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“ But swear if you call me

I won’t resist you

I want to say no but I wanna see you

And if call me,

You know where I’m heading

Out the door, in your bed is where it’s ending ”

(Barons of the Little Step)



RESUMO

O paradigma de classificação global utiliza todo o conjunto de treinamento para produzir um

único modelo discriminante para as diversas classes. Alternativamente, a abordagem de classifi-

cação local baseada em clusters constrói múltiplos modelos discriminantes usando subconjuntos

dos dados de treinamento. Ao considerar esses dois paradigmas como extremos de um espectro

de possibilidades, nesta dissertação, é introduzido um novo paradigma de dois estágios para a

construção de modelos de classificação de padrões baseados no método da clusterização dos

mapas auto-organizáveis (SOM, self-organizing maps) (VESANTO et al., 2000). De acordo

com essa técnica, amostras são submetidas ao SOM em um estágio de pré-processamento. Pos-

teriormente, algoritmos de clusterização (e.g. K-médias) são aplicados nos vetores protótipos

do SOM com o objetivo de organizá-los em regiões bem definidas. Ao aplicar essa estratégia

de dois estágios em dados rotulados, é mostrado como construir modelos de classificação preci-

sos, doravante referidos como classificadores regionais, usando um subconjunto de amostras

mapeados a um cluster específico de unidades do SOM. Um abrangente estudo comparativo

é realizado para avaliar a eficácia da abordagem proposta em diversos bancos de dados de

benchmarking, usando modelos lineares, i.e. classificador de mínimos quadrados com função

de base linear (LSC-LBF, least squares classifier with linear basis functions), e não lineares,

i.e. máquinas de vetores-suporte de mínimos quadrados (LSSVM, least squares support vector

machine) com kernels não lineares. Como passo adicional no treinamento de modelos locais

baseados em cluster e regionais, durante a fase de validação do modelo, um conjunto de doze

métricas de validação de clusters foi empregado para avaliar suas competências em prever a

melhor quantidade de protótipos dado uma função objetivo bem definida. A capacidade das

abordagens local e regional de construir funções de decisão não lineares com um conjunto de

classificadores lineares é avaliada e o paradigma regional se apresentou como uma alternativa

mais esparsa do que a abordagem local, tendo desempenho semelhante enquanto utilizando

menos protótipos/modelos.

Palavras-chave: Reconhecimento de padrões. Modelos globais e locais. Mapas auto-organizáveis.

Clusterização do SOM. Modelos locais. Modelos regionais. Máquinas de vetores-suporte de

mínimos quadrados. K-médias.



ABSTRACT

The global classification paradigm uses the entire training set for producing a single discrimi-

nating model for distinct classes. Alternatively, the cluster-based local classification approach

builds multiple discriminating models using smaller subsets of the training data. By considering

these two paradigms as the extremes of a spectrum of possibilities, in this thesis, it is introduced

a novel two-stage framework for building pattern classification models based on the clustering of

the self-organizing map (SOM) method (VESANTO et al., 2000). According to this technique,

data samples are submitted to the SOM as a preprocessing stage. Then, clustering algorithms

(e.g. the K-means) are applied to the prototype vectors of the SOM aiming at organizing them

in well-defined regions. By applying this two-stage strategy to labeled data, it is shown how to

build accurate classifying models, henceforth referred to as regional classifiers, using the subset

of samples mapped to a specific cluster of SOM units. A comprehensive comparative study is

carried out to evaluate the effectiveness of the proposed approach on several benchmarking data

sets, using linear models, i.e. least squares classifier with linear basis functions (LSC-LBF),

and nonlinear ones, i.e. least squares support vector machine (LSSVM) with nonlinear kernel

functions. As an additional step on the training of cluster-based local and regional models, during

the model validation phase, a set of twelve cluster validation metrics was used to assess their

ability to predict the best number of prototypes given a well-defined objective function. The

capability of the local and regional approaches to building nonlinear decision functions with a set

of linear classifiers is assessed and the regional paradigm presented itself as a sparser alternative

than the local approach, having similar performance while using fewer prototypes/models.

Keywords: Pattern recognition. Global and local models. Self-organizing maps. Clustering of

the SOM. Local Models. Regional models. Least Squares Support Vector Machine. K-means.
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1 INTRODUCTION

The research area of Machine Learning (ML) has gained a lot of attention in recent

years given the success of Deep Learning (DL) (LECUN et al., 2015), or the use of deep neural

networks (DNN), in beating state-of-the-art models in some tasks (VOULODIMOS et al., 2018)

and in industry adoption (DUTTA, 2018). Although the fancy name, the ’learning’ in machine

learning is often a mathematical optimization of the kind

minimize fo(W) (1.1)

subject to fi(W)≤ 0, i = 1, . . . ,m

where W is the optimization variable, in ML the model parameters, { fi}m
i=1 the set of constraint

functions and fo is the objective function, usually referred to as cost function when the problem

is of minimization and utility function when it is of maximization. It should be noted that any

maximization problem can be rewritten as a minimization problem, and vice versa, either by

changing the sign of the objective function or by using the reciprocal function..

The objective of the optimization is to find an W∗, such as fi(W∗)≤ 0, ∀i ∈ { j}m
j=1,

and fo(W)≥ fo(W∗), ∀W which satisfies the set of constraint functions. When the optimization

is done, or the ’machine has learned’, the final product is a function g(x,W∗) known as regressor

function in regression problems or discriminative function in classification problems. As we

focus on classification in this thesis, we will not discuss in details regression problems.

In classification problems we have access to a data set X = {(xi,yi)}N
i=1; where

xi ∈ Rd are the input vectors or attributes with dimensionality d, yi ∈ {L j}c
j=1 are the labels or

classes in a problem with c distinct classes, and N is the number of samples. In this type of

problems we want to find g(x,W) that is able to predict the class ŷnew of a new sample xnew that

was not present in the training data set X . To do so an optimization problem of the type found in

Eq. (1.1) is usually formulated using a predefined discriminative function form, for example an

affine function

g(x,w) = [xT 1]w, (1.2)

where we concatenate x with ’1’ to encapsulate the model bias in the w variable, which is a

vectorial representation of the model parameters W.

After the mathematical optimization, we can find a function similar to the one shown

in Figure 1 for a binary classification problem.
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Figure 1 – Hypothetical example of a binary classification problem with a possible
decision boundary.
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Source: the author (2019).

In Figure 1, our function g(x,W) creates a decision boundary that separates two

classes, reaching the objective to find a suitable discriminative function for our training data set.

The process of building a classifier described above is known as global mode-

ling (WANG; SYRMOS, 2007; BISCHL et al., 2013), where all the training data set is used to

build a single discriminative function g(x,W). Another approach, that will be the focus of this

thesis, is local modeling, which uses a set of models, or discriminative functions, {gi(x,Wi)}K
i=1

to form a global discriminative function. Drawing inspiration from the mathematical formulations

of Alpaydin & Jordan (1996) the global function can be represented by the form

g(x) =
K

∑
i=1

hi(x,Ui)gi(x,Wi), (1.3)

where function hi(x,Ui) denotes the weight of i-th classifier, or gi(x,Wi), with respect to the

class prediction of x. Analogous to Wi, the Ui variable controls how the hi function behaves.

Given that hi depends on the input vector x it adds a notion of locality, depending

on the position of the sample in the input space we have different importance for each classifier

gi. To further simplify notation we can rewrite it in a vectorial form while suppressing extra

parameters other than the input vector x

g(x) = [g1(x),g2(x), · · · ,gK(x)]T , (1.4)

h(x) = [h1(x),h2(x), · · · ,hK(x)]T , (1.5)
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so we have

g(x) = h(x)T g(x). (1.6)

One can think of the h(x) as another classifier that for a given input it assigns a

weight to the models as proposed by Alpaydin & Jordan (1996).

In some cases, we may know a priori how to divide the data, for example, in building

a model for each client in an internet service or each product in a supermarket. In other cases, as

it is not easy to identify groups, we may use local modeling, which, in the process, divides the

task of modeling into subtasks by partitioning the input space between models. The partitioning

can be hard, each subset is only visible for a specific model (h(x) has only a dimension equals

to 1 and the others 0), or soft, h(x) may have continuous values in each dimension, them soft

partitioning the data set between models {gi(·)}K
i=1.

In Figure 2 we can see a local modeling case with a hard partitioning function h(x).

In this case, we had made explicit the fact that the global decision function may not be either

smooth or continuous in cases of hard partitioned input space.

Figure 2 – A global discriminative function formed by a set of local models with
hard input space partitioning.
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Source: the author (2019).

In local modeling, we have two known approaches in learning the classifier mapping

function h(·) and the set of discriminating functions g(·):

• Coupled: during training, both h(·) and g(·) are optimized, or learned, at the

same time (ALPAYDIN; JORDAN, 1996; JACOBS et al., 1991);
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• Uncoupled: the mapping h(·) and models g(·) are learned in a decoupled manner

(BOTTOU; VAPNIK, 1992; MARTINETZ et al., 1993);

One simple type of uncoupled local modeling approach is using a clustering algo-

rithm to divide the input space, consequently the data set, and build a model for each cluster.

During inference the classifier mapping function becomes

hi(x) =


1, if ‖ci−x‖2

2 = min
1≤ j≤K

‖c j−x‖2
2

0, otherwise
(1.7)

where ‖ · ‖2 denotes the Euclidian norm and ci the cluster center of the i-th cluster.

A distinct modeling paradigm, regional modeling, was first proposed by Souza Jr. et

al. (2015) and it was based on the idea of the clustering of the self-organizing map (VESANTO

et al., 2000). In the paper, the regional approach was used in a regression problem for dynamic

system identification while in this thesis we will extend this approach for classification problems.

By considering global and local modeling as the extremes of a spectrum of possibilities, the

regional models sit between the two, where the two-stage strategy organizes the data in well-

defined regions.

1.1 Motivation

The primary motivation of this work is to extend the regional modeling paradigm for

pattern classification and compare it with other global and local modeling approaches. Due to

the specificities that arise from classification tasks, when compared with regression, the regional

approach demanded some adaptation.

Local modeling is still an important topic in the ML community as we see some

combinations of it emerging with deep learning (ZHANG et al., 2018; MANSANET et al., 2016).

We can also find industry adoption of techniques that rely on local modeling giving privacy

concerns as in Konečnỳ et al. (2016), where a global model is estimated using local models that

only have access to local data.

1.2 Objectives

The general objective of this thesis is to evaluate the viability and investigate the

properties of the regional modeling paradigm as an alternative to the global and local paradigms

in the design of pattern classifiers. The specific objectives can be enumerated as follows.
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1. Develop global classifiers based on kernel machines, e.g. Least squares support

vector machine (LSSVM), and evaluate them on benchmarking classification

tasks;

2. Implement local classifiers based on prototypes, e.g. cluster-based local modeling,

in benchmark problems of item 1;

3. Implement regional classifiers in the same benchmark problems of items 1 and 2,

comparing the results with the ones of local and global classifiers.

1.3 Scientific production

During the development of this work the following articles were published:

• R. B. P. DRUMOND, R. F. ALBUQUERQUE, G. A. BARRETO, (2019).

Regional Classifiers: A Novel Framework for Pattern Classification. In:

ANAIS DO 14o SIMPÓSIO BRASILEIRO DE AUTOMAÇÃO INTELIGENTE,

2019, Ouro Preto, Anais eletrônicos Campinas, GALOÁ, 2020. Disponível

em: <https://proceedings.science/sbai-2019/papers/regional-classifiers–a-novel-

framework-for-pattern-classification> Acesso em: 04 fev. 2020. DOI: 10.17648/sbai-

2019-111444.

• R. B. P. DRUMOND, R. F. ALBUQUERQUE, D. P. SOUSA, G. A. BARRETO,

(2019). Classificação Local utilizando Least Squares Support Vector Ma-

chine (LSSVM). Brazilian Computational Intelligence Meeting (CBIC’2019),

Belém, Pará, p. 1-8.

1.4 Organization of the thesis

The rest of this document is organized as follows. Chapter 2 presents the local

classification paradigm in detail. Additionally, we describe briefly the Vector Quantization

(VQ) algorithms used as building blocks of the proposed local and regional classifiers. We also

present global classification models whose performances will serve as baseline of comparison

for proposed approaches. Chapter 3 introduces the regional modeling paradigm for pattern

classifiers and discuss its main features. Chapter 4 describes the simulation methodology used

such as the choice of data sets, training and testing procedures, hyperparameter optimization,

and cluster validation metrics. Chapter 5 comprises a comprehensive evaluation comparison

of global, local and regional paradigms for classification. There the reader can find graphs and
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tables showing diverse performance metrics of the simulation results of the three paradigms.

Chapter 6 closes this thesis with conclusions that can be drawn from this work and future works

proposals.
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2 FUNDAMENTALS OF LOCAL CLASSIFICATION

In this chapter, we will discuss local modeling for classification and review some

algorithms and models used in this thesis. As shown in Chapter 1, local modeling is a multimodel

approach which creates a global discriminative function of the form

g(x) =
K

∑
i=1

hi(x)gi(x), (2.1)

where hi(x) gives a notion of locality for the i-th model, represented by the function gi(x).

The most studied type of local modeling used in this thesis is the Cluster-based

Local Modeling with Hard Partitioning (CLHP). For a better understanding of this approach, its

fundamentals are discussed in the following section.

2.1 Cluster-based local modeling with hard partitioning (CLHP)

To explain this paradigm we had split the two main steps of the modeling process:

training and inference.

2.1.1 Training in CLHP

During the training phase, the whole data set X is divided into K partitions by some

clustering or vector quantization algorithm (e.g. K-means). After that, for each data partition

Vi ⊂X we build a classification model (e.g. LSSVM), so that each model in the set {gi}K
i=1 has

only seen the data of its associated partition. We can say that CLHP does a hard partitioning of

the data set.

As illustrated in Figure 3, after the convergence of K-means algorithm, we had 6

prototypes defining 6 data partitions. For each data partition, highlighted with a unique color, we

train a model.

2.1.2 Inference in CLHP

For each new sample x we estimate its partition by searching for the closest prototype

using some dissimilarity measure (e.g. Euclidean distance to the K-means prototypes). As x
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Figure 3 – A hypothetical example of data partitioning into K = 6 non-overlapping
partitions using the K-means algorithm.

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

4 data of partition #1
data of partition #2
data of partition #3
data of partition #4
data of partition #5
data of partition #6
K-means prototypes

Source: the author (2019).

belongs to partition Vi∗ the most suitable model to make the prediction is the one portrayed by

the function gi∗ . In this case, the classifier mapping function has the form

hi(x) =


1, if ψ(x,pi) = min

1≤ j≤K
ψ(x,p j)

0, otherwise,
(2.2)

as ψ(·) is a function that measures dissimilarity between the sample x and the prototype pi. In

the Eq. (2.2) the i index is the same index of hi, gi, and prototype pi.

In Figure 4 becomes clear, using the same data of Figure 3, why the CLHP approach

leads to a hard partitioning of the input space. In each input space partition, highlighted with a

unique color, a model is responsible for making the predictions.

2.1.3 Major Drawbacks of the CLHP Approach

The application of CLHP in classification may give rise to two important phenomena:

empty and homogenous partitions.

Empty partitions arise from a prototype pi that has not any samples in its data

partition, i.e. Vi ⊂ /0. Although it may be a sign of bad clustering one may deal with this problem
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Figure 4 – Input space partitioning with K-means algorithm.

Source: the author (2019).

by redefining Eq. (2.2) as follows

hi(x) =


1, if ψ(x,pi) = min

1≤ j≤K | V j 6⊂ /0
ψ(x,p j)

0, otherwise,
(2.3)

and not build the classifier gi(x) since there are no data samples to do so.

Even when the number of samples per partition is considered adequate, it should be

noted that vector quantization is an unsupervised task. Thus, it is common to have samples with

different labels within the same partition. In this case, we refer to this type of partition as an

heterogeneous partition. On the other side, homogenous partitions happen when a prototype pi

maps only data points of a single class. One logical approach to deal with this phenomenon is to

assume that any new data that arrive in the input space partition of pi should have predicted label

Li. One may say that the gi model is a "bias model"as its output is a constant (e.g. +1 or −1 in a

binary classification problem with label encoding).

To further enhance our understanding of the CLHP approach in the following section

we will review some vector quantization algorithms utilized in this thesis.

2.2 Vector Quantization algorithms

Essentially, Vector Quantization (VQ) algorithms are lossy data compression algo-

rithms, since they have the goal of finding a simplified representation of the data set by using
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prototypes. In this work, we use its capacity of finding partitions of interest in the data and input

space to properly separate them for the task of local modeling.

In the next subsections, one may find the VQ algorithms used in this work.

2.2.1 The K-means algorithm

K-means is a well-known clustering algorithm that separates the data set into par-

titions based on the distances to the nearest centroid (i.e the mean vector of a cluster). The

algorithm can be summarized in five main steps:

1. Define K > 1 in advance. This is the number of prototypes/clusters/partitions

used to separate the data samples;

2. Initialize the position of the K prototypes. The i-th prototype is described by the

vector pi;

3. Split the data set into K partitions. Each partition Vi is defined as follows

Vi =
{

x ∈ Rd ∣∣‖x−pi‖2
2 < ‖x−p j‖2

2, ∀ j 6= i
}
, (2.4)

where ‖ · ‖2 represents the Euclidean norm;

4. Evaluate pi(t +1) by the arithmetic mean of the Ni(t) vectors of partition Vi(t)

pi(t +1) =
1

Ni(t)
∑

∀x∈Vi(t)
x ; (2.5)

5. Repeat steps 3 and 4 until convergence is achieved.

A common choice to evaluate the convergence of the algorithm is via the Sum of the

Squared Distances (SSD), defined as

SSD =
K

∑
i=1

∑
∀x∈Vi

‖x−pi‖2
2. (2.6)

As the convergence of the K-means algorithm strongly depends on the initial position

of the prototypes, it is typical to run the algorithm several times, for different initial positions, and

choose as the best final positions of the prototypes based on the one that produced the smallest

SSD value. Further details about this clustering algorithm can be found in Kanungo et al. (2002).

Examples of the result of K-kmeans algorithm can be seen in Figures 3 and 4.

2.2.2 The Self-Organizing Map

The Self-Organizing Map (SOM) is an unsupervised competitive neural network

introduced by Kohonen (1982) which is usually applied to data visualization, clustering, and
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vector quantization tasks. The main goal of the SOM consists of learning a mapping from a

continuous high-dimensional space to a discrete space. This mapping, or projection, is realized

by Np neurons (or prototypes) arranged in an S-dimensional space, typically represented as a

two-dimensional grid. Formally, for a continuous space X ⊂ Rd and a discrete space Y ⊂ RS,

composed by Np prototypes, a vector x ∈ X will be represented by a prototype vector pi∗ ∈ Y by

the mapping i∗(x) : X → Y . For the training of a SOM network, firstly the Np prototypes are

randomly initialized. After proper initialization, the algorithm proceeds with two essential stages

(HAYKIN, 2009):

1. Competition: For an input pattern x(t), the SOM network searches for the

nearest prototype (a.k.a. the winning neuron/prototype) based on a dissimilarity

measure, for example, the Euclidean distance:

i∗(t) = arg min
1≤i≤Np

‖x(t)−pi(t)‖2
2 ; (2.7)

2. Cooperation: All the weight vectors of the network are updated based on the

following learning rule:

pi(t +1) = pi(t)+α(t)hi,i∗(t)(t)[x(t)−pi(t)], (2.8)

where 0 < α(t)< 1 denotes the learning rate at iteration t and hi,i∗(t) is referred

to as the neighborhood function. Since this function defines a neighbourhood

around the winning prototype, the prototypes that will be mostly adjusted are the

winning prototype and its immediate neighbours.

A common choice for the neighborhood function is the Gaussian function:

hi,i∗(t)(t) = exp

[
−
‖ri− ri∗(t)‖2

2

2σ2(t)

]
, (2.9)

where ri and ri∗(t) are, respectively, the coordinates of the i-th neuron and the winning neuron

i∗(t) in the output grid. The parameter σ(t)> 0 denotes the radius or width of the neighborhood

function. The larger the radius the higher the number of neurons updated around the winning

neuron. To ensure convergence of the SOM network to stable ordered states during the training

process, it is necessary to decrease the values of the radius and the learning rate. Considering

σ0 and α0 their initial values, the neighborhood radius σ and the learning rate α can be, for
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example, reduced exponentially over time as follows:

σ(t) = σ0 exp
(
− t

τ1

)
, (2.10)

α(t) = α0 exp
(
− t

τ2

)
, (2.11)

where τ1 and τ2 are user-defined decay parameters.

An example of the training of the SOM can be view in Figure 5. In the next section,

we review some classification models used in this work.

Figure 5 – Example of the evolution of the training of a SOM network along several epochs and
the ordering of the prototype vectors.
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Source: the author (2019).

2.3 Classification models

As mentioned before, in a classification task we have access to a data set X =

{(xi,yi)}N
i=1; where xi ∈ Rd are the input vectors with dimensionality d, yi ∈ {L j}c

j=1 are the

labels in a problem with c distinct classes, and N is the number of samples. In this type of

problems we want to find g(x,W) that is able to predict the class ynew of a new sample xnew that

was not present in the training data set X .
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Giving the categorical nature of the labels and the numerical nature of ML models,

one commom aproach to deal with the target value, yi, is to encode it into the set {−1,1} in case

of a binary problem (c = 2) or in the set {o j}c
j=1 in a multiclass classification (c > 2). We define

the o j i-th dimension, o ji, as follows

o ji =

+1, if j = i,

−1, otherwise,
(2.12)

for example o2 = [−1,+1,−1, . . . ,−1]T . This type of encoding was used in simulations with

the classifiers to be described in the subsections 2.3.1 and 2.3.2.

2.3.1 Least squares classifier with linear basis functions

In the Least squares classifier with linear basis functions (LSC-LBF), after properly

encoding the classes, in a binary classification problem, we have ∀yi ∈ {−1,1} and we assume

that the generator process of our data X has the form

yi = xT
i w+b+ εi, (2.13)

where b is the bias and εi a white gaussian noise.

To simplify notation, it’s usually rewritten

xi⇐

xi

1

 , (2.14) w⇐

w

b

 , (2.15)

so we can have in a more compact form

yi = xT
i w+ εi. (2.16)

To estimate the optimum value of the model parameters w we minimize the square

of the error between the target value, yi, and the prediction of our model, g(xi,w), as presented

below

minimize fo(w) =
1
2

N

∑
i=1
|yi−g(xi,w)|2 = 1

2
‖y−Xw‖2

2, (2.17)
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where y = [y1,y2, · · · ,yN ]
T and X is the matrix whose rows are the corresponding input vectors

xi.

The problem in Eq. (2.17) is convex and has an analytical solution (BOYD; VAN-

DENBERGHE, 2018)

wo =
(
XT X

)−1 XT y = X†y, (2.18)

where X† is known as the pseudo-inverse of X.

Given the continuous nature of the output of the g(·) and the target values encoded in

the set {−1,1}, it becomes necessary to use the sign function to encode the model’s prediction.

The discriminating function of the model becomes

g(x) = sign
(
xT wo

)
. (2.19)

Multiclass classification problems with c > 2 classes can be seen as a set of distinct c

binary classification problems, one may build a set of {g j}c
j=1 classifiers where each gi evaluates

if x belongs to i-th class or not. The optimum parameter’s value can be obtained by constructing

an optimization problem similar to Eq. (2.17):

minimize fo(W) =
1
2

c

∑
j=1
‖y−g j(X,w j)‖2

2 =
1
2
‖Y−XW‖2

2, (2.20)

where each column of the W matrix is the weight vector w j, or parameters of the j-th classifier,

and each row of Y matrix is equal to yT
i . One may find the optimum value of W with

Wo = X†Y. (2.21)

The discriminating function then becomes

g(x) = argmax
(
xT Wo

)
. (2.22)

Further details about the least squares classifier can be found on Boyd & Vanden-

berghe (2018).

2.3.2 Least squares support vector machine

The LSSVM (SUYKENS; VANDEWALLE, 1999) is a variation of the original

Support Vector Machine (SVM) in which a slight change in the optimization problem results in

a big simplification of finding the optimum parameters.
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First, let us consider the optimization problem of an SVM

minimize fo(w,b,ξ) =
1
2

wT w+C
N

∑
i=1

ξi (2.23)

s.t. yi(wTφ(xi)+b)≥ 1−ξi, i = 1, ...,N (2.24)

ξi ≥ 0, i = 1, ...,N. (2.25)

In the problem defined above our discriminating function has the form

g(x) = sign
(
wTφ(x)+b

)
, (2.26)

and {ξi}N
i=1 are the flexible margins of the data samples. It can be zero, in case of a data sample

outside the margin of the proposed separating hyperplane or bigger them zero, meaning that the

sample can be found within the margin. Finally, the variable C controls the regularization of the

classifier, the smaller C is (closer to zero) stronger is the regularization.

One may see the high similarity between Eq. (2.26) and (2.19) as both classifiers

are, in a sense, linear. What differentiates them, besides the LSSVM margin, is that LSC-LBF

is a linear classifier in input space, the space of the samples {xi}N
i=1, while the SVM/LSSVM

are linear classifiers in the feature space, the space of the mapped samples {φ(xi)}N
i=1. The

idea of the mapping φ(xi) is that a nonlinear classification problem, such as the one in Figure 2,

may become linearly separable, e.g. as Figure 1, in a high dimensional feature space. Instead of

handcrafted feature engineering, we utilize a mapping φ(·) such as

φ : Rd → Rq (2.27)

x 7→ φ(x), (2.28)

where q > d. The interesting part is that the mapping φ(x) does not need to be known for the

optimization process and the final discriminating function of a SVM/LSSVM classifier, which

can be rewritten in function of the kernel function, defined as

K(xi,x j) = φ(xi)
Tφ(x j), (2.29)

so, to find the optimum parameters of the model and make new predictions we just need to know

how to efficiently compute the dot product of Eq. (2.29), it is not necessary to evaluate, and

even know, the mapping φ(x) of any sample x. Such a feature of the SVM/LSSVM classifiers is

known as the "kernel trick"(HOFMANN et al., 2008). Some examples of kernels can be seen in

Table 1.
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Table 1 – A short list of widely used kernel functions.
Kernel Description
Linear K(x,xi) = xT

i x+ c, where c is a constant.
Polynomial K(x,xi) =

(
αxT

i x+ c
)d , where α and c are constants and d is the degree of

the polynomial.
Gaussian (RBF) K(x,xi) = exp

{
−||x−xi||2/σ2

}
, where σ is a constant.

Cauchy K(x,xi) = 1/
(

1+ ||x−xi||2
σ2

)
, where σ is a constant.

Log K(x,xi) =− ln(||x−xi||d +1) , where d is a constant.
Source: adapted from Souza (2019).

In the LSSVM problem formulation, we change the inequality restrictions to equality

ones and in the objective function the flexible margin variables have their values squared

minimize fo(w,b,ξ) =
1
2

wT w+ γ
1
2

N

∑
i=1

ξ
2
i (2.30)

s.t. yi(wTφ(xi)+b) = 1−ξi, i = 1, ...,N , (2.31)

where the γ variable has the same meaning of C.

To find the optimum for the problem formulated by the LSSVM we find its dual

representation (BOYD; VANDENBERGHE, 2004). First, we construct its Lagrangian function

L(w,b,ξ,α) =
1
2

wT w+ γ
1
2

N

∑
i=1

ξ
2
i −

N

∑
i=1

αi(yi(wTφ(xi)+b)−1+ξi), (2.32)

where the set {αi}N
i=1 are the dual variables associated with the set of equality restrictions of Eq.

(2.31), we may represent them as α for compactness. To satisfy the Karush-Khun-Tucker (KKT)

conditions we evaluate ∇L = 0 which can be translated in the set of equations below (Rocha

Neto, 2017)

∂L(w,b,ξ,α)

∂w
= 0 ⇐⇒ w =

N

∑
i=1

αiyiφ(xi), (2.33)

∂L(w,b,ξ,α)

∂b
= 0 ⇐⇒

N

∑
i=1

αiyi = 0, (2.34)

∂L(w,b,ξ,α)

∂αi
= 0 ⇐⇒ yi(wTφ(xi)+b)−1+ξi = 0, (2.35)

∂L(w,b,ξ,α)

∂ξi
= 0 ⇐⇒ αi = γξi. (2.36)

This set of linear equations drawn from KKT conditions can be beautifully rewritten

in a matrix form 0 yT

y Ω+ γ−1I

 b

α

=

0

1

 , (2.37)
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where Ωi, j = yiy jK(xi,x j), I is the N x N identity matrix and 1 = [1,1, · · · ,1]T with dimensiona-

lity N.

As the LSSVM formulation can be recast as a linear system, one way of solving it is

by using ordinary least squares

minimize fo(υ) =
1
2
‖r−Aυ‖2

2, (2.38)

where

A =

0 yT

y Ω+ γ−1I

 , (2.39)

υ =

b

α

 , (2.40)

r =

0

1

 . (2.41)

We use Eqs. (2.34) and (2.26) to obtain the discriminative function g(x) in terms of

the dual optimum variable, αo, and the kernel function K(·, ·)

g(x) = sign

(
N

∑
i=1

α
o
i yiK(xi,x)+bo

)
, (2.42)

where αo
i and bo denote optimum values obtained from solving the linear system in Eq. (2.37).

One may be charmed by the simplified optimization that arises from the LSSVM

formulation but it has a big disadvantage compared to Vapnik’s SVM: it yields a non-sparse

model. One may see with Eqs. (2.30) and (2.36) that αi is proportional to ξi, which is squared in

the objective function of the LSSVM problem formulation. As in a case of l2-regularization the

optimization process does not find advantageous to nullify the ξi variables, mathematically we

can show that
∂ fo(w,ξ)

∂ξi
= γξi, (2.43)

so, smaller is the ξi variable, smaller is the incentive to make it even smaller. The optimization

process find its optimum solution with the set {αi}N
i=1 containing, usually, no null value, resulting

in the need to save all the data set X as one may see in the discriminating function of Eq. (2.42).

Summing up, the LSSVM classifier is a variation of the Vapnik’s SVM that can be

optimized by ordinary least squares but results in a non-sparse model and, like SVM, can behave
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as a linear or nonlinear classifier depending on the kernel choice. In Figure 6 one may see the

different decision boundaries generated by different kernels, from there becomes clear how the

kernel trick can introduce nonlinearity to the decision boundaries of a kernel-based classifier.

Figure 6 – Illustration of the decision boundaries of the LSSVM classifier for different kernel
functions (γ = 1 for all simulations).

(a) linear kernel (b) polynomial kernel (d = 3)

(c) polynomial kernel (d = 5) (d) rbf kernel (σ = 1)

Source: the author (2019).

2.4 Concluding remarks

In this chapter, we talked about local modeling, with a focus on the CLHP approach.

We also attached a review of some vector quantization algorithms and classification models,

empowering the reader with tools to understand and apply the CLHP.

Now, one may be asking why to use local modeling and we may enumerate its

advantages:

1. A nonlinear decision boundary can be generated with a set of linear ones, as can

be seen in Figure 2;

2. One may find that a local modeling results in a more interpretable model than

a black-box one, e.g., a CLHP with LSC-LBF has the ability to be nonlinear
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and have the clear interpretability of a regression model when compared to a

multilayer perceptron;

3. On a hard partitioning case, depending on the ML model, one may reduce its re-

quirements for training (e.g. time complexity for SVM and memory requirement

for LSSVM) and/or inference (e.g. in LSSVM case fewer data points used in the

modeling result in a smaller and faster model during prediction).

As any paradigm in modeling, local classification has its disadvantages, more pro-

minent the addition of a new hyperparameter, i.e. the number of models, and the challenge to

properly construct the classifier mapping function, i.e. h(x).

In the next chapter, we will discuss a novel framework for pattern classification that

has a resemblance to CLHP: regional classifiers.
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3 REGIONAL CLASSIFIERS: A NOVEL PARADIGM FOR PATTERN

RECOGNITION

In this chapter, we present and discuss in depth a new paradigm in pattern recognition:

Regional Classifiers (RC). The idea of regional modeling was introduced by Souza Jr. et al.

(2015) in a task of system identification, a regression problem, and this thesis will extend the

idea of regional modeling for classification.

The regional proposal is inspired by the idea of the clustering of the SOM (VE-

SANTO et al., 2000), where a SOM is trained in the data set X and then the set of SOM

units/neurons {ui}Nu
i=1 are clustered by some VQ algorithm (e.g. K-means). From the Vesanto et

al. (2000) paper we can highlight important properties of this two-step approach:

1. The data set can be represented using fewer prototype vectors when comparing

to a direct clustering of the samples, which allows efficient use of clustering

algorithms to divide the prototypes into groups;

2. The experiments showed that clustering the SOM instead of directly clustering

the data is a computationally effective data representation approach;

3. The two-step approach reduces the occurrence of prototypes with no data samples

associated to it, a common occurrence in local classifiers.

Bearing these properties in mind, the regional modeling approach is proposed. To

better understand the regional classifier we had split the discussion between the training and

inference stages.

3.1 Related Works

Although we use the term "regional classifier" to denote the natural extension of

Souza Jr. et al. (2015) to classification problems, such a term was used before on the literature.

In Spreeuwers et al. (2014) paper, the authors aiming to enhance face recognition

robustness to variations like illumination, face expression, and hair occlusion use a set of thirty

classifiers that operate on overlapping regions of the face. Each classifier has access to a specific

hand-crafted partition of 2D images of faces and their outputs are combined by voting. In Lee et

al. (2013) the authors proposed a tree-based hierarchical multi-model approach. At the first level,

a classifier has access to the entire data and is trained if all the training samples, at the second

level two classifiers are trained on two non-overlapping partitions of the input space arranged in

such a way that each sibling classifier has access to the same number of samples, at the third
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level four classifiers are trained on four partitions dividing the input space as aforementioned and

so on. During prediction, all the classifiers that have access to the input space where the sample

lies made a vote and their votes are combined by a weighted sum.

To avoid confusion on the reader, henceforward, if we used the term "regional"we

are referring to the stated new approach of regional modeling based on prototypes. So, when we

use "regional classifiers", "regional modeling", "data regions" we would be talking about the

new paradigm introduced by this thesis.

3.2 Training in RC

Given a data set X , the training of a regional classifier can be divided into the steps:

1. The SOM is trained using the whole data set X , in order to build a compact

representation of X by means of the prototype vectors;

2. The set of SOM’s units {ui}Nu
i=1 are split into K partitions using a suitable cluste-

ring algorithm (e.g. K-means);

3. A set of K regional classifiers are built. For this purpose, each k-th regional

classifier, k = 1, . . . ,K, is built using the data samples mapped to the SOM

prototypes within the k-th partition.

For a more specific explanation, if using K-means as the clustering algorithm, the

RC training process becomes as follows.

1. The SOM is trained in the data set X , as in Figure 7a;

2. The set SOM’s units {ui}Nu
i=1 are clustered, or split, into K partitions using

K-means, each partition Vj defined as

Vj =
{

u ∈ {ui}Nu
i=1

∣∣‖u−p j‖2
2 = min

1≤l≤K
‖u−pl‖2

2
}
, (3.1)

where {p j}K
j=1 is the set of K-means prototypes. An example of this clustering

of the SOM can be view in Figure 7b;

3. Each prototype pi define a region,Ri, in input space of the form

Ri =
{

x∈Rd∣∣t∗ = arg min
1≤t≤Nu

‖x−ut‖2
2 =⇒ ‖ut∗−pi‖2

2 = min
1≤ j≤K

‖ut∗−p j‖2
2
}
,

(3.2)

as one may see an example of data regions in Figure 7c;

4. As in the case of CLHP, one may construct a regional classifier for each data

regionRi with linear models (e.g. LSC-LBF or LSSVM with the linear kernel) or
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a nonlinear one (e.g. LSSVM with the gaussian or polynomial kernel), resulting

in a set of {gi(·)}K
i=1 discriminative functions.

Figure 7 – Example of the training process of a regional classifier.
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Source: the author (2019).

More caution needs to be given for the use of the terms data cluster and data region.

A data cluster is a set of data samples mapped to a specific prototype, e.g. data samples mapped

to a prototype of the K-means algorithm in the CLHP approach, while a data region is a set of

data samples mapped to a cluster of SOM units, and this cluster of SOM units are then mapped

to a specific prototype on the regional modeling approach. For a graphical representation of the

data regions, the reader can examine Figures 7c and 8.
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3.3 Inference in RC

Analogous to the training step, for each new sample x we should proceed as follows.

1. We estimate the winning neuron using some similarity measure, e.g. by compu-

ting the minimum Euclidean distance from x to the SOM units {u j}Nu
j=1:

j∗ = arg min
1≤ j≤Nu

‖x−u j‖2
2 (3.3)

2. Find the most similar clustering prototype to the winning neuron, e.g. by com-

puting the minimum Euclidean distance from u j∗ to the K-means prototypes

{pi}K
i=1:

i∗ = arg min
1≤i≤K

‖u j∗−pi‖2
2 (3.4)

3. As x belongs to regionRi∗ the most suitable model to make the prediction is the

one with function gi∗(·).

For a graphical representation of the search of the region of a new sample, the reader

can examine Figure 8.

Figure 8 – Training and inference in RC.

K-means prototypes SOM units data points

T
ra

in

In
fe

re
n

ce

 A prototype defines a region 
of SOM units

The set of SOM units 
define a data region for 

a model to be trained 
on

For the new sample, we search 
its SOM unit

The SOM unit has its prototype, 
which designates the model to 

be used in the prediction

Source: the author (2019).

3.3.1 Major Drawbacks of the RC Approach

Analogous phenomena to the presented in CLHP (Section 2.1.3) can be encountered

in the RC approach, namely, empty and homogeneous regions.
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Unlike the local classification approach, empty regions are of rare occurrence in the

RC approach. Nevertheless, it may happen that a region end up with no associated data samples

after training the SOM and the subsequent K-means algorithm. Since this occurrence makes

unfeasible the construction of a model for that region, as a solution, we may suggest tagging the

prototype and, if any, its associated SOM units as dead prototypes/units and then searching for

the next similar prototype/unit.

Homogeneous regions are also rarer in regional modeling given the sparse represen-

tation of the data set by fewer prototypes. In a similar fashion as in CLHP, we suggest the use of

a bias model, if any new sample seems to lie in a homogeneous region its label should be equal

to its fellow data points.

3.4 Concluding remarks

In this chapter, we presented regional classifiers with a bit of theory and visualizations

to ground this new paradigm. As noticeable differences from the CLHP paradigm, we may cite

the sparse representation of RC that gives rise to fewer homogenous regions and may reduce the

search space for the hyperparameter K, or the number of models. In the next chapter, we present

simulations that evaluate the properties of these paradigms.
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4 SIMULATION METHODOLOGY

In this chapter, we present the simulation methodology used in our experiments.

This part of the thesis essentially contains information about the data sets used, the design of

the experiments with its objectives and a summary of some cluster validation metrics, that were

applied to reduce the search space of hyperparameter K (number of partitions/models).

The data sets used were selected from the UCI Machine Learning Repository (DUA;

GRAFF, 2017) and they are described in Table 2. The 2nd column of the table indicates the

number of classes for each data set and its variations. That is, the vertebral column data set

has two variations, for 2 classes and 3 classes; while the wall-following data set provides three

variations, with 2, 4 and 24 input features. A summary of the data sets can be found below.

• Parkinson: biomedical voice measurements from people with and without

Parkinson’s disease (LITTLE, 2008);

• Vertebral Column: six biomechanical attributes derived from the shape and

orientation of the pelvis and lumbar spine. The patient’s condition was classified

as Normal, Disk Hernia or Spondylolisthesis (BARRETO et al., 2011);

• Wall-following Robot: choose between 4 actions (Move-Forward, Slight-Right-

Turn, Sharp-Right-Turn, Slight-Left-Turn) as the robot navigates the room fol-

lowing the wall, using ultrasound sensors arranged circularly around its ’waist’

(FREIRE et al., 2010).

An important note to add is that the wall-following and vertebral column were

generated by our research group and the reader may find previous works using these data sets

(FREIRE, 2009; NETO, 2011).

Table 2 – Summary of data sets

Data set # of classes # of samples # of features

Parkinson 2 195 22
Vertebral Column 2 or 3 310 6
Wall-Following 4 5456 2, 4 or 24

Source: the author (2019).

A total of 4 experiments have been performed, which can be listed as follows.

1. Global vs. Local least squares classifier with linear basis functions (LSC-LBF).

2. Global vs. Local least squares support vector machine (LSSVM).

3. Global vs Regional LSC-LBF
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4. Global vs Local vs Regional LSSVM

Each one of the experiments will get a separated section moving forward in this

chapter.

4.1 Global vs. Local least squares classifier with linear basis functions (LSC-LBF)

The objective of this experiment is to compare the global and the CLHP approaches

using a linear model and evaluate the influence of the number of partitions, K, in model perfor-

mance. During training, we executed 100 independent hold-out runs, splitting the avaliable data

samples into 80% for training and 20% for testing. Features are re-scaled to the range [0,1] and

the K-means was re-initialized randomly 10 times.

Results of this experiment can be seen in Section 5.1.

4.2 Global vs. Local least squares SVM (LSSVM)

The objective of this experiment is to compare the global versus the CLHP approach

using a nonlinear model, i.e. LSSVM with gaussian kernel, using a committee of cluster

validation metrics to reduce the search space of the K hyperparameter. As a training method we

executed 50 independent stratified hold-out runs, that is, maintaining the same proportion of

each class in every hold-out run. All runs had 50% of the data for training and 50% for testing.

Features were re-scaled to the range [0, 1] and the K-means was re-initialized randomly 10 times.

During hyperparameter optimization a grid search was made for the σ constant

of the LSSVM gaussian kernel on the set {10−0.5,10−0.375,101.25,102.125,103} and for the

regularization variable γ on the set {10−6,10−4,10−2,100,102,104,106}. For the number of

partitions, the committee of cluster validation metrics analyzed the set K ∈ {2,3, ...,b
√

Nc} and

each one made a proposal for the optimum value of K, subsequently this set of proposals was

added to the grid search. The 5-fold stratified cross-validation was the methodology adopted for

model selection during hyperparameter optimization, and its objective function had the form

fo(a) = mean(a)−2std(a), (4.1)

where a represents the accuracy during validation, which is a random variable. The reader may

find below the list of the 12 validation metrics used (BEZDEK; PAL, 1998):

1. Adjusted Rand Index (ARI);

2. Adjusted Mutual Information (AMI);
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3. V-measure (VM);

4. Fowlkes-Mallows (FM);

5. Silhouette (SI);

6. Calinski-Harabasz (CH);

7. Davies-Bouldin (DB);

8. Dunn (DU);

9. Modified Final Prediction Error (mFPE);

10. Modified Akaike Information Criteria (mAIC);

11. Modified Bayesian Information Criteria (mBIC);

12. Modified Minimum Description Length (mMDL);

A detail discussion of the metrics can be found in Section 4.5 while the results of

this experiment are reported in Section 5.2.

4.3 Global vs Regional LSC-LBF

The objective of this experiment is to compare global versus regional approaches

using a linear model, i.e. the LSC-LBF. As a training method, we executed 100 independent

hold-out experiments, with 80% of the data for training and 20% for testing and features were

re-scaled to the range [0, 1]. The number of SOM units was set to NSOM = 5
√

Ntr, where Ntr is

the number of samples in train set and the K-means algorithm was re-initialized randomly 10

times.

For choosing the value of K a search was made for K ∈ {2,3, ...,b
√

NSOMc} and the

Kopt was the one who showed the lowest Davies-Bouldin index (see Section 4.5.2.3 for more

about this metric). The results of this experiment can be found in Section 5.3.

4.4 Global vs Local vs Regional LSSVM

The objective of this experiment is to compare the three approaches with a nonlinear

model, i.e. LSSVM with rbf kernel. For the Regional LSSVM (R-LSSVM), we used as a

training method 50 independent stratified hold-out experiments, with 50% of the data for training

and the other 50% for testing. Features were re-scaled to the range [0, 1] and the K-means

algorithm was re-initialized randomly 10 times. During hyperparameter optimization using grid

search the same sets used in the CLHP version of the LSSVM (L-LSSVM) was used for the

R-LSSVM, were considered the set {10−0.5,10−0.375,101.25,102.125,103} for the σ variable and
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the set {10−6,10−4,10−2,100,102,104,106} for γ variable. The set of possible values for Kopt ,

the optimum number of partitions, was drawn from the proposals of the committee of cluster

validation metrics after searching K ∈ {2,3, ...,b
√

NSOMc}. The procedure adopted for model

selection was 5-fold stratified cross-validation with the objective function of Eq. (4.1).

The methodology applied to the Global LSSVM (G-LSSVM) and its local counter-

part (L-LSSVM), was presented in Section 4.2. What differs local and regional approach is the

committee of metrics, as Adjusted Rand Index, Adjusted Mutual Information, V-measure, and

Fowlkes-Mallows are supervised metrics and the SOM units are unlabeled, they were removed

for the committee for the R-LSSVM case. The results of this experiment are reported in Section

5.4.

In Table 3 the reader can find a compact summary of the characteristics of the

experiments proposed in this thesis.

Table 3 – Summary of the experiments.

Experiment # of runs Train/test split Hyperparam. opt. # of metrics

G. vs. L. LSC-LBF 100 80%/20% – –
G. vs. L. LSSVM 50 50%/50% σ and γ 12
G. vs. R. LSC-LBF 100 80%/20% – 1
G. vs. L. vs. R. LSSVM 50 50%/50% σ and γ 12/8

Source: the author (2019).

4.5 Cluster validation metrics

In this section, we will describe briefly the cluster validation metrics used in the

experiments carried out in this thesis. For each train/test split a search was executed for K ∈

{2,3, ...,b
√

NSOMc} for the regional case and K ∈ {2,3, ...,b
√

Ntrc} for the CLHP case and all

members of the comitte {Ci}M
i=1 suggested an optimal K. After the commitee evaluation we took

the set of optimal sugestions {K(Ci)
opt }M

i=1 and optimize K like the other hyperparameters.

We had divided the metrics into three categories, namely, supervised, unsupervised,

and information criteria-based metrics. Supervised metrics requires labeled data and as the

SOM units are unlabeled they were not used in regional modeling. Unsupervised metrics

evaluate the goodness of a clustering result on unlabeled data, those indices were used both in

local and regional approaches. Information criteria-based metrics are variations of indices

used in system identification and time series, they were obtained from the work of Sousa (2019).
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As the data does not need to be labeled for these metrics, they were used both in regional

modeling and CLHP.

4.5.1 Supervised metrics

As mentioned previously, this type of metric requires labeled data. A total of four

supervised metrics will be described in the following.

4.5.1.1 Adjusted Rand Index (ARI)

The original Rand index (RI) is then given by the following equation:

RI(K) = (a+b)/
(

N
2

)
, (4.2)

where a is the number of pairs of elements that have the same label Li and are in the same

partition Vi and b the number of pairs of elements that have different labels Li 6= L j and are

different partitions Vi 6=Vj.

The RI metric is vulnerable to a random assignment of labels so, we discount the

expected RI, E[RI], of random labeling and define the adjusted Rand index as

ARI(K) =
RI−E[RI]

max(RI)−E[RI]
. (4.3)

Higher values on these metrics represent better clustering. More about this index can

be found in Hubert & Arabie (1985).

4.5.1.2 Adjusted Mutual Information (AMI)

In a nutshell, the mutual information is a measurement of the agreement between

two labels assignments. Let U and V be two ways of partioning the data set X of N samples into

non-overlap subsets

U = {U1,U2, · · · ,UR}, (4.4)

V = {V1,V2, · · · ,VC}, (4.5)

and consider ai = |Ui| as the number of samples in Ui, b j = |Vj| the number of samples in Vj,

and ni j = |Ui∩Vj| the number of samples that are present in both Ui and Vj. The entropy of U

can be evaluated by

H(U) =−
R

∑
i=1

ai

N
ln
(

ai

N

)
, (4.6)
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The Mutual Information (MI) between U and V is measured by the equation

MI(U,V ) =
R

∑
i=1

C

∑
j=1

ni j

N
ln
(

ni j

N

)
. (4.7)

As in the case of the Rand index, the mutual information is vulnerable to random

labeling with an increase in number of partitions. To fight this phenomenon we use an adjusted

version of it, with the expected value for the mutual information been calculated by (VINH et al.,

2009)

E[MI(U,V )] =

R

∑
i=1

C

∑
j=1

min(ai,b j)

∑
ni j=(ai+b j−N)+

ni j

N
ln
(

Nni j

aib j

)
ai!b j!(N−ai)!(N−b j)!

N!ni j!(ai−ni j)!(b j−ni j)!(N−ai−b j +ni j)!
. (4.8)

Now the adjusted mutual information can be evaluated as

AMI(K) =
MI−E[MI]

mean(H(U),H(V ))−E[MI]
. (4.9)

Higher values of these metrics indicate better clustering. More about this metric can

be found in Vinh et al. (2009) and Vinh et al. (2010).

4.5.1.3 V-measure (VM)

The VM was proposed by Rosenberg & Hirschberg (2007). Let L = {li}n
i=1 be a set

of labels, V = {vi}m
i=1 a set of clusters and ai j the number of samples that are members of class

li and partition v j. Then, we can define two objectives of a clustering task: homogeneity and

completeness. Homogeneity is high when each partition contains only vectors of a single class,

we define as

h = 1− H(L|V )

H(L)
, (4.10)

where

H(L|V ) =−
m

∑
v=1

n

∑
l=1

alv

N
ln
(

alv

∑
n
l=1 alv

)
, (4.11)

H(L) =−
n

∑
l=1

∑
m
v=1 alv

n
ln
(

∑
m
v=1 alv

n

)
. (4.12)

Completeness has it’s maximum value when all samples of a class can be found in

the same partition, it can be define as

c = 1− H(V |L)
H(V )

, (4.13)
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where

H(V |L) =−
n

∑
l=1

m

∑
v=1

alv

N
ln
(

alv

∑
m
v=1 alv

)
, (4.14)

H(V ) =−
m

∑
v=1

∑
n
l=1 alv

n
ln
(

∑
n
l=1 alv

n

)
. (4.15)

The V-measure criteria balances homogeneity and completeness in a single equation

as

V M(K) = 2
hc

h+ c
. (4.16)

Higher values on this metric mean better clustering. More about this metric can be

found in Rosenberg & Hirschberg (2007).

4.5.1.4 Fowlkes-Mallows (FM)

First proposed by Fowlkes & Mallows (1983), the FM index can be easy computed

as follows:

FM(K) =
T P√

(T P+FP)(T P+FN)
, (4.17)

where T P is the number of true positives, the number of pair of points that have the same partition

and class. FP is the number of false positives, the number of pair of points that have the same

class but are in different partitions. FN is the number of false negatives, the number of pair of

points that have the same partition but have different classes. Higher values of FM indicates

better clustering.

4.5.2 Unsupervised metrics

As mentioned previously, this type of metric uses unlabeled data. In this scenario,

the four metrics discussed below were members of the committee of validation metrics for the

local and regional approaches.

4.5.2.1 Silhouette (SI)

The SI metric was proposed by Rousseeuw (1987) and measures the effectiveness of

a cluster proposal based on the proximity within the cluster and the distance of patterns from

adjacent clusters.



47

To evaluate this metric we define a(xi) as the mean dissimilarity of vector xi over all

other vectors of partition Vi and d(xi,Vj) as the mean dissimilarity of the pattern xi relative to Vj

partition members. Let b(xi) be the smallest mean dissimilarity of xi to all other clusters, it can

be evaluate with

b(xi) = min
1≤ j≤K | Vi 6=V j

[d(xi,Vj)]. (4.18)

where {Vi}K
i=1 represents the set of partitions/clusters.

Therefore, the silhouette of vector xi is represented by δ (xi) and is calculated with

δ (xi) =


1−a(xi)/b(xi),

0,

b(xi)/a(xi)−1,

a(xi)< b(xi)

a(xi) = b(xi)

a(xi)> b(xi)

(4.19)

Finally, the silhouette value of a clustering is given by

SI(K) =
1
N

N

∑
i=1

δ (xi). (4.20)

This validation metric can be applied to both hyperspherical and arbitrary shaped

clusters and its main disadvantage is the high computational cost. For this index, the higher the

value the better is the clustering.

4.5.2.2 Calinski-Harabasz (CH)

The CH index, proposed by Caliński & Harabasz (1974), can be evaluated by the

following expression

CH(K) =
BK/(K−1)

WK/(N−K)
, (4.21)

where

BK =
K

∑
i=1

Ni(pi−xµ)(pi−xµ)
T , (4.22)

WK =
K

∑
i=1

∑
∀x∈Vi

(pi−x)(pi−x)T , (4.23)

are respectively the dispersion matrix between clusters (BK) and the intragroup dispersion matrix

(WK) with xµ being the mean vector of all samples and Ni and pi been respectively the number

of samples and the prototype of partition Vi.

The optimum K, or the number of clusters, for this metric is the one that maximizes

its value.
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4.5.2.3 Davies-Bouldin (DB)

The DB metric, proposed by Davies & Bouldin (1979), is defined by the ratio of

the sum of dispersion within to between clusters. This index can be evaluated with following

expression:

DB(K) =
1
K

K

∑
i=1

Ri,qt , (4.24)

where Ri,qt is the ratio between dispersion within and between clusters that can be define as

Ri,qt = max
1≤ j≤K| j 6=i

[
Si,q +S j,q

di j,t

]
, (4.25)

with

Si,q =

[
1
Ni

∑
∀x∈Vi

‖pi−x‖q

]1/q

, (4.26)

representing the internal dispersion of the i-th cluster and

di j,t = ‖pi−p j‖t , (4.27)

being the distance between partitions Vi and Vj using the t-norm and q a constant usually set to 2.

For this metric values closer to zero indicate a more suitable clustering result.

4.5.2.4 Dunn (DU)

The Dunn index, proposed by Dunn (1973), is represented by the following expres-

sion:

DU(K) =
mini6= j[δ (Vi,Vj)]

max1≤l≤K[∆(Vl)]
, (4.28)

where δ (Vi,Vj) denotes the dissimilarity between partitions Vi and Vj and ∆(Vl) measures the

dispersion within partition Vl . We can define these functions as follows

δ (Vi,Vj) = min
∀xi∈Vi, ∀x j∈V j

[d(xi,x j)], (4.29)

∆(Vl) = max
∀xi,x j∈Vl

[d(xi,x j)], (4.30)

where d(xi,x j) can be any dissimilarity measure between vectors, e.g. euclidean distance.

The main limitations of this index are its complexity and noise sensitivity. High

values in this metric mean better clustering.
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4.5.3 Information criteria-based metrics

This section contains modified information criteria metrics so that they can be used

to evaluate partitions formed through clustering algorithms. First proposed by Sousa (2019) the

base for these metric is the Mean Squared Quantization Error (MSQE), which has the form

MSQE(K) =
1
N

K

∑
i=1

∑
∀x∈Vi

‖x−pi‖2
2. (4.31)

4.5.3.1 Modified Final Prediction Error (mFPE)

The Final Prediction Error criteria, proposed by Akaike (1969), selects K that

minimizes the variance of the mean prediction error while penalizing the excess of model

parameters. The modified version of the metric can be evaluated with the following expression

mFPE(K) = N ln
(

MSQE(K)

N

)
+N ln

(
N +P
N−P

)
, (4.32)

with the model’s order defined as P = Kd, where K is the number of prototypes and d the

dimensionality of the input vectors.

The first member of the right-hand side of Eq. (4.32) has an exponential decay as

K increments and the second member penalizes the excess of parameters, rising its value as K

increases. For this criterion the smallest value represents the best K, trying to strike a balance

between explaining the data and model complexity.

4.5.3.2 Modified Akaike Information Criteria (mAIC)

The Akaike Information Criteria, proposed by Akaike (1974), determines the order

P of the model that minimizes a cost function obtained from concepts of information theory. The

cost function associated with the modified version of this criterion is modeled as

mAIC(K) = N ln
(

MSQE(K)

N

)
+2P, (4.33)

where, different from mFPE, 2P is a linear penalization for the number of parameters in the

model.

4.5.3.3 Modified Bayesian Information Criteria (mBIC)

The Bayesian Information Criteria is another metric for model selection, also called

the Schwarz Information Criterion (SIC), by the Bayesian interpretation given by Schwarz et al.
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(1978). The modified version of this metric can be evaluated with the following expression:

mBIC(K) = N ln
(

MSQE(K)

N

)
+P lnN. (4.34)

Similar to mAIC, the mBIC criterion is a decreasing function of the MSQE with

the added increasing function of P, however, the mBIC metric has a strong penalization for the

model’s order. The model with the smallest mBIC value is the one regarded as optimum.

4.5.3.4 Modified Minimum Description Length (mMDL)

The Minimum Description Length criteria, proposed by Rissanen (1978), is a variant

of the AIC metric and its modified version can be evaluated with the following equation:

mMDL(K) = N ln
(

MSQE(K)

N

)
+

P
2

lnN. (4.35)

In a nutshell, all the 4 informational criteria-based metrics are similar, they try to

find a balance between data explanation and model complexity, what differentiates one from

another is the strength of the penalization term that controls the number of model parameters.

4.6 Concluding remarks

In this chapter, we presented all the information needed to perform the simulations

of Chapter 5 and showed all the 12 metrics used to help finding Kopt , the optimal number of

clusters (for the local approach) or of regions (for the regional approach). The idea of using

several metrics was to investigate through simulations if any of them exhibited a relationship

with the objective function of the model selection phase (see Eq. (4.1)), that means, chooses Kopt

in a manner that the classifier generalizes well (high accuracy on validation set) and consistently

(low variance).

In the next chapter, the reader will find all the simulation results and some discussions

that can be drawn from them.
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5 SIMULATION RESULTS AND DISCUSSION

Throughout this chapter, the reader will find the results of the computer simulations

whose methodologies were described in Chapter 4, with charts and tables facilitating the unders-

tanding. The results follow the same order of Chapter 4, starting with the CLHP approach and

finishing with regional classifiers.

To reduce repetitiveness, the data sets were referred by acronyms as shown in Table 4,

models used beside CLHP approach will have "L-" as prefix (e.g. L-LSC and L-LSSVM), used

with regional approach an "R-" (e.g. R-LSC and R-LSSVM) and models under the global method

will have "G-" (e.g. G-LSC and G-LSSVM).

Table 4 – Data sets acronyms

Data set variation Acronym

Parkinson pk
Vertebral Column with 2 classes vc2c
Vertebral Column with 3 classes vc3c
Wall-Following with 2 features wf2f
Wall-Following with 4 features wf4f
Wall-Following with 24 features wf24f

Source: the author (2019).

In order to evaluate the classifiers, the following performance metrics based on the

confusion matrix were used:

accuracy = T P+T N
T P+T N+FP+FN , (5.1)

sensitivity = T P
T P+FN , (5.2)

speci f icity = T N
T N+FP , (5.3)

F1 = 2× precision×recall
precision+recall , (5.4)

where T P, T N, FP and FN stand for True-Positive, True-Negative, False-Positive and False-

Negative values, respectively and

precision =
T P

T P+FP
, (5.5)

recall =
T P

T P+FN
. (5.6)
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5.1 Global vs Local LSC-LBF results

The idea of this experiment was to verify the capability of a local model, a CLHP with

LSC-LBF, to be a good alternative to tackle nonlinear problems and investigate the correlation

between model performance and the number of partitions/models. Charts of the six data set

variations can be found in Figure 9, where one can find the boxplots of the accuracy in the test

set for many values of K, i.e. the number of partitions. One may find ten results ranging from

K = 1, which means the global model (G-LSC), until K ≈ 0.8Ntr, where Ntr symbolizes the

number of samples in the train set. To act as a guide, we also added a dark blue dash-dot line

connecting the mean value of the distributions.

Based on Figure 9 we can say that the pk data set had a slight increase in accuracy

(higher mean with lower variance) while the vertebral column data set variations (vc2c, vc3c)

showed a drop in performance and it is not incorrect to state that the G-LSC was better than

L-LSC for the values of K. This serves as evidence that the classification problems put by

vc2c and vc3c data sets do not benefit from the local linearization established by L-LSC. On all

wall-following data set variations, we found a significant increase in model performance wich

give us a sign that the data sets wf2f, wf4f, and wf24f benefit from the local linearization property

of the L-LSC. A closer look at the wall-following results can be seen in Figure 10, it shows us

that exists a slight trend that as K rises the models’ performance rises too. As the wall-following

data set has the biggest number of samples, 5456, the second being vertebral column with 310

data points, we noticed fewer empty partitions.

As one may have already realized, as K increases, getting closer to the number of

samples, the CLHP approach starts to manifest more homogeneous data partitions (see Section

2.1.3) and is less prone to be comprised of a set of the base model (e.g. the LSC in the L-LSC

case) and more on bias models. The biggest value that the number of partitions may have is

K = Ntr where the CLHP classifier becomes the 1-Nearest Neighbor classifier (1-NN) as each

partition has only one sample. So, in Figures 9 and 10 we are not just seeing a correlation between

K and model performance but also the gradual transformation of the L-LSC classifier in the

1-NN, this gives us a hint that the 1-NN classifier may be a good proposal for the wall-following

data set variations.
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Figure 9 – Performance with increasing number of partitions/models in G/L-LSC experiment.
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Source: the author (2019).

5.2 Global vs Local LSSVM results

The first results of this test can be found in Figure 11 where the L-LSSVM showed

better performance in the train set when compared to G-LSSVM. This outcome is expected as a

set of nonlinear models producing a global decision function is more capable of explaining the

train set. In the test set, the results were very similar, making it difficult to tell which one is the

better model, the exception being the results in wf2f data set where the L-LSSVM shows a true

increase on accuracy.

To deepen the investigation, the Tables 5 to 10 were built. On Table 5, even if the
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Figure 10 – Zooming in the results of wall-following data set variations in L-LSC experiment.
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Source: the author (2019).

accuracy results being very close, the CLHP version of the LSSVM classifier applied to pk

data set displayed a much higher specificity, both in train and test sets. This phenomenon may

be evidence that the partitioning of the data set favored the emergence of balanced partitions

(partitions with roughly the same number of samples per class), leading the LSSVM classifier to

not benefit the class with more samples. Tables 6 and 7 confirm that the global and local approach

applied with LSSVM has little difference in the vertebral column data set variations. Table

8 reveals a slight but clear superiority of the L-LSSVM classifier in all the four performance

metrics used, while in Tables 9 and 10 corroborate the little difference saw between the global

and local classifiers applied to the wf4f and wf24f data sets.

Table 5 – Performance metrics of pk data set during G/L-LSSVM experi-
ment

Set Model Accuracy (%) Sens. (%) Spec. (%) F1(%)

Train
G-LSSVM 97.34 ± 4.16 99.67 90.25 98.32
L-LSSVM 99.59 ± 1.09 99.92 98.58 99.73

Test
G-LSSVM 87.02 ± 3.73 95.49 60.92 91.72
L-LSSVM 89.31 ± 4.08 94.30 73.92 93.00

Source: the author (2019).
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Figure 11 – Train and test accuracy distributions in G/L-LSSVM experiment.
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Source: the author (2019).

Table 6 – Performance metrics of vc2c data set during G/L-LSSVM expe-
riment

Set Model Accuracy (%) Sens. (%) Spec. (%) F1 (%)

Train
G-LSSVM 89.32 ± 3.51 81.04 93.26 82.88
L-LSSVM 88.97 ± 3.65 79.28 93.58 81.98

Test
G-LSSVM 82.98 ± 2.69 70.52 88.91 72.53
L-LSSVM 82.14 ± 2.77 69.68 88.08 71.33

Source: the author (2019).

In Figure 12 one will find the distribution of the optimum number of partitions, Kopt ,
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Table 7 – Performance metrics of vc3c data set during G/L-LSSVM expe-
riment

Set Model Accuracy (%) Sens (%). Spec. (%) F1 (%)

Train
G-LSSVM 86.86 ± 3.53 93.21 82.45 93.24
L-LSSVM 89.05 ± 3.71 94.36 85.59 94.47

Test
G-LSSVM 83.19 ± 3.33 91.00 78.52 90.95
L-LSSVM 81.28 ± 3.92 89.82 76.75 89.81

Source: the author (2019).

Table 8 – Performance metrics of wf2f data set during G/L-LSSVM expe-
riment

Set Model Accuracy (%) Sens. (%) Spec. (%) F1 (%)

Train
G-LSSVM 96.44 ± 0.22 98.68 95.76 98.65
L-LSSVM 98.50 ± 0.34 99.45 98.50 99.44

Test
G-LSSVM 96.15 ± 0.39 98.56 95.06 98.54
L-LSSVM 97.81 ± 0.29 99.19 97.32 99.19

Source: the author (2019).

Table 9 – Performance metrics of wf4f data set during G/L-LSSVM expe-
riment

Set Model Accuracy (%) Sens. (%) Spec. (%) F1 (%)

Train
G-LSSVM 97.20 ± 0.48 98.94 97.27 98.92
L-LSSVM 97.89 ± 0.59 99.20 97.98 99.19

Test
G-LSSVM 96.19 ± 0.42 98.54 95.64 98.53
L-LSSVM 96.08 ± 0.42 98.49 95.48 98.49

Source: the author (2019).

Table 10 – Performance metrics of wf24f data set during G/L-LSSVM
experiment

Set Model Accuracy (%) Sens. (%) Spec. (%) F1 (%)

Train
G-LSSVM 97.18 ± 0.52 98.89 96.78 98.92
L-LSSVM 97.69 ± 0.27 99.09 97.35 99.12

Test
G-LSSVM 91.10 ± 0.52 96.42 89.84 96.47
L-LSSVM 90.61 ± 0.73 96.23 89.50 96.27

Source: the author (2019).

in the 50 independent runs of the experiment. Albeit we used a committee of 12 cluster validation

metrics to build a set of proposals for Kopt , we can see a dispersion in the values of Kopt . This

outcome may indicate that the committee of metrics is unreliable in the task of suggesting the

optimal number of partitions when submitted to our model selection objective function (Eq.

(4.1)) or that the clustering phase of CLHP had too much randomness (maybe 10 independent
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initializations of K-means algorithm was too little to obtain, consistently, the same clustering

results). Overall we see a trend in needing fewer partitions in the data sets, usually finding 2 or

3 partitions to be the optimum during simulations, the outlier is in wf2f simulation where the

optimum number of partitions was around 50, and this granularity may justify the superiority of

the local approach when compared to G-LSSVM.

Figure 12 – Distribution of Kopt in L-LSSVM for 50 independent runs.
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Source: the author (2019).

The last examination of this experiment lies in the committee of validation metrics

hit-rate of Kopt ; i.e. how many times in the 50 independent runs a metric suggested the true
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Kopt , that was verified in the cross-validation phase. A visual representation can be view in

Figure 13. Overall no validation metric seems to be reliable in suggesting the Kopt for all the

six data sets variations; especially in data sets pk, vc2c, vc3c, and wf4f. In the wf2f data set we

see a prevalence of the information criteria-based metrics, this outcome is due to these metrics

bias in suggesting high values of Kopt and as the reader can verify in Figure 12 the problem

contemplated by wf2f seems to need a high quantity of partitions to be better modeled. In the

same manner, the results of wf24f suggest that the adjusted Rand index was a good metric but

this might have happened because of its tendency to suggest small values of Kopt (with Figure 12

we can see that this problem requires a fewer number of prototypes to be solved with CLHP).

After this investigation, we may conclude that given the inconsistency of the validation metrics

on finding Kopt before the cross-validation phase, the Figures 12 and 13 tell us more about how

these metrics behave rather than its ability to predict Kopt .

5.3 Global vs Regional LSC-LBF results

In Figure 14 we can see the boxplot of the accuracy distributions on the train and test

sets for the G/R-LSC performance comparison. From this chart, we are able to notice that the

regional model has a consistent inclination to perform better than the global one on the training

set, as a set of models specialized in regions of the input space should do. On pk, vc2c, and vc3c

data sets we perceive similar accuracy distributions between the global and regional approach

and on the wall-following data sets variations a substantial increase in performance. These

results on wf2f, wf4f, and wf24f can be explained by the aptitude of the R-LSC on building a

nonlinear decision boundary by doing a regional linearization, as the variations of wall-following

data set appear to pose a problem of this nature.

With Figure 15 we can inspect the distribution of Kopt on the 100 independent runs

of the experiment. Generally speaking, there was a tendency on using fewer partitions, the

exception being the wf24f data set that had a mode of 19 prototypes. As on this experiment, the

Kopt was determined by the Davies-Bouldin index (see Section 4.5.2.3) the charts of Figure 15

tell us more about the index behavior than its ability to choose a proper value for the number of

regions. Given the dispersion seen on Kopt value, we can conclude that the DB index is sensitive

to the train/test split process and/or to slight changes on prototypes locations, becoming an

unreliable validation metric to choosing a proper value of K.
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Figure 13 – Metrics Kopt hit-rate in L-LSSVM simulation.
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Source: the author (2019).

5.4 Global vs Local vs Regional LSSVM results

In Figure 16 we can see the train and test accuracy distributions for the three modeling

approaches addressed in this thesis. The regional classifier showed similar results to CLHP,

being superior to G-LSSVM in the wf2f and equivalent in the rest of the data sets. To serve as a

guide a dash-dot line was made connecting the mean values of accuracy in the train and test set

of the models.

On Tables 11-16 we find more precise numerical results with the four performance

metrics used. Similar to L-LSSVM the R-LSSVM showed superior specificity in pk data set (see
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Figure 14 – Train and test accuracy distributions in G/R-LSC performance comparison.
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Table 11) and overall better performance in wf2f (see Table 14), while been equivalent on the

other data sets results.

Figure 17 shows the distribution of Kopt in the 50 independent runs of the simulations

with L/R-LSSVM. This graph exposes the propensity of the regional classifier for requiring fewer

prototypes to achieve an equivalent performance to CLHP, with the biggest difference being on

the wf2f data set where the mode of L-LSSVM lies about 50 partitions while the R-LSSVM

lies about 15. This is a consequence of the clustering of the SOM, as we cluster a simplified

representation instead of the whole data set the search space of K is also reduced, being for
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Figure 15 – Distribution of Kopt in R-LSC.
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Source: the author (2019).

Table 11 – Performance in pk of G/L/R-LSSVM experiment

Set Model Accuracy (%) Sens. (%) Spec. (%) F1 (%)

Train
G-LSSVM 97.34 ± 4.16 99.67 90.25 98.32
L-LSSVM 99.59 ± 1.09 99.92 98.58 99.73
R-LSSVM 98.66 ± 2.56 99.64 95.67 99.13

Test
G-LSSVM 87.02 ± 3.73 95.49 60.92 91.72
L-LSSVM 89.31 ± 4.08 94.30 73.92 93.00
R-LSSVM 88.51 ± 3.71 94.32 70.58 92.50

Source: the author (2019).
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Figure 16 – Train and test accuracy distributions in G/L/R-LSSVM experiment.
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Source: the author (2019).

Table 12 – Performance in vc2c of G/L/R-LSSVM experiment

Set Model Accuracy (%) Sens. (%) Spec. (%) F1 (%)

Train
G-LSSVM 89.32 ± 3.51 81.04 93.26 82.88
L-LSSVM 88.97 ± 3.65 79.28 93.58 81.98
R-LSSVM 88.81 ± 4.33 79.36 93.31 81.78

Test
G-LSSVM 82.98 ± 2.69 70.52 88.91 72.53
L-LSSVM 82.14 ± 2.77 69.68 88.08 71.33
R-LSSVM 82.55 ± 3.08 70.12 88.48 71.90

Source: the author (2019).
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Table 13 – Performance in vc3c of G/L/R-LSSVM experiment

Set Model Accuracy (%) Sens. (%) Spec. (%) F1 (%)

Train
G-LSSVM 86.86 ± 3.53 93.21 82.45 93.24
L-LSSVM 89.05 ± 3.71 94.36 85.59 94.47
R-LSSVM 87.65 ± 3.59 93.54 83.85 93.65

Test
G-LSSVM 83.19 ± 3.33 91.00 78.52 90.95
L-LSSVM 81.28 ± 3.92 89.82 76.75 89.81
R-LSSVM 82.00 ± 3.31 90.21 77.24 90.23

Source: the author (2019).

Table 14 – Performance in wf2f of G/L/R-LSSVM experiment

Set Model Accuracy (%) Sens. (%) Spec. (%) F1 (%)

Train
G-LSSVM 96.44 ± 0.22 98.68 95.76 98.65
L-LSSVM 98.50 ± 0.34 99.45 98.50 99.44
R-LSSVM 98.12 ± 0.38 99.31 98.13 99.29

Test
G-LSSVM 96.15 ± 0.39 98.56 95.06 98.54
L-LSSVM 97.81 ± 0.29 99.19 97.32 99.19
R-LSSVM 97.63 ± 0.32 99.12 97.27 99.12

Source: the author (2019).

Table 15 – Performance in wf4f of G/L/R-LSSVM experiment

Set Model Accuracy (%) Sens. (%) Spec. (%) F1 (%)

Train
G-LSSVM 97.20 ± 0.48 98.94 97.27 98.92
L-LSSVM 97.89 ± 0.59 99.20 97.98 99.19
R-LSSVM 97.86 ± 0.49 99.19 98.01 99.18

Test
G-LSSVM 96.19 ± 0.42 98.54 95.64 98.53
L-LSSVM 96.08 ± 0.42 98.49 95.48 98.49
R-LSSVM 96.28 ± 0.41 98.57 95.75 98.57

Source: the author (2019).

Table 16 – Performance in wf24f of G/L/R-LSSVM experiment

Set Model Accuracy (%) Sens. (%) Spec. (%) F1 (%)

Train
G-LSSVM 97.18 ± 0.52 98.89 96.78 98.92
L-LSSVM 97.69 ± 0.27 99.09 97.35 99.12
R-LSSVM 97.67 ± 0.32 99.08 97.33 99.11

Test
G-LSSVM 91.10 ± 0.52 96.42 89.84 96.47
L-LSSVM 90.61 ± 0.73 96.23 89.50 96.27
R-LSSVM 90.72 ± 0.60 96.28 89.60 96.32

Source: the author (2019).

the CLHP the set SSCLHP = {2,3, ...,b
√

Ntrc} and for the RC SSRC = {2,3, ...,b
√

5
√

Ntrc}, as

NSOM = 5
√

Ntr.
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Figure 17 – Optimal number of prototypes in L/R-LSSVM.
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Source: the author (2019).

In Figure 18 we can see the metrics hit-rate of Kopt in the R-LSSVM. Unlike the

L-LSSVM instance, the regional approach had only 8 validation metrics in the committee as 4

were supervised metrics (since we clustered the SOM units and they were unlabeled).

Analogous to the CLHP case, no validation metric seems to be reliable in predicting

the Kopt . This time we can also see that the hit-rates were higher as the search space was smaller.

As regional modeling relies on fewer partitions we can also recognize, with Figure

19, that the R-LSSVM presented a trend to build fewer homogeneous regions (regions containing

only points of a single class). This property points out that RC relies more on the base model (the
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Figure 18 – Metrics Kopt hit-rate in R-LSSVM.
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Source: the author (2019).

LSSVM in the R-LSSVM) than the CLHP approach, meaning that the local approach presents a

trend of having bias models into its set of models.

5.5 Concluding remarks

In this chapter, we presented an comprehensive set of results of the simulations

proposed in Chapter 4. Some important concluding remarks are given next.

• Both CLHP and RC were able to approximate nonlinear decision boundaries by

means of a set of local/regional models;
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Figure 19 – Number of homogeneous data partitions in L/R-LSSVM.

0 1 2 3 4 5 6
0

5

10

15

20

25
L-LSSVM
R-LSSVM

Number of homogeneous data partitions

Fr
eq

ue
nc

y

(a) pk

0 1 2 3 4 5 6
0

5

10

15

20

25

30 L-LSSVM
R-LSSVM

Number of homogeneous data partitions

Fr
eq

ue
nc

y

(b) vc2c

0 1 2 3
0

5

10

15

20

25

30
L-LSSVM
R-LSSVM

Number of homogeneous data partitions

Fr
eq

ue
nc

y

(c) vc3c

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16 L-LSSVM
R-LSSVM

Number of homogeneous data partitions

Fr
eq

ue
nc

y

(d) wf2f

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

45
L-LSSVM
R-LSSVM

Number of homogeneous data partitions

Fr
eq

ue
nc

y

(e) wf4f

0
0

10

20

30

40

50 L-LSSVM
R-LSSVM

Number of homogeneous data partitions

Fr
eq

ue
nc

y

(f) wf24f
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• There are classification problems that CLHP and RC with a nonlinear base model

performs better than a global nonlinear one (e.g. wf2f data set case);

• RC have similar performance to CLHP ones but using fewer prototypes, conse-

quently showing fewer homogenous data partitions;

• Any of the 12 validation metrics used seems to be a reliable choice to predict

the Kopt value, being more prudent to optimize K as other hyperparameters (e.g.

with grid search and random search).

The next chapter contains the conclusion of this work as future works proposals.
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6 CONCLUSION AND FUTURE WORKS

Throughout the course of this thesis, the author was able to develop python versions

of the LSSVM classifier (DRUMOND, 2019c), of the CLHP approach (DRUMOND, 2019b),

and propose the first implementation of regional classifiers (DRUMOND, 2019a). The simplicity

of the LSSVM optimization problem was noted during code development as the fitness of

such classifier when applied to nonlinear data sets, e.g. wall-following variations. During the

development of CLHP and regional approaches, unpredicted phenomenons occur (see sections

2.1.3 and 3.3.1) that required the author to revisit and update the theory of such paradigms.

It became clear the capability of local modeling approaches to build nonlinear

decision boundaries with a set of linear classifiers. In nonlinear problems as the one presented by

the wall-following data set, the use of a set of linear models in the local and regional approaches

presented a large performance improvement. Even in the realm of nonlinear classifiers, the local

methods seem to outperform global ones in some use cases. With similar results to CLHP, the

regional approach poses itself as a sparser modeling paradigm, using fewer prototypes/models.

As future works, one could develop any one of the following ideas.

• Development of specific cluster validation metrics for CLHP and regional pa-

radigms since the traditional ones seems to be unsuitable for choosing the best

K;

• Apply other classification models and compare their performances with CLHP

and regional approaches;

• Use other clustering algorithms both in CLHP and regional models and investi-

gate their properties;

• Extend the local and regional approaches for an online/growing/adaptive case,

where the partitions/regions are build in an online fashion.
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