2018.

RODRIGUES, R. A. **Modelação das deformações por colapso devidas à ascensão de lençol freático**. Tese (Doutorado). Universidade de São Paulo, São Carlos-SP, 2007.

ROGER, B. C.; HORNBERGER, G. M. Empirical equations for some soil hydraulic properties. Water Research, v. 14, p. 601-604, 1978.

ROHM, S. A. Resistência ao cisalhamento de um solo arenoso laterizado não saturado da região de São Carlos. Tese (Doutorado). Escola de São Carlos, Universidade de São Paulo, São Carlos, 1993.

SALAS, A. I.; SERRATOSA, I. M. Foundations on swelling clays. In: Proc. Of the 4th ICSMFE, London, p. 424-428, 1957.

SANTOS, R. O. G.; SANTOS, T. L., GITIRANA, G. de F. N., SILVA, P. A. D. Estudo Comparativo de curvas características de areias obtidas por métodos de previsão e medição direta. VIII Simpósio Brasileiro de Solos não saturados, Fortaleza, p. 37-44, 2015.

SAXTON, K. E.; RAWLS, J.S.; ROMBERGER, J. S.; PAPENDICK, R. I. Estimating Generalized Soil-Water Characteristics from Texture. Soil Science Society of America Journal, n.50, p.1031-1036, 1986.

SCHAAP, M. G.; LEIJ, F. J. Using neural network to predict water retention and soil hydraulic conductivity. Published in Soil and Tillage Research, v. 47, p.37-42, 1998.

SHENG, D.; SLOAN, S. W.; GENS, A. A constitutive model for unsaturated soils: thermomechanical and computational aspects. Computational Mechanics Journal, p. 453-465, 2004.

SILVA FILHO, F. C da. Analise numérica de problemas em solos não-saturados: modelagem, implementação e aplicações práticas. Tese (Doutorado). Instituto Alberto Luiz Coimbra de Pós-graduação e Pesquisa de Engenharia da Universidade Federal do Rio de Janeiro, 253p., 1998.

SILVA FILHO, F. C. da; ALMEIDA, M. de S. S. de. Análise elasto-plástica de solos não saturados. Revista Tecnologia Fortaleza, Fortaleza, n. 17, p. 38-47, 1996.

SILVA, F. C.; CABRAL, R. M.; CAMAPUM DE CARVALHO, J.; CORDÃO NETO, M. P.; CABRAL, S. M. Consideração das sucções matricial e total na definição das curvas característica de um perfil de solo tropical intemperizado. In: X Seminário de Engenharia Geotécnica do Rio Grande Do Sul, GEORS, Santa Maria, 2019.

SOUSA, F. D. M. de. Estudo da influência da sucção na estabilidade do talude de montante da barragem do Cauhipe realizada por meio de análises de equilíbrio limite e elementos finitos. Dissertação (Mestrado em Engenharia Civil). Universidade Federal do Ceará - UFC, Fortaleza, 2019.

SOUSA, R. M. Modelagem acoplada hidro-mecânica da perfuração de poços em rochas frágeis. Dissertação (Mestrado em Ciências em Eng. Civil). Universidade Federal de Pernambuco, Recife, 112p, 2004.

SOUSA, R. M.; GUIMARÃES, L. J. do N. **Modelagem acoplada hidro-geomecânica da perfuração de poços horizontais em rochas frágeis.** In: 3º Congresso Brasileiro de Petróleo e Gás (P&D), Salvador, 2005.

TEIXEIRA, A. T.; GODOY, N. S. Análise, projeto e execução de fundações rasas. Fundação: Teoria e Prática. Hachich et al. (eds.), Ed. Pini Ltda., São Paulo, Cap. 7, p. 227-264, 1996.

TERZAGHI, K.; PECK, R. B. Soil mechanics in engineering practice. 2nd ed. New York, J. Wiley, 729 p, 1967.

VAN GENUCHTEN, M. T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal. v. 44, p. 892-898, 1980.

VANAPALLI, S. K.; LOBBEZOO, J. P. A normalized function for predicting the coefficient of permeability of unsaturated soils. UNSAT 2002, p. 839-844, 2002.

VASCONCELOS, R. B. de. Implementação de modelo de dano isotrópico aplicado a problemas acoplados hidro-geomecânicos. Dissertação (Mestrado). Universidade Federal de Pernambuco, Recife, 138p, 2007.

VAUNAT, J.; OLIVELLA, S. Code_Bright/GiD: A 3-D program for thermohydromechanical analysis in geological media. CIMNE, 2002.

VAUNAT, J.; ROMERO, E.; JOMMI, C. An elastoplastic hydromechanical model for unsaturated soils. Experimental Evidence and Theoretical Approaches in Unsaturated Soils, Tarantino & Mancuso (eds.), Balkema, Rotterdam, p. 121-138, 2000.

VILAR, O. M. Solos não saturados. 5º Simpósio Brasileiro de solos não saturados, v.2, São Carlos, 2004.

VISSER, W. C. Progress in the Knowledge about the Effect of Soil Moisture Content on Plant Production. Inst. Land Water Manegement, Tech, Bull, 1966.

WHEELER, S. J.; KARUBE, D. State of the Art report. Constitutive Modelling. 1st Int. Conf. On Unsaturated Soils, Paris, 1995.

WHEELER, S. J.; SHARMA, R. S.; BUISSON, M. S. R. Coupling of hydraulic hysteresis and stress-strain behavior in unsaturated soils. Géotechnique, v. 53, p. 41-54, 2003.

WHEELER, S. J.; SIVAKUMAR, V. An elasto-plastic Critical Satate Framework for Unsaturated Soil. Géotechique, v. 45, n. 1, p. 35-53, 1995.

WILLIAMS, J.; PREBBLE, R. E.; WILLIAMS, W.T.; HIDNETT, C.T. **The Influence of texture, structure and clay mineralogy on the soil moisture characteristic curve.** Australian Journal of Soil Research, v. 21, p.15-32, 1983.

ZHAN, L. Field and laboratory study of an unsaturated expansive soil associated with rain-induced slope instability. PhD Thesis. Hong Kong University of Science and Technology, 2003.

PENEIRAMENTO GROSSO												
CÁLCULO DA HIDROSO	A UMIDADE CÓPICA		DADOS D	A AMOSTRA								
CAP N° =	9		MT(g) =	2000								
TARA =	22,68		$\rho s (g/cm^3) =$	2,62								
P.B.H =	110,61		wh (%) =	0,94								
P.B.S =	109,79		Ms (g) =	1986,92								
PENEIRAS		MASSA	RETIDA	% RETIDA								
POLEGADAS mm		RETIDA (g)	ACUM. (g)	ACUMULADA	% PASSA							
3 1/2"	88,9	0,00	0,00	0,00	100,00							
3"	76,2	0,00	0,00	0,00	100,00							
2 1/2"	63,3	0,00	0,00	0,00	100,00							
2"	50,8	0,00	0,00	0,00	100,00							
1 1/2"	38,1	0,00	0,00	0,00	100,00							
1"	25,4	57,70	57,70	2,90	97,10							
3/4"	19,1	6,40	64,10	3,23	96,77							
1/2"	12,7	43,30	107,40	5,41	94,59							
3/8"	9,5	57,05	164,45	8,28	91,72							
Nº 4	4,76	184,34	348,79	17,55	82,45							
Nº 10	2	248,63	597,42	30,07	69,93							
		PENEIRAN	IENTO FINO									
PENE	IRAS	MASSA	RETIDA	% RETIDA	% PASSA							
POLEGADAS	mm	RETIDA (g)	ACUM. (g)	ACUMULADA	/01/16/0/1							
Nº 16	1,2	4,26	4,26	6,17	65,62							
Nº 30	0,6	9,26	13,52	19,59	56,23							
Nº 40	0,42	5,00	18,52	26,83	51,17							
Nº 60	0,25	9,37	27,89	40,41	41,67							
Nº 100	0,15	4,02	31,91	46,23	37,60							
Nº 200	0,075	6,16	38,07	55,16	31,36							

APÊNDICA A – MEMORIAL DE CÁLCULO: ANÁLISE GRANULOMÉTRICA

			SEDIMEN	VTAÇÃO			
CÁLCULO DA HIDROS	A UMIDADE CÓPICA			DADOS DA AM	OSTRA		
CAP N° =	34		Mh(g) =	70	wh =	1,42	
TARA =	6,28		V (cm ³)	1000	N (%) =	69,93	
P.B.H =	16,98		$\delta d (g/cm^3) =$	1,00	ms (g) =	69,02	
P.B.S =	16,83		$\delta c (g/cm^3) =$	1,00			
TEMPO (s)	L	T (°C)	Ld	a (cm)	n (g.c/cm ²)	d (mm)	Q (%)
30	1,016	27	1,0018	15,23	8,72E-06	0,070	23,27
60	1,015	27	1,0018	15,41	8,72E-06	0,050	21,63
120	1,014	27	1,0018	15,58	8,72E-06	0,035	19,99
240	1,014	27	1,0018	14,66	8,72E-06	0,024	19,99
900	1,014	27	1,0018	14,66	8,72E-06	0,013	19,99
1800	1,014	27	1,0018	14,66	8,72E-06	0,009	19,99
3600	1,014	27	1,0018	14,66	8,72E-06	0,006	19,99
7200	1,013	27	1,0018	14,84	8,72E-06	0,004	18,35
14400	1,013	27	1,0018	14,84	8,72E-06	0,003	18,35
28800	1,013	27	1,0018	14,84	8,72E-06	0,002	18,35
86400	1,012	27	1,0018	15,53	8,72E-06	0,001	16,71

	Ι	LIMITE DE	LIQUIDE	Z	LIMITE DE PLASTICIDADE			
No. DE GOLPES	39	26	21	19				
No. CÁPSULA	56	107	4	105	110	S16	92	
SOLO+TARA+ÁGUA (g)	13,39	11,83	11,74	12,13	8,4	7,75	7,7	
SOLO+TARA (g)	12,1	10,85	10,59	10,8	8,11	7,49	7,48	
TARA (g)	6,46	7,13	6,76	6,58	6,02	5,73	6,08	
UMIDADE (%)	22,87	26,34	30,03	31,52	13,88	14,77	15,71	

APÊNDICE B – MEMORIAL DE CÁLCULO: LIMITES DE CONSISTÊNCIA

LIMITE DE LIQUIDEZ	(LL):	27,8	%
LIMITE DE PLASTICIDADE	(LP):	14,8	%
ÍNDICE DE PLASTICIDADE	(IP):	13,0	%

APÊNDICE C – MEMORIAL DE CÁLCULO: DENSIDADE REAL

Picnômetro	P1 (g)	P2 (g)	P3 (g)	P4 (g)	δt	δ
A3	28,36	41,15	87,1	79,1	2,670	
A5	29,84	42,42	87,88	80	2,677	2,673
A6	29,38	40,01	86,03	79,38	2,671	

Temp.	27°
k =	0,9983
δ (20 °C)	2,67

			-	-	
Cápsula	6	10	8	35	37
Massa da cápsula (g)	15,65	13,72	13,31	24,3	15,32
Massa da cápsula + Solo úmido (g)	68,56	58,86	71,18	87,65	95,54
Massa da cápsula + Solo seco (g)	64,49	54,62	64,69	79,41	83,97
Massa de solo seco (g)	48,84	40,90	51,38	55,11	68,65
Massa de água (g)	4,07	4,24	6,49	8,24	11,57
Teor de umidade	0,08	0,10	0,13	0,15	0,17
Teor de umidade (%)	8,33	10,37	12,63	14,95	16,85
Massa do cilindro (g)	4055	4055	4055	4055	4055
Massa do cilindro + Solo úmido (g)	7722	8225	8503	8445	8355
Massa de solo compactado (g)	3667	4170	4448	4390	4300
Volume do cilindro (cm ³)	2085	2085	2085	2085	2085
Massa específica do solo úmido (g/cm ³)	1,76	2,00	2,13	2,11	2,06
Massa específica do solo seco (g/cm ³)	1,62	1,81	1,89	1,83	1,76

APÊNDICE D – MEMORIAL DE CÁLCULO: ENSAIO DE COMPACTAÇÃO

Densidade	Real =	2,67										
PONTO	ANEL	Diâmetro (cm)	Altura (cm)	Volume (cm ³)	Peso do anel (g)	Massa seca (teórica) (g)	Peso anel+solo compactado (g)	Wcompac (%)	ρcomp (g/cm ³)	ρdcomp (g/cm³)	e	S (%)
1	41	4,7	2,0	34,7	46,4409	67,316	121,7878	11,93	2,17	1,94	0,38	84,65
2	53	4,7	2,0	34,7	46,7982	67,316	122,1303	11,91	2,17	1,94	0,38	84,50
3	A3	4,7	2,0	34,7	46,8206	67,316	122,2636	12,07	2,17	1,94	0,38	85,67
4	45	4,7	2,0	34,7	46,4194	67,316	121,616	11,71	2,17	1,94	0,38	83,07
5	49	4,7	2,0	34,7	46,0162	67,316	121,5923	12,27	2,18	1,94	0,38	87,07
6	46	4,7	2,0	34,7	45,7906	67,316	121,2846	12,15	2,18	1,94	0,38	86,20
7	A10	4,7	2,0	34,7	46,0555	67,316	121,353	11,86	2,17	1,94	0,38	84,13
8	43	4,7	2,0	34,7	45,8113	67,316	121,2605	12,08	2,17	1,94	0,38	85,73
9	113	4,9	2,0	37,7	8,0140	73,167	89,9164	11,94	2,17	1,94	0,38	84,72
10	44	4,7	2,0	34,7	46,3033	67,316	121,7156	12,03	2,17	1,94	0,38	85,34
11	A2	4,7	2,0	34,7	44,1547	67,316	119,7020	12,23	2,18	1,94	0,38	86,76
12	51	4,7	2,0	34,7	46,0859	67,316	121,3643	11,83	2,17	1,94	0,38	83,93
13	A1	4,7	2,0	34,7	44,3035	67,316	119,7013	12,01	2,17	1,94	0,38	85,19
14	101	4,9	2,0	37,7	8,0140	73,1670	90,0630	12,14	2,18	1,94	0,38	86,14
15	52	4,7	2,0	34,7	46,30	67,316	121,6457	11,93	2,17	1,94	0,38	84,65
16	A10	4,7	2,0	34,7	46,1	67,316	121,56	12,10	2,17	1,94	0,38	85,84
17	49	4,7	2,0	34,7	46,06	67,316	121,29	11,76	2,17	1,94	0,38	83,42
18	A1	4,7	2,0	34,7	44,34	67,316	119,56	11,74	2,17	1,94	0,38	83,31
19	45	4,7	2,0	34,7	46,47	67,316	121,76	11,85	2,17	1,94	0,38	84,05

APÊNDICE E – MEMORIAL DE CÁLCULO: ENSAIO DE PAPEL FILTRO

				I	PAPEL FILT	ГRO	SOLO]
Nº da PF	capsula SOLO	PESO C PF (Tc)	CAP. FRIA (g) SOLO	CAP+PF UMIDO (M1) (g)	CAP+PF SECO (M2) (g)	CAPSULA QUENTE (Th) (g)	CAP + SOLO ÚMIDO (g)	CAP + SOLO SECO	Umidade do solo gravimétrica (%)
1	36	27,016	34,015	27,2543	27,1917	26,9994	152,9927	147,0945	8,85
2	39	25,8895	36,3029	26,1171	26,0695	25,8773	154,6716	149,8223	7,27
3	60	26,9469	34,6823	27,1756	27,1213	26,9328	150,8694	148,2569	3,91
4	5	25,3365	36,4778	25,5588	25,5093	25,3244	154,5568	149,6141	7,41
5	17	25,3495	37,4348	25,558	25,5196	25,3354	153,4599	149,4725	6,04
6	26	26,8354	35,9053	27,1832	27,012	26,8205	157,1253	148,4628	12,97
7	33	25,6691	33,5384	25,8957	25,8373	25,656	152,4334	146,5237	8,83
8	22	24,5882	34,0975	24,8083	24,759	24,5734	151,7833	146,667	7,66
10	32	27,4671	34,2624	27,7124	27,6368	27,4515	122,2202	114,9055	10,07
9	18	25,0581	37,8191	25,296	25,2345	25,044	154,1274	148,0265	9,55
11	4	24,1126	37,6748	24,4885	24,286	24,0967	157,5288	148,7421	13,13
12	1	25,6407	35,7961	25,911	25,8128	25,6254	156,5032	148,6471	11,77
13	11	24,6823	34,6175	24,9418	24,858	24,6721	152,9384	145,6197	10,97
14	25	27,21	34,2048	27,5429	27,3895	27,193	124,1497	114,9973	12,58
15	14	25,0465	33,9912	25,3318	25,215	25,0329	155,3342	147,1334	12,27
9	1	27,4674	35,8042	27,8887	27,6314	27,4491	157,643	148,6971	13,39
3	18	26,9468	34,8291	27,3209	27,1198	26,9295	156,1529	147,5525	12,90
1	5	27,016	36,4789	27,406	27,1853	26,9972	156,1689	147,3958	13,18
12	32	25,6403	34,265	25,926	25,8112	25,6229	155,578	147,4555	12,17

CHANDLER et al (1986)

Nº da c	capsula			MASSA	MASSA	Umidade	
PF	SOLO	S (%)	volumétrica (%)	PF SECO (Mf) (g)	ÁGUA PF (Mw) (g)	PF [wF] (%)	Sucção (h)
1	36	62,80	23,632	0,1757	0,046	26,18	1635,1
2	39	51,57	19,406	0,18	0,0354	19,67	4156,6
3	60	27,77	10,449	0,1744	0,0402	23,05	2560,1
4	5	52,57	19,781	0,1728	0,0374	21,64	3131,6
5	17	42,85	16,126	0,1701	0,0243	14,29	8983,1
6	26	92,06	34,641	0,1766	0,1563	88,51	16,7
7	33	62,65	23,575	0,1682	0,0453	26,93	1468,3
8	22	54,38	20,463	0,1708	0,0345	20,20	3851,4
10	32	71,46	26,890	0,1697	0,06	35,36	439,4
9	18	67,74	25,490	0,1764	0,0474	26,87	1481,3
11	4	93,18	35,061	0,1734	0,1866	107,61	10,3
12	1	83,49	31,417	0,1721	0,0829	48,17	75,3
13	11	77,86	29,297	0,1757	0,0736	41,89	172,4
14	25	89,23	33,577	0,1795	0,1364	75,99	24,3
15	14	87,06	32,758	0,1685	0,1032	61,25	41,5
9	1	95,04	35,761	0,164	0,239	145,73	4,8
3	18	91,54	34,446	0,173	0,1838	106,24	10,6
1	5	93,50	35,184	0,1693	0,2019	119,26	7,9
12	32	86,38	32,504	0,1709	0,0974	56,99	49,6

APÊNDICE F – MEMORIAL DE CÁLCULO: CISALHAMENTO DIRETO

SOLO -	BARRAG	GEM CIPO	ADA				σ:	50	kPa		
Anel nº	1	Área:	26,01	cm ²	Tara:	44,95	g	Dens. Real	2,67		
DETERMI	NAÇÕES	Antes d	o Ensaio	Depois	do Ensaio	Peso do C.P.+ág	gua+Tara (g)		232,44		
Cápsula N	N ^o		5		44	Peso do C.P.+	água (g)		187,49		
Solo+Tara	a+água (g)	25	5,13	23	2,44	Altura do C.P.	(cm)		3,3		
Solo+Tara	a (g)	23	3,75	21	0,64	Volume (cm ³)		85,83			
Tara (g)		12	2,88	4	4,95	Dens. Úmida (Dens. Úmida (g/cm ³)				
Água (g)		1	,38	2	1,80	Dens. Seca (g/	(cm^3)		1,94		
Solo (g)		10),87	16	5,69	Grau de satura	ıção (%)		93,24		
Umidade	(%)	12	,70	1	3,16	Constante do a	anel (kgf/m	m)	31		
ΔT	Extensô	metro (mm)	Deform. do	Carga	Área corrig.	Deform. Horiz.	τ	Deform. Vert.	ΔV		
Minuto	Vertical	Horizontal	Dinam. (mm)	Horiz. (kgf)	do C.P. (cm ²)	do C.P. (mm)	kPa	do C.P. (mm)	cm ³		
-	4,938	0,000	0,000	0,00	26,010	0,000	0,000	0,000	0,00		
-	4,922	0,250	0,103	3,18	25,935	0,148	12,252	0,016	0,04		
-	4,910	0,500	0,163	5,05	25,838	0,337	19,556	0,028	0,07		
-	4,905	0,750	0,197	6,11	25,728	0,553	23,737	0,033	0,09		
-	4,902	1,000	0,231	7,16	25,618	0,769	27,953	0,036	0,09		
-	4,910	1,250	0,259	8,01	25,504	0,992	31,420	0,028	0,07		
-	4,925	1,500	0,286	8,85	25,391	1,215	34,857	0,013	0,03		
-	4,939	1,750	0,305	9,44	25,273	1,446	37,350	-0,001	0,00		
-	4,950	2,000	0,324	10,03	25,155	1,677	39,867	-0,012	-0,03		
-	4,975	2,250	0,336	10,42	25,034	1,914	41,608	-0,037	-0,10		
-	4,998	2,500	0,345	10,68	24,911	2,156	42,871	-0,060	-0,16		
-	5,020	2,750	0,351	10,87	24,786	2,400	43,837	-0,082	-0,21		
-	5,039	3,000	0,352	10,90	24,659	2,649	44,188	-0,101	-0,26		
-	5,060	3,250	0,353	10,93	24,532	2,898	44,543	-0,122	-0,32		
-	5,080	3,500	0,353	10,93	24,405	3,148	44,776	-0,142	-0,37		
-	5,100	3,750	0,351	10,87	24,276	3,400	44,758	-0,162	-0,42		
-	5,120	4,000	0,350	10,83	24,148	3,651	44,867	-0,182	-0,47		
-	5,140	4,250	0,344	10,65	24,018	3,907	44,336	-0,202	-0,53		
-	5,150	4,500	0,342	10,59	23,889	4,159	44,315	-0,212	-0,55		
-	5,165	4,750	0,337	10,43	23,759	4,414	43,905	-0,227	-0,59		
-	5,180	5,000	0,335	10,39	23,631	4,665	43,947	-0,242	-0,63		

ENSAIO SATURADO

Г

SOLO -	BARRA	GEM CIP	OADA				σ:	100	kPa
Anel nº	1	Área:	26,01	cm ²	Tara:	41,88	g	Dens. Real	2,67
DETERMI	NAÇÕES	Antes d	lo Ensaio	Depois o	lo Ensaio	Peso do C.P.+á	gua+Tara (g	g)	228,4
Cápsula N	N ^o		9	1	9	Peso do C.P.+água (g			186,52
Solo+Tar	a+água (g)	26	26,98		3,40	Altura do C.P. ((cm)		3,3
Solo+Tar	a (g)	25	5,51	206	5,53	Volume (cm ³)	85,83		
Tara (g)	-	13	3,93	41	,88	Dens. Úmida (g	$/cm^3$)		2,17
Água (g)		1	,47	21	,87	Dens. Seca (g/c	1,928		
Solo (g)		11	,58	164	1,65	Grau de saturaç	92,38		
Umidade	(%)	12	2,69	13	,28	Constante do an	el (kgf/mm))	31
ΔΤ	Extensôr	metro (mm)	Desl. do	Carga	Área corrig.	Desl. Horiz.	τ	Deform. Vert.	ΔV
Minuto	Vertical	Horizontal	Dinam. (mm)	Horiz. (kgf)	do C.P. (cm ²)	do C.P. (mm)	kPa	do C.P. (mm)	cm ³
-	5,740	0,000	0,000	0,00	26,010	0,000	0,00	0,000	0,00
-	5,740	0,250	0,210	6,51	25,990	0,040	25,05	0,000	0,00
-	5,740	0,500	0,385	11,94	25,951	0,115	45,99	0,000	0,00
-	5,740	0,750	0,455	14,11	25,860	0,295	54,54	0,000	0,00
-	5,739	1,000	0,492	15,25	25,751	0,508	59,23	0,001	0,00
-	5,740	1,250	0,530	16,43	25,643	0,720	64,07	0,000	0,00
-	5,750	1,500	0,560	17,36	25,531	0,940	68,00	-0,010	-0,03
-	5,760	1,750	0,592	18,35	25,419	1,158	72,20	-0,020	-0,05
-	5,765	2,000	0,610	18,91	25,301	1,390	74,74	-0,025	-0,07
-	5,772	2,250	0,630	19,53	25,184	1,620	77,55	-0,032	-0,08
-	5,785	2,500	0,646	20,03	25,064	1,854	79,90	-0,045	-0,12
-	5,800	2,750	0,653	20,24	24,941	2,097	81,17	-0,060	-0,16
-	5,808	3,000	0,657	20,37	24,815	2,343	82,08	-0,068	-0,18
-	5,815	3,250	0,661	20,49	24,690	2,589	82,99	-0,075	-0,20
-	5,829	3,500	0,665	20,62	24,564	2,835	83,92	-0,089	-0,23
-	5,835	3,750	0,661	20,49	24,435	3,089	83,86	-0,095	-0,25
-	5,845	4,000	0,655	20,31	24,304	3,345	83,55	-0,105	-0,27
-	5,850	4,250	0,647	20,06	24,172	3,603	82,97	-0,110	-0,29
-	5,852	4,500	0,645	20,00	24,044	3,855	83,16	-0,112	-0,29
-	5,860	4,750	0,637	19,75	23,912	4,113	82,58	-0,120	-0,31
-	5,860	5,000	0,633	19,62	23,783	4,367	82,51	-0,120	-0,31

SOLO -	BARRA	GEM CIPO	DADA				σ:	200	kPa	
Anel nº	1	Área:	26,01	cm ²	Tara:	45,42	g	Dens. Real	2,67	
DETERMI	NAÇÕES	Antes d	lo Ensaio	Depois o	lo Ensaio	Peso do C.P.+	água+Tara (g)	230,01	
Cápsula I	N°		98	í ()2	Peso do C.P.+	água (g)	<u>.</u>	184,59	
Solo+Tar	a+água (g)	13	3,66	230	0,01	Altura do C.P.	(cm)		3,3	
Solo+Tar	a (g)	12	2,82	207	7.94	Volume (cm ³)	Volume (cm ³)			
Tara (g)	(C)	06	5,28	45	,42	Dens. Úmida (g/cm^3)		2,15	
Água (g)		0	,84	22	,07	Dens. Seca (g	(cm ³)		1,906	
Solo (g)		6	,54	162	2,52	Grau de satura	ção (%)		90,59	
Umidade	(%)	12	2,84	13	,58	Constante do a	nel (kgf/mm)	31	
ΔΤ	Extensô	metro (mm)	Desl. do	Carga	Área corrig.	Desl. Horiz.	τ	Deform. Vert.	ΔV	
Minuto	Vertical	Horizontal	Dinam. (mm)	Horiz. (kgf)	do C.P. (cm ²)	do C.P. (mm)	kPa	do C.P. (mm)	cm ³	
-	8,485	0,000	0,000	0,00	26,010	0,000	0,000	0,000	0,00	
-	8,481	0,250	0,190	5,89	25,979	0,060	22,672	0,004	0,01	
-	8,475	0,500	0,420	13,02	25,969	0,080	50,136	0,010	0,03	
-	8,468	0,750	0,585	18,14	25,926	0,165	69,949	0,017	0,04	
-	8,458	1,000	0,700	21,70	25,857	0,300	83,923	0,027	0,07	
-	8,450	1,250	0,770	23,87	25,765	0,480	92,644	0,035	0,09	
-	8,450	1,500	0,830	25,73	25,668	0,670	100,240	0,035	0,09	
-	8,445	1,750	0,874	27,09	25,563	0,876	105,988	0,040	0,10	
-	8,440	2,000	0,934	28,95	25,466	1,066	113,695	0,045	0,12	
-	8,442	2,250	0,952	29,51	25,348	1,298	116,427	0,043	0,11	
-	8,441	2,500	0,971	30,10	25,230	1,529	119,305	0,044	0,11	
-	8,441	2,750	0,988	30,63	25,111	1,762	121,969	0,044	0,11	
-	8,441	3,000	1,003	31,09	24,992	1,997	124,414	0,044	0,11	
-	8,450	3,250	1,025	31,78	24,875	2,225	127,737	0,035	0,09	
-	8,451	3,500	1,025	31,78	24,748	2,475	128,396	0,034	0,09	
-	8,452	3,750	1,020	31,62	24,618	2,730	128,444	0,033	0,09	
-	8,452	4,000	1,030	31,93	24,495	2,970	130,352	0,033	0,09	
-	8,460	4,250	1,036	32,12	24,371	3,214	131,780	0,025	0,07	
-	8,460	4,500	1,039	32,21	24,245	3,461	132,849	0,025	0,07	
-	8,460	4,750	1,041	32,27	24,118	3,709	133,802	0,025	0,07	
-	8,460	5,000	1,038	32,18	23,989	3,962	134,134	0,025	0,07	

SOLO - BARRAGEM CIPOADA											
ATRITO											
(Graus)											
30.2											
50,2											

ENSAIO NÃO SATURADO [1]

Г

SOLO -	BARRAG	GEM CIPO	ADA				σ:	50	kPa
Anel nº	1	Área:	26,01	cm ²	Tara:	41,9	g	Dens. Real	2,67
DETERMI	NAÇÕES	Antes d	lo Ensaio	Depois	do Ensaio	Peso do C.P.+ág	gua+Tara (g)		147,94
Cápsula N	N ^o	4	50		50	Peso do C.P.+	água (g)		106,04
Solo+Tara	a+água (g)	14	7,94	14	7,94	Altura do C.P.	(cm)		2
Solo+Tara	a (g)	13	6,24	13	36,24	Volume (cm ³)			52,02
Tara (g)		41	,90	4	1,90	Dens. Úmida ((g/cm^3)		2,04
Água (g)		11	,70	1	1,70	Dens. Seca (g/	(cm ³)		1,81
Solo (g)		94	1,34	9.	4,34	Grau de satura	ıção (%)		70,18
Umidade (%) 12,40			1	2,40	Constante do a	anel (kgf/m	m)	31	
ΔT	Extensôr	metro (mm)	Deform. do	Carga	Área corrig.	Deform. Horiz.	τ	Deform. Vert.	ΔV
Minuto	Vertical	Horizontal	Dinam. (mm)	Horiz. (kgf)	do C.P. (cm ²)	do C.P. (mm)	kPa	do C.P. (mm)	cm ³
-	2,870	0,000	0,000	0,00	26,010	0,000	0,000	0,000	0,00
-	2,830	0,250	0,120	3,72	25,944	0,130	14,339	0,040	0,10
-	2,810	0,500	0,185	5,74	25,849	0,315	22,186	0,060	0,16
-	2,800	0,750	0,250	7,75	25,755	0,500	30,091	0,070	0,18
-	2,800	1,000	0,290	8,99	25,648	0,710	35,052	0,070	0,18
-	2,810	1,250	0,340	10,54	25,546	0,910	41,259	0,060	0,16
-	2,815	1,500	0,362	11,22	25,430	1,138	44,130	0,055	0,14
-	2,830	1,750	0,390	12,09	25,316	1,360	47,756	0,040	0,10
-	2,850	2,000	0,410	12,71	25,199	1,590	50,438	0,020	0,05
-	2,870	2,250	0,425	13,18	25,079	1,825	52,533	0,000	0,00
-	2,890	2,500	0,435	13,49	24,957	2,065	54,033	-0,020	-0,05
-	2,910	2,750	0,440	13,64	24,832	2,310	54,929	-0,040	-0,10
-	2,930	3,000	0,443	13,73	24,706	2,557	55,586	-0,060	-0,16
-	2,950	3,250	0,443	13,73	24,578	2,807	55,874	-0,080	-0,21
-	2,960	3,500	0,438	13,58	24,448	3,062	55,537	-0,090	-0,23
-	2,990	3,750	0,438	13,58	24,321	3,312	55,829	-0,120	-0,31
-	2,995	4,000	0,430	13,33	24,189	3,570	55,107	-0,125	-0,33
-	3,005	4,250	0,420	13,02	24,057	3,830	54,122	-0,135	-0,35
-	3,030	4,500	0,415	12,87	23,927	4,085	53,768	-0,160	-0,42
-	3,040	4,750	0,405	12,56	23,794	4,345	52,765	-0,170	-0,44
-	3,045	5,000	0,400	12,40	23,664	4,600	52,400	-0,175	-0,46

SOLO -	BARRA	GEM CIP	OADA				σ:	100	kPa
Anel nº	1	Área:	26,01	cm ²	Tara:	30,56	g	Dens. Real	2,67
DETERMI	NAÇÕES	Antes d	lo Ensaio	Depois o	lo Ensaio	Peso do C.P.+á	gua+Tara (g	g)	136,53
Cápsula N	N ^o		23	2	23	Peso do C.P.+á	gua (g)		105,97
Solo+Tar	a+água (g)	13	6,53	136	5,53	Altura do C.P. ((cm)		2
Solo+Tar	a (g)	12	4,89	124	1,89	Volume (cm ³)			52,02
Tara (g)		30),56	30	,56	Dens. Úmida (g/cm ³)			2,04
Água (g)		11	,64	11	,64	Dens. Seca (g/cm ³)			1,813
Solo (g)		94	1,33	94	,33	Grau de saturação (%)			69,81
Umidade	(%)	12	2,34	12	,34	Constante do anel (kgf/mm)			31
ΔΤ	Extensôr	netro (mm)	Desl. do	Carga	Área corrig.	Desl. Horiz.	τ	Deform. Vert.	ΔV
Minuto	Vertical	Horizontal	Dinam. (mm)	Horiz. (kgf)	do C.P. (cm ²)	do C.P. (mm)	kPa	do C.P. (mm)	cm ³
-	2,480	0,000	0,000	0,00	26,010	0,000	0,00	0,000	0,00
-	2,455	0,250	0,150	4,65	25,959	0,100	17,91	0,025	0,07
-	2,440	0,500	0,245	7,60	25,880	0,255	29,35	0,040	0,10
-	2,410	0,750	0,280	8,68	25,770	0,470	33,68	0,070	0,18
-	2,390	1,000	0,345	10,70	25,676	0,655	41,65	0,090	0,23
-	2,380	1,250	0,405	12,56	25,579	0,845	49,08	0,100	0,26
-	2,375	1,500	0,460	14,26	25,480	1,040	55,97	0,105	0,27
-	2,375	1,750	0,510	15,81	25,378	1,240	62,30	0,105	0,27
-	2,375	2,000	0,553	17,14	25,272	1,447	67,83	0,100	0,26
-	2,380	2,250	0,595	18,45	25,166	1,655	73,29	0,095	0,25
-	2,385	2,500	0,625	19,38	25,054	1,875	77,33	0,085	0,22
-	2,395	2,750	0,655	20,31	24,942	2,095	81,41	0,080	0,21
-	2,400	3,000	0,672	20,83	24,823	2,328	83,92	0,070	0,18
-	2,410	3,250	0,690	21,39	24,704	2,560	86,58	0,060	0,16
-	2,420	3,500	0,694	21,51	24,579	2,806	87,53	0,055	0,14
-	2,425	3,750	0,705	21,86	24,457	3,045	89,36	0,045	0,12
-	2,435	4,000	0,706	21,89	24,330	3,294	89,95	0,040	0,10
-	2,440	4,250	0,708	21,95	24,204	3,542	90,68	0,030	0,08
-	2,450	4,500	0,706	21,89	24,075	3,794	90,91	0,025	0,07
-	2,455	4,750	0,705	21,86	23,947	4,045	91,26	0,025	0,07
-	2,455	5,000	0,700	21,70	23,817	4,300	91,11	0,025	0,07

SOLO -	BARRAG	EM CIPO	ADA				σ:	200	kPa
Anel nº	1	Área:	26,01	cm ²	Tara:	41,64	g	Dens. Real	2,67
DETERMI	NAÇÕES	Antes d	lo Ensaio	Depois of	lo Ensaio	Peso do C.P.+	água+Tara (g)	144,93
Cápsula 1	N ^o		17	1	.7	Peso do C.P.+	água (g)		106.23
Solo+Tara	a+água (g)	14	4,93	144	1,93	Altura do C.P.	(cm)		2
Solo+Tara	a (g)	13	3.55	133	3.55	Volume (cm^3)			52.02
Tara (g)		41	1,64	41	,64	Dens. Úmida ((g/cm^3)		2,04
Água (g)		11	.38	11	.38	Dens. Seca (g	$/cm^3$)		1,817
Solo (g)		91	,91	91	,91	Grau de satura	ição (%)		70,50
Umidade	(%)	12	2,38	12	,38	Constante do a	unel (kgf/mm)	31
ΔΤ	Extensôn	netro (mm)	Desl. do	Carga	Área corrig.	Desl. Horiz.	τ	Deform. Vert.	ΔV
Minuto	Vertical	Horizontal	Dinam. (mm)	Horiz. (kgf)	do C.P. (cm ²)	do C.P. (mm)	kPa	do C.P. (mm)	cm ³
-	2,205	0,000	0,000	0,00	26,010	0,000	0,000	0,000	0,00
-	2,195	0,250	0,215	6,67	25,992	0,035	25,642	0,010	0,03
-	2,180	0,500	0,370	11,47	25,944	0,130	44,211	0,025	0,07
-	2,160	0,750	0,525	16,28	25,895	0,225	62,849	0,045	0,12
-	2,130	1,000	0,650	20,15	25,832	0,350	78,006	0,075	0,20
-	2,120	1,250	0,755	23,41	25,758	0,495	90,867	0,085	0,22
-	2,105	1,500	0,835	25,89	25,671	0,665	100,834	0,100	0,26
-	2,090	1,750	0,910	28,21	25,582	0,840	110,275	0,115	0,30
-	2,080	2,000	0,975	30,23	25,487	1,025	118,589	0,125	0,33
-	2,080	2,250	1,030	31,93	25,388	1,220	125,769	0,125	0,33
-	2,080	2,500	1,060	32,86	25,276	1,440	130,007	0,125	0,33
-	2,075	2,750	1,090	33,79	25,163	1,660	134,282	0,130	0,34
-	2,075	3,000	1,112	34,47	25,047	1,888	137,629	0,130	0,34
-	2,075	3,250	1,135	35,19	24,931	2,115	141,128	0,130	0,34
-	2,075	3,500	1,146	35,53	24,809	2,354	143,195	0,130	0,34
-	2,080	3,750	1,156	35,84	24,687	2,594	145,161	0,125	0,33
-	2,085	4,000	1,160	35,96	24,562	2,840	146,407	0,120	0,31
-	2,090	4,250	1,170	36,27	24,439	3,080	148,409	0,115	0,30
-	2,090	4,500	1,170	36,27	24,312	3,330	149,187	0,115	0,30
-	2,095	4,750	1,170	36,27	24,184	3,580	149,974	0,110	0,29
-	2,095	5,000	1,170	36,27	24,057	3,830	150,769	0,110	0,29

	SOLO - BARRAGEM CIPOADA											
CORPO DE	MASSA ESP.	UMIDADE	TENSÃO NORMA I	TENSÃO CIS MÁX	COESÃO (kPa)	ATRITO						
PROVA	(g/cm^3)	%	(kPa)	(kPa)	(Ki a)	(Glaus)						
1	1,814	12,4	50	55,9								
2	1,813	12,3	100	91,3	26.12	32.1						
3	1,817	12,4	200	150,8	20,12	52,1						

ENSAIO NÃO SATURADO [2]

SOLO -	BARRAG	GEM CIPO	ADA				σ:	50	kPa
Anel nº	1	Área:	26,01	cm ²	Tara:	17,09	g	Dens. Real	2,67
DETERMI	NAÇÕES	Antes d	lo Ensaio	Depois	do Ensaio	Peso do C.P.+ág	gua+Tara (g)	•	121,13
Cápsula N	Nº		14	Î Î	14	Peso do C.P.+	-água (g)		104,04
Solo+Tara	a+água (g)	12	1,13	12	21,13	Altura do C.P.	(cm)		2
Solo+Tar	a (g)	11	1,05	11	1,05	Volume (cm ³))		52,02
Tara (g)		17	7,09	1	7,09	Dens. Úmida	(g/cm^3)		2,00
Água (g)		10),08	1	0,08	Dens. Seca (g	$/cm^3$)		1,81
Solo (g)		93	3,96	9	3,96	Grau de satura	ıção (%)		59,95
Umidade	(%)	10),73	1	0,73	Constante do	anel (kgf/m	m)	31
ΔΤ	Extensô	metro (mm)	Deform. do	Carga	Área corrig.	Deform. Horiz.	τ	Deform. Vert.	ΔV
Minuto	Vertical	Horizontal	Dinam. (mm)	Horiz. (kgf)	do C.P. (cm ²)	do C.P. (mm)	kPa	do C.P. (mm)	cm ³
-	2,140	0,000	0,000	0,00	26,010	0,000	0,000	0,000	0,00
-	2,140	0,250	0,120	3,72	25,944	0,130	14,339	0,000	0,00
-	2,140	0,500	0,215	6,67	25,865	0,285	25,769	0,000	0,00
-	2,140	0,750	0,320	9,92	25,791	0,430	38,463	0,000	0,00
-	2,140	1,000	0,392	12,15	25,700	0,608	47,284	0,000	0,00
-	2,140	1,250	0,480	14,88	25,617	0,770	58,086	0,000	0,00
-	2,140	1,500	0,590	18,29	25,546	0,910	71,597	0,000	0,00
-	2,140	1,750	0,680	21,08	25,464	1,070	82,783	0,000	0,00
-	2,150	2,000	0,720	22,32	25,357	1,280	88,022	-0,010	-0,03
-	2,170	2,250	0,736	22,82	25,238	1,514	90,404	-0,030	-0,08
-	2,200	2,500	0,735	22,79	25,110	1,765	90,741	-0,060	-0,16
-	2,260	2,750	0,733	22,72	24,981	2,017	90,960	-0,120	-0,31
-	2,320	3,000	0,733	22,72	24,854	2,267	91,427	-0,180	-0,47
-	2,370	3,250	0,729	22,60	24,724	2,521	91,404	-0,230	-0,60
-	2,410	3,500	0,725	22,48	24,595	2,775	91,381	-0,270	-0,70
-	2,480	3,750	0,720	22,32	24,465	3,030	91,233	-0,340	-0,88
-	2,550	4,000	0,710	22,01	24,332	3,290	90,457	-0,410	-1,07
-	2,620	4,250	0,700	21,70	24,200	3,550	89,671	-0,480	-1,25
-	2,660	4,500	0,710	22,01	24,077	3,790	91,415	-0,520	-1,35
-	2,720	4,750	0,705	21,86	23,947	4,045	91,264	-0,580	-1,51
-	2,750	5,000	0,700	21,70	23,817	4,300	91,111	-0,610	-1.59

SOLO -	BARRA	GEM CIP	OADA				σ:	100	kPa
Anel nº	1	Área:	26,01	cm ²	Tara:	41,28	g	Dens. Real	2,67
DETERMI	NAÇÕES	Antes d	lo Ensaio	Depois o	lo Ensaio	Peso do C.P.+á	gua+Tara (g	g)	147,68
Cápsula I	N ^o	(53	6	53	Peso do C.P.+á	gua (g)		106,4
Solo+Tar	a+água (g)	14	7,68	147	7,68	Altura do C.P. ((cm)		2
Solo+Tar	a (g)	13	7,29	137	7,29	Volume (cm ³)			52,02
Tara (g)		41	,28	41	,28	Dens. Úmida (g	$/cm^3$)		2,05
Água (g)		10),39	10	,39	Dens. Seca (g/c	m^3)		1,846
Solo (g)	Solo (g) 96,01			96	,01	Grau de saturaç	ão (%)		64,76
Umidade	Umidade (%) 10,82 10,82 Constante do anel (kgf/mm)				I	31			
ΔΤ	Extensôr	netro (mm)	Desl. do	Carga	Área corrig.	Desl. Horiz.	τ	Deform. Vert.	ΔV
Minuto	Vertical	Horizontal	Dinam. (mm)	Horiz. (kgf)	do C.P. (cm ²)	do C.P. (mm)	kPa	do C.P. (mm)	cm ³
-	3,650	0,000	0,000	0,00	26,010	0,000	0,00	0,000	0,00
-	3,650	0,250	0,180	5,58	25,974	0,070	21,48	0,000	0,00
-	3,650	0,500	0,305	9,46	25,911	0,195	36,49	0,000	0,00
-	3,650	0,750	0,420	13,02	25,842	0,330	50,38	0,000	0,00
-	3,652	1,000	0,555	17,21	25,783	0,445	66,73	-0,002	-0,01
-	3,652	1,250	0,640	19,84	25,699	0,610	77,20	-0,002	-0,01
-	3,655	1,500	0,720	22,32	25,612	0,780	87,15	-0,005	-0,01
-	3,655	1,750	0,793	24,58	25,522	0,957	96,32	-0,005	-0,01
-	3,655	2,000	0,865	26,82	25,431	1,135	105,44	-0,005	-0,01
-	3,655	2,250	0,925	28,68	25,334	1,325	113,19	-0,005	-0,01
-	3,655	2,500	0,985	30,54	25,237	1,515	120,99	-0,005	-0,01
-	3,655	2,750	0,990	30,69	25,112	1,760	122,21	-0,005	-0,01
-	3,660	3,000	0,988	30,63	24,984	2,012	122,59	-0,010	-0,03
-	3,665	3,250	0,985	30,54	24,855	2,265	122,85	-0,015	-0,04
-	3,680	3,500	0,989	30,66	24,729	2,511	123,98	-0,030	-0,08
-	3,700	3,750	0,990	30,69	24,602	2,760	124,74	-0,050	-0,13
-	3,710	4,000	0,995	30,85	24,477	3,005	126,01	-0,060	-0,16
-	3,730	4,250	1,000	31,00	24,353	3,250	127,30	-0,080	-0,21
-	3,750	4,500	1,022	31,68	24,236	3,478	130,72	-0,100	-0,26
-	3,780	4,750	1,015	31,47	24,105	3,735	130,53	-0,130	-0,34
-	3,800	5,000	1,010	31,31	23,975	3,990	130,59	-0,150	-0,39
-	3,830	5,250	1,005	31,16	23,845	4,245	130,66	-0,180	-0,47
-	3,860	5,500	1,000	31,00	23,715	4,500	130,72	-0,210	-0,55
-	3,890	5,750	0,995	30,85	23,585	4,755	130,78	-0,240	-0,62
-	3,920	6,000	0,990	30,69	23,455	5,010	130,85	-0,270	-0,70

SOLO -	BARRAGEM CIPOADA
--------	-------------------------

σ:	200	kPa

		n			1				1
Anel nº	1	Área:	26,01	cm ²	Tara:	30,57	g	Dens. Real	2,67
DETERMI	NAÇÕES	Antes d	lo Ensaio	Depois of	lo Ensaio	Peso do C.P.+	água+Tara (g	g)	135,88
Cápsula N	1 <u>°</u>	(02	C)2	Peso do C.P.+	água (g)		105,31
Solo+Tara	a+água (g)	13	5,88	135	5,88	Altura do C.P.	2		
Solo+Tara	a (g)	12	5,63	125,63		Volume (cm ³)			52,02
Tara (g) 30,57		30	,57	Dens. Úmida (2,02				
Água (g)		10),25	10	,25	Dens. Seca (g/	(cm ³)		1,827
Solo (g)		95	5,06	95	,06	Grau de satura	ção (%)		62,50
Umidade	(%)	10),78	10	,78	Constante do a	nel (kgf/mm)		31
ΔT	Extensô	metro (mm)	Desl. do	Carga	Área corrig.	Desl. Horiz.	τ	Deform. Vert.	ΔV
Minuto	Vertical	Horizontal	Dinam. (mm)	Horiz. (kgf)	do C.P. (cm^2)	do C.P. (mm)	kPa	do C.P. (mm)	cm ³
-	3,380	0,000	0,000	0,00	26,010	0,000	0,000	0,000	0,00
-	3,375	0,250	0,215	6,67	25,992	0,035	25,642	0,005	0,01
-	3,370	0,500	0,370	11,47	25,944	0,130	44,211	0,010	0,03
-	3,365	0,750	0,525	16,28	25,895	0,225	62,849	0,015	0,04
-	3,355	1,000	0,650	20,15	25,832	0,350	78,006	0,025	0,07
-	3,350	1,250	0,755	23,41	25,758	0,495	90,867	0,030	0,08
-	3,350	1,500	0,835	25,89	25,671	0,665	100,834	0,030	0,08
-	3,350	1,750	0,910	28,21	25,582	0,840	110,275	0,030	0,08
-	3,350	2,000	0,975	30,23	25,487	1,025	118,589	0,030	0,08
-	3,350	2,250	1,030	31,93	25,388	1,220	125,769	0,030	0,08
-	3,360	2,500	1,090	33,79	25,291	1,410	133,605	0,020	0,05
-	3,360	2,750	1,120	34,72	25,179	1,630	137,894	0,020	0,05
-	3,360	3,000	1,160	35,96	25,072	1,840	143,429	0,020	0,05
-	3,360	3,250	1,200	37,20	24,965	2,050	149,012	0,020	0,05
-	3,370	3,500	1,250	38,75	24,863	2,250	155,857	0,010	0,03
-	3,370	3,750	1,290	39,99	24,755	2,460	161,541	0,010	0,03
-	3,380	4,000	1,340	41,54	24,653	2,660	168,496	0,000	0,00
-	3,390	4,250	1,380	42,78	24,546	2,870	174,283	-0,010	-0,03
-	3,400	4,500	1,420	44,02	24,439	3,080	180,120	-0,020	-0,05
-	3,420	4,750	1,430	44,33	24,317	3,320	182,302	-0,040	-0,10
-	3,430	5,000	1,439	44,61	24,194	3,561	184,381	-0,050	-0,13
-	3,450	5,250	1,430	44,33	24,062	3,820	184,234	-0,070	-0,18
-	3,480	5,500	1,422	44,08	23,930	4,078	184,211	-0,100	-0,26
-	3,520	5,750	1,415	43,87	23,799	4,335	184,313	-0,140	-0,36
-	3,580	6,000	1,400	43,40	23,664	4,600	183,401	-0,200	-0,52

	SOLO - BARRAGEM CIPOADA											
CORPO DE PROVA	MASSA ESP.	UMIDADE	TENSÃO	TENSÃO	COESÃO	ATRITO						
	APAR. SECA	%	NORMAL	CIS. MÁX.	(kPa)	(Graus)						
	(g/cm ³)		(kPa)	(kPa)								
1	1,806	10,7	50	91,4								
2	1,846	10,8	100	130,8	64.66	31.3						
3	1,827	10,8	200	184,4	04,00	51,5						

SOLO =	SC	ENSAIO =	Saturado (Inund	lado)				
	DADOS	DA AMOSTRA			CÁLCUL	O DA UMIDADE		
δ =	2,67	Densidade relativa	L		Cápsula =	1		
d (mm) =	5	Diâmetro do anel			Tara =	13,56		
h (cm) =	2	Altura do anel			P.B.H. =	21,9		
v (cm ³) =	39,27	Volume do anel			P.B.S. =	20,92		
mt (g) =	85,54	Massa total da amo	ostra					
wi (%) =	13,32	Umidade inicial						
$\gamma g (kN/m^3) =$	26,7	Peso específicos o	los grãos					
γ (kN/m ³)	21,78	Peso específico ú	mido					
γs (kN/m³)	19,22	Peso específico se	eco					
e0 =	0,39	Índice de vazios in	icial					
Hs (mm) =	14,40	Altura de sólidos						
		CARREGAN	1ENTO					
Temp	0		Carga:		0,6 kPa			
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e			
0	0,00	8,890	0	20,00	0,39			
0,1	0,32	8,865	0,025	19,98	0,39		G (
0,25	0,50	8,855	0,01	19,97	0,39	20.00	Carga (),6 KF
0,5	0,71	8,855	0	19,97	0,39	10.00		
1	1,00	8,855	0	19,97	0,39	19,99		
2	1,41	8,855	0	19,97	0,39	ਤੇ ^{19,98}		
4	2,00	8,855	0	19,97	0,39	圓 19,97		
8	2,83	8,855	0	19,97	0,39	± 19.96		
15	3,87	8,855	0	19,97	0,39	10.05		
30	5,48	8,852	0,003	19,96	0,39	19,95	10	20
45	6,71	8,852	0	19,96	0,39		10	20 Raiz (t)
60	7,75	8,852	0	19,96	0,39		1	(L)
120	10,95	8,852	0	19,96	0,39			
180	13,42	8,852	0	19,96	0,39			
240	15,49	8,852	0	19,96	0,39			
1440	37,95	8,852	0	19,96	0,39			

APÊNDICE G – MEMORIAL DE CÁLCULO: ADENSAMENTO EDOMÉTRICO

Temp	0		Carga:		H2O
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,852	0	19,96	0,39
0,1	0,32	8,858	-0,006	19,97	0,39
0,25	0,50	8,858	0	19,97	0,39
0,5	0,71	8,858	0	19,97	0,39
1	1,00	8,858	0	19,97	0,39
2	1,41	8,858	0	19,97	0,39
4	2,00	8,858	0	19,97	0,39
8	2,83	8,859	-0,001	19,97	0,39
15	3,87	8,859	0	19,97	0,39
30	5,48	8,86	-0,001	19,97	0,39
45	6,71	8,86	0	19,97	0,39
60	7,75	8,86	0	19,97	0,39
120	10,95	8,86	0	19,97	0,39
180	13,42	8,86	0	19,97	0,39
240	15,49	8,86	0	19,97	0,39
1440	37,95	8,865	-0,005	19,98	0,39
Temp	0		Carga:		12,5 kPa
Tempo min	o raiz(t)	Leitura (mm)	Carga: ΔH (mm)	H (mm)	12,5 kPa e
Tempo min 0	o raiz(t) 0,00	Leitura (mm) 8,865	Carga: ΔH (mm) 0	H (mm) 19,98	12,5 kPa e 0,39
Tempo min 0 0,1	o raiz(t) 0,00 0,32	Leitura (mm) 8,865 8,81	Carga: ΔH (mm) 0 0,055	H (mm) 19,98 19,92	12,5 kPa e 0,39 0,38
Temp min 0 0,1 0,25	o raiz(t) 0,00 0,32 0,50	Leitura (mm) 8,865 8,81 8,795	Carga: ΔH (mm) 0 0,055 0,015	H (mm) 19,98 19,92 19,91	12,5 kPa e 0,39 0,38 0,38
Temp min 0 0,1 0,25 0,5	raiz(t) 0,00 0,32 0,50 0,71	Leitura (mm) 8,865 8,81 8,795 8,79	Carga: ΔH (mm) 0 0,055 0,015 0,005	H (mm) 19,98 19,92 19,91 19,90	12,5 kPa e 0,39 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1	raiz (t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 8,865 8,81 8,795 8,79 8,785	Carga: ΔH (mm) 0 0,055 0,015 0,005 0,005	H (mm) 19,98 19,92 19,91 19,90 19,90	12,5 kPa e 0,39 0,38 0,38 0,38 0,38
Tempo 0 0,1 0,25 0,5 1 2	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 8,865 8,81 8,795 8,79 8,79 8,785 8,779	Carga: ΔH (mm) 0 0,055 0,015 0,005 0,005 0,005 0,006	H (mm) 19,98 19,92 19,91 19,90 19,90 19,89	12,5 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 8,865 8,81 8,795 8,79 8,785 8,779 8,77	Carga: ΔH (mm) 0 0,055 0,015 0,005 0,005 0,006 0,009	H (mm) 19,98 19,92 19,91 19,90 19,90 19,89 19,88	12,5 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 8,865 8,81 8,795 8,79 8,785 8,779 8,77 8,76	Carga: ΔH (mm) 0 0,055 0,015 0,005 0,005 0,006 0,009 0,01	H (mm) 19,98 19,92 19,91 19,90 19,90 19,89 19,88 19,87	12,5 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Tempo min 0 0,1 0,25 0,5 1 2 4 8 15	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 8,865 8,81 8,795 8,79 8,785 8,779 8,777 8,76 8,752	Carga: ΔH (mm) 0 0,055 0,015 0,005 0,005 0,005 0,006 0,009 0,01 0,008	H (mm) 19,98 19,92 19,91 19,90 19,90 19,89 19,88 19,87 19,86	12,5 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 8,865 8,81 8,795 8,79 8,785 8,779 8,77 8,77 8,76 8,752 8,749	Carga: $\Delta H (mm)$ 0 0,055 0,015 0,005 0,005 0,005 0,006 0,009 0,01 0,008 0,003	H (mm) 19,98 19,92 19,91 19,90 19,90 19,89 19,88 19,88 19,86 19,86	12,5 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 8,865 8,81 8,795 8,79 8,785 8,779 8,77 8,77 8,76 8,752 8,749 8,748	Carga: $\Delta H (mm)$ 0 0,055 0,015 0,005 0,005 0,006 0,009 0,01 0,008 0,001	H (mm) 19,98 19,92 19,91 19,90 19,90 19,89 19,88 19,87 19,86 19,86 19,86	12,5 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 8,865 8,81 8,795 8,79 8,77 8,77 8,77 8,76 8,752 8,749 8,748 8,746	Carga: ΔH (mm) 0 0,055 0,015 0,005 0,005 0,006 0,009 0,01 0,003 0,001 0,002	H (mm) 19,98 19,92 19,91 19,90 19,90 19,89 19,88 19,87 19,86 19,86 19,86 19,86	12,5 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Tempo min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 8,865 8,81 8,795 8,79 8,785 8,779 8,777 8,76 8,776 8,776 8,752 8,749 8,748 8,746 8,746	Carga: $\Delta H (mm)$ 0 0,055 0,015 0,005 0,005 0,005 0,006 0,009 0,01 0,008 0,001 0,002 0,000	H (mm) 19,98 19,92 19,91 19,90 19,90 19,89 19,88 19,87 19,86 19,86 19,86 19,86 19,86	12,5 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 8,865 8,81 8,795 8,79 8,785 8,779 8,77 8,776 8,776 8,776 8,776 8,776 8,749 8,749 8,746 8,746 8,746 8,746	Carga: $\Delta H (mm)$ 0 0,055 0,015 0,005 0,005 0,006 0,009 0,01 0,008 0,001 0,002 0,000 0,000	H (mm) 19,98 19,92 19,91 19,90 19,90 19,89 19,88 19,88 19,86 19,86 19,86 19,86 19,86 19,86	12,5 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 8,865 8,81 8,795 8,79 8,785 8,779 8,77 8,776 8,776 8,776 8,752 8,749 8,748 8,746 8,746 8,746 8,746 8,746 8,746	Carga: $\Delta H \ (mm)$ 0 0,055 0,015 0,005 0,005 0,005 0,006 0,009 0,01 0,003 0,001 0,002 0,000 0,000	H (mm) 19,98 19,92 19,91 19,90 19,90 19,89 19,88 19,87 19,86 19,86 19,86 19,86 19,86 19,86 19,86 19,86	12,5 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38

Temp	0		Carga:		25 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,746	0	19,86	0,38
0,1	0,32	8,702	0,044	19,81	0,38
0,25	0,50	8,701	0,001	19,81	0,38
0,5	0,71	8,7	0,001	19,81	0,38
1	1,00	8,699	0,001	19,81	0,38
2	1,41	8,698	0,001	19,81	0,38
4	2,00	8,696	0,002	19,81	0,38
8	2,83	8,692	0,004	19,80	0,38
15	3,87	8,695	-0,003	19,81	0,38
30	5,48	8,69	0,005	19,80	0,38
45	6,71	8,689	0,001	19,80	0,38
60	7,75	8,689	0	19,80	0,38
120	10,95	8,689	0	19,80	0,38
180	13,42	8,689	0	19,80	0,38
240	15,49	8,689	0	19,80	0,38
1440	37,95	8,689	0	19.80	0,38
	/	,		- ,	/
Temp	0	,	Carga:		50 kPa
Temp min	o raiz(t)	Leitura (mm)	Carga: ΔH (mm)	H (mm)	50 kPa e
Temp min 0	o raiz(t) 0,00	Leitura (mm) 8,689	Carga: ΔH (mm) 0	H (mm) 19,80	50 kPa e 0,38
Temp min 0 0,1	o raiz(t) 0,00 0,32	Leitura (mm) 8,689 8,57	Carga: ΔH (mm) 0 0,119	H (mm) 19,80 19,68	50 kPa e 0,38 0,37
Temp min 0 0,1 0,25	o raiz(t) 0,00 0,32 0,50	Leitura (mm) 8,689 8,57 8,569	Carga: ΔH (mm) 0 0,119 0,001	H (mm) 19,80 19,68 19,68	50 kPa e 0,38 0,37 0,37
Temp min 0 0,1 0,25 0,5	raiz(t) 0,00 0,32 0,50 0,71	Leitura (mm) 8,689 8,57 8,569 8,569 8,569	Carga: ΔH (mm) 0 0,119 0,001 0	H (mm) 19,80 19,68 19,68 19,68	50 kPa e 0,38 0,37 0,37 0,37
Temp min 0 0,1 0,25 0,5 1	raiz(t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 8,689 8,57 8,569 8,569 8,569 8,568	Carga: ΔH (mm) 0 0,119 0,001 0 0,001	H (mm) 19,80 19,68 19,68 19,68 19,68	50 kPa e 0,38 0,37 0,37 0,37 0,37
Temp 0 0,1 0,25 0,5 1 2	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 8,689 8,57 8,569 8,569 8,568 8,565	Carga: ΔH (mm) 0 0,119 0,001 0 0,001 0,003	H (mm) 19,80 19,68 19,68 19,68 19,68 19,68	50 kPa e 0,38 0,37 0,37 0,37 0,37 0,37 0,37
Temp 0 0,1 0,25 0,5 1 2 4	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 8,689 8,57 8,569 8,569 8,568 8,565 8,565 8,562	Carga: ΔH (mm) 0 0,119 0,001 0 0,001 0,003 0,003	H (mm) 19,80 19,68 19,68 19,68 19,68 19,68 19,68 19,67	50 kPa e 0,38 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp min 0 0,1 0,25 0,5 1 2 4 8	raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 8,689 8,57 8,569 8,569 8,568 8,565 8,562 8,562 8,56	Carga: ΔH (mm) 0 0,119 0,001 0 0,001 0,003 0,003 0,002	H (mm) 19,80 19,68 19,68 19,68 19,68 19,68 19,67 19,67	50 kPa e 0,38 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp min 0 0,1 0,25 0,5 1 2 4 8 15	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 8,689 8,57 8,569 8,569 8,568 8,565 8,565 8,562 8,56 8,555	Carga: $\Delta H (mm)$ 0 0,119 0,001 0 0,001 0,003 0,003 0,002 0,005	H (mm) 19,80 19,68 19,68 19,68 19,68 19,68 19,67 19,67 19,67 19,67	50 kPa e 0,38 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 8,689 8,57 8,569 8,569 8,568 8,565 8,565 8,562 8,565 8,555 8,555	Carga: $\Delta H (mm)$ 0 0,119 0,001 0 0,001 0,003 0,003 0,002 0,005	H (mm) 19,80 19,68 19,68 19,68 19,68 19,68 19,67 19,67 19,67 19,66	50 kPa e 0,38 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 8,689 8,57 8,569 8,569 8,568 8,565 8,565 8,562 8,555 8,555 8,555 8,557 8,547	Carga: $\Delta H (mm)$ 0 0,119 0,001 0 0,001 0,003 0,003 0,005 0,003	H (mm) 19,80 19,68 19,68 19,68 19,68 19,68 19,67 19,67 19,67 19,66 19,66	50 kPa e 0,38 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 8,689 8,57 8,569 8,569 8,568 8,565 8,565 8,562 8,565 8,555 8,555 8,555 8,555 8,547 8,545	Carga: $\Delta H (mm)$ 0 0,119 0,001 0 0,001 0,003 0,003 0,005 0,003 0,003	H (mm) 19,80 19,68 19,68 19,68 19,68 19,68 19,67 19,67 19,67 19,66 19,66 19,66	50 kPa e 0,38 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 8,689 8,57 8,569 8,569 8,568 8,565 8,562 8,565 8,555 8,555 8,555 8,555 8,555 8,547 8,545 8,545	Carga: ΔH (mm) 0 0,119 0,001 0 0,001 0,003 0,003 0,005 0,003 0,003 0,005 0,002 0,003	H (mm) 19,80 19,68 19,68 19,68 19,68 19,68 19,67 19,67 19,67 19,66 19,66 19,66 19,66	50 kPa e 0,38 0,37
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 8,689 8,57 8,569 8,569 8,568 8,565 8,565 8,562 8,565 8,555 8,555 8,555 8,555 8,545 8,545 8,545 8,545 8,545	Carga: ΔH (mm) 0 0,119 0,001 0 0,001 0,003 0,002 0,005 0,003 0,002 0,005 0,002 0,002	H (mm) 19,80 19,68 19,68 19,68 19,68 19,68 19,67 19,67 19,67 19,66 19,66 19,66 19,66 19,66	50 kPa e 0,38 0,37 0,3
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 8,689 8,57 8,569 8,569 8,568 8,565 8,565 8,565 8,555 8,555 8,555 8,555 8,555 8,547 8,545 8,545 8,545 8,545 8,545 8,545	Carga: ΔH (mm) 0 0,119 0,001 0 0,001 0,003 0,003 0,005 0,003 0,003 0,005 0,003 0,002 0 0,003	H (mm) 19,80 19,68 19,68 19,68 19,68 19,68 19,67 19,67 19,67 19,66 19,66 19,66 19,66 19,66 19,66	50 kPa e 0,38 0,37 0,3

Temp	0		Carga:		100 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,545	0	19,66	0,37
0,1	0,32	8,4	0,145	19,51	0,35
0,25	0,50	8,4	0	19,51	0,35
0,5	0,71	8,4	0	19,51	0,35
1	1,00	8,398	0,002	19,51	0,35
2	1,41	8,397	0,001	19,51	0,35
4	2,00	8,396	0,001	19,51	0,35
8	2,83	8,394	0,002	19,50	0,35
15	3,87	8,39	0,004	19,50	0,35
30	5,48	8,385	0,005	19,50	0,35
45	6,71	8,38	0,005	19,49	0,35
60	7,75	8,375	0,005	19,49	0,35
120	10,95	8,36	0,015	19,47	0,35
180	13,42	8,358	0,002	19,47	0,35
240	15,49	8,358	0	19,47	0,35
1440	37,95	8,358	0	19,47	0,35
Temp	0		Carga:		200 kPa
Tempo min	o raiz(t)	Leitura (mm)	Carga: ΔH (mm)	H (mm)	200 kPa e
Tempo min 0	o raiz(t) 0,00	Leitura (mm) 8,358	Carga: ΔH (mm) 0	H (mm) 19,47	200 kPa e 0,35
Temp min 0 0,1	o raiz(t) 0,00 0,32	Leitura (mm) 8,358 8,17	Carga: ΔH (mm) 0 0,188	H (mm) 19,47 19,28	200 kPa e 0,35 0,34
Temp min 0 0,1 0,25	o raiz(t) 0,00 0,32 0,50	Leitura (mm) 8,358 8,17 8,169	Carga: ΔH (mm) 0 0,188 0,001	H (mm) 19,47 19,28 19,28	200 kPa e 0,35 0,34 0,34
Temp 0 0,1 0,25 0,5	raiz(t) 0,00 0,32 0,50 0,71	Leitura (mm) 8,358 8,17 8,169 8,169 8,169	Carga: ΔH (mm) 0 0,188 0,001 0	H (mm) 19,47 19,28 19,28 19,28	200 kPa e 0,35 0,34 0,34 0,34
Temp min 0 0,1 0,25 0,5 1	o raiz(t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 8,358 8,17 8,169 8,169 8,168	Carga: ΔH (mm) 0 0,188 0,001 0 0,001	H (mm) 19,47 19,28 19,28 19,28 19,28	200 kPa e 0,35 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 8,358 8,17 8,169 8,169 8,168 8,167	Carga: ΔH (mm) 0 0,188 0,001 0 0,001 0,001 0,001	H (mm) 19,47 19,28 19,28 19,28 19,28 19,28	200 kPa e 0,35 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 8,358 8,17 8,169 8,169 8,168 8,167 8,165	Carga: ΔH (mm) 0 0,188 0,001 0 0,001 0,001 0,001 0,001 0,001	H (mm) 19,47 19,28 19,28 19,28 19,28 19,28 19,28	200 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,34
Temp min 0 0,1 0,25 0,5 1 2 4 8	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 8,358 8,17 8,169 8,169 8,168 8,167 8,165 8,16	Carga: ΔH (mm) 0 0,188 0,001 0 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,005	H (mm) 19,47 19,28 19,28 19,28 19,28 19,28 19,28 19,28 19,27	200 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 8,358 8,17 8,169 8,169 8,168 8,165 8,165 8,16 8,16 8,15	Carga: ΔH (mm) 0 0,188 0,001 0 0,001 0,001 0,001 0,002 0,005 0,01	H (mm) 19,47 19,28 19,28 19,28 19,28 19,28 19,28 19,28 19,27 19,26	200 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 8,358 8,17 8,169 8,169 8,168 8,167 8,165 8,16 8,16 8,15 8,14	Carga: ΔH (mm) 0 0,188 0,001 0 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,005 0,01 0,01	H (mm) 19,47 19,28 19,28 19,28 19,28 19,28 19,28 19,28 19,27 19,26 19,25	200 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 8,358 8,17 8,169 8,169 8,168 8,167 8,165 8,165 8,16 8,15 8,14 8,13	Carga: ΔH (mm) 0 0,188 0,001 0 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,005 0,01 0,01 0,01	H (mm) 19,47 19,28 19,28 19,28 19,28 19,28 19,28 19,28 19,27 19,26 19,25 19,24	200 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 8,358 8,17 8,169 8,169 8,168 8,167 8,165 8,16 8,16 8,15 8,14 8,13 8,12	Carga: ΔH (mm) 0 0,188 0,001 0 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,005 0,01 0,01 0,01 0,01	H (mm) 19,47 19,28 19,28 19,28 19,28 19,28 19,28 19,28 19,27 19,26 19,25 19,24 19,23	200 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 8,358 8,17 8,169 8,169 8,168 8,167 8,165 8,16 8,16 8,15 8,14 8,13 8,12 8,12	Carga: ΔH (mm) 0 0,188 0,001 0 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0	H (mm) 19,47 19,28 19,28 19,28 19,28 19,28 19,28 19,28 19,27 19,26 19,25 19,24 19,23 19,23	200 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 8,358 8,17 8,169 8,169 8,168 8,167 8,165 8,16 8,16 8,15 8,14 8,13 8,12 8,12 8,12 8,12	Carga: ΔH (mm) 0 0,188 0,001 0 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,001 0,01 0,01 0,01 0,01 0,01 0 0 0 0	H (mm) 19,47 19,28 19,28 19,28 19,28 19,28 19,28 19,28 19,27 19,26 19,25 19,24 19,23 19,23 19,23	200 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 8,358 8,17 8,169 8,169 8,168 8,167 8,165 8,16 8,16 8,15 8,14 8,13 8,12 8,12 8,12 8,12 8,12	Carga: ΔH (mm) 0 0,188 0,001 0 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,002 0,01 0,01 0,01 0,01 0,01 0 0 0 0 0 0 0 0	H (mm) 19,47 19,28 19,28 19,28 19,28 19,28 19,28 19,28 19,27 19,26 19,25 19,24 19,23 19,23 19,23 19,23	200 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34

Temp	0		Carga:		400 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,12	0	19,23	0,34
0,1	0,32	7,89	0,23	19,00	0,32
0,25	0,50	7,89	0	19,00	0,32
0,5	0,71	7,889	0,001	19,00	0,32
1	1,00	7,888	0,001	19,00	0,32
2	1,41	7,887	0,001	19,00	0,32
4	2,00	7,885	0,002	19,00	0,32
8	2,83	7,881	0,004	18,99	0,32
15	3,87	7,875	0,006	18,99	0,32
30	5,48	7,868	0,007	18,98	0,32
45	6,71	7,861	0,007	18,97	0,32
60	7,75	7,855	0,006	18,97	0,32
120	10,95	7,845	0,01	18,96	0,32
180	13,42	7,835	0,01	18,95	0,32
240	15,49	7,834	0,001	18,94	0,32
1440	37,95	7,834	0	18,94	0,32
т			a		00015
Temp	0		Carga:		800 kPa
min	o raiz(t)	Leitura (mm)	Carga: ΔH (mm)	H (mm)	800 kPa e
min 0	o raiz(t) 0,00	Leitura (mm) 7,834	Carga: ΔH (mm) 0	H (mm) 18,94	800 kPa e 0,32
0 0,1	o raiz(t) 0,00 0,32	Leitura (mm) 7,834 7,583	Carga: ΔH (mm) 0 0,251	H (mm) 18,94 18,69	800 kPa e 0,32 0,30
0 0,1 0,25	o raiz(t) 0,00 0,32 0,50	Leitura (mm) 7,834 7,583 7,583	Carga: ΔH (mm) 0 0,251 0	H (mm) 18,94 18,69 18,69	800 kPa e 0,32 0,30 0,30
imposition 0 0,1 0,25 0,5	raiz(t) 0,00 0,32 0,50 0,71	Leitura (mm) 7,834 7,583 7,583 7,583 7,582	Carga: ΔH (mm) 0 0,251 0 0,001	H (mm) 18,94 18,69 18,69 18,69	800 kPa e 0,32 0,30 0,30 0,30
Iemp min 0 0,1 0,25 0,5 1	raiz(t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 7,834 7,583 7,583 7,582 7,581	Carga: ΔH (mm) 0 0,251 0 0,001 0,001	H (mm) 18,94 18,69 18,69 18,69 18,69	800 kPa e 0,32 0,30 0,30 0,30 0,30
min 0 0,1 0,25 0,5 1 2	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 7,834 7,583 7,583 7,583 7,582 7,581 7,581 7,579	Carga: $\Delta H \ (mm)$ 0 0,251 0 0,001 0,001 0,002	H (mm) 18,94 18,69 18,69 18,69 18,69 18,69 18,69	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30
Import 0 0,1 0,25 0,5 1 2 4	raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 7,834 7,583 7,583 7,583 7,582 7,581 7,579 7,579 7,575	Carga: $\Delta H (mm)$ 0 0,251 0 0,001 0,001 0,002 0,004	H (mm) 18,94 18,69 18,69 18,69 18,69 18,69 18,69 18,69	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30
Import 0 0,1 0,25 0,5 1 2 4 8	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 7,834 7,583 7,583 7,582 7,581 7,579 7,575 7,569	Carga: $\Delta H (mm)$ 0 0,251 0 0,001 0,001 0,002 0,004 0,006	H (mm) 18,94 18,69 18,69 18,69 18,69 18,69 18,69 18,69 18,69	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30
Iemp min 0 0,1 0,25 0,5 1 2 4 8 15	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 7,834 7,583 7,583 7,582 7,581 7,579 7,575 7,569 7,558	Carga: ΔH (mm) 0 0,251 0 0,001 0,001 0,002 0,004 0,006 0,011	H (mm) 18,94 18,69 18,69 18,69 18,69 18,69 18,69 18,68 18,67	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30
Import 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 7,834 7,583 7,583 7,582 7,581 7,579 7,575 7,569 7,558 7,558 7,55	Carga: ΔH (mm) 0 0,251 0 0,001 0,001 0,002 0,004 0,006 0,011 0,008	H (mm) 18,94 18,69 18,69 18,69 18,69 18,69 18,69 18,68 18,67 18,66	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30
Import 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 7,834 7,583 7,583 7,582 7,581 7,579 7,575 7,575 7,559 7,558 7,555 7,535	Carga: $\Delta H (mm)$ 0 0,251 0 0,001 0,001 0,002 0,004 0,006 0,011 0,008 0,015	H (mm) 18,94 18,69 18,69 18,69 18,69 18,69 18,69 18,68 18,67 18,66 18,65	800 kPa e 0,32 0,30 0,29
Impose min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 7,834 7,583 7,583 7,582 7,581 7,579 7,575 7,569 7,558 7,558 7,555 7,535 7,525	Carga: ΔH (mm) 0 0,251 0 0,001 0,001 0,002 0,004 0,006 0,011 0,008 0,015 0,01	H (mm) 18,94 18,69 18,69 18,69 18,69 18,69 18,69 18,68 18,67 18,66 18,65 18,64	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,29 0,29
Import 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 7,834 7,583 7,583 7,582 7,581 7,579 7,575 7,569 7,558 7,555 7,555 7,535 7,525 7,525	Carga: ΔH (mm) 0 0,251 0 0,001 0,001 0,002 0,004 0,006 0,011 0,008 0,015 0,01 0	H (mm) 18,94 18,69 18,69 18,69 18,69 18,69 18,69 18,68 18,67 18,66 18,65 18,64 18,64	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,29 0,29 0,29
Import 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 7,834 7,583 7,583 7,582 7,581 7,579 7,575 7,569 7,555 7,555 7,555 7,525 7,525 7,525 7,525 7,525	Carga: ΔH (mm) 0 0,251 0 0,001 0,001 0,002 0,004 0,006 0,011 0,008 0,015 0,01 0 0	H (mm) 18,94 18,69 18,69 18,69 18,69 18,69 18,69 18,68 18,67 18,66 18,65 18,64 18,64 18,64	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,29 0,29 0,29 0,29 0,29 0,29 0,29
Import 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 7,834 7,583 7,583 7,582 7,581 7,579 7,575 7,569 7,558 7,558 7,555 7,525 7,525 7,525 7,525 7,525 7,525	Carga: ΔH (mm) 0 0,251 0 0,001 0,001 0,002 0,004 0,006 0,011 0,008 0,015 0,01 0 0	H (mm) 18,94 18,69 18,69 18,69 18,69 18,69 18,69 18,68 18,67 18,66 18,65 18,64 18,64 18,64 18,64 18,64 18,64	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,29 0,29 0,29 0,29 0,29 0,29 0,29 0,29 0,29 0,29 0,29 0,29

		DESCARREGA	AMENTO		
Temp	0		Carga:		400 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,525	0,00	18,64	0,29
0,1	0,32	7,573	0,05	18,68	0,30
0,25	0,50	7,573	0,00	18,68	0,30
0,5	0,71	7,573	0,00	18,68	0,30
1	1,00	7,573	0,00	18,68	0,30
2	1,41	7,573	0,00	18,68	0,30
4	2,00	7,573	0,00	18,68	0,30
8	2,83	7,573	0,00	18,68	0,30
10	3,16	7,573	0,00	18,68	0,30
Temp	0		Carga:		200 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,573	0,00	18,68	0,30
0,1	0,32	7,624	0,05	18,73	0,30
0,25	0,50	7,624	0,00	18,73	0,30
0,5	0,71	7,624	0,00	18,73	0,30
1	1,00	7,624	0,00	18,73	0,30
2	1,41	7,624	0,00	18,73	0,30
4	2,00	7,624	0,00	18,73	0,30
8	2,83	7,624	0,00	18,73	0,30
10	3,16	7,624	0,00	18,73	0,30
Temp	0		Carga:		100 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,624	0,00	18,73	0,30
0,1	0,32	7,669	0,04	18,78	0,30
0,25	0,50	7,669	0,00	18,78	0,30
0,5	0,71	7,669	0,00	18,78	0,30
1	1,00	7,669	0,00	18,78	0,30
2	1,41	7,669	0,00	18,78	0,30
4	2,00	7,669	0,00	18,78	0,30
8	2,83	7,669	0,00	18,78	0,30
10	3,16	7,669	0,00	18,78	0,30

Temp	0		Carga:		50 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,669	0,00	18,78	0,30
0,1	0,32	7,699	0,03	18,81	0,31
0,25	0,50	7,699	0,00	18,81	0,31
0,5	0,71	7,699	0,00	18,81	0,31
1	1,00	7,699	0,00	18,81	0,31
2	1,41	7,699	0,00	18,81	0,31
4	2,00	7,699	0,00	18,81	0,31
8	2,83	7,699	0,00	18,81	0,31
10	3,16	7,699	0,00	18,81	0,31
Temp	0		Carga:		25 kPa
min	raiz(t)	Leitura (mm)	$\Delta H (mm)$	H (mm)	e
0	0,00	7,699	0,00	18,81	0,31
0,1	0,32	7,721	0,02	18,83	0,31
0,25	0,50	7,721	0,00	18,83	0,31
0,5	0,71	7,721	0,00	18,83	0,31
1	1,00	7,721	0,00	18,83	0,31
2	1,41	7,721	0,00	18,83	0,31
4	2,00	7,721	0,00	18,83	0,31
8	2,83	7,721	0,00	18,83	0,31
10	3,16	7,721	0,00	18,83	0,31
Temp	0		Carga:		12,5 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,721	0,00	18,83	0,31
0,1	0,32	7,756	0,04	18,87	0,31
0,25	0,50	7,756	0,00	18,87	0,31
0,5	0,71	7,756	0,00	18,87	0,31
1	1,00	7,756	0,00	18,87	0,31
2	1,41	7,756	0,00	18,87	0,31
4	2,00	7,756	0,00	18,87	0,31
8	2,83	7,756	0,00	18,87	0,31
10	3,16	7,756	0,00	18,87	0,31

SOLO =	SC			
ENSAIO =	Não satu	rado 1		
	DADOS 1	DA AMOSTRA	CÁLCULO DA	UMIDADE
δ =	2,67	Densidade relativa	Cápsula = 10)
d (mm) =	5	Diâmetro do anel	Tara = 13,4	45
h (cm) =	2	Altura do anel	P.B.H. = 23,5	54
\mathbf{v} (cm ³) =	39,27	Volume do anel	P.B.S. = 22,3	39
mt (g) =	85,25	Massa total da amostra		
wi (%) =	12,86	Umidade inicial		
$\gamma g (kN/m^3) =$	26,7	Peso específicos dos grãos		
γ (kN/m ³)	21,71	Peso específico úmido		
γs (kN/m ³)	19,23	Peso específico seco		
e0 =	0,39	Índice de vazios inicial		
Hs (mm) =	14,41	Altura de sólidos		

Temp	0		Carga:		12,5 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,195	0	20,00	0,39
0,1	0,32	8,185	0,01	19,99	0,39
0,25	0,50	8,185	0	19,99	0,39
0,5	0,71	8,185	0	19,99	0,39
1	1,00	8,185	0	19,99	0,39
2	1,41	8,184	0,001	19,99	0,39
4	2,00	8,184	0	19,99	0,39
8	2,83	8,184	0	19,99	0,39
15	3,87	8,181	0,003	19,99	0,39
30	5,48	8,179	0,002	19,98	0,39
45	6,71	8,178	0,001	19,98	0,39
60	7,75	8,177	0,001	19,98	0,39
120	10,95	8,177	0,000	19,98	0,39
180	13,42	8,177	0,000	19,98	0,39
240	15,49	8,177	0	19,98	0,39
1440	37,95	8,177	0	19,98	0,39

Temp	0		Carga:		25 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,177	0	19,98	0,39
0,1	0,32	8,148	0,029	19,95	0,38
0,25	0,50	8,148	0	19,95	0,38
0,5	0,71	8,148	0	19,95	0,38
1	1,00	8,147	0,001	19,95	0,38
2	1,41	8,146	0,001	19,95	0,38
4	2,00	8,142	0,004	19,95	0,38
8	2,83	8,135	0,007	19,94	0,38
15	3,87	8,13	0,005	19,94	0,38
30	5,48	8,12	0,01	19,93	0,38
45	6,71	8,115	0,005	19,92	0,38
60	7,75	8,114	0,001	19,92	0,38
120	10,95	8,114	0	19,92	0,38
180	13,42	8,114	0	19,92	0,38
240	15,49	8,114	0	19,92	0,38
1440	37,95	8,114	0	19,92	0,38
Temn	0		Corgos		50 kDo
remp	0		Carga:		50 KF a
min	raiz(t)	Leitura (mm)	$\Delta H (mm)$	H (mm)	e e
min 0	raiz(t) 0,00	Leitura (mm) 8,114	$\frac{\Delta H (mm)}{0}$	H (mm) 19,92	e 0,38
0 0,1	raiz(t) 0,00 0,32	Leitura (mm) 8,114 8,009	ΔH (mm) 0 0,105	H (mm) 19,92 19,81	e 0,38 0,38
min 0 0,1 0,25	raiz(t) 0,00 0,32 0,50	Leitura (mm) 8,114 8,009 8,009	ΔH (mm) 0 0,105 0	H (mm) 19,92 19,81 19,81	S0 Kra e 0,38 0,38 0,38
min 0 0,1 0,25 0,5	raiz (t) 0,00 0,32 0,50 0,71	Leitura (mm) 8,114 8,009 8,009 8,009 8,008	ΔH (mm) 0 0,105 0 0,001	H (mm) 19,92 19,81 19,81 19,81	so kra e 0,38 0,38 0,38 0,38 0,38
min 0 0,1 0,25 0,5 1	raiz(t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 8,114 8,009 8,009 8,008 8,007	ΔH (mm) 0 0,105 0 0,001 0,001	H (mm) 19,92 19,81 19,81 19,81 19,81	so kr a e 0,38 0,38 0,38 0,38 0,38 0,38 0,38
min 0 0,1 0,25 0,5 1 2	raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 8,114 8,009 8,009 8,008 8,007 8,005	ΔH (mm) 0 0,105 0 0,001 0,001 0,002	H (mm) 19,92 19,81 19,81 19,81 19,81 19,81	so kr a e 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,37
min 0 0,1 0,25 0,5 1 2 4	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 8,114 8,009 8,009 8,009 8,005 8,001	$\begin{array}{c} \Delta \mathbf{H} (\mathbf{mm}) \\ \hline 0 \\ 0,105 \\ 0 \\ 0,001 \\ 0,001 \\ 0,002 \\ 0,004 \end{array}$	H (mm) 19,92 19,81 19,81 19,81 19,81 19,81 19,81	so kr a e 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,37
min 0 0,1 0,25 0,5 1 2 4 8	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 8,114 8,009 8,009 8,008 8,007 8,005 8,001 7,997	$\begin{array}{c} \Delta \mathbf{H} (\mathbf{mm}) \\ \hline 0 \\ 0,105 \\ \hline 0 \\ 0,001 \\ 0,001 \\ 0,002 \\ 0,004 \\ 0,004 \end{array}$	H (mm) 19,92 19,81 19,81 19,81 19,81 19,81 19,81 19,81 19,80	so kr a e 0,38 0,38 0,38 0,38 0,38 0,38 0,37 0,37
min 0 0,1 0,25 0,5 1 2 4 8 15	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 8,114 8,009 8,009 8,008 8,007 8,005 8,001 7,997 7,994	$\begin{array}{c} \Delta \mathbf{H} (\mathbf{mm}) \\ 0 \\ 0,105 \\ 0 \\ 0,001 \\ 0,001 \\ 0,002 \\ 0,004 \\ 0,004 \\ 0,003 \end{array}$	H (mm) 19,92 19,81 19,81 19,81 19,81 19,81 19,81 19,80 19,80	so kr a e 0,38 0,38 0,38 0,38 0,38 0,37 0,37 0,37 0,37
min 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 8,114 8,009 8,009 8,008 8,007 8,005 8,001 7,997 7,994 7,99	$\Delta H (mm)$ 0 0,105 0 0,001 0,001 0,002 0,004 0,003 0,004	H (mm) 19,92 19,81 19,81 19,81 19,81 19,81 19,81 19,80 19,80 19,80	so kr a e 0,38 0,38 0,38 0,38 0,38 0,37 0,37 0,37 0,37 0,37
min 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 8,114 8,009 8,009 8,008 8,007 8,005 8,001 7,997 7,994 7,99 7,985	$\Delta H (mm)$ 0 0,105 0 0,001 0,001 0,002 0,004 0,003 0,004 0,005	H (mm) 19,92 19,81 19,81 19,81 19,81 19,81 19,81 19,80 19,80 19,80 19,79	so kr a e 0,38 0,38 0,38 0,38 0,37 0,37 0,37 0,37 0,37 0,37 0,37
min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 8,114 8,009 8,009 8,008 8,007 8,005 8,001 7,997 7,994 7,99 7,985 7,98	$\Delta H (mm)$ 0 0,105 0 0,001 0,002 0,004 0,003 0,004 0,005	H (mm) 19,92 19,81 19,81 19,81 19,81 19,81 19,81 19,80 19,80 19,80 19,80 19,79 19,79	so kr a e 0,38 0,38 0,38 0,38 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
$\begin{array}{r} & \text{min} \\ 0 \\ 0,1 \\ 0,25 \\ 0,5 \\ 1 \\ 2 \\ 4 \\ 8 \\ 15 \\ 30 \\ 45 \\ 60 \\ 120 \\ \end{array}$	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 8,114 8,009 8,009 8,008 8,007 8,005 8,001 7,997 7,994 7,994 7,99 7,985 7,98 7,974	$\Delta H (mm)$ 0 0,105 0 0,001 0,001 0,002 0,004 0,003 0,004 0,005 0,005 0,006	H (mm) 19,92 19,81 19,81 19,81 19,81 19,81 19,81 19,80 19,80 19,80 19,79 19,79 19,78	so kr a e 0,38 0,38 0,38 0,38 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 8,114 8,009 8,009 8,008 8,007 8,005 8,001 7,997 7,997 7,994 7,99 7,985 7,98 7,974 7,97	$\Delta H (mm)$ 0 0,105 0 0,001 0,001 0,002 0,004 0,003 0,005 0,005 0,006 0,004	H (mm) 19,92 19,81 19,81 19,81 19,81 19,81 19,81 19,80 19,80 19,80 19,79 19,79 19,78 19,78	so kr a e 0,38 0,38 0,38 0,38 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
$\begin{array}{r} & \text{min} \\ & 0 \\ & 0,1 \\ & 0,25 \\ & 0,5 \\ \hline 1 \\ & 2 \\ & 4 \\ & 8 \\ \hline 15 \\ & 30 \\ \hline 45 \\ & 60 \\ \hline 120 \\ & 180 \\ \hline 240 \\ \hline \end{array}$	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 8,114 8,009 8,009 8,008 8,007 8,005 8,001 7,997 7,994 7,994 7,99 7,985 7,98 7,974 7,97 7,969	ΔH (mm) 0 0,105 0 0,001 0,001 0,002 0,004 0,003 0,004 0,005 0,006 0,004	H (mm) 19,92 19,81 19,81 19,81 19,81 19,81 19,81 19,80 19,80 19,80 19,79 19,79 19,78 19,78 19,77	so kr a e 0,38 0,38 0,38 0,38 0,37

Temp	0		Carga:		100 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,968	0	19,77	0,37
0,1	0,32	7,8	0,168	19,61	0,36
0,25	0,50	7,8	0	19,61	0,36
0,5	0,71	7,799	0,001	19,60	0,36
1	1,00	7,797	0,002	19,60	0,36
2	1,41	7,796	0,001	19,60	0,36
4	2,00	7,791	0,005	19,60	0,36
8	2,83	7,786	0,005	19,59	0,36
15	3,87	7,78	0,006	19,59	0,36
30	5,48	7,774	0,006	19,58	0,36
45	6,71	7,768	0,006	19,57	0,36
60	7,75	7,767	0,001	19,57	0,36
120	10,95	7,767	0	19,57	0,36
180	13,42	7,767	0	19,57	0,36
240	15,49	7,767	0	19,57	0,36
1440	37,95	7,767	0	19,57	0,36
Temp	0		Carga:	_	200 kPa
Temp min	o raiz(t)	Leitura (mm)	Carga: ΔH (mm)	H (mm)	200 kPa e
Temp min 0	o raiz(t) 0,00	Leitura (mm) 7,767	Carga: ΔH (mm) 0	H (mm) 19,57	200 kPa e 0,36
Temp min 0 0,1	o raiz(t) 0,00 0,32	Leitura (mm) 7,767 7,565	Carga: ΔH (mm) 0 0,202	H (mm) 19,57 19,37	200 kPa e 0,36 0,34
Temp min 0 0,1 0,25	o raiz(t) 0,00 0,32 0,50	Leitura (mm) 7,767 7,565 7,565	Carga: ΔH (mm) 0 0,202 0	H (mm) 19,57 19,37 19,37	200 kPa e 0,36 0,34 0,34
Temp 0 0,1 0,25 0,5	o raiz(t) 0,00 0,32 0,50 0,71	Leitura (mm) 7,767 7,565 7,565 7,564	Carga: ΔH (mm) 0 0,202 0 0,001	H (mm) 19,57 19,37 19,37 19,37	200 kPa e 0,36 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1	o raiz(t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 7,767 7,565 7,565 7,564 7,563	Carga: ΔH (mm) 0 0,202 0 0,001 0,001	H (mm) 19,57 19,37 19,37 19,37 19,37	200 kPa e 0,36 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2	o raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 7,767 7,565 7,565 7,564 7,563 7,563 7,561	Carga: ΔH (mm) 0 0,202 0 0,001 0,001 0,002	H (mm) 19,57 19,37 19,37 19,37 19,37 19,37	200 kPa e 0,36 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4	o raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 7,767 7,565 7,565 7,564 7,563 7,561 7,558	Carga: ΔH (mm) 0 0,202 0 0,001 0,001 0,002 0,003	H (mm) 19,57 19,37 19,37 19,37 19,37 19,37 19,37 19,36	200 kPa e 0,36 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8	o raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 7,767 7,565 7,565 7,564 7,563 7,561 7,558 7,552	Carga: ΔH (mm) 0 0,202 0 0,001 0,001 0,002 0,003 0,006	H (mm) 19,57 19,37 19,37 19,37 19,37 19,37 19,36 19,36	200 kPa e 0,36 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15	o raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 7,767 7,565 7,565 7,564 7,563 7,561 7,558 7,552 7,552 7,547	Carga: ΔH (mm) 0 0,202 0 0,001 0,001 0,001 0,002 0,003 0,006 0,005	H (mm) 19,57 19,37 19,37 19,37 19,37 19,37 19,36 19,36 19,35	200 kPa e 0,36 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 7,767 7,565 7,565 7,564 7,563 7,561 7,558 7,552 7,547 7,539	Carga: ΔH (mm) 0 0,202 0 0,001 0,001 0,002 0,003 0,006 0,005 0,008	H (mm) 19,57 19,37 19,37 19,37 19,37 19,37 19,36 19,36 19,35 19,34	200 kPa e 0,36 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 7,767 7,565 7,565 7,564 7,563 7,561 7,558 7,552 7,552 7,547 7,539 7,535	Carga: ΔH (mm) 0 0,202 0 0,001 0,001 0,002 0,003 0,005 0,008 0,004	H (mm) 19,57 19,37 19,37 19,37 19,37 19,37 19,36 19,36 19,35 19,34 19,34	200 kPa e 0,36 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 7,767 7,565 7,565 7,564 7,563 7,561 7,558 7,552 7,547 7,539 7,535 7,531	Carga: $\Delta H (mm)$ 0 0,202 0 0,001 0,001 0,002 0,003 0,006 0,005 0,008 0,004	H (mm) 19,57 19,37 19,37 19,37 19,37 19,37 19,37 19,36 19,36 19,36 19,35 19,34 19,34 19,34	200 kPa e 0,36 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 7,767 7,565 7,565 7,564 7,563 7,561 7,558 7,552 7,552 7,547 7,539 7,535 7,531 7,528	Carga: $\Delta H (mm)$ 0 0,202 0 0,001 0,001 0,002 0,003 0,006 0,005 0,004 0,004 0,003	H (mm) 19,57 19,37 19,37 19,37 19,37 19,37 19,37 19,36 19,36 19,36 19,35 19,34 19,34 19,34 19,34 19,33	200 kPa e 0,36 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 7,767 7,565 7,565 7,564 7,563 7,561 7,558 7,552 7,547 7,539 7,535 7,531 7,528 7,528 7,528	Carga: ΔH (mm) 0 0,202 0 0,001 0,001 0,002 0,003 0,005 0,008 0,004 0,003 0,003	H (mm) 19,57 19,37 19,37 19,37 19,37 19,37 19,36 19,36 19,36 19,35 19,34 19,34 19,33 19,33 19,33	200 kPa e 0,36 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 7,767 7,565 7,565 7,564 7,563 7,561 7,558 7,552 7,552 7,547 7,539 7,535 7,531 7,528 7,528 7,528 7,528 7,528	Carga: ΔH (mm) 0 0,202 0 0,001 0,001 0,002 0,003 0,005 0,008 0,004 0,003 0	H (mm) 19,57 19,37 19,37 19,37 19,37 19,37 19,37 19,36 19,36 19,35 19,34 19,34 19,33 19,33 19,33 19,33	200 kPa e 0,36 0,34 0,34 0,34 0,34 0,34 0,34 0,34 0,34

Temp	0		Carga:		400 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,528	0	19,33	0,34
0,1	0,32	7,295	0,233	19,10	0,33
0,25	0,50	7,294	0,001	19,10	0,33
0,5	0,71	7,293	0,001	19,10	0,33
1	1,00	7,292	0,001	19,10	0,33
2	1,41	7,291	0,001	19,10	0,33
4	2,00	7,289	0,002	19,09	0,33
8	2,83	7,284	0,005	19,09	0,32
15	3,87	7,274	0,01	19,08	0,32
30	5,48	7,264	0,01	19,07	0,32
45	6,71	7,254	0,01	19,06	0,32
60	7,75	7,244	0,01	19,05	0,32
120	10,95	7,234	0,01	19,04	0,32
180	13,42	7,224	0,01	19,03	0,32
240	15,49	7,218	0,006	19,02	0,32
1440	37,95	7.21	0.008	19.02	0,32
	/	-)	- ,	- , -	/
Temp	0		Carga:	- 7 -	800 kPa
Temp min	o raiz(t)	Leitura (mm)	Carga: ΔH (mm)	H (mm)	800 kPa e
Tempo min 0	o raiz(t) 0,00	Leitura (mm) 7,21	Carga: ΔH (mm) 0	H (mm) 19,02	800 kPa e 0,32
Temp min 0 0,1	o raiz(t) 0,00 0,32	Leitura (mm) 7,21 6,973	Carga: ΔH (mm) 0 0,237	H (mm) 19,02 18,78	800 kPa e 0,32 0,30
Temp min 0 0,1 0,25	o raiz(t) 0,00 0,32 0,50	Leitura (mm) 7,21 6,973 6,972	Carga: ΔH (mm) 0 0,237 0,001	H (mm) 19,02 18,78 18,78	800 kPa e 0,32 0,30 0,30
Temp min 0 0,1 0,25 0,5	o raiz(t) 0,00 0,32 0,50 0,71	Leitura (mm) 7,21 6,973 6,972 6,971	Carga: ΔH (mm) 0 0,237 0,001 0,001	H (mm) 19,02 18,78 18,78 18,78	800 kPa e 0,32 0,30 0,30 0,30
Temp min 0 0,1 0,25 0,5 1	o raiz(t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 7,21 6,973 6,972 6,971 6,97	Carga: ΔH (mm) 0 0,237 0,001 0,001 0,001	H (mm) 19,02 18,78 18,78 18,78 18,78	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30
Temp min 0 0,1 0,25 0,5 1 2	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 7,21 6,973 6,972 6,971 6,97 6,969	Carga: ΔH (mm) 0 0,237 0,001 0,001 0,001 0,001	H (mm) 19,02 18,78 18,78 18,78 18,78 18,78 18,77	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30
Temp min 0 0,1 0,25 0,5 1 2 4	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 7,21 6,973 6,972 6,971 6,97 6,969 6,965	Carga: ΔH (mm) 0 0,237 0,001 0,001 0,001 0,001 0,001 0,001	H (mm) 19,02 18,78 18,78 18,78 18,78 18,77 18,77	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30
Temp min 0 0,1 0,25 0,5 1 2 4 8	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 7,21 6,973 6,972 6,971 6,97 6,969 6,965 6,965 6,96	Carga: ΔH (mm) 0 0,237 0,001 0,001 0,001 0,001 0,001 0,001 0,001	H (mm) 19,02 18,78 18,78 18,78 18,77 18,77 18,77 18,77	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30
Temp min 0 0,1 0,25 0,5 1 2 4 8 15	raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 7,21 6,973 6,972 6,971 6,97 6,969 6,965 6,965 6,96 6,951	Carga: ΔH (mm) 0 0,237 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001	H (mm) 19,02 18,78 18,78 18,78 18,77 18,77 18,77 18,77 18,77	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 7,21 6,973 6,972 6,971 6,97 6,969 6,965 6,965 6,96 6,951 6,94	Carga: $\Delta H (mm)$ 0 0,237 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,004 0,005 0,009 0,011	H (mm) 19,02 18,78 18,78 18,78 18,78 18,77 18,77 18,77 18,77 18,76 18,75	800 kPa e 0,32 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30 0,30
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 7,21 6,973 6,972 6,971 6,97 6,969 6,965 6,965 6,965 6,951 6,94 6,932	Carga: ΔH (mm) 0 0,237 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,003	H (mm) 19,02 18,78 18,78 18,78 18,78 18,77 18,77 18,77 18,77 18,77 18,77 18,75 18,74	800 kPa e 0,32 0,30
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 7,21 6,973 6,972 6,971 6,97 6,969 6,965 6,965 6,965 6,964 6,951 6,94 6,932 6,92	Carga: ΔH (mm) 0 0,237 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,003 0,004 0,005 0,009 0,011 0,008 0,012	H (mm) 19,02 18,78 18,78 18,78 18,78 18,77 18,77 18,77 18,77 18,77 18,75 18,74 18,73	800 kPa e 0,32 0,30
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 7,21 6,973 6,972 6,971 6,97 6,969 6,965 6,96 6,965 6,96 6,951 6,94 6,932 6,92 6,908	Carga: $\Delta H (mm)$ 0 0,237 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,004 0,005 0,009 0,011 0,008 0,012 0,012	H (mm) 19,02 18,78 18,78 18,78 18,77 18,77 18,77 18,77 18,77 18,77 18,75 18,74 18,73 18,71	800 kPa e 0,32 0,30
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 7,21 6,973 6,972 6,971 6,97 6,969 6,965 6,965 6,96 6,951 6,94 6,932 6,92 6,908 6,898	Carga: $\Delta H (mm)$ 0 0,237 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,004 0,005 0,009 0,011 0,008 0,012 0,012 0,012	H (mm) 19,02 18,78 18,78 18,78 18,78 18,77 18,77 18,77 18,77 18,77 18,77 18,77 18,77 18,77 18,77 18,77 18,73 18,74 18,73 18,71 18,70	800 kPa e 0,32 0,30
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 7,21 6,973 6,972 6,971 6,97 6,969 6,965 6,965 6,965 6,964 6,951 6,94 6,932 6,92 6,908 6,898 6,895	Carga: $\Delta H (mm)$ 0 0,237 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,001 0,003	H (mm) 19,02 18,78 18,78 18,78 18,78 18,77 18,70 18,70 18,70 18,70 18,70 18,70	800 kPa e 0,32 0,30

DESCARREGAMENTO					
Тетро		Carga:			400 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	6,890	0,00	18,70	0,30
0,1	0,32	6,979	0,09	18,78	0,30
0,25	0,50	6,979	0,00	18,78	0,30
0,5	0,71	6,979	0,00	18,78	0,30
1	1,00	6,979	0,00	18,78	0,30
2	1,41	6,979	0,00	18,78	0,30
4	2,00	6,979	0,00	18,78	0,30
8	2,83	6,979	0,00	18,78	0,30
10	3,16	6,979	0,00	18,78	0,30
Тетро		Carga:			200 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	е
0	0,00	6,979	0,00	18,76	0,30
0,1	0,32	7,040	0,06	18,83	0,31
0,25	0,50	7,040	0,00	18,83	0,31
0,5	0,71	7,040	0,00	18,83	0,31
1	1,00	7,040	0,00	18,83	0,31
2	1,41	7,040	0,00	18,83	0,31
4	2,00	7,040	0,00	18,83	0,31
8	2,83	7,040	0,00	18,83	0,31
10	3,16	7,040	0,00	18,83	0,31
Tempo		Carga:			100 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,040	0,00	18,83	0,31
0,1	0,32	7,060	0,02	18,85	0,31
0,25	0,50	7,060	0,00	18,85	0,31
0,5	0,71	7,060	0,00	18,85	0,31
1	1,00	7,060	0,00	18,85	0,31
2	1,41	7,060	0,00	18,85	0,31
4	2,00	7,060	0,00	18,85	0,31
8	2,83	7,060	0,00	18,85	0,31
10	3,16	7,060	0,00	18,85	0,31

Temp	0	Carga:		50 kPa	
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,060	0,00	18,85	0,31
0,1	0,32	7,090	0,03	18,88	0,31
0,25	0,50	7,090	0,00	18,88	0,31
0,5	0,71	7,090	0,00	18,88	0,31
1	1,00	7,090	0,00	18,88	0,31
2	1,41	7,090	0,00	18,88	0,31
4	2,00	7,090	0,00	18,88	0,31
8	2,83	7,090	0,00	18,88	0,31
10	3,16	7,090	0,00	18,88	0,31
Temp	0		Carga:		25 kPa
min	raiz(t)	Leitura (mm)	$\Delta H (mm)$	H (mm)	e
0	0,00	7,090	0,00	18,88	0,31
0,1	0,32	7,111	0,02	18,90	0,31
0,25	0,50	7,111	0,00	18,90	0,31
0,5	0,71	7,111	0,00	18,90	0,31
1	1,00	7,111	0,00	18,90	0,31
2	1,41	7,111	0,00	18,90	0,31
4	2,00	7,111	0,00	18,90	0,31
8	2,83	7,111	0,00	18,90	0,31
10	3,16	7,111	0,00	18,90	0,31
Temp	0		Carga:		12,5 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,111	0,00	18,90	0,31
0,1	0,32	7,130	0,02	18,92	0,31
0,25	0,50	7,130	0,00	18,92	0,31
0,5	0,71	7,130	0,00	18,92	0,31
1	1,00	7,130	0,00	18,92	0,31
2	1,41	7,130	0,00	18,92	0,31
4	2,00	7,130	0,00	18,92	0,31
8	2,83	7,130	0,00	18,92	0,31
10	3,16	7,130	0,00	18,92	0,31

SOLO =	SC			
ENSAIO =	Não satur	rado 2		
	DADOS I	DA AMOSTRA	CÁLCULO DA UMIDA	ADE
δ =	2,67	Densidade relativa	Cápsula = 5	
d (mm) =	5	Diâmetro do anel	Tara = 44,92	
h (cm) =	2	Altura do anel	P.B.H. = 126,58	
$v (cm^3) =$	39,27	Volume do anel	P.B.S. = 118,2	
mt (g) =	83,13	Massa total da amostra		
wi (%) =	11,44	Umidade inicial		
$\gamma g (kN/m^3) =$	26,7	Peso específicos dos grãos		
γ (kN/m ³)	21,17	Peso específico úmido		
γs (kN/m³)	19,00	Peso específico seco		
e0 =	0,41	Índice de vazios inicial		
Hs (mm) =	14,23	Altura de sólidos		

Temp	0	Carga:		Carga:		12,5 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e	
0	0,00	8,928	0	20,00	0,41	
0,1	0,32	8,921	0,007	19,99	0,41	
0,25	0,50	8,921	0	19,99	0,41	
0,5	0,71	8,921	0	19,99	0,41	
1	1,00	8,92	0,001	19,99	0,40	
2	1,41	8,919	0,001	19,99	0,40	
4	2,00	8,918	0,001	19,99	0,40	
8	2,83	8,917	0,001	19,99	0,40	
15	3,87	8,915	0,002	19,99	0,40	
30	5,48	8,913	0,002	19,99	0,40	
45	6,71	8,91	0,003	19,98	0,40	
60	7,75	8,909	0,001	19,98	0,40	
120	10,95	8,908	0,001	19,98	0,40	
180	13,42	8,908	0,000	19,98	0,40	
240	15,49	8,908	0	19,98	0,40	
1440	37,95	8,908	0	19,98	0,40	

Temp	0		Carga:		25 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,908	0	19,98	0,41
0,1	0,32	8,87	0,038	19,94	0,40
0,25	0,50	8,87	0	19,94	0,40
0,5	0,71	8,87	0	19,94	0,40
1	1,00	8,869	0,001	19,94	0,40
2	1,41	8,868	0,001	19,94	0,40
4	2,00	8,865	0,003	19,94	0,40
8	2,83	8,861	0,004	19,93	0,40
15	3,87	8,86	0,001	19,93	0,40
30	5,48	8,859	0,001	19,93	0,40
45	6,71	8,858	0,001	19,93	0,40
60	7,75	8,858	0	19,93	0,40
120	10,95	8,858	0	19,93	0,40
180	13,42	8,858	0	19,93	0,40
240	15,49	8,858	0	19,93	0,40
1440	37.95	8.858	0	19,93	0,40
		-)		/	/
Temp	0		Carga:	,	50 kPa
Temp min	o raiz(t)	Leitura (mm)	Carga: ΔH (mm)	H (mm)	50 kPa e
Tempo min 0	o raiz(t) 0,00	Leitura (mm) 8,858	Carga: ΔH (mm) 0	H (mm) 19,93	50 kPa e 0,40
Temp min 0 0,1	o raiz(t) 0,00 0,32	Leitura (mm) 8,858 8,832	Carga: ΔH (mm) 0 0,026	H (mm) 19,93 19,90	50 kPa e 0,40 0,40
Temp min 0 0,1 0,25	o raiz(t) 0,00 0,32 0,50	Leitura (mm) 8,858 8,832 8,801	Carga: ΔH (mm) 0 0,026 0,031	H (mm) 19,93 19,90 19,87	50 kPa e 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5	o raiz(t) 0,00 0,32 0,50 0,71	Leitura (mm) 8,858 8,832 8,801 8,801	Carga: ΔH (mm) 0 0,026 0,031 0	H (mm) 19,93 19,90 19,87 19,87	50 kPa e 0,40 0,40 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5 1	raiz(t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 8,858 8,832 8,801 8,801 8,8	Carga: ΔH (mm) 0 0,026 0,031 0 0,001	H (mm) 19,93 19,90 19,87 19,87 19,87	50 kPa e 0,40 0,40 0,40 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5 1 2	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 8,858 8,832 8,801 8,801 8,8 8,799	Carga: ΔH (mm) 0 0,026 0,031 0 0,001 0,001	H (mm) 19,93 19,90 19,87 19,87 19,87 19,87	50 kPa e 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5 1 2 4	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 8,858 8,832 8,801 8,801 8,8 8,799 8,799	Carga: ΔH (mm) 0 0,026 0,031 0 0,001 0,001 0	H (mm) 19,93 19,90 19,87 19,87 19,87 19,87 19,87 19,87	50 kPa e 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 8,858 8,832 8,801 8,801 8,801 8,8 8,799 8,799 8,799 8,798	Carga: ΔH (mm) 0 0,026 0,031 0 0,001 0,001 0 0,001	H (mm) 19,93 19,90 19,87 19,87 19,87 19,87 19,87 19,87	50 kPa e 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 8,858 8,832 8,801 8,801 8,8 8,799 8,799 8,799 8,798 8,795	Carga: ΔH (mm) 0 0,026 0,031 0 0,001 0,001 0 0,001 0,001 0,001	H (mm) 19,93 19,90 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87	50 kPa e 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 8,858 8,832 8,801 8,801 8,8 8,799 8,799 8,799 8,799 8,795 8,792	Carga: $\Delta H (mm)$ 0 0,026 0,031 0 0,001 0,001 0,001 0,003	H (mm) 19,93 19,90 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87	50 kPa e 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 8,858 8,832 8,801 8,801 8,8 8,799 8,799 8,799 8,799 8,795 8,795 8,792 8,79	Carga: $\Delta H (mm)$ 0 0,026 0,031 0 0,001 0,001 0,001 0,003 0,003 0,003	H (mm) 19,93 19,90 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,86 19,86	50 kPa e 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 8,858 8,832 8,801 8,801 8,8 8,799 8,799 8,799 8,799 8,795 8,795 8,792 8,79 8,79 8,79 8,799 8,798	Carga: ΔH (mm) 0 0,026 0,031 0 0,001 0,001 0,003 0,003 0,003 0,002	H (mm) 19,93 19,90 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,86 19,86 19,86	50 kPa e 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 8,858 8,832 8,801 8,801 8,8 8,799 8,799 8,799 8,799 8,799 8,795 8,795 8,792 8,799 8,799 8,798 8,799 8,798 8,799 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,798 8,799 8,799 8,798 8,798 8,799 8,798 8,798 8,798 8,798 8,798 8,798 8,798 8,798 8,798 8,798 8,798 8,798 8,788 8,787 8,79	Carga: ΔH (mm) 0 0,026 0,031 0 0,001 0,001 0,001 0,003 0,003 0,003 0,002 0,001	H (mm) 19,93 19,90 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,86 19,86 19,86 19,86	50 kPa e 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 8,858 8,832 8,801 8,801 8,8 8,799 8,795 8,799 8,797 8,787	Carga: ΔH (mm) 0 0,026 0,031 0 0,001 0,001 0,001 0,003 0,003 0,003 0,002 0,001	H (mm) 19,93 19,90 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,86 19,86 19,86 19,86 19,86	50 kPa e 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 8,858 8,832 8,801 8,801 8,8 8,799 8,799 8,799 8,799 8,799 8,799 8,799 8,799 8,799 8,799 8,799 8,798 8,797 8,787 8,787 8,787	Carga: ΔH (mm) 0 0,026 0,031 0 0,001 0,001 0,003 0,003 0,003 0,003 0,002 0,002 0,001 0	H (mm) 19,93 19,90 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,87 19,86 19,86 19,86 19,86 19,86 19,86	50 kPa e 0,40

Temp	0		Carga:		100 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,787	0	19,86	0,40
0,1	0,32	8,64	0,147	19,71	0,39
0,25	0,50	8,64	0	19,71	0,39
0,5	0,71	8,64	0	19,71	0,39
1	1,00	8,639	0,001	19,71	0,39
2	1,41	8,639	0	19,71	0,39
4	2,00	8,638	0,001	19,71	0,39
8	2,83	8,636	0,002	19,71	0,39
15	3,87	8,635	0,001	19,71	0,39
30	5,48	8,633	0,002	19,71	0,39
45	6,71	8,632	0,001	19,70	0,39
60	7,75	8,631	0,001	19,70	0,39
120	10,95	8,63	0,001	19,70	0,39
180	13,42	8,63	0	19,70	0,39
240	15,49	8,63	0	19,70	0,39
1440	37,95	8,63	0	19,70	0,39
Temp	0		Carga:		200 kPa
Tempo min	o raiz(t)	Leitura (mm)	Carga: ΔH (mm)	H (mm)	200 kPa e
Tempo min 0	o raiz(t) 0,00	Leitura (mm) 8,63	Carga: ΔH (mm) 0	H (mm) 19,70	200 kPa e 0,39
Temp min 0 0,1	o raiz(t) 0,00 0,32	Leitura (mm) 8,63 8,44	Carga: ΔH (mm) 0 0,19	H (mm) 19,70 19,51	200 kPa e 0,39 0,37
Temp min 0 0,1 0,25	o raiz(t) 0,00 0,32 0,50	Leitura (mm) 8,63 8,44 8,438	Carga: ΔH (mm) 0 0,19 0,002	H (mm) 19,70 19,51 19,51	200 kPa e 0,39 0,37 0,37
Temp min 0 0,1 0,25 0,5	o raiz(t) 0,00 0,32 0,50 0,71	Leitura (mm) 8,63 8,44 8,438 8,432	Carga: ΔH (mm) 0 0,19 0,002 0,006	H (mm) 19,70 19,51 19,51 19,50	200 kPa e 0,39 0,37 0,37 0,37
Temp 0 0,1 0,25 0,5 1	o raiz(t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 8,63 8,44 8,438 8,432 8,432 8,43	Carga: ΔH (mm) 0 0,19 0,002 0,006 0,002	H (mm) 19,70 19,51 19,51 19,50 19,50	200 kPa e 0,39 0,37 0,37 0,37 0,37
Temp 0 0,1 0,25 0,5 1 2	o raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 8,63 8,44 8,438 8,432 8,43 8,43 8,425	Carga: ΔH (mm) 0 0,19 0,002 0,006 0,002 0,002 0,005	H (mm) 19,70 19,51 19,51 19,50 19,50 19,50	200 kPa e 0,39 0,37 0,37 0,37 0,37 0,37 0,37
Temp min 0 0,1 0,25 0,5 1 2 4	o raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 8,63 8,44 8,438 8,432 8,432 8,43 8,425 8,42	Carga: ΔH (mm) 0 0,19 0,002 0,006 0,002 0,005	H (mm) 19,70 19,51 19,51 19,50 19,50 19,50 19,49	200 kPa e 0,39 0,37 0,37 0,37 0,37 0,37 0,37
Temp 0 0,1 0,25 0,5 1 2 4 8	o raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 8,63 8,44 8,438 8,432 8,43 8,425 8,42 8,42 8,415	Carga: ΔH (mm) 0 0,19 0,002 0,002 0,005 0,005 0,005	H (mm) 19,70 19,51 19,51 19,50 19,50 19,50 19,49 19,49	200 kPa e 0,39 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp min 0 0,1 0,25 0,5 1 2 4 8 15	o raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 8,63 8,44 8,438 8,432 8,43 8,432 8,43 8,425 8,42 8,415 8,41	Carga: ΔH (mm) 0 0,19 0,002 0,006 0,002 0,005 0,005 0,005 0,005 0,005	H (mm) 19,70 19,51 19,51 19,50 19,50 19,50 19,49 19,49 19,48	200 kPa e 0,39 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 8,63 8,44 8,438 8,432 8,43 8,432 8,43 8,425 8,42 8,415 8,41 8,405	Carga: $\Delta H \text{ (mm)}$ 0 0,19 0,002 0,006 0,002 0,005 0,005 0,005 0,005 0,005 0,005	H (mm) 19,70 19,51 19,51 19,50 19,50 19,50 19,49 19,49 19,48 19,48	200 kPa e 0,39 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 8,63 8,44 8,438 8,432 8,432 8,43 8,425 8,42 8,42 8,415 8,41 8,405 8,402	Carga: $\Delta H (mm)$ 0 0,19 0,002 0,006 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005	H (mm) 19,70 19,51 19,51 19,50 19,50 19,50 19,49 19,49 19,48 19,48 19,48 19,47	200 kPa e 0,39 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 8,63 8,44 8,438 8,432 8,432 8,425 8,42 8,415 8,41 8,405 8,402 8,4 8,402 8,4	Carga: ΔH (mm) 0 0,19 0,002 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005	H (mm) 19,70 19,51 19,51 19,50 19,50 19,50 19,49 19,49 19,48 19,48 19,47 19,47	200 kPa e 0,39 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 8,63 8,44 8,438 8,432 8,43 8,425 8,42 8,425 8,42 8,415 8,411 8,405 8,402 8,402 8,4 8,4	Carga: $\Delta H (mm)$ 0 0,19 0,002 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,003 0,002 0	H (mm) 19,70 19,51 19,51 19,50 19,50 19,50 19,49 19,49 19,48 19,48 19,48 19,47 19,47 19,47	200 kPa e 0,39 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 8,63 8,44 8,438 8,432 8,43 8,432 8,43 8,425 8,42 8,42 8,415 8,41 8,405 8,402 8,4 8,4 8,4 8,4 8,4 8,4 8,4 8,4	Carga: $\Delta H \ (mm)$ 0 0,19 0,002 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,002 0 0 0	H (mm) 19,70 19,51 19,51 19,50 19,50 19,50 19,49 19,49 19,48 19,48 19,47 19,47 19,47 19,47	200 kPa e 0,39 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 8,63 8,44 8,438 8,432 8,432 8,432 8,425 8,425 8,42 8,415 8,415 8,411 8,405 8,402 8,4 8,4 8,4 8,4 8,4 8,4 8,4 8,4	Carga: ΔH (mm) 0 0,19 0,002 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,003 0,002 0 0 0 0 0 0	H (mm) 19,70 19,51 19,51 19,50 19,50 19,50 19,49 19,49 19,48 19,48 19,47 19,47 19,47 19,47 19,47 19,47	200 kPa e 0,39 0,37 0,37 0,37 0,37 0,37 0,37 0,37 0,37

Temp	0		Carga:	-	400 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,4	0	19,47	0,37
0,1	0,32	8,165	0,235	19,24	0,35
0,25	0,50	8,164	0,001	19,24	0,35
0,5	0,71	8,162	0,002	19,23	0,35
1	1,00	8,161	0,001	19,23	0,35
2	1,41	8,159	0,002	19,23	0,35
4	2,00	8,155	0,004	19,23	0,35
8	2,83	8,15	0,005	19,22	0,35
15	3,87	8,149	0,001	19,22	0,35
30	5,48	8,148	0,001	19,22	0,35
45	6,71	8,14	0,008	19,21	0,35
60	7,75	8,13	0,01	19,20	0,35
120	10,95	8,11	0,02	19,18	0,35
180	13,42	8,11	0	19,18	0,35
240	15,49	8,11	0	19,18	0,35
1440	37,95	8,11	0	19,18	0,35
					-
Temp	0		Carga:	,	800 kPa
Temp min	o raiz(t)	Leitura (mm)	Carga: ΔH (mm)	H (mm)	800 kPa e
Tempo min 0	o raiz(t) 0,00	Leitura (mm) 8,11	Carga: ΔH (mm) 0	H (mm) 19,18	800 kPa e 0,35
Temp min 0 0,1	raiz(t) 0,00 0,32	Leitura (mm) 8,11 7,91	Carga: ΔH (mm) 0 0,2	H (mm) 19,18 18,98	800 kPa e 0,35 0,34
Temp min 0 0,1 0,25	o raiz(t) 0,00 0,32 0,50	Leitura (mm) 8,11 7,91 7,905	Carga: ΔH (mm) 0 0,2 0,005	H (mm) 19,18 18,98 18,98	800 kPa e 0,35 0,34 0,34
Temp min 0 0,1 0,25 0,5	raiz(t) 0,00 0,32 0,50 0,71	Leitura (mm) 8,11 7,91 7,905 7,905	Carga: ΔH (mm) 0 0,2 0,005 0	H (mm) 19,18 18,98 18,98 18,98	800 kPa e 0,35 0,34 0,34 0,34
Temp min 0 0,1 0,25 0,5 1	raiz (t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 8,11 7,91 7,905 7,905 7,902	Carga: ΔH (mm) 0 0,2 0,005 0 0,003	H (mm) 19,18 18,98 18,98 18,98 18,98 18,97	800 kPa e 0,35 0,34 0,34 0,34 0,34
Temp min 0 0,1 0,25 0,5 1 2	raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 8,11 7,91 7,905 7,905 7,902 7,899	Carga: ΔH (mm) 0 0,2 0,005 0 0,003	H (mm) 19,18 18,98 18,98 18,98 18,97 18,97	800 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,33
Temp min 0 0,1 0,25 0,5 1 2 4	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 8,11 7,91 7,905 7,905 7,902 7,899 7,895	Carga: ΔH (mm) 0 0,2 0,005 0 0,003 0,003 0,004	H (mm) 19,18 18,98 18,98 18,98 18,97 18,97 18,97	800 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,34 0,33
Temp min 0 0,1 0,25 0,5 1 2 4 8	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 8,11 7,91 7,905 7,905 7,902 7,899 7,895 7,89	Carga: $\Delta H (mm)$ 0 0,2 0,005 0 0,003 0,003 0,004 0,005	H (mm) 19,18 18,98 18,98 18,98 18,97 18,97 18,97 18,97 18,97	800 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,33 0,33
Temp min 0 0,1 0,25 0,5 1 2 4 8 15	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 8,11 7,91 7,905 7,905 7,902 7,899 7,895 7,89 7,89 7,885	Carga: $\Delta H (mm)$ 0 0,2 0,005 0 0,003 0,003 0,004 0,005 0,005	H (mm) 19,18 18,98 18,98 18,98 18,97 18,97 18,97 18,97 18,96 18,96	800 kPa e 0,35 0,34 0,34 0,34 0,34 0,33 0,33 0,33 0,33
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 8,11 7,91 7,905 7,905 7,902 7,899 7,895 7,89 7,885 7,88 7,88	Carga: $\Delta H (mm)$ 0 0,2 0,005 0 0,003 0,003 0,004 0,005 0,005 0,005	H (mm) 19,18 18,98 18,98 18,98 18,97 18,97 18,97 18,97 18,96 18,96 18,95	800 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,33 0,33 0,33 0,33 0,33
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 8,11 7,91 7,905 7,905 7,902 7,899 7,895 7,89 7,885 7,88 7,88 7,88 7,875	Carga: $\Delta H (mm)$ 0 0,2 0,005 0 0,003 0,003 0,004 0,005 0,005 0,005 0,005 0,005	H (mm) 19,18 18,98 18,98 18,98 18,97 18,97 18,97 18,97 18,96 18,96 18,95 18,95	800 kPa e 0,35 0,34 0,34 0,34 0,34 0,34 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 8,11 7,91 7,905 7,905 7,902 7,899 7,895 7,89 7,885 7,88 7,885 7,88 7,875 7,87	Carga: $\Delta H \text{ (mm)}$ 0 0,2 0,005 0 0,003 0,003 0,004 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005	H (mm) 19,18 18,98 18,98 18,98 18,97 18,97 18,97 18,97 18,96 18,96 18,95 18,95 18,94	800 kPa e 0,35 0,34 0,34 0,34 0,34 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 8,11 7,91 7,905 7,905 7,902 7,899 7,895 7,89 7,885 7,88 7,885 7,88 7,875 7,87 7,869	Carga: $\Delta H (mm)$ 0 0,2 0,005 0 0,003 0,003 0,004 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005	H (mm) 19,18 18,98 18,98 18,98 18,97 18,97 18,97 18,97 18,97 18,96 18,95 18,95 18,95 18,94	800 kPa e 0,35 0,34 0,34 0,34 0,34 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 8,11 7,91 7,905 7,905 7,902 7,899 7,895 7,89 7,885 7,88 7,885 7,88 7,875 7,87 7,869 7,859	Carga: $\Delta H (mm)$ 0 0,2 0,005 0 0,003 0,003 0,004 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,001 0,01	H (mm) 19,18 18,98 18,98 18,98 18,97 18,97 18,97 18,97 18,96 18,96 18,95 18,95 18,94 18,94 18,93	800 kPa e 0,35 0,34 0,34 0,34 0,34 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 8,11 7,91 7,905 7,905 7,902 7,899 7,895 7,89 7,885 7,88 7,88 7,87 7,87 7,869 7,859 7,849	Carga: $\Delta H (mm)$ 0 0,2 0,005 0 0,003 0,003 0,004 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,001 0,01 0,01	H (mm) 19,18 18,98 18,98 18,98 18,97 18,97 18,97 18,97 18,96 18,96 18,95 18,95 18,94 18,94 18,93 18,92	800 kPa e 0,35 0,34 0,34 0,34 0,34 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33 0,33

		DESCARREGA	AMENTO		
Temp	0		Carga:		400 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,830	0,00	18,90	0,33
0,1	0,32	7,910	0,08	18,98	0,34
0,25	0,50	7,910	0,00	18,98	0,34
0,5	0,71	7,910	0,00	18,98	0,34
1	1,00	7,910	0,00	18,98	0,34
2	1,41	7,910	0,00	18,98	0,34
4	2,00	7,910	0,00	18,98	0,34
8	2,83	7,910	0,00	18,98	0,34
10	3,16	7,910	0,00	18,98	0,34
Temp	0		Carga:	_	200 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,910	0,00	18,98	0,34
0,1	0,32	7,961	0,05	19,03	0,34
0,25	0,50	7,961	0,00	19,03	0,34
0,5	0,71	7,961	0,00	19,03	0,34
1	1,00	7,961	0,00	19,03	0,34
2	1,41	7,961	0,00	19,03	0,34
4	2,00	7,961	0,00	19,03	0,34
8	2,83	7,961	0,00	19,03	0,34
10	3,16	7,961	0,00	19,03	0,34
Temp	0		Carga:		100 kPa
min	raiz(t)	Leitura (mm)	$\Delta H (mm)$	H (mm)	e
0	0,00	7,961	0,00	19,03	0,34
0,1	0,32	8,000	0,04	19,07	0,34
0,25	0,50	8,000	0,00	19,07	0,34
0,5	0,71	8,000	0,00	19,07	0,34
1	1,00	8,000	0,00	19,07	0,34
2	1,41	8,000	0,00	19,07	0,34
4	2,00	8,000	0,00	19,07	0,34
8	2,83	8,000	0,00	19,07	0,34
10	3,16	8,000	0,00	19,07	0,34

Tem	00	Carga:		50 kPa	
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,000	0,00	19,07	0,34
0,1	0,32	8,028	0,03	19,10	0,34
0,25	0,50	8,028	0,00	19,10	0,34
0,5	0,71	8,028	0,00	19,10	0,34
1	1,00	8,028	0,00	19,10	0,34
2	1,41	8,028	0,00	19,10	0,34
4	2,00	8,028	0,00	19,10	0,34
8	2,83	8,028	0,00	19,10	0,34
10	3,16	8,028	0,00	19,10	0,34
Temj	00		Carga:		25 kPa
min	raiz(t)	Leitura (mm)	$\Delta H (mm)$	H (mm)	e
0	0,00	8,028	0,00	19,10	0,34
0,1	0,32	8,047	0,02	19,12	0,35
0,25	0,50	8,047	0,00	19,12	0,35
0,5	0,71	8,047	0,00	19,12	0,35
1	1,00	8,047	0,00	19,12	0,35
2	1,41	8,047	0,00	19,12	0,35
4	2,00	8,047	0,00	19,12	0,35
8	2,83	8,047	0,00	19,12	0,35
10	3,16	8,047	0,00	19,12	0,35
Tem	00		Carga:		12,5 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,047	0,00	19,12	0,35
0,1	0,32	8,057	0,01	19,13	0,35
0,25	0,50	8,057	0,00	19,13	0,35
0,5	0,71	8,057	0,00	19,13	0,35
1	1,00	8,057	0,00	19,13	0,35
2	1,41	8,057	0,00	19,13	0,35
4	2,00	8,057	0,00	19,13	0,35
8	2,83	8,057	0,00	19,13	0,35
10	3,16	8,057	0,00	19,13	0,35

SOLO =	SC			
ENSAIO =	Não satur	rado 3		
	DADOS I	DA AMOSTRA	CÁLCULO DA UMIDADE	
δ =	2,67	Densidade relativa	Cápsula = 15	
d (mm) =	5	Diâmetro do anel	Tara = 41,61	
h (cm) =	2	Altura do anel	P.B.H. = 120,97	
\mathbf{v} (cm ³) =	39,27	Volume do anel	P.B.S. = 113,66	
mt (g) =	82,24	Massa total da amostra		
wi (%) =	10,15	Umidade inicial		
$\gamma g (kN/m^3) =$	26,7	Peso específicos dos grãos		
γ (kN/m³)	20,94	Peso específico úmido		
γs (kN/m³)	19,01	Peso específico seco		
e0 =	0,40	Índice de vazios inicial		
Hs (mm) =	14,24	Altura de sólidos		

Temp	0	Carga:			12,5 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	9,015	0	20,00	0,40
0,1	0,32	8,996	0,019	19,98	0,40
0,25	0,50	8,996	0	19,98	0,40
0,5	0,71	8,996	0	19,98	0,40
1	1,00	8,996	0	19,98	0,40
2	1,41	8,996	0	19,98	0,40
4	2,00	8,996	0	19,98	0,40
8	2,83	8,996	0	19,98	0,40
15	3,87	8,996	0	19,98	0,40
30	5,48	8,996	0	19,98	0,40
45	6,71	8,996	0	19,98	0,40
60	7,75	8,995	0,001	19,98	0,40
120	10,95	8,995	0,000	19,98	0,40
180	13,42	8,995	0,000	19,98	0,40
240	15,49	8,995	0	19,98	0,40
1440	37,95	8,995	0	19,98	0,40

Temp	0		Carga:		25 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	е
0	0,00	8,995	0	19,98	0,40
0,1	0,32	8,971	0,024	19,96	0,40
0,25	0,50	8,971	0	19,96	0,40
0,5	0,71	8,971	0	19,96	0,40
1	1,00	8,97	0,001	19,96	0,40
2	1,41	8,97	0	19,96	0,40
4	2,00	8,97	0	19,96	0,40
8	2,83	8,97	0	19,96	0,40
15	3,87	8,97	0	19,96	0,40
30	5,48	8,97	0	19,96	0,40
45	6,71	8,97	0	19,96	0,40
60	7,75	8,97	0	19,96	0,40
120	10,95	8,97	0	19,96	0,40
180	13,42	8,97	0	19,96	0,40
240	15,49	8,97	0	19,96	0,40
1440	37,95	8,97	0	19,96	0,40
		,			
Temp	0		Carga:		50 kPa
Temp min	o raiz(t)	Leitura (mm)	Carga: ΔH (mm)	H (mm)	50 kPa e
Tempo min 0	o raiz(t) 0,00	Leitura (mm) 8,97	Carga: ΔH (mm) 0	H (mm) 19,96	50 kPa e 0,40
Temp min 0 0,1	o raiz(t) 0,00 0,32	Leitura (mm) 8,97 8,945	Carga: ΔH (mm) 0 0,025	H (mm) 19,96 19,93	50 kPa e 0,40 0,40
Temp min 0 0,1 0,25	o raiz(t) 0,00 0,32 0,50	Leitura (mm) 8,97 8,945 8,945	Carga: ΔH (mm) 0 0,025 0	H (mm) 19,96 19,93 19,93	50 kPa e 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5	o raiz(t) 0,00 0,32 0,50 0,71	Leitura (mm) 8,97 8,945 8,945 8,945 8,945	Carga: ΔH (mm) 0 0,025 0 0 0	H (mm) 19,96 19,93 19,93 19,93	50 kPa e 0,40 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5 1	o raiz(t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 8,97 8,945 8,945 8,945 8,945 8,945	Carga: ΔH (mm) 0 0,025 0 0 0 0 0	H (mm) 19,96 19,93 19,93 19,93 19,93	50 kPa e 0,40 0,40 0,40 0,40 0,40 0,40 0,40
Temp 0 0,1 0,25 0,5 1 2	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 8,97 8,945 8,945 8,945 8,945 8,945 8,942	Carga: ΔH (mm) 0 0,025 0 0 0 0 0 0,003	H (mm) 19,96 19,93 19,93 19,93 19,93 19,93	50 kPa e 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5 1 2 4	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 8,97 8,945 8,945 8,945 8,945 8,945 8,942 8,942	Carga: ΔH (mm) 0 0,025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,003 0	H (mm) 19,96 19,93 19,93 19,93 19,93 19,93 19,93 19,93	50 kPa e 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 8,97 8,945 8,945 8,945 8,945 8,945 8,942 8,942 8,942 8,94	Carga: ΔH (mm) 0 0,025 0 0 0 0 0,003 0 0,002	H (mm) 19,96 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93	50 kPa e 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 8,97 8,945 8,945 8,945 8,945 8,945 8,942 8,942 8,942 8,94 8,939	Carga: ΔH (mm) 0 0,025 0 0 0 0 0 0 0 0 0 0,003 0 0,002 0,001	H (mm) 19,96 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93	50 kPa e 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 8,97 8,945 8,945 8,945 8,945 8,945 8,942 8,942 8,942 8,942 8,942 8,943 8,939 8,935	Carga: $\Delta H (mm)$ 0 0,025 0 0 0 0 0 0 0 0 0 0,003 0 0,002 0,001 0,004	H (mm) 19,96 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,92	50 kPa e 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 8,97 8,945 8,945 8,945 8,945 8,945 8,942 8,942 8,942 8,942 8,942 8,935 8,935 8,932	Carga: ΔH (mm) 0 0,025 0 0 0 0 0 0 0 0 0 0,003 0 0,002 0,001 0,004 0,003	H (mm) 19,96 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,92 19,92 19,92	50 kPa e 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 8,97 8,945 8,945 8,945 8,945 8,945 8,942 8,942 8,942 8,942 8,935 8,935 8,932 8,932	Carga: ΔH (mm) 0 0,025 0 0 0 0 0 0 0 0 0,003 0 0,002 0,001 0,004 0,003 0	H (mm) 19,96 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,92 19,92 19,92 19,92	50 kPa e 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 8,97 8,945 8,945 8,945 8,945 8,945 8,942 8,942 8,942 8,942 8,942 8,939 8,935 8,932 8,932 8,932	Carga: ΔH (mm) 0 0,025 0 0 0 0 0 0 0,003 0 0,002 0,001 0,004 0,003 0	H (mm) 19,96 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,92 19,92 19,92 19,92 19,92	50 kPa e 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 8,97 8,945 8,945 8,945 8,945 8,945 8,942 8,942 8,942 8,942 8,942 8,939 8,935 8,932 8,932 8,932 8,932	Carga: $\Delta H (mm)$ 0 0,025 0 0 0 0 0 0 0 0 0,003 0 0,002 0,001 0,004 0,003 0 0 0 0 0 0 0 0	H (mm) 19,96 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,92 19,92 19,92 19,92 19,92 19,92	50 kPa e 0,40
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	o raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49 15,49	Leitura (mm) 8,97 8,945 8,945 8,945 8,945 8,945 8,942 8,942 8,942 8,942 8,939 8,935 8,932 8,932 8,932 8,932 8,932	Carga: ΔH (mm) 0 0,025 0 0 0 0 0 0 0 0 0,003 0 0,002 0,001 0,004 0,003 0 0 0 0 0 0 0 0 0 0	H (mm) 19,96 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,93 19,92 19,92 19,92 19,92 19,92 19,92 19,92 19,92	50 kPa e 0,40

Temp	0		Carga:		100 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,932	0	19,92	0,40
0,1	0,32	8,885	0,047	19,87	0,40
0,25	0,50	8,882	0,003	19,87	0,39
0,5	0,71	8,881	0,001	19,87	0,39
1	1,00	8,88	0,001	19,87	0,39
2	1,41	8,879	0,001	19,86	0,39
4	2,00	8,875	0,004	19,86	0,39
8	2,83	8,869	0,006	19,85	0,39
15	3,87	8,862	0,007	19,85	0,39
30	5,48	8,855	0,007	19,84	0,39
45	6,71	8,852	0,003	19,84	0,39
60	7,75	8,848	0,004	19,83	0,39
120	10,95	8,848	0	19,83	0,39
180	13,42	8,848	0	19,83	0,39
240	15,49	8,848	0	19,83	0,39
1440	37,95	8,848	0	19,83	0,39
Temp	0		Carga:		200 kPa
			<u> </u>		
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	е
min 0	raiz(t) 0,00	Leitura (mm) 8,848	Δ H (mm) 0	H (mm) 19,83	е 0,39
min 0 0,1	raiz(t) 0,00 0,32	Leitura (mm) 8,848 8,735	Δ H (mm) 0 0,113	H (mm) 19,83 19,72	e 0,39 0,38
min 0 0,1 0,25	raiz(t) 0,00 0,32 0,50	Leitura (mm) 8,848 8,735 8,734	Δ H (mm) 0 0,113 0,001	H (mm) 19,83 19,72 19,72	e 0,39 0,38 0,38
min 0 0,1 0,25 0,5	raiz(t) 0,00 0,32 0,50 0,71	Leitura (mm) 8,848 8,735 8,734 8,732	ΔH (mm) 0 0,113 0,001 0,002	H (mm) 19,83 19,72 19,72 19,72	e 0,39 0,38 0,38 0,38
min 0 0,1 0,25 0,5 1	raiz(t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 8,848 8,735 8,734 8,732 8,732 8,732	ΔH (mm) 0 0,113 0,001 0,002 0	H (mm) 19,83 19,72 19,72 19,72 19,72	e 0,39 0,38 0,38 0,38 0,38
min 0 0,1 0,25 0,5 1 2	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 8,848 8,735 8,734 8,732 8,732 8,732 8,732	ΔH (mm) 0 0,113 0,001 0,002 0 0 0	H (mm) 19,83 19,72 19,72 19,72 19,72 19,72 19,72	e 0,39 0,38 0,38 0,38 0,38 0,38 0,38
min 0 0,1 0,25 0,5 1 2 4	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 8,848 8,735 8,734 8,732 8,732 8,732 8,73	ΔH (mm) 0 0,113 0,001 0,002 0 0 0 0,002	H (mm) 19,83 19,72 19,72 19,72 19,72 19,72 19,72 19,72	e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38
min 0 0,1 0,25 0,5 1 2 4 8	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 8,848 8,735 8,734 8,732 8,732 8,732 8,732 8,73 8,729	ΔH (mm) 0 0,113 0,001 0,002 0 0 0,002 0,002 0,001	H (mm) 19,83 19,72 19,72 19,72 19,72 19,72 19,72 19,72 19,72 19,72	e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
min 0 0,1 0,25 0,5 1 2 4 8 15	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 8,848 8,735 8,734 8,732 8,732 8,732 8,732 8,733 8,729 8,728	ΔH (mm) 0 0,113 0,001 0,002 0 0,002 0 0,001 0,001	H (mm) 19,83 19,72 19,72 19,72 19,72 19,72 19,72 19,72 19,72 19,71 19,71	e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
min 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 8,848 8,735 8,734 8,732 8,732 8,732 8,732 8,73 8,729 8,728 8,725	ΔH (mm) 0 0,113 0,001 0,002 0 0,002 0,001 0,001 0,001 0,001 0,001 0,001 0,003	H (mm) 19,83 19,72 19,72 19,72 19,72 19,72 19,72 19,72 19,71 19,71 19,71	e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
min 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 8,848 8,735 8,734 8,732 8,732 8,732 8,732 8,732 8,732 8,723 8,728 8,725 8,722	ΔH (mm) 0 0,113 0,001 0,002 0 0,002 0,001 0,002 0,001 0,002 0,001 0,003	H (mm) 19,83 19,72 19,72 19,72 19,72 19,72 19,72 19,72 19,71 19,71 19,71 19,71	e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
$\begin{array}{c} \text{min} \\ 0 \\ 0,1 \\ 0,25 \\ 0,5 \\ 1 \\ 2 \\ 4 \\ 8 \\ 15 \\ 30 \\ 45 \\ 60 \end{array}$	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 8,848 8,735 8,734 8,732 8,732 8,732 8,732 8,732 8,732 8,725 8,725 8,722 8,721	ΔH (mm) 0 0,113 0,001 0,002 0 0,002 0 0,001 0,002 0,001 0,001 0,003 0,001	H (mm) 19,83 19,72 19,72 19,72 19,72 19,72 19,72 19,72 19,71 19,71 19,71 19,71 19,71 19,71	e 0,39 0,38 0,3
$\begin{array}{c} \text{min} \\ 0 \\ 0,1 \\ 0,25 \\ 0,5 \\ 1 \\ 2 \\ 4 \\ 8 \\ 15 \\ 30 \\ 45 \\ 60 \\ 120 \\ \end{array}$	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 8,848 8,735 8,734 8,732 8,732 8,732 8,732 8,732 8,732 8,729 8,729 8,725 8,722 8,721 8,711	ΔH (mm) 0 0,113 0,001 0,002 0 0,002 0 0,001 0,001 0,001 0,001 0,003 0,001 0,001	H (mm) 19,83 19,72 19,72 19,72 19,72 19,72 19,72 19,72 19,71 19,71 19,71 19,71 19,71 19,71 19,71 19,70	e 0,39 0,38 0,3
$\begin{array}{c} \text{min} \\ 0 \\ 0,1 \\ 0,25 \\ 0,5 \\ 1 \\ 2 \\ 4 \\ 8 \\ 15 \\ 30 \\ 45 \\ 60 \\ 120 \\ 180 \\ \end{array}$	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 8,848 8,735 8,734 8,732 8,732 8,732 8,732 8,732 8,729 8,729 8,728 8,725 8,722 8,721 8,711 8,711 8,7	ΔH (mm) 0 0,113 0,001 0,002 0 0,002 0,001 0,001 0,001 0,001 0,001 0,003 0,001 0,001 0,001 0,001	H (mm) 19,83 19,72 19,72 19,72 19,72 19,72 19,72 19,72 19,71 19,71 19,71 19,71 19,71 19,71 19,70 19,69	e 0,39 0,38 0,3
$\begin{array}{c} \text{min} \\ 0 \\ 0,1 \\ 0,25 \\ 0,5 \\ 1 \\ 2 \\ 4 \\ 8 \\ 15 \\ 30 \\ 45 \\ 60 \\ 120 \\ 180 \\ 240 \\ \end{array}$	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 8,848 8,735 8,734 8,732 8,732 8,732 8,732 8,732 8,732 8,729 8,728 8,725 8,722 8,721 8,711 8,7 8,7 8,7 8,7 8,7 8,7 8,7 8,7	ΔH (mm) 0 0,113 0,001 0,002 0 0,002 0,001 0,002 0,001 0,003 0,001 0,001 0,003 0,001 0,01 0,01 0,01 0,011 0	H (mm) 19,83 19,72 19,72 19,72 19,72 19,72 19,72 19,71 19,71 19,71 19,71 19,71 19,71 19,70 19,69 19,69	e 0,39 0,38 0,3

Temp	0		400 kPa		
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	е
0	0,00	8,7	0	19,69	0,38
0,1	0,32	8,58	0,12	19,57	0,37
0,25	0,50	8,575	0,005	19,56	0,37
0,5	0,71	8,572	0,003	19,56	0,37
1	1,00	8,57	0,002	19,56	0,37
2	1,41	8,565	0,005	19,55	0,37
4	2,00	8,56	0,005	19,55	0,37
8	2,83	8,558	0,002	19,54	0,37
15	3,87	8,552	0,006	19,54	0,37
30	5,48	8,55	0,002	19,54	0,37
45	6,71	8,545	0,005	19,53	0,37
60	7,75	8,543	0,002	19,53	0,37
120	10,95	8,539	0,004	19,52	0,37
180	13,42	8,535	0,004	19,52	0,37
240	15,49	8,525	0,01	19,51	0,37
1440	37.95	8,495	0.03	19.48	0.37
- · · · ·	0.,20	Carga:		- ,	
Temp	0		Carga:	17,10	800 kPa
Tempo min	$\frac{\mathbf{raiz}(\mathbf{t})}{\mathbf{raiz}(\mathbf{t})}$	Leitura (mm)	Carga: ΔH (mm)	H (mm)	800 kPa e
Tempo min 0	o raiz(t) 0,00	Leitura (mm) 8,495	Carga: ΔH (mm) 0	H (mm) 19,48	800 kPa e 0,37
Temp min 0 0,1	raiz(t) 0,00 0,32	Leitura (mm) 8,495 8,298	Carga: ΔH (mm) 0 0,197	H (mm) 19,48 19,28	800 kPa e 0,37 0,35
Temp 0 0,1 0,25	raiz(t) 0,00 0,32 0,50	Leitura (mm) 8,495 8,298 8,285	Carga: ΔH (mm) 0 0,197 0,013	H (mm) 19,48 19,28 19,27	800 kPa e 0,37 0,35 0,35
Temp 0 0,1 0,25 0,5	raiz (t) 0,00 0,32 0,50 0,71	Leitura (mm) 8,495 8,298 8,285 8,285 8,28	Carga: ΔH (mm) 0 0,197 0,013 0,005	H (mm) 19,48 19,28 19,27 19,27	800 kPa e 0,37 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1	raiz (t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 8,495 8,298 8,285 8,28 8,28 8,27	Carga: ΔH (mm) 0 0,197 0,013 0,005 0,01	H (mm) 19,48 19,28 19,27 19,27 19,27	800 kPa e 0,37 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2	raiz(t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 8,495 8,298 8,285 8,28 8,28 8,27 8,26	Carga: ΔH (mm) 0 0,197 0,013 0,005 0,01 0,01	H (mm) 19,48 19,28 19,27 19,27 19,26 19,25	800 kPa e 0,37 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 8,495 8,298 8,285 8,28 8,27 8,26 8,251	Carga: ΔH (mm) 0 0,197 0,013 0,005 0,01 0,01 0,009	H (mm) 19,48 19,28 19,27 19,27 19,26 19,25 19,24	800 kPa e 0,37 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 8,495 8,298 8,285 8,28 8,28 8,27 8,26 8,251 8,241	Open Carga: ΔH (mm) 0 0,197 0,013 0,005 0,01 0,01 0,009 0,01	H (mm) 19,48 19,28 19,27 19,27 19,26 19,25 19,24 19,23	800 kPa e 0,37 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 8,495 8,298 8,285 8,28 8,28 8,27 8,26 8,251 8,241 8,238	Carga: ΔH (mm) 0 0,197 0,013 0,005 0,01 0,009 0,01 0,003	H (mm) 19,48 19,28 19,27 19,27 19,26 19,25 19,24 19,23 19,22	800 kPa e 0,37 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 8,495 8,298 8,285 8,28 8,27 8,26 8,251 8,241 8,238 8,23	Openation Carga: ΔH (mm) 0 0,197 0,013 0,005 0,01 0,009 0,01 0,003 0,008	H (mm) 19,48 19,28 19,27 19,27 19,26 19,25 19,24 19,23 19,22 19,22	800 kPa e 0,37 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 8,495 8,298 8,285 8,28 8,27 8,26 8,251 8,241 8,238 8,23 8,228	Openation Carga: ΔH (mm) 0 0,197 0,013 0,005 0,01 0,009 0,01 0,003 0,008 0,002	H (mm) 19,48 19,28 19,27 19,27 19,26 19,25 19,24 19,23 19,22 19,22 19,21	800 kPa e 0,37 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 8,495 8,298 8,285 8,28 8,27 8,26 8,251 8,241 8,238 8,23 8,228 8,225	Carga: ΔH (mm) 0 0,197 0,013 0,005 0,01 0,01 0,009 0,01 0,003 0,002 0,003	H (mm) 19,48 19,28 19,27 19,27 19,27 19,26 19,25 19,24 19,23 19,22 19,22 19,22 19,21 19,21	800 kPa e 0,37 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 8,495 8,298 8,285 8,28 8,27 8,26 8,251 8,241 8,238 8,23 8,228 8,225 8,225	Carga: ΔH (mm) 0 0,197 0,013 0,005 0,01 0,001 0,003 0,003 0,003 0,003 0,003	H (mm) 19,48 19,28 19,27 19,27 19,26 19,25 19,24 19,23 19,22 19,22 19,22 19,21 19,21 19,21	800 kPa e 0,37 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 8,495 8,298 8,285 8,28 8,27 8,26 8,251 8,241 8,238 8,23 8,223 8,225 8,225 8,225 8,225	Carga: ΔH (mm) 0 0,197 0,013 0,005 0,01 0,001 0,003 0,003 0,003 0 0	H (mm) 19,48 19,28 19,27 19,27 19,27 19,26 19,25 19,24 19,23 19,22 19,22 19,21 19,21 19,21 19,21	800 kPa e 0,37 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 8,495 8,298 8,285 8,28 8,27 8,26 8,251 8,241 8,238 8,23 8,223 8,225 8,225 8,225 8,225 8,225 8,225	Carga: ΔH (mm) 0 0,197 0,013 0,005 0,01 0,001 0,003 0,003 0,003 0 0 0	H (mm) 19,48 19,28 19,27 19,27 19,26 19,25 19,24 19,23 19,22 19,22 19,21 19,21 19,21 19,21 19,21	800 kPa e 0,37 0,35

DESCARREGAMENTO							
Temp	0		Carga:		400 kPa		
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e		
0	0,00	8,225	0,00	19,21	0,35		
0,1	0,32	8,270	0,04	19,26	0,35		
0,25	0,50	8,270	0,00	19,26	0,35		
0,5	0,71	8,270	0,00	19,26	0,35		
1	1,00	8,270	0,00	19,26	0,35		
2	1,41	8,270	0,00	19,26	0,35		
4	2,00	8,270	0,00	19,26	0,35		
8	2,83	8,270	0,00	19,26	0,35		
10	3,16	8,270	0,00	19,26	0,35		
Temp	0		Carga:		200 kPa		
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e		
0	0,00	8,270	0,00	19,26	0,35		
0,1	0,32	8,310	0,04	19,30	0,35		
0,25	0,50	8,310	0,00	19,30	0,35		
0,5	0,71	8,310	0,00	19,30	0,35		
1	1,00	8,310	0,00	19,30	0,35		
2	1,41	8,310	0,00	19,30	0,35		
4	2,00	8,310	0,00	19,30	0,35		
8	2,83	8,310	0,00	19,30	0,35		
10	3,16	8,310	0,00	19,30	0,35		
Temp	0		Carga:		100 kPa		
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e		
0	0,00	8,310	0,00	19,30	0,35		
0,1	0,32	8,345	0,04	19,33	0,36		
0,25	0,50	8,345	0,00	19,33	0,36		
0,5	0,71	8,345	0,00	19,33	0,36		
1	1,00	8,345	0,00	19,33	0,36		
2	1,41	8,345	0,00	19,33	0,36		
4	2,00	8,345	0,00	19,33	0,36		
8	2,83	8,345	0,00	19,33	0,36		
10	3,16	8,345	0,00	19,33	0,36		

Raiz (t)

19,29

Тетр	0		Carga:	50 kPa	
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,345	0,00	19,33	0,36
0,1	0,32	8,380	0,04	19,37	0,36
0,25	0,50	8,380	0,00	19,37	0,36
0,5	0,71	8,380	0,00	19,37	0,36
1	1,00	8,380	0,00	19,37	0,36
2	1,41	8,380	0,00	19,37	0,36
4	2,00	8,380	0,00	19,37	0,36
8	2,83	8,380	0,00	19,37	0,36
10	3,16	8,380	0,00	19,37	0,36
Temp	0		Carga:		25 kPa
min	raiz(t)	Leitura (mm)	$\Delta H (mm)$	H (mm)	e
0	0,00	8,380	0,00	19,37	0,36
0,1	0,32	8,425	0,04	19,41	0,36
0,25	0,50	8,425	0,00	19,41	0,36
0,5	0,71	8,425	0,00	19,41	0,36
1	1,00	8,425	0,00	19,41	0,36
2	1,41	8,425	0,00	19,41	0,36
4	2,00	8,425	0,00	19,41	0,36
8	2,83	8,425	0,00	19,41	0,36
10	3,16	8,425	0,00	19,41	0,36
Temp	0		Carga:		12,5 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,425	0,00	19,41	0,36
0,1	0,32	8,460	0,04	19,45	0,37
0,25	0,50	8,460	0,00	19,45	0,37
0,5	0,71	8,460	0,00	19,45	0,37
1	1,00	8,460	0,00	19,45	0,37
2	1,41	8,460	0,00	19,45	0,37
4	2,00	8,460	0,00	19,45	0,37
8	2,83	8,460	0,00	19,45	0,37
10	3,16	8,460	0,00	19,45	0,37

SOLO =	SC					
ENSAIO =	Não satur	rado 4				
DADOS DA AMOSTRA			CÁLCULO DA UMIDADE			
δ =	2,67	Densidade relativa	Cápsula =	8		
d (mm) =	5	Diâmetro do anel	Tara =	43,07		
h (cm) =	2	Altura do anel	P.B.H. =	124,37		
\mathbf{v} (cm ³) =	39,27	Volume do anel	P.B.S. =	117		
mt (g) =	81,6	Massa total da amostra				
wi (%) =	9,97	Umidade inicial				
$\gamma g (kN/m^3) =$	26,7	Peso específicos dos grãos				
γ (kN/m ³)	20,78	Peso específico úmido				
γs (kN/m ³)	18,90	Peso específico seco				
e0 =	0,41	Índice de vazios inicial				
Hs (mm) =	14,15	Altura de sólidos				

Temp	0		Carga:		12,5 kPa
min	raiz(t)	Leitura (mm)	$\Delta H (mm)$	H (mm)	e
0	0,00	8,2	0	20,00	0,41
0,1	0,32	8,17	0,03	19,97	0,41
0,25	0,50	8,169	0,001	19,97	0,41
0,5	0,71	8,168	0,001	19,97	0,41
1	1,00	8,167	0,001	19,97	0,41
2	1,41	8,165	0,002	19,97	0,41
4	2,00	8,163	0,002	19,96	0,41
8	2,83	8,161	0,002	19,96	0,41
15	3,87	8,157	0,004	19,96	0,41
30	5,48	8,156	0,001	19,96	0,41
45	6,71	8,155	0,001	19,96	0,41
60	7,75	8,154	0,001	19,95	0,41
120	10,95	8,154	0,000	19,95	0,41
180	13,42	8,154	0,000	19,95	0,41
240	15,49	8,154	0	19,95	0,41
1440	37,95	8,154	0	19,95	0,41

Temp	0	Carga:			25 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,154	0	19,95	0,41
0,1	0,32	8,12	0,034	19,92	0,41
0,25	0,50	8,12	0	19,92	0,41
0,5	0,71	8,119	0,001	19,92	0,41
1	1,00	8,119	0	19,92	0,41
2	1,41	8,115	0,004	19,92	0,41
4	2,00	8,112	0,003	19,91	0,41
8	2,83	8,109	0,003	19,91	0,41
15	3,87	8,105	0,004	19,91	0,41
30	5,48	8,1	0,005	19,90	0,41
45	6,71	8,098	0,002	19,90	0,41
60	7,75	8,096	0,002	19,90	0,41
120	10,95	8,096	0	19,90	0,41
180	13,42	8,096	0	19,90	0,41
240	15,49	8,096	0	19,90	0,41
1440	37,95	8,096	0	19,90	0,41
Temp	0		Carga:		50 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,096	0	19,90	0,41
0 0,1	0,00 0,32	8,096 8,05	0 0,046	19,90 19,85	0,41 0,40
0 0,1 0,25	0,00 0,32 0,50	8,096 8,05 8,049	0 0,046 0,001	19,90 19,85 19,85	0,41 0,40 0,40
0 0,1 0,25 0,5	0,00 0,32 0,50 0,71	8,096 8,05 8,049 8,045	0 0,046 0,001 0,004	19,90 19,85 19,85 19,85	0,41 0,40 0,40 0,40
0 0,1 0,25 0,5 1	0,00 0,32 0,50 0,71 1,00	8,096 8,05 8,049 8,045 8,042	0 0,046 0,001 0,004 0,003	19,90 19,85 19,85 19,85 19,85 19,84	0,41 0,40 0,40 0,40 0,40
$ \begin{array}{r} 0\\ 0,1\\ 0,25\\ 0,5\\ 1\\ 2 \end{array} $	0,00 0,32 0,50 0,71 1,00 1,41	8,096 8,05 8,049 8,045 8,042 8,04	0 0,046 0,001 0,004 0,003 0,002	19,90 19,85 19,85 19,85 19,84 19,84	0,41 0,40 0,40 0,40 0,40 0,40
$ \begin{array}{r} 0\\ 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4 \end{array} $	$\begin{array}{r} 0,00\\ 0,32\\ 0,50\\ 0,71\\ 1,00\\ 1,41\\ 2,00\\ \end{array}$	8,096 8,05 8,049 8,045 8,042 8,04 8,04 8,038	0 0,046 0,001 0,004 0,003 0,002 0,002	19,90 19,85 19,85 19,85 19,84 19,84 19,84	$ \begin{array}{r} 0,41 \\ 0,40 \\ 0,40 \\ 0,40 \\ 0,40 \\ 0,40 \\ 0,40 \\ 0,40 \\ 0,40 \\ \end{array} $
$ \begin{array}{r} 0\\ 0,1\\ 0,25\\ 0,5\\ \hline 1\\ 2\\ \hline 4\\ \hline 8\\ \hline \end{array} $	0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	8,096 8,05 8,049 8,045 8,042 8,04 8,04 8,038 8,035	0 0,046 0,001 0,004 0,003 0,002 0,002 0,002	19,90 19,85 19,85 19,85 19,84 19,84 19,84 19,84	$ \begin{array}{r} 0,41 \\ 0,40 \\ $
$ \begin{array}{r} 0\\ 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4\\ 8\\ 15\\ \end{array} $	0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	8,096 8,05 8,049 8,045 8,042 8,04 8,038 8,035 8,03	0 0,046 0,001 0,004 0,003 0,002 0,002 0,003 0,005	19,90 19,85 19,85 19,85 19,84 19,84 19,84 19,84 19,84	$ \begin{array}{r} 0,41 \\ 0,40 \\ $
$ \begin{array}{r} 0\\ 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4\\ 8\\ 15\\ 30\\ \end{array} $	0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	8,096 8,05 8,049 8,045 8,042 8,04 8,038 8,035 8,03 8,03 8,032	0 0,046 0,001 0,004 0,003 0,002 0,002 0,002 0,003 0,005 0,008	19,90 19,85 19,85 19,85 19,84 19,84 19,84 19,84 19,83 19,82	$ \begin{array}{r} 0,41 \\ 0,40 \\ $
$ \begin{array}{r} 0\\ 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4\\ 8\\ 15\\ 30\\ 45\\ \end{array} $	$\begin{array}{r} 0,00\\ 0,32\\ 0,50\\ 0,71\\ 1,00\\ 1,41\\ 2,00\\ 2,83\\ 3,87\\ 5,48\\ 6,71\\ \end{array}$	8,096 8,05 8,049 8,045 8,042 8,04 8,038 8,035 8,03 8,03 8,03 8,022 8,019	0 0,046 0,001 0,004 0,003 0,002 0,002 0,002 0,003 0,005 0,008 0,003	19,90 19,85 19,85 19,85 19,84 19,84 19,84 19,84 19,84 19,84 19,84 19,84 19,84 19,84 19,84 19,83 19,82	$\begin{array}{r} 0,41\\ \hline 0,40\\ \hline$
$ \begin{array}{r} 0\\ 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4\\ 8\\ 15\\ 30\\ 45\\ 60\\ \end{array} $	0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	8,096 8,05 8,049 8,045 8,042 8,04 8,038 8,035 8,03 8,022 8,019 8,016	0 0,046 0,001 0,004 0,003 0,002 0,002 0,003 0,005 0,008 0,003 0,003	19,90 19,85 19,85 19,85 19,84 19,84 19,84 19,84 19,83 19,82 19,82	$\begin{array}{r} 0,41\\ \hline 0,40\\ \hline$
$ \begin{array}{r} 0\\ 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4\\ 8\\ 15\\ 30\\ 45\\ 60\\ 120\\ \end{array} $	$\begin{array}{r} 0,00\\ 0,32\\ 0,50\\ 0,71\\ 1,00\\ 1,41\\ 2,00\\ 2,83\\ 3,87\\ 5,48\\ 6,71\\ 7,75\\ 10,95\\ \end{array}$	8,096 8,05 8,049 8,045 8,042 8,04 8,038 8,035 8,03 8,019 8,016	0 0,046 0,001 0,004 0,003 0,002 0,002 0,003 0,005 0,008 0,003 0,003 0,003	19,90 19,85 19,85 19,85 19,84 19,84 19,84 19,84 19,83 19,82 19,82 19,82	$\begin{array}{r} 0,41\\ \hline 0,40\\ \hline$
$ \begin{array}{r} 0\\ 0,1\\ 0,25\\ 0,5\\ 1\\ 2\\ 4\\ 8\\ 15\\ 30\\ 45\\ 60\\ 120\\ 180\\ \end{array} $	$\begin{array}{r} 0,00\\ 0,32\\ 0,50\\ 0,71\\ 1,00\\ 1,41\\ 2,00\\ 2,83\\ 3,87\\ 5,48\\ 6,71\\ 7,75\\ 10,95\\ 13,42\\ \end{array}$	8,096 8,05 8,049 8,045 8,042 8,043 8,038 8,035 8,03 8,022 8,016 8,016	0 0,046 0,001 0,004 0,003 0,002 0,002 0,003 0,005 0,008 0,003 0,003 0,003 0 0	19,90 19,85 19,85 19,85 19,84 19,84 19,84 19,84 19,84 19,84 19,82 19,82 19,82 19,82 19,82 19,82	$\begin{array}{r} 0,41\\ \hline 0,40\\ \hline$
$\begin{array}{c} 0\\ 0,1\\ 0,25\\ 0,5\\ \hline 1\\ 2\\ 4\\ 8\\ \hline 15\\ 30\\ 45\\ 60\\ \hline 120\\ \hline 180\\ 240\\ \hline \end{array}$	$\begin{array}{r} 0,00\\ 0,32\\ 0,50\\ 0,71\\ 1,00\\ 1,41\\ 2,00\\ 2,83\\ 3,87\\ 5,48\\ 6,71\\ 7,75\\ 10,95\\ 13,42\\ 15,49\\ \end{array}$	8,096 8,05 8,049 8,045 8,042 8,04 8,038 8,035 8,03 8,022 8,016 8,016 8,016	0 0,046 0,001 0,004 0,003 0,002 0,002 0,003 0,005 0,008 0,003 0,003 0,003 0 0 0 0	19,90 19,85 19,85 19,85 19,84 19,84 19,84 19,84 19,83 19,82 19,82 19,82 19,82 19,82 19,82 19,82 19,82 19,82	$\begin{array}{r} 0,41\\ 0,40\\$

Temp	0	Carga:			100 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	8,016	0	19,82	0,40
0,1	0,32	7,94	0,076	19,74	0,39
0,25	0,50	7,939	0,001	19,74	0,39
0,5	0,71	7,938	0,001	19,74	0,39
1	1,00	7,937	0,001	19,74	0,39
2	1,41	7,936	0,001	19,74	0,39
4	2,00	7,935	0,001	19,74	0,39
8	2,83	7,931	0,004	19,73	0,39
15	3,87	7,926	0,005	19,73	0,39
30	5,48	7,922	0,004	19,72	0,39
45	6,71	7,918	0,004	19,72	0,39
60	7,75	7,915	0,003	19,72	0,39
120	10,95	7,91	0,005	19,71	0,39
180	13,42	7,91	0	19,71	0,39
240	15,49	7,91	0	19,71	0,39
1440	37,95	7,91	0	19,71	0,39
		Carga:			
Temp	0		Carga:		200 kPa
Temp min	o raiz(t)	Leitura (mm)	Carga: ΔH (mm)	H (mm)	200 kPa e
Tempo min 0	o raiz(t) 0,00	Leitura (mm) 7,91	Carga: ΔH (mm) 0	H (mm) 19,71	200 kPa e 0,39
Temp min 0 0,1	o raiz(t) 0,00 0,32	Leitura (mm) 7,91 7,76	Carga: ΔH (mm) 0 0,15	H (mm) 19,71 19,56	200 kPa e 0,39 0,38
Temp min 0 0,1 0,25	o raiz(t) 0,00 0,32 0,50	Leitura (mm) 7,91 7,76 7,758	Carga: ΔH (mm) 0 0,15 0,002	H (mm) 19,71 19,56 19,56	200 kPa e 0,39 0,38 0,38
Temp min 0 0,1 0,25 0,5	raiz(t) 0,00 0,32 0,50 0,71	Leitura (mm) 7,91 7,76 7,758 7,755	Carga: ΔH (mm) 0 0,15 0,002 0,003	H (mm) 19,71 19,56 19,56 19,56	200 kPa e 0,39 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1	raiz (t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 7,91 7,76 7,758 7,755 7,75	Carga: ΔH (mm) 0 0,15 0,002 0,003 0,005	H (mm) 19,71 19,56 19,56 19,56 19,55	200 kPa e 0,39 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 7,91 7,76 7,758 7,755 7,75 7,75 7,749	Carga: ΔH (mm) 0 0,15 0,002 0,003 0,005 0,001	H (mm) 19,71 19,56 19,56 19,56 19,55 19,55	200 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 7,91 7,76 7,758 7,755 7,75 7,749 7,749 7,742	Carga: ΔH (mm) 0 0,15 0,002 0,003 0,005 0,001 0,007	H (mm) 19,71 19,56 19,56 19,56 19,55 19,55 19,55	200 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 7,91 7,76 7,758 7,755 7,75 7,749 7,742 7,74	Carga: $\Delta H (mm)$ 0 0,15 0,002 0,003 0,005 0,001 0,007 0,002	H (mm) 19,71 19,56 19,56 19,55 19,55 19,55 19,54 19,54	200 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8 15	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 7,91 7,76 7,758 7,755 7,75 7,749 7,742 7,74 7,742 7,74	Carga: ΔH (mm) 0 0,15 0,002 0,003 0,005 0,001 0,007 0,002 0,003	H (mm) 19,71 19,56 19,56 19,56 19,55 19,55 19,55 19,54 19,54 19,53	200 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 7,91 7,76 7,758 7,755 7,75 7,749 7,749 7,742 7,74 7,74 7,732 7,726	Carga: $\Delta H (mm)$ 0 0,15 0,002 0,003 0,005 0,001 0,002 0,002 0,003	H (mm) 19,71 19,56 19,56 19,56 19,55 19,55 19,55 19,54 19,54 19,53 19,53	200 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 7,91 7,76 7,758 7,755 7,75 7,749 7,749 7,742 7,74 7,742 7,74 7,732 7,726 7,72	Carga: $\Delta H \text{ (mm)}$ 0 0,15 0,002 0,003 0,005 0,001 0,007 0,008 0,006	H (mm) 19,71 19,56 19,56 19,55 19,55 19,55 19,54 19,53 19,53 19,53 19,53	200 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 7,91 7,76 7,758 7,755 7,75 7,749 7,749 7,742 7,74 7,742 7,74 7,726 7,72 7,719	Carga: $\Delta H \text{ (mm)}$ 0 0,15 0,002 0,003 0,005 0,001 0,002 0,003 0,005 0,001 0,002 0,006 0,006 0,001	H (mm) 19,71 19,56 19,56 19,55 19,55 19,55 19,54 19,53 19,53 19,53 19,53 19,52 19,52	200 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 7,91 7,76 7,758 7,755 7,75 7,749 7,742 7,742 7,74 7,732 7,726 7,72 7,719 7,719 7,719	Carga: $\Delta H (mm)$ 0 0,15 0,002 0,003 0,005 0,001 0,002 0,007 0,008 0,006 0,001 0,006 0,001	H (mm) 19,71 19,56 19,56 19,56 19,55 19,55 19,55 19,54 19,54 19,53 19,53 19,53 19,52 19,52 19,52	200 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 7,91 7,76 7,758 7,755 7,75 7,749 7,749 7,742 7,744 7,742 7,74 7,726 7,726 7,72 7,719 7,719 7,719 7,719	Carga: $\Delta H (mm)$ 0 0,15 0,002 0,003 0,005 0,001 0,002 0,002 0,003 0,001 0,002 0,006 0,006 0,001 0 0 0 0	H (mm) 19,71 19,56 19,56 19,56 19,55 19,55 19,54 19,54 19,53 19,53 19,53 19,52 19,52 19,52 19,52	200 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 7,91 7,76 7,758 7,755 7,75 7,749 7,749 7,742 7,742 7,742 7,742 7,742 7,726 7,726 7,72 7,719 7,719 7,719 7,719 7,719	Carga: $\Delta H (mm)$ 0 0,15 0,002 0,003 0,005 0,001 0,002 0,002 0,003 0,001 0,002 0,006 0,006 0,001 0 0 0 0 0 0 0 0	H (mm) 19,71 19,56 19,56 19,56 19,55 19,55 19,55 19,54 19,54 19,53 19,53 19,53 19,52 19,52 19,52 19,52 19,52	200 kPa e 0,39 0,38 0,38 0,38 0,38 0,38 0,38 0,38 0,38

Temp	0	Carga:			400 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,719	0	19,52	0,38
0,1	0,32	7,522	0,197	19,32	0,37
0,25	0,50	7,52	0,002	19,32	0,36
0,5	0,71	7,518	0,002	19,32	0,36
1	1,00	7,517	0,001	19,32	0,36
2	1,41	7,515	0,002	19,32	0,36
4	2,00	7,512	0,003	19,31	0,36
8	2,83	7,508	0,004	19,31	0,36
15	3,87	7,502	0,006	19,30	0,36
30	5,48	7,498	0,004	19,30	0,36
45	6,71	7,492	0,006	19,29	0,36
60	7,75	7,485	0,007	19,29	0,36
120	10,95	7,475	0,01	19,28	0,36
180	13,42	7,475	0	19,28	0,36
240	15,49	7,475	0	19,28	0,36
1440	37,95	7,475	0	19,28	0,36
		Carga:			
Temp	0		Carga:		800 kPa
Tempo min	o raiz(t)	Leitura (mm)	Carga: ΔH (mm)	H (mm)	800 kPa e
Tempo min 0	o raiz(t) 0,00	Leitura (mm) 7,475	Carga: ΔH (mm) 0	H (mm) 19,28	800 kPa e 0,36
Temp min 0 0,1	raiz(t) 0,00 0,32	Leitura (mm) 7,475 7,32	Carga: ΔH (mm) 0 0,155	H (mm) 19,28 19,12	800 kPa e 0,36 0,35
Temp min 0 0,1 0,25	o raiz(t) 0,00 0,32 0,50	Leitura (mm) 7,475 7,32 7,315	Carga: ΔH (mm) 0 0,155 0,005	H (mm) 19,28 19,12 19,12	800 kPa e 0,36 0,35 0,35
Temp min 0 0,1 0,25 0,5	raiz (t) 0,00 0,32 0,50 0,71	Leitura (mm) 7,475 7,32 7,315 7,312	Carga: ΔH (mm) 0 0,155 0,005 0,003	H (mm) 19,28 19,12 19,12 19,11	800 kPa e 0,36 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1	raiz (t) 0,00 0,32 0,50 0,71 1,00	Leitura (mm) 7,475 7,32 7,315 7,312 7,309	Carga: ΔH (mm) 0 0,155 0,005 0,003 0,003	H (mm) 19,28 19,12 19,12 19,11 19,11	800 kPa e 0,36 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41	Leitura (mm) 7,475 7,32 7,315 7,312 7,309 7,305	Carga: ΔH (mm) 0 0,155 0,005 0,003 0,003 0,004	H (mm) 19,28 19,12 19,12 19,11 19,11 19,11	800 kPa e 0,36 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00	Leitura (mm) 7,475 7,32 7,315 7,312 7,309 7,305 7,3	Carga: ΔH (mm) 0 0,155 0,005 0,003 0,003 0,004 0,005	H (mm) 19,28 19,12 19,12 19,11 19,11 19,11 19,10	800 kPa e 0,36 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83	Leitura (mm) 7,475 7,32 7,315 7,312 7,309 7,305 7,3 7,3 7,295	Carga: ΔH (mm) 0 0,155 0,005 0,003 0,003 0,004 0,005 0,005	H (mm) 19,28 19,12 19,12 19,11 19,11 19,11 19,10 19,10	800 kPa e 0,36 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87	Leitura (mm) 7,475 7,32 7,315 7,312 7,309 7,309 7,305 7,3 7,295 7,289	Carga: $\Delta H (mm)$ 0 0,155 0,005 0,003 0,003 0,004 0,005 0,005 0,005	H (mm) 19,28 19,12 19,12 19,11 19,11 19,11 19,10 19,10 19,09	800 kPa e 0,36 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 10	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48	Leitura (mm) 7,475 7,32 7,315 7,312 7,309 7,305 7,305 7,3 7,295 7,289 7,289 7,282	Carga: $\Delta H (mm)$ 0 0,155 0,005 0,003 0,003 0,004 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,006 0,007	H (mm) 19,28 19,12 19,12 19,11 19,11 19,11 19,10 19,10 19,09 19,08	800 kPa e 0,36 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71	Leitura (mm) 7,475 7,32 7,315 7,312 7,309 7,309 7,305 7,3 7,295 7,289 7,289 7,282 7,28	Carga: ΔH (mm) 0 0,155 0,005 0,003 0,004 0,005 0,005 0,005 0,007 0,002	H (mm) 19,28 19,12 19,12 19,11 19,11 19,11 19,10 19,00 19,08 19,08	800 kPa e 0,36 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 60	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75	Leitura (mm) 7,475 7,32 7,315 7,312 7,309 7,305 7,305 7,3 7,295 7,289 7,282 7,28 7,28 7,279	Carga: ΔH (mm) 0 0,155 0,005 0,003 0,003 0,004 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,006 0,007 0,002 0,001	H (mm) 19,28 19,12 19,12 19,11 19,11 19,11 19,10 19,00 19,08 19,08 19,08	800 kPa e 0,36 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95	Leitura (mm) 7,475 7,32 7,315 7,312 7,309 7,309 7,305 7,3 7,295 7,289 7,289 7,289 7,282 7,28 7,279 7,265	Carga: $\Delta H (mm)$ 0 0,155 0,003 0,003 0,003 0,004 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,006 0,007 0,002 0,001 0,014	H (mm) 19,28 19,12 19,12 19,11 19,11 19,11 19,10 19,10 19,00 19,08 19,08 19,08 19,07	800 kPa e 0,36 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 180	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42	Leitura (mm) 7,475 7,32 7,315 7,312 7,309 7,305 7,30 7,305 7,30 7,295 7,289 7,289 7,289 7,289 7,282 7,28 7,279 7,265 7,26	Carga: $\Delta H (mm)$ 0 0,155 0,003 0,003 0,004 0,005 0,005 0,004 0,005 0,005 0,005 0,006 0,007 0,002 0,001 0,014 0,005	H (mm) 19,28 19,12 19,12 19,11 19,11 19,11 19,10 19,10 19,09 19,08 19,08 19,08 19,07 19,06	800 kPa e 0,36 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35
Temp min 0 0,1 0,25 0,5 1 2 4 8 15 30 45 60 120 180 240	raiz (t) 0,00 0,32 0,50 0,71 1,00 1,41 2,00 2,83 3,87 5,48 6,71 7,75 10,95 13,42 15,49	Leitura (mm) 7,475 7,32 7,315 7,312 7,309 7,309 7,305 7,30 7,295 7,289 7,289 7,289 7,282 7,28 7,279 7,265 7,26 7,255	Carga: $\Delta H (mm)$ 0 0,155 0,003 0,003 0,004 0,005 0,006 0,007 0,002 0,001 0,014 0,005 0,005	H (mm) 19,28 19,12 19,12 19,11 19,11 19,11 19,10 19,00 19,08 19,08 19,08 19,07 19,06 19,06	800 kPa e 0,36 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,35

DESCARREGAMENTO							
Temp	0		Carga:		400 kPa		
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e		
0	0,00	7,250	0,00	19,05	0,35		
0,1	0,32	7,320	0,07	19,12	0,35		
0,25	0,50	7,320	0,00	19,12	0,35		
0,5	0,71	7,320	0,00	19,12	0,35		
1	1,00	7,320	0,00	19,12	0,35		
2	1,41	7,320	0,00	19,12	0,35		
4	2,00	7,320	0,00	19,12	0,35		
8	2,83	7,320	0,00	19,12	0,35		
10	3,16	7,320	0,00	19,12	0,35		
Temp	0		Carga:		200 kPa		
min	raiz(t)	Leitura (mm)	$\Delta H (mm)$	H (mm)	е		
0	0,00	7,320	0,00	19,12	0,35		
0,1	0,32	7,370	0,05	19,17	0,35		
0,25	0,50	7,370	0,00	19,17	0,35		
0,5	0,71	7,370	0,00	19,17	0,35		
1	1,00	7,370	0,00	19,17	0,35		
2	1,41	7,370	0,00	19,17	0,35		
4	2,00	7,370	0,00	19,17	0,35		
8	2,83	7,370	0,00	19,17	0,35		
10	3,16	7,370	0,00	19,17	0,35		
Temp	0		Carga:		100 kPa		
min	raiz(t)	Leitura (mm)	$\Delta H (mm)$	H (mm)	e		
0	0,00	7,370	0,00	19,17	0,35		
0,1	0,32	7,415	0,04	19,22	0,36		
0,25	0,50	7,415	0,00	19,22	0,36		
0,5	0,71	7,415	0,00	19,22	0,36		
1	1,00	7,415	0,00	19,22	0,36		
2	1,41	7,415	0,00	19,22	0,36		
4	2,00	7,415	0,00	19,22	0,36		
8	2,83	7,415	0,00	19,22	0,36		
10	3,16	7,415	0,00	19,22	0,36		

Raiz (t)

19,16

Temp	0		50 kPa		
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,415	0,00	19,22	0,36
0,1	0,32	7,450	0,04	19,25	0,36
0,25	0,50	7,450	0,00	19,25	0,36
0,5	0,71	7,450	0,00	19,25	0,36
1	1,00	7,450	0,00	19,25	0,36
2	1,41	7,450	0,00	19,25	0,36
4	2,00	7,450	0,00	19,25	0,36
8	2,83	7,450	0,00	19,25	0,36
10	3,16	7,450	0,00	19,25	0,36
Temp	0		Carga:		25 kPa
min	raiz(t)	Leitura (mm)	$\Delta H (mm)$	H (mm)	e
0	0,00	7,450	0,00	19,25	0,36
0,1	0,32	7,477	0,03	19,28	0,36
0,25	0,50	7,477	0,00	19,28	0,36
0,5	0,71	7,477	0,00	19,28	0,36
1	1,00	7,477	0,00	19,28	0,36
2	1,41	7,477	0,00	19,28	0,36
4	2,00	7,477	0,00	19,28	0,36
8	2,83	7,477	0,00	19,28	0,36
10	3,16	7,477	0,00	19,28	0,36
Temp	0		Carga:		12,5 kPa
min	raiz(t)	Leitura (mm)	ΔH (mm)	H (mm)	e
0	0,00	7,477	0,00	19,28	0,36
0,1	0,32	7,491	0,01	19,29	0,36
0,25	0,50	7,491	0,00	19,29	0,36
0,5	0,71	7,491	0,00	19,29	0,36
1	1,00	7,491	0,00	19,29	0,36
2	1,41	7,491	0,00	19,29	0,36
4	2,00	7,491	0,00	19,29	0,36
8	2,83	7,491	0,00	19,29	0,36
10	3,16	7,491	0,00	19,29	0,36

φ' =	30,19				
k0 =	0,50	κ med =	0,0091		
Saturada (I		Г			
CARCA (kPa)		n (kPa)	12		
12.5	0.38	P (M a) 8 31	1.38	Au rec -	0.0160
25	0,38	16.62	1,38	$\Delta y = A x rec =$	1 8062
50	0,38	33.24	1,38	$\Delta x = $	0.0080
100	0,37	66.47	1,37	κ –	0,0089
200	0,33	132.05	1,35	Av r virgem -	0.041
400	0,34	265.90	1,34	$\Delta y 1. virgeni =$	0,041
800	0,32	531.80	1,32	$\Delta x 1. \text{ virgenin} = \lambda(0) = 0$	0,002
400	0,29	265.00	1,29	$\lambda(0) =$	0,009
200	0,30	122.05	1,30		
200	0,30	66 47	1,30		
100	0,30	22.24	1,50		
30	0,31	33,24	1,51		
12.5	0,31	10,02	1,51		
12,5	0,31	8,31	1,31		
Não Sat. 1 (w	v = 12,86%)	7			
CARGA (kPa)	e	p (kPa)	v		
12,5	0,39	8,31	1,39	$\Delta y \ rec =$	0,0167
25	0,38	16,62	1,38	$\Delta x \text{ rec} =$	1,8062
50	0,37	33,24	1,37	κ=	0,0092
100	0,36	66,47	1,36		
200	0,34	132,95	1,34	$\Delta y r.virgem =$	0,061
400	0,32	265,90	1,32	$\Delta x r.virgem =$	0,903
800	0,30	531,80	1,30	$\lambda(s) =$	0,067
400	0,30	265,90	1,30		
200	0,31	132,95	1,31		
100	0,31	66,47	1,31		
50	0,31	33,24	1,31		
25	0,31	16,62	1,31		
12,5	0,31	8,31	1,31		
		7			
Nao Sat. 2 (w	v = 11,44%)				
CARGA (KPa)	e	p (kPa)	<i>v</i>		0.01/0
12,5	0,40	8,31	1,40	$\Delta y \text{ rec} =$	0,0160
25	0,40	16,62	1,40	$\Delta x \text{ rec} =$	1,8062
50	0,40	33,24	1,40	κ=	0,0088
100	0,39	66,47	1,39		0.04
200	0,37	132,95	1,37	$\Delta y r.virgem =$	0,06
400	0,35	265,90	1,35	$\Delta x r.virgem =$	0,90
800	0,33	531,80	1,33	$\lambda(s) =$	0,062
400	0,34	265,90	1,34		
200	0,34	132,95	1,34		
100	0,34	66,47	1,34		
50	0.34	33,24	1,34		

25

12,5

0,35

0,35

16,62

8,31

1,35

1,35

Determinação dos parâmetros do modelo BBM e módulo de elasticidade edométrico:

Não Sat. 3 (v	v = 10,15%)				
CARGA (kPa)	e	p (kPa)	ν]	
12,5	0,40	8,31	1,40	$\Delta y \ rec =$	0,0165
25	0,40	16,62	1,40	$\Delta x \text{ rec} =$	1,8062
50	0,40	33,24	1,40	κ=	0,0091
100	0,39	66,47	1,39		
200	0,38	132,95	1,38	$\Delta y r.virgem =$	0,033
400	0,37	265,90	1,37	$\Delta x r.virgem =$	0,602
800	0,35	531,80	1,35	$\lambda(s) =$	0,055
400	0,35	265,90	1,35		
200	0,35	132,95	1,35		
100	0,36	66,47	1,36		
50	0,36	33,24	1,36		
25	0,36	16,62	1,36]	
12.5	0.37	8 31	1 37	7	

Não Sat. 4 (w = 9,97%)			_	
CARGA (kPa)	e	p (kPa)	v		
12,5	0,41	8,31	1,41	$\Delta y \ rec =$	0,0170
25	0,41	16,62	1,41	$\Delta x rec =$	1,8062
50	0,40	33,24	1,40	κ=	0,0094
100	0,39	66,47	1,39		
200	0,38	132,95	1,38	$\Delta y r.virgem =$	0,033
400	0,36	265,90	1,36	$\Delta x r.virgem =$	0,602
800	0,35	531,80	1,35	$\lambda(s) =$	0,055
400	0,35	265,90	1,35		
200	0,35	132,95	1,35		
100	0,36	66,47	1,36		
50	0,36	33,24	1,36		
25	0,36	16,62	1,36]	
12,5	0,36	8,31	1,36		

MÓDULO EDOMÉTRICO				
ENSAIO SATURADO (INUND)		ENSAIO NÃO SAT. 2		
CARGA (kPa) Ev		CARGA (kPa)	Ev	
12,5	0,000	12,5	0,000	
25	0,006	25	0,003	
50	0,007	50	0,007	
100	0,009	100	0,010	
200	0,012	200	0,012	
400	0,014	400	0,016	
800	0,015	800	0,016	

DETERMINAÇÃO GRÁFICA DAS TENSÕES DE PRÉ-ADENSAMENTO:

APÊNDICA H – MEMORIAL DE CÁLCULO: ENSAIO DE PERMEABILIDADE

L =	46	Altura do corpo de prova (cm)
A =	176,71	Área de seção do corpo de porva (cm ²)
a =	5,62	Área Interna do tubo de carga (cm ²)
hi =	145	Altura da carga no instante inicial (cm)
hf=	135	Altura da carga no instantefinal (cm)
t =	137,4	Tempo decorrido para a água percolar (s)
T =	25	Temperatura (°C)
k =	7,60E-04	Coeficiente de permeabilidade (cm/s)
Fator de	0.871	
correção	0,871	
k20=	6,62E-04	Coeficiente de permeabilidade à 20 °C (m/s)

UMIDADE INICIAL			
Cápsula =	9		
Tara (g) =	12,9		
P.B.H. (g) =	22,9		
P.B.S. (g) =	21,77		
w (%)=	12.74		

UMIDADE FINAL			
Cápsula =	5		
Tara (g) =	12,89	$\rho d (g/cm^3) =$	1,86
P.B.H. (g) =	44,79	e =	0,43
P.B.S. (g) =	40,35	Densidade Real =	2,67
w (%)=	16,17	Grau de Saturação(%) =	99,31

PERMEABILIDADE INTRÍNSECA - ATERRO DA BARRAGEM

Condutividade hidráulica (m/s) - $k =$	6,62E-06	
Peso específico do fluido (Pa/m) - γ =	9810	$k = \frac{K \times \rho \times g}{K \times \rho \times g}$
Viscosidade dinâmica do fluido (Pa.s) - μ =	0,001002	μ
Permeabilidade intrínseca (m^2) - $K =$	6,76E-13	

PERMEABILIDADE INTRÍNSECA - FILTRO DA BARRAGEM

Condutividade hidráulica (m/s) - $k =$	1,00E-02
Peso específico do fluido (Pa/m) - γ =	9810
Viscosidade dinâmica do fluido (Pa.s) - μ =	0,001002
Permeabilidade intrínseca (m^2) - $K =$	1,02E-09