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ABSTRACT

Logical Analysis of Data (LAD) is a rule-based algorithm for supervised classification that is

based on optimization, combinatorics, and Boolean functions. A central concept in LAD is that

of a pattern, which summarizes knowledge extracted from a given dataset. Let D be a set of

binary vectors partitioned into a set of positive and a set of negative observations. A positive

pattern is a subcube of the n-dimensional hypercube having a nonempty intersection with the

positive part of D, and an empty intersection with the negative part of D. An observation is

covered by a pattern if it belongs to the corresponding subcube, and the coverage of a pattern

is the number of observations in D covered by it. The maximum positive a-pattern problem

consists in finding a positive pattern whose coverage is maximum among those that cover a

given positive observation a in D, which amounts to solving a nonlinear set covering problem.

A generalization of it, the maximum positive pattern problem, asks for a positive pattern of

maximum coverage among all patterns, not only among those covering a particular observation.

We review all integer linear programming (ILP) approaches from the literature for these two

problems and empirically evaluate them using a commercial ILP software. Furthermore, we

introduce a dynamic programming model, a merging rule, and all necessary heuristics in order to

model and solve the two problems using a recently-developed optimization methodology based

on decision diagrams (DDs). The methodology consists of a branch-and-bound (BAB) algorithm,

in which DDs play the traditional role of the linear programming relaxation, as well as that

of primal heuristics. We also discuss relevant implementation details in order to enhance the

performance of the DD-based BAB. Lastly, we compare the performance of our DD-based solver

with that of the ILP approaches from the literature. Our results indicate that a straightforward

DD-based branch-and-bound implementation typically produces higher quality solutions than a

commercial MILP software within a common time limit.

Keywords: Maximum pattern. Logical analysis of data. Decision diagram. Branch-and-bound.



RESUMO

Análise Lógica de Dados (ALD) é um algoritmo de classificação supervisionada baseado em

regras, o qual é fundamentado em otimização, combinatória, e funções Booleanas. Um conceito

central em ALD é o de padrão, o qual resume informação extraída de um dado conjunto de dados.

Seja D um conjunto de vetores binários particionado em um conjunto de observações positivas

e um conjunto de observações negativas. Um padrão positivo é um subcubo do hipercubo n-

dimensional, o qual possui uma interseção não-vazia com a parte positiva de D, e uma interseção

vazia com a parte negativa de D. Uma observação é coberta por um padrão se pertence ao subcubo

correspondente, e a cobertura de um padrão é o número de observações em D cobertas por ele.

O problema do a-padrão positivo máximo consiste em encontrar um padrão cuja cobertura é

máxima entre todos aqueles que cobrem uma dada observação positiva a em D, o que corresponde

a resolver um problema de cobertura de conjuntos não-linear. Uma generalização do problema,

o problema do padrão positivo máximo, busca um padrão positivo cuja cobertura é máxima entre

todos os padrões, não apenas aqueles que cobrem uma observação em particular. Revisamos

todas as abordagens por programação linear inteira (PLI) para esses dois problemas encontradas

na literatura e as avaliamos empiricamente usando um software comercial de PLI. Além disso,

introduzimos um modelo de programação dinâmica, uma regra de mescla, e todas as heurísticas

necessárias para modelar e resolver os dois problemas utilizando-se de uma metodologia de

otimização baseada em diagramas de decisão (DDs), a qual foi desenvolvida recentemente. A

metodologia consiste em um algoritmo de branch-and-bound (BAB), no qual DDs fazem o

papel tradicional da relaxação linear, assim como o de heurísticas primais. Também discutimos

detalhes de implementação relevantes com o intuito de melhorar a performance do BAB baseado

em DDs. Por fim, comparamos a performance do nosso resolvedor baseado em DDs com as

abordagens de PLI da literatura. Nossos resultados sugerem que uma implementação direta de

um BAB baseado em DDs produz, em geral, soluções de mais qualidade do que um software

comercial de PLI, dentro de um mesmo limite de tempo.

Palavras-chave: Padrão máximo. Análise lógica de dados. Diagrama de decisão. Branch-and-

bound.
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1 INTRODUCTION

Logical analysis of data (CRAMA et al., 1988), or simply LAD, belongs to a class

of supervised classification methods based on rules, such as rough set theory (PAWLAK, 1982)

and decision trees (QUINLAN, 1986). LAD has found numerous applications in the industry,

medicine, and finance (LEJEUNE et al., 2019). An implementation of the LAD methodology

was described by Boros et al. (2000). Rule-based classifiers can have some advantage over

powerful methods in the field of machine learning such as support vector machines and neural

networks. One advantage is that rules can be interpretable by humans and, thus, have the potential

to provide cause-effect information hidden in the dataset. Another advantage is that algorithms

for building classifiers based on rules may be more easily tuned in order to avoid overfitting than

other methods.

A key step when building rule-based classifiers is generating good classification

rules. These rules are known as patterns in LAD. We shall use LAD terminology from now on.

Several approaches have been proposed in the literature for pattern generation, ranging from

enumeration (by Alexe et al. (2006) and Alexe and Hammer (2006)), heuristics (by Bonates et

al. (2008) and Caserta and Reiners (2016)), and mathematical programming (by Bonates et al.

(2008), Ryoo and Jang (2009), Guo and Ryoo (2012), and Yan and Ryoo (2017a)). Yan and

Ryoo (2017b) and Yan and Ryoo (2019) generate valid inequalities for existing mathematical

programming models for pattern generation. Mathematical programming has also been used

for generating patterns in studies that extended the original LAD framework: Lejeune (2012)

applies pattern generation for solving stochastically constrained optimization problems, while

Bonates (2010), Hansen and Meyer (2011), and Chou et al. (2017) generate patterns for building

large margin LAD classifiers. More recently, Boccia et al. (2020) proposed exact and heuristic

algorithms for solving two variants of the Simple Pattern Minimality Problem, which asks for

the minimum number of patterns explaining all the observations of a data set.

Let Ω⊆ {0,1}n be a dataset consisting of binary data, and partitioned into two sets

of observations, one called positive and the other negative. A subcube of {0,1}n is a subset of

{0,1}n in which a subset of the coordinates is fixed. A positive pattern is a subcube of {0,1}n

having a nonempty intersection with the positive part of Ω, and an empty intersection with the

negative part of Ω. A negative pattern is defined analogously. An observation is covered by a

pattern if it belongs to the corresponding subcube, and the coverage of a pattern is the number of

observations in Ω covered by it. The maximum α-pattern problem (α-MPP) consists in finding
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a pattern whose coverage is maximum among those that cover a given observation α ∈Ω, which

amounts to solving a nonlinear set covering problem. The problem is NP-hard (BONATES et

al., 2008). A generalization of the α-MPP, the maximum pattern problem (MPP), asks for a

pattern of maximum coverage among all patterns, not only among those covering a particular

observation. We point out that we shall not deal in this work with the concept of “fuzzy” patterns,

which are patterns that may have a nonempty intersection with both the positive and the negative

part of Ω. The main objective of this work is to model and solve both the α-MPP and the MPP

using a recently-developed methodology based on decision diagrams (DDs) for solving discrete

optimization problems.

Binary decision diagrams (BDDs) were originally used in the analysis and verifi-

cation of digital circuits (LEE, 1959), and as a graphical data structure to represent Boolean

functions (AKERS, 1978). Efficient algorithms for manipulating BDDs were introduced in

(BRYANT, 1986), which led to their further use in computer science applications (WEGENER,

2000). The application of BDDs has recently expanded to the field of optimization, with BDDs

being used to (approximately) represent the set of feasible solutions of a binary optimization prob-

lem. Furthermore, the concepts of BDDs can be generalized to multivalued decision diagrams

(MDDs), or simply DDs, in order to represent general discrete optimization problems.

DDs have been used either as an auxiliary tool, for instance in constraint program-

ming and integer programming contexts, or as a standalone methodology for dealing with

combinatorial optimization problems. In constraint programming (CP), Andersen et al. (2007),

Hoda et al. (2010), and Bergman et al. (2014) applied MDDs to constraint propagation. In the

context of integer programming (IP), Hadžić and Hooker (2007), and Serra and Hooker (2017)

applied DDs to postoptimality analysis; Becker et al. (2005) and Tjandraatmadja and Hoeve

(2019) applied DDs to cut generation; while Behle and Eisenbrand (2007) applied BDDs to vertex

and facet enumeration. Cire and Hoeve (2013), Kinable et al. (2017), and O’Neil and Hoffman

(2019) applied MDDs to sequencing problems, which includes scheduling and routing. Bergman

and Cire (2017) applied DDs to optimization problems with nonlinear objective functions.

The use of DDs allows for recursive modeling through dynamic programming (DP)

formulations. Hooker (2013) showed how DDs are closely related to DP but differ in some

important ways. In (BERGMAN et al., 2011) and (BERGMAN et al., 2013), the authors used the

concept of relaxed DDs introduced by Andersen et al. (2007) for generating bounds for the set

covering and the maximum independent set problems, respectively. Bergman et al. (2015) used
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the concept of relaxed DDs to generate Lagrangian bounds. Bergman et al. (2014) introduced

the concept of restricted DDs, which were used as primal heuristics for generating bounds for

the set covering and set packing problems. Bergman et al. (2016) proposed a general-purpose

DD-based solver for discrete optimization problems that incorporates restricted and relaxed

DDs into a branch-and-bound (BAB) scheme, which proved to be competitive or superior to a

state-of-the-art commercial ILP solver for the maximum independent set, the maximum cut, and

the maximum 2-satisfiability problems.

1.1 Objectives

Our main objective in this work is to propose a new solution approach for the α-MPP

and the MPP and to empirically evaluate its computational behaviour. More specifically, we

intend to:

• evaluate the integer linear programming models found in the literature, by measuring their

computational performance using a state-of-the art ILP solver;

• to present a detailed description of the DD-based BAB methodology proposed by (BERGMAN

et al., 2016), which we use for solving both problems;

• propose a DD model for the α-MPP and MPP problems and discuss all relevant details for

its computational implementation;

• use the computational results obtained from the empirical evaluation of the ILP models as

a benchmark for an empirical evaluation of our proposed DD-based BAB.

1.2 Organization

In Chapter 2, we present a formal definition of the α-MPP and the MPP, as well as the

integer linear programming models found in the literature for these problems. In Chapter 3, we

present a detailed description of the general DD-based BAB algorithm proposed by Bergman et

al. (2016). In Chapter 4, we present a DD model that encompasses both problems, by proposing

a dynamic programming model, a merging rule, and relevant heuristics in order to use our

proposed DD model within the BAB framework of Bergman et al. (2016). In Chapter 5, we

perform a series of computational experiments with the ILP models and the proposed DD-based

BAB and discuss the results. In Chapter 6, we discuss the conclusions of our work.
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2 MAXIMUM PATTERNS

In this chapter, we present the problem of generating patterns from an optimization

perspective. In Section 2.1, we introduce the notation and definitions to be used throughout

the chapter. In Sections 2.2, 2.3, and 2.4, we present three optimization problems found in the

literature that can be used for pattern generation. In Sections 2.5, 2.6, 2.7, and 2.8 we present

existing integer programming formulations for these problems from Bonates et al. (2008), Ryoo

and Jang (2009), Guo and Ryoo (2012), and Yan and Ryoo (2017a), respectively.

2.1 Definitions

Let Ω = {x1,x2, . . . ,xm} ⊆ {0,1}n be a dataset consisting of m binary observations

on n attributes, with two classes. Let the class of an observation x ∈Ω be given by the function

y : Ω→{0,1}. We refer to Ω+ as the set of positive observations of Ω:

Ω
+ = {x ∈Ω : y(x) = 1}.

The set Ω− of negative observations of Ω is defined in a complementary way. Thus, Ω+∪Ω−=Ω.

An example of a dataset of binary observations is given in Table 1. If the observations in Ω are

not binary, they can be transformed into binary vectors via a process called binarization (BOROS

et al., 1997). Datasets with more than two classes can be handled by means of a so-called

one-versus-all approach, in which one of the classes play the role of the positive class, while the

remaining classes play the role of the negative class.

Table 1 – A binary dataset
k xk

1 xk
2 xk

3 xk
4 xk

5 y(xk)

Ω+

1 1 0 1 1 1 1
2 0 0 0 1 1 1
3 1 1 1 1 1 1
4 1 1 1 0 1 1
5 1 1 1 0 0 1

Ω−

6 1 0 0 1 0 0
7 0 0 1 0 1 0
8 1 0 1 0 0 0
9 1 0 0 0 0 0

10 0 0 1 0 0 0

Source: Hammer et al. (2004)

For each attribute j ∈ {1, . . . ,n}, we define a positive literal u j and a negative literal
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u j as functions from Ω to {0,1}, as follows:

u j(x) =

1, if x j = 1,

0, if x j = 0;
and u j(x) =

1, if x j = 0,

0, if x j = 1.

Let L = {u1,u1, . . . ,un,un} be the set of all literals for dataset Ω. A term T is a product of one

or more literals. We shall denote by Lit(T ) the set of literals that compose T . We denote by T

the set of all possible terms. The degree δ (T ) of a term T is the number of literals that compose

T , i.e., δ (T ) = |Lit(T )|. Thus, we can write T as a function T : Ω→{0,1} as follows, where `

is a generic literal:

T (x) = ∏
`∈Lit(T )

`(x).

We say that an observation x is covered by T , or that T covers x, if, and only if, T (x) equals 1.

Let Cov(T ) be the set of observations in {0,1}n covered by T ,

Cov(T ) = {x ∈ {0,1}n : T (x) = 1},

and let CovΩ(T ) be the set of observations in Ω covered by T :

CovΩ(T ) = {x ∈Ω : T (x) = 1}.

Unless there is the need to avoid ambiguity, we will simply write Cov(T ) instead of CovΩ(T ).

The coverage of term T is the number of observations in Ω covered by T , i.e., |Cov(T )|. The

subset of {0,1}n covered by a term T is known as a subcube of {0,1}n, since it is isomorphic to

the hypercube {0,1}n−δ (T ).

Example 1. Consider the binary dataset given in Table 1. The term T = u2u3u4 is composed by

the set of literals Lit(T ) = {u2,u3,u4}, and its degree is δ (T ) = 3. Furthermore, the set of obser-

vations in {0,1}n covered by T is Cov(T )= {(0,0,0,1,0),(1,0,0,1,0),(0,0,0,1,1),(1,0,0,1,1)}

and the set of covered observations by T in Ω is CovΩ(T ) = {x2,x6}.

A term P is a positive pattern with respect to Ω if it covers at least one positive

observation from Ω and no negative observation from Ω:

|Cov(P)|> 0 and Cov(P)∩Ω
− = /0.

A negative pattern is defined analogously. Without loss of generality, we shall refer to a positive

pattern simply as a pattern, since everything that follows can be defined analogously for negative

patterns.



16

Table 2 – Examples of patterns in the dataset given in Table 1
Examples Prime Strong Spanned x2-pattern

u2u3u4, u3u4u5 No No No No
u1u3, u1u4, u3u5 Yes No No Yes
u1u2, u2u3 No Yes No No
u1u2u3u4 No No Yes No
u2, u1u5 Yes Yes No No
u1u2u3, u1u3u5 No Yes Yes No
u4u5 Yes Yes Yes Yes

Source: Adapted from Hammer et al. (2004)

Hammer et al. (2004) define three types of patterns according to their suitability in a

classification context: prime, strong, and spanned. A pattern P is prime if there is no pattern P′

such that Lit(P′)⊂ Lit(P), i.e., if the removal of any literal from P results in a term which is not

a pattern. A pattern P is strong if there is no pattern P′ such that Cov(P)⊂ Cov(P′). A pattern

is spanned if there is no pattern P′ such that Cov(P) = Cov(P′) and Lit(P)⊂ Lit(P′). Bonates

et al. (2008) defines yet another type of pattern: an α-pattern is a pattern that covers a given

positive observation α . Examples of patterns are given in Table 2.

2.2 The maximum α-pattern problem (α-MPP)

A maximum α-pattern is a pattern of maximum coverage among those that cover

a positive observation α . The maximum α-pattern problem (α-MPP) consists in finding a

maximum α-pattern among all possible terms:

(α-MPP) maximize |Cov(T )| (2.1)

subject to T (x) = 0, ∀ x ∈Ω
−, (2.2)

T (α) = 1, (2.3)

T ∈T . (2.4)

The α-MPP was proposed by Bonates et al. (2008). A maximum α-pattern is a strong pattern.

Strong patterns are useful in the sense that they can be descriptive of large portions of a dataset.

The pattern generation step in LAD using maximum α-patterns consists in computing a set of

maximum α-patterns in such a way that each positive observation is covered by at least one of

the patterns in the set.

The α-MPP is a restricted version of the problem, where a pattern is not allowed

to cover any observation of the opposite class. These patterns are referred to as “pure”. In

practice, a relaxed version of the α-MPP, which allows a pattern to cover a “small” number of



17

observations of the opposite class, might be more adequate in a classification context. These

patterns are called “fuzzy”. In this work, however, we shall focus our attention to the restricted

version of the problem.

2.2.1 Complexity

In (BONATES et al., 2008), the fact that the α-MPP is a generalization of the

unitary-cost set cover problem was assumed to be evident. Here, we discuss this in more

detail as we argue the hardness of the α-MPP. Let S = {1, . . . ,m} be a set of m elements and

F = {S1,S2, ...,Sn} be a collection of n subsets of S. Minimum unitary-cost set cover is the

problem of selecting as few as possible subsets from F such that every element in S is contained

in at least one of the selected subsets. The minimum set cover problem is one of the classical

combinatorial optimization problems shown to be NP-hard (KARP, 1972). An IP formulation

for it is given by

minimize
n

∑
j=1

x j (2.5)

subject to ∑
j: i∈S j

x j ≥ 1, i = 1, . . . ,m, (2.6)

x j ∈ {0,1}, j = 1, . . . ,n, (2.7)

where x j is a binary decision variable that equals 1 when subset S j is selected. Constraints (2.6)

state that for every element i ∈ S, at least one subset that contains i is selected. In the following,

we show that the α-MPP is at least as hard to solve as the unitary-cost set cover problem.

Proposition 2.2.1. The α-MPP is NP-hard.

Proof. Let (2.6) be rewritten in matricial form as Ax ≥ 1, where A is an m× n matrix, and x

and 1 are the n-vectors (x1, . . . ,xn)
T and (1, . . . ,1)T , respectively. Let Ω− = {γ1, . . . ,γm} be

comprised of m observations accounting for each row of A, i.e., γ i = Ai, the i-th row of A, for

i = 1, . . . ,m. Let Ω+ be comprised of n+1 observations, where α is the n-vector (0, . . . ,0) and

the other n observations are the canonical vectors e j = (0, . . . ,0,1,0, . . . ,0), for j = 1, . . . ,n. We

claim that solving the α-MPP for Ω+∪Ω− is equivalent to solving (2.5)-(2.7). The conversion

can be done in polynomial time.

Let P∗ be an optimal solution for this instance of the α-MPP. Any feasible pattern

for this instance must contain only negative literals. Let J∗ = { j : u j ∈ P∗} be the set of indexes

of the negative literals that compose P∗. We know that for a given negative observation γ i, there
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is at least one attribute j ∈ J∗, such that γ i
j = 1. Let x∗ be a solution to the set cover instance,

where x∗j = 1, ∀ j ∈ J∗, and x∗j = 0, ∀ j /∈ J∗. Thus, x∗ is feasible for the set cover instance, since

each constraint is associated with a negative observation, i.e., Aix∗ ≥ 1, for i = 1, . . . ,m.

It remains to show that x∗ is an optimal solution for the set cover problem. We prove

this by contradiction. Suppose there exists a better feasible solution x̂, i.e., 1T x̂ < 1
T x∗. Let

Ĵ = { j : x̂ j = 1}. It can be seen that the pattern P̂, with Lit(P̂) = {u j : j ∈ Ĵ}, is a feasible solution

for the α-MPP instance. The objective function value for P̂ is |Cov(P̂)|= n−δ (P̂)+1. From

the optimality of P∗, we know that |Cov(P̂)| ≤ |Cov(P∗)| =⇒ n−δ (P̂)+1≤ n−δ (P∗)+1.

Thus, δ (P∗)≤ δ (P̂) =⇒ 1
T x∗ ≤ 1

T x̂, a contradiction. Therefore, x∗ is optimal.

2.3 The general case: the maximum pattern problem (MPP)

Let R = {T ∈ T : T (x) = 0,∀ x ∈ Ω−, |Cov(T )| > 0} be the set of all patterns.

A pattern is a maximum pattern if its coverage is maximum among all patterns. Let R∗ =

argmax{|Cov(P)| : P ∈ R} be the set of all maximum patterns. Ryoo and Jang (2009) proposed

an MILP formulation that can be easily adjusted for generating patterns with respect to different

criteria. We shall call the main problem associated with their formulation as the maximum pattern

problem (MPP), which asks for a maximum pattern P∗ ∈ R∗. The MPP is a generalization of the

α-MPP, which is obtained by leaving out constraint (2.3). Observe that, by definition, a maximum

pattern is strong. Furthermore, a spanned pattern P′ can easily be obtained from a pattern P

by adding all “missing” literals in P, i.e., P′ = P∪{` ∈L \Lit(P) : `(x) = 1, ∀ x ∈ Cov(P)}.

Using the MPP in the LAD methodology is a more natural approach than using the α-MPP,

because it frees the user from having to choose an observation α at each iteration of the process

of generating patterns in LAD. Moreover, due to the order in which the α observations are

selected, it is possible that no optimal pattern to the MPP is found in the process of computing

enough α-patterns to cover Ω+.

2.4 Optimal prime patterns: the maximum pattern of minimum degree problem (MP-

MDP)

As discussed in the previous section, the MPP allows us to find strong patterns

and spanned patterns of maximum coverage. Spanned patterns offer a safeguard against “false

positives” in LAD, while prime patterns provide a safeguard against “false negatives” (HAMMER
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et al., 2004). Thus, we might also be interested in finding prime patterns of maximum coverage.

Guo and Ryoo (2012) adapted their formulation for the MPP to generate prime patterns. We

hereby define the maximum pattern of minimum degree problem (MPMDP), which asks for a

maximum pattern P∗ of minimum degree, i.e., P∗ ∈ argmin{δ (P) : P ∈ R∗}. We note that P∗

is a prime pattern. Prime patterns are useful in the sense that their smaller number of literals

could make them, in theory, more easily understood by experts, while also performing well as

classification rules.

Example 2. Consider the dataset given in Table 1. There are 7 maximum patterns, R∗ =

{u1u2, u1u2u3, u1u3u5, u1u5, u2, u2u3, u4u5}, each covering 3 observations. The maximum

pattern of minimum degree is u2, which covers observations x3, x4, and x5.

2.5 Bonates et al. ILP model for the α-MPP

Let w(β ) = { j ∈ {1, . . . ,n} : β j 6= α j} be the set of indexes of the attributes in which

observation β ∈ Ω+ differs from α . Let y j be a binary decision variable. If α j = 1, then y j

equals 1 if the pattern contains u j. If α j = 0, then y j equals 1 if the pattern contains u j. The

α-MPP can be formulated as the following integer nonlinear programming model (BHK-NL),

which amounts to a nonlinear objective function subject to set covering constraints:

(BHK-NL) maximize ∑
β∈Ω+\{α}

∏
j∈w(β )

(1− y j) (2.8)

subject to ∑
j∈w(γ)

y j ≥ 1, ∀ γ ∈Ω
−, (2.9)

y j ∈ {0,1} j = 1, . . . ,n. (2.10)

For a given observation β , the product of the terms 1− y j, with α j 6= β j, equals 1 only when

the variables y j are set to 0, i.e., when there are no conflicts between β and the literals selected

to belong to the pattern. In such a case, the pattern defined by y j-variables covers β . Objective

function (2.8) is the sum of products defined for each positive observation, except for α , i.e,

it amounts to the number of additional observations covered by the pattern defined by the

y j-variables. Set of constraints (2.9) state that for each negative observation γ , at least one

of the literals in w(γ) is selected, ensuring that γ is not covered by the pattern defined by the

y j-variables.

The BHK-NL model can be linearized via the introduction of another set of decision

variables. Let zβ be a binary decision variable, for β ∈Ω+ \{α}, which equals 1 if β is covered
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by the pattern defined by the y j-variables:

zβ =

1, if β is covered by the pattern;

0, otherwise.

The BHK-NL model can be reformulated as the following integer linear programming model

(BHK):

(BHK) maximize ∑
β∈Ω+\{α}

zβ (2.11)

subject to ∑
j∈w(γ)

y j ≥ 1, ∀ γ ∈Ω
− (2.12)

|w(β )| · zβ + ∑
j∈w(β )

y j ≤ |w(β )|, ∀ β ∈Ω
+ \{α}, (2.13)

y j ∈ {0,1}, j = 1, . . . ,n, (2.14)

zβ ∈ {0,1}, ∀ β ∈Ω
+ \{α}. (2.15)

Objective function (2.11) is now straightforward: it amounts to the number of observations

covered by the pattern, in addition to α itself. However, the set of constraints (2.13) is added in

order to link y j-variables to zβ -variables. If the pattern defined by y j-variables covers β , then the

sum of the y j-variables in which α and β differ for attribute j equals 0. In that case, a constraint

in (2.13) amounts to zβ ≤ 1. Observe that, in such a case, the sense of the objective function

will ensure that zβ is set to 1. On the other hand, if there is a number k ≥ 1 of literals in the

pattern defined by the y j-variables in which α and β differ for attribute j, then the corresponding

constraint in (2.13) amounts to zβ ≤ (|w(β )|−k)/|w(β )|. In that case, since zβ < 1, it is set to 0.

2.6 Ryoo and Jang MILP model for the MPP

Let zβ be defined as in Section 2.5. Let y+j and y−j be binary decision variables,

where y+j equals 1 when the positive literal u j belongs to the pattern, and y−j equals 1 when the

negative literal u j belongs to the pattern, respectively:

y+j =

1, if u j belongs to the pattern;

0, otherwise;
and y−j =

1, if u j belongs to the pattern;

0, otherwise.
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Ryoo and Jang (2009) formulation for the MPP introduces an integer decision variable d, which

indicates the degree of the pattern:

(RJ) minimize ∑
β∈Ω+

(1− zβ ) (2.16)

subject to ∑
j: γ j=1

y+j + ∑
j: γ j=0

y−j ≤ d−1, ∀ γ ∈Ω
− (2.17)

n · (1− zβ )+ ∑
j: β j=1

y+j + ∑
j: β j=0

y−j ≥ d, ∀ β ∈Ω
+ (2.18)

y+j + y−j ≤ 1 j = 1, . . . ,n (2.19)
n

∑
j=1

(y+j + y−j ) = d (2.20)

y+j , y−j ∈ {0,1}, j = 1, . . . ,n, (2.21)

zβ ∈ {0,1}, ∀ β ∈Ω
+, (2.22)

1≤ d ≤ n. (2.23)

Objective function (2.16) corresponds to the number of positive observations not covered by

the pattern and is to be minimized. Constraints (2.17) state that, given a negative observation

γ and a pattern of degree d, there are at most d−1 literals in the pattern that agree with γ , i.e.,

there is at least one literal in the pattern which is in conflict with γ . Constraints (2.18) state that

if less than d literals that are selected agree with a given positive observation β , then β is not

covered by the pattern. Otherwise, the minimization of objective function ensures that zβ is set to

1. Constraints (2.19) state that a pattern will not contain a positive literal and its corresponding

negative literal simultaneously. Note that constraints (2.19) can be omitted from the formulation.

Constraints (2.20) state that the pattern contains d literals. Since d is the sum of binary variables,

its integrality condition can be relaxed.

2.7 Guo and Ryoo MILP model for the MPP

Guo and Ryoo (2012) proposed a formulation for the MPP, which can be seen

as a generalization of BHK, and which, according to the authors, performs better in practice

than RJ. Let y+j and y−j be binary decision variables as defined in Section 2.6. Let zβ be

defined as in Section 2.5. For a given β ∈Ω, let w+(β ) = { j ∈ {1, . . . ,n} : β j = 0} be the set

of indexes of the attributes in which β has a conflict with the corresponding positive literal,

that is, the set of indexes j in which u j(β ) = 0. Let ω−(β ) be similarly defined, that is,

w−(β ) = { j ∈ {1, . . . ,n} : β j = 1} is the set of indexes j in which u j(β ) = 0. The MPP can be
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formulated as

(GR) maximize ∑
β∈Ω+

zβ (2.24)

subject to ∑
j∈ω+(γ)

y+j + ∑
j∈ω−(γ)

y−j ≥ 1, ∀ γ ∈Ω
−, (2.25)

zβ + y+j ≤ 1, ∀ β ∈Ω
+, ∀ j ∈ w+(β ) (2.26)

zβ + y−j ≤ 1, ∀ β ∈Ω
+, ∀ j ∈ w−(β ) (2.27)

y+j , y−j ∈ {0,1}, j = 1, . . . ,n, (2.28)

zβ ∈ {0,1}, ∀ β ∈Ω
+ (2.29)

Set of constraints (2.25) is a generalized version of (2.12). Constraints (2.26) state that given

an observation β , if β is covered, i.e., zβ = 1, then y+j must be set to 0 in those cases in which

β does not agree with the corresponding literal, i.e., in those cases where β j = 0. Conversely,

if β j = 0 and the positive literal for attribute j is selected, i.e., y+j = 1, then zβ must be set to 0.

Thus, zβ and y j cannot equal 1 simultaneously. The role played by constraints (2.27) is analogous

to that of (2.26). Furthermore, given an observation β , if y+j equals 0 for every j ∈ w+(β ) and

y−j equals 0 for every j ∈ w−(β ), then each constraint in (2.26) and (2.27) amounts to zβ ≤ 1.

Since the objective function is to be maximized, zβ is set to 1.

2.7.1 Adaptation to the MPMDP

Let ω be a real number, with ω ∈ [−1/(n+1),0). Guo and Ryoo (2012) adapted

GR for generating prime patterns by altering the objective function (2.24) to

∑
β∈Ω+

zβ +ω ·
n

∑
j=1

(y+j + y−j ) (2.30)

Let z∗3a be the optimal value for GR and let z∗3b be the optimal value for GR with objective

function (2.30). Notice that z∗3b ∈ [z∗3a−n/(n+1),z∗3a). The coefficient ω in the second term

of the objective function is chosen in order to guarantee that any optimal solution for GR with

objective function (2.30) still has maximum coverage, while penalizing the number of literals

in the resulting pattern. Observe that if ω ∈ [−1/(n+ 1),0), then the formulation solves the

MPMDP.
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2.8 Yan and Ryoo MILP models for the MPP

Depending on the dataset, the number of constraints defined by (2.26) and (2.27)

may be too large. Yan and Ryoo (2017a) proposed two alternative sets of constraints that can

replace (2.26) and (2.27) in model (GR). The first set is given by

n · zβ + ∑
ω+(β )

y+j + ∑
ω−(β )

y−j ≤ n, ∀ β ∈Ω
+, (2.31)

which is a generalization of (2.13). The linear relaxation of an alternative formulation, which we

shall refer to as YRa, obtained by replacing (2.26) and (2.27) with (2.31),

(YRa) maximize (2.24), subject to (2.25), (2.31), (2.28), (2.29),

is weaker than GR. Indeed, observe that a constraint for a given observation β in (2.31) is a linear

combination of constraints in (2.26) and (2.27). Thus, every point that satisfies both (2.26) and

(2.27), also satisfies (2.31). On the other hand, a point satisfying (2.31) may not satisfy (2.26)

and (2.27). For instance, a feasible solution (for the linear relaxation) in which zβ = 1/n, y+k = 1,

for some k ∈ w+(β ), y+j = 0, ∀ j ∈ w+(β ) \ {k}, and y−j = 0, ∀ j ∈ w−(β ), satisfies (2.31) if

n≥ 2, but does not satisfy (2.26).

Despite YRa having a weaker relaxation than GR, (2.31) contains only |Ω+| con-

straints, while (2.26) and (2.27) contain n · |Ω+| constraints. Another set of constraints, which

contains only 2n constraints, can be defined by means of a different linear combination of con-

straints (2.26) and (2.27), such that each literal – instead of each positive observation – defines a

constraint:

|v+( j)| · y+j + ∑
β∈v+( j)

zβ ≤ |v+( j)|, j = 1, . . . ,n, (2.32)

|v−( j)| · y−j + ∑
β∈v−( j)

zβ ≤ |v−( j)|, j = 1, . . . ,n, (2.33)

where v+( j) = {β ∈Ω+ : β j = 0} and v−( j) = {β ∈Ω+ : β j = 1}. If y+j equals 1, then zβ must

equal 0 for every observation β ∈ Ω+ in which β j = 0. The idea is analogous if y−j = 1. If

y+j = 0, then the positive literal for attribute j is not selected and the constraint does not forbid

the observations β ∈ |v+( j)| from being covered by the pattern. Since the objective function

is to be maximized, as many zβ -variables as possible are set to 1. Depending on the dataset, it

may be the case that the number of literals is inferior to the number of positive observations. An

alternative formulation YRb can be obtained from GR by replacing both (2.26) and (2.27) with
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(2.32) and (2.33):

(YRb) maximize (2.24), subject to (2.25), (2.32), (2.33), (2.28), (2.29).

2.8.1 Valid inequalities

In (YAN; RYOO, 2017b), the authors used graph theoretic analysis of data to

discover useful neighborhood properties among data, which allowed them to derive the so-called

(extended) hypercube inequalities. These inequalities are stronger than the so-called minimal

cover inequalities in (2.25) that yield them.

Example 3. Observations x7 and x10 in Table 1 define the minimal cover inequalities y+1 + y+2 +

y−3 +y+4 +y−5 ≥ 1 and y+1 +y+2 +y−3 +y+4 +y+5 ≥ 1, respectively. The Hamming distance between

observations x7 and x10 is 1, that is, they differ in only one attribute. Thus, x7 and x10 are

considered to be neighbours. Furthermore, they compose a hypercube of dimension d = 1 and

this neighbourhood property allows us to replace the corresponding 2d = 21 inequalities with a

single stronger hypercube inequality, y+1 + y+2 + y−3 + y+4 ≥ 1.

In (YAN; RYOO, 2019), the authors further enhanced the GR model by discovering

a new neighborhood property among data, allowing them to derive what we shall refer to as

clique inequalities, which are stronger than the so-called McCormick inequalities in (2.26) and

(2.27) that yield them.

Table 3 – Pattern generation models
Yan and Ryoo (2017b)’s Yan and Ryoo (2019)’s

Model Base extended hypercube clique
name model inequalities inequalities

GR GR No No
GRehi GR Yes No
GRcliques GR No Yes
GRehi

cliques GR Yes Yes

YRa YRa No No
YRaehi YRa Yes No

YRb YRb No No
YRbehi YRb Yes No

Source: The author.

Example 4. Observations x2 and x4 in Table 1 define the McCormick inequalities zx2 + y−5 ≤ 1

and zx4 + y−5 ≤ 1 for literal u5, respectively. Let I be the set of literals that assume value 1
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on both observations, i.e., I = {u5}. Since I defines a term T = u5 which covers a negative

observation, in this case x7, then x2 and x4 are considered to be neighbours. Consider a graph

where the nodes are the positive observations and the edges connect the observations that are

neighbours. In such a graph, x2 and x4 compose a maximal clique. That allows us to replace the

corresponding 2 inequalities with a single stronger clique inequality, zx2 + zx4 + y−5 ≤ 1.

We shall not get into further details into the theory behind these inequalities as this

would extend way beyond the focus of our work. However, we use them in our computational

experiments, which are reported in Chapter 5. We shall use the nomenclature specified in Table

3. For the GR model, we can use the extended hypercube inequalities, the clique inequalities, or

both. For the YRa and YRb models we can only use the extended hypercube inequalities.
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3 DECISION DIAGRAMS FOR OPTIMIZATION: AN OVERVIEW

In this chapter, we present the DD-based branch-and-bound proposed by Bergman et

al. (2016) for solving a discrete optimization problem P . In Sections 3.1 and 3.2, we formally

define P and define the notation for DDs, which we use throughout the chapter. In Sections

3.3 to 3.7, we show how to model P in order to solve it via DDs, and how to compile exact,

restricted and relaxed DDs for P . In Section 3.8, we show how to solve P by incorporating

restricted and relaxed DDs into a branch-and-bound scheme.

3.1 Discrete optimization problems

Let X = {x1, . . . ,xn} be a set of n decision variables, D j be the domain of x j, for

j ∈ {1, . . . ,n}, D = D1× ·· · ×Dn be the Cartesian product of the domains of the variables,

and f : D→ R be a real-valued function over D. Let a constraint Ci(x) be defined as a pair

(Var(Ci),Val(Ci)), where Var(Ci) = {xi1, . . . ,xik} ⊆ X is a subset of k variables, and Val(Ci)⊆

Di1×·· ·×Dik is the set of tuples that satisfy the constraint, with 1≤ i1 ≤ ·· · ≤ ik ≤ n. Ci(x) is

satisfied by x = (x1, . . . ,xn) if (xi1, . . . ,xik) ∈Val(Ci), and violated otherwise. Let {C1,. . . ,Cm}

be a set of m constraints. Let P be a discrete optimization problem of the form:

(P) maximize f (x)

subject to Ci(x), i = 1, . . . ,m

x ∈ D.

A solution of P is any x ∈ D, and a feasible solution to P is any solution that satisfies all

constraints Ci, for i = 1, . . . ,m. The set of feasible solutions of P is denoted by Sol(P). A

feasible solution x∗ is optimal for P if f (x∗)≥ f (x) for all x ∈ Sol(P). The optimal solution

value f (x∗) is denoted by z∗.

Example 5. Let E be a set of m elements and F = {E1,E2, ...,En} be a collection of n subsets

of E. Let each subset E j be associated with a cost c j. Any element e ∈ E j is said to be covered

by E j. Weighted set cover is the problem of selecting, at minimum total cost, subsets from F

such that every element in E is covered by at least one of the selected subsets. A formulation for
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it is given by

minimize
n

∑
j=1

c jx j (3.1)

subject to ∑
j: e∈E j

x j ≥ 1, ∀e ∈ E (3.2)

x j ∈ {0,1}, j = 1, . . . ,n, (3.3)

where x j is a binary decision variable that equals 1 when subset E j is selected. Constraints (3.2)

state that for every element e ∈ E, at least one subset that covers e is selected.

3.2 Decision diagrams: definitions

A decision diagram (DD) is a graphical structure that encodes a set of solutions to

problem P . Formally, a decision diagram B = (U,A,d) is a layered directed acyclic multigraph

with node set U , arc set A, and arc labels d. The node set U is partitioned into layers L1, . . . ,Ln+1,

where layers L1 and Ln+1 consist each of a single node, the root node r and the terminal node t,

respectively:

U =
n+1⋃
j=1

L j, L1 = {r} and Ln+1 = {t}.

Each arc a ∈ A is directed from a node in some layer L j to a node in L j+1, has a label d(a) ∈ D j,

and represents the assignment of value d(a) to variable x j, for j = 1, . . . ,n.

When D j = {0,1}, for j = 1, . . . ,n, B is called a binary decision diagram (BDD). B

is called a multivalued decision diagram (MDD), otherwise. The index of the layer to which

node u ∈ L j belongs is denoted by `(u), i.e, `(u) = j. No two arcs leaving the same node have

the same label. An arc with label d coming out of a node u is denoted by ad(u), while bd(u)

denotes the node u′ at the endpoint of arc ad(u). The width of layer L j is the number of nodes in

L j, and the width of B is max j{|L j|}. The size of B is the number of nodes in U . Given u,w ∈U ,

let Uvw be the set of nodes that belong to some u−w path. We denote by Buw the subgraph of B

induced by Uvw.

Every arc-specified path p = 〈a1, . . . ,an〉 from r to t encodes an assignment to the

variables x1, . . . ,xn, namely x j = d(a j), for j = 1, . . . ,n. This assignment is denoted by xp. The

set of r to t paths of B encodes the set of assignments Sol(B). In weighted DDs, each arc a ∈ A

is associated with a weight v(a). In Section 3.3, more details are given on how weighted DDs

are used to represent optimization problems. The length of p is given by the sum of the weights
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Figure 1 – A BDD
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of its arcs:

v(p) =
n

∑
j=1

v(a j).

The length of a longest r− t path in B is denoted by v∗(B). Given two nodes u and w, the

length of a longest u−w path in Buw is denoted by v∗(Buw) Observe that there are no positive-

length directed circuits in B, therefore the longest path between two nodes can be computed in

polynomial time with the Dijkstra algorithm (AHUJA et al., 1988).

Two nodes belonging to the same layer L j are equivalent when the sets of paths from

each to the terminal node are the same, i.e., they correspond to the same set of assignments to

(x j, . . . ,xn), which implies that either of them is redundant in the representation. A reduced DD

is a DD such that no two nodes of any layer are equivalent (WEGENER, 2000). Reduced DDs

can be unsuitable for optimization, because the arc lengths from equivalent nodes may differ

(HOOKER, 2013).

Example 6. The DD of Figure 1 is a BDD with 6 layers and width 3. Each r− t path encodes

an assignment to variables x1 to x5. For instance, the assignment x = (0,1,1,0,1) is encoded by
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the path r−u1−u3−u6−u8− t, which has length 9. The longest r− t path has length 13. The

DD is not reduced: observe that nodes u3 and u4 are equivalent.

3.2.1 Variable ordering

The ordering of variables can have a significant effect on the size of DDs, and it can

also influence the quality of the objective function bounds provided by them (BERGMAN et

al., 2012). Let σ : {1, . . . ,n}→ {1, . . . ,n} be a bijective function that defines a variable ordering.

Thus, each arc a ∈ A directed from a node in some layer L j to a node in L j+1 now represents the

assignment of some value d(a) to variable xσ( j), for j = 1, . . . ,n. Without loss of generality, we

ignore variable ordering notation in the remaining of this chapter, that is, we define xσ( j) = x j.

3.3 Dynamic programming formulations

Formulating P in order to solve it via DDs requires the formulation of a dynamic

programming (DP) model. In this Section, we focus on DP formulations, which are used for

compiling exact, restricted, and relaxed DDs. In Section 3.6, we describe the merging operators,

which are used for compiling relaxed DDs.

A DP formulation for P contains three elements: state spaces S j, transition functions

t j, and transition cost functions h j. Each state space S j accounts for the j-th stage of the DP

model, for j = 1, . . . ,n+1. State space S1 consists of a single state: the root state r̂. State space

Sn+1 consist of a finite set of k terminal states t̂1, . . . , t̂k and an infeasible state 0̂. Except for S1,

any state space contain an infeasible state 0̂. Thus,

S1 = {r̂},

0̂ ∈ S j, j = 2, . . . ,n, and

Sn+1 = {t̂1, . . . , t̂k, 0̂}.

The transition from state s j ∈ S j to state s j+1 ∈ S j+1 is governed by the control

variable x j, i.e., the state s j+1 is the result of modifications to the state s j caused by the assignment

of the control variable x j to some element d ∈ D j. These modifications are defined by the

transition functions t j : S j ×D j → S j+1, for j = 1, . . . ,n, and their costs are given by the

functions h j : S j×D j→ R, for j = 1, . . . ,n. A transition from an infeasible state always leads

to an infeasible state, i.e., t j(0̂,d) = 0̂, for all d ∈ D j.
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Let s = (s1, . . . ,sn+1) be a tuple of n+1 state variables, S = S1×·· ·×Sn+1 be the

Cartesian product of the domains of the state variables, i.e., s j ∈ S j, for j = 1, . . . ,n+1, and let

f̂ : S×D→ R be a real-valued function. A DP formulation for P can be written as

(DP) maximize f̂ (s,x) =
n

∑
j=1

h j(s j,x j) (3.4)

subject to s j+1 = t j(s j,x j), j = 1, . . . ,n (3.5)

s ∈ S, (3.6)

x ∈ D. (3.7)

A separable objective function f for P is a function that can be written as

f (x) =
n

∑
j=1

f j(x j).

A linear function is an example of a separable function. Modeling the transition cost functions

when f is separable is simple. It is natural to define

f j(x j) = h j(s j,x j), j = 1, . . . ,n.

However, DDs can also accomodate nonseparable objective functions (e.g., nonlinear functions)

with the assignment of so-called canonical arc costs (HOOKER, 2013).

Example 7. (BERGMAN et al., 2016) Consider the weighted set cover problem defined in

Section 3.1 (Example 5). Let S j be the following state spaces, for j = 1, . . . ,n+1, and let the

root state r̂ be the set of all elements E:

S1 = {E}, S j = 2E ∪{0̂}, j = 2, . . . ,n, and Sn+1 = { /0}.

Let a state variable s j represent a subset of elements or the infeasible state. The idea of the

DP model is to start from a position where no element is covered. Thus, the root state is the

set of all elements. Let x j, for j = 1, . . . ,n, be control variables, such that x j equals 1 if E j is

selected, and equals 0 otherwise. If a subset is selected, then all elements covered by it are

removed in the resulting state. If not, no element is removed from the resulting state. In case

there is an element that cannot be covered by any subset whose selection is yet to be decided, the

corresponding transition is deemed infeasible, that is, the resulting state is 0̂. Let the transition
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functions t j : S j×{0,1}→ S j+1, for j = 1, . . . ,n, be defined as

t j(s j,x j) =


s j, if x j = 0 and @ e ∈ s j : e /∈ Ek, ∀k ∈ { j+1, . . . ,n};

s j \E j, if x j = 1;

0̂, otherwise.

Recall that the definition of transition function requires that t j(0̂,x j) = 0̂, for all j. Given a

state s j, a 1-transition is always feasible and leads to the state s j \E j. A 0-transition is feasible

when for every element e ∈ s j there exists a subset Ek, with k > j, such that e ∈ Ek. Otherwise,

the 0-transition is infeasible. The cost functions h j : S j ×{0,1} → R, for j = 1, . . . ,n, are

straightforward:

h j(s j,x j) =−c jx j.

Since the objective function of the problem corresponds to the total weight of the selected subsets,

it is natural that a 0-transition has cost 0 and a 1-transition has cost −c j. The negative sign is

introduced in order to be consistent with the definitions for a maximization problem in Section

3.1.

3.3.1 Validity

A valid DP formulation leads to an exact DD for P . In Section 3.4, we describe

what an exact DD is and how it can be compiled. A DP formulation is valid for P if for every

x ∈ D, there is an s ∈ S such that (s,x) is feasible for DP , that is, (s,x) satisifies conditions

(3.5)-(3.7), and

sn+1 = t̂i, for some i ∈ {1, . . . ,k}, f̂ (s,x) = f (x), if x is feasible for P, and (3.8)

sn+1 = 0̂, if x is infeasible for P. (3.9)

Let BDP be the graph obtained from the state-transition graph for the DP model by omitting all

occurrences of the infeasible state 0̂, letting each remaining arc from state s j to state t j(s j,x j)

have length equal to the transition cost h j(s j,x j), and by merging the terminal states t̂i into a

single terminal state t̂. BDP is an exact DD for P , a concept which we present next in Section 3.4.

Each node in BDP is associated with a state from the corresponding DP model. In what follows,

no distinction is made between a node in BDP and a state. Furthermore, each layer is associated

with an stage, and each arc is associated with a transition, while its weight is associated with the

cost of the transition.



32

3.4 Exact decision diagrams

B is an exact decision diagram for P if the r− t paths in B encode precisely the

feasible solutions of P , and the length of any r− t path equals the objective function value of

the solution encoded by the path. More formally, B is exact for P when

Sol(P) = Sol(B) (3.10)

f (xp) = v(p), for all r− t paths p in B. (3.11)

A longest r− t path in B encodes an optimal solution x∗ to P and its length v∗(B) equals the

optimal value f (x∗) of P . Analogously, the length of a shortest path in an exact DD for a

minimization problem equals the optimal value of the problem.

Algorithm 1: compile_exact_DD
output :decision diagram (U,A,d)

1 L1←{r̂}
2 for j = 1, . . . ,n
3 L j+1← compile_layer(L j)
4 t← blend(Ln+1)
5 Ln+1←{t}
6 return (U,A,d)

Given a DP model for P , the compilation of an exact DD P is straightforward. A

procedure for accomplishing this task is described in Algorithm 1. It is assumed that a valid DP

model for P is an input of all algorithms in this chapter. The root node (state) r̂ is added to the

first layer. Each subsequent layer is built as described in Algorithm 2. Given a layer L j, for each

node u ∈ L j and each element d ∈ D j, if the transition t j(u,d) is feasible, then a new node u′

with state t j(u,d) is created (if it does not already exist) and added to layer L j+1. Then an arc

from u to u′, with weight h j(u,d), is created. Lastly, the nodes in the last layer are blended into

the single node t (lines 5-6 of Algorithm 1, which has no particular associated state.

Computing a longest path in an exact DD can be done in polynomial time in the size

of the diagram. However, compiling an exact DD for an NP-hard problem may not be a viable

option, since the size of the DD can grow exponentially with the size of the problem. In the

worst case scenario, a layer L j in a BDD will contain 2 j−1 nodes. This is expected, otherwise we

would have P = NP. The size of a DD can be controlled by bounding its width, at the cost of no

longer satisfying conditions (3.10) and (3.11). In Sections 3.5 and 3.6, we describe how this can

be done when compiling so-called restricted and relaxed DDs, respectively.
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Algorithm 2: compile_layer
input : layer L j
output : layer L j+1

1 L j+1← /0
2 for u ∈ L j
3 for i ∈ D j : t j(u, i) 6= 0̂
4 u′← t j(u, i) /* Create node */
5 L j+1← L j+1∪{u′} /* Add node to layer */
6 bi(u)← u′ /* Create arc */
7 v(ai(u))← h j(u, i) /* Set arc weight */
8 return L j+1

Figure 2 – An exact DD
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Example 8. Consider an instance of the weighted set cover problem defined in Section 3.1

(Example 5), where E = {1,2,3,4,5}, F = {{1,2},{1,3},{2,3,4},{4,5},{5}}, and associated



34

costs are c = (2,1,5,2,3). Its formulation as an ILP problem is given by

minimize 2x1 + x2 +5x3 +2x4 +3x5 (3.12)

subject to x1 + x2 ≥ 1 (3.13)

x1 + x3 ≥ 1 (3.14)

x2 + x3 ≥ 1 (3.15)

x3 + x4 ≥ 1 (3.16)

x4 + x5 ≥ 1 (3.17)

There are 11 feasible solutions for this instance. The optimal solution is x∗= (1,1,0,1,0) and the

optimal value is 5. The BDD of Figure 2 is an exact DD for this instance obtained by executing

Algorithm 1 using the DP model described in Section 3.3 (Example 7), and inverting the sign of

the arc costs. Observe that every r− t path in the BDD encodes a feasible solution and each

feasible solution is encoded by a path. In particular, the shortest path r−u2−u5−u7−u9− t

(following the 0-arc from u9 to t) encodes the optimal solution and its length equals the optimal

value of 5.

3.5 Restricted decision diagrams

B is a restricted decision diagram for P if the r− t paths in B encode a subset of

the feasible solutions of P , and the length of any r− t path is a lower bound on the objective

function value for the solution encoded by the path. That is, B is restricted for P if

Sol(P) ⊇ Sol(B) (3.18)

f (xp) ≥ v(p), for all r− t paths p in B. (3.19)

A longest r− t path in B encodes a feasible solution x to P and its length v∗(B) is a lower bound

on the optimal value z∗ for P . Analogously, the length of a shortest path in a restricted DD for a

minimization problem provides an upper bound on the optimal value of the problem.

Compiling a restricted DD for P is similar to compiling an exact DD, the difference

being that the width of the DD is controlled so as to not exceed a maximum width parameter W

(see lines 3 to 5 of Algorithm 3). After building a layer, a subset M of its nodes is heuristically

selected and removed. This procedure is repeated until the width of the layer is at most W . Node

selection (function node_select_removal) is discussed in Section 3.7.
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Algorithm 3: compile_restricted_DD
input :node r, maximum width W
output :decision diagram (U,A,d)

1 L`(r)←{r}
2 for j = `(r), . . . ,n
3 while |L j|>W
4 M← node_select_removal(L j)
5 L j← L j \M
6 L j+1← compile_layer(L j)

7 t← blend(Ln+1)
8 Ln+1←{t}
9 return (U,A,d)

A slight difference between the algorithms for compiling exact DDs and restricted

DDs is that the compilation of a restricted DD does not necessarily start with the first layer

(unless the root state of the DP model is passed to the algorithm as an input). This modification is

done in order to accommodate the algorithm into a branch-and-bound scheme, where a restricted

DD is not compiled for P , but for a subproblem of P . The use of restricted DDs in this context

is described in Section 3.8.

Observe that the DD obtained by executing Algorithm 3 for P is restricted. Indeed,

the procedure of eliminating nodes only causes the loss of feasible solutions, thus condition

(3.18) is satisfied. Furthermore, the length v(p) of an r− t path p equals the objective function

value f (xp) for the solution encoded by p, thus condition (3.19) is also satisfied.

Example 9. Consider the instance for the weighted set cover problem given in Section 3.4

(Example 8). The BDD of Figure 3 is a restricted DD of maximum width 2 for this instance. It is

obtained by executing Algorithm 3 using the DP formulation given in Section 3.3 (Example 7),

and inverting the sign of the arc costs. The BDD is similar to the exact DD of Figure 2, as it is

obtained by starting the construction from the root state and selecting node u5 to be eliminated

when the third layer is compiled. The shortest path in the resulting BDD has length 8, which is

an upper bound on the optimal value of 5.

3.6 Relaxed decision diagrams and merging rules

B is a relaxed decision diagram for P if the r− t paths in B encode a superset of the

feasible solutions of P , and the length of any r− t path that encodes a feasible solution of P is

an upper bound on the objective function value of the solution encoded by the path. That is, B is
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Figure 3 – A restricted DD
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relaxed for P if

Sol(P) ⊆ Sol(B) (3.20)

f (xp) ≤ v(p), for all r− t paths p in B for which xp ∈ Sol(P). (3.21)

A longest r− t path in B encodes a solution x of P , which may or may not be feasible, and

its length v∗(B) is an upper bound on the optimal value z∗ of P . Analogously, the length of a

shortest path in a relaxed DD for a minimization problem provides a lower bound on the optimal

value of the problem. Naturally, if the solution encoded by an optimal path is feasible, and its

value equals the length of the optimal path, then the solution is also optimal.

When compiling restricted DDs, selected nodes are eliminated when the width of a

layer exceeds the maximum width parameter. When compiling relaxed DDs, however, nodes are

merged, instead of eliminated. The merging procedure is defined by two operators: ⊕ and ΓM.

These operators are valid if applying Algorithm 4 to P results in a DD that satisfies conditions

(3.20) and (3.21). Validity conditions are discussed in Section 3.6.1. The operator⊕ is a function

⊕ : 2S j → S j, for j = 2, . . . ,n−1, which takes a subset M of nodes (states) in layer L j and returns
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Algorithm 4: compile_relaxed_DD
input :node r, maximum width W
output :decision diagram (U,A,d)

1 L`(r)←{r}
2 for j = `(r), . . . ,n
3 while |L j|>W
4 M← node_select_merger(L j)
5 u′←⊕(M)
6 for u ∈ L j−1
7 for i ∈ D j−1 : bi(u) ∈M
8 v(ai(u))← ΓM(v(ai(u)),bi(u))
9 bi(u)← u′

10 L j← (L j \M)∪{u′}
11 L j+1← compile_layer(L j)

12 t← blend(Ln+1)
13 Ln+1←{t}
14 return (U,A,d)

a state ⊕(M) ∈ S j. The operator ΓM is a function ΓM : R×M→ R, which takes the length of an

arc coming into a node u ∈M and returns a real value ΓM(v,u).

After building a layer L j, a node merger operation is applied to L j, which consists

in heuristically selecting a set M of nodes in L j to be merged into the single node u′ =⊕(M).

Each incoming arc at some node u ∈M is redirected to u′, while its cost v is modified to ΓM(v,u).

L j is then updated with the removal of all nodes u ∈M from L j and with the addition of u′ to

L j. This procedure is repeated until the width of the layer is at most W (see lines 4 to 10 of

Algorithm 4). Node selection (function node_select_merger) is discussed in Section 3.7.

We remark that there is another procedure in the literature for compiling relaxed DDs,

which is based on node splitting, rather than node merging. The idea of the so-called compilation

by separation algorithm is to start with a (trivial) relaxed DD and apply operations on the nodes

called filtering and refinement (BERGMAN et al., 2016). Filtering consists in removing arcs

for which the corresponding transition functions lead to an infeasible state. Refinement consists

of splitting nodes to strengthen the DD representation, as long as the size of the layer does not

exceed the maximum width. The algorithm is derived from the incremental refinement algorithm

proposed by Hadzic et al. (2008). As examples of the use of the algorithm we can mention, Hoda

et al. (2010) applied the algorithm for constraint propagation in constraint programming, while

Cire and Hoeve (2013) applied the procedure for sequencing problems.
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3.6.1 Validity of relaxation operators

Hooker (2017) proved general conditions under which a node merger operation

defined by ⊕ and ΓM yields a valid relaxation. A state u′ ∈ L j relaxes a state u ∈ L j if (i) all

feasible transitions from state u are also feasible from state u′, and (ii) the immediate cost of any

feasible transition from u is at most that of its immediate cost from u′, that is,

t j(u,e) 6= 0̂ =⇒ t j(u′,e) 6= 0̂, ∀ e ∈ D j,

h j(u,e) ≤ h j(u′,e), ∀ e ∈ D j.

Two conditions must be satisfied in order for a node merger operation to yield a valid relaxation.

The first condition establishes that when u′ relaxes u, if the transition function is applied to both

of them with the same control (and the resulting states are feasible), then the resulting state from

u′ relaxes the resulting state from u. Recasting this in terms of state ⊕(M), we have

t j(⊕(M),e) relaxes t j(u,e), ∀ u ∈M, e ∈ D j : t j(u,e) 6= 0̂. (3.22)

The second condition requires that the resulting state from the merger relaxes all the

merged states, that is,

⊕(M) relaxes u, ∀ u ∈M. (3.23)

Theorem 3.6.1. (HOOKER, 2017) If conditions (3.22) and (3.23) are satisfied, the merger of

nodes in M within a decision diagram B results in a valid relaxation of B.

Example 10. A valid node merger operation for the DP formulation of the weighted set cover

problem given in Section 3.3 (Example 7) is

⊕M =
⋂

u∈M

u and ΓM(v,u) = v.

The rationale for the node merger operation is to consider as covered some elements that are

not actually covered and, consequently, introduce infeasible solutions without removing feasible

ones. By taking the intersection of nodes in M, all those elements that were covered in some

states but not in others are considered to be covered in the resulting state. Furthermore, there is

no change to the costs of the incoming arcs to the resulting state. It can be verified that these

operators satisfy the conditions of Theorem 3.6.1.
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Figure 4 – A relaxed DD
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Consider the instance for the weighted set cover problem given in Section 3.4

(Example 8). The BDD of Figure 4 is a relaxed DD of maximum width 2 for that instance. It is

obtained by executing Algorithm 4 using the DP formulation given in Section 3.3 (Example 7),

and inverting the sign of the arc costs. The BDD is similar to the exact DD of Figure 2, as it is

obtained by selecting nodes u4 and u5 to be merged when the third layer is compiled, resulting

in the node v1. The shortest path in the resulting BDD has length 4, which is a lower bound on

the optimal value of 5. It encodes the infeasible solution (1,0,0,1,0), which was introduced in

the BDD by the merge operation.

3.7 Node selection for restricted and relaxed DDs

When compiling restricted and relaxed DDs, it is necessary to heuristically select a

subset of nodes from a layer. The heuristic can be based on combinatorial properties of P or

it can be a procedure that could be applied to any P . In this Section, we present a case of the

latter: a greedy heuristic, described in Algorithm 5, that selects nodes based on the longest path
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lengths from the root node up to them. This strategy proved to be effective for the maximum

independent set problem (BERGMAN et al., 2013).

Algorithm 5: node_select
input : layer L j, maximum width W
output :set of nodes M

1 M← /0
2 while |L j \M|>W
3 Let û ∈ argmin{v∗(Bru) : u ∈ L j \M}
4 M←M∪{û}
5 return M

The longest r− t path in a restricted DD provides a lower bound on the optimal value

for P , thus it is natural to attempt to build a restricted DD that provides a high lower bound.

Therefore, selecting nodes with small values of v∗(Bru) to be eliminated is a reasonable greedy

heuristic for maximizing the value of the longest path in the resulting restricted DD.

The longest r− t path in a relaxed DD provides an upper bound on the optimal value

for P , thus it is natural to attempt to build a relaxed DD that provides a low upper bound. Owing

to (3.21), a longest path in a relaxed DD is likely to contain a node that was introduced by the

merging operation. Therefore, selecting the nodes u with the smallest value v∗(Bru) to be merged

is a good greedy heuristic for minimizing the value of the longest path in the resulting relaxed

DD.

Example 11. Observe that the choices made for node selection in Sections 3.5 and 3.6 (Examples

9 and 10) did not yield the tightest possible bounds, despite the fact that the heuristic described

in Algorithm 5 was used. Selecting node u3 or node u4 (instead of u5) to be eliminated when

compiling the restricted DD, would yield an upper bound of 5, which equals the optimal value.

Similarly, selecting nodes u3 and u4 (instead of u4 and u5) to be merged when compiling the

relaxed DD, would yield a lower bound of 5, which equals the optimal value. Thus, since the

lower bound equals the upper bound, 5 is the optimal value for the problem and the solution

encoded by the optimal path in the restricted DD is optimal for the problem.

3.8 A decision diagram-based branch-and-bound

The idea of a DD-based branch-and-bound (BAB) comes from the fact that each state

in a DP formulation for a problem represents a subproblem of the original problem P . Thus,
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each node in the corresponding exact DD also represents a subproblem. Naturally, divide-and-

conquer ideas could in turn be used for trying to solve the problem by solving the subproblems

represented by the nodes. In a DD-based BAB, that means branching on the nodes. Like in a

traditional BAB in integer linear programming (ILP), an implicit enumeration of all feasible

solutions is attempted by computing bounds on the optimal value of the subproblems and pruning

unpromising nodes.

In an LP-based BAB, linear relaxations of the subproblems provide dual bounds on

the value of the objective function, while branching is accomplished by generating subproblems

via the addition of linear inequalities that eliminate fractional solutions. Relaxed DDs play

the role of linear relaxations in a DD-based BAB by providing bounds and a direction for

branching. In this case, branching is achieved by selecting so-called exact nodes in the relaxed

DD. Furthermore, in an LP-based BAB, when the solution of the linear relaxation is not integer,

primal heuristics can be used in order to generate primal bounds. This role is played by restricted

DDs in a DD-based BAB.

Let P|u be a restricted version of P , whose feasible solutions are encoded by the

r− t paths that contain node u in an exact DD for P . Let B be a relaxed DD for P . A node u of

B is exact if all r−u paths in B lead to the same state s j. In other words, if the application of the

transition functions over the partial solution encoded by any r−u path leads to the same state.

An exact node u of B represents the subproblem P|u. A cut set of B is a subset S of nodes of

B such that any r− t path in B contains at least one node in S. A cut set is exact if all nodes in

S are exact. Note that every feasible solution for P is encoded by a path that contains at least

one node from any given exact cut set S. Thus, the nodes in an exact cut set encode a partition

of the set of feasible solutions of P . Therefore, an exact cut set of B provides an exhaustive

enumeration of subproblems for P:

Theorem 3.8.1. (BERGMAN et al., 2016) Let S be an exact cut set of a relaxed DD B for P

compiled by Algorithm 4 using a valid DP model. Then

z∗(P) = max
u∈S
{z∗(P|u)}.

A DD-based branch-and-bound implicitly compiles an exact DD B∗ for P by

attempting to avoid the exploration of paths that do not lead to an optimal solution for P . A

description of such a procedure is shown in Algorithm 6. The algorithm begins by compiling a

restricted and a relaxed DD with a root node (state) r̂ for P . The relaxed DD can provide an
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exact cut set, which corresponds to a decomposition of P into a series of subproblems. Each of

these subproblems is then processed in the same fashion.

Algorithm 6: DD_based_BAB
input :maximum width W
output :optimal value zopt

1 Q←{(r̂,0)}
2 zopt ←−∞

3 while Q 6= /0
4 (u,vu)← select_node_branching(Q)
5 Q← Q\{(u,vu)}
6 B̂← compile_restricted_DD(u,W )

7 zlb← vu + v∗(B̂)
8 zopt ←max{zopt ,zlb}
9 if B̂ is not exact then

10 B← compile_relaxed_DD(u,W )

11 zub← vu + v∗(B)
12 if zub > zopt then
13 S← exact_cut set(B)
14 for w ∈ S
15 vw← vu + v∗(Buw)
16 Q← Q∪{(w,vw)}
17 return zopt

At each iteration, a node u, which is associated with a subproblem P|u, is selected

from a queue Q (see line 4 of Algorithm 6). Note that its value vu = v∗(B∗ru) corresponds to

the longest r− u path in the implicitly constructed exact DD B∗ for P . A restricted DD B̂

with maximum width W and u as the root node is compiled (see line 6 of Algorithm 6). If the

length of a longest path in B̂ added to the value of node u provides a higher lower bound value

zlb = vu + v∗(B̂) than that of the best incumbent solution, zopt , then zopt is updated to zlb. If B̂

is exact, then u is pruned by optimality, since zlb is the optimal value for P|u. Otherwise, a

relaxed DD B with maximum width W and root node u is compiled (see line 10 of Algorithm

6). If the length of a longest path in B added to the value of node u provides an upper bound

zub = vu + v∗(B) inferior to that of the best incumbent solution, zopt , then u is pruned by bound,

since P|u does not contain a solution with objective function value higher than zub. Otherwise, a

cut set S of exact nodes in B is selected and added to Q together with their corresponding values

(see lines 13 to 16 of Algorithm 6).
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3.8.1 Search node selection and types of exact cut sets

In an implementation of a DD-based BAB the user has to choose a node to be

branched (see line 4 of Algorithm 6) and has to select nodes to be part of an exact cut set (see

line 13 of Algorithm 6). Bergman et al. (2016) selected nodes u in Q with smallest value vu for

maximization problems. The authors also described three different types of cut sets: traditional

branching (TB), last exact layer (LEL), and frontier cut set (FC):

• TB: Branching is performed on the nodes from the second layer, i.e., S = L2.

• LEL: Branching is performed on the nodes of the deepest layer containing only exact

nodes, i.e., S = L j∗ , with j∗ = max{ j : u is exact ∀u ∈ L j}.

• FC: Branching is performed on the exact nodes that are immediate predecessors of nodes

that are not exact, i.e., S = {u ∈ U(B) : u is exact and bd(u) is not exact for some d ∈

D`(u)}.

Note that these types of exact cut sets are minimal (with respect to inclusion), so that, for any

feasible solution of P , its corresponding path contains exactly one node from S.

Figure 5 – DDs for subproblems in a BAB
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Source: The author.
Note: Solid arcs indicate 1-assignments, while dashed arcs indicate 0-assignments. Lengths of solid arcs are

specified. Dashed arcs have length 0. The values of the root nodes are specified.

Example 12. Again, consider the instance for the weighted set cover problem given in Section
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3.4 (Example 8). Suppose the maximum width W is set to 2. Suppose that the first iteration of an

execution of the BAB described in Algorithm 6, using the DP formulation given in Section 3.3

(Example 7) and inverting the sign of the arc costs, yielded the restricted and relaxed DDs of

Figures 3 and 4, respectively. Thus, at iteration 1, a lower bound bound of 4 and an upper bound

of 8 is obtained. zopt is set to the upper bound of 8.

Observe at Figure 4, that circled nodes are exact, and squared nodes are not. The

second layer {u1,u2} corresponds to the last exact layer, while {u2,u3} corresponds to the

frontier cut set. Suppose the FC is chosen to be added to Q in the first iteration of the BAB, i.e.,

the pairs (u2,2) and (u3,1) are added to Q.

Suppose that at iteration 2, node u3 is chosen for branching. The resulting restricted

DD is shown in Figure 5(a). The shortest path in it has length 7, which provides a lower bound

of 8 by adding the node value of 1. The best current solution was already 8. Thus, zopt is not

updated. And since the DD is exact, the node is pruned by optimality and consequently, there is

no need to compile a relaxed DD.

Now at iteration 3, node u2 is chosen for branching. The resulting restricted DD is

shown in Figure 5(b). The shortest path in it has length 3, which provides a lower bound of 5

by adding the node value of 2. The best current solution is 8. Thus, zopt is updated from 8 to 5.

And since the DD is exact, node u2 is pruned by optimality and consequently, there is no need to

compile a relaxed DD. With the queue Q empty, the search is finished and the optimal value is 5.
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4 FINDING MAXIMUM PATTERNS USING DECISION DIAGRAMS

In this chapter, we propose a way of solving the α-MPP and the MPP using a DD-

based branch-and-bound. In Sections 4.1 and 4.2, we propose a formulation and a dynamic

programming model for the MPP. In Section 4.3, we explore some properties of the resulting

exact DD for the MPP. In Section 4.4, we adapt our proposed DP model to the α-MPP case.

In Sections 4.5 and 4.6, we describe a valid merging rule and a node selection rule for our

model. In Section 4.7, we propose a variable ordering heuristic. In Section 4.8, we introduce a

modification to our original model in order to improve the performance of the proposed DD-based

branch-and-bound algorithm.

4.1 A coverage-based formulation for the MPP

Recall that a term T covers a set of observations Cov(T ). However, there may be

multiple terms that cover exactly the same observations. We can try to solve the MPP in two

ways: by finding a term of maximum coverage, or simply by finding a set of covered observations

of maximum cardinality. In the latter case, given an optimal set C∗ of covered observations, we

can easily find the spanned pattern P∗ that defines C∗. Observe that Lit(P∗) is composed by all

literals ` ∈L such that `(x) = 1, ∀x ∈C∗. Thus, a formulation for the MPP based on coverage

has a smaller solution space than a formulation based on terms, since each solution of the former

might encapsulate multiple solutions of the latter.

Without loss of generality, let the set of positive observations be indexed from 1 to

m+, i.e., Ω+ = {x1, . . . ,xm+}. Let z j be binary decision variables, for j = 1, . . . ,m+, each of

which indicates whether observation x j ∈Ω+ is covered or not:

z j =

1, if x j is covered;

0, otherwise.

Consider an instantiation z∈ {0,1}m+
of variables z. We define as Ω+(z) = {x j ∈Ω+ : z j = 1} as

the set of positive observations specified by z. We also define Span(z) = {` ∈L : `(x) = 1, ∀x ∈

Ω+(z)} as the set of all literals that cover every observation in Ω+(z). The term T = ∏

`∈Span(z)
`
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is precisely the spanned pattern that covers all observations in Ω+(z). We formulate the MPP as

maximize
m+

∑
j=1

z j (4.1)

subject to ∏
`∈Span(z)

`(γ) = 0, γ ∈Ω
− (4.2)

z ∈ {0,1}m+
. (4.3)

Objective function (4.1) equals the number of observations covered and is to be maximized,

while constraints (4.2) ensure that no negative observation is covered by the spanned pattern

derived from the set of covered observations.

4.2 Dynamic programming formulation for the MPP

Let S j be state spaces, for j = 1, . . . ,m++1. Let the root state r̂ be the set L of all

literals. A state variable s j ∈ S j represents a subset of literals:

S1 = {L } and S j = 2L ∪{0̂}, j = 2, . . . ,m++1.

The rationale in our model is to start from a position where no observation is covered. By

defining the root state as the set of all literals, we represent a term that covers no observation. If

we decide to cover a given observation, then we have to remove from the current state all those

literals that do not agree with it. If the term composed by the literals from the resulting state

covers some negative observation, the corresponding transition is deemed infeasible. Let the

transition functions t j : S j×{0,1}→ S j+1, for j = 1, . . . ,m+, be defined as

t j(s j,z j) =



s j, if z j = 0;

{` ∈ s j : `(x j) = 1}, if z j = 1 and @ γ ∈Ω− : ∏

`∈s j:
`(x j)=1

`(γ) = 1;

0̂, otherwise.

Given a state s j, a 0-transition always leads to the same state s j. A 1-transition is feasible when

the term t defined by the literals ` ∈ s j which are not in conflict with x j covers no negative

observation γ . Otherwise, the 1-transition is infeasible. The cost functions h j : S j×{0,1}→ Z+,

for j = 1, . . . ,m+, are straightforward:

h j(s j,z j) = z j.
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Since the objective function of the problem corresponds to the cardinality of the coverage set

and the decision variables are coverage-based, it is natural that a 0-transition has cost 0 and a

1-transition has cost 1.

Example 13. Consider the instance of the MPP given by Table 1 and an exact DD compiled by

executing Algorithm 1 with the DP formulation given in this section. Figure 6 shows the graph

of a partially constructed exact DD just before blending the nodes in the last layer into a single

node (line 5 of Algorithm 1). Observe that there are 3 longest paths of length 3, corresponding

to the three optimal solutions z1 = (0,0,1,1,1), z2 = (1,1,1,0,0), and z3 = (1,0,1,1,0). The

node at the end of the path that encodes z1 is associated with the spanned pattern u1u2u3. This

path implicitly encodes the non-spanned patterns u2, u1u2, and u2u3, which are also optimal.

Similarly, the node at the end of the path that encodes z2 is associated with the spanned pattern

u4u5, and the node at the end of the path that encodes z3 is associated with the spanned pattern

u1u3u5 and the non-spanned pattern u1u5.

4.2.1 Validity

Let z ∈ {0,1}m+
be a solution (not necessarily feasible) for the MPP formulation

given in Section 4.1. Let s ∈ S1×·· ·× Sm++1 be such that s1 = L and s j+1 = t j(s j,z j), j =

1, . . . ,m+. It is clear that (z,s) is feasible for the DP formulation given in Section 4.2, and that

sm++1 = t̂k, for some t̂k ∈ 2L , or sm++1 = 0̂. Observe that if z is feasible, then t̂k = Span(z).

Also, we have
m+

∑
j=1

h j(s j,z j) =
m+

∑
j=1

z j,

thus condition (3.8) is satisfied. If z is infeasible, then there exists γ ∈Ω−, such that

∏
`∈Span(z)

`(γ) = 1.

By definition of the transition functions of the DP model, there exists some k, such that state sk

is infeasible, i.e., sk = 0̂. Therefore, t j(s j,z j) = 0̂, for j = k, ...,m+. Thus, condition (3.9) is also

satisfied.
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Figure 6 – A partially constructed exact DD for the MPP

z1
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L 12345 12345 1234 12345 123 1235 12345 45 123451351345245
Source: The author.
Note: Solid arcs encode 1-assignments and have length 1. Dashed arcs encode 0-assignments and have length 0.

The state associated with each node is compactly represented as indexes, possibly with an overbar, each of
which corresponds to a literal. For instance, 245 stands for the set of literals {u2,u4,u5}.

4.3 Properties

Consider a partially constructed exact DD (before merging the nodes of the last

layer) for the MPP compiled by executing Algorithm 1 with the DP formulation given in Section

4.2. By definition, transitions that lead to terms which are not patterns are deemed infeasible.

Thus, with the exception of the nodes associated with state L , every other node in an exact DD

for the MPP defines a term which is a pattern (observe Figure 6). Consider the terminal nodes

at the end of longest paths in the DD. We shall refer to them as optimal terminal nodes. These

nodes are associated with terms that are strong spanned patterns.

Definition 4.3.1. Let r− t̂∗k be a longest path in an exact DD for the MPP compiled by executing

Algorithm 1 with the DP formulation given in Section 4.2, without merging the nodes of the last

layer. We refer to t̂∗k as an optimal terminal node.
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Lemma 4.3.1. An optimal terminal node t̂∗k defines a strong pattern.

Proof. Suppose t̂∗k defines pattern Pk that is not strong. Then, there is a terminal node t̂i that

defines a pattern Pi, such that Cov(Pk)⊂ Cov(Pi). Thus, the length Li of a longest r− t̂i path is

higher than the length Lk of a longest r− t̂∗k path, i.e., Li > Lk. But t̂∗k is optimal. Absurd.

Lemma 4.3.2. An optimal terminal node t̂∗k defines a spanned pattern.

Proof. Let Pk be the pattern associated with state t̂∗k . Suppose that Pk is not spanned. Then, there

is a literal ` that does not belong to t̂∗k , such that `(x) = 1, ∀x ∈ Cov(Pk). Since ` /∈ t̂∗k , then `

was eliminated at some point during construction of the longest r− t̂∗k path in the DD. Recall

from the definition of the transition functions that only 1-transitions can account for the removal

of literals from a state. Suppose that ` was eliminated in the j-th 1-transition, i.e., ` ∈ s j and

` /∈ t j(s j,1). Then, we have `(x j) = 0. A contradiction, since x j ∈ Cov(Pk).

Theorem 4.3.1. An optimal terminal node defines a strong spanned pattern.

4.4 Adaptation to the α-MPP

The DP formulation for the MPP given in Section 4.2 can be easily adapted to the

α-MPP. Without loss of generality, let α be the last positive observation in the dataset, i.e.,

α = xm+
. Since α must be covered by any α-pattern, we do not need to define variable zm+ .

Thus, the adapted DP formulation contains variables z j, for j = 1, . . . ,m+−1. Therefore, the

resulting DD contains m+ layers. Furthermore, we know that all literals that do not agree with α

do not take part in an optimal α-pattern, therefore it is sufficient to define the root state as the set

of all literals that agree with α , i.e., r̂ = {` ∈L : `(α) = 1}. The ideas in the remainder of this

chapter are described in terms of our DD formulation for the MPP, but they apply equally to the

α-MPP formulation introduced in this section.

Example 14. Consider the instance of the MPP given by Table 1. If the observation α is

x2 = (0,0,0,1,1), then the root node of the DP model for the α-MPP is {u1,u2,u3,u4,u5}.
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4.5 Merging rule

According to Theorem 3.6.1, in order to define a valid node merger operators,

conditions (3.22) and (3.23) must be satisfied. We shall define the following operators

⊕(M) =
⋃

u∈M

u and (4.4)

ΓM(v,u) = v. (4.5)

Lemma 4.5.1. ⊕(M) relaxes w, ∀w ∈M.

Proof. 0-transitions are always feasible, therefore we only need to examine 1-transitions. Ob-

serve that

t j(w,1) 6= 0̂ =⇒ ∏
`∈t j(w,1)

`(γ) = 0, ∀γ ∈Ω
−.

Since `(x j) = 1, ∀` ∈ t j(w,1) and w ⊆ ⊕(M), then each literal in t j(w,1) also belongs to

t j(⊕(M),1), i.e., t j(w,1)⊆ t j(⊕(M),1). Therefore, we have

∏
`∈t j(⊕(M),1)

`(γ) = 0, ∀γ ∈Ω
−.

Thus, any feasible transition from state w is also feasible from state ⊕(M). Moreover, the

transition costs are unchanged by Γ.

Theorem 4.5.1. Operators ⊕ and Γ as defined in (4.4) and (4.5) are valid relaxation operators

for the MPP.

Proof. Since ⊕(M) relaxes w, ∀w ∈M, we need to show that t j(⊕(M),1) relaxes t j(w,1). The

proof is analogous to the proof of Lemma 4.5.1.

4.6 Node selection

We use the node selection heuristic presented in Section 3.7 (Algorithm 5) when

compiling restricted and relaxed DDs for the MPP, that is, in order to select nodes we rank them

into a non-decreasing order of the value of the longest path from the root node up to each of

them.

Example 15. Consider the instance of the MPP given by Table 1 and a relaxed DD compiled by

executing Algorithm 4 with the DP formulation given in Section 4.2. Figure 7 shows an iteration
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Figure 7 – Construction of a relaxed DD for the MPP with maximum width 3
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Source: The author.
Note: Solid arcs indicate 1-assignments, while dashed arcs indicate 0-assignments. Solid arcs have length 1. Dashed

arcs have length 0.

of the execution of the algorithm for compiling the relaxed DD. In Figure 7(a), the third layer

exceeds the maximum width 3, thus we select 2 nodes to be merged. Node L is the highest

ranked node to be selected, since the longest path from the root node up to it is 0. Nodes 12345

and 12345 are tied as the second highest ranked nodes, since the longest path from the root node

up to each of them is 1. We only need to select one of them. We arbitrarily choose 12345. Figure

7(b) shows the result of the merger, the union of the 2 merged nodes is L .

4.7 Variable ordering

We propose a variable ordering that takes into account how similar a positive observa-

tion is from some negative observation. The intuition is that prioritizing variables associated with

positive observations that are the most similar to some negative observation leads to infeasible

states earlier throughout the construction of a DD, as it is very likely that after a subsequent

1-transition the remaining literals in the resulting state define a term that covers a negative obser-

vation. Consider the following metric dist : Ω+→{0,1, . . . ,n} for measuring the dissimilarity

between a positive observation and the set of negative observations:

dist(β ) = min
γ∈Ω−
{|{ j ∈ {1, ...,n} : β j 6= γ j}|}, β ∈Ω

+.

For a given positive observation β , we consider the value for ranking variable zβ to be the

dissimilarity value between β and the negative observation which is least dissimilar (or more

similar) to β . If given two observations xi and xk, with i < k, we have dist(xi) = dist(xk), then

we opt for the least index ranking, that is, xi before xk.

Example 16. Consider the instance of the MPP given by Table 1. The distance dist(β ) of each
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Table 4 – Dissimilarity matrix
Ω−

x6 x7 x8 x9 x10 dist(xk)

Ω+

x1 2 2 2 3 3 2
x2 2 2 4 3 3 2
x3 3 3 3 4 4 3
x4 4 2 2 3 3 2
x5 3 3 1 2 2 1

Source: The author.

Figure 8 – A partially constructed exact DD for the MPP with different variable ordering
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Source: The author.
Note: Solid arcs encode 1-assignments and have length 1. Dashed arcs encode 0-assignments and have length 0.

positive observation β to the negative set is given in Table 4. The resulting variable ordering is

x5,x1,x2,x4,x3, which yields the exact DD of Figure 8. Comparing it with the DD of Figure 6, we

observe the original DD had 4, 7, and 10 nodes in the third, fourth, and fifth layers, respectively,

while the DD with variable ordering had 3, 5, and 8 nodes in the third, fourth, and fifth layers,

respectively.
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4.8 Improving bounds obtained from restricted DDs

We propose a modification of the cost function of our DP model in order to improve

the performance of the branch-and-bound algorithm. Recall that when a choice is made to cover

an observation x j, all literals that do not agree with x j are removed from the state. Formally,

a 1-transition from a state s j may yield a state t j(s j,1) that defines a term that covers not only

x j, but also some other observation xk, which was not covered by s j. Thus, we shall define the

following cost function for restricted DDs only:

h j(s j,1) =

∣∣∣∣∣∣∣∣
x ∈Ω

+ \Cov(s j) : ∏
`∈s j:

`(x j)=1

`(x) = 1


∣∣∣∣∣∣∣∣ .

Computational experiments showed that this modified cost function enables the branch-and-

bound algorithm to find better bounds earlier in the search than it would if the original unitary

cost function was used. A possible interpretation of this behavior is that the structure of the DD

compiled with this DP model allows the algorithm to take shortcuts to paths that encode better

solutions. The following example illustrates the idea:

Figure 9 – DDs for subproblems in a BAB with modified costs
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Source: The author.
Note: Solid arcs indicate 1-assignments, while dashed arcs indicate 0-assignments. Lengths of solid arcs are

specified. Dashed arcs have length 0. The values of the root nodes are specified.

Example 17. Consider the instance of the MPP given by Table 1 and an execution of the

DD-based branch-and-bound algorithm presented in Section 3.8 (Algorithm 6) with the DP
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formulation given in Section 4.2. Suppose that in some iteration of the branch-and-bound the

node 12345 with cost 1 in the third layer is selected for branching (see Figure 6). The bound

provided by the corresponding subproblem is 2 (see Figure 9(a)), accounting for the sum of

the node value of 1 with the length of the longest path, which equals 1. A 1-transition from

state {u1,u2,u3,u4,u5} leads to the state {u4,u5}, corresponding to the decision of covering

observation x3. Notice that {u1,u2,u3,u4,u5} does not cover observation x1, but the resulting

state {u4,u5} does. Thus, the cost of the corresponding transition using the modified cost

function equals 2 (see Figure 9(b)), accounting for the coverage of both x1 and x3. As result, the

bound provided by the corresponding subproblem now is 3, accounting for the node value of 1

and the length of the longest path, which equals 2.

4.9 Speeding up the compilation of relaxed DDs

Suppose that we are at a given iteration of a DD-based branch-and-bound and a

relaxed DD with root node u must be compiled (line 10 of Algorithm 6). An optimization that

can be made in order to improve the efficiency of the BAB is to interrupt the compilation of

the relaxed DD as soon as we can make sure that we will not be able to prune node u by bound

(which is possible when zub ≤ zopt in line 12 of Algorithm 6). To the best of our knowledge, this

detail has not been explicitly described in the literature.

Observe that the description of the DD-based BAB algorithm presented in Section

3.8 suggests the compilation of a relaxed DD (line 10 of Algorithm 6) and then the computation

of the value of its longest path (line 11 of Algorithm 6). However, we can compute a longest

path in a relaxed DD simultaneously to its compilation, by using the Dijkstra algorithm. In such

a case, by the end of the construction of a layer of the relaxed DD (line 11 of Algorithm 4), the

value v∗(Buw) of the longest path from the root node u to each node w in layer L j+1 is available.

In our proposed DD model, each arc cost in a relaxed DD is either 0 or 1 (Section

4.2). Therefore, the value of the longest path being computed simultaneously to the compilation

of the relaxed DD never decreases. If a node in L j+1 has length value (taking node value vu

into account, see line 11 of Algorithm 6) that already exceeds the value of the best feasible

solution found so far by the BAB, then the compilation of the relaxed DD can be stopped

prematurely, since we already know that the bound provided by the relaxed DD is strictly higher

than zopt . More specifically, if vu +max{v∗(Buw) : w ∈ L j+1}> zopt after the execution of line

11 of Algorithm 4, then the main loop starting at line 2 can be interrupted (lines 12 and 13 must
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be adjusted accordingly, since we may not have compiled Ln+1).

In practice, since we do not compute the relaxed DD in its entirety, we do not

actually compute the upper bound provided by it. Note that, this approach might prevent us from

obtaining a frontier cutset, since there could be nodes in the FC that belonged to deep layers that

had not yet been constructed. A LEL cut set can be computed, provided that at least one merging

operation has been performed prior to the interruption of the compilation of the relaxed DD. If

that is not the case, we simply take the last layer we constructed as a cut set.

Empirically, this strategy proved to be quite effective in reducing the overall compu-

tational time. In our implementation of a DD-based BAB, we used this particular type of cut

set computation, whenever possible; otherwise, we simply used the LEL cut set, as described in

Subsection 3.8.1.
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5 COMPUTATIONAL RESULTS

In this chapter, we report the computation results from our experiments. All tests were

carried out in a machine with an Intel (R) Core i5-8250U CPU @ 1.60GHz 1.80GHz processor,

with 8 GB RAM, running 64-bit Windows 10 Home edition. In Section 5.1, we describe the

instances used in the experiments. In Section 5.2, we evaluate the integer programming models

found in the literature for the MPP. In Section 5.3, we compare the performance of our DD model

for the MPP against the best ILP model for each instance.

5.1 Instances

In order to evaluate the ILP models for the MPP presented in Chapter 2 and the

DD model presented in Chapter 4, we selected 10 datasets from the UCI Machine Learning

Repository (ASUNCION; NEWMAN, 2007). In the following, we list the chosen datasets and

specify the modifications made to them so as to make our results fully reproducible:

1. Abalone

• the nominal feature in the first column was removed, thus 7 of the 8 features were

used;

• observations from class 9 were considered to be positive observations, while those

from the remaining classes were considered to be negative observations.

2. Breast Cancer Wisconsin

• observations with missing values were removed;

• the first feature, corresponding to id numbers, was removed;

• observations from class 2 were considered to be negative observations, while those

from class 4 were considered to be positive observations.

3. Statlog (Heart)

• observations from class 1 were considered to be negative observations, while those

from class 2 were considered to be positive observations.

4. MAGIC Gamma Telescope

• observations from class h were considered to be negative observations, while those

from class g were considered to be positive observations.

5. Mammographic Mass

• observations with missing values were removed;
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• the last feature was used as the class, thus 5 of the 6 features were used.

6. Musk

• the 2 available versions of the dataset were combined into a single one;

• the first two columns, corresponding to the observations’ ids, were removed.

7. Parkinson Speech

• only the training dataset was used;

• the first and penultimate columns were removed as they are not features.

8. Phishing Website

• observations from class -1 were considered to be negative observations, while those

from class 1 were considered to be positive observations.

9. QSAR Biodegradation

• observations from class NRB were considered to be negative observations, while

those from class RB were considered to be positive observations.

10. Spambase

• no changes were made.

Table 5 – Instances
Observations Features

Instance Total Positive Negative Originally Binarized

Abalone 4,177 689 3,488 7 3,074
Breast Cancer Wisconsin 683 239 444 9 72
Statlog (Heart) 270 120 150 13 290
MAGIC Gamma Telescope 19,020 12,332 6,688 10 2,197
Mammographic Mass 830 403 427 5 74
Musk 7,074 1,224 5,850 166 35,349
Parkinson Speech 1,040 520 520 26 10,632
Phishing Website 11,055 6,157 4,898 30 38
QSAR Biodegradation 1,055 356 699 41 4,178
Spambase 4,601 1,813 2,788 57 8,006

Source: The author.

Table 5 reports the sizes of the chosen datasets after the reported changes were made

and also the number of features of each dataset before and after they are binarized (BOROS et

al., 1997).

5.2 Evaluation of the ILP models

In order to evaluate the ILP approach for pattern generation we focused our attention

on solving the MPP rather than the α-MPP, since the former is a generalization of the latter.
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Table 6 – Results for the ILP models using CPLEX
Instance: Abalone

ILP Optimizer CP Optimizer
Model f(z∗) Time(s) Gap(%) f(z∗) Time(s) Gap(%)

GR 2 − 34,350.00 17 − 3,941.18
GRehi 3 − 22,886.70 15 − 4,480.00
GRcliques 1 − 14,122.20 − − −
GRehi

cliques 3 − 4,640.74 − − −
YRa 14 − 4,805.23 18 − 3,716.67
YRaehi 11 − 6,161.59 18 − 3,716.67
YRb 2 − 34,338.80 16 − 4,193.75
YRbehi 2 − 34,350.00 15 − 4,480.00

Source: The author.

Table 7 – Results for the ILP models using CPLEX
Instance: Breast Cancer Wisconsin

ILP Optimizer CP Optimizer
Model f(z∗) Time(s) Gap(%) f(z∗) Time(s) Gap(%)

GR 137 14.27 0 137 5.65 0
GRehi 137 36.51 0 137 9.15 0
GRcliques 137 37.54 0 137 37.94 0
GRehi

cliques 137 20.68 0 137 33.91 0
YRa 137 26.79 0 137 5.27 0
YRaehi 137 35.33 0 137 6.69 0
YRb 137 0.83 0 137 4.26 0
YRbehi 137 1.51 0 137 4.88 0

Source: The author.

Table 8 – Results for the ILP models using CPLEX
Instance: Statlog (Heart)

ILP Optimizer CP Optimizer
Model f(z∗) Time(s) Gap(%) f(z∗) Time(s) Gap(%)

GR 52 − 18.84 52 376.17 0
GRcliques 52 1,293.36 0 52 1,295.48 0
YRa 52 339.58 0 52 132.90 0
YRb 52 35.30 0 52 250.59 0

Source: The author.
Note: No extended hypercube inequalities were generated for this instance,

as there were no hypercubes in the data.

Thus, we shall not evaluate the BHK model presented in Section 2.5. Furthermore, we shall

focus our attention on the GR model, for solving than MPP, rather than the RJ model, since Guo

and Ryoo (2012) state that the former is more efficient in terms of computational time than the

latter.

We implemented all variations of the GR model presented in Chapter 2, which were

specified in Table 3, using the software IBM ILOG CPLEX Optimization Studio 12.9.0, and

the C++ programming language with IDE Microsoft Visual Studio 2015. Furthermore, we
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Table 9 – Results for the ILP models using CPLEX
Instance: MAGIC Gamma Telescope

ILP Optimizer CP Optimizer
Model f(z∗) Time(s) Gap(%) f(z∗) Time(s) Gap(%)

GR − − − − − −
GRehi − − − − − −
GRcliques − − − − − −
GRehi

cliques − − − − − −
YRa 21 − 47,644.80 − − −
YRaehi 28 − 38,803.60 − − −
YRb − − − − − −
YRbehi − − − − − −

Source: The author.

Table 10 – Results for the ILP models using CPLEX
Instance: Mammographic Mass

ILP Optimizer CP Optimizer
Model f(z∗) Time(s) Gap(%) f(z∗) Time(s) Gap(%)

GR 74 25.38 0 74 17.73 0
GRehi 74 43.00 0 74 18.47 0
GRcliques 74 36.45 0 74 180.84 0
GRehi

cliques 74 44.05 0 74 167.85 0
YRa 74 1.29 0 74 8.01 0
YRaehi 74 6.67 0 74 4.01 0
YRb 74 1.60 0 74 16.68 0
YRbehi 74 11.42 0 74 13.18 0

Source: The author.

Table 11 – Results for the ILP models using CPLEX
Instance: Parkinson Speech

ILP Optimizer CP Optimizer
Model f(z∗) Time(s) Gap(%) f(z∗) Time(s) Gap(%)

GR 31 − 1,577.42 − − −
GRcliques 10 − 5,100.00 − − −
YRa 55 − 839.82 47 − 1,002.13
YRb 3 − 17,231.70 49 − 957.14

Source: The author.
Note: No extended hypercube inequalities were generated for this instance,

as there were no hypercubes in the data.

also implemented all model variations using the constraint programming solver available in the

software library IBM ILOG CPLEX CP Optimizer. We established a time limit of 1,800 seconds

in all of our experiments.

Tables 6 to 14 present the computational results from our experiments with CPLEX

for 9 out of 10 instances. We do not present a table for the Musk instance, since we did not obtain

a feasible solution within the time limit with any of the model variants. For each of the remaining

9 instances, we present a table that reports the results for each model variation, which is specified
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Table 12 – Results for the ILP models using CPLEX
Instance: Phishing Website

ILP Optimizer CP Optimizer
Model f(z∗) Time(s) Gap(%) f(z∗) Time(s) Gap(%)

GR 1,465 671.53 0 1,465 − 320.13
GRehi 1,465 1,472.24 0 1,465 − 294.33
GRcliques 1,465 1,340.98 0 − − −
GRehi

cliques 1,465 − 92.19 − − −
YRa 1,465 630.26 0 1,465 − 313.51
YRaehi 1,465 802.06 0 1,465 1,444.81 0
YRb 1,465 27.96 0 1,465 − 288.12
YRbehi 1,465 33.36 0 1,465 − 300.61

Source: The author.

Table 13 – Results for the ILP models using CPLEX
QSAR Biodegradation

ILP Optimizer CP Optimizer
Model f(z∗) Time(s) Gap(%) f(z∗) Time(s) Gap(%)

GR 34 − 947.05 123 − 187.80
GRcliques 57 − 524.56 137 − 158.39
YRa 146 − 135.49 131 − 170.22
YRb 96 − 269.79 124 − 185.48

Source: The author.
Note: No extended hypercube inequalities were generated for this instance,

as there were no hypercubes in the data.

Table 14 – Results for the ILP models using CPLEX
Spambase

ILP Optimizer CP Optimizer
Model f(z∗) Time(s) Gap(%) f(z∗) Time(s) Gap(%)

GR − − − − − −
GRehi − − − − − −
GRcliques − − − − − −
GRehi

cliques − − − − − −
YRa 742 − 142.54 − − −
YRaehi 742 − 143.50 − − −
YRb − − − − − −
YRbehi − − − − − −

Source: The author.

in the first column. Columns 2 to 4 are the results using the ILP solver, while columns 5 to 7 are

the results using the CP solver. For each solver, we report the best solution found (columns 2 and

5), the elapsed time (columns 3 and 6), and the optimality gap reported by the solver (columns 4

and 7). A “–” in the optimal value columns and the gap columns indicates that a feasible solution

was not found. “–” in the time columns indicates that the time limit of 1,800s was exceeded.

We observed that CPLEX was able to solve 4 of 10 instances within the time limit:

Breast Cancer Winsconsin, Statlog (Heart), Mammographic Mass, and Phishing Website. The
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GR model did not have the best performance when compared to the YRa and YRb models for

any of the instances. This stems from the fact that for the instances we tested the number of

constraints in the GR model is too large compared to the number of constraints of the similar

YRa and YRb models. This is also highlighted by the fact that YRb was much more competitive

for the instances having the smallest numbers of features, namely: Breast Cancer Winsconsin,

Statlog (Heart), Mammographic Mass, and Phishing Website. We also note that the use of CP

Optimizer proved to be the best option for the Abalone instance with any of the models.

5.3 Evaluation of the DD-based algorithm

In order to evaluate the performance of our implementation of a DD-based branch-

and-bound (BAB) for the MPP we compare its computational results to those of the best ILP

model-solver combination presented in Section 5.2, which were highlighted in bold at Tables 6

to 14. Our goal is to evaluate whether a straightfoward implementation of the DD-based BAB is

competitive against CPLEX with its default settings. We implemented the proposed DD-based

BAB in C++ using Microsoft Visual Studio 2015. Again, we established a time limit of 1,800

seconds in all of our experiments.

Table 15 presents the computational results from our experiments. Columns 2 to 5

report the results obtained using CPLEX. For the CPLEX results, we extracted the best results

from Tables 6 to 14, which are highlighted in bold at each table. In columns 2 and 3, we report

the model-solver combination with best performance. In columns 4 and 5, we report the objective

function value and running time, respectively. For comparison, we report the results obtained

using our BAB implementation as well. In columns 6 and 7, we report the objective function

value and running time, respectively. In appendix B, we provide an overview of how the objective

function value improved over time for each instance.

Our implementation of the BAB algorithm is based on the description presented

in Section 3.8 using the DP model presented in Section 4.2. While implementing a DD-based

branch-and-bound, we are required to make several choices. In order to tune the algorithm, we

conducted several experiments to empirically determine a best strategy. Our implementation

features:

• the maximum width of 10;

• the node selection heuristic for restricted and relaxed DDs discussed in Section 4.6;

• the BAB node selection criteria of prioritizing nodes with lower values, as mentioned in



62

Table 15 – Comparison CPLEX vs. DD
CPLEX DD

Instance Model Solver f(z∗) Time(s) f(z∗) Time(s)

Abalone YRa CP 18 − 17 −
Breast Cancer Wisconsin YRb ILP 137 0.83 137 186.89
Statlog (Heart) YRb ILP 52 35.30 52 64.68
MAGIC Gamma Telescope YRaehi ILP 28 − 176 −
Mammographic Mass YRa ILP 74 1.29 74 2.45
Musk − − − − 647 −
Parkinson Speech YRa ILP 55 − 65 −
Phishing Website YRb ILP 1,465 27.96 1,465 −
QSAR Biodegradation YRa ILP 146 − 143 −
Spambase YRa ILP 742 − 701 −

Source: The author.
Note: − in the optimal value columns indicates that a feasible solution was not found. − in the time

columns indicates that the time limit of 1,800s was exceeded.

Section 3.8.1;

• the use of the last exact layer as the exact cutset of choice, as described in Section 3.8.1;

• the use of the modified cost function for restricted DDs proposed in Section 4.8; and

• the use of the optimization technique for relaxed DDs suggested in Section 4.9.

We observed that the DD method had similar computational results to the CPLEX

approach for 4 instances: Abalone, Statlog (Heart), Mammographic Mass, and QSAR biodegra-

dation. The DD was inferior for Breast Cancer Wisconsin, Phishing Website, and Spambase

instances, but was superior for the MAGIC Gamma Telescope, Musk, and Parkinson Speech

instances. Interestingly, a DD-based branch-and-bound seems more robust than an ILP approach

for the larger instances, which may reflect the fact that the ILP models require the insertion

of constraints that bind observations-based and literals-based decision variables, while the DP

model naturally makes such association by embedding the literals-based decision variables into

states.

Overall, the performance of the DD-based BAB was competitive, and occasionally

significantly superior, to that of the best model-solver combination obtained with CPLEX. Given

the relative simplicity of the implementation of the DD-based BAB and the relatively small

number of parameters and implementation choices involved, we believe that it is safe to conclude

that our proposed approach constitutes an attractive alternative for solving the MPP and α-MPP

models in practice. In Appendix A, we provide an empirical evaluation of the quality of the

bounds provided by the relaxed DD, as compared to those obtained from the linear relaxation of

the YRa model.
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5.3.1 Evaluation of the variable ordering heuristic

We attempted to further improve our DD-based BAB implementation by incorporat-

ing the variable ordering heuristic proposed in Section 4.7. Table 16 reports the computational

results with the variable ordering heuristic turned on (columns 2, 3, and 4) and turned off

(columns 5 and 6) for comparison. In column 2, we report the objective function value of the

best solution found. In column 3, we report the time for ordering the variables. In column 4, we

report the search time, which includes the time spent ordering the variables. In columns 5 and 6,

we report the objective function value and running time, respectively, obtained with the variable

ordering heuristic turned off, which were taken directly from Table 15.

Table 16 – DD results with and without the use of a variable ordering heuristic
Var. Order. ON Var. Order. OFF

Ordering Total
Instance f(z∗) Time(s) Time(s) f(z∗) Time(s)

Abalone 18 13.84 − 17 −
Breast Cancer Wisconsin 137 0.01 99.50 137 186.89
Statlog (Heart) 52 0.01 25.98 52 64.68
MAGIC Gamma Telescope 92 343.74 − 176 −
Mammographic Mass 74 0.02 2.06 74 2.45
Musk 657 474.17 − 647 −
Parkinson Speech 62 5.38 − 65 −
Phishing Website 1,465 2.39 − 1,465 −
QSAR Biodegradation 137 1.94 − 143 −
Spambase 330 76.71 − 701 −

Source: The author.
Note: − in the time columns indicates that the time limit of 1,800s was exceeded.

We observed that we were able to reduce the total time to about 50% of the original

time for 2 instances: Breast Cancer Wisconsin and Statlog (Heart). We were also able to

slightly improve the solutions for 2 instances: Abalone and Musk. However, we obtained worse

solutions for 4 instances: Parkinson Speech, QSAR Biodegradation, MAGIC Gamma Telescope,

Spambase. The solutions for the last two were significantly worse: their coverage was around

50% of the coverage we obtained originally. Overall, the effect of using our proposed variable

ordering heuristic does not seem advantageous. Therefore, we recommend the use of the natural

order of variables, or possibly another ordering heuristic.
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6 CONCLUSIONS AND FUTURE WORK

In this work, we studied the pattern generation problem which arises in the supervised

classification methodology called Logical Analysis of Data. In particular, we focused on the

several integer linear programming approaches found in the literature for solving the optimization

problem of finding maximum patterns. Furthermore, we also studied and described in details a

decision diagram-based branch-and-bound for solving discrete optimization problems also found

in the literature.

We proposed a decision diagram-based model and solution approach for the maxi-

mum pattern problem. Specifically, we proposed a valid dynamic programming model and a

merging rule, in order to use the aforementioned DD-based branch-and-bound. We also sug-

gested conditions (Section 5.3) under which an implementation of our DD model was shown to

perform most efficiently in terms of computational time and solution quality.

We conducted several computational experiments in order to compare our DD-based

approach against the various MILP approaches found in the literature. The results showed

that our proposed approach was competitive with each of the ILP individual models from the

literature. We believe it is a viable approach for the maximum pattern problem in practice.

There are a few potential directions that can be followed from this work. One

direction is to adapt our DD model for solving the maximum pattern of minimum degree problem

(Section 2.4), which was not explored here. Another direction is to find a way of incorporating

the neighborhood properties among data found in the literature ((YAN; RYOO, 2017b) and

(YAN; RYOO, 2019)) into the DD model, in order to enhance its performance.

6.1 Contributions

The main contributions of this work can be summarized as follows:

• a thorough empirical evaluation of the ILP models found in the literature for the maximum

pattern problem (MPP) using a state-of-the art ILP solver;

• a DD model for both the α-MPP and the MPP;

• merging rule and heuristics in order to solve the model via a DD-based branch-and-bound;

• an empirical evaluation of the performance of the proposed DD model, comparing its

computational time and solution quality against state-of-the-art ILP approaches for the

MPP.
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APPENDIX A – COMPARISON OF LINEAR RELAXATION AND DD-BASED

BOUNDS

In this appendix, we provide an empirical evaluation of the relative strenght of the

upper bounds provided by the linear relaxation of model YRa and our proposed relaxed DD. We

also include the lower bounds provided by the restricted DD and running times. The second

and third columns in Table 17 indicate the elapsed time and the objective function value (lower

bound) obtained from an execution of the restricted DD algorithm. The fourth and fifth columns

indicate the elapsed time and the objective function value (upper bound) obtained from an

execution of the relaxed DD algorithm. A maximum width of 10 and no variable ordering was

used in the execution of both algorithms. The sixth and seventh columns indicate the elapsed

time and the linear relaxation value (upper bound) obtained at the root of the search tree from an

execution of the branch-and-bound algorithm using the ILP solver CPLEX for solving the YRa

model. The eighth column indicates the value of the best known solution. The values in bold

indicate that the solution is optimal.

Table 17 – Bounds comparison
Restricted DD Relaxed DD Linear Relaxation Best known

Instance Time(s) Bound Time(s) Bound Time(s) Bound solution

Abalone 0.21 7 0.83 190 1093.81 686.73 18
Breast Cancer Wisconsin 0.02 78 0.01 166 1.47 226.20 137
Statlog (Heart) 0.02 41 0.01 74 1.03 118.19 52
MAGIC Gamma Telescope 7.10 82 50.61 1,044 841.91 11,162.88 176
Mammographic Mass 0.02 55 0.01 89 1.28 74.00 74
Musk 94.88 255 88.08 1,214 – – 657
Parkinson Speech 2.35 45 4.94 401 149.38 519.94 65
Phishing Website 0.71 471 2.12 2,389 82.06 5,594.13 1,465
QSAR Biodegradation 1.19 101 0.58 266 29.59 355.92 146
Spambase 34.13 361 97.03 1,335 220.73 1,811.82 742

Source: The author.
Note: A “–” in the time columns and the bound columns indicate that a bound was not obtained

within the time limit of 1,800s.
Further notes:

Notice that, compared to CPLEX, the relaxed DD provided a better upper bound in

less time for 9 of the 10 instances. We point out that we did not turn off the default cuts and

heuristics CPLEX uses at the root node of the search tree, which further attests the quality of the

bound provided by the relaxed DD.
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APPENDIX B – LOWER BOUND EVOLUTION IN AN EXECUTION OF THE

DD-BASED BRANCH-AND-BOUND

In this appendix, we provide an overview of how the lower bound improved over

time for each instance throughout an execution of the DD-based branch and bound. A maximum

width of 10 and no variable ordering was used in the execution of the algorithm. In the y axis

we report the relative value of the bound to the best bound obtained within the time limit of 30

minutes, while the x axis indicates the instant in time the bound was obtained during the search.

Observe in Figure 10 that we obtain quality bounds (greater than 85%) within 8 minutes for

every instance.

Figure 10 – Lower bound evolution for each instance

Source: The author.


	Title page
	Abstract
	Resumo
	Contents
	Introduction
	Objectives
	Organization

	Maximum patterns
	Definitions
	The maximum -pattern problem (-MPP)
	Complexity

	The general case: the maximum pattern problem (MPP)
	Optimal prime patterns: the maximum pattern of minimum degree problem (MPMDP)
	Bonates et al. ILP model for the -MPP
	Ryoo and Jang MILP model for the MPP
	Guo and Ryoo MILP model for the MPP
	Adaptation to the MPMDP

	Yan and Ryoo MILP models for the MPP
	Valid inequalities


	Decision diagrams for optimization: an overview
	Discrete optimization problems
	Decision diagrams: definitions
	Variable ordering

	Dynamic programming formulations
	Validity

	Exact decision diagrams
	Restricted decision diagrams
	Relaxed decision diagrams and merging rules
	Validity of relaxation operators

	Node selection for restricted and relaxed DDs
	A decision diagram-based branch-and-bound
	Search node selection and types of exact cut sets


	Finding maximum patterns using decision diagrams
	A coverage-based formulation for the MPP
	Dynamic programming formulation for the MPP
	Validity

	Properties
	Adaptation to the -MPP
	Merging rule
	Node selection
	Variable ordering
	Improving bounds obtained from restricted DDs
	Speeding up the compilation of relaxed DDs

	Computational results
	Instances
	Evaluation of the ILP models
	Evaluation of the DD-based algorithm
	Evaluation of the variable ordering heuristic


	Conclusions and future work
	Contributions
	Acknowledgements

	REFERENCES
	Comparison of linear relaxation and DD-based bounds
	Lower bound evolution in an execution of the DD-based branch-and-bound

