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RESUMO   

 

O caju (Anacardium occidentale L.) é um pseudofruto tropical com um papel econômico 

destacado devido à exportação da castanha de caju. A indústria de suco de caju produz 

15% (m/m) de bagaço, e esse material é composto de celulose, hemicelulose e lignina. 

Sua estrutura é altamente recalcitrante à biotransformação microbiana e enzimática, o que 

limita seu uso e torna sua conversão em produtos de valor agregado inviável 

economicamente. Assim, os pré-tratamentos são necessários para romper as estruturas 

recalcitrantes do material lignocelulósico para aumentar a digestibilidade do material 

antes da conversão em produto de valor agregado. Durante o pré-tratamento do bagaço 

de caju, a lignina é descartada e se torna um co-produto. No entanto, é uma matéria-prima 

potencial para a produção de diferentes materiais. Nesse contexto, esta pesquisa teve 

como objetivo extrair e caracterizar a lignina do CAB (Bagaço de Caju), para ser utilizado 

em um novo material. As condições de pré-tratamento para extração de lignina foram 

estudadas a partir de diferentes hidrolisados obtidos pelos pré-tratamentos com ácido 

diluído (A), ácido / alcalino (AA) e peróxido de hidrogênio alcalino (AHP). A 

porcentagem de extração da lignina dos hidrolisados obtidos pelos pré-tratamentos AA e 

AHP foram de 98,0% e 96,9%, respectivamente, atingindo alto rendimento de extração e 

ligninas com maior estabilidade térmica. A lignina AA foi escolhida para as próximas 

etapas deste estudo. Novos materiais compostos magnetita-lignina foram sintetizados 

usando lignina obtida do pré-tratamento AA subproduto, extraído do CAB e 

nanopartículas de magnetita (Fe3O4), bem conhecidas por suas propriedades não tóxicas 

e magnéticas. Esse material, denominado MNs/Lig, foi utilizado como suporte para a 

imobilização da lipase B de Candida antarctica (CAL-B), com o objetivo de obter um 

biocatalisador ativo e estável e com fácil recuperação do meio reacional. Os MNs/Lig 

suportes e os biocatalisadores produzidos foram caracterizados por Espectroscopia no 

Infravermelho por Transformada de Fourier (FTIR), Difração de raios-X (DRX), 

Magnetômetro de Amostra Vibratória (VSM), Termogravimetria (TGA), Microscopia 

Eletrônica de Varredura (MEV) e raios X dispersivos em energia espectroscopia (EDS). 

Os biocatalisadores preparados foram avaliados para a síntese de ésteres utilizando ácido 

oleico como substrato, avaliando o álcool da reação, álcool etílico (1: 1) e 2-etil-1-hexanol 

(1: 1). As conversões obtidas foram de 88,2% e 76,7%, utilizando 2-etil-1-hexanol e 

álcool etílico, respectivamente, avaliando 5 ciclos de reutilização e não foi observado 

perda de catalisador. Portanto, essa nova estratégia para obter um biocatalisador a partir 

de híbridos sintetizados (MNs / Lig) pode ser um veículo promissor para imobilização 

enzimática de lipases, além de ser considerado ambientalmente correto, visando seu uso 

em reações de interesse industrial. 

 

Palavras-chave: Pré-tratamentos. Suporte. Biocatalisador. Imobilização enzimática. 



 

 

 

ABSTRACT    

 

Cashew apple (Anacardium occidentale L.) is a tropical pseudofruit with an outstanding 

economic role due to the cashew apple nut exportation. The industry of juice from cashew 

apple produces 15% (w/w) of bagasse, and this material is composed of cellullose, 

hemicelulose and lignin. Its structure is highly recalcitrant to microbial and enzymatic 

biotransformation, thus limiting its use and making its conversion into value-added 

products not economically feasible. So, the pretreatments are needed to disrupt the 

recalcitrant structures of the lignocellulosic material to increase the digestibility of the 

material prior to the conversion into value-added product. During the pretreatment of 

cashew apple bagasse, lignin is discarded and becomes a co-product. Though, it is a 

potential raw for production of different materials. In this context, this research aimed to 

extract and characterize lignin from CAB (Cashew Apple Bagasse), be used a new 

material. Pretreatment conditions for lignin extraction were studied from different 

hydrolysates obtained by diluted acid (A), acid/alkali (AA) and alkaline hydrogen 

peroxide (AHP) pretreatments. Lignin removals through AA and AHP pretreatments 

were 98.0% and 96.9%, respectively, achieving high extraction yield, and lignins with 

higher thermal stability.  The lignina AA was chosen for the next steps of this study. 

Novel magnetite-lignin composite materials were synthesized using the by-product lignin 

from by AA pretreatment, extracted from CAB and nanoparticles of magnetite (Fe3O4), 

well-known for its nontoxicity and magnetic properties. This material, named MNs/Lig, 

was used as support for the immobilization of Lipase B from Candida antarctica (CAL-

B), aiming to obtain an active and stable biocatalyst and with easy recovery of the 

reactional medium. The MNs/Lig supports and biocatalysts produced were characterized 

by Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), Vibrating 

Sample Magnetometer (VSM), Thermogravimetric analysis (TGA), Scanning Electron 

Microscopy (SEM). The biocatalysts prepared were used in evaluated for the synthesis of 

esters using oleic acid as substrate and ethyl alcohol (1:1) and 2-ethyl-1-hexanol (1:1) as 

alcohol. The conversions obtained were 88.2% and 76.7% using 2-ethyl-1-hexanol and 

ethyl alcohol, respectively, being evaluating 5 cycles of reuse and it did not observe loss 

catalyst. Then, this new strategy to obtain a biocatalyst from synthesized hybrids 

(MNs/Lig) may be a promising carrier for enzymatic immobilization of lipases, in 

addition to being considered environmentally benign, aiming its use in reactions of 

industrial interest. 

 

Keywords: Pretreatments. Support. Biocatalyst. Enzymatic Immobilization.
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           1 INTRODUCTION 

 

Due to a constant search to reduce the environmental impacts caused by human 

action on nature, different researches are being developed for the reuse of agroindustrial 

residues as raw material, i.e cashew apple bagasse, mainly in bioprocesses 

(FERNÁNDEZ-RODRÍGUEZ et al., 2020; ALBUQUERQUE et al., 2015).  

Cashew apple is a pseudofruit from the Northeastern region of Brazil with an 

outstanding economic role due to the cashew nut exportation. The industry of cashew 

apple juice produces 15% (w/w) of bagasse, representing one of the major waste from the 

Brazilian agribusiness (CORREIA et al., 2013; ROCHA et al., 2014; REIS et al., 2017). 

CAB is mainly composed of cellulose, hemicellulose and lignin that form a complex 

structure (REIS et al., 2017; CORREIA et al., 2013).  

Lignin, found  in  around  10%-35% (w/w) of  plants  interms of dry weight and 

40% in terms of energy,  is  one  of  the  most  abundant  aromatic  bio-polymer  feedstock. 

It is still underutilized as a bio-based chemical and biofuel compared to cellulose and 

hemicellulose, although it has high potential (GILLET et al., 2017; SOONGPRASIT et 

al., 2020). Its structure is three-dimensional and consists of three phenol groups: p-

hydroxyphenyl  (H-unit),  guaiacyl  (G-unit),  and  syringyl  (S-unit),  which  are  derived  

from  p-coumaryl  alcohol,coniferyl  alcohol,  and  sinapyl  alcohol,  respectively (LUPOI 

et al., 2015; SOONGPRASIT et al., 2020). 

The lignin extracted during pretreatment has been a source of study in several 

works because it is a fibrous and quite resistant material (Li et al., 2015; Mohan et al., 

2015). However, only an insignificant part is used in specialty products, the rest serves as 

fuel for thermal energy generation.  

Currently, a wide variety of chemicals can be sustainably produced from the 

aromatic structures of lignin (SILVA et al., 2013). Due to its high molecular weight, 

lignin can be used to produce carbon fibers, polymer modifiers, adhesives and resins 

(FROLLINI and CASTELLAN, 2012). Also, lignin has antioxidant activity, due to 

presence of phenolic groups and benzylic hydrogens.  

Lignin has been recently combined with magnetite (Fe3O4) in order functional 

hybrid nanomaterials or nanocomposites (KLAPISZEWSKI et al., 2019). In recent years, 

magnetite nanoparticles (MNs) have played a very important role in the field of 

nanotechnology. They have valuable and often exceptional properties which make them 
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suitable for use in many areas, including in and medicine (ULBRICH et al., 2016) and 

biology (MANIVASAGAN et al., 2016). 

Magnetite (Fe3O4) has been currently the most commonly used among the various 

nano-oxides exhibiting magnetic properties (WANG et al., 2016). This high level of 

interest of this substance is caused scale owing to their excellent magnetic properties, 

such as superparamagnetic behavior at room temperature, exceptional biocompatibility 

of their surfaces (ZHANG et al., 2012; FURLAN et al., 2019), low toxicity compared to 

both metals or other metal-oxide, high chemical stability, and the facility and low cost of 

the procedures available for their preparation (FIGUEROLA et al., 2010; FURLAN et al., 

2019). 

Recently, magnetic nanoparticles have attracted much attention an alternative 

support for enzyme immobilization (YONG et al., 2008; CHEN et al., 2009) and due to 

a substantial increase in their availability and versatility show to be very important 

support (SOUZA et al., 2017). 

This possibility to obtain a new biocatalyst from synthesized hybrids (MNs/Lig) 

may be a promising carrier for enzymatic immobilization of lipases, in addition to being 

considered environmentally benign, aiming its use in reactions of industrial interest. 

Large scale industrial application of enzymes is still a difficult process due to their 

considerably high cost, low stability difficult recovery and recycling. Moreover, it is 

difficult to separate them from the reaction system which limits its recovery and reuse 

(ALVES, et al., 2017; ADLERCREUTZ, 2013). However, the use of immobilized 

enzymes on a suitable support not only circumvents these problems but also has additional 

advantages: improve their activity, specificity, and stability and to facilitate the reuse of 

the biocatalysts (ALVES et al., 2017; FERNANDEZ-LAFUENTE, 2010). 

In this context, the present work has as objective extraction of lignin from cashew apple 

bagasse (CAB), synthesize lignin with magnetite as a new material and to evaluate this 

material obtained as a support for immobilization of Lipase B from Candida antarctica 

(CAL-B). 
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1.1 Objectives 

 

The main objective of the present work is the extraction of lignin from cashew 

apple bagasse (CAB), then use the lignin in the synthesis of a new magnetite_lignin 

compost and to evaluate this material obtained as a support for immobilization of Lipase 

B from Candida antarctica (CAL-B). 

 

1.1.1 Specific Objectives 

 

- To Extraction extract and to characterize of lignin from cashew apple bagasse (CAB); 

- To synthesis of magnetite (Fe3O4) conjugated with lignin by two different procedure; 

- To immobilize CAL-B lipase enzyme on magnetic nanoparticles conjugated with lignin 

(MNs/Lig); 

- Characterization of the synthesized biocatalysts; 

-  Evaluation of the application conditions of the obtained biocatalysts. 
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2 LITERATURE REVIEW      

 

2.1 Cashew apple  

 

Cashew apple (Anacardium occidentale L.) is a native fruit from the tropical 

America and widely produced into 5 million hectares around the world, dispersed in 

several countries of South America, Africa, Asia and Central America, with cashew apple 

composed of cashew nut (fruit) and peduncle (pseudofruit) (Fig. 01). Cashew apple is a 

pseudofruit from the Northeastern region of Brazil with an outstanding economic role due 

to the cashew nut exportation. The industry of juice from cashew apple produce 15% 

(w/w) of bagasse (PADILHA et al., 2019; REIS et al., 2017), representing one of the 

major waste from the Brazilian agribusiness (CORREIA et al., 2013; ROCHA et al., 

2014; REIS et al., 2017).  

 

 

Figure 01- Cashew apple (Anacardium occidentale L.): peduncle and cashew nut 

 

                       

                     

                      Source: Prepared by the author. 

 

 

Cashew apple presents high vitamin C content, in average, equal to 269 mg/100 

ml of juice, being this value five times higher than the level found in orange juice 

(CONTRERAS-CALDERÓN et al., 2011). It also contains niacin, riboflavin and 

Peduncle (Pseudofruit) 

Cashew Nut (Fruit) 
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thiamine in addition to significant amount of minerals, such as copper, calcium, sodium, 

zinc, potassium, iron, phosphorous and magnesium (LOWOR and AGYENTE-BADU, 

2009). 

A high amount of cashew apple is annually processed to obtain cashew nuts and 

more than 80% of the fibrous peduncles (10-15 tons/1.0 nut ton) are discarded as an 

agricultural by-product after removing the nut. Although its rich nutritional composition, 

cashew apple utilization has been very limited due to certain disadvantages, such as high 

perishability and its unfavorable sensory characteristic (DAS and ARORA, 2017). 

However, in recent years, there has been an increasing trend towards more efficient 

utilization of agro-industrial residues, and some works have been conducted to evaluate 

alternatives to use this agricultural by-product as source for the production of various 

biomolecules and bio-based products, such as food derivatives, enzymes, biosurfactant, 

biopolymers, natural pigments and alcohol. 

CAB is mainly composed by cellulose, hemicelluloses and lignin that form a 

complex and intricate structure (REIS et al., 2017; ROCHA et al., 2014; CORREIA et al., 

2013; WANDERLEY et al., 2013). The following average proportion of cellulose, 

hemicellulose and lignin have been reported in the literature: 20-21% w/w; 10.20-16.30% 

and 33.60-35.30 % (w/w), respectively ROCHA et al., 2014; COSTA et al., 2015). Many 

agricultural wastes have been reported as potential sources of lignocellulosic material 

(REIS et al., 2017) such wheat straw (LOPES et al., 2013), sugarcane bagasse 

(PINHEIRO et al., 2017; JIANG et al., 2013), bamboo (XU, et al., 2019), in addition to 

the cashew apple bagasse (CAB), which seems to be a promising alternative.  

In addition, the composition of cashew apple bagasse (CAB) points the raw 

material as an alternative and inexpensive lignocellulosic material product for obtaining 

value-added products, such as ethanol (RODRIGUES et al., 2016; ROCHA et al., 2011; 

RODRIGUES et al., 2011), xylitol (ROCHA et al., 2014; ALBUQUERQUE et al., 2015) 

carbohydrates (REIS et al., 2017) and other products such as enzymes (RODRIGUES et 

al., 2007). 

In the works reported in the literature, cellulose and hemicleulose from cashew 

apple bagasse are the target molecules. Lignocellulosic materials are resistant to 

saccharification via enzymatic hydrolysis due to its complex structure and therefore, 

require pretreatment to improve their bioconversion (ZHAO et al., 2017). So, the 

pretreatments of lignocellulosic materials promote the removal of components that are 
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recalcitrant to increase the digestibility of the material prior to the conversion into product 

of interest. However, both the valorization of lignin and the economic aspects of this 

pretreatment are fundamental for production of different materials. 

 

2.2 Lignin 

 

Lignin is the second most abundant component of plant residues in terrestrial 

ecosystems (SUN et al., 2013; NOGUEIRA et al., 2019). It is can be obtained from 

various renewable raw materials, for example, wood, sugar cane, cedar trees or pine, and 

bagasse (CARVALHO et al., 2013). 

In contrast to cellulose and hemicellulose, lignin is a complex macromolecule 

composed of phenolics (monolignols). Lignin is a biopolymer with high cross-linking of 

ether and carbon-carbon bonds that polymerizes 4-hydroxyphenylpropanoid monomers, 

whose formation is activated by laccases and/or peroxidases. It is three-dimensional and 

consists of three phenol groups which include: p-hydroxyphenyl (H), guaiacyl (G) and 

syringyl (S) (FENGEL and WEGENER, 1989). 

It is a complex amorphous polyphenolic molecule (NOGUEIRA et al., 2019), with 

a structure composed of three different types of phenolic precursor units (coniferyl-, e.g. 

p-coumaryl- and synapil alcohols) (see Figure 2), which linked by carbon-carbon and 

ether bonds formed an irregular network biopolymer (SUN et al., 2013; BOERIU et al., 

2004). 

 

Figure 2 - The three main precursors (monolignols) of lignin molecule  

 

 

 

 

 

 

 

Source: WINDEISEN and WEGENER, 2012. 

 

coniferyl alcohol     p-coumaryl alcohol sinapyl alcohol 
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Adding strength and structure to the cell walls, the lignin plays a major role in 

woody plants, controlling fluid flow and protecting against biochemical stresses by 

inhibiting enzymatic degradation of other components (LAURICHESSE and 

AVÉROUS, 2014). The monolignols units are linked together via radical coupling 

reactions during the biological lignification process, to form a complex three-dimensional 

molecular architecture (Figure 3) that contains a great variety of bonds withtypically 

around 50% B-O-4 ether linkages (RALPH et al., 2004; CHEN and SARKANEN, 2003). 

 

Figure 3 - Main linkages in a softwood lignin 

 

 

 

 

   Source: WINDEISEN and WEGENER, 2012. 
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As one of the most widespread biopolymers in the world, lignin has many 

advantages, because it is a waste material that is produced in large amounts in the paper 

and pulp industry, the renewable nature indicates that the lignin resources will never be 

depleted and the biopolymer is harmless to live organisms (KLAPISZEWSKI et al., 

2019). 

The lignin extracted during pretreatment has been a source of study in reports 

literatures because it is a fibrous and quite resistant material (LI et al., 2015). Due to its 

high molecular weight (LI et al., 2015), lignin can be used to produce carbon fibers, 

polymer modifiers, adhesives, bioactive compounds and resins (PADILHA et al., 2019). 

Also, lignin has antioxidant activity, because of the presence of phenolic groups and 

benzylic hydrogens.  

To obtain the of lignin are applied different treatment methods. These mainly 

include physical-chemical treatments (e.g., steam explosion with SO2, liquid hot water, 

ammoniun fiber explosion and microwave pretreatments) (ROCHA et al., 2011; 

RODRIGUES et al., 2011), treatments chemical (e.g., alkali, acid, ozonolysis, organosolv 

and ionic liquids), physical treatments (mechanical and extrusion), and alkaline hydrogen 

peroxide treatments (KARAGÖZ et al., 2012; CORREIA et al., 2015).  

Natural lignin is a pale yellow or colourless but on treatment with acid or alkali, 

its color changes to dark brown or brown. The range of monolignol content in plant 

sources yields plurality in both the chemical and the physical properties of the resulting 

lignin materials. Molecular masses of isolated lignin are in the range 1000 – 20,000 g.mol-

1, but the degree of polymerization in nature is difficult to estimate since contains 

numerous types of subunits which repeat randomly and lignin is consistently fragmented 

during extraction (DAVIN et al., 2008). 

Lignin has degradable property and in common practice, oxidation and 

hydrogenation are the two most common techniques used to degrade lignin. It has many 

other properties such as antioxidant, high thermal stability, antimicrobial behavior and 

biodegradability and, adhesive properties and relative abundance. Lignin shows the 

properties of the additives, blending and dust dispersant (MAHMOOD et al., 2016). 
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2.2.1 Extraction of lignin 

 

To extract lignin from lignocellulosic material, it must undergo to a treatment, due 

to their recalcitrant structure, showing a great barrier to the fractionation (separation) of 

the biomass components (cellulose, hemicellulose and lignin) (KIM et al., 2001).  

The isolation processes can be achieved using mechanical energy and/or chemical, 

although the former is preferred as damage to the fibers is minimized in this case. 

Commercial pulping and bleaching processes use alkalis, acids, organic solvents or 

biological agents that attack the lignin, causing its degradation and dissolution, thereby 

enabling separation of the cellulose fibers from the lignin (HON, 1996).  

Several methods (pretreatments have been presented in the literature for the 

availability of lignin, highlighting treatments with acid (H2SO4), and with alkalis (NaOH) 

(CORREIA et al., 2013; ROCHA et al., 2011). Once the cellulose is separated, the lignin-

rich residue is generally burnt or discarded, disregarding a more profitable exploitation 

of precious aromatic photosynthates (MATSUSHITA et al., 2001). 

 

2.2.2 Lignin characterization studies 

 

Methods of analysis of the chemical structure such as ultraviolet, infrared, 

ultraviolet or visible spectrometry, thermogravimetric analysis, chromatography or 

magnetic resonance, are also used with lignin. But they require greater care in interpreting 

the results because of their structural complexity when used with lignin. 

The important topic to be considered in the characterization of lignin is the thermal 

decomposition and can be evaluated through thermogravimetric analysis (TGA). Lignin 

degradation is a complex process considered where thermal decomposition takes place 

over a wide temperature range because the various oxygen-based functional groups have 

different thermal stability (LAURICHESSE and AVÉROUS, 2014). 

The infrared spectroscopy of the extracted lignin is a widely used technique for 

the qualitative characterization of lignin and its derivatives and can be used as an 

instrument to understand the structure and chemical groups altered, removed and/or added 

to it (Ramesh et al., 2004). However, there are difficulties regarding the interpretation of 

the infrared spectra of lignin caused by the influence of some factors, such as 

modifications introduced in the process of separation and structural heterogeneity. 
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Li et al. (2021) synthesized lignin grafted poly (ε-caprolactone) (lignin-g-PCL) 

copolymers via ring-opening polymerization of ε-caprolactone with different types of 

lignins of varying botanical sources and lignin extraction methods (Kraft and ethanol 

organosolv pulping). The structure and thermal properties of the lignin-g-PCL were 

investigated using Fourier-transform infrared spectroscopy (FTIR), 2D heteronuclear 

single quantum correlation (HSQC) NMR, 31P nuclear magnetic resonance (NMR), 

differential scanning calorimetry (DSC) AND gel permeation chromatography (GPC). 

They found that all the technical lignins were reactive to the copolymerization reaction 

regardless of their plant source and isolation methods. The molecular weights of the 

synthesized lignin-g-PCL copolymers were positively correlated with the content of 

aliphatic lignin hydroxyls, suggesting that the copolymerization reaction tends to occur 

preferentially at the aliphatic hydroxyls rather than the phenolic hydroxyls of lignin. The 

thermal behavior of lignin-g-PCL copolymers varied depending on the lignin feedstocks 

employed in the copolymerization reaction. 

 

2.2.3 Current applications of lignin 

 

Continuing technological progress means that scientists are constantly finding 

new solutions that make use of lignin and its derivatives (EVSTIGNEYEV et al., 2004). 

Lignin research and its applications have been going on for decades. Many studies have 

reported about the possibility to use lignin as high value product (AGRAWAL et al., 

2014; LUO and ABU-OMAR, 2017) in various sectors, such as food, cosmetics, 

pharmaceuticals, chemicals and textiles.  

The complexity and richness of its functional groups makes it attractive for 

converting into a variety of value added products like high performance carbon fiber, bio-

oil, vanillin, and phenolic resin to name a few (BAJUA et al., 2019). Over the years lignin 

has been predominantly burnt as fuel for heat and power. Less than 2% of the available 

lignin was sold, primarily in the formulation of dispersants, adhesives and surfactants 

(BAJUA et al., 2019).  

However, in the last decade lignin-based research and new product development 

has picked significant momentum due to the bio-refinery concept as aging pulp and paper 

mills need to diversify their products portfolio to maintain their vitality (BAJUA et al., 

2019; LUO and ABU-OMAR, 2017.  
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Many studies on the application of lignin as an support for immobilizing lipase 

have been conducted in recent years. Zdarta, et al (2015), for example, demonstrated that 

a lignin composite could potentially serve as a lipase-immobilizing support and Zhang et 

al. 2014 revealed that lignin could be used as an activator to increase the activity of α-

amylase and lipase.  

However, these applications have not reached the industrial scale yet. (BAJUA et al., 

2019). 

 

2.3 Enzyme Biocatalysts 

 

Enzymes are recognized as green catalysts that act in many reactions (ALI et al., 

2017; LI et al., 2018). The use of enzymes as catalysts have been widely studied in recent 

decades and is a very interesting means for the development of the sustainable industrial 

chemistry: they are very selective, specific and capable to display a very high activity 

under very mild experimental (FERNANDEZ-LAFUENTE et al., 2009; ALVES et al., 

2017). 

In the drive towards green, biocatalysis affords both and sustainable technology, 

and it is being widely applied in the production of pharmaceuticals, commodity 

chemicals, and polymers (HOSSEINI et al., 2019; SHELDON and WOODLEY, 2017). 

It offers significant benefits for biologically mediated chemical reactions, a biodegradable 

catalyst, and environmentally acceptable solvent and mild reaction conditions 

(physiological pH and temperature) (SHELDON and RANTWIJK, 2004). 

Lipases are among the groups of enzymes that stand out for the variety of reactions 

catalyzed in organic systems due to the high stability in these environments e with low 

water content, further solubility of organic substrates (BONAZZA et al., 2017; KORDEL 

et al., 1991). 

 

2.3.1 Lipases 

 

Lipases (triacylglycerol ester acylhydrolases EC 3.1.1.3) are one of the most used 

industrial enzymes that catalyze the hydrolysis of triacylglycerols (oils and fats) to 

glycerol and free fatty acids at the water/oil interface (DUARTE et al., 2016; BONAZZA 

et al., 2017; ALVES et al, 2017). These enzymes can also catalyze esterification, 
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transesterification, thiotransesterification, interesterification, oximolysis and aminolysis 

reactions in non-aqueous media (MENDES; DE CASTRO; GIORDANO, 2014; ALVES, 

et al, 2017). 

Lipases are produced in high yields by several plants, animal tissues and microbial 

organisms (ALVES et al., 2017). They are widely used as biocatalysts in hydrolysis and 

synthesis reactions because of their excellent properties such as regioselectivity, 

stereoselectivity and chemoselectivity (ROMERO et al., 2018), in both academic and 

industrial levels  due to its wide availability in nature and low cost (FONSECA et al., 

2015). 

Ferreira et al. (2019) optimized the free fatty acid production by enzymatic 

hydrolysis of cottonseed, olive and palm kernel oils in stirred-tank reactors using a lipase 

from Geotrichum candidum (GCL-I). Thermal stability tests and thermodynamic studies 

were also performed. O GCL-I exibiu a maior atividade na hidrólise de óleos vegetais, 

ricos em ácidos graxos insaturados (sementes de algodão e azeite). 

Gama et al. (2019) proposed a novel support (Phenyl–SiO2) via functionalization 

of rice husk silica with triethoxy(phenyl)silane and this functionalized support was used 

to immobilize lipase from Thermomyces lanuginosus (TLL) by physical adsorption via 

hydrophobic interactions. The authors reported a maximum conversion of 92% after 330 

min to synthesize cetyl oleate by esterification.   

 

2.3.2 Lipase B from Candida antarctica 

 

Lipase B from Candida antarctica (CAL-B) is commercially known as 

Novozym® 435, where it is immobilized on a macroporous acrylic resin (HOCK et al., 

2018). It has a wide range of alkaline pH (7.0 to 10.0) in which it remains stable, but its 

optimum pH is 7.0 (UPPENBERG et al., 1994). It has a globular structure and consists 

of 317 amino acid residues, an isoelectric point (pI) of 6.0 and a molecular mass of 33 

kDa (HOCK et al., 2018; UPPENBERG et al., 1994). The catalytic triad is formed by 

Ser105, His224 and Asp187 (Figure 4) (HOCK et al., 2018). The CAL-B surface is 

divided into patches that have a hydrophilic nature at the back of the enzyme and a 

predominant hydrophobic nature near the lipid binding site, allowing an orientation at 

water-lipid interfaces (HOCK et al., 2018; BASSO et al., 2007).  
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The CAL-B does not efficiently hydrolyse triglycerides, unlike other lipases, but 

it is preferred in a wide range of applications replacing industrial synthetic processes due 

to its stereo and enantioselectivity, thermal stability, resistance to organic solvents, and 

high efficiency (TANASKOVIĆ et al., 2017; RODRIGUES et al., 2008; IDRIS and 

BUKHARI, 2012). 

CAL-B has been used through BASF to produce chiral compounds, such as the 

herbicide Dimethenamide-P, which was previously made chemically. The use of the 

immobilized enzyme has provided significant advantages over a chemical process, such 

as the possibility to use equimolar concentration of substrates, obtain an enantiomeric 

excess > 99%, use relatively low temperatures (< 60 °C) in organic solvent, obtain a single 

enantiomer instead of the racemate as in the chemical process (BALKENHOHL et al., 

1996). 

 

Figure 4 – CAL-B 3D Structure. Schematic representation of amino acids 

residues on CALB. Catalytic triad of the active site (Ser 105, Asp 187, His 224). The 

structure was taken from the Protein Data Bank (PDB) using PyMOL Educational. The 

PDB code for CAL-B is 1TCA 

 

                                   Source: Own author (2020). 

 

 

 



35 

                                                                                                                                                        Literature Review 

 

 

Cashew Apple Bagasse Lignin as Support for Immobilization of Lipase B from Candida Antarctica 

 

Bourkaib et al., (2019) studied the Candida antarctica B lipase (CAL-B) 

immobilized on purified and functionalized multiwalled carbon nanotubes (MWCNTs). 

Were investigated Both immobilization routes, covalent bonding and physical adsorption. 

The enzyme loadings reached were significant: around 16 wt. % and 21 wt.% for non-

covalent and covalent immobilization, respectively. Thus, it was shown that a fully green 

enzymatic process can be achieved with these prepared CAL-B@MWCNT biocatalyst. 

 

2.3.3 Immobilization of enzymes 

 

The application of enzymes on a large scale is still a difficult process due to their 

considerably high cost, low stability, and difficult recovery and recycling (GONG et al., 

2017). Moreover, it is difficult to separate them from the reaction system which limits its 

recovery and reuse (ALVES, et al., 2017). However, the use of immobilized enzymes on 

a suitable support can be minimize these problems and also can improve their activity, 

specificity, and stability and to facilitate the reuse of the biocatalysts (ALVES et al., 

2017). 

The use of immobilized enzymes is now a routine process for the manufacture of 

many industrial products in the pharmaceutical, chemical and food industry. Some 

enzymes, such as lipases, are naturally robust and efficient, can be used for the production 

of many different molecules and have a wide range of industrial applications thanks to 

their broad selectivity (BASSO and SERBAN, 2019). For enzyme immobilization there 

is a large number of materials and methods (BILAL et al., 2018). It is important that their 

choice is carefully justified and considered taking into account the catalytic process and 

the specifics of the pair of enzyme-carrier components (ZAITSEV et al., 2019). 

Usually, after the catalytic process, the immobilized enzymes onto solid supports 

can be facile removal and it will be possible to reuse for many times, and this will 

contribute to the reduction of the cost of industrial process (WAHBA et al., 2017; 

ELNASAR et al., 2010). 

Different studies were carried out to evaluate the best support and immobilization 

strategy of lipase. For example, chitosan activated with divinyl sulfone was evaluated as 

a heterofunctional support for lipase B from Candida antarctica immobilization by 

Pinheiro et al. (2019). 
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2.4 Magnetic nanoparticles (Fe3O4) 

 

Recently, magnetic nanoparticles have attracted much attention an alternative 

support material for enzyme immobilization (YONG et al., 2008; CHEN et al., 2009), 

and due to a substantial increase in their availability and versatility show to be a very 

important support (SOUZA et al., 2017). 

The enzymes can be easily separated from the reaction medium, when they are 

immobilized on magnetic nanoparticles stored, and reused with reliable results (KALRA 

et al., 2001; PASHANGEH et al., 2017). Thus, this procedure offers a simple technique 

for separating and reusing enzymes longer than the use of free enzymes in the reaction 

(PASHANGEH et al., 2017). 

It is advantageous the use of iron-based catalyst systems because iron is a 

naturally-occurring, abundant compound, nontoxic, readily renewable sustainable and 

environmentally safe. Some forms of iron oxide facilitating the removal of reactants due 

its magnetic properties (ARANTES et al., 2017; LUO & ZHANG, 2009).      

Iron oxides, in particular magnetite, with the molecular formula Fe3O4 and a dark-

colored, represent the magnetic particles that are most commonly associated with a 

polymer matrix in a nanometric scale owing to their excellent magnetic properties, such 

as superparamagnetic behavior at room temperature, exceptional biocompatibility of their 

surfaces (ZHANG et al., 2012;  FURLAN et al., 2019), low toxicity compared to both 

metals or other metal-oxide, high chemical stability, and the facility and low cost of the 

procedures available for their preparation (FIGUEROLA et al., 2010; FURLAN et al., 

2019). 

Lima et al. (2016) studied mono and heterofunctionalized silica magnetic 

microparticles (SMMPs) synthetized for immobilization of lipase B from Candida 

antarctica (CAL-B). These supports allowed the immobilization of CAL-B by 

hydrophobic adsorption or hydrophobic/covalent linkages, achieving immobilization 

yield of  88% and recovered activities of 128% and 59%, respectively. The performance 

of the magnetic biocatalysts was evaluated in the synthesis of xylose fatty acid esters 

(laurate or oleate) in tert-butyl alcohol medium, yielding around 60% conversion after 48 

h under optimized conditions (xylose/fatty acid molar ratio of 1:0.2, 55 ◦C, and activity 

load of 37.5 U/g). The magnetic biocatalyst was used in 10 reaction cycles of 48 h at 46 

◦C maintaining high xylose conversions. 
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Candida antarctica Lipase B (CAL-B) immobilized onto iron magnetic 

nanoparticles was evaluated by Souza et al., (2017) as biocatalyst for the synthesis of 

flavor esters. Methyl and ethyl butyrate were synthesized by esterification of butyric acid 

with methanol and ethanol, respectively, in a medium containing solvent. The maximum 

conversions of methyl butyrate and ethyl butyrate were higher than 90 %. The synthesis 

of flavor esters was also conducted by using Novozym® 435, a commercial catalyst, for 

comparison purposes. 

Monteiro et al., (2019) studied lipase A from Candida antarctica (CALA)  

immobilized by covalent bonding on magnetic nanoparticles coated with chitosan and 

activated with glutaraldehyde (CALA-MNP), (immobilization parameters: 84.1% + 1.0 

for immobilization yield and 208.0 + 3.0 U/g +1.1 for derivative activity). The 

immobilized biocatalyst showed a half-life 8–11 times higher than that of the soluble 

enzyme at pH 5–9. The immobilized enzyme was more active than the free enzyme at all 

studied pH values, except pH 7. 
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4.5 CONCLUSION 

 

The synthesis of a nanomagnetite composite with lignin extracted from cashew 

apple bagasse was efficiently attained via a simple method that can potentially enable the 

upscaling process for industrial applications of this material. The investigated magnetite-

lignin composite demonstrated a high thermal stability and good magnetic properties. 

CAL-B immobilized on MNs/Lig-activated glutaraldehyde was the most stable (t1/2 > 480 

min) among those studied. Under the evaluated conditions, conversions of 88.2% of ethyl 

oleate and 76.7% of 2-ethylhexyl oleate were reached after 24 h of reaction performed in 

a solvent-free system by MNs/Lig_Tri_CALB. The biocatalyst prepared in this study also 

exhibited satisfactory reusability in esterification reaction cycles for the five cycles 

evaluated. Therefore, the new strategy of obtaining a new biocatalyst from a synthesized 

composite (MNs/Lig) may be a promising route for the enzymatic immobilization of 

lipases, in addition to being considered environmentally benign. It shows promising use 

in a variety of reactions of industrial interest, such as in the synthesis of biolubricant 

through solvent-free reaction. The immobilized lipase could be easily recovered by using 

an external magnetic field, allowing for the recycling of the biocatalyst for five times, 

with no significant loss of enzymatic activity. 
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