
UNIVERSIDADE FEDERAL DO CEARÁ

TECHNOLOGY CENTER

DEPARTMENT OF STRUCTURAL ENGINEERING AND CIVIL CONSTRUCTION

GRADUATE PROGRAM IN CIVIL ENGINEERING: STRUCTURES AND CIVIL

CONSTRUCTION

MASTERS OF SCIENCE IN CIVIL ENGINEERING

MARINA ALVES MAIA

SEQUENTIAL APPROXIMATE OPTIMIZATION OF COMPOSITE STRUCTURES

FORTALEZA

2020



MARINA ALVES MAIA

SEQUENTIAL APPROXIMATE OPTIMIZATION OF COMPOSITE STRUCTURES

Dissertation submitted to the Course of Masters
of Science in Civil Engineering of the Graduate
Program in Civil Engineering: Structures and
Civil Construction of the Technology Center
of the Universidade Federal do Ceará, as
partial fulfillment of the requirements for the
degree of Master in Civil Engineering. Area of
concentration: Structures

Advisor: Prof. D. Sc. Evandro Parente
Junior

Co-advisor: Prof. D. Sc. Antônio Macário
Cartaxo de Melo

FORTALEZA

2020



Dados Internacionais de Catalogação na Publicação 
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

M187s Maia, Marina Alves.
    Sequential Approximate Optimization of Composite Structures / Marina Alves Maia. – 2020.
    121 f. : il. color.

     Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-
Graduação em Engenharia Civil: Estruturas e Construção Civil, Fortaleza, 2020.
     Orientação: Prof. Dr. Evandro Parente Junior.
     Coorientação: Prof. Dr. Antônio Macário Cartaxo de Melo.

    1. Composite materials. 2. Surrogate model. 3. Sequential Approximate Optimization. I. Título.
                                                                                                                                                  CDD 624.1



 
 

MARINA ALVES MAIA 

 

 

SEQUENTIAL APPROXIMATE OPTIMIZATION OF COMPOSITE STRUCTURES 

 

 

Dissertation submitted to the Course of Masters 
of Science in Civil Engineering of the Graduate 
Program in Civil Engineering:  Structures and 
Civil Construction of the Technology Center of 
the Universidade Federal do Ceará, as partial 
fulfilment of the requirements for the degree of 
Master in Civil Engineering. Area of 
concentration: Structures 

 

 

Approved on __/__/__. 

 

 

EXAMINING BOARD 

 

________________________________________ 

Prof. Evandro Parente Junior, D.Sc. (Advisor) 

Universidade Federal do Ceará – UFC 

 

________________________________________ 

Prof. Antônio Macário Cartaxo de Melo D.Sc. (Co-advisor) 

Universidade Federal do Ceará - UFC 

 

________________________________________ 

Prof. Marcelo Silva Medeiros Júnior, D.Sc. 

Universidade Federal do Ceará – UFC 

 

________________________________________ 

Prof. Iuri Barcelos Carneiro Montenegro da Rocha, D.Sc. 

Delft University of Technology - TU Delft 



ACKNOWLEDGEMENTS

Em primeiro lugar, a Deus.

À minha mãe, Liduina Alves, e ao meu pai, Carmélio Maia, pelo apoio, amor

incondicional e carinho em todos esses anos.

À minha família, pelo apoio, preocupação e cuidado diário. Em especial, à minha

irmã, Mariana, e minhas tias, Palma e Jacinta.

Aos meus amigos que tive a sorte e o prazer de conhecer ao longo da graduação e

que hoje continuam em minha vida. Poder compartilhar a vida com vocês foi e continua sendo

uma enorme alegria para mim, em especial, Wendy Quintanilha, Carla Marília, Renan Maia,

Gledson Mesquita, Geovanny Moreno e Augusto Tremarin.

Ao meu namorado, Luiz Henrique, pelo encorajamento, compreensão e carinho em

mais esta jornada. Contar com seu apoio foi fundamental.

Aos colegas de laboratório do LMCV pela troca em todos esses anos que tanto

contribuíram para a minha formação. Em especial, agradeço ao Elias Barroso, Leonardo Ribeiro

e Samir Auad pela amizade e por serem sempre tão solícitos e pacientes.

Ao meu orientador, Evandro Parente, por ser exemplo de dedicação, compromisso e

profissionalismo. Obrigada por compartilhar tanto nesses 6 anos de pesquisa.

Ao meu coorientador, Antônio Macário, pelas contribuições e ensinamentos valiosos

em sala de aula desde a graduação.

Aos professores Marcelo e Iuri por aceitarem fazer parte da minha banca exami-

nadora.

À UFC, DEECC, LMCV e FUNCAP, pelo apoio financeiro para a realização deste

trabalho.



ABSTRACT

The design of composite structures is of relevance in many fields of engineering (civil, naval,

aerospace, automobile, etc.) and as such has become an active research field. To fully explore

the benefits of using composite materials, optimization techniques are often needed. However,

the computational cost of the structural analyses may become a hindrance for the optimization

process. This is especially critical when dealing with bio-inspired algorithms, where a high

number of trial designs are typically employed. Thus, surrogate models are a valuable alternative

to help reduce computational cost and enable the optimization of complex structures. In this

work, two surrogate models were studied: Radial Basis Function (RBF) and Kriging. Both

surrogate models were used in association with an optimization technique known as Sequential

Approximate Optimization (SAO), in which the approximate response surface is continuously

updated and improved by the addition of new points in the design space. For that matter, two infill

criteria were assessed: the Expected Improvement (EI) and the Weight Expected Improvement

(WEI). Both use the Particle Swarm Optimization to maximize their acquisition functions. To

evaluate the structural response of the composite structures, the Isogeometric Analysis (IGA)

was employed. A comparison between the SAO algorithms was carried out in terms of accuracy,

efficiency, and robustness. The implementation was validated using a set of numerical examples

from the literature. The examples include different types of structures using functionally graded

and laminated composite materials. Results show the efficiency of the proposed algorithms and

highlight the impact of the choice of the Infill Criterion on their performance. An expressive

reduction in the number of High-Fidelity (HF) evaluations was obtained compared to traditional

optimization, saving a significant amount of processing time. This is particularly promising

when the structural analysis involves refined meshes or the consideration of nonlinear behaviour.

In general, the RBF consistently provided the fastest surrogate model building and updating

processes, while Kriging provided more accurate results with fewer HF evaluations in a wide

range of applications.

Keywords: Composite materials. Surrogate Model. Sequential Approximated Optimization.



RESUMO

O projeto de estruturas de material compósito é de relevância em muitos campos da engenharia

(civil, naval, aeroespacial, automobilística, etc.) e, como tal, tornou-se um tópico de pesquisa

bastante ativo. De modo a potencializar os benefícios oriundos desse tipo de material, é necessário

a utilização de técnicas de otimização. Contudo, o custo computacional das análises estruturais

pode se apresentar como uma limitação para o processo de otimização. Este problema é

particularmente crítico quando algoritmos bioinspirados são utilizados devido ao grande número

de avaliações do modelo de alta fidelidade usualmente empregado. Dessa forma, os modelos

substitutos (surrogate models) apresentam-se como uma alternativa valiosa para ajudar a reduzir

o custo computacional e permitir a otimização de estruturas complexas. Neste trabalho, dois

modelos substitutos são estudados: Funções de Base Radiais (Radial Basis Function - RBF) e

Kriging. Estes foram incorporados a uma metodologia de otimização conhecida como Otimização

Aproximada Sequencial (Sequential Approximate Optimization - SAO), onde a superfície de

resposta aproximada é continuamente atualizada e melhorada pela inserção de novos pontos.

Para isto, dois Critérios de Preenchimento foram avaliados: Melhoria Esperada e Melhoria

Esperada Ponderada. Ambos utilizam o algoritmo de Otimização por Enxame de Partículas

para maximizar suas funções de aquisição. Para obtenção das respostas estruturais do HFM, foi

utilizada a Análise Isogeométrica. Uma comparação entre as diferentes metodologias é realizada

em termos de precisão, eficiência e robustez. A verificação da implementação dos algoritmos

SAO foi realizada com base em exemplos da literatura. Estes contemplam diferentes tipos de

estruturas utilizando materiais com gradação funcional e estruturas de compósito laminado. Os

resultados atestam a eficiência dos algoritmos propostos e evidenciam o impacto da escolha do

Critério de Preenchimento no desempenho desses algoritmos. Uma expressiva redução no número

de avaliações de alta fidelidade quando comparado à otimização tradicional foi obtida, o que

resulta em uma significativa redução no esforço computacional. Isto é particularmente promissor

quando a análise estrutural envolve malhas refinados ou a consideração do comportamento

não-linear. Em geral, o RBF apresentou um processo mais rápido, tanto na construção quanto na

atualização do modelo, enquanto o Kriging se destaca pela sua precisão com um menor número

de avaliações de alta fidelidade em uma grande variedade de aplicações.

Palavras-chave: Materiais Compósitos. Modelo Substituto. Otimização Sequencial Aproxi-

mada.
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1 INTRODUCTION

Composite materials brought significant advances for a wide range of applications in

industries such as naval, aeronautical and civil [1]. These materials present lightweight properties,

good fatigue and corrosion resistance, among other desired properties for high-performance

structures [2]. This work will address two types of composite materials: Fibre-Reinforced

Composites (FRC) and Functionally Graded Materials (FGM).

FRC are often manufactured in the form of thin layers, also referred to as plies,

stacked in a specific sequence to achieve a set of performance requirements usually regarding

strength and stiffness. These materials present higher stiffness/density and strength/density

ratios compared to the traditional engineering materials (e.g. steel and concrete) and feature

good thermal insulation properties and fatigue resistance [3]. Despite their excellent mechanical

behaviour, these materials are not suitable for high temperature environments. In this scenario,

the variation of the coefficient of thermal expansion can generate high residual stresses and

damage onset, resulting in catastrophic failure of the structure (e.g. fracture and delamination).

Furthermore, traditional FRC with polymeric resin cannot withstand high-temperatures [4, 5].

In such situation, FGM are a valuable and promising alternative. These materials

were initially developed in Japan in the 1980s as a means of creating a thermal barrier for

aerospace structures and fusion reactors [6]. The smoothly varying composition of FGM allows

the elimination of the stress discontinuity problem, which, in laminated composites, can cause

failure by delamination and consequent failure of the load transfer mechanism [7, 8].

A typical Functionally Graded (FG) material consists of an inhomogeneous compos-

ite made of two or more constituents (phases). The different microstructural phases have distinct

functions and depending on the volume fraction distribution, different mechanical behaviour is

observed [7]. For the well-known ceramic-metal combination, the ceramic is in charge of the

thermal resistance and the metal is in charge of the strong mechanical performance and helps

mitigate brittle failure. Of course, FGM are now broadly used for purposes other than being

super refractory materials. Applications such as biomedical implants, rotating disks and solar

power systems are reported in the literature [9, 10, 11].

Both laminated composites and FGM offer high tailorability in their manufacturing,

which makes them an interesting topic for optimization purposes. Nikbakht et al.[12] and Nikbakt

et al.[13] present a two-part review of publications on the optimization of FG and laminated

structures, respectively. Among the highlighted works, Hussein and Mulani[14] argue that FG
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structures could benefit from the minimization of the amount of required reinforcements (e.g. sil-

icon carbide nanoparticles and carbon nanotubes) since these materials are very costly. Likewise,

FRC are frequently employed to the optimization of plates, shells and beams, usually dealing

with the maximization of the load-carrying capacity, buckling and frequency and minimization

of mass or cost.

In many applications, the structural response of composite plates, beams and shells

cannot be assessed by closed-form solutions. And even when this type of solution is available,

either the geometry, the loading or the support conditions are very simple (i.e. no curved edges

or cutouts) [4]. For instance, in laminated composites, the buckling load of a simply supported

plate can only be straightforwardly evaluated for cross-ply laminates. Any other case is either

an approximation or must be obtained using approximated methods such as the Finite Element

Analysis (FEA) or Isogeometric Analysis (IGA), the former being the most used method in the

literature. Recently, a review on buckling and vibration of FG conical shells showed that most of

the studies regarding these types of problems are solved by numerical methods [15].

Unfortunately, despite steady advances in computing power, FEA and IGA may

impose a serious limitation on time and computational cost of engineering design optimization.

This is particularly critical when population-based meta-heuristics are employed due to the high

number of evaluations involved in the global search for the optimal design.

This class of algorithms is well-suited for problems with discrete variables (but is

not restricted to) as they do not demand any information on the gradient of the function. In

laminated composite problems, this may be an important feature since the design variables are

often considered as discrete due to manufacturing constraints. Recently, Nikbakt et al.[13] argued

that meta-heuristics such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)

are more popular due to their efficiency and stability. Furthermore, meta-heuristics algorithms

are less prone to be trapped in local minima [16].

Faced with this challenge, the basic approach to overcome the high-cost analysis

problem is to create a model capable of approximating the expensive function with a cheaper

one. This new model is called meta-model or simply surrogate model. Surrogate models may

be understood as approximate models to the objective functions and/or constraints built upon

a limited number of observations of the exact response called sampling points. To take full

advantage of this approach, the sampling points are chosen based on a Design of Experiments

(DoE) technique.
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The DoE is a group of stochastic and deterministic methodologies used for formu-

lating the sampling plan, examples of it include the Latin Hypercube Sampling (LHS) and the

Hammersley Sequence Sampling (HSS). The surrogate model is then used to predict points on

the design space that were not yet evaluated at a lower computational cost if compared to that of

running a FEA.

Several methodologies were proposed for building a surrogate model, among them

are RBF, Kriging, Artificial Neural Networks (ANN) and Support Vector Regression (SVR). In

this work, the RBF and Kriging are employed to approximate the High-Fidelity Model (HFM)

responses of composite structures. These are two of the most extensively employed surrogate

models in recent years and both were originated from the geostatistics community [17, 18].

Kriging is a very flexible surrogate model due to the wide range of correlation

functions available and to the high number of model parameters. Kriging has many variants:

Simple Kriging, Regression Kriging, Ordinary Kriging (OK) and Co-Kriging, the OK being the

most commonly employed in the literature [19]. On the optimization of laminated composite

structures, this surrogate model is rapidly gaining importance [20, 21, 22, 23, 24]. Unfortunately, the

literature in still scarce regarding FG structures [25].

As for RBF, it consists of a surrogate model with a much lower computational

cost compared to that of Kriging. It is also a simpler, yet robust, surrogate model. RBF are

well adapted for numerical experiments with deterministic errors and was credited as the most

dependable by Jin et al.[26] in a comparative study involving four different surrogate models,

namely Polynomial Regression, Multivariate Regression Splines, RBF and Kriging.

In any case, a crucial aspect of surrogate modelling involves how the sampling plan

will be treated. The most basic approach is to build a surrogate model with a fixed sampling plan

only once and use it throughout the whole optimization process. In this case, a large number of

sampling points are needed to produce reasonable approximations, which goes against the idea

of reducing the computational cost.

On the other hand, when the initial sampling plan is updated, we have the so-called

Sequential Approximate Optimization (SAO). In this approach, the sampling plan is continuously

updated with points in the design space capable of improving the surrogate model accuracy near

regions of interest, helping the algorithm find the global optimum. These points are called infill

points (or update points) and the criterion used to select them is called infill criterion [18].

Alternatively, one may use parallelization techniques to reduce execution time.
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Several authors have reported speed gains and improved algorithm performance in laminated

composite optimization using these techniques [27, 28, 29, 30]. However, this approach demands

high-performance clusters.

The present work aims to use SAO to find the optimum design of composite struc-

tures. In addition, the performance of two surrogate models (RBF and Kriging) is assessed

considering different techniques for obtaining the basis functions parameters and different updat-

ing methodologies for the sampling plan. These combinations are compared in terms of accuracy

and computational efficiency.

1.1 Aims and scope

This work aims to develop and implement a methodology for the optimal design of

composite structures using the SAO approach. This will hopefully contribute to the improvement

of the optimization performance of laminated and FG structures. In addition to that, the successful

application of SAO algorithms can enable the optimization of more complex structures since

the number of High-Fidelity (HF) responses may be significantly reduced. For this purpose, the

following specific objectives are set:

a) to develop and implement a methodology for the optimization of FG and laminated plates

and shells using SAO techniques;

b) to properly integrate analysis and optimization interfaces, providing routines to the evalua-

tion of structural responses of composite structures;

c) to implement the Ordinary Kriging model;

d) to apply the proposed methodology to the optimization of composite structures using

HFMs and surrogate models;

e) to implement infill criteria and compare the effect of these different methodologies on

SAO performance in terms of accuracy, efficiency and robustness;

f) to compare the performance of different surrogate models, namely RBF and Kriging, using

a set of appropriate metrics (NRMSE, ST DNRMSE , Speed-up and np);

g) to compare the SAO performance on composite structures problems with conventional

optimization using the HFM.
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1.2 Organization of the text

The remainder of this work is organized as follows: in Chapter 2 the main concepts

and the mechanical behaviour of FGM and laminated composites are introduced, including

the techniques used to assess the effective properties of FG structures and the laminate theory

considered. In Chapter 3, the details of the structural analysis, including the kinematic assump-

tions, internal forces evaluation, and a brief description of the analysis framework adopted are

discussed. In Chapter 4, a review of the state-of-art on the optimization of composite structures

is presented, as well as a discussion on the Particle Swarm Optimization algorithm. In the

following, Chapter 5 presents the mathematical formulation of the surrogate models herein

explored. In Chapter 6, the main infill criteria in the literature are briefly discussed.

In Chapter 7, the numerical examples used to demonstrate the efficiency of the

proposed algorithms are discussed. Finally, in Chapter 8, the concluding remarks and suggestions

for future works are presented.



17

2 COMPOSITE MATERIALS

Reddy[5] describes composite materials as the combination of two or more materials,

also known as phases, in macroscopic scale that together produces desirable properties that could

not be obtained using any of its constituents alone. These phases are usually referred to as matrix

and reinforcement. Four types of composites may be listed according to the combination of matrix

and reinforcement: (i) particulate composite materials, in which the reinforcing constituent are

the particles, (ii) fibrous composite materials, in which the reinforcing constituents are the fibres,

(iii) laminated composite, which consists of layers of one or more materials stacked up and

finally, (iv) the combination of some or all of the three previous types.

The fibre-reinforced composites are usually employed in high-performance structures

in the form of laminated composites. In this type of structure, each ply presents distinct

mechanical behaviour depending on the arrangement of the fibres in the matrix, as illustrated

in Fig. 1. In addition to that, aspects such as fibre distribution, the volume fraction of the

constituents and their respective mechanical properties also affect the mechanical behaviour

of the laminate. Commonly, fibres are made of inorganic materials, such as glass, carbon and

ceramics, but they can also be made of organic material such as polymers, while the matrix is

commonly made of polymers, although it is possible to find them as metals or ceramics [3].

Figure 1 – Different fibre configurations for composite reinforcement

(a) Continuous (b) Discrete (or chopped) (c) Woven fabric

Source: National Chung Hsing University[31].

In this work, continuous and unidirectional fibres are considered. This is the typical

choice when dealing with high-performance structures (e.g. aircrafts, ships, composite risers [32],

etc.). In this case, fibres are the main load-carrying members, and the matrix should keep them

together and act as a load-transfer medium between fibres. The matrix also protects fibres from

exposure to the environment (e.g., moisture, abrasion, and corrosion).

Laminated composites can be easily tailored to meet specific design requirements

by choosing the fibre orientation, the thickness, the constituent materials of each ply, and the
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stacking sequence of the plies (also called layup).

As for the Functionally Graded Materials, these materials were initially designed

in the 80s as a means of preparing thermal barrier materials through continuous changes in

its composition, microstructure and porosity [33]. The reinforcement may be in the form of

particulates, continuous or chopped fibres, whiskers and platelets [8], being the former the type

addressed in this work.

Nowadays, the structural applications of FGM include beams [34] and plates [8] and

secondary applications can be found in many forms such as biomedical implants [25] and rotating

disks [10]. Just as FRC, FGM can be tailored for achieving specific structural requirements by

varying the distribution of the constituents.

2.1 Fibre Reinforced Composites

A laminate stacking sequence can be roughly classified into the following types

regarding the fibre orientation [35]:

i) Cross-ply: Special laminate that contains only 0◦ and 90◦ plies alternately, e.g. [90◦/0◦/

/90◦/0◦];

ii) Angle-ply: Laminate with any fibre orientation angle, being at least one of them different

from 0◦ and 90◦, e.g. [45◦/0◦/90◦].

Considering now the symmetry about the midplane (i.e. the equidistant plane from

the outer surfaces of the laminate), a fibre-reinforced composite may be classified as:

i) Symmetric: Laminate where the lower half about the mid-plane is a mirror of the fibre

orientations, material, thickness and distance from the midplane in relation to the upper

half. These are usually identified with the subscript “s”, as in [−45◦/30◦/0◦]s, which

refers to a six-layer laminate;

ii) Anti-symmetric: Laminate where the lower half about the midplane is a mirror of the

materials and thickness, but the fibre orientations are the negative of the orientations in the

upper half;

iii) Asymmetric: Laminate that presents no symmetry about the midplane;

iv) Balanced: Laminate that presents a negative fibre orientation for each positive one.
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2.1.1 Mechanics of the laminate

The mechanical behaviour of a layer is studied in two levels: the macromechanics,

in which fibre and matrix are treated as a single homogeneous material on a macroscopic scale

and where the mechanical properties are assessed and 2) the micromechanics, in which the

interaction of the constituents is examined on a microscopic scale, being useful in delineating

the failure modes in FRC [36].

In a wider sense, the mechanical behaviour of the laminate is typically analyzed

using either Equivalent Single Layer Theories (e.g. Classical Lamination Theory (CLT) and

First-Order Shear Deformation Theory (FSDT)) or Layerwise Theories (e.g. Discrete Layer

Theories and Zigzag theories). A recent and comprehensive review of such theories in the

analysis of laminated composite plates has been presented by Maji and Mahato[37], including the

3D elasticity solutions. In this work, the FSDT is adopted.

This theory consists of an extension of the Reissner-Mindlin Plate Theory to lami-

nated composite plates. The assumptions of FSDT are very similar to the ones in the CLT, but

the former considers shear deformations in a simplified way by releasing the constraint on the

angle of shear deformations. Based on Reissner-Mindlin’s Theory, the transverse segments to the

plate midplane remain straight and with the same length after deformation, but not necessarily

perpendicular to the midplane after deformation, which results in εz = 0 and σz = 0 [4].

In laminates with unidirectional fibres, each ply is modeled with orthotropic be-

haviour in the coordinate system of the ply (x1; x2; x3), where x1 is the fibre direction, x2 is the

direction perpendicular to the fibres in the plane of the ply and x3 is the direction perpendicular

to the ply. In addition to this local system, which varies according to each ply fibre orientation,

it is considered a single global system for the laminate (x;y;z), where z coincides with x3, as

illustrated in Fig. 2.

Figure 2 – Local and global axis for a single-ply

Source: Teófilo et al.[38].

Experimentally, it is known that the FRC behaviour until very close to failure may
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be considered linear elastic [4]. Therefore, it can be described by the Generalized Hook’s Law

for orthotropic materials. Considering, the plane-stress state, the orthotropic behaviour of the ply

and the symmetry of the constitutive matrices Q and Qs, we arrive at:

σ1 = Qε1 ⇒


σ1

σ2

τ12

=


Q11 Q12 0

Q12 Q22 0

0 0 Q66




ε1

ε2

γ12


τ1 = Qsγ1 ⇒

τ13

τ23

=

Q44 0

0 Q55

γ13

γ23


(2.1)

where the subscripts 1 refer to the local system of the ply and s to the transverse shear terms.

The matrix coefficients Qi j are given by:

Q11 =
E1

1−ν12 ν21
Q12 =

ν21 E1

1−ν12 ν21
Q22 =

E2

1−ν12 ν21

Q66 = G12 Q44 = G13 Q55 = G23

(2.2)

Note that the equilibrium equations for structural analysis are written in the global

system, while the above equations are written in the local system. Therefore, one must use

transformation matrices T and Ts to relate both systems as in:

ε1 = Tε ⇒


ε1

ε2

γ12

=


cos2θ sen2θ senθcosθ

sen2θ cos2θ −senθcosθ

−2senθcosθ 2senθcosθ cos2θ − sen2θ




εx

εy

γxy

 (2.3)

γ1 = Ts γ ⇒

γ13

γ23

=

cosθ −senθ

senθ cosθ

γxz

γyz

 (2.4)

Replacing Eq. (2.3) and Eq. (2.4) in Eq. (2.2) and applying the Principle of Virtual

Work, the stress transformation can be simply obtained by pre-multiplying the stress in the local

system by the transpose of T and Ts. This way, the constitutive relation in the global system is

given by:

σ = TT Q Tε ⇒ σ = Q ε

τ = TT
s Q Tsγ ⇒ τ = Qs γ

(2.5)

where Q and Qs are the constitutive matrices in the global system.

Thus, depending on the fibre orientation and the material properties of each ply, the

stress variation through the laminate is not necessarily linear despite the linear strain variation,
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as illustrated in Fig. 3. This also explains the different failure modes of a laminate. In general,

FRC may fail either by individual failure of one of its constituents or by its interface. Therefore,

the consideration of an adequate failure criterion is crucial to ensure structural safety.

Figure 3 – Hypothetical variation of stress and strain through
the laminate thickness

Source: Jones[4].

Failure criteria for laminated composites can be classified into three categories

according to the level of interaction between stresses in different directions[39, 40]: Limiting or

Non-interactive Criteria, as the Maximum Stress Criterion and the Maximum Strain Criterion,

which are based on theories that consider stresses and strain individually for each direction;

Interactive Criteria, such as Tsai-Hill, Tsai-Wu, and Hoffman Criteria, these are more elaborate

theories that consider the interaction between directions, and finally there are Partially Interactive

Criteria, such as the Puck Criterion, in which different failure modes for fibre and matrix are

considered.

In this work, the Maximum Strain Criterion is employed. In this approach, the

layer is said to fail if one of its strains (ε1,ε2,γ12) exceeds the corresponding ultimate strain

(εu
1 ,ε

u
2 ,γ

u
12). The SF is taken as the minimum value obtained by computing the strains at the top

and the bottom of each ply and relating it to to the respective ultimate strain as in:

SFk = min(
εu

1

εk
1
,
εu

2

εk
2
,
γu

12

γk
12
) (2.6)

To define the failure of the laminate, the First-Ply Failure (FPF) approach is used. In

this methodology, the laminate Safety Factor (SF) corresponds to the SF that satisfies all plies,

that is:

SFc = MINNp
k=1(SFk) (2.7)

where Np is the number of plies. This is a conservative approach, as the stress redistribution to

the remaining plies is neglected. The methodology that considers the redistribution of stresses in
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the laminate after the failure of the first ply is known as Progressive Failure. This process will

likely lead to more accurate load capacity prediction, however, it is a far more complex approach

as it requires the reduction of laminate stiffness as each ply fails.

2.2 Functionally Graded Materials

FGM are composite materials made of two or more phases with a continuous and

smooth variation of the materials from one surface to another, as illustrated in Fig. 4 (a). This

feature allows FGM to eliminate issues such as stress concentrations and provide superior

thermo-mechanical performance [41].

Figure 4 – FG metal-ceramic

(a) Microstructure (b) Analytical models for a FG plate

Source: (a) Jha et al.[8], (b) the author

There are two basic approaches to model FGM. On the first choice, the volume

fraction distribution is taken as continuous through one or more directions, as depicted by the

cross-section A in Fig. 4 (b). In this work, unidirectional grading through the thickness is

considered. On the second approach, the FG structure is taken as multilayered with the same

volume fraction in each layer, as depicted by the cross-section B in Fig. 4 (b).

On the other hand, as a novel material, there are still a few gaps that need further

investigation. Recently, Udupa et al.[42] listed the following topics: (i) lack of a proper database

of gradient material, (ii) development of more robust models to predict the material behaviour

and (iii) in practice, FGM demand not only higher manufacturing cost, but also more advanced

manufacturing process.

The most popular combination is made of ceramic and metal. This way, the FGM
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can benefit from the ductility and toughness of metals and the high strength and stiffness and low

thermal conductivity properties of ceramics. Other types of mixtures such as ceramic-ceramic

and ceramic-plastic are also found in the literature. Examples of metals include stainless steel,

titanium, and aluminum oxide, whilst ceramic materials include zirconia and alumina [7].

2.2.1 Volume fraction distribution

To describe the variation of the material properties, a number of models have been

proposed in the literature. The most commonly used are the Exponential function (E-FGM) [43],

given by:

Vf = exp
(

ln
(

Vfb
Vft

)(
2z+h

2h

)p)
(2.8)

the Power-law function (P-FGM) [44], given by:

Vf =
(2z+h

2h

)p
(2.9)

and the Sigmoid function (S-FGM) [45], given by:

Vf =


1− 1

2

(h/2− z
h/2

)p

for 0≤ z≤ h/2,

1
2

(h/2− z
h/2

)p

for −h/2≤ z≤ 0.
(2.10)

In Eq. (2.8) to Eq. (2.10), the volume fraction at the top (z =+h/2) is taken as 1.0

and at the bottom (z =−h/2) as 0.0, respectively, h is the total thickness of the shell and p is a

non-homogeneity factor.

Alternatively, one may use experimental data of the volume fraction, if available, to

fit a curve capable of capturing the jaggedness of the actual material composition [41]. In recent

years, the use of B-splines has become a useful tool to model not only geometries through the

Non-Uniform Rational B-Splines (NURBS), but also to describe the volume fraction distribution

of FG structures. This is particularly useful in optimization problems [46, 47, 48, 49, 50] due to the

high-order continuity of B-spline functions, which allows a continuous and smooth variation.

Wang et al.[49] also draw attention to the fact that the use of B-splines can provide designs

entirely different than those limited by certain mathematical functions. In addition, B-splines are

always positive and thus, physical boundary constraints on interpolated volume fractions always

lie in the range [0, 1] as expected.
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Fig. 5 depicts the volume fraction distribution for the P-FGM, S-FGM and an

example of a B-spline curve. Note how the S-FGM creates a smoother transition between the

surfaces by using two P-FGMs. The curve on the right side illustrates how a B-spline curve may

create a sandwich-like distribution if symmetric control points are imposed.

Figure 5 – Volume fraction distribution for different functions

(a) P-FGM (b) S-FGM (c) B-spline

Source: the author.

2.2.2 Effective properties

Several micromechanics homogenization models have been developed over the years

to infer the so-called effective properties of these materials based on the mechanical state of a

material point on a macroscopic level [51]. This transition is known as homogenization. According

to Pelletier and Vel[52], the most common methods for estimating the effective mechanical and

thermal properties of FGM are the Rule of mixture (Voigt model) and the Mori-Tanaka Model.

These are the homogenization schemes adopted in the numerical examples explored in this work

and will be briefly discussed in the following.

In any case, an accurate model must include temperature and position dependence.

For that matter, one may use Toulokian’s equation [53]:

P(T) = P0

(
P−1

T
+1+P1T +P2T2 +P3T3

)
(2.11)

where Pi are the unique coefficients of each of the constituents for the temperature T (in Kelvin).

Shen and Wang[54] compared these two models for the vibration analysis of FG

plates and suggested that the difference between them in the estimation of the global response

is negligible, and recommended the use of the Rule of Mixture over the Mori-Tanaka model

due to its simplicity. Conversely, on a study on FG pressurized cylinders considering different
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homogenization schemes and volume distribution models, Medeiros JR. et al.[41] show that,

despite its large popularity, the Voigt model provides large discrepancies with more sophisticated

and accurate models. Among the homogenization schemes considered, the authors conclude that

the Mori-Tanaka and the Generalized Self-Consistent yielded the best results.

Given the effective properties, the constitutive relation is analogous to that presented

in Eq. (2.1). Note that the FGM are considered isotropic in the x-y plane, varying their properties

along the z direction. Thus, the terms of the matrices Q and Qs are simplified to:

Q11 = Q22 =
E(z)

1−ν2(z)
Q12 =

E(z) ν(z)
1−ν2(z)

Q44 = Q55 = Q66 =
E(z)

2(1+ν(z))
(2.12)

When it comes to the failure criteria for FG structures, the von Mises yield criterion

is a popular choice used to estimate the effective stress in optimization problems [52, 55, 56, 14, 57].

In this approach, the effective stress (σvm) of a isotropic material may be evaluated by:

σvm =
√

σ2
1 +σ2

2 −σ1σ2 +3τ2
12 +3τ2

13 +3τ2
23 (2.13)

For FG structures, the effective stress has to be evaluated in multiple points through

the grading direction and in all of them, the result of Eq. (2.13) cannot exceed the homogenized

yield strength (σy). Thus, to obtain a SF, we simply divide the yield stress (σy) by the von Mises

stress as in:

SF =
σy

σvm
(2.14)

where σy may be estimated by the model proposed by Tamura[58]. For applications involving ce-

ramic/metal composites, this model assumes that the composite yields once the metal constituent

yields and introduces the parameter q to represent the ratio of stress to strain transfer. To properly

estimate q, a significant number of experiments need to be carried out. In the literature, few com-

binations of materials were explored [59, 58]. After this definition, the Tamura–Tomota–Ozawa

(TTO) model calculates the yield stress of the composite as:

σy = σym(Vm +
q+Em

q+Ec

Ec

Em
Vc) (2.15)

where Em, Ec, Vm and Vc are the Young Modulus and the volume fraction of the metallic and

ceramic phases, respectively, and σym is the yield stress of the metallic phase. For metal-metal

FGM, σy may be simply evaluated following the linear Rule of Mixture [60].
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2.2.2.1 Voigt Model

The Voigt model, commonly known as Rule of Mixture, is the simplest model used

in most analyses of FG structures. It consists in a weighted average of the properties of the

constituents, where each of them contributes with its volume fraction. This way, the elastic

properties of the material at a given point along the thickness can be evaluated as [7]:

Pf =
Nc

∑
j=1

PjVfj (2.16)

where Pf are the effective properties of the material and Pj and Vfj are the properties and volume

fraction of the j-th constituent and Nc is the number of constituents. The volume fraction

represents the relative quantitative of each of the constituents in comparison to the volume of the

whole system [7]. Therefore,
Nc
∑
j=1

Vf j = 1.

Considering the ceramic-metal example, the estimate of the Young’s modulus would

be calculated by:

E(z) = (Em−Ec)Vm(z)+Ec (2.17)

where m and c stand for metal and ceramic, respectively. Since the volume fraction represents

the relative amount of material of one of the constituents in relation to the total amount of the

system, we have:

Vc +Vm = 1 (2.18)

2.2.2.2 Mori-Tanaka’s Model

In case of composites with spherical inclusions embedded in a matrix, the Mori-

Tanaka model evaluates the effective bulk modulus (K) and effective shear modulus (G) as

follows:

K = Km +
Vc

1
Kc−Km

+
Vm

Km +
4Gm

3

G = Gm +
Vc

1
Gc−Gm

+
Vm

Gm + fm

(2.19)

where the parameter fm is given by:

fm =
Gm(9Km +8Gm)

6(Km +2Gm)
(2.20)
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After that, the effective Young’s modulus (E) and Poisson’s ratio (ν) are computed from:

E =
9KG

3K +G
ν =

3K−2G
2(3K +G)

(2.21)

Typically, the effective density (ρ) is estimated by the Voigt model even when the

Mori-Tanaka is used to estimate the other elastic properties.
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3 STRUCTURAL ANALYSIS

This chapter presents the structural analysis adopted in this work, including the

kinematic formulation, the internal forces evaluation, and a brief review on the IGA formulation

used.

3.1 Plates and shallow shells

The kinematic formulation of this work is based on the Reissner-Mindlin Theory, in

which the plate cross sections remain plane after deformation, but not necessarily normal to the

reference plane. This results in the consideration of an approximate transverse shear strain in the

theory [5]. Thus, the displacements can be written in matrix form as:


u

v

w

=


1 0 0 0 z

0 1 0 −z 0

0 0 1 0 0





u

v

w

θx

θy


⇒ u = Zu (3.1)

where u, v and w are the midsurface displacements in the x, y and z directions; θx and θy are the

rotations about x and y axes, respectively; z is the distance from a point to the midsurface.

Based on the displacement field presented in Eq. (3.1) and on the Marguerre theory,

the in-plane strains are given by:

ε =


εx

εy

γxy

= ε
m + zκ (3.2)

where m refers to the membrane strains and κ corresponds to the shell curvatures. The Marguerre

theory extends the nonlinear plate theory of von Kármán for shallow shells [61]. In fact, the

Marguerre membrane strains reduces to the von Kármán strains for an initially flat plate (z0 =

0). Due to the consideration of moderately large displacements, it also allows the study on the

stability of plates and shallow shells, including initial imperfections:

ε
m =


εm

x

εm
y

γm
xy

=


u,x

v,y

u,y + v,x

+


wz,x z0,x

wz,y z0,y

w,x z0,y +w,y z0,x

+



1

2
w,x

2

1

2
w,y

2

w,x w,y


(3.3)
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where z0(x,y) is the initial midplane surface elevation. The deformation due to the bending are

described by:
κx

κy

κxy

=


θy,x

−θx,y

θy,y−θx,x

 (3.4)

The transverse shear strains are given by:

γ =

γxz

γyz

=

w,x +θy

w,y−θx

 (3.5)

Note that the shear strains are constant throughout the thickness of the shell, which

is not consistent to the Elasticity Theory solution, in which the shear variation is parabolic.

Thus, to adjust the transverse shear stiffness taken as constant through the thickness closer to the

parabolic shear-stress distribution, the shear effects obtained by this theory are multiplied by a

factor, say ks, known as shear correction factor. As a result, the accuracy of the FSDT predictions

depend significantly on the this factor. Usually, ks is taken as 5/6, as derived by Reissner[62]

for homogeneous plates, which is also adopted in this work. However, it is worth mentioning

that many authors [63, 64, 65] argued that this simplification for multilayered plates may imply in

significant errors especially when the moduli ratio E1/E2 is large (e.g. E1/E2 ≈ 15). This behaviour

is also observed in FG structures when the moduli ratio between the constituents is large.

3.2 Internal forces

Due to the differences in the nature of each of the materials, the resultant forces and

moments will be described in different sections. For laminated composites, each layer is treated

as homogeneous and orthotropic, while FGM are considered as inhomogeneous and isotropic

with varying properties through the thickness.
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3.2.1 Laminated composites

The forces and moments can be obtained by integrating the stresses, given by Eq.

(2.5), over the structure thickness h as in:

N =


Nx

Ny

Nxy

=

∫
h/2

−h/2


σx

σy

σxy

dz =
np

∑
k=1

∫ k

k−1
Qk

ε
kdz

M =


Mx

My

Mxy

=

∫
h/2

−h/2


σx

σy

σxy

z dz =
np

∑
k=1

∫ k

k−1
Qk

ε
kz dz

Q =

Qxz

Qyz

=

∫
h/2

−h/2

τxz

τyz

dz = ks

np

∑
k=1

∫ k

k−1
Qs

k
γ

kdz

(3.6)

where k refers to the k-th ply

In terms of membrane strains, curvatures and shear strains, Eq. (3.6) may be rewritten

in compact form as [5]:
N

M

Q

=


A B 0

B D 0

0 0 G




εm

κ

γ

 (3.7)

where A is the membrane stiffness matrix, D is the bending stiffness, B is the membrane-bending

coupling matrix, G is the transverse shear stiffness matrix, εm is the membrane strains vector

and κ is the vector of curvatures. Note that the membrane and bending are coupled due to the

B matrix, but the shear terms are uncoupled. For a symmetric laminate, there is no coupling

between membrane and bending responses (i.e. B = 0). The components of these matrices can

be obtained by numerical or analytical integration. Summing up the contribution of each lamina,

one obtain:

Ai j =
np

∑
k=1

Qk
i j(zk− zk−1) Bi j =

np

∑
k=1

Qk
i j(z

2
k− z2

k−1)

2

Di j =
np

∑
k=1

Qk
i j(z

3
k− z3

k−1)

3
Gi j = ks

np

∑
k=1

Qk
i j(zk− zk−1)

(3.8)

where i, j = 4,5 for the G matrix and i, j = 1,2,3 for all other matrices.
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3.2.2 Functionally Graded Materials

Similarly, the internal forces and moments can be obtained for FGM as:

N =


Nx

Ny

Nxy

=

∫
h/2

−h/2


σx

σy

σxy

dz =
∫ h/2

−h/2
Q(z) ε dz

M =


Mx

My

Mxy

=

∫
h/2

−h/2


σx

σy

σxy

(z) z dz =
∫ h/2

−h/2
Q εz dz

Q =

Qxz

Qyz

=

∫
h/2

−h/2

τxz

τyz

dz = ks

∫ h/2

−h/2
Qs(z) γ dz

(3.9)

Note that there is no need for transforming the constitutive matrices Q and Qs as

we deal with a isotropic material. However, its properties should be evaluated and integrated

through the thickness along which its properties vary. Thus, the ABDG matrices are given by:

A =
∫ h/2

−h/2
Q(z)dz B =

∫ h/2

−h/2
Q(z) z dz

D =
∫ h/2

−h/2
Q(z) z2 dz G = ks

∫ h/2

−h/2
Qs(z) dz

(3.10)

The same remark made for laminates is valid. Symmetrical volume fraction distri-

butions lead to B = 0. If this is not case, the membrane-bending coupling may have significant

impact on the stability behaviour of the structure.

3.3 Isogeometric Analysis

The concept of the Isogeometric Analysis (IGA) was first proposed by Hughes et

al.[66] as a way to match the exact Computer-Aided Design (CAD) geometry by NURBS surfaces.

In this framework, the CAD spline functions are also used to approximate unknown fields in

FEA. This results in numerous advantages for all kinds of structures, but may particularly benefit

the analysis of structures extremely sensitive to geometric imperfections such as thin shells and

structures with complex geometries. Also, the IGA provides a much simpler mesh refinement

and exact representation even for coarse meshes.

Recently, IGA has been used in association with various plate theories for composite

plates analysis, such as Higher-Order Shear Deformation Theory (HSDT) [47, 67, 48], FSDT
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[68, 69, 49] and Classical Plate Theory (CPT) [70]. In this work, the IGA framework is used with the

FSDT. The initial isogeometric framework implemented on Finite element AnalyiS Tool (FAST)

was developed by Barroso[70] using solid elements. Later on, Praciano et al.[68] implemented the

isoparametric shell element used in this work. Finally, Auad[71] added an isoparametric element

focused on the analysis of FG cylindrical shells based on Donnell’s nonlinear theory.

3.3.1 B-Splines and NURBS

A B-Spline curve is defined by the linear combination of control points pi and basis

functions Bi,p as in:

C(ξ ) =
n

∑
i=1

Bi,p(ξ )pi (3.11)

where n is the number of basis functions, p is the degree of the basis functions and ξ is

the parametric coordinate. This curve may be completely changed depending on the spatial

distribution of the parametric coordinates and on the position of the control points.

A knot span is defined by a vector of non-decreasing and non-negative parametric

values called knot vector. Based on a knot vector Ξ = [ξ1,ξ2, . . . ,ξn+p+1] considering the

parametric interval in the range [0,1], the B-Spline basis functions are defined by the recursive

Cox-de Boor formula as [72]:

Bi,0(ξ ) =

1,ξi ≤ ξ < ξi+1

0,otherwise

Bi,p(ξ ) =
ξ −ξi

ξi+p−ξi
Bi,p−1(ξ )+

ξi+p+1−ξ

ξi+n+1−ξi+1
Bi+1,p−1(ξ )

(3.12)

where p≥ 1. Each basis function Bi,p contributes in the parametric interval [ξi,ξi+p+1], but only

p+1 basis are non-zero in each knot span. This property is known as compact support.

Moreover, if a knot value is repeated in the knot vector, the number of times that

this occurs is known as knot multiplicity. This is important due to the effect on the continuity

inside the knot span. If a knot has multiplicity m, then the curve is only Cp−m continuous at that

parametric coordinate and not Cp−1 continuous as inside the knot span.

If the knots are equally spaced in the parametric space, they are said to be uniform.

Otherwise, they are non-uniform. Conventionally, IGA uses open knot vectors, that is, vectors in

which the first and the last parametric values have multiplicity m = p+1, which makes these

points to be interpolated. The number of control points (ncp) corresponds to the number of



33

B-Spline basis functions and should be calculated as:

ncp = nk− p−1 (3.13)

where nk is the size of the knots vector. Several other important properties are observed in

B-Splines functions, such as:

1. Partition of unit ∑
n
i=1 Bi,p(ξ ) = 1;

2. As a consequence of the compact support, for a given knot span, p+1 basis functions are

zero in this interval;

3. All derivatives of Bi,p exist inside the knot spans. At the knots, the basis are only m− p

differentiable.

B-Splines allow three types of refinement: (1) the order elevation, which corresponds

to the p-refinement in FEA, (2) knot insertion, which corresponds to the h-refinement, and (3)

the k-refinement, which has no analogue in FEA. When elevating the order of a knot vector Ξ ,

the geometry curve may remain unchanged by the increase in the multiplicity of unique knots in

Ξ . This process is illustrated in Fig. 6 (a) and (b), in which a quadratic curve was elevated to a

cubic one.

Figure 6 – B-Spline basis functions

(a) Ξ = [0,0,0,1,1,1] (b) Ξ = [0,0,0,0,1,1,1,1] (c) Ξ = [0,0,0,0,0.5,1,1,1,1]

Source: the author.

In the knot insertion, a new knot ξi is inserted in the knot vector Ξ creating a new

basis function and, as a consequence, a new control point without changing the geometry curve.

This process increases the number of knot spans (ns), as shown in Fig. 6 (a), in which ns = 1,

and Fig. 6 (c), where ns = 2, while keeping p = 2. Finally, in the k-refinement, both the order

elevation and knot insertion are carried out.

In addition to modeling the structure using NURBS, which heavily rely on the

B-Splines concepts, this type of curve has also been gaining attention in the FG definition of

volume fraction distributions. Fig. 7 illustrates different curves (p = 3) with the same open
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Figure 7 – Variation on the control point p2 for Ξ = [0.0,0.0,0.0,0.0,0.5,1.0,1.0,1.0,1.0]

Source: the author.

knot vector by changing the position of one control point. Note how the curve goes from a

sharp transition between the materials in (a) to a smooth transition that resembles a Power-Law

function in (b), or a Sigmoid function in (c).

Despite its flexibility, B-Splines cannot exactly represent conical sections such as

circles and ellipses due to the non-polynomial character of these surfaces. To overcome this

shortcoming, NURBS are used. Interested readers on the mathematical background are referred

to the work of Piegl and Tiller[72] and Hughes et al.[66].

3.3.2 NURBS

NURBS are widely used in geometric modeling since they offer a mathematical

description capable to represent both analytic (e.g. circles and ellipses) and free-form curves

and surfaces using the same database. A tensor product NURBS surface (S) of degree (p×q) is

defined by a linear combination of bivariate rational basis functions (R) and a matrix of control

points (p):

S(ξ ,η) =
n

∑
i=1

m

∑
j=1

Ri j(ξ ,η) pi j (3.14)

where ξ and η are the parametric coordinates. The rational basis functions R are evaluated based

on a set of weights wi j associated to each control point and B-Spline basis functions B defined

for each parametric variable:

Ri j(ξ ,η) =
Bi,p(ξ ) B j,q(η) wi j

W (ξ ,η)
(3.15)

where W is the bivariate weight function expressed by:

W (ξ ,η) =
n

∑
î=1

m

∑
ĵ=1

Bî,p(ξ ) B ĵ,q(η) wî ĵ (3.16)
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3.3.2.1 Displacements and Strains

In the isogeometric formulation used in this work, the shell geometry is described by

a bivariate NURBS:

x =
ncp

∑
k=1

Rk xk, y =
ncp

∑
k=1

Rk yk z =
ncp

∑
k=1

Rk zk (3.17)

where Rk are the functions defined by Equation (3.15) and ncp is the number of control points of

the surface. The in-plane and transverse displacements and rotations at the plate mid-surface are

approximated from the element degrees of freedom at control points as:

u =
ncp

∑
k=1

Rk uk, v =
ncp

∑
k=1

Rk vk, w =
ncp

∑
k=1

Rk wk

θx =
ncp

∑
k=1

Rk θxk, θy =
ncp

∑
k=1

Rk θyk

(3.18)

In matrix format, Eq. (3.18) may be written as:

u = Rd (3.19)

where d is the vector of degrees of freedom, corresponding to the displacements at control points,

and R is the matrix of shape functions:

R =
[
R1 R2 . . . Rncp

]
(3.20)

where:

Rk = Rk I5x5 (3.21)

where I is the identity matrix. The generalized strains are related to the degrees of freedom:

ε̂ =


εm

0 + εm
L

κ

γ

=


Bm

0

Bb
0

Bs
0

d+
1
2


Bm

L

0

0

d =

(
B0 +

1
2

BL

)
d (3.22)
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Using Eq. (3.3)-(3.5) and (3.18)-(3.21), the sub-matrices are defined by:

Bm
0 =


Rk,x 0 ZxRk,x 0 0

0 Rk,y ZyRk,y 0 0

Rk,y Rk,x ZxRk,y +ZyRk,x 0 0



Bb
0 =


0 0 0 0 Rk,x

0 0 0 −Rk,y 0

0 0 0 −Rk,x Rk,y


Bs

0 =

0 0 Rk,x 0 Rk

0 0 Rk,y −Rk 0



Bm
L =


0 0 WxRk,x 0 0

0 0 WyRk,y 0 0

0 0 WxRk,y +WyRk,x 0 0



(3.23)

where:

Zx =
ncp

∑
k=1

Rk,x z0k, Zy =
ncp

∑
k=1

Rk,y z0k,

Wx =
ncp

∑
k=1

Rk,x wk, Wy =
ncp

∑
k=1

Rk,y wk

(3.24)

3.3.2.2 Equilibrium Equations

The dynamic equilibrium equations of the model can be obtained using the D’Alembert

and Virtual Work principles according to:∫
A

δuT MüdA+
∫

A
δ ε̂

T
σ̂ dA =

∫
A

δuT qdA+
∫

S
δuT fs dS (3.25)

where q is the surface load, fs is the boundary load, A and S are the midsurface area and

midsurface boundary of the plate, respectively and M is given by:

M =
∫ h/2

−h/2
ρ ZT Zdz =



I0 0 0 0 I1

0 I0 0 −I1 0

0 0 I0 0 0

0 −I1 0 I2 0

I1 0 0 0 I2


(3.26)

and

[I0, I1, I2] =
∫ h/2

−h/2
ρ(z)[1, z, z2]dz (3.27)
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Substituting Equation (3.18) in Equation (3.25) and considering arbitrary virtual

displacements, the dynamic equilibrium equation at a time t can be written as:

Md̈+g(d) = f(t) (3.28)

where:

M =
∫

A
RT MRdA (3.29)

f =
∫

A
RT qdA+

∫
S

RT fs dS (3.30)

g =
∫

A
BT

σ̂ dA (3.31)

M is the mass matrix and B = B0 +BL is the matrix that relates the variation of the generalized

strains with the variation of the control points displacements (δ ε̂ = Bδd).

In this work, M is evaluated using the Gaussian quadrature to carry-out the through-

the-thickness integration just as the constitutive matrix. For each trial design of the optimization

process, both matrices are written in the input file used for the analysis and processed on FAST.

Finally, by differentiating the internal force vector (g), the tangent stiffness matrix is

obtained:

KT =
∂g
∂d

= KL +Kσ (3.32)

where the material stiffness matrix KL and the geometric stiffness matrix Kσ are given by:

KL =
∫

A
BT ∂ σ̂

∂d
dA =

∫
A

BT CBdA (3.33)

Kσ =
∫

A

∂BT

∂d
σ dA =

∫
A

GT SGdA (3.34)

where C is the constitutive matrix and G and S are given by:

G =

0 0 Rk,x 0 0

0 0 Rk,y 0 0

 , S =

Nx Nxy

Nxy Ny

 (3.35)
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Despite the simplicity and satisfactory results, the linear analysis is limited by several

aspects in structural analysis such as the linearity of the material, by the geometry of the structure

and due to contact problems [73]. In this work, only the second type of non-linearity is addressed,

allowed by the use of the Marguerre theory for nonlinear membrane strains, as shown in Eq.

(3.2). This type of analysis is often required when dealing with structures nearing collapse or

when the linear behaviour is not a good predictor. This is the case when structures undergo large

deformations or when plasticity and creep are considered, for example.

However, the non-linear analysis is a much more complex and computationally

expensive process, which may be a bottleneck to its widespread use in association with population-

based algorithms. In this work, the numerical examples explore both problems where the linear

analysis is adequate and can be safely employed to the optimization of composite structures and

problems where the consideration of the geometric nonlinearity is of paramount importance. In

this case, the equilibrium of the system for displacement-independent loads are given by:

r(u,λ ) = g(u)−λq (3.36)

where r is the residual vector, u is the vector of degrees of freedom, λ is the load factor which

controls the load application on the structure (f = λq), q is the vector of external reference

loads. This equation is usually solved using a path-following method, such as the Load Control

Method, Displacement Control Method and the Arch-Length Method. The detailed methodology

implemented on FAST and used in this work is found in Praciano et al.[68]. These incremental-

iterative algorithms are usually based on Newton-Raphson iterations.

3.3.3 Eigenvalue problems

The free vibration analysis is carried-out solving the generalized eigenproblem :

(K−ω
2 M)φ = 0 (3.37)

where K is the stiffness matrix of the unloaded structure (d = 0), ω are the natural frequencies,

and φ are the vibration modes.

For structures with negligible pre-buckling displacements, stability analysis can

be carried out in the same form as a vibration problem, but replacing the mass matrix by the

geometric stiffness matrix due to the reference loads (Kσ ) as in:

(K+λ Kσ )φ = 0 (3.38)
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where λ are the buckling load factors and φ are the buckling modes. It should be emphasized

that this procedure is appropriate only if there is little or no coupling between membrane and

bending deformations [73]. This is important to understand why the buckling of simply supported

plates with non-symmetrical volume fraction distributions cannot be treated as a eigenvalue

problem, as discussed by Praciano et al.[68] and Auad et al.[69].
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4 OPTIMIZATION OF COMPOSITE STRUCTURES

Over the past decades, optimization techniques have been extensively used in struc-

tural design problems. This way, over-designed structures, and consequent profit loss can be

avoided by the adequate formulation of the optimization problem and by the correct choice of

the optimization technique. For that matter, it is highly important that when composite materials

are employed in the manufacturing of these structures, the mechanical behaviour of the material

itself is properly addressed.

Therefore, the fruitful use of composite structures depends not only on geometry

constraints but also on the accurate definition of the material properties and its structural be-

haviour so that their potential can be fully explored. The typical choices of design variables in

laminated composite optimization problems are the fibre orientation, material, and thickness of

each ply [13]. For example, if one decided to go for hand calculations or simply run an exhaustive

search algorithm in a two-dimensional laminated composite problem considering only three

possible fibre orientation angles and two possible values for the thickness considering 10 plies, it

would take over 60 million evaluations to cover the entire design space. This type of search is

computationally prohibitive unless the HF analysis is extremely cheap, which is hardly the case

of structural engineering problems. This combinatorial problem belongs to a class of challenging

real-world optimization problems known as NP-hard [74].

Thus, due to the impracticality of exhaustive search, many meta-heuristics were

developed and are now widely used to solve this kind of problem. These algorithms are also used

when the use of gradient-based methods would result in time-consuming sensitivity analyses
[75, 76].

On a side note, it is worth mentioning that despite the lack of mathematical guarantee

that the best solution found is indeed optimal, this type of algorithm is vastly used to solve

laminated composite and FGM problems due to their simplicity and robustness. As a matter

of fact, Lagaros et al.[77] showed in a comparison between heuristics algorithms such as GAs

and Evolutionary Strategies (ES) and classical mathematical programming algorithms such as

Sequential Quadratic Programming (SQP) that heuristics algorithms are capable of providing

better quality solutions than classic algorithms at a lower computational cost.

The authors also investigate the use of hybrid algorithms, where, at an initial stage, a

heuristic is employed to locate the region where the global optimal lies and, then, the SQP is

used to faster explore the neighbourhood of this region. Results showed that the proposed hybrid
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algorithms managed to find better designs than those obtained by the heuristics or by the SQP

alone at a reduced computational effort compared to the SQP procedure.

More recently, Kou et al.[78] reported that the PSO outperformed classical algorithms,

namely Active Set Algorithm (ASA) and trust-region algorithm regarding the optimization of

FGM. The study also found out that, for the same computational effort, the PSO found higher

quality designs than the ASA or trust-region algorithm. The authors stress that this is caused

by the fact that the PSO neither assumes continuity, nor the existence of the derivative of

the objective function, whereas the classical algorithms heavily rely on such assumptions. In

addition to that, classical gradient or sensitivity based approaches can be extremely susceptible

to be trapped by local minima since they tend to capture the right path to the nearest optimum

regardless of its nature (local or global optimum) very fast [78, 77].

Not surprisingly, heuristics algorithms are among the most frequently used method-

ologies used to optimize FG and laminated structures [12, 13]. In this work, the modified PSO

algorithm implemented by Barroso[70] is used to carry out the optimization processes. The

algorithm is discussed in details in the following section.

Generally speaking, a constrained optimization problem may be described as:

Find x

that minimizes f (x)

subjected to gi(x)≤ 0 i = 1,2, . . . ,Nic

with xlb ≤ x≤ xub

(4.1)

where xlb and xub are the lower and upper bounds of the design variables x, respectively, gi is

the i-th constraint and Nic is the number of inequality constraints. The most frequent objectives

in laminated composite optimization problems are the buckling load maximization [79, 80, 81, 82],

weight minimization [39, 75], maximization of first natural frequency [83, 84], cost minimization
[39, 38] or a combination of some of these criteria [85, 86]. To fit the mathematical formulation

shown in Eq. (4.1), maximization is simply understood as the minimization of the negative of

the objective function. Finally, it is worth mentioning the remarkable interest from researchers in

developing and applying methods for multi-objective optimization. To a more complete review,

the reader is encouraged to look for the reference Nikbakt et al.[13], where a comprehensive

survey including over 300 papers on the matter is presented.

As for FGMs, a recent study by Nikbakht et al.[12] found that the material distribution

pattern is the most common design variable. The authors also found that the stress distribution,
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critical buckling load, natural frequency and weight are among the most popular objective

functions. Many researchers take advantage of the simplicity of implementation and use the

Power-law index as the design variable [87, 34, 10, 57]. It is also quite frequent the use of B-

splines [88, 47, 49, 48] and piecewise cubic interpolation [60, 56, 34] to describe the volume fraction

distribution of FG structures. Both models allow more design flexibility than simple closed-form

expressions.

Of course, the process of designing such complex structures will inevitably involve

the need for the consideration of constraints. For laminated structures, these are usually related

to maximum displacements and/or strains, minimum values of fibre strength and minimum

buckling load factor. For FG structures, the minimum ratio of volume fraction of a given material,

minimum natural frequency, and maximum stress are often considered.

4.1 Particle Swarm Optimization

Particle Swarm Optimization was first proposed by Kennedy and Eberhart [89] based

on the behaviour of animal packs, such as bird flockings, fish schooling and herds searching for

food. PSO was initially designed for unconstrained and continuous problems, but it is nowadays

a widely used algorithm for discrete design variables as well. In this work, the implementation

carried out by Barroso[70] on the Biologically Inspired Optimization System (BIOS) software is

used.

The core idea of this metaheuristic algorithm is that each particle of the swarm

searches for food based on its own experience (cognitive aspect) and on the social sharing of

the experience of others particles (social aspect). In other words, each particle roams across the

design space based on its position (x j) and velocity (v j) looking for the position (i.e. design)

that provides the lowest objective function. At the beginning, the positions and velocities are

randomly generated for all Np particles, and in the following iterations, they should be updated

as follows:

xi+1
j = xi

j +vi+1
j (4.2)

where vi+1
j is defined by:

vi+1
j = wvi

j + c1 r1(xi
p, j−xi

j)+ c2 r2(xi
g, j−xi

j) (4.3)

where w is the inertia weight, c1 is the cognitive factor, c2 is the social factor, r1 and r2 are

uniformly distributed random numbers in the range of [0,1], xi
p, j is the best position the particle
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j obtained during the process until present iteration and xi
g, j is the best position the particles on

the neighborhood of particle j found so far.

In Eq. (4.2), vi+1
j represents the direction and magnitude with which particle j should

move in the next iteration. To define it, three vectors are considered, as shown in Eq. 4.3 and

illustrated in Fig. 8. The first term (depicted as the continuous blue line) represents the tendency

of the particle continue its the current movement (inertia). The second term (depicted as the

green continuous line) corresponds to the preference of the particle of searching around the

position where it has obtained its best fitness so far. Finally, the third term (depicted as the dark

green continuous line) accounts for the collaboration of other particles of the swarm with the

best position found until then.

Figure 8 – The i+1 movement of particle j

Source: the author.

In the early version of the PSO, the definition of the global best (xi
g, j) was taken

as the best position found among all particles since the entire swarm is connected. This type

of swarm structure was later named as Global Topology. The Global Topology leads to a fast

convergence, but may be highly susceptible to premature convergence to non-optimal solutions
[90]. To overcome this issue, other swarm topologies may be used [91, 90]. Two popular choices

that present good results in a wide range of problems is the Ring Topology and the Square

Topology. For the first choice, each particle is influenced by (and has influence on) two others.

In the Square Topology, the swarm is arranged in matrix format and each particle may share

information with the particles above, below, on the right and on the left of its index position.

Fig. 9 illustrates the three mentioned topologies. The so-called standard PSO[92] uses the Ring

topology.

On the optimization of laminated composites, Barroso[70] suggests that the Global

Topology with the mutation operator and the Square Topology (with or without the mutation) are
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the configurations that led to the best performances.

Figure 9 – Swarm Topologies
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(c) Ring

Source: Ribeiro et al.[50].

Figure 10 – Boundary constraints handling

(a) Define the velocity (b) Handle violations (c) New positions

Source: Ribeiro et al.[50].

To deal with the side constraints violations, a simple procedure presented by Clerc[93]

is adopted: the variable that had its bounds violated is set to the bound and its velocity is modified

by setting it to the opposite direction with half of its magnitude. This will affect the following

iterations due to the inertia factor in Eq. (4.3). Fig. 10 illustrates this procedure.

The other constraints are handled using the penalty function approach briefly de-

scribed in Section 4.1.2. This process continues until a stopping criterion is met. In this work,

two stopping criteria are considered: the maximum number of iterations (Itmax) and the maximum

number of iterations without improvement (StallGen). The algorithm is terminated when at

least one of them is satisfied. The flowchart of the PSO used in this work is shown in Fig. 11.

Note that the operator with the dashed green border is only triggered for laminated composite

problems. Also, the term "fit", commonly found in GAs, is used to refer to the evaluation of the

objective function, constraints and the penalty function.
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Figure 11 – Flowchart of PSO

Source: the author.

4.1.1 Mutation

Despite the ability to improve the exploratory capacity of the algorithm [92, 70], the

Square and the Ring topologies may also suffer from premature convergence for multimodal

problems as the particles are attracted to the current best solution found by neighboring particles.

To avoid this problem, a Mutation operator inspired by GAs is introduced to maintain the swarm

diversity.

This operator is applied to the particle position and acts in each design variable

by generating a random number between 0 and 1. If this number is less than or equal to

the probability of mutation (pmut), an integer number between the lower and upper bounds is
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generated. When dealing with continuous design variables, the mutation is applied to the particle

velocity and a real-coded number between the lower and upper bounds is generated. In all cases,

this procedure is followed by the side constraints verification.

4.1.2 Constraint Handling

In this work, the approach used to deal with constrained problems was proposed

by Deb[94]. The method aims to eliminate the need for a penalty parameter. This is done by

comparing solutions in terms of the constraints violations. Therefore, unfeasible designs are

not entirely removed from the search, but are automatically surpassed by feasible designs as the

penalized objective function (i.e. the particle fitness) is evaluated as:

fp(x) =

 f (x) if x is feasible.

fmax +∑
nc
i=1 max(ci(x),0), otherwise.

(4.4)

where fmax is the objective function of the worst feasible solution in the neighbourhood, ci is the

i-th constraint and nc is the number of constraints.

It is worth mentioning that the constraint handling described in this section is

only used for the conventional optimization using HFM. When the objective function and/or

constraints are approximated by a surrogate model, other approaches that consider the uncertainty

of the surrogate model are employed. These will be explored in Section 6.

4.1.3 Optimization of Laminated Composites

In the hybrid PSO proposed by Barroso[70], an important aspect for the optimiza-

tion of laminated composite problems relies on the special encoding scheme adopted for the

consideration of discrete variables. The encoding and decoding process are briefly discussed in

the following section. To take advantage of it and aiming at the improvement of the algorithm

performance, a laminate operator named Layer Swap is considered. The use of special laminate

operators is a longstanding feature explored in the literature and were successfully explored

in the works of Riche and Haftka[79], Almeida and Awruch[95], Rocha et al.[28], among many

others.
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4.1.3.1 Encoding

In this work, the design variables of laminated structures go through a encoding

process, implemented on BIOS by Rocha[96] and Barroso[70]. In this process, each particle

position is represented by a matrix of integers formed by three lines and m columns, as shown in

Fig. 12 (a), where m depends on the maximum number of plies of the laminate.

In this matrix, each column represents a ply, and each row stores information

regarding the thickness, fibre orientation, and material. In this work, only laminates with fixed

ply thickness are investigated. However, it is worth mentioning that this process allows the

variation of the laminate thickness (since the ply thickness may be 0). Also, the last row, which

corresponds to the material properties of each ply, allows the optimization of hybrid laminates,

for example. This scheme also makes it easier to deal with special layups such as symmetric and

balanced types. The encoding and decoding process are illustrated in Fig. 12 (a).

Figure 12 – Encoding and decoding process

(a) General layup (b) Symmetrical layup

Source: Barroso et al.[27]

For example, in case of a symmetric layup, each column represents two plies sym-

metric about the laminate midplane. Thus, the number of design variables is only half the

maximum number of layers in the actual structure, as shown in Fig. 12. It is worth mentioning

that if a ply has thickness equal to 0, that ply is represented in the matrix of 3×m, but should be

ignored when decoding for the evaluation of the objective function and constraints.

The particle velocity is represented by a matrix with the same dimensions, but with

real numbers. Therefore, after updating the particle position according to Eq. (4.3), the resulting

values are rounded to the closest integer.
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4.1.3.2 Layer Swap

This operator works by swapping two plies (represented by one column each) of

positions in a laminate without modifying any of its original characteristics. The Layer Swap has

greater importance in problems of buckling, deflection and natural frequency as this modification

is capable of modifying the bending stiffness matrix of the laminate D without changing its

membrane stiffness matrix A.

The Layer Swap checks whether the laminate has at least two non-zero thickness

plies. If so, a random value between 0 and 1 is generated and compared to the probability of

occurrence of the operator (pswap). If this value is less than or equal to pswap, the algorithm seeks

two random plies with non-zero thickness and swap their columns in the matrix, as illustrated in

Fig. 13.

Figure 13 – Layer Swap

Source: Barroso et al.[27].
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5 SURROGATE MODELLING

Surrogate models have been widely used in engineering as a way to achieve safe and

reliable designs at a lower computational cost compared to the use of high fidelity models. These

approximate models are an attempt of emulating the behaviour of a given function of m variables

y = f (x), which is treated as a black box, that converts the design variables vector x into a scalar

y. This black-box function may represent experimental results or deterministic outputs provided

by complex numerical simulations such as FEA or IGA.

Forrester et al.[18] describe the surrogate modeling procedure in three basic stages:

(i) preparation of the data and choice of the modelling approach, which includes the screening of

the design variables and the sampling plan definition, (ii) parameter estimation and training and

(iii) model testing.

In the first stage, designers must identify which variables are relevant to the problem

formulation. That is because the optimization problem complexity increases with the number

of design variables, as well as the need for more robust optimization techniques. Hence the

importance of selecting points in the design space that will provide a reasonable level of accuracy

in the prediction made by the surrogate model ( f̂ (x)).

A feature known as space-fillingness represents the capacity of sampling plans to

cover the entire design space with a certain level of uniformity. This type of sampling plan

is the most popular choice for computer experiments [97]. The most common sampling plan

techniques are the LHS, as well as its improved version Optimized Latin Hypercube Sampling

(OLHS), and pseudo-random sequences as the Hammersley Sequence Sampling (HSS). Both

OLHS and HSS are said to be space-filling plans. Once the initial sampling plan is defined,

the model parameters are determined to best fit the data using either estimation criteria such as

the Maximum Likelihood Estimation (MLE), Cross-Validation (CV) techniques, or applying

closed-form equations depending on the surrogate model choice. A broad classification used by

Song et al.[98] distinguishes four types of surrogate models: single-fidelity, multi-fidelity, hybrid

and adaptive sampling-based. Popular single-fidelity models include the classical Polynomial

Regression, the Artifical Neural Networks, the Support Vector Regression, RBF and Kriging,

also referred to as Design and Analysis of Computer Experiments (DACE).

Of particular interest to this work are the single-fidelity surrogate models and the

adaptive sampling-based approaches, also referred to as SAO. The SAO approaches use the

so-called infill strategies to choose new sample point(s) in the design space with high potential
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to improve the model accuracy, providing a better generalization to the surrogate model.

Recently, Nikbakht et al.[12] and Nikbakt et al.[13] outlined the ANN as the most

common surrogate technique in combination with meta-heuristic algorithms for the optimization

of composite structures. Regarding the accuracy and robustness, Nik et al.[99] investigated four

different techniques, namely Polynomial Regression (PR), RBF, Kriging, and SVR, to optimize

a FRC plate and a cylinder with curvilinear fibres. At each generation, the training dataset was

updated with the best non-repeated individual. Results showed the best performance of Kriging

and RBF. Similar conclusions were reached by Simpson et al.[100]. The authors found that these

two surrogate models tend to offer more accurate approximations over a wide range of DoE

types and sampling sizes.

Kriging was used to aid the optimization of laminated structures in the works of

Wenguo et al.[20], Passos and Luersen[22] and Keshtegar et al.[24]. The first two studies used the

GA to maximize the infill criterion, while the latter used a PSO algorithm to sample regions

of interest. As for FGM, Jaiswal et al.[101] proposed the use of a SAO framework based on

the RBF surrogate model to minimize both geometrical and material composition errors on the

additive manufacturing process of different FG structures such as cylinders, dental implants

and propellers. For more applications of surrogate-based optimization in engineering design,

Simpson et al.[100], Wang and Shan[102] and Zhao and Xue[103] present comprehensive reviews

on the matter.

Furthermore, the benefits of surrogate models are not limited to computational

cost reduction. The surrogate modeling itself allows an enhanced understanding of the design

optimization problem (i.e. screening study).

The following section describes the main aspects involved in the definition of the

initial sampling plan and a brief definition of the techniques adopted in this work. Section 5.3

and Section 5.2 present the mathematical formulation of the two surrogate models used: Kriging

and Radial Basis Function, respectively.

5.1 Sampling Plan

As previously discussed, the first stage of building a surrogate model consists of

data preparation. More specifically, one must identify through a small number of observations,

the inputs that have a significant impact on f , as well as their search range. This may be done

through engineering judgment or through systematic screening study. As a result, the design
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variables vector may be shortened, reducing the so-called Curse of Dimensionality [18].

These observations are usually expensive to obtain, either by experiments or by

numerical simulations. To give the reader a sense of time, Cardozo et al.[104] reported that it

took 112.74 hours to generate a sampling plan with 2347 designs of a composite laminated plate

subjected to an in-plane load using FEA, for example. In Forsberg and Nilsson[105], it is reported

that a single analysis of a car crash takes between 4 and 6 hours to be completed as the problem

requires the consideration of a large number of degrees of freedom and includes several nonlinear

phenomena. The authors built a surrogate model based on 25 HF responses, which results in

approximately 125 hours.

In conclusion, the longer the processing time to perform the structural analysis, the

more pronounced are the benefits of using surrogate models. Thus, the spatial distribution of

the sampling plan must be in such a way that the capability of generalization of the surrogate

model is optimized with limited resources. If the sampling points are placed on the extremes of

the design domain, it is very likely that a prediction in the centre of it is going to be of poorer

quality since the model needs to make far-reaching extrapolations. As a result, the algorithm

may be lead to false conclusions on the optimum design [18].

Therefore, space-filling sampling plans are of high importance [100]. The full-factorial

sampling technique is the most straightforward approach, although it is easily affected by the

Curse of Dimensionality as the number of variables increases. A vast literature is available on

screening strategies and sampling plans. Simpson et al.[100] compare five different sampling

plans (LHS, HSS, Orthogonal Arrays, Uniform Design and Random Set of Points) and four

approximation models (Polynomial Response Surface, Kriging Models, Radial Basis Functions

and Multivariate Adaptive Regression) in terms of accuracy considering two engineering problem

including nonlinear behaviour. On the DoE type, the authors suggest the use of the Uniform

Design and HSS, since these techniques have consistently presented low Root Mean Squared

Error (RMSE) values associated. A similar conclusion is presented by Mullur and Messac [97].

No formal guidelines exist to define the minimum number of sampling points to

build a surrogate model, which also motivates the use of the SAO. However, there are a few

recommendations in the literature. Jin and Jung[106] use as a rule of thumb n≈ 10 m, where n is

the number of sampling points, and Amouzgar and Strömberg[107] use the number of required

points to interpolate a quadratic polynomial as a reference to estimate the sample size of the RBF

surrogate model, whilst De Ath et al.[108] bet on a much smaller sample: n = 2 m.
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Another aspect to be considered is the scaling of the design variables to [0,1]m. This

is a standard procedure to eliminate the effect of scale discrepancy on the surrogate model

performance, particularly when defining the widths of the RBF. Forrester et al.[18] state that the

scaling of the observed data does not affect the values of the Kriging hyperparameters, but the

scaling of the design space does. Thus, the normalized design variables can be described by:

xisc =
xi− xlb

xub− xlb
i = 1,2, . . . ,m (5.1)

where xlb and xub are the lower and the upper bounds of the design variable xi.

Despite overall guidelines suggested by comparative studies, it is important to keep

in mind that the relationship between the sampling plan and the surrogate model is too complex

for the researchers to be too assertive on recommendations about "the best set of choices", given

that the surrogate modelling is largely problem-dependent.

5.1.1 Hammersley Sequence Sampling

The Hammersley Sequence Sampling (HSS) is a low-discrepancy experimental

design proposed by Kalangnanam and Diwekar[109] for placing n points in a m-dimensional

hypercube based on the Hammersley’s points [110]. Discrepancy is defined as a quantitative

measure for the deviation of the sequence from the uniform distribution.

It consists of a deterministic method and as such cannot provide a different sampling

plan with the same input parameters. The HSS provides better uniformity properties over the

m-dimensional space than LHS in low-dimension [107], but it may be significantly affected as the

dimensionality increases [107, 111], particularly when m > 6 [112].

5.1.2 Latin Hypercube Sampling

The Latin Hypercube Sampling (LHS) can be obtained by splitting the design space

into equally sized hypercubes (also called bins), placing one point in each and ensuring that from

each occupied bin it is possible to exit the design space along any direction parallel with any of

the axes without encountering any other occupied bin. However, this procedure can lead to a

poor sampling plan in terms of "space-fillingness" [18].

To overcome this issue, a metric known as maximin can be used to quantify the

uniformity of a LHS. Based on it, Morris and Mitchell[113] proposed a criterion to find the best
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LHS arrangement, also known as the OLHS, by minimizing the following scalar:

Φq(X) =
( dn

∑
i=1

Jid
−q
i

)1/q

(5.2)

where dn is the number of unique values of distances between all possible pairs of points in the

sampling plan X, Ji is the number of pairs of points separated by the same distance di and q

is a scalar value, which is suggested to be q = 1, 2, 5, 10, 20, 50 and 100 [18]. This way, the

smaller the value of Φq the better the space-filling properties of the sampling plan X. This could

be solved by a GA, for example.

To save computational effort, a much simpler approach can be used: simply run Nsp

sampling plans and select the one with highest maximin. In this work, this approach will be

referred to as LHSNsp . Fig. 14 illustrates the discussed sampling plan techniques for n = 10 and

m = 2 in the scaled design space [0, 1].

Figure 14 – Sampling plans for n = 10 and m = 2

(a) Hammersley Sequence (b) Latin Hypercube (c) LHS50

Source: the author.

For laminated composite problems, where discrete variables are considered, this

work employed the following methodology:

1. Each dimension is divided into k spaces, where k is the number of possible values of the

design variable m j;

2. Round the sampling points between the intervals to the respective integer;

3. Remove repeated points before evaluating the HFM responses.

For example, if x1 and x2 represent the allowable values of fibre orientation [0◦/45◦/

90◦] of a laminated plate, the sampling plan shown in Fig. 14 would be adapted to the distribution

presented in Fig. 15. Note that the light blue box on the right corner has 2 sampling points

placed in the same interval, as well as the one in the middle of the sampling plan, resulting in
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the superposition and consequent removal of one of the sampling point so that the algorithm

will not evaluate twice the same area. To be fair, the adapted sampling plan is no longer a Latin

Hypercube (LH) since there is more than one point in each bin. A similar approach is presented

in Maschio and Schiozer[114].

Figure 15 – LHS50 for n = 10 and m = 2 adapted for discrete design
variables

Source: the author.

5.2 Kriging

Kriging is a surrogate model developed by the mining engineer Daniel Krige and

made its way into engineering design through the work of Sacks et al.[115] when the technique was

applied to the approximation of computer experiments. Kriging is a nonparametric interpolating

model, which means that the training points are involved in the determination of the unknown

parameters and that the model exactly interpolates the responses at the sampling points. Kriging

has multiple variants and its general form may be described as:

f̂ (x) = g(x)+Z(x) (5.3)

where the first term concerns the global trend of the model and the second term refers to the

localized deviations (or departures) that are autocorrelated. In this work, boldface indicates a

vector or a matrix.

In Universal Kriging, also known as Regression Kriging, the first term is given by a

set of regression functions (e.g. linear, quadratic or any other order of polynomial) to shape the

global trend, which varies with the sampling point location, as shown in Fig. 16 (b). However, it

is very common the assumption of a unknown and constant global trend (µ), which results in
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Figure 16 – Types of Kriging

(a) Ordinary Kriging (b) Regression Kriging

Source: the author.

the definition of the Ordinary Kriging, the version used in this work and depicted in Fig. 16 (a).

Finally, when µ is a known stationary mean we arrive at the Simple Kriging.

In Kriging, the responses (targets) are interpreted as the result of a stochastic process,

even when dealing with a deterministic computer code (e.g., FEA or IGA). More specifically,

in Eq. (5.3), Z(x) is assumed to be a realization of a Gaussian process with mean zero and

covariance given by [116]:

cov[Y,Y] = σ
2

Ψ (5.4)

here σ2 is the process variance and Ψ is the correlation matrix of all sampling points. To

build this matrix, the observed responses y = {y(1) y(2) . . . y(n)}T
from the sample data X =

{x(1) x(2) . . . x(n)}T
are represented by a set of normally distributed random variables Y =

{Y (1) Y (2) . . . Y (n)}T with mean 1 µ , where 1 is an n x 1 vector of ones. These random variables

are spatially correlated with each other using a correlation function. In this work, two types are

investigated: a Gaussian function, given by:

cor[Y (x(i)),Y (x(l))] = exp(−
m

∑
j=1

θ j dp j) (5.5)

and the Matérn 5/2 function, given by:

cor[Y (x(i)),Y (x(l))] =
m

∏
j=1

exp
(
−
√

5d
θ j

)(
1+

√
5d

θ j
+

5d2

3θ 2
j

)
(5.6)

where d = |x(i)j −x(l)j |. These kernels were chosen due to their good performance in a wide range

of surrogate model applications [117, 118].
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Thus, the correlation matrix (Ψ ) of all sampling points can be evaluated as:

Ψ =


cor[Y (x(1)),Y (x(1))] cor[Y (x(1)),Y (x(2))] cor[Y (x(1)),Y (x(n))]

cor[Y (x(2)),Y (x(1))] cor[Y (x(2)),Y (x(2))] cor[Y (x(2)),Y (x(n))]
... . . . ...

cor[Y (x(n)),Y (x(1))] . . . cor[Y (x(n)),Y (x(n))]

 (5.7)

This matrix is positive semi-definite and symmetric with diagonals of ones as a result

of the correlation function given by Eq. (5.5) and Eq. (5.6). To compute Ψ , the hyperparameters

p and θ must be determined. This is a vital step to the model fitting since these parameters

have a huge influence on the response surface and on the model accuracy. To illustrate this idea,

Fig. 17 (a) presents the behaviour of a Gaussian function with θ j = 1.0 fixed and varying p j. It

can be observed that the increase of this parameter leads to a smoother variation of the spatial

correlation. In particular, for the lowest value considered, a near discontinuity occurs between

near points.

In Fig. 17 (b), p j is fixed at 2.0 and θ j varies from 0.1 to 4.0. A low value of θ j

means that all sample points are highly correlated. In other words, Y (x j) is similar across the

sample, while a high value indicates that the values of Y (x j) are significantly different. Therefore,

θ j may be understood as a measure for how "active" is the approximated function regarding

the design variable x j. This process is also known as Automatic Relevance Determination and

is a valuable metric to understand the relevance of each variable to the problem formulation
[119, 120]. One must be cautious when extending the above-mentioned considerations to the

Matérn 5/2 correlation function, in which the hyperparameter θ j is on the denominator of the

fraction. Therefore, in this case, lower values of θ j indicate a more active design variable, as

illustrated in Fig. 17 (c).

Several techniques to obtain the hyperparameters were proposed in the literature,

being MLE and CV the most popular ones. In this work, the first approach is used to estimate

the hyperparameters of Kriging. The Likelihood Function (LF) may be described as:

L(Y| µ,σ) =
1

(2πσ2)
n/2 exp(−

∑(Y(i)−µ)2

2σ2 ) (5.8)

Expressing this equation in terms of the sample data, we have:

L =−
1

(2πσ2)
n/2|Ψ |1/2

exp(
(y−1µ)T

Ψ
−1(y−1µ)

2σ2 ) (5.9)
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Figure 17 – Variation on the hyperparameter of the correlation functions

(a) Varying p j and θ j = 1.0 (b) Varying θ j and p j = 2 (c) Matérn 5/2 with varying θ j

Source: the author.

Taking the natural logarithm to simplify the maximization:

ln(L) =−
n

2
ln(2π)−

n

2
ln(σ2)−

1

2
ln(Ψ)−

(y−1µ)T
Ψ
−1(y−1µ)

2πσ2 (5.10)

To obtain the estimates for µ and σ2, one must differentiate ln(L) with respect to

each of the variables and equate them to 0, which gives:

µ̂ =
1TΨ−1y
1TΨ1

σ̂
2 =

1

n
(y−1µ̂)T

Ψ
−1(y−1µ̂) (5.11)

where µ̂ and σ̂2 are the estimates for the mean and variance, respectively. Replacing these

estimates in Eq. (5.10) and removing constant terms, we obtain what is known as concentrated

ln-likelihood function:

ln(L)≈−
n

2
ln(σ̂2)−

1

2
ln |Ψ | (5.12)

Unfortunately, this function cannot be differentiated in order to obtain an analytic

expression to describe the hyperparameters, as done to the mean and the variance of the process.

Thus, a numerical optimization technique must be used to find the hyperparameters that maximize

this function. For a given value of p and θ , the estimates µ̂ and σ̂
2 can be computed and used to

evaluate Ψ , thus, enabling the calculation of the ln-likelihood function.

Typically, p is not treated as variable and only θ need to trained, reducing the

complexity and size of the Kriging optimization problem. Normally, this exponent assumes

3 values: p j = 1, characterizing a exponential correlation function, p j = 2, characterizing a

Gaussian function or 0 < p j < 2, which corresponds to a general exponential [121]. The most

commonly used value is p = 2.0 [19, 121, 122], which is also adopted in this work.
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Therefore, the MLE may be described as an unconstrained optimization problem in

the form of:
Find x = {θi} for i = 1,2, . . . ,m

that maximizes ln(L)(x)

with θlb ≤ θi ≤ θub

(5.13)

where θlb and θub refer to the lower and upper bounds of the hyper-parameter θi, respectively.

Note that the design variables of the MLE are different than the ones considered to the optimiza-

tion of the problem itself. In this case, all variables are continuous and their search ranges are

user-defined. In this work, the PSO algorithm is used to solve this problem. The search bounds

are often considered to be in logarithmic scale [18, 123] as there is significant change between

θ = 0.1 and θ = 1.0, as shown in Fig. 17 (b). Therefore, θ is always positive and greater than 0.

Alternatively, if n and m are not too large, direct search through the search space may be used.

In general, two types of problem may arise when using the MLE. The first type

concerns the multi-modality of the ln-likelihood landscape, as well as the long ridges of nearly

constant and optimal values that may lead to numerical difficulties for gradient-based problems
[124, 19, 121]. The second type of problem is related to the ill-conditioned correlation matrices.

On this matter, Davis and Morris[125] provided an insightful investigation on the determination

of the Kriging parameters and the factors that could affect the model performance using the

condition number1 of the correlation matrix Ψ . A large condition number will result in a matrix

that may have significant numerical inaccuracies when inverted. This may be caused by large

correlation ranges and closely located observations [125]. The same remarks were made by Martin

and Simpson[19].

A common approach to improve the conditioning of the correlation matrix Ψ is

to add a small constant value to its diagonal elements, also known as nugget effect, jitter or

diagonal inflating. This is the approach adopted by Forrester et al.[18], Roustant et al.[126] and

Bachoc[123]. Roustant et al.[126] and Bachoc[123] recommend τ = 1×10−8, but highlight that

this value should be adjusted in a way that it’s not too large that causes significant departures,

but not too small to prevent numerical issues. This is also the approach adopted in this work. It

is worth mentioning that the interpolating properties of the Ordinary Kriging are not affected.

For illustrating the multi-modality of the ln-likelihood function, the Branin function
1 The condition number of a matrix is defined as the ratio of the absolute values of the largest and smallest

eigenvalues of the correlation matrix Ψ
[125].
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is studied in the following. This function is given by:

f (x) = (x2−
5.1

4π2 x2
1 +

5
π

x1−6)2 +10(1− 1
8π

)cos(x1)+10 (5.14)

Fig. 18 presents three iterations of the SAO approach (to be discussed in Chapter 6) employed

in this work. The red diamonds are the sampling points, the white ones are the location of the

optimal solutions and the green ones are the infill points. On the right side, the approximated

surface using the best hyperparameters (their locations are marked by the magenta points) is

shown. Note how the ln-likelihood surface presents multiple peaks and valleys and how it shifts

its peak to a new θ as new points are added to the sampling plan.

Finally, to predict the target response at a new point x∗, we need to look back at Eq.

(5.3). The first term is the estimated mean of the Gaussian process and is obtained by the MLE,

as shown in Eq. (5.11), that would be the result of simply plugging x∗ in ŷ(x∗) if no correlation

was considered between the unseen point and the sampling points. Therefore, the second part of

Eq. (5.15) must be obtained by correlating the errors of the unseen point to the sampling points

used to train the surrogate model. The farther is the unseen point, the lower is this correlation

and the mean behaviour of the approximate response surface (µ̂) is in fact the best prediction.

To do so, one must acknowledge that the prediction must be the most consistent with

the estimated behaviour modelled by MLE hyperparameters. That being said, a intuitive way of

understanding its derivation is discussed by Jones et al.[127] and Forrester et al.[18]. Suppose the

guessed value of the function at x∗ is, say, y∗, allowing the evaluation of the likelihood of the

augmented data. This value aims to quantify how much the pseudo observation ‘fits’ with the

original data. As a result, for each guess, we would get a different likelihood value. It turns out

that the value of y∗ that maximizes this augmented likelihood, and in this sense is most consistent

with the function’s typical behavior, is precisely the predictor described by:

ŷ(x) = µ̂ +ψ
T

Ψ
−1(y−1µ̂) (5.15)

where ψ is the correlation vector between x and all sampling points. The full derivation of the

predictor is found in Sacks et al.[115].

Finally, an interesting feature of the Gaussian process is the ability to provide a

measure of the uncertainty of the prediction ŷ(x), given by the prediction variance, which is also

known as Mean Squared Error (MSE):

ŝ2(x) = σ̂
2
[
1−ψ

T
Ψ
−1

ψ +
(1−1TΨ−1ψ)2

1TΨ−11

]
(5.16)
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Figure 18 – Likelihood and prediction for Branin function

Source: the author.

The MSE provides a measure of the quality of the prediction and is always non-

negative. The correlation between errors also affects the prediction accuracy in a sense that the

farther we get from the sampling points, the less confidence in the prediction we get. Thus,

the MSE is higher in less sampled areas and reduces to 0 in sampling points, as expected since

there is no doubt about the accuracy of that point as it was evaluated using the HFM. One may

also observe that, if we are calculating ŝ(x) at a sampling point x, there is a column in Ψ that

correlates this point with the remaining ones, then Ψ
−1

ψ is a vector of zeros with 1 in the i-th
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position, so that:

ψ
T
Ψ
−1

ψ = ψ
T

ψ
(i) = cor(x(i), x(i)) = 1 (5.17)

and

1T
Ψ
−1

ψ = 1T
ψ

(i) = 1 (5.18)

Substituting Eq. (5.17) and Eq. (5.18) into Eq. (5.16), we obtain exactly the uncertainty we

expect at sampled locations:

ŝ2(x) = σ
2
[
1−ψ

T
Ψ
−1

ψ︸ ︷︷ ︸
1

+
(1−

1︷ ︸︸ ︷
1T

Ψ
−1

ψ)2

1TΨ−11

]
= 0 (5.19)

In Eq. (5.16), the third term accounts for the uncertainty in the estimate of µ (i.e. µ̂)

and provides very small values. In fact, this term is often omitted [18, 128]. However, the present

work will follow the Efficient Global Optimization (EGO) implementation by Jones et al.[127],

which does consider the third term.

5.3 Radial Basis Functions

Radial Basis Functions (RBF) use a linear combination of radially symmetric func-

tions centered around a set of points, the basis function centres, scattered around the design space

according to the sampling plan [18]. This type of surrogate model was first proposed by Hardy[17]

aiming at the interpolation of geographical scattered data and has since then been developed and

applied in several other branches of science due to its simplicity of implementation.

Considering a scalar function f (x) and the vector of samples containing the design

variables X = {x(1),x(2), . . . ,x(n)}T
which provides the following vector of responses (or targets)

y = {y(1),y(2), . . . ,y(n)}T
, a typical form of RBF can be expressed as:

f̂ (x) = wT
ψ =

Nc

∑
i=1

wi ψ (||x− c(i)||) (5.20)

where Nc is the number of basis functions centres, f̂ (x) is the prediction of the true response

function, c(i) refers to the ith-centre among the Nc basis function centres and ψ is the vector of

size Nc containing the values of the basis functions ψ themselves, evaluated at the Euclidean

distances between the testing point x and the centres of the basis functions c(i).
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Basis functions include linear and cubic polynomials, thin plate splines, inverse

multiquadric and more popularly, Gaussian functions, as shown in Tab. 1, where r is the radial

distance between the point to be estimated x and the sampling points, while σ is known as

spread, width or shape parameter. The Gaussian function provides more freedom to improve the

generalization at the cost of a more complex parameter estimation process. One of the reasons

for its popularity is the fact that under certain assumptions, this type of function and the inverse

multiquadric basis always lead to symmetric positive definite Gram Matrices [18].

Table 1 – Common basis functions
Nomenclature ψ(r)

Linear r
Cubic r3

Thin-plate splines r2 ln(r)
Inverse Multiquadric (r2 +σ2)1/2

Gaussian e−r2/σ2

Source: the author.

Then, enforcing the interpolation condition on the sampling points, f̂ (x(i))= f (x(i))=

yi, Eq. (5.20) becomes:

f̂ (x(i)) = wT
ψ =

Nc

∑
j=1

w j ψ j (||x(i)− c( j)||) = f (x(i)) = yi (5.21)

This system is linear in terms of the basis functions weights w despite any possible

non-linearity of the f (x) response, which is an important characteristic of this surrogate model
[98]. Additionally, one of the conditions for the system in Eq. (5.21) to have one single solution

is that it must be square (i.e. Nc = n) and that the sampling points must be sufficiently distant

from each other [18]. This is because very closely spaced points in X can cause ill-conditioning.

As consequence, failure of the Cholesky factorization may occur. Usually, this is not a problem

in space-filling sampling plans but may become an issue in the SAO approach if infill points

are added subsequently in a small area of interest in the design domain. If the number of basis

functions is lower than the sample size, the Method of Least Squares must be used.

In addition to that, calculations are simplified if the centres coincide with the data

points, that is c(i) = x(i) for any i = 1 . . .n, which leads to:

Ψ w = y =⇒ w =Ψ
−1 y (5.22)
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where Ψ is the so-called Gram matrix defined as:

Ψ =


ψ11 ψ12 · · · ψ1n

ψ21 ψ22 · · · ψ2n
...

... . . . ...

ψn1 ψn2 · · · ψnn

 (5.23)

whose components are given by:

ψi j = exp
(
− ||x

(i)−x( j)||
σ2

j

)
(5.24)

Another important concern is how to avoid overfitting. This phenomenon occurs

when the built model closely explain the training dataset but fails to generalize well when applied

to unseen data. To address this issue, one may split the initial data set into two different subsets,

one for training and another for testing. If the model performs much better on the training subset

than on the testing subset, that is an indicator of overfitting. A model with high variance and low

bias may also be an indicator of it. These indicators are actually tools for diagnosing overfitting

and not for effectively mitigating the issue. However, being capable of acknowledging the matter

is the first step towards selecting a better model, either by rebuilding it, improving it or by adding

new training points.

Note that although the correct choice of the weights alone does ensure that the

approximation can replicate the training data, it is not enough to guarantee a model with good

generalization properties. That role is played by the choice of the model parameters (e.g. σ in

the Gaussian function), which is run prior to the weights’ evaluation. The determination of these

parameters is discussed in the following section.

5.3.1 Width of the basis functions

Several approaches were proposed to evaluate the shape parameter σ in Gaussian,

multriquadric and inverse multiquadric functions. Fig. 19 illustrates the behaviour of different

types of basis function for the same σ value, and varying σ ’s for the same Gaussian function. It

can be seen that lower values of σ may lead to non-smooth response surfaces. Moreover, too

large values of spread may cause to a Runge’s phenomenon in interpolation [129].

Therefore, the estimation of this parameter is a key-stage to achieving a good

surrogate model. Many researchers have proposed equations that simplify its calculation,

skipping an arduous task that could be itself another topic for optimization, as proposed by Wu
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Figure 19 – Variation on the basis function and on spread parameter σ

(a) Different basis functions for σ = 1.0 (b) Gaussian function with varying σ

Source: the author.

et al.[129]. Usually, the proposed closed-form expressions depend on the maximum distance

between the sampling points (dmax). For example, Nakayama et al.[130] and Song et al.[98] used

one single value of width given by Eqs. (5.25) and (5.26) for all sampling points, respectively:

σ =
dmax
√

2n
(5.25)

σ =
dmax

m
√

nm
(5.26)

On the other hand, Kitayama et al.[131] and Kitayama and Yamazaki[132] considered

the sparseness and density of the sampling points to propose a different spread value for each

sampling point based on an adaptive scaling technique, given by:

σi =
di,max

√
m m
√

n−1
(5.27)

where di,max is the maximum distance between the sampling point i and any other sampling point

in the design space. In brief, the adaptive scaling technique was proposed by Kitayama et al.[131]

and aims to make all spreads to be bigger than unity. This approach uses the following equation

to scale the design variables space:

xias = xisc× s (5.28)
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where xisc is the scaled design variable given by Eq. (5.1) and s is the scaling coefficient. The

algorithm of this technique begins by scaling all design variables by Eq. (5.28) taking s = 1.0.

After that, the main loop can be summarized as follows:

1. The widths of all basis functions are calculated according to Eq. (5.27);

2. Find σmin = min(σi);

3. If σmin ≤ 1.0, the scaling coefficient is updated as follows: s = α × s. Otherwise, the

algorithm is terminated and the widths found in step 2 are stored. In this work, α = 1.1.

At a higher computational cost, one may obtain a better estimate for the basis widths

using cross-validation techniques, as suggested by Ferreira et al.[133] and Forrester et al.[18]. On

this matter, the Leave-One-Out Cross-Validation (LOOCV) and the k-Fold CV are the most

popular ones [134]. The LOOCV’s basic approach is to choose a given σ vector and build the

surrogate model with all training points but one and use the one sampling point omitted from the

model training to evaluate an error measure:

RMSECV =
nv

∑
i=1

√
(yi− ŷi)

2

nv
(5.29)

where nv is the number of validation points (equal to 1 for the LOOCV). After that, the process is

resumed with the building of a new surrogate model using all training points except one (different

from the ones already taken in previous iterations) and the error is again evaluated and added

to the total cross-validation error. This process is repeated until all sampling points have been

omitted for the same σ vector. Thereafter, other width vectors are tested. In the end, the σ that

provided the lowest sum of RMSECV is chosen as the widths vector.

In this approach, nw surrogate models are generated for each basis j, where nw is the

number of widths tested. Thus, to define the width vector, a total of nw ·n surrogate models are

built. This procedure is adopted by Sóbester et al.[135], for example. The authors test all widths

of a vector with 20 values between [10−2, 101] in logarithmic scale. In this work, this range is

multiplied by
√

2 due to the difference between the Gaussian functions used.

In k-Fold CV, the initial data set is split into k different subsets, each time leaving

out one of the subsets from the training and using it to measure the error between the model

prediction and the HFM values of the points set aside. In this case, only nw · k surrogate models

are built at each iteration and nv is equal to the subset size. Note that if the group size is 1, the

k-Fold becomes the LOOCV. In this work, the k-FOLD CV is employed using the width vector

suggested by Sóbester et al.[135], where nw = 20. Fig. 20 depicts the procedure discussed.
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Figure 20 – k-Fold CV

Source: the author.

On the other hand, one may use optimization techniques to select the widths, as

done by Mehmani et al.[136]. All considered, the present work will use the two approaches that

provided more accurate and reliable results in past studies [137, 50] involving composite structures:

k-FOLD CV (k = 5) and the closed-form expression proposed by Kitayama et al.[131].

It is worth emphasizing that although the formulation of the MSE had been presented

in the Kriging section, this metric can also be applied to RBF models with the proper assumptions

about the stochastic process, allowing the computation of the EI and WEI, as discussed by

Sóbester et al.[135]. In this case, the last term in Eq. (5.16) regarding the uncertainty of estimating

µ is not considered and only the term that represents the reduction in the prediction error due to

the fact that the unseen point is correlated with the sampling points is computed, which gives:

ŝ2(x) = σ̂
2
[
1−ψ

T
Ψ
−1

ψ

]
(5.30)

where Ψ is the Gram matrix, ψ is the vector containing the values of the basis functions

considering the Euclidean distances between the testing point and the centres of the basis

functions and σ̂ is the variance of the process calculated according to Eq. (5.12). Considering

µ̂ = 0 and σ̂ = 1, this version is conceptually equal to Kriging.
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6 SEQUENTIAL APPROXIMATE OPTIMIZATION

The concept of Sequential Approximate Optimization was first discussed by Schmidt

and Farshi[138]. The authors used mathematical programming methods and approximation con-

cepts to improve structural synthesis efficiency by alleviating excesses such as the consideration

of all constraints rather than working on critical or "near" critical constraints at each stage of a

iterative design process. In other words, the method generates a sequence of non-critical designs

of steadily decreasing weight, funneling down the trajectory of the designs to a limited space of

the acceptable region (or feasible region).

Perhaps the most popular SAO algorithm is the one proposed by Jones et al.[127]:

EGO. This algorithm is used to single-objective optimization based on the Ordinary Kriging.

Throughout the years, many variants of it have been proposed in the literature, including multi-

objective version (e.g., ParEGO, HEGO, MEGO, etc.).

The core of any SAO algorithm is on the criterion used to choose the infill points.

These points can improve locally or globally the surrogate model accuracy depending on its

purpose. For example, one may wish to improve the surrogate model accuracy only locally in the

region near the best solution found so far (exploitation), since other points in the design space

are not of interest. Conversely, one may wish to use the surrogate model to better understand the

design space by working on a cheap-to-evaluate function and to that end, the global accuracy

(exploration) is an important feature.

For optimization purposes, using solely exploration-based strategies may reduce

the convergence efficiency as many non-profitable areas are investigated, whilst using solely

exploitation-based strategies may lead to convergence towards a deceptive optimum if the initial

sampling plan does not provide good coverage of the design space, compromising the global

accuracy [18, 108]. This trade-off motivates the creation of a third type of infill strategy: the hybrid

criteria. These infill strategies strive a balance between exploitation and exploration.

Popular hybrid infill strategies include the Probability of Improvement (PI) [139], the

Expected Improvement (EI) [140] and the Weighted Expected Improvement (WEI)[135]. These

criteria will be discussed in the following sections, as well as the SAO algorithms and the metrics

used to assess their performances.

Finally, another powerful infill strategy is the Goal Seeking (GS)[141], a one-stage

approach commonly used in problems where the aim of the search if to find a specific objective

value.



68

6.1 Probability of Improvement

The Probability of Improvement is one of earliest infill criteria and dates back in 1964

in the work of Kushner[139]. This criterion searches the point where the probability of sampling a

lower value (in case of minimization) than the current best ymin is maximum. Realizing that Y (x)

comes from a normally distributed random variable with estimated mean ŷ(x) and estimated

variance ŝ2(x), then the probability of improvement upon ymin, denoted by I = ymin−Y (x), is

given by:

P[I(x)] =


Φ

(ymin− ŷ(x)
ŝ(x)

)
=

1
2

[
1+ erf

(ymin− ŷ(x)
ŝ(x)
√

2

)]
, if ŝ(x)> 0

0, if ŝ(x) = 0
(6.1)

where Φ(·) is the normal cumulative distribution function. The error function (erf) is a special

function widely used in statistics worth twice the integral of the Gaussian distribution with 0

mean and variance of 1/2 [142]:

erf(x) =
2√
π

∫ x

0
exp−t2

dt (6.2)

To illustrate this criterion, a one-dimensional unconstrained problem is used:

f (x) = (6x−2)2 sin(12x−40) (6.3)

This is a non-linear function with one global optimum and one local minimum. A small and

non-uniform sample was chosen to make clearer how the PI works.

Figure 21 – Graphical interpretation of PI for a 1D problem

(a) P[I(x = 0.35)] (b) P[I(x = 0.60)]

Source: the author.

In Fig. 21 (a), the P[I(x = 0.35)] may be obtained by calculating the area below

the horizontal line (gray) (ymin) enclosed by the Gaussian distribution of Y (x = 0.35), which
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corresponds to the value obtained by Eq. (6.1). Note that in less explored areas, the Gaussian

distribution is flattened since the estimated standard deviation is, as expected, higher. The

problem is that this approach may lead to an overly exploitative behaviour, in which only designs

close the local optimal are preferred to those in areas less explored, which may slow down

convergence in multimodal landscapes [18, 108]. This occurs because although the criterion

indicates where the improvement is higher, it does not estimate how big that improvement could

be.

This is even more clear in Fig. 22 (b), in which four iterations in a row suggest the

addition of points very close to the current best value. Only when the region between 0.5 and 1.0

predicts lower values of ŷ(x), the algorithm ceases the exploitation in the region between 0.4 and

0.5. Note that in the second row, the P[I(x)] is the same (or very close to it) for multiple points

in the design space. In this case, the choice was made at random. In any case, the algorithm

continues to show a preference for the local exploration in regions of small uncertainties.

To tackle this issue, a lower ymin may be set [139, 116]. In practice, estimating ymin with

confidence is not so easy and the algorithm efficiency may be compromised. If a ymin too small

is chosen, the search will provide an excessively local search and may result in the premature

stop of the SAO algorithm. On the other hand, if a ymin too big is considered, the algorithm will

be dominated by less explored areas. Thus, the present work will deal with another alternative

involving the estimation of how much improvement there would be with the addition of a given

point, namely the Expected Improvement.

6.2 Expected Improvement

The Expected Improvement (EI) was proposed by Mockus et al.[143] and takes into

account the magnitude of possible improvement on the current best value aiming at a balance

between the desire to search at locations with good predicted values (exploitation) with the

desire to check where the uncertainty of prediction is large (exploration). The EI concept gained

popularity when Jones et al.[127] applied it as the infill criterion to the EGO algorithm.

Thus, instead of searching for points that will likely be better than our best solution

so far as shown in the previous subsection, the EI aims to quantify how much a given point may
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Figure 22 – PI search for one-dimensional problem

Source: the author.

improve upon ymin using:

E[I(x)] =


(ymin− ŷ(x)) Φ

(ymin− ŷ(x)
ŝ(x)

)
+ ŝ(x) φ

(ymin− ŷ(x)
ŝ(x)

)
, if ŝ(x)> 0.

0, if ŝ(x) = 0.

(6.4)

where φ(·) is the probability density function. Evaluating Eq. (6.4) using the error function (erf),

we arrive at:

E[I(x)]=


(ymin− ŷ(x))

[
1

2
+

1

2
erf
(ymin− ŷ(x)

ŝ(x)
√

2

)]
+ ŝ(x)

1
√

2π
exp

[
− (ymin− ŷ(x))2

2ŝ(x)2

]
, if ŝ(x)> 0

0, ifŝ(x) = 0

(6.5)

The first term in the first equation of Eq. (6.5) corresponds to the exploitation

contribution, where the predicted difference between the current minimum and the prediction

ŷ in x, penalized by the probability of improvement, is computed. On the other hand, the

second term corresponds to the exploration contribution, which provides larger values in areas

where uncertainties are high (i.e., unsampled areas). Typically, ymin is taken as the minimum

target found in previous observations [127, 116, 144], but it may also be set as a minimum value of

expected value of the target [145]. In constrained problems (discussed in Section 6.14), ymin is the
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best feasible solution. For further details on the development of the EI expression, the reader is

encouraged to look for the reference [116].

Note that Eq. (6.5) is a differentiable function and quick to evaluate, and can,

therefore, be maximized with a simple algorithm. However, care should be taken as this is often

the case of a multimodal function [135]. In this work, the PSO is used to maximize the EI due

to its good performance in previous works at the Laboratório de Mecânica Computacional e

Visualização (LMCV) in problems with many local minima.

The EI criterion has been proved to find the global optimum [146]. However, Sóbester

et al.[135] stress that, although the criterion offers a simple and combined form of fusing ex-

ploration and exploitation, if the problem in hand is likely to yield a simple, unimodal surface,

searching the predictor will probably work better. Conversely, if the target landscape is extremely

multimodal, biasing the search towards sampling in thus far unexplored areas could lead to faster

convergence than the expected improvement criterion.

Figure 23 – EI search for a one-dimensional problem

Source: the author.

To illustrate the working of this criterion, consider the same 1D problem discussed

in the previous section. Note that despite the uncertainty between 0.5 and 1.0, the EI search is

significantly local-driven, as shown in the first row of Fig. 23. When the third point is sampled,

the EI is significantly reduced and the region not yet explored starts to show a higher variance,

which results in two peaks (second figure from lower row) of almost the same magnitude. After
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two deceptive "global" optimum are sampled, the high uncertainty of the area not explored starts

to dominate and the algorithm finally shifts the search for a more global approach.

Thus, the following shortcomings may be associated with the EI criterion: (i) it does

not allow the user to control the balance between local and global exploration and (ii) it may

be heavily biased if the target is poorly estimated by the approximation (e.g., inadequate initial

samples that lead to very small estimates of the standard error), with consequent poor accuracy of

the EI. As a result of these issues, only points close to the current best point have high expected

improvement. This will result in a fairly exhaustive search around the initial best point before

the algorithm begins to search more globally [135].

To alleviate these shortcomings, several approaches have been proposed. For instance,

Schonlau et al.[147] propose the Generalized Expected Improvement criterion, which introduces

the parameter g (g≥ 0) to the basic expression I(x) = ymin− y(x):

Ig(x) = max

[ymin− y(x)]g, if y(x)< ymin

0, otherwise
(6.6)

For notational simplicity, the dependence on x is omitted in the following derivation.

Rewriting Eq. (6.6) in terms of the predicted values using z = (y− ŷ)/ŝ and y∗min = (ymin− ŷ)/ŝ:

Ig = max

sg[y∗min− z]g, if z < y∗min and s > 0

0, otherwise
(6.7)

Taking the expectation (for s > 0), we obtain:

E[Ig] = ŝg
g

∑
k=0

(−1)k
(

g
k

)
y∗min

g−k Tk (6.8)

where

Tk =
∫ y∗min

−∞

zk
φ(z) dz (6.9)

Eq. (6.9) is solved using the partial integration technique. The full derivation can be

found in Schonlau et al.[147]. For the particular case where g = 0, Eq. (6.8) yields the Probability

of Improvement criterion, since all terms except T0 are equal to 0, and T0 is defined as[147]:

T0 =
∫ y∗min

−∞

φ(z) dz = Φ(y∗min) = Φ(
ymin− ŷ

ŝ
) (6.10)

For higher values of g, the criterion shifts towards a global search. Another alternative

is to use weights to bias the search for local or global searches. This approach is discussed
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by Sóbester et al.[135] and is also investigated in this work. Other alternatives based on the EI

criterion are discussed in the work of Zhan and Xing[148]. The authors provide a comprehensive

review on the use of EI-based infill criteria for a wide range of expensive optimization problems.

6.3 Weighted Expected Improvement

The Weighted Expected Improvement is given by [135]:

WE[I(x)] =


w (ymin− ŷ(x)) Φ

(ymin− ŷ(x)

ŝ(x)

)
+(1−w) ŝ(x) φ

(ymin− ŷ(x)

ŝ(x)

)
, if ŝ(x)> 0

0, if ŝ(x) = 0

(6.11)

where w is the weighting factor between [0, 1]. The lower bound leads to a global extreme of

the search scope range, while the upper bound will exploit the current best value. Sóbester et

al.[135] suggest a cycle with 5 values of weights (w = {0.1,0.3,0.5,0.7,0.9}), but warned that

values of w exceeding 0.5 should only be used when one is confident that the function landscape

is of low modality. In addition to that, a recent study carried out by De Ath et al.[108] pointed out

that this procedure may lead to dominated solutions if the exploitation and exploration terms

are considered the objective functions of a multiobjective optimization problem. The authors

showed that for w ∈ [0.185 0.50], the maximization of WEI(x) results in solutions of the Pareto

set. Thus, assuming that we do not know the true behaviour of the problem before-hand, the

present work will adopt the following scheme: w = {0.2,0.35,0.50}.

Again, the test problem discussed in Section 6.2 is used to show how the weights can

affect the location of the infill point. In the first three cycles, the WEI searches provide points

very close to the ones obtained by the EI due to the deceptive behaviour of the initial surrogate

model. In the first search, as the sampling points are equally spaced, the variance is the same,

thus, the bias inserted to lead to a more global scope is not effective and the term accounting for

the local improvement dominates. In the following two iterations, when w = 0.35 and w = 0.50,

respectively, the algorithm dwells in the region incorrectly predicted as a smooth function.

In the first iteration of the new cycle, the global search (w = 0.20) still leads to the

area near sampled points, but in the following iteration (w = 0.35), the algorithm shifts to the

unexplored area. This time, one of the two peaks with similar magnitude by the EI search (see

Fig. 23) is magnified by the higher variance in the unexplored area, reaching a point only 1.5%

far from the global optimum of the true function.
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Figure 24 – WEI search for a one-dimensional problem

Source: the author.

It is worth noting that the performance of WEI is very sensitive to the initial surrogate

model (initial sampling plan, hyperparameters, etc.) and the superior performance of this

approach is not a rule.

6.4 Constraint handling

When dealing with constraints, the designer must seek for feasible solutions to

improve the optimal search. This is a simple task if the constraints are evaluated exactly, but a

much complex problem if they are also calculated using surrogate models. In the first scenario,

the algorithm simply sets the expected improvement of points that violate the constraint to 0,

preventing the exploration of unfeasible areas, otherwise, the expected improvement value is

kept as discussed in previous sections.

On the other hand, if a constraint is evaluated using a surrogate model, a level of

uncertainty is added to the problem. This derives from the fact that if the constraint viola-

tion is a prediction, there is a possibility that an unfeasible design predicted by the surrogate

model is, in fact, a feasible design. To somehow take into account this uncertainty into the

EI calculation, especially critical near the constraint threshold, Forrester et al.[18] discuss two

approaches: the Expected Improvement with Simple Penalty Function and the Constrained
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Expected Improvement.

The first is a simple and straightforward way to prevent further exploration of regions

predicted to be unfeasible without removing these points from the construction of the expectation.

This is done by adding a penalty factor (P) to the EI evaluation as in E[I(x)] = E[I(x)]−P.

However, despite the simplicity of implementation, this approach falls into the pitfalls discussed

before.

The Constrained Expected Improvement is a fully probabilistic approach where the

uncertainty (variance) is taken into account to penalize the expected improvement of a given

point. This is done by considering the Probability of Feasibility (PF) of that point, which may be

described by:

P[F(x)] =



1

2
+

1

2
erf(

gmin− ĝ(x)
ŝ(x)

), if ŝ(x)> 0

0, if ŝ(x) = 0 and ĝ(x)> 0

1, if ŝ(x) = 0 and ĝ(x)< 0

(6.12)

where gmin refers to the constraint limit, taken as 0 since all constraints are normalized as

g j(x) ≤ 0. Note that gmin is the maximum value that the constraint may assume. This way, a

tolerance may be considered in order not to discard designs near the feasibility threshold.

More recently, Tutum et al.[128] proposed a modification to this approach as follows:

P[F(x)] =



1

2
+

1

2
erf(

gmin− ĝ(x)
ŝ(x)

), if erf(
gmin− ĝ(x)

ŝ(x)
)≥ 1

2− erf(
gmin− ĝ(x)

ŝ(x)
), if 0≤ erf(

gmin− ĝ(x)
ŝ(x)

)< 1

0, otherwise

(6.13)

Note that if all constraints are satisfied and ŝ(x) is relatively low, it results in PF = 1.

For the specific case where at least one of the constraint values is close to the threshold, the

2nd condition results in a value greater than one, emphasizing near-boundary solutions. Finally,

when the constraint prediction is violated, its PF is set to 0.

As these are uncorrelated processes, we multiply the EI by the PF to obtain the

Constrained Expected Improvement (CEI)[18]:

E[Ic(x)] = E[I(x)∩F(x)] = E[I(x)] ·P[F(x)] (6.14)

In this work, the modification proposed by Tutum et al.[128] is adopted. In addition to

that, when the objective function is a cheap-to-run function and the constraints are approximated



76

by surrogate models, the following script is used: 1) for each trial x, evaluate the objective

function and compare it to ymin, 2) if the new point is better than the current best feasible

solution, the CEI is the difference between them multiplied by the PF of that point or 3) else, the

improvement is set to 0 regardless of its feasibility.

6.5 Sequential Approximate Optimization Algorithms

In this work, four frameworks are investigated. Each framework is either named

after the combination of the surrogate model used plus the correlation function employed to the

definition of the model hyperparameters or simply by the width-defining method. In addition to

that, to better understand the effect of the weights on the EI search, all frameworks will be tested

and compared considering both infill criteria (EI and WEI).

The frameworks will be discussed in detail in the following sections, but can be

briefly summarized as follows:

1. KRG-G: This method is based on the implementation of the EGO algorithm proposed by

Jones et al.[127] and also uses a Gaussian function as the correlation function. However, the

present work differs from it on the constraint handling, the optimization algorithm used to

maximize the infill criterion and the MLE, and the stopping criteria;

2. KRG-M: This method is the same as KRG-G, but the correlation function is the Matérn

5/2.

3. 5-FCV: This method is based on the work of Sóbester et al.[135] and uses the k-Fold CV

(with k = 5) to define the RBF widths;

4. ASKIT: This method is the same as the 5-FCV, but instead of evaluating the widths using

a CV technique, the expression and the adaptive scaling technique proposed by Kitayama

et al.[131] is applied.

In all four approaches, two stopping criteria are considered: maximum number of

HF evaluations or maximum number of iterations without improvement (StallGen). Both criteria

are also considered to the traditional optimization using the HFM.

In principle, the EGO algorithm uses the EI both as infill and stopping criteria, the

latter being triggered when the highest EI found at a given iteration is less than 1% of the current

best solution [127]. However, for constrained problems, this is an insufficient criterion since the EI

of unfeasible designs is often set to 0. This way, the more the design space (or design criterion)

is cut out by complex or multiple constraints, the higher is the probability of the EI search results
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in unfeasible designs, terminating the algorithm and preventing further exploration of feasible

areas in the following iterations. In addition to that, a deceptive approximate surface may lead to

unrealistic values of EI and premature "convergence”.

The SAO-RBFs were originally implemented by Balreira[149] on BIOS. Later on, the

EI criterion, as well as other width-defining methods, were implemented by Ribeiro et al.[50] for

the RBF-based algorithms. In short, BIOS is an open-source program written in C++ language

developed by the LMCV collaborators [96]. Several optimization algorithms are available in

this software, including PSO and its modified version for laminated composite problems (see

Section 4.1). Likewise, an in-house software named FAST, also developed by LMCV, is used

to carry-out the HF analyses. Both softwares use the Object-Oriented Programming (OOP)

paradigm and are connected through input and output text files.

6.5.1 SAO using Kriging

As mentioned, a variation of the EGO algorithm is employed. Fig. 25 depicts the

working of it. The algorithm starts with the generation of the initial sampling plan using DoE

and the evaluation of sampling points by the HFM. Next, PSO is used to maximize the MLE

considering all sampling points according to the mathematical formulation in Eq. (5.13). Then,

the LOOCV is applied to validate the fitted Kriging model. The CV procedure is done a bit

differently than the usual procedure of re-estimating hyperparameters for each reduced sample

due to the optimization process involved in the maximization of the MLE.

Re-estimating the hyperparameters n times for very similar samples (if no major

outliers or very few data is used) would be time-consuming, especially for large samples.

According to Jones et al.[127], dropping a single observation has a negligible effect on the

maximum likelihood estimates and the hyperparameters found considering all sampling points

may be used, simplifying the process.

In practice, only the correlation matrix Ψ and the Y vector must be re-computed from

one sampling point removal to another. To assess the accuracy of the prediction made without

the sampling point x(i), say ŷ(x(i)), a metric named “standardized cross-validated residual” is

calculated:

ST DCVerror =
y(x(i))− ŷ(x(i))

ŝ(x(i))
(6.15)

where ŝ(x(i)) is calculated as shown in Eq. (5.16). This value represents the number of standard
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Figure 25 – SAO using Kriging

Source: the author.

deviations that the actual value of y(x(i)) is from the surrogate model prediction. This procedure

is repeated for all n sampling points and in all times, the error should be roughly in the interval

[-3, 3] to validate the Kriging model. In case of failure of model validation, Jones et al.[127]

suggest a transformation of the dependent variable. Typically, the log transformation (log(y) or

ln(y)) or the inverse transformation (−1/y) are used. This approach is also adopted in this work

when there is failure in the model fitting. If model validation still fails, one may reconsider the

kernel used or increase the sampling plan size.

After model validation, the algorithm proceeds to its main loop, which consists of

the maximization of the infill criterion using the PSO. The design with the highest EI (or WEI)

is evaluated using the HFM and added to the sample. Next, the Kriging hyperparameters are

re-estimated by the maximization of the MLE. This process is repeated until at least one stopping

criterion is achieved.

6.5.2 SAO using RBF

The SAO algorithms using RBF are a simplified version of the one discussed in

Section 6.5.1, as depicted in Fig. 26. The basic difference consists in the training of the initial

surrogate model. The RBF widths are defined using either the closed-form expression shown in

Eq. (5.27) or the k-Fold CV, as illustrated in Fig. 20.

After that, the algorithms initiate the main loop, where the PSO is used to maximize

the infill criterion and find the new infill point, which should be added to the sample with its

respective HF response. Then, the surrogate model must be updated with the new widths. Note
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Figure 26 – SAO using RBF

Source: the author.

that the validation step in Fig. 25 is skipped and only one optimization loop is needed since the

hyperparameter estimation is no longer an optimization problem.

6.6 Fitness assessment

For the assessment of the performance of the SAO algorithms, the following aspects

and metrics are considered:

a) accuracy: measures how close the surrogate model optimum is to the true function optimum.

In this work, the average Normalized Root Mean Squared Error (NRMSE) is used;

b) efficiency: measures the extent to which time is employed to produce reasonable results

at the lowest amount of resource possible. Two metrics are considered: the speed-up

and number of HF evaluations required to achieve at least one of the stopping criteria,

including the initial sampling plan observations;

c) robustness: measures the ability of the model to consistently present good results in

different runs. To that end, the standard deviation of NRMSE is calculated.

The NRMSE is given by:

NRMSE =

√√√√∑
nv
i=1(yOPT − ySAO)

2

∑
nv
i=1(yOPT )2 (6.16)

where nv is the number of validation points, yOPT is the HF response of the reference solution

(i.e., optimal solution) and ySAO is the best response obtained by the SAO evaluated by the HFM.

This metric is evaluated for each optimization and averaged by the number of runs, which gives
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NRMSE. Lower values of NRMSE indicate better performances.

To assess the efficiency, two metrics are evaluated: the speed-up and the number of

HF evaluations needed to reach at least one stopping criterion. The speed-up is given by:

Speed-up =
1

nr

nr

∑
i=1

THFM

TSAO,i
(6.17)

where nr is the number of runs, THFM is the average time spent in the conventional optimization

using the HFM and TSAO,i is the time spent using a SAO algorithm on the i-th run. Both measured

by the wall-clock time.

Finally, the standard deviation of the NRMSE (ST DNRMSE) is given by:

ST DNRMSE =

√√√√∑
nr
i=1 NRMSEi−NRMSE

nr−1
(6.18)

Again, smaller ST DNRMSE values suggest a more robust SAO or to put it another way, the less

variable the results are. Of course, this metric should be read in context with the SAO accuracy.
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7 NUMERICAL EXAMPLES AND DISCUSSION

This chapter presents the results for applications of the SAO algorithms in two topics:

1) FGM problems and 2) laminated composite problems. In all cases, the hyperparameter p j in

Kriging is fixed and equal to 2.0 so that the optimization problem involving the maximization of

the MLE is simplified to the search of θ .

A comparative study is carried out considering 8 combinations of surrogate models,

basis functions and infill criteria (EI and WEI). These methods are identified as shown in Table 2

in the remainder of this work.

Table 2 – Description of SAO algorithms
Acronym Surrogate model Basis/correlation function

KRG-G Kriging Gaussian (MLE)
KRG-M Kriging Matérn (MLE)
5-FCV RBF Gaussian (k-Fold (with k = 5))
ASKIT RBF Gaussian (Closed-form expression by Kitayama et al.[131])

Source: the author.

The stopping criteria are the maximum number of iterations, which should be

specified for each problem, and the maximum number of SAO iterations without improvement

on the best solution (StallGen).

Unless stated otherwise, nr = 10 runs will be carried out for each problem and the

initial surrogate model is built using only n = 5m sampling points. The performance of the SAO

algorithms is assessed using the metrics discussed in Section 6.6: the average number of points

evaluated until the algorithm is stopped (np), the NRMSE, the standard deviation of the NRMSE

and the speed-up.

All simulations are carried out on a computer running on an Intel i9-9820 X @ 3.30

GHz, 10 cores and 120 GB RAM. If not specified, no parallelization procedure is adopted.

7.1 FGM problems

In this section, for each optimization, a new distribution of the sampling plan is

created using the LHS20 approach. If not specified, the values of the optimization parameters

considered in the following examples are the ones shown in Table 3. It is worth emphasizing that

the StallGen values of the maximization of the EI, WEI, or MLE are higher because these are

cheap functions. The SAO algorithm itself stops when the best solution is not improved for 10
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iterations, which is also adopted for the HF optimization.

Table 3 – FGM problems: optimization parameters
Parameter Conventional Opt. Max. of EI or WEI Max. of MLE

Topology Global Global Global
Swarm size (Np) 50 250 100

Maximum Iterations (Itmax) 100 100 100
StallGen 10 25 25

pmut 0.02 0.02 0.05
w 0.7 0.7 0.7
c1 1.5 1.5 1.5
c2 1.5 1.5 1.5

Source: the author.

Before proceeding to the optimization examples, a study is carried out to assess the

accuracy of the isogeometric meshes used in the following problems.

7.1.1 Validation

The first verification regards the free-vibration analysis. For the validation of the

structural analysis of the FG plates, a mesh of 16x16 cubic NURBS elements for the full

representation of the plate was used. The stiffness, constitutive and mass matrices were integrated

using the Gauss quadrature. Full integration was used in the element mid-surface and 10 Gauss

points were used for the through-thickness integration. This integration scheme provides a

natural frequency closer to the reference values than using the reduced integration scheme. The

boundary conditions of the simply supported square plate are depicted in Fig. 27.

Figure 27 – Boundary conditions of
simply supported plate

Source: the author.
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The non-dimensional natural frequency is calculated as follows:

ω = ω h
√

ρc/Gc (7.1)

where Gc = Ec/[2(1+νc)]. For validating the Mori-Tanaka method, a plate of SUS304/Si3N4

with a/h = 10 is considered. The material properties are shown in Table 4.

Table 4 – Material properties of FG
SUS304/Si3N4

Material E (Pa) ν ρ (kg/m3)

SUS3O4 201.04 ×109 0.30 8166
Si3O4 348.43 ×109 0.30 2370

Source: Adapted from Do et al.[48].

The volume fraction is given by the Power-law function and the results are compared

to those found by Do et al.[48], as shown in Table 5. The maximum difference found is below 1%,

which suggests that the present mesh is sufficiently accurate to model the structural responses

even of thick plates.

Table 5 – Non-dimensional natural frequency of
simply supported SUS3O4/Si3N4 FG
square plate

p 1 2 5 10

Do et al.[48] 0.0542 0.0485 0.0440 0.0419
Present work 0.0546 0.0488 0.0440 0.0417
Difference (%) 0.71 0.63 0.02 0.57

Source: the author.

For validating the Voigt model, the HF responses for different combinations of

Power-law index and thickness found in Franco et al.[150] are reproduced. The plate is also made

of Stainless Steel (SUS3O4) and Silicon Nitride (Si3N4), but this time the temperature effect

is considered using the Toulokian equation. The temperature is said to be constant (T = 300

K) from the bottom to the top of the plate. The temperature-dependent coefficients are shown

in Table 6. The normalization of the natural frequency was not applied in this case. Again,

the results presented in Table 7 show excellent agreement between the present work and the

reference values.

Next, a clamped square plate with a circular hole in its centre is modelled using

a mesh with 8 patches, each of them with a 8x8 mesh of cubic elements, adding up to a total

of 512 elements, as shown in Fig. 28 (a). The boundary and loading conditions are depicted
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Table 6 – Temperature-dependent coefficients for SS3O4/Si3N4 FGM
Material Property P0 P−1 P1 P2 P3

Silicon Nitride (Si3N4) E (Pa) 348.43 ×109 0 -3.070 ×10−4 2.160 ×10−7 -8.946 ×10−11

ν 0.24 0 0 0 0
ρ (kg/m3) 2370 0 0 0 0

Stainless Steel (SUS3O4) E (Pa) 201.04 ×109 0 3.079 ×10−4 -6.534 ×10−7 0
ν 0.3262 0 -2.002 ×10−4 3.797 ×10−7 0
ρ (kg/m3) 8166 0 0 0 0

Source: the author.

Table 7 – Natural frequency of simply supported
SUS3O4/Si3N4 FG square plate

p 0.20 1.00 4.0 10.0
h (mm) 36.4 35.0 34.3 60.0
a/h 13.74 14.29 14.49 8.33

Franco et al.[150] 7982.20 5760.81 4718.51 7478.13
Present work 7976.49 5769.94 4726.05 7477.69
Difference (%) 0.07 0.12 0.16 0.01

Source: the author.

in Fig. 28 (b). The geometry of the plate is given by a = b = 0.72 m, h = a/100, r = a/10

and Nx = 1 kN/m. The critical buckling load is normalized using λ cr =
λcr a2

Ec h3 . The material

properties are taken from Auad et al.[69]: Ec = 380×109 Pa (ceramic), Em = 70×109 Pa (metal)

and νc = νm = 0.30.

Figure 28 – Mesh and boundary conditions for square plate with circular hole

(a) Isogeometric mesh (b) Loading and boundary conditions

Source: the author.

The volume fraction is described by a Power-law function and the effective properties

are evaluated using the Voigt’s model. The results obtained in the present work are compared

to those obtained by the FEA software Abaqus[151] considering the same mesh refinement, but

with quadractic elements with reduced integration, known as S8R. In Fig. 29, these results are



85

referred as FEM and the ones obtained by FAST are referred as IGA. It can be observed that

the critical buckling load obtained by solving the buckling eigenvalue problem decreases as

the power-law exponent increases and the amount of ceramic is reduced. It is also noticeable

that the agreement between IGA and FEM is affected. This can be partially explained by the

pre-buckling displacements caused by the coupling of membrane-bending. In symmetric or

isotropic distributions this difference is close to 0.

Figure 29 – Normalized buckling load factor for dif-
ferent exponents

Source: the author.

Finally, to validate the mesh used to model the hinged shallow shell, the results of

the non-linear analysis carried out by Kim et al.[152] are considered. The boundary conditions

are depicted in Fig. 30 and the material properties are presented in Table 8. The volume

fraction distribution is described by the Sigmoid function and the effective properties are given

by the Voigt model. The displacement x load curve for two values of p and for the isotropic

case are shown in Fig 31. Good agreement is observed between the reference results and the

displacements obtained by FAST.

Table 8 – Material properties for vali-
dation of shallow shell mesh

Material E (Pa) ν ρ (kg/m3)

Zr 151 ×109 0.30 3000
Al 70 ×109 0.30 2707

Isotropic 3103 ×106 0.30 3000

Source: the author.
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Figure 30 – Boundary conditions of
hinged cylindrical shell

Source: the author.

Figure 31 – Deflection vs Point Load for different types of materials

(a) Isotropic (b) FGM

Source: the author.

7.1.2 Simply Supported Plate - Vibration with frequency constraint

The first optimization problem deals with the maximization of the first natural

frequency (ω) of a simply supported square plate studied by Franco et al.[150]. The problem

has two constraints on the natural frequency range. Therefore, an additional stopping criterion

is considered: the algorithm is stopped whenever the best solution found so far is higher than

7999 rad/s, which is only 0.01% smaller than the maximum natural frequency allowed. This is

done because the value of the maximum objective function is known and further exploration

of solutions within this tolerance may be a waste of computational effort. The mathematical
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formulation may be expressed by:

Find x = {h, p}

that maximizes ω(x)

subjected to 3000≤ ω ≤ 8000 (rad/s)

with 0.005≤ h≤ 0.060 (m)

0.20≤ p≤ 10.0

(7.2)

The constituents are Silicon Nitride (Si3N4) as the ceramic and Stainless Steel as

metal (SUS3O4) in constant temperature at 300 K for both sides of the plate (see Table 6 for the

material properties). The geometry of the plate is given by a = b = 0.5 m and Itmax = 50.

In this problem, both objective function and the constraints are approximated by

surrogate models. Therefore, the feasibility of a trial design is assessed using the Probability

of Feasibility approach. Since the constraints are actually imposed on the response surface of

the objective function, the hyperparameters are calculated only once for the objective function

approximation and repeated to the constraints. The performance of the SAO algorithms is

described in Table 9.

Table 9 – Metrics for SUS3O4/Si3N4 FG plate
Infill criterion Surrogate model np NRMSE ST DNRMSE Speed-up

EI

KRG-G 27 0.02% 0.03% 32
KRG-M 26 0.15% 0.36% 28
5-FCV 28 0.21% 0.24% 38
ASKIT 26 2.27% 1.22% 42

WEI

KRG-G 25 0.35% 0.65% 37
KRG-M 28 0.19% 0.33% 19
5-FCV 30 0.79% 1.11% 34
ASKIT 26 2.12% 1.86 % 41

Source: the author.

Note that in all cases, the Kriging-based SAOs provided the highest robustness and

accuracy, and the lowest number of points until convergence. This helps these algorithms to be

as competitive as the ones based on RBF in terms of computational efficiency. In general, the

EI criterion led to the best performances, with the 5-FCV being the most accurate between the

RBFs. Despite the significant differences in the computational cost of the Matérn 5/2 compared

to the Gaussian function, both correlation functions provided accurate results regarding both

infill criteria.

The best design found using both the HFM and the SAO algorithms are compared to

those obtained by Franco et al.[150] and Moita et al.[57], as shown in Table 10. It is understood
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that the best SAO performance is the one with the highest accuracy (i.e., lowest NRMSE). In this

particular case, the best optimization was obtained using KRG-G and EI as the infill criterion. If

the algorithms had the same accuracy, then we would use the following sequence to define the

best performance: highest robustness (i.e., lowest ST DNRMSE), lowest number of HF evaluations

and highest speed-up.

Table 10 – Optimal designs for SUS3O4/Si3N4 FG plate

Moita et al.[57] Franco et al.[150] HF SAO

p 3.80 3.40 3.37 4.01
h (mm) 59.5 59.1 58.9 60.0
ω (rad/s) 8000 8000 8000 8000
Niter - - 16 17
N p - - 825 27
Average time - - 1909 s 66 s

Source: the author.

Note that different combinations of p and h provide the highest natural frequency

allowed of 8000 rad/s. This can be observed when the constraints are plotted on the response

surface, as shown in Fig. 32 (d). Any response lying on the boundary between the approximate

surface and the upper hyperplane is optimal. In addition to that, the initial ln-likelihood landscape

of one of the optimizations using KRG-G WEI is shown in Fig. 32 (a). The landscape of this

function is multimodal and the optimum hyperparameters indicate that the power-law index

is more active than the plate thickness regarding the natural frequency. After 9 updates, the

KRG-WEI finds an optimal design. The approximate surface is more accurate in the region of

interest, as shown in Fig. 32 (c).

Fig. 33 illustrates the WEI surface for the initial surrogate model shown in Fig. 32

(b). Note that the Probability of Feasibility amplifies the EI of points near the constraint threshold

and drives it to 0 where there is low likelihood of feasibility. As more points are added to the

sample, the shape of the intersection between the response surface and the constraint imposed by

the maximum frequency gets closer to the one observed on the HF surface.

7.1.3 Simply Supported Plate - Vibration with volume constraint

In this subsection, a free-vibration problem found in Do et al.[48] is discussed. The

problem consists of the maximization of the normalized first natural frequency of a FG square

plate (ω) subjected to a constraint on the maximum volume of ceramic material. The volume

fraction is described by 13 control points symmetric about the midplane, which results in 7
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Figure 32 – Surrogate model surface for SUS3O4/Si3N4 FG plate problem

(a) ln-likelihood landscape (b) Initial approximate surface

(c) After 9 iterations (d) HF response surface

Source: the author.

design variables. The problem may be expressed by:

Find x = {Vci} for i = 1, 2, . . . , 7

that maximizes ω(x)

subjected to V c(x)≤V c,max

with 0.0≤Vci ≤ 1.0

(7.3)

where Vci is the volume fraction at the i-th control point, V c is the percentage of ceramic material

and V c,max is the maximum ceramic volume fraction. Three values of V c,max were considered:

35%, 50% and 65%. The ceramic volume fraction of a design is given by:

V c(x) =
1
h

∫ h/2

−h/2
Vc dz (7.4)
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Figure 33 – Iterations of WEI search on constrained FG plate problem using KRG-G

Source: the author.

This integral is evaluated using Gaussian quadrature with 10 points and is exactly calculated for

all designs explored by the EI (or WEI) maximization. Therefore, only the objective function

is approximated. The constituents are the SUS3O4 as the metal and Si3N4 as the ceramic (see

Table 4). The geometry and the boundary conditions are the same as shown in Fig. 27 for

a/h = 10. The performance of the SAO algorithms are described in Table 11.

In all cases, the Kriging-based algorithms found the optimum solution in the first

or second iteration using either EI or WEI criteria. It is also noticeable the higher cost of

evaluating the Matérn correlation function with respect to the use of a Gaussian function. For

example, when Vc,max = 35%, for the same average number of HF evaluations (np = 47), the

Gaussian function provided a much faster optimization process. While the Gaussian correlation

function reached the speed-up of 34, the Matérn 5/2 function was only 23 times faster than the

conventional optimization.

Overall, when it comes to the computational cost, RBF is by far the most recom-

mended model. In this example, the 5-FCV was the most accurate and fastest width-defining

method. However, it is worth mentioning that despite the excellent performance of the RBF-

based SAOs, the Kriging-based algorithms managed to find the optimum design with a lower

number of HF evaluations.



91

Table 11 – Metrics for SUS3O4/Si3N4 FG plate with volume constraint
V c,max Infill criterion Surrogate model np NRMSE ST DNRMSE Speed-up

35%

EI

KRG-G 47 0.00% 0.00% 34
KRG-M 47 0.00% 0.00% 23
5-FCV 49 0.12% 0.38% 50
ASKIT 70 1.80% 1.17% 28

WEI

KRG-G 46 0.00% 0.00% 34
KRG-M 47 0.00% 0.00% 24
5-FCV 50 0.00 % 0.00% 49
ASKIT 67 2.46% 1.65% 30

50%

EI

KRG-G 46 0.00% 0.00% 28
KRG-M 47 0.00% 0.00% 18
5-FCV 49 0.00% 0.00% 41
ASKIT 72 1.51% 1.46% 22

WEI

KRG-G 46 0.00% 0.00% 28
KRG-M 46 0.00% 0.00% 19
5-FCV 52 0.92% 2.92% 37
ASKIT 75 1.07% 1.43% 21

65%

EI

KRG-G 46 0.04% 0.12% 28
KRG-M 48 0.00% 0.00% 18
5-FCV 50 1.17% 3.24% 39
ASKIT 79 0.38% 0.45% 20

WEI

KRG-G 47 0.00% 0.01% 28
KRG-M 47 0.00% 0.00% 20
5-FCV 50 0.00% 0.00% 40
ASKIT 76 0.65% 1.37% 21

Source: the author.

Finally, the best designs for each V c,max are shown in Table 12 along with the designs

found by Do et al.[48] using a Deep Neural Network (DNN). The authors considered 10000

sampling points for the training and testing of the DNN. This large number of sampling points

emphasizes the importance of SAO techniques in reducing the number of HF evaluations. Instead

of working on an accurate and fixed surrogate model throughout the entire design space, the

SAO algorithm improves the accuracy only in regions of interest.

The SAO results in Table 12 refer to the KRG-G WEI, KRG-G EI and KRG-M WEI

approaches for the V c,max = 35%, 50% and 65%, respectively. The optimal volume fraction

distributions are depicted in Fig. 34. As the maximum ceramic volume fraction is reduced, the

distribution goes from a smooth transition to a sandwich-like composite structure with metal in

its core and ceramic on the outside.

7.1.4 Clamped Plate with Cutout

This problem was proposed by Ribeiro et al.[50] and deals with the maximization of

the buckling load factor of a simply supported square plate. The side length measures 0.720 m
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Table 12 – Optimal designs for SUS3O4/Si3N4 FG plate with volume constraint

Design var. V c,max = 35% V c,max = 50% V c,max = 65%
HF DNN [48] SAO HF DNN [48] SAO HF DNN [48] SAO

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
4 0.2501 0.2480 0.2501 0.9999 1.0 0.9999 1.0 1.0 1.0
5 0.0 0.0 0.0 0.0 0.0070 0.0 0.7497 0.7530 0.7497
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ω 0.0534 0.0531 0.0534 0.0601 0.0600 0.0601 0.0671 0.0669 0.0671
Difference -0.56% 0.00% -0.17% 0.00% -0.30% 0.00%
Niter 64 11 52 11 53 12
np 3220 46 2650 46 2695 47
Av. time 3949 s 116 s 3228 s 115 s 3294 s 176 s

Source: the author.

Figure 34 – Volume fraction distributions for optimal designs

(a) V c,max = 35% (b) V c,max = 50% (c) V c,max = 65%

Source: the author.

and the circular hole of radius r = a/10 is placed in its centre, as shown in Fig. 28. The volume

fraction distribution of the FG plate is described by 9 control points symmetrically distributed,

which results in 5 design variables. The effective properties are given by the Mori-Tanaka model

and the material properties are described in Table 4. In addition to that, the plate thickness is

also taken as variable, which increases the dimensionality of the problem. Two constraints are

considered regarding the total mass of the plate and its maximum ceramic volume fraction. In
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short, the optimization problem may be described as:

Find x = {h,Vci} for i = 1, 2, . . . , 5

that maximizes λcr(x)

subjected to V c(x)≤V c,max

M ≤Mmax

with 0.0≤Vci ≤ 1.0

0.01≤ h≤ 0.05 (m)

(7.5)

where λcr and Mmax are the critical buckling load factor and the maximum mass of the plate,

respectively. Here, V c,max = 50% and Mmax = 100 kg. Again, only the objective function

is approximated since both constraints can be exactly evaluated without compromising the

optimization. The performance of the SAO algorithms are described in Table 13.

Table 13 – Metrics for square plate with circular hole and V c,max =
50%

Infill criterion Surrogate model np NRMSE ST DNRMSE Speed-up

EI

KRG-G 42 0.75% 2.17% 43
KRG-M 41 0.33% 0.48% 38
5-FCV 45 1.01% 2.62% 46
ASKIT 49 3.67% 4.18% 42

WEI

KRG-G 41 0.10% 0.17% 45
KRG-M 41 0.37% 0.73% 39
5-FCV 46 0.79% 1.70% 45
ASKIT 48 3.47% 4.21% 42

Source: the author.

In this case, the results are not directly compared to the reference due to the different

stopping criteria and optimization parameters considered. Ribeiro et al.[50] used StallGen = 25,

while the present work allows only 10 iterations with no improvement. The conventional

optimization carried out by the authors reached convergence after 107 iterations with λcr =

2.469×105.

Again, the results obtained by the Kriging-based algorithms were less variable and

more accurate than the SAOs based on RBF. In this problem, the cost of one structural analysis is

much higher than the ones in the previous examples. As a consequence, the reduced number of

HF evaluations needed for convergence caused KRG-G and KRG-M to reach higher speed-ups

than the frameworks based on RBF, where the definition of the hyperparameters is much simpler

(especially using the ASKIT). The structural analysis of this problem is on average 3.3x more

expensive (≈ 4.01 s) than the analyses carried-out in previous examples (≈ 1.20 s).
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In most cases, the performance of the SAO was better when considering the WEI

criterion. Again, after only 1 iteration, KRG-G and KRG-M find solutions less than 1% (on

average) far from the reference optimal solution by Ribeiro et al.[50]. Table 14 presents the

best results for the conventional optimization and the KRG-G WEI, while Fig. 35 depicts the

convergence history of both methods. Note that the SAO was capable of finding a solution

slightly better than the conventional optimization at a much lower cost since each iteration of the

SAO only evaluates the HFM once, while the conventional optimization evaluates the HFM for

each particle (in this case, 50).

Table 14 – Optimal designs for FG plate
with circular hole

HF SAO

Vc,1 0.9983 1.0
Vc,2 0.9997 0.9999
Vc,3 1.0 1.0
Vc,4 0.0 0.0
Vc,5 0.0007 0.0
h (m) 0.0378 0.0378
λcr 2.469 ×105 2.470 ×105

Difference - 0.05%
Niter 39 11
N p 1970 41
Average time (s) 9947 230

Source: the author.

7.1.5 Hinged Cylindrical Panel - Nonlinear analysis

In this subsection, a modified version of a problem proposed by Moita et al.[57]

is studied. The cylindrical panel has the straight sides hinged and the curved sides free. The

structure is subjected to a point load that increases in 6 increments until F = 51.0 kN. The

authors suggest a two-level optimization. In the first level, the centre displacement is minimized

considering the power-law exponent as the design variable. In the second level, the total mass

of the panel is minimized considering the thickness as the design variable. In both cases, a

constraint related to the maximum centre displacement is considered. In the second level of

optimization, another constraint on the maximum effective stress at the metal surface is also

considered. This is the type of problem that is perhaps more adequate for a multiobjective

optimization rather than for two-stage optimization with a single design variable.
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Figure 35 – Convergence history for FG clamped plate problem

(a) Objective function (b) Ceramic volume constraint

(c) Mass constraint

Source: the author.

The present work will adopt the following formulation:

Find x = {h, p}

that minimizes M(x)

subjected to wc ≤ wmax (mm)

with 0.008≤ h≤ 0.035 (m)

0.2≤ p≤ 10.0

(7.6)

where wc and wmax correspond to the displacement at the centre of the shell and its maximum

value, respectively, and M is the total mass of the shell, given by:

M(x) =
0.2

2π
π (r2

ext− r2
int) L

∫ h/2

−h/2
ρ(z) dz (7.7)

where ρ(z) is the effective density at the coordinate z estimated using the Voigt model and rext

and rint are the external and internal radii of the shell. The material properties are found in Table

8 and wmax = 4 mm. In this study, nr = 3 for the conventional optimization using the HFM. In
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addition to that, Np = 20, Maxit = 50 and pmut = 0.03. The number of HF runs is reduced due

to the time-consuming optimizations (5 to 6 hours on average each). For the SAOs, the number

of runs is kept at nr = 10 and pmut = 0.03. The remaining optimization parameters are the same

as the ones presented in Table 3.

In this particular problem, another information is reported for each SAO algorithm:

the average number of iterations (nit), which should not be misunderstood with the number of

points (although until this point, nit = np). This occurs because it is observed that the incremental

analysis of a few designs do not reach convergence. Naturally, the associated design is not added

to the sampling plan and the surrogate model is not updated (since there is no value for the

HF response). Hence, to prevent the algorithm to continue exploring an unfeasible point in the

next iteration (recall that the hyperparameters are not updated and the approximate surface is

the same), a simple function to verify if a given trial design was already visited by the SAO is

incorporated. Then, in this verification, the points with no structural response are included.

Also as a result of that, the same sampling plan is used in all optimizations. This

way, there is no chance of creating a sampling plan which may end up with an analysis with

no convergence and thus affecting the number of initial points of the surrogate model. In this

particular case, the Hammersley Sequence was used. It should also be noted that the expensive-

to-evaluate function is the constraint and not the objective function. The performance of the

SAO algorithms is shown in Table 15.

Table 15 – Metrics for hinged-free shallow shell problem
Infill criterion Surrogate model nit np NRMSE ST DNRMSE Speed-up

EI

KRG-G 39 38 0.02% 0.01% 22
KRG-M 43 42 0.01% 0.01% 20
5-FCV 32 31 19.60% 17.38% 28
ASKIT 21 21 46.20% 0.00% 37

Source: the author.

Despite the poor performance of RBF, the 5-FCV is capable of finding the optimum

solution in 3 out 10 runs. As for the ASKIT, there is no improvement on the best design of the

initial sampling plan, which explains its low standard deviation of the NRMSE. Finally, the best

designs found by the conventional optimization and by the KRG-M are described in Table 16.

Due to the significant differences found between the present work analysis and the

results presented by Moita et al.[57], especially on the initial design provided by the researchers,

their optimal solution is not used as the reference. Instead, the present structural analysis is
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Table 16 – Optimal designs for
hinged-free shallow
shell problem

HF SAO

p 0.20 0.20
h (m) 0.0123 0.0123
Mass (kg) 9.3843 9.3842
Difference - 0.00%
Niter 41 33
N p 847 42
Average time (s) 18568 944

Source: the author.

validated using ABAQUS and other works that explored the same structure, as shown in Section

7.1.1. Nevertheless, the optimal design found in the present work is still very close to the one

found by Moita et al.[57] after the two-stage optimization using HSDT. The authors found that

the thickness should be h = 0.012 and p = 0.20, which is unfeasible considering the present

analysis where FSDT is used, while this work finds h = 0.0123 and p = 0.20.

Another interesting aspect is that albeit the number of infill points is considerably

higher than the ones obtained in the first numerical example (a 2-dimensional problem with

both objective and constraints approximated), the speed-up of the Kriging-based algorithms are

actually higher in this problem. This is also a result of the effect of the computational cost of

the nonlinear analyses (≈ 19 s). Fig. 36 presents the convergence history for the optimizations

shown in Table 16. Again, the SAO finds the optimum design faster and at a lower cost than the

optimization using the HFM.

Figure 36 – Convergence history of hinged-free shell problem

(a) Objective function (b) Constraint

Source: the author.
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Finally, Fig. 37 (a) presents the HF landscape of the objective function, a smooth and

well-behaved function, while Fig. 37 (b) presents the initial surrogate model of the deflection at

the centre of the shallow shell. In this case, the optimization of the Kriging hyperparameters

resulted in a value of θ1 much higher than θ2, which means that the displacement is more

sensitive to the thickness than to the power-law index.

In Fig. 37 (c), the coloured area represents the feasible design space, while the

shaded area corresponds to the unfeasible design space. The first infill point is seen by the

surrogate model as a feasible point with wc = 4 mm. In reality, that is an unfeasible design

with wc = 5.5 mm. After 4 or 5 iterations, the algorithm begins to cluster around the optimum

design and then starts to explore other areas (misunderstood as feasible) before returning to

the exploitation of the region near the optimal solution. This process is repeated 18x until the

algorithm samples the optimum solution and stalls for 10 iterations.

Figure 37 – Response surfaces of hinged-free shell problem using KRG-G

(a) HF surface (b) Deflection surrogate model

(c) First update point
(d) 18th update point

Source: the author.
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7.2 Laminated composite problems

In this section, the sampling plan is fixed for each problem. This is done due to

the rounding process of bringing the continuous distribution of points to discrete points on the

design space, which may lead to identical sampling points, as discussed and depicted in Fig 15.

Of course, this becomes less likely as the dimension of the problem increases and with more

allowed values of design variables. However, to simplify this verification, a single optimized

sampling plan is considered for each problem.

This time, the OLHS was employed instead of the LHSsp for better distribution of the

points since the randomness of the initial sampling plan is no longer considered. The sampling

plan is generated using a Matlab code provided by Forrester et al.[18]. The authors use a GA

to solve the maximization of the maximin. In this case, 50 individuals and 5 generations were

employed. The processing time is below 3 s. After that, BIOS is used to read and evaluate the HF

response of the initial sample. This is done only once, but the time of creating and evaluating the

initial sampling plan is added up to all SAO runs. If not specified, the values of the optimization

parameters considered in the following examples are shown in Table 17.

Table 17 – Laminated composite problems: optimization parameters
Parameter Conventional Opt. Max. of EI or WEI Max. of Likelihood Estimation

Topology Global Global Global
Swarm size (Np) 50 250 100

Maximum Iterations (Itmax) 100 100 100
StallGen 10 25 25

pmut 0.03 0.03 0.05
pswap 0.03 0.03 -

w 0.7 0.7 0.7
c1 1.5 1.5 1.5
c2 1.5 1.5 1.5

Source: the author.

7.2.1 Validation

The first verification regards the buckling load of a square laminated plate subjected

to uniaxial load on the x-axis. A 20x20 mesh of cubic NURBS elements is considered with

reduced integration. The plate length to thickness ratio is given by a/h = 50. Two types of

boundary conditions are considered: simply supported and clamped, depicted in Fig. 38 (a) and

(b), respectively.
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Figure 38 – Laminated plate boundary conditions

(a) Simply Supported (SSSS) (b) Clamped (CCCC) (c) SCSC plate w/ circular hole

Source: the author.

The material properties are taken from Nguyen et al.[153] and are presented in Table

18. To validate the SSSS and CCCC plates, the buckling load is normalized using:

λ =
Nx,cr a2

E2 h3 (7.8)

where Nx,cr, a and h are the buckling load factor, the edge length and the plate thickness,

respectively.

The first two columns of Table 19 present the results for a simply supported laminated

plate considering cross-ply and angle-ply layups. Good agreement is observed between the

present work analysis and the one by Nguyen et al.[153]. The authors used a quadrilateral flat

shell element based on the FSDT. For the CCCC plate, ABAQUS is used to carry out the analysis

of the laminates shown in the last two columns of Table 19. The S8R element is used and the

same mesh refinement is considered. Again, results show good agreement with the FEAs.

Table 18 – Material properties for validation of laminated plate
Material ID E1 (Pa) E2 (Pa) G12 (Pa) G13 (Pa) G23 (Pa) ν12

I 120.0 ×109 3.0 ×109 1.8 ×109 1.8 ×109 1.5 ×109 0.25
II 120.0 ×109 4.8 ×109 2.4 ×109 2.4 ×109 0.96 ×109 0.25

Source: Adapted from Nguyen et al.[153].

Finally, the last example regards a square plate with circular hole. The mesh, loading

and element are the same as discussed in Setion 7.1.1. However, the boundary conditions are

different, as depicted in Fig. 38 (c). The length to thickness of the plate is given by a/h = 60

and the material properties are given in Table 20. This time, the buckling load is not normalized

and the results are, again, compared to those obtained on ABAQUS using the S8R element for

the layup [±45◦10]s.
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Table 19 – Normalized buckling loads for different layups and boundary
conditions

Layup [0◦/90◦] [±45◦] [(0◦/90◦)2/0◦]s [±45◦2/45◦]s
Boundary condition SSSS SSSS CCCC CCCC
Material ID I II I I

Reference 12.906[153] 15.374[153] 125.49[151] 109.88[151]

Present work 12.896 15.373 125.58 110.19
Difference (%) -0.08 0.00 0.07 0.29

Source: the author.

Table 20 – Material properties for laminated plate with circular
hole

E1 (Pa) E2 (Pa) G12 (Pa) G13 (Pa) G23 (Pa) ν12

127.59×109 13.03×109 6.41×109 7.10×109 6.20×109 0.30

Source: Adapted from Balreira[149].

The strain failure load is evaluated using the Maximum Strain Criterion with a

minimum safety factor (S f ) of 1.50. The failure load factor of the laminate may be calculated as:

λs = min
k
(min(

εu
1

S f εk
1
,

εu
2

S f εk
2
,

γu
12

S f γk
12
)) (7.9)

where k refers to the strains of the k-th ply and the superscript u refers to the ultimate strains

(i.e., maximum allowable strain) of ε1, ε2 and γ12. In this case, εu
1 = 0.008, εu

2 = 0.025 and

γu
12 = 0.015. Therefore, 2 types of analysis were carried-out, one for the assessment of the

buckling load (λb) and another to find the strains of the laminated plate, allowing the calculation

of λs. Table 21 presents a comparison for both load factors, where, once again, no significant

difference is observed.

Table 21 – Load factors of lami-
nated plate w/ circular
hole

λs λb

ABAQUS[151] 644.97 1221.90
Present work 645.16 1224.81
Difference (%) 0.03 0.24

Source: the author.

7.2.2 Laminated Plate with Various Boundary Conditions

In this subsection, the effects of different boundary conditions are investigated for a

dispersed laminated plate under uniaxial compression. The objective function is the normalized
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buckling load factor (λ ) and the design variables are the fibre orientations. The number of plies

is fixed at 20 and only symmetric balanced layups are allowed, which reduces the number of

design variables to 5. The mathematical formulation may be described as follows:

Find x = {θi} for i = 1,2, . . . ,5

that maximizes λ (x)

subjected to Max contiguous plies≤ 4

with θi ∈ [0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦]

(7.10)

The geometry properties are given by: a= b= 1 m and a/h= 50. Thus, the thickness

of each ply is hi = 0.001 m. The material properties are given in Table 18. The laminate is

optimized considering two boundary conditions: SSSS and CCCC. The performance of the SAO

algorithms are shown in Table 22.

Table 22 – Metrics for laminated plate with different boundary conditions
Boundary condition Infill criterion Surrogate model np NRMSE ST DNRMSE Speed-up

SSSS

EI

KRG-G 41 0.00% 0.00% 19
KRG-M 44 0.00% 0.00% 14
5-FCV 37 0.08% 0.00% 26
ASKIT 43 0.00% 0.70% 21

WEI

KRG-G 41 0.00% 0.00% 18
KRG-M 47 0.00% 0.00% 12
5-FCV 36 0.08% 0.00% 27
ASKIT 36 0.00% 0.00% 27

CCCC

EI

KRG-G 46 0.06% 0.03% 15
KRG-M 37 0.00% 0.00% 18
5-FCV 41 0.18% 0.00% 21
ASKIT 38 1.16% 0.00% 23

WEI

KRG-G 36 0.00% 0.00% 21
KRG-M 36 0.00% 0.00% 19
5-FCV 38 0.07 % 0.08% 24
ASKIT 42 0.34% 0.27% 21

Source: the author.

For the simply supported plate, virtually all methods are capable of finding the

optimal layup. Due to its fast convergence and quick model updating, the RBF-based algorithms

are particularly effective. Both methods used to define the widths reached accuracy and robustness

metrics very close to those obtained by Kriging with higher speed-up and fewer HF evaluations.

Regarding the clamped plate, the best performance is obtained by the Kriging-based

algorithms, particularly in association with the WEI criterion. The SAOs based on RBF also

provide consistent and accurate results with a slightly higher number of HF evaluations. Fig. 39

(a) presents the convergence history for the clamped plate with the best performance of each
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surrogate model. The KRG-G WEI curve overlaps the results obtained by the conventional

optimization, while the 5-FCV is only 0.07% below the reference optimal solution.

In Fig. 39 (b) and (c), the hyperparameters obtained by the 5-FCV and KRG-G

are shown for each iteration of the SAO. The 5-FCV width (all basis have the same width)

varied between 1.5 and 10, while the Kriging hyperparameters varied between 0.1 and 3.0. It

is interesting to point out that the optimum hyperparameters found by the optimization of the

Maximum Likelihood Estimation translate numerically the fact that the objective function is

significantly more sensitive to changes in the fibre orientation of outer layers than the ones close

to the midplane. This is expected since the outer plies present a larger lever arm.

Figure 39 – Convergence history and hyperparameters for clamped plate

(a) Objective function

(b) 5-FCV WEI widths (c) KRG-G WEI θs

Source: the author.

Finally, the best designs obtained by the conventional optimization and the SAOs are

shown in Table 23. The SAO results refer to the ASKIT WEI and KRG-G WEI for the SSSS

and CCCC plates, respectively. For the first choice, an angle-ply layup with all plies at ±45◦ is

obtained, while the stacking sequence for the clamped plate contains more specially orthotropic
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Table 23 – Optimal designs for laminated plate with different bound-
ary conditions

SSSS CCCC
HF SAO HF SAO

Layup [±45◦5]s [±45◦5]s [0◦4/90◦2/0◦2/±15◦]s [0◦4/90◦2/0◦2/±15◦]s

λ 0.065 0.065 0.126 0.126
Difference - 0.00% - 0.00%
Niter 17 11 16 11
np 900 46 855 46
Average time 3233 s 119 s 3034 s 238 s

Source: the author.

plies with the pair ±15◦ being introduced to fulfill the problem constraint.

7.2.3 Simply Supported-Clamped Plate with Cutout

This problem was originally proposed by Balreira[149] and deals with the maximiza-

tion of the strength of a simply supported square laminated plate. The side length measures

a = b = 0.72 m and a circular hole of r = a/10 is placed in its centre. The laminated plate is

made of 40 plies, each with 0.3 mm, and fixed material (see Table 20).

The design variables are the fibre orientation of each ply. Only balanced symmetrical

layups are allowed, which reduces the number of design variables to 10. In addition to that, a

constraint limits the number of contiguous plies. In short, the optimization problem may be

described as:

Find x = {θi} for i = 1,2, . . . ,10

that maximize min(λs,λb)

subjected to Max contiguous plies≤ 4

with θi ∈ [0◦ 45◦ 90◦]

(7.11)

where λs is the strain failure load factor and λb is the buckling load factor. The strain failure load

factor is evaluated using the Maximum Strain Criterion with S f = 1.5, as discussed in Section

7.2.1.

In this example, only one surrogate model is built, which means that only the

minimum response between the load factors is considered. Alternatively, one could build two

surrogate models, each for a load factor. However, this would double the size of the optimization

problem (particularly for the maximization of the hyperparameters in Kriging).

In addition to that, the mutation and the swap probabilities for the maximization

of the infill criteria are increased to pmut = pswap = 0.05. Also, for the maximization of MLE,
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the swarm size is increased to Np = 250. In this problem, only five runs of the conventional

optimization using the HFM are performed due to the time-consuming optimizations (4-6 hours

each). To confirm the optimal solutions found by the sequential runs, five more runs are carried

out considering 20 threads simultaneously. In one of these, an optimum solution is found to be

better than the best one obtained by the sequential runs. Therefore, this solution is used as the

reference to calculate the accuracy of the SAO methods. The wall-clock times of the parallel

executions are not accounted for the computation of the THFM. The performance of the SAO

algorithms is described in Table 24.

Table 24 – Metrics for laminated plate with circular hole
Infill criterion Surrogate model np NRMSE ST DNRMSE Speed-up

EI

KRG-G 71 1.38% 0.73% 14
KRG-M 68 1.45% 0.66% 11
5-FCV 64 4.31% 0.74% 31
ASKIT 61 4.65% 0.00% 35

WEI

KRG-G 73 1.27% 0.39% 14
KRG-M 71 1.48% 0.62% 8
5-FCV 61 4.65% 0.00% 34
ASKIT 66 3.40% 1.62% 29

Source: the author.

Again, the most accurate model is obtained using KRG-G and WEI, whilst the

RBF-based algorithms do not exhibit a clear pattern on whether the EI or WEI is best suited. It

is worth noting that the lowest value of ST DNRMSE should be carefully interpreted. For example,

the low ST DNRMSE of the 5-FCV approach actually reflects the fact that the algorithm is not

capable of finding a better solution than the best design found in the initial sampling plan and

not the fact that the SAO is robust.

Table 25 presents the best designs for each case. The SAO results refer to the best

solution found by the KRG-G WEI. Note that the layup obtained by the SAO is almost identical

to the one obtained by the sequential conventional optimization and only differs in the last pair

of fibre orientation.

It is also worth highlighting the search capacity of the PSO algorithm. The number

of possible combinations of this problem is given by the number of allowable fibre orientations

values raised to the the number of variable plies, which gives 310 = 59049 possibilities. In this

case, both the sequential and the parallel HF executions explored less than 2% of the number of

combinations. For the SAO approaches, this number is even lower: only 0.12%. This shows the

capacity of exploration and exploitation of the methods in covering the design space.



106

Table 25 – Optimal designs for laminated plate with circular hole
HFparallel HFsequential SAO

Layup [±45◦3/90◦2/0◦2/±45◦/04
◦/90◦2/0◦2]s [±45◦2/90◦2/(±45◦/0◦4)2/90◦2]s [±45◦2/ 90◦2/(±45◦/0◦4)2/±45◦]s

λs 1254.38 1254.38 1272.74
λb 1215.31 1213.32 1204.22
λmin 1215.31 1213.32 1204.22
Difference - -0.16% -0.91%
Niter 21 21 23
np 1120 1080 73
Av. time (s) - 13076 1094

Source: the author.

Fig. 40 presents the convergence history for the optimizations shown in Table 25.

For the SAO approach, the buckling load factor is, at all times, the lowest load factor. Therefore,

the curve of the minimum load factor overlaps the buckling load factor curve. When compared to

the optimization using the HFM, it can be seen that the SAO makes substantial progress during

the initial stages of the search, but the "fine-tuning" is slow (if any). This behaviour is also

discussed by Sóbester et al.[135], which is quite the opposite of the HF runs, where small, but

gradual and constant improvement is made.

Figure 40 – Convergence history for laminated plate w/ circular hole

(a) Best SAO performance (b) Different methods

Source: the author.
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8 CONCLUSION

This work investigated the use of Sequential Approximate Optimization techniques

to the design of composite structures. For that matter, a set optimization methodologies were

proposed involving two surrogate models, RBF and Kriging, and two infill criteria, the Expected

Improvement and the Weighted Expected Improvement. For the RBF, two width-defining method

were studied: a closed-form expression found in the literature and a k-FOLD CV. In the first case,

each basis is assigned a width value, while the latter applies the same width for all bases. As for

Kriging, two correlation functions were considered: the Gaussian and the Matérn 5/2 functions.

To fit the hyperparameters of these functions, the Maximum Likelihood Estimator is maximized.

The main contributions from this work regard the implementation of Kriging and the

SAO algorithms derived from it on BIOS, an academic software developed in C++ by the LMCV

collaborators. The implementation included the creation of a class to handle common functions

to all SAO algorithms such as the reading or creation of the initial sampling plan, selection of

the proper infill strategy depending on the outputs being approximated, post-processing of the

metrics used to assess SAO performance, etc.

In addition to that, the evaluation of the effective properties of FG structures (Voigt

and Mori-Tanaka models) and other volume fraction distributions (Power-Law and Sigmoid

functions) were also incorporated to the optimization program as an intern routine. That was also

the case of the routines for the numerical integration of the constitutive matrix and an auxiliary

matrix for the mass matrix evaluation. These matrices work as input data to the structural analysis

carried out on FAST. The latter being particularly important for the free vibration analysis of FG

structures without the need for through-thickness discretization methods (e.g. virtual layers).

The structural responses of the composite structures were evaluated using the Iso-

geometric Analysis (IGA). A cubic shallow shell element based on the Reissner-Mindlin plate

theory and Marguerre strains was employed.

The numerical examples comprehend a wide range of relevant characteristics for the

optimization of composite structures. There are eigenvalue problems, geometrically nonlinear

analysis using an incremental-iterative process, complex geometries, different loading and

boundary conditions, consideration of traditional and disperse laminates, among others. Another

interesting aspect concerns the different strategies used to tackle the problem depending on the

nature (expensive or cheap) of the objective function and the constraints. At this point, it is worth

mentioning the scarce literature when it comes to Kriging-based SAO algorithms, particularly
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for FG structures. This also holds for the surrogate-based optimization of composite structures

considering the nonlinearity of the material, geometry, etc.

The results showed that the performance of Kriging-based algorithms is slightly

better using the WEI criterion, while the RBF-based did not show a significant difference

between the infill criteria studied. Although both correlation functions provided excellent and

similar accuracy metrics, the Matérn 5/2 correlation function was found to be considerably more

expensive than that of a Gaussian function the same number of HF evaluations. In general, the

SAO algorithms based on Kriging provided excellent accuracy with the lowest number of infill

points. At times, the SAO provided optimal solutions better than the optimal designs obtained by

the conventional optimization using the HFM. In all cases, an expressive reduction in the number

of HF evaluations was obtained compared to the traditional optimization, reaching up to 98% of

reduction on the average number of HF evaluations.

The building and updating process of the Kriging-based algorithms demand a higher

computational cost than the definition of the width parameter on RBFs (either using CV tech-

niques or analytically). Recall that the definition of the Kriging hyperparameters is itself an

optimization problem. On this matter, the RBFs have undoubtedly the fastest surrogate model

building and updating processes, particularly when the k-Fold is used to define the basis function

widths. This is the opposite of what is expected since the ASKIT methodology evaluates the

width of the basis analytically. However, the CV technique showed faster convergence and more

accurate results in most cases.

While the RBF-based algorithms present speed-up ranging from 16 to 46, the Kriging

ones ranged between 8 to 45. This does not mean, however, that the Kriging-based algorithms

are less efficient. Results actually show that these algorithms become particularly competitive

regarding the speed-up as the analysis cost increases (and for problems with a low number of

design variables). Furthermore, it should be stressed that these algorithms provide the most

accurate and less variable results.

In general, the results illustrate that the use of the SAO can significantly reduce

computational cost and greatly improve the optimization efficiency. This will hopefully ease the

optimization of structures that demand expensive-to-evaluate analysis in future works, allowing

the consideration of more sophisticated methods (e.g., progressive failure, consideration of loss

of stability by limit load, etc.). The SAO approach also allows the designer to understand the

relative importance of the design variables (i.e. screening study) by working on a cheap-to-run
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model and through the understanding of the model hyperparameters.

The following suggestions can be further explored in future works:

a) The effect of the size of the initial sampling plan on the surrogate model performance;

b) Alternative methods for dealing with constrained problems;

c) Use of a variable global trend for the Kriging estimates, namely the Universal Kriging;

d) Use of other optimization algorithms on the SAO performance (e.g., Differential Evolution,

Genetic Algorithms, etc.);

e) Use of SAO techniques (based on RBF or Kriging) in multiobjective problems;

f) Use of other approaches to tackle ill-conditioning problems of the correlation matrix in

Kriging;

g) Study the effect of the problem dimension on the performance of the SAO;

h) Optimization of hybrid laminates or laminates with variable thickness;

i) Consideration of thermo-mechanical loads for the optimization of FG structures.
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