
A Generative Approach for Android Sensor-based
Applications

Davi Tabosa1, Paulo Duarte1,2, Rafael Carmo2, and Windson Viana1,2

1 Group of Computer Networks, Software Engineering and Systems (GREat)
2 Federal University of Ceara (UFC), Fortaleza – CE – Brazil
davitabosa12@alu.ufc.br, pauloduarte@great.ufc.br,
carmorafael@virtual.ufc.br, windson@great.ufc.br

Abstract With the popularisation of smartphones, mobile devices be-
came a crucial technological element in Information Systems. Beyond
be the end-user platform, smartphones have several sensors to capture
and characterise the user’s context. Current Context-Aware Information
Systems (CAIS) use this data to improve user experience by filtering
data, services, and, even, adapting the system behaviour. The design
and development of the capture, inference, and action parts of CAIS
can be challenging for mobile developers, due to the diversity of mobile
hardware ecosystem and sensor APIs’ complexity. This paper presents
EasyContext, a visual tool for designing and generating contextual rules
for mobile devices, using the Google Awareness API as its contextual in-
formation provider. Mobile developers specify what to capture and when
to react to context-changes in the visual tool and these contextual rules
are exported to Android projects. We evaluated our approach with eight
developers, which were selected to participate in a quasi-experiment. The
experiment involves developing two mobile applications using both Easy-
Context and Google Awareness API. Preliminary results show that it is
possible to build applications with fewer lines of code compared to the
Google Awareness API. According to the developers, the proposed ap-
proach has better readability and makes it easier to design contextual
rules.

Keywords: Context-Aware Information Systems · Android · Generative
Programming · Sensor-based.

1 Introduction

Current smartphones have several built-in sensors (e.g. gyroscopes, acceleromet-
ers, GPS) at affordable prices. Also, their increase in memory, processing, and
communication capabilities set the basis to the rise of context-aware systems.
Due to smartphones popularisation, many software developers have started to
use information obtained from sensors to improve user’s experience[11]. The
context in this domain can be defined as “any information that can be used to
characterise the situation of an entity. An entity is a person, place, or object

2 Tabosa et al.

that is considered relevant to the interaction between a user and an application,
including the user and applications themselves.” [8] [5].

Context-Aware Information Systems (CAIS) use context information to im-
prove user experience by filtering data, services, or adapting the overall system
behaviour [17]. Smartphones are now the most important end-user platform
for CAIS. They represent a hub of sensor data for these systems. CAIS encom-
passes the gathering and use of contextual information for various purposes, from
general utility applications like map-based navigation systems, smart home as-
sistants to public service applications [14][10][11]. Many challenges exists in the
design and development of CAIS challenges [1], such as: sensor data accuracy and
availability [15][9][12], specification of the context dimensions [7], the complex-
ity of the sensor access code [13][15][9][16][6], and the modelling and execution
support of contextual rules [10][9][16].

In the Android ecosystem, one of the most widely used solution to reduce
sensor access complexity is the Google Awareness API3. This API provides an
interface to access a set of contextual information common to many Android
smartphones. For example, Air4People[14] is an application that uses Awareness
API to get user location information and current weather. With that data, this
information system sends notifications about the air quality to the user.

As with other context-aware platforms, creating contextual rules using
Awareness API remains a complex and verbose process. The developer must
have advanced knowledge of the Android internal communication protocols, in
addition to specific features of each version update of the platform. For example,
creating a contextual rule on Android 7.0 is different from creating one on An-
droid 8.0. This heterogeneity can make it challenging to implement and maintain
systems that use the Awareness API as a data source.

Based on these challenges, we investigated the following research question:
"How to assist the modelling and implementation of contextual rules for sensor-
based systems on the Android platform?"

Given this scenario, we propose EasyContext, a tool for modelling contex-
tual rules and generating its behaviour with the Awareness API as a context
provider. EasyContext aims to facilitate the modelling and use of contextual
rules, especially for novice developers, through a visual interface. In this paper,
we also present an evaluation with eight mobile app developers who used the
tool. After analysing the codes generated and the results of a qualitative survey,
we found that EasyContext is easier to use when compared to Awareness API.
Also, it helps to reduce the number of lines written by the mobile developer and
improves the readability of the code.

The remainder of the paper is organised as follows: Section 2 presents Aware-
ness API. Section 4 introduces EasyContext, while Section 3 describes the meth-
odology used in its development. Our evaluation approach is available in Section
5, with the results shown in Section 5.2 and discussed in Section 5.3. Related
Work is presented in Section 6. Finally, Section 7 presents the final considera-
tions.
3 https://developers.google.com/awareness

A Generative Approach for Android Sensor-based Applications 3

2 Google Awareness API

Google released Awareness API in 2016 as part of Google Play Services suite4
trying to reduce the Sensor API complexity and aiming to provide high-level
user’s context information. It contains two APIs, named Snapshot and Fence.
The Snapshot API obtains the current information about the user’s context from
the smartphone’s sensors (e.g., user’s activity, location, headphone state). The
Fence API represents a contextual rule[18], making the Android device execute
a code if a previously established condition becomes true or false (e.g., if the
user’s activity is "walking" then Android executes the X method). For this ac-
tion code to run, developers must configure and register it using the Broadcast
component 5 of the Android platform. Awareness API offers seven categories of
contextual information: Time (local time of day), Location (geographic coordin-
ates), Place (geocoded information), Activity (detected user activity), Beacons
(nearby Bluetooth beacons), Headphones (headphone state) and Weather (cli-
matic conditions). Some categories that are present in the Snapshot API, such
as Weather and Place, are not present in the Fence API, making it impossible to
create contextual rules for these categories with the API. The Google Awareness
API is an initiative to mitigate CAIS code complexity. However, this approach
is still somehow counter-intuitive as it requires the developer to perform a series
of steps that increase the complexity of coding[10].

3 Research Methodology

Figure 1 shows the sequence of steps for we adopted in the design and devel-
opment of EasyContext. At first, we performed a requirements elicitation with
emphasis on the research question. Then, we studied the Awareness API; its
strengths and weaknesses were highlighted. After that step, we developed Ver-
sion 1 of EasyContext, which was then used to build two context-aware applic-
ations. They illustrated the use of the approach in a real scenario. We were able
to find the existing limitations of Version 1. We then refactored and improved
the approach, generating Version 2 (described in the last section). Finally, we
evaluated it with developers, which we explain in details in Section 5

3.1 Application for redesign

We made two applications to test and refactor the EasyContext Version 1. The
first one is a music player, where the user creates playlists with songs of their
choice. The user can also connect a playlist to one or more contextual rules of
activation. (e.g., if it’s raining, play Umbrella). When launched, the application
detects the user’s current context and suggests the playlists created by the user,
ordered by the similarity between the current context and the context recorded

4 https://developer.android.com/distribute/play-services/
5 https://developer.android.com/guide/components/broadcasts

4 Tabosa et al.

Figure 1. Flowchart of EasyContext’s development methodology

in the playlists. This mobile app has a unique contextual rule and a comparison
algorithm between contexts. At the time when the user puts the headphone, the
application sends a notification asking if he or she wants to listen to music at that
moment. If the user clicks on the notification, the app opens and recommends
playlists according to the user’s current context. To sort the playlists according
to the user’s current context, we have developed an algorithm that calculates
the similarity between two contexts. The music player always recommends the
playlist with the most detailed context (i.e., if it matches the current user’s
situation with more context elements).

The second one is a reminder application based on contextual change. The
user registers a message that they want to remember and incorporates a con-
textual rule. When the user’s current context matches the recorded context, the
application displays a notification with the message registered previously. This
application has no fixed contextual rules. When the user composes a reminder,
they must link it to a context rule. These rules cannot be made in the Web Tool,
because the user has full control over when the reminder should be triggered.

3.2 Refactoring

During the development of these two applications, several difficulties happened
regarding what the tool offered that time. EasyContext version 1 was more based
on the Fence concept and gave limited functionality for Snapshots. Also, the
programmatic creation of Fences was still quite verbose with EasyContext, with
its creation methods receiving many sophisticated attributes. Actions were very
similar to Broadcast Receivers and needed to be instantiated by the programmer
in the code. This fact affected the rule life cycle that could be destroyed by the
Java virtual machine’s garbage collector at any time, making it unstable.

After that, we have created a class that specialises in delivering Snapshot
information. Since the Snapshot class delivers contextual data asynchronously,
the developer must create a listener to retrieve the information. To get the
updated context data, the developer must invoke the updateContext function,
which retrieves the context data by packaging it into a CurrentContext object.
The developer can decide which context providers should be updated. The Cur-
rentContext class is the default way to request current context information. It

A Generative Approach for Android Sensor-based Applications 5

contains information that would be in the Awareness’ Snapshot API but as a
single object. The two applications we developed use customised contextual rules
for the end-user, which requires the persistence of these rules. To get around
this problem, now, all the EasyContext rules can be serialised and deserialised
in JSON. With that, we facilitate the storage of contextual rules on data per-
sistence systems such as SQLite and Shared Preferences. The GeneralReceiver
(Figure 5) is a BroadcastReceiver that resides in an application with EasyCon-
text. It is the intermediary between the Intents sent by the Awareness API and
the Action written by the developer. When GeneralReceiver receives a message
from the Awareness API indicating that this condition has become true, the
GeneralReceiver creates an instance of the Action that has been registered with
the rule (on the Web tool) and executes the doOperation method. This enables
the application to go to standby and maintain functionality in the background,
even with the thread of the main application is not executing.

The FenceManager is a mediator between the fences registered in the Aware-
ness API and EasyContext. The developer can create new context rules at
runtime and register them using this class. This is an alternative to Web Tool if
the developer needs to register a rule defined by the end user. It is also respons-
ible for linking a rule to an Action. When the GeneralReceiver is activated, with
the name of the fence in hand, it queries FenceManager to know which Action
should execute at the moment.

4 EasyContext

EasyContext is a tool to help developers insert context-aware behaviour into
Android applications in a less verbose and more straightforward way. We divided
the approach into two parts: a Web Tool for modelling contextual rules and an
Android library for interpretation and management of these rules. This library
acquires its contextual information by using Google Awareness API, providing
abstractions for the invocation of Awareness API methods.

Figure 2 presents an overview of the process of developing a context-aware
application using EasyContext. The developer models the contextual rules using
EasyContext Web, which generates a JSON document that represents the mod-
elling made and the context providers that should be activated (e.g., headphone
state monitoring). After that, developers must include the JSON document into
their Android projects. After embedding it, the development process follows a
standard Android project. In EasyContext, a contextual rule has two parts: Con-
dition and Action. A Condition is a clause or set of clauses that define a context
situation. Action is a set of instructions that Android will execute if a contextual
condition is satisfied. Expression 1 describes a contextual rule of our approach,
using the Backus-Naur form [2]. An example of a rule would be: "If the user
enters a hospital, set the mobile phone to silent mode". In this case, the contex-
tual condition would be "entering a hospital" and the resulting phenomenon, if
this condition is true, would be "configuring the mobile phone in silent mode".

6 Tabosa et al.

Figure 2. Application development flow using EasyContext.

〈contextual rule〉 |= 〈name〉 〈clause〉 〈action〉
〈clause〉 |= 〈situation〉 〈situation〉 | 〈situation〉

〈situation〉 |= a contextual situation e.g. standing still
〈name〉 |= A . . .Z | a . . . z | 0 . . . 9
〈action〉 |= method to be called

Expression 1. Grammar of a contextual rule from EasyContext

4.1 EasyContext Web Tool

Many approaches proposed tools for configuring contextual rules as plugins for
the Integrated Development Environment (IDE) [9]. Attaching a modelling tool
to one third-party IDE results in risks such as the cease of IDE development or
the limitation of the target platform. To avoid this, we constructed the Easy-
Context configurator as a web app independent of third-party IDEs.

Using a Web tool to customise or improve an Android project is not an
uncommon practice among software developers. For instance, the Google Map’s
Styling Wizard6 allows the configuration of visual styles of maps in a web editor.
All the modifications made by the developers are updated in real-time in the
online map. This tool generates a JSON document. Developers must incorporate
6 https://mapstyle.withgoogle.com/

A Generative Approach for Android Sensor-based Applications 7

it into the application project that makes use of Google Maps. This flow is similar
to those of other tools supporting mobile app development, such as Firebase7.

Figure 3 presents the main screen of EasyContext Web tool. By accessing
the page, the developer visualises a screen for contextual rule management. He
can create, edit, and delete several rules in a single document. All rules must be
correctly named to be used in the Android project posteriorly.

Figure 3. Main screen of EasyContext containing two rules. At the bottom, one image
showing the JSON code related to those rules.

EasyContext Web tool uses a card-based metaphor for representing both
action and contextual clauses. The cards are interactive, and their values are
modified dynamically according to the user input. In the left menu, there are the
cards categories that users can select, divided into Conditions and Actions. Con-
ditions represent the EasyContext’s contextual clauses, which are four in total:
Headphone, Activity, Time, and Location. Their functionalities are identical to

7 https://firebase.google.com/

8 Tabosa et al.

those of the Awareness API. Figure 4 shows the main screen of EasyContext web
with two modelled rules. The JSON code bellow represents those rules.

Figure 4. Screen of Contextual Rule modelling

The final generated artefact is a JSON document to be incorporated in the
developer’s Android project. Figure 3 presents an example of a generated docu-
ment with two configured rules.

4.2 EasyContext Android Library

The EasyContext Android library is the approach core, acting as an interpreter of
the high-level commands specified on the Web Tool and serving as an abstraction
layer of the Awareness API features. Similarly to the Awareness API, the library
contains two parts: Snapshot and Rule. The Snapshot class has static methods to
perform context acquisition. It incorporates some methods from the Awareness
API. In terms of design patterns, it works as a Facade, encompassing all the
methods from the Snapshot API. The Rule part of EasyContext encompass
other support classes, as shown in Figure 5. The interface FenceAction is a
facilitator to the process of writing contextual rule actions, i.e., the app behaviour
in response to the user’s context changes. The developer can implement this class

A Generative Approach for Android Sensor-based Applications 9

and override the method doOperation to specify this the action, to favour the
actions reuse.

Figure 5. Class diagram of the EasyContext Android Library

Rule classes help to specify the contextual rules in a friendlier way. Also, they
allow categorising and encapsulating context acquisition methods. For instance,
the FenceManager is a Singleton object that manages the contextual rules. This
class has the objective of registering and removing contextual rules in the Aware-
ness API stack. It performs the registration of Broadcasts in parallel, without
the need of the programmer intervention. Due to this control, we reduced the
code necessary to be written by the developer for implementing a context-aware
behaviour with Awareness API. The coding effort is reduced since there is no
need to rewrite several lines of code that deal with the management of these
Broadcasts. The EasyContext class provides control to the developer in the task
of observing contextual rules. Making use of the names of the rules modelled in
the Web Tool, the programmer can activate and deactivate them.

5 Evaluation

We evaluated our research aiming to gather the acceptance of EasyContext and
to compare its use with the direct coding with Awareness API. For that, we
used code complexity metrics analysis in both approaches during an experiment
with mobile developers. In two rounds of experiments, we evaluated EasyContext
with a group of 08 participants in the area of Computer Science, in which 04 are
undergraduate students, and 04 are graduate students. All of them had previous
experience in Android programming using the Java language in the Android

10 Tabosa et al.

Studio environment. However, none of them had experience in the creation of
context-aware information systems or had in-depth knowledge of the Awareness
API features. However, all of them have followed Awareness API theoretical and
practical classes.

5.1 Procedure

The evaluation consisted of developing two toy applications, making use of both
the Awareness API and EasyContext. Pre-made projects were given to all parti-
cipants. They had to code the context-aware behaviour of those apps. The first
application is a fitness tracker. Once activated, the application counts how long
the user has been sitting or moving. The second application is a reduced version
of the reminder app, which send messages to the users whenever the users enter
in certain places at a given time of day.

First, we made an initial levelling to make it possible to measure the direct
impact of the usage of the Awareness API and EasyContext. After that, we ran-
domly divide the students into two groups, called Group A and Group B. The
experiments were performed in a controlled environment, and the participants
developed the applications using the IDE Android Studio IDE version 3.2 in iMac
computers. Group A developed the fitness tracker making use of EasyContext,
and the reminders app making use of the Awareness API. Group B developed
the tracker using the Awareness API and the reminders application using Easy-
Context. Before the beginning of the evaluation, participants answered a ques-
tionnaire regarding their abilities in Android programming and Awareness API.
We timed the development time every student took to develop each application.
At the end of the activity, the students answered two other questionnaires [3]
regarding that experience in developing applications using both tools.

5.2 Results

Table 1 presents the average results of the static code analysis for the eight sub-
jects. The metrics collected were: average operation complexity (OCavg, lower
is better), weighted method per class (WMC, lower is better) and lines of code
(LOC, lower is better). This collection was performed through a plugin avail-
able for the Android Studio and IntelliJ IDEA IDEs called MetricsReloaded8.
The static code analysis relative to the fitness tracker application reached 13 in
WMC and 1.62 in average operation complexity when EasyContext was used;
14 in WMC and 1.75 in average operation complexity when Awareness API was
used. The analysis of the codes related to the reminders application reached
21.75 in WMC and 2.08 in average operation complexity when EasyContext was
used; 21 in WMC and 2.1 in average operation complexity when Awareness API
was used.

Analysing the amount of lines of code written by the developer, EasyContext
achieved an average of 97.75 and 131.5 lines written in the fitness tracker and
8 https://plugins.jetbrains.com/plugin/93-metricsreloaded

A Generative Approach for Android Sensor-based Applications 11

Activity Tool OCavg WMC LOC
Fitness
Tracker

EasyContext 1,62 13 97,75
Awareness API 1,75 14 111

Reminders EasyContext 2,1 21 131,5
Awareness API 2,08 21,75 153,5

Table 1. Static code analysis of the codes written by the participants

reminders applications respectively. The Awareness API achieved an average of
111 and 153.5 lines written in the fitness tracker and reminders applications
respectively.

Developers also answered nine questions for each approach. All items were
constructed using the 5 point Likert scale (Strongly Disagree = 1, Strongly Agree
= 5). We have elaborated these nine questions based on Cognitive Dimensions
of Notations[3], by Blackwell et al. Figure 6 shows the analysis comparing the
questionnaire results. When asked if the "tool fulfills best the requested specific-
ations", the results were mostly neutral both to EasyContext and Awareness
API, averaging 3.5 and 3.12 respectively. This neutrality persists when ques-
tioned if "less errors occur in the tool", averaging 3.12 for EasyContext and 3.25
for Awareness API. When questioned if "the code is more legible in the tool" the
average of answers were 4.25 for EasyContext and 3.12 for Awareness API. In
the question regarding if "the tool restricts my freedom as a programmer", the
answer were similar, 2.5 for EasyContext and 2.75 for Awareness API. Regarding
the theme "the tool doesn’t have all features I need", results were also identical,
averaging 2.87 for both tools.

5.3 Discussion

While observing the questionnaire analysis, EasyContext has behaved satisfact-
orily, especially in questions involving code readability and ease of design. Also,
the developer writes fewer lines of code using EasyContext, which may have
contributed to the readability of the code. The number of lines of code increases
significantly using the Awareness API. While in the development activity of the
Diary had an average of 97.75 lines of code using the model approach, developing
with Awareness API increased the number of lines of code to 111 on average.
When taken into account the complexity of the code written by the participants,
there was no significant difference between the two approaches in both metrics.

Due to the approach used in the EasyContext development cycle, we in-
fer some threats to the validity, both in methodology and evaluation, and seek
to mitigate them. The same software engineer developed the two versions of
EasyContext and the two application examples. This can result in a bias in
the requirements elicitation for version 2 redesign. To mitigate this problem, we
decided to evaluate with a broader group of developers, with the flexibility to
comment on improvements to the tool. During the execution of the evaluation,
we have registered the occurrence of problems in technological terms (e.g., fail-
ure to access Web Tool servers on two machines) and human conditions (e.g.,

12 Tabosa et al.

Figure 6. Acceptance Survey

less focused participants). Initially, 14 developers participated in the evaluation,
adding up the two rounds. However, 06 participants were unable to complete the
activities in the time stablished (2 hours) correctly. While this problem has been
most significant in coding applications with the Awareness API, we decided to
remove from the analysis of the 06 participants who failed to complete the activ-
ities. This decision may have influenced the results. However, for a comparison
between the codes to be carried out, we decided to use in the evaluation only
those developers who managed to carry out the two activities correctly.

6 Related Work

Several approaches in the literature use generative programming focused on the
development of sensor-based mobile applications. In our previous research, we

A Generative Approach for Android Sensor-based Applications 13

investigated model-based approaches that integrate DSLs (Domain Specific Lan-
guages) and context-aware management middleware platforms [9]. In that re-
search, we also proposed CRITiCAL[9], a visual tool for contextual modelling
using ContextRuleML. It had a visual editor integrated to Eclipse for creating
contextual rules using UML-based models. From the model, CRITiCAL gener-
ated an Android project with the contextual rules already configured, ready to
be used in the project. CRITiCAL used the LoCCAM[13] middleware to acquire
contextual information and execute the context rules. We observed from that
research that integrating the modelling with Eclipse was a mistake since the
Android Studio became the standard Android development environment. Also,
applications developed with the help of CRITiCAL were limited to the scope of
LoCCAM.

More recently, Likudie et al. proposed an approach[12] for generating Android
applications without the need for the user to have experience with programming
languages. Similar to EasyContext, they use a web app for modelling Android
projects. This visual tool generates a JSON document that describes the mod-
elled Android project and the web application servers perform all the binary
code generation. However, that modelling approach has limited access to the
device sensors and not support context-aware behaviour definition.

CONtroL[16] uses the models@run.time[4] approach to perform automatic
testing of context-aware applications. The focus of CONtroL is to provide
runtime checking of context-aware behaviour. CONtroL has a mobile framework
that inspect the application in execution. Similar to EasyContext, CONtroL
uses Google Awareness API as Context Provider. However, an application us-
ing CONtroL changes its behaviour depending on the models specified by the
developer using a Dynamic Software Product Line approach. CONtroL focuses
more on verification and also limits the context-aware application architectures.

JUSE4Android [6] focuses on building graphical user interfaces for mobile
Business Information System applications. JUSE4Android has two syntaxes:
graphical, using UML class diagrams and textual using Java Annotations. Al-
though using a more advanced model system, this approach does not have any
context acquisition system. Also, JUSE4Android targets Business Information
System developers, while EasyContext targets CAIS developers.

Table 2 shows a comparison of the presented approaches. The analysis of the
approaches allowed us to list the desirable characteristics for a contextual rules
modelling tool with code generation focused on sensor-based applications in the
Android platform.

7 Final Considerations and Future Work

The use of contextual information is a challenge for software developers [10]. So,
based on the research question "How to assist the modelling and implementation
of contextual rules for sensor-based systems on the Android platform?", we con-
ducted a literature study about generative programming and context modelling
approaches. After that, we propose a solution combining modelling and gener-

14 Tabosa et al.

Likudie’s
Approach

[12]

CRITiCAL
[9]

CONTrol
[16]

JUSE4
Android

[6]
EasyContext

Model
Representation JSON Context-

RuleML JSON UML / Java JSON

IDE
Independence Yes No No Yes Yes

Target
Platform Android Android Android Android Android

Visual
Language Yes Yes No Yes Yes

Contextual
Rule Modelling

Support
No Yes Yes No Yes

Context
Provider — LoCCAM Awareness

API — Awareness
API

Table 2. Comparison among generative approaches and EasyContext

ative programming, and uses the Awareness API as a contextual information
provider. EasyContext encapsulates the complexity of configuring and using the
API. After a usability assessment with eight participants, who developed applic-
ations with and without EasyContext. We attested a usability gain when com-
paring the use of EasyContext to direct coding with Awareness API. Besides,
the code complexity metrics analysis revealed that the lower number of lines of
code in applications with EasyContext did not affect its cyclomatic complexity.

However, the approach can still be improved. There is still no support for
creating more-complex context rules (Rules compositions) using Web Tool. The
current metaphor, using cards to represent contextual rules, has the limitation
of showing a few cards on the screen simultaneously. This metaphor makes it
hard to create more elaborated contextual rules. As future work, we will add
new context providers to EasyContext. Our objective is to turn EasyContext
platform-independent since the Web Tool already is. We will also make improve-
ments to the visual representation metaphor based on feedback from evaluation
participants.

References

1. Aarab, Z., Saidi, R., Rahmani, M.D.: Towards a framework for context-aware
mobile information systems. In: 2014 Tenth International Conference on Signal-
Image Technology and Internet-Based Systems. pp. 694–701 (Nov 2014). ht-
tps://doi.org/10.1109/SITIS.2014.89

2. Backus, J.W.: The syntax and semantics of the proposed international algebraic
language of the zurich acm-gamm conference. Proceedings of the International
Comference on Information Processing, 1959 (1959)

3. Blackwell, A.F., Britton, C., Cox, A., Green, T.R., Gurr, C., Kadoda, G., Kutar,
M., Loomes, M., Nehaniv, C.L., Petre, M., et al.: Cognitive dimensions of notations:

A Generative Approach for Android Sensor-based Applications 15

Design tools for cognitive technology. In: International Conference on Cognitive
Technology. pp. 325–341. Springer (2001)

4. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(Oct 2009). https://doi.org/10.1109/MC.2009.326

5. de Carvalho, W.V.: Mobility and Context-awareness for Personal Multimedia Man-
agement: CoMMediA. Ph.D. thesis, Joseph Fourier University, Grenoble, France
(2010), https://tel.archivesouvertes.fr/tel00499550

6. da Silva, L.P., Brito e Abreu, F.: Model-driven gui generation and navigation for
android bis apps. In: 2014 2nd International Conference on Model-Driven Engin-
eering and Software Development (MODELSWARD). pp. 400–407 (Jan 2014)

7. Daniel, F., Matera, M., Quintarelli, E., Tanca, L., Zaccaria, V.: Context-aware
access to heterogeneous resources through on-the-fly mashups. In: International
Conference on Advanced Information Systems Engineering. pp. 119–134. Springer
(2018)

8. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1),
4–7 (Jan 2001)

9. Duarte, P.A.S., Barreto, F.M., Gomes, F.A.A., Viana, W., Trinta, F.A.M.: Critical:
A configuration tool for context aware and mobile applications. In: 2015 IEEE 39th
Annual Computer Software and Applications Conference. vol. 2, pp. 159–168 (July
2015)

10. Föhr, J.: Context-awareness through Google Awareness API (2019), ht-
tps://lutpub.lut.fi/handle/10024/159360

11. Gedeon, J., Himmelmann, N., Felka, P., Herrlich, F., Stein, M., Mühlhäuser, M.:
vstore: A context-aware framework for mobile micro-storage at the edge. In: Inter-
national Conference on Mobile Computing, Applications, and Services. pp. 165–
182. Springer (2018)

12. Likudie, C.K.: Implementation of a web-based code generator for the android Mo-
bile platform. Ph.D. thesis, Ashesi University (2018)

13. Maia, M.E.F., Fonteles, A., Neto, B., Gadelha, R., Viana, W., Andrade, R.M.C.:
Loccam - loosely coupled context acquisition middleware. In: Proceedings of the
28th Annual ACM Symposium on Applied Computing. pp. 534–541. SAC ’13,
ACM, New York, NY, USA (2013)

14. Ortiz, G., Boubeta-Puig, J., Corral-Plaza, D.: Air4people: a smart air quality mon-
itoring and context-aware notification system. Journal of Universal Computer Sci-
ence 24(7), 846–863 (2018)

15. Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: Contextphone: A prototyping
platform for context-aware mobile applications. IEEE pervasive computing 4(2),
51–59 (2005)

16. Santos, I.D.S., Santos, E., Andrade, R., Neto, P.: Control: Context-based reconfig-
uration testing tool. In: IX Tools Session of CBSoft 2018 (09 2018)

17. Wieland, M., Kopp, O., Nicklas, D., Leymann, F.: Towards context-aware work-
flows. In: CAiSE07 proc. of the workshops and doctoral consortium. vol. 2, p. 15
(2007)

18. Yurur, O., Liu, C.H., Sheng, Z., Leung, V.C.M., Moreno, W., Leung,
K.K.: Context-awareness for mobile sensing: A survey and future directions.
IEEE Communications Surveys Tutorials 18(1), 68–93 (Firstquarter 2016). ht-
tps://doi.org/10.1109/COMST.2014.2381246

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

T117g Tabosa, Davi Batista.
 A Generative Approach for Android Sensor-based Applications / Davi Batista Tabosa. – 2019.
 15 f. : il. color.

 Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Instituto UFC Virtual,
Curso de Sistemas e Mídias Digitais, Fortaleza, 2019.
 Orientação: Prof. Dr. Windson Viana de Carvalho.
 Coorientação: Prof. Me. Paulo Duarte.

 1. Context-Aware Information Systems. 2. Android. 3. Generative Programming. 4. Sensor-based. I.
Título.
 CDD 302.23

