
FEDERAL UNIVERSITY OF CEARÁ

SCIENCE CENTER

COMPUTING DEPARTMENT

GRADUATE PROGRAM IN COMPUTER SCIENCE

LUAN PEREIRA LIMA

UNDERSTANDING THE EFFECTIVENESS OF EXCEPTION HANDLING TESTING

IN LONG-LIVED JAVA LIBRARIES

FORTALEZA

2019

LUAN PEREIRA LIMA

UNDERSTANDING THE EFFECTIVENESS OF EXCEPTION HANDLING TESTING IN

LONG-LIVED JAVA LIBRARIES

Dissertation presented to the Graduate Program
in Computer Science of the Science Center of
the Federal University of Ceará, as a partial
requirement to obtain the title of Master
in Computer Science. Concentration Area:
Software Engineering.

Advisor: Prof. Dr. Lincoln S. Rocha

Co-supervisor: Profa. Dra. Carla I. Mor-
eira Bezerra

FORTALEZA

2019

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

L698u Lima, Luan Pereira.
 Understanding the effectiveness of exception handling testing in long-lived java libraries / Luan Pereira
Lima. – 2019.
 60 f. : il. color.

 Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação
em Ciência da Computação, Fortaleza, 2019.
 Orientação: Prof. Dr. Lincoln Souza Rocha.
 Coorientação: Profa. Dra. Carla Ilane Moreira.

 1. Exception Handling Testing. 2. Mutation Analysis. 3. Adequacy Measurement. 4. Effectiveness
Measurement. 5. Exploratory Study. I. Título.
 CDD 005

LUAN PEREIRA LIMA

UNDERSTANDING THE EFFECTIVENESS OF EXCEPTION HANDLING TESTING IN

LONG-LIVED JAVA LIBRARIES

Dissertation presented to the Graduate Program
in Computer Science of the Science Center of
the Federal University of Ceará, as a partial
requirement to obtain the title of Master
in Computer Science. Concentration Area:
Software Engineering.

Approved on:

EXAMINATION COMMITTEE

Prof. Dr. Lincoln S. Rocha (Advisor)
Universidade Federal do Ceará (UFC)

Profa. Dra. Carla I. Moreira Bezerra (Co-supervisor)
Universidade Federal do Ceará (UFC)

Prof. Dr. Paulo Henrique Mendes Maia
Universidade Estadual do Ceará(UECE)

Prof. Dr. João Bosco Ferreira Filho
Universidade Federal do Ceará (UFC)

Prof. Dr. Matheus Henrique Esteves Paixão
Universidade de Fortaleza (UNIFOR)

My family, friends and companion, for the great

support in this journey, which is to obtain the

title of master.

ACKNOWLEDGEMENTS

To Prof. Dr. Lincoln Rocha for guiding me, more than just in my Master’s Disserta-

tion, but in the entire journey itself.

Profa. Dr. Carla Ilane for guiding me and making it possible to complete this

master’s degree.

To Prof. Dr. Matheus Paixao for helping to write and submission of the scientific

article developed from this study.

“Persistence is the path to success.”

(Charles Chaplin)

RESUMO

Linguagens de programação modernas (por exemplo, Java e C#) fornecem recursos para separar o

código de tratamento de erros do código regular, buscando melhorar a compreensão e manutenção

do software. No entanto, a forma como o código Exception Handling (EH) é estruturado em

tais linguagens pode levar a múltiplos fluxos de controle, diferentes e complexos, o que pode

afetar a testabilidade do software. Estudos anteriores relataram que o código EH é normalmente

negligenciado, não é bem testado e seu uso indevido pode levar à degradação da confiabilidade

e falhas catastróficas. No entanto, pouco se sabe sobre a relação entre as práticas de teste e a

eficácia do teste EH. Neste estudo exploratório, (i) medimos o grau de adequação do teste EH

em relação aos critérios de cobertura de código (instrução, ramificação e método); e (ii) avaliou a

eficácia do teste de EH medindo sua capacidade de detectar falhas injetadas artificialmente (isto

é, mutantes) usando 7 operadores de mutação de EH. Nosso estudo foi realizado usando suítes

de teste de 27 bibliotecas Java de vida longa de sistemas de código aberto. Nossos resultados

mostram que as instruções e ramificações dentro de blocos de captura e instruções de lançamento

são menos cobertas, com significância estatística, do que as instruções e ramificações gerais.

Apesar disso, a maioria dos sistemas estudados apresentou suítes de teste capazes de detectar

mais de 70% das falhas injetadas.

Palavras-chave: Teste de tratamento de exceções. Análise de mutação. Medição de adequação.

Medição de eficácia. Estudo exploratório.

ABSTRACT

Modern programming languages (e.g., Java and C#) provide features to separate error-handling

code from regular code, seeking to enhance software comprehensibility and maintainability.

Nevertheless, the way EH code is structured in such languages may lead to multiple, different,

and complex control flows, which may affect the software testability. Previous studies have

reported that EH code is typically neglected, not well tested, and its misuse can lead to reliability

degradation and catastrophic failures. However, little is known about the relationship between

testing practices and EH testing effectiveness. In this exploratory study, we (i) measured the

adequacy degree of EH testing concerning code coverage (instruction, branch, and method)

criteria; and (ii) evaluated the effectiveness of the EH testing by measuring its capability to

detect artificially injected faults (i.e., mutants) using 7 EH mutation operators. Our study was

performed using test suites of 27 long-lived Java libraries from open source systems. Our results

show that instructions and branches within catch blocks and throw instructions are less covered,

with statistical significance, than the overall instructions and branches. Nevertheless, most of the

studied systems presented test suites capable of detecting more than 70% of the injected faults.

Keywords: Exception Handling Testing. Mutation Analysis. Adequacy Measurement. Effec-

tiveness Measurement. Exploratory Study

LIST OF FIGURES

Figure 1 – Internal steps performed by XaviEH when evaluating the EH testing practices

of a software system. 30

Figure 2 – Overall code coverage boxplots of the 27 studied libraries (Instruction Cover-

age (IC), Branch Coverage (BC), and Covered Method (MC)). 34

Figure 3 – XaviEH architecture, most important classes for operation. 34

Figure 4 – Distribution of general EH-related code coverage metrics for the systems

under study. 38

Figure 5 – EH instruction code coverage boxplots of studied libraries. 38

Figure 6 – EH branch code coverage boxplots of studied libraries. 39

Figure 7 – Overall EH and non-EH code coverage boxplots of studied libraries. 43

Figure 8 – The EH and non-EH instruction coverage boxplots of studied libraries. . . . 44

Figure 9 – The EH and non-EH branch coverage boxplots of studied libraries. 45

Figure 10 – Mutation scores distribution bloxpots. 47

LIST OF TABLES

Table 1 – Summary of selected libraries. While the first chapter depicts the libraries

from Apache Commons, the second chapter indicates the selected libraries

from other ecosystems. We provide the version we studied of each library

followed by size metrics, such as Lines of code (LOC), number of throw

instructions, number of try blocks etc. 29

Table 2 – Mutation operators employed in this study. All operators are based on real-

world defects from open-source systems. 32

Table 3 – Code coverage metrics computed by XaviEH. The first set of metrics are

computed considering the system’s entire code base. The second set of cover-

age metrics are specific for exception handling code. Finally, the third set is

composed of complements to the exception handling coverage metrics. . . . 33

Table 4 – Computed general code coverage measures per library. 37

Table 5 – Computed complementary code coverage measures per library. 41

Table 6 – Summary of hypothesis statement and the statistics test results. 42

Table 7 – Details of the mutation testing analysis for each library. Column L indicates

the number of live mutants, column D indicates the number of killed mutants,

and S indicates the mutation score. 46

Table 8 – The ranks and average rank of mutation scores. 49

LIST OF ABBREVIATIONS AND ACRONYMS

EH Exception Handling

IC Instruction Coverage

BC Branch Coverage

MC Covered Method

LOC Lines of code

CBR Catch Block Replacement

CBI Catch Block Insertion

CBD Catch Block Deletion

PTL Placing Try Block Later

CRE Catch and Rethrow Exception

CCD Catch Clauses Deletion

TSD Throw Statement Deletion

ENC Exception Name Change

FCD Finally Clause Deletion

EHM Exception Handling Modification

FBD Finally Block Deletion

EH_IC Exception Handling Instruction Coverage

EH_BC Exception Handling Branch Coverage

TRY_IC Try Instruction Coverage

TRY_BC Try Branch Coverage

CATCH_IC Catch Instruction Coverage

CATCH_BC Catch Branch Coverage

FINALLY_IC Finally Instruction Coverage

FINALLY_BC Finally Branch Coverage

THROW_IC Throw Instruction Coverage

THROWS_MC Throws Method Coverage

NON_EH_IC Non-Exception Handling Instruction Coverage

NON_EH_BC Non-Exception Handling Branch Coverage

NON_TRY_IC Non-Try Instruction Coverage

NON_TRY_BC Non-Try Branch Coverage

NON_CATCH_IC Non-Catch Instruction Coverage

NON_CATCH_BC Non-Catch Branch Coverage

NON_FINALLY_IC Non-Finally Instruction Coverage

NON_FINALLY_BC Non-Finally Branch Coverage

NON_THROW_IC Non-Throw Instruction Coverage

NON_THROWS_MC Non-Throws Method Coverage

XML Extensible Markup Language

CSV Comma Separated Values

KS Kolmogorov–Smirnov test

MW Mann-Whitney test

CD Critical Difference

LIST OF SYMBOLS

↓ Min

↑ Max

x̄ Mean

σ Standard Deviation

q1 First Quartile

q3 Third Quartile

CONTENTS

1 INTRODUCTION . 16

2 BACKGROUND . 19

2.1 Software Test Criteria and Adequacy . 19

2.2 Mutation Testing and Analysis . 19

2.3 Java Exception Handling . 20

3 RELATED WORK . 22

3.1 Exception Handling and Software Bugs 22

3.2 Exception Handling Testing . 24

3.3 Code Coverage and Defect-Free Software 25

4 EXPERIMENTAL DESIGN . 27

4.1 Selection of Long-lived Java Libraries 28

4.2 Assessing Exception Handling Testing with XaviEH 30

4.3 Mutation Operators and Analysis . 31

4.4 Code Coverage Metrics . 32

4.5 Preliminary Observation of the Libraries’ Overall Coverage 33

4.6 XaviEH architecture . 34

5 STUDY RESULTS . 36

5.1 RQ1. What is the test coverage of EH code in long-lived Java libraries? 36

5.2 RQ2. What is the difference between EH and non-EH code coverage in

long-lived Java libraries? . 40

5.3 RQ3. What is the effectiveness of EH testing in long-lived Java libraries? 45

5.4 RQ4. To what extent are there EH bugs that are statistically harder to

detect by test suites of long-lived Java libraries? 48

6 DISCUSSION . 51

6.1 On the Adequacy of EH Testing . 51

6.2 On the Effectiveness of EH Testing . 51

6.3 On the Usefulness of XaviEH . 52

7 THREATS TO THE VALIDITY . 53

7.1 Conclusion Validity . 53

7.2 Internal Validity . 53

7.3 Construct Validity . 53

7.4 External Validity . 54

8 CONCLUSION AND FINAL REMARKS 55

BIBLIOGRAPHY . 56

16

1 INTRODUCTION

EH is a forward-error recovery technique used to improve software robustness

(SHAHROKNI; FELDT, 2013). An exception models an abnormal situation - detected at run

time - that disrupts the normal control flow of a program (GARCIA et al., 2001). When this

happens, the EH mechanism deviates the normal control flow to the abnormal (exceptional)

control flow to deal with such situation. Mainstream programming languages (e.g., Java, Python,

and C#) provide built-in facilities to structure the exceptional control flow using proper con-

structs to specify, in the source code, where exceptions can be raised, propagated, and properly

handled (CACHO et al., 2014a).

Recent studies have investigated the relationship between EH code and software

maintainability (CACHO et al., 2014b), evolvability (OSMAN et al., 2017), architectural

erosion (FILHO et al., 2017), robustness (CACHO et al., 2014a), bug appearance (EBERT et al.,

2015), and defect-proneness (SAWADPONG; ALLEN, 2016). Such studies have shown that the

quality of EH code is directly linked to the overall software quality (PáDUA; SHANG, 2017b;

PáDUA; SHANG, 2018). To ensure and assess the quality of EH code, developers make use of

software testing, which, in this context, is referred to as EH testing (SINHA; HARROLD, 2000;

Martins et al., 2014; ZHANG; ELBAUM, 2014).

Despite the importance and the existence of usage patterns and guidelines for EH

testing (WIRFS-BROCK, 2006; BLOCH, 2008; GALLARDO et al., 2014), this is a commonly

neglected activity by developers (mostly by novice ones) (SHAH et al., 2010). Moreover, EH

code is claimed as the least understood, documented, and tested part of a software system (SHAH

et al., 2008; SHAH; HARROLD, 2009; SHAH et al., 2010; RASHKOVITS; LAVY, 2012;

KECHAGIA; SPINELLIS, 2014; CHANG; CHOI, 2016). In addition, (EBERT et al., 2015)

have found in a survey with developers that about 70% of the software companies do not test and

have no specific testing technique for EH code. This is a worrisome finding given the importance

of EH testing for ensuring software quality.

In the current landscape of software development, researchers commonly study

open-source systems to acquire insights on many aspects of software development and quality,

including architectural practices (PAIXAO et al., 2017), refactoring (BAVOTA et al., 2015),

evolution (KOCH, 2007) and bug fixing (VIEIRA et al., 2019), to mention a few. However, to the

best of our knowledge, there is no empirical study that observes and evaluates EH testing practices

in open-source software. As a result, the software engineering community lacks a thorough

17

and concise understanding of good and openly available EH testing practices. This prevents the

further creation of EH testing guidelines that are based on real-world software and practices

instead of textbooks and rules of thumb, such as the ones currently available (WIRFS-BROCK,

2006; BLOCH, 2008; GALLARDO et al., 2014).

Nevertheless, to evaluate the quality of software testing as a whole, and EH testing in

specific, is not a trivial task. First, one needs to define what constitutes a good test. Early in 1975,

(GOODENOUGH; GERHART, 1975) defined the concept of test criterion as a way to precisely

state what constitutes a suitable software test. Currently, the code coverage (e.g., instruction,

branch, and method) criteria have been widely used as a proxy for testing quality (IVANKOVIć et

al., 2019; YANG et al., 2019). However, recent studies provide evidence that high test coverage

alone is not sufficient to avoid software bugs (Antinyan et al., 2018; Kochhar et al., 2017). In

parallel, mutation testing (a.k.a, mutation analysis) provides a way to evaluate the effectiveness

of test suites by artificially injecting bugs that are similar to real defects (PAPADAKIS et al.,

2018). Recent studies have shown that mutant detection is significantly correlated with real fault

detection (JUST et al., 2014).

Hence, in this study, we report on the first empirical study that assesses and evaluates

the practices of EH testing in open-source software systems. We developed a tool, called XaviEH,

to assist in these analyses. XaviEH employs both coverage and mutation analysis as proxies

for the quality of EH testing in a certain system. In addition, XaviEH uses tailored quality

criteria for EH code, including EH-specific coverage measures and mutation operators. In total,

XaviEH measured the adequacy and effectiveness of EH testing of 27 long-lived Java libraries.

Finally, based on the analysis by XaviEH, we ranked these libraries to assess which ones present

significantly better indicators of EH testing quality.

The main contributions of this master dissertation are listed as follows:

– The first empirical study to evaluate EH testing practices in open-source software.

– A tool, called XaviEH, to automatically assess the adequacy and effectiveness of EH

testing in a software system.

– A dataset concerning the analysis of 27 long-lived Java libraries regarding their EH testing

practices (LIMA et al., 2020).

Overall, our findings suggest that EH code is, in general, less covered than regular

code (i.e. non-EH). Additionally, we provide evidence that the code within the catch blocks

and throw statements have a low coverage degree. However, despite not being well-covered, the

18

mutation analysis shows that the test suites are able to detect artificial EH-related faults.

The remainder of this master dissertation is organized as follows. Chapter 2 provides

a background for our study. Chapter 3 addresses the related work. Chapter 4 presents the

experimental design of our study. The study results are presented in Chapter 5. In Chapter 6,

our results and implications for researchers and practitioners are discussed. Chapter 7 presents

the threats to validity, and at last, Chapter 8 concludes the master dissertation and points out

directions for future work.

19

2 BACKGROUND

In this Chapter, we describe the general concepts and definitions that provide a

background to our study.

2.1 Software Test Criteria and Adequacy

(GOODENOUGH; GERHART, 1975) state that a software test adequacy criterion

defines “what properties of a program must be exercised to constitute a ‘thorough’ test, i.e.,

one whose successful execution implies no errors in a tested program”. To guarantee the

correctness of adequately tested programs, they proposed reliability and validity requirements

of test criteria (ZHU et al., 1997). The former requires that a test criterion always produce

consistent test results (i.e., if the program is tested successfully on a certain test set that satisfies

the criterion, then the program should also be tested successfully on all other test sets that

satisfies the criterion). The later requires that the test should always produce a meaningful result

concerning the program under testing (i.e., for every error in a program, there exists a test set

that satisfies the criterion and it is capable of revealing the error).

Code coverage (also known as test coverage) is a metric to assess the percentage of

the source code executed by a test suite. Code coverage is commonly employed as a proxy for test

adequacy (Kochhar et al., 2017). The percentage of code executed by test cases can be measured

according to various criteria, such as (Antinyan et al., 2018): statement coverage, branch

coverage, and function/method coverage. Statement coverage is the percentage of statements

in a source file that have been exercised during a test run. Branch coverage is the percentage

of decision blocks in a source file that have been exercised during a test run. Function/Method

coverage, is the percentage of all functions/methods in a source file that have been exercised

during a test run. For the rest of this master dissertation, we use code coverage and test coverage

interchangeably.

2.2 Mutation Testing and Analysis

Mutation analysis is a procedure for evaluating the degree to which a program is

properly tested, that is, to measure a test suite’s effectiveness. Mutation testing evaluates a certain

test suite by injecting artificial defects in the source code. In this context, a test suite that is able

to identify artificial defects is likely to be able to pinpoint real defects when these occur. Hence,

20

to maximize mutation testing’s ability to measure the effectiveness of a test suite, one must inject

artificial defects that are as close as possible to real defects (JUST et al., 2014; PAPADAKIS et

al., 2018).

A version of a software system with an artificially inserted fault is called a mutant.

Mutation operators are rule-based program transformations used to create mutants from the

original source code of a software system. When executing the test suite of a system in both the

original and mutant code, if the mutant and the original code produce different outputs in at least

one test case, the fault is detected, i.e, the mutant can be killed by the test suite. Consider M(s)

to be the set of mutants created for system s and KM(s) the set of killed mutants for system s.

Mutation score, as detailed in Equation 2.1, indicates the percentage of dead mutants compared

to the mutants that are not equivalent to the original program (ZHU et al., 1997). Mutation score

indicates the effectiveness of a certain test suite, as it evaluates the test suite’s ability to find

defects.

MutationScore(s) =
|M(s)|
|KM(s)|

×100 (2.1)

A certain variant of a software system is considered a first-order mutant when only

a single artificial defect has been introduced. Differently, higher-order mutants are the ones

generated by combining more than one mutation operator. We focus on first-order mutants for

this study (see Section 4.2).

2.3 Java Exception Handling

In the Java programming language, “an exception is an event, which occurs during

the execution of a program, which disrupts the normal flow of the program’s instructions” (GAL-

LARDO et al., 2014). When an error occurs inside a method, an exception is raised. In Java,

the raising of an exception is called throwing. Exceptions are represented as objects following

a class hierarchy and can be divided into two categories: checked and unchecked. Checked

exceptions are all exceptions that inherits, directly or indirectly, from Java’s Exception class,

except those ones that inherits, directly or indirectly, from Error or RuntimeException classes,

named unchecked ones. Checked exceptions represent exceptional conditions that, hypothet-

ically, a robust software should recover from. Unchecked exceptions represent an internal

(RuntimeException) or an external (Error) exceptional conditions that a software usually

21

cannot anticipate or recover from. In Java, only the handling of checked exceptions is mandatory,

which obligate developers to write error-handling code to catch and handle them.

When an exception is raised, the execution flow is interrupted and deviated to a spe-

cific point where the exceptional condition is handled. In Java, exceptions can be raised using the

throw statement, signaled using the throws statement, and handled in the try-catch-finally

blocks. The “throw new E()” statement is an example of throwing the exception E. The

“public void m() throws E,T” shows how the throws clause is used in the method declara-

tion to indicate the signaling of exceptions E and T to the method that call m().

The try block is used to enclose the method calls that might throw an exception.

If an exception occurs within the try block, that exception is handled by an exception handler

associated with it. Handlers are represented by catch blocks that are written right below the

respective try block. Multiple catch blocks can be associated with a try block. Each catch

block catches a specific exception type and encloses the exception handler code. The finally

block is optional, but when declared, it always executes when the try block finishes, even with

or without an exception occurring and/or being handled. Finally blocks are commonly use for

coding cleanup actions.

22

3 RELATED WORK

In this chapter, we present the related work that, in some way, are related to our

study.

3.1 Exception Handling and Software Bugs

Previous work has investigated and provided evidence on the positive correlation

between exception handling code and software defect proneness (MARINESCU, 2011; MARI-

NESCU, 2013). In fact, this correlation emerges from sub-optimal exception handling practices

(i.e., anti-patterns and flow characteristics) current adopted by software developers (SAWAD-

PONG; ALLEN, 2016; PáDUA; SHANG, 2018). Additionally, the exception handling is usually

neglected by developers (mainly by novices ones) and is considered as one of the least understood,

documented, and tested part of a software system (SHAH et al., 2010; ZHANG; ELBAUM,

2014; CHANG; CHOI, 2016; OLIVEIRA et al., 2018).

The studies conducted by (BARBOSA et al., 2014) and (EBERT et al., 2015) gather

evidence that erroneous or improper usage of exception handling can lead to a series of fault

patterns, named “exception handling bugs”. This kind of faults refer to bugs in which the

primary source is related to (i) the exception definition, throwing, propagation, handling or

documentation; (ii) the implementation of cleanup actions; and (iii) wrong throwing or handling

(i.e., when the exception should be thrown or handled and it is not). (BARBOSA et al., 2014)

categorizes 10 causes of exception handling bugs, analyzing two open source projects, Hadoop

and Apache Tomcat. (EBERT et al., 2015) extends (BARBOSA et al., 2014) study, presenting a

comprehensive classification of exception handling bugs based on a survey of 154 developers and

the analysis of 220 exception handling errors reported from two open source projects, Apache

Tomcat and Eclipse IDE. (KECHAGIA; SPINELLIS, 2014) studied undocumented runtime

exceptions thrown by the Android platform and third-party libraries. They mined 4,900 different

stack traces from 1,800 apps looking for undocumented API methods with undocumented

exceptions participating in the crashes. They found that 10% of crashes might have been avoided

if the correspondent runtime exceptions had been properly documented.

(PáDUA; SHANG, 2017b; PáDUA; SHANG, 2017a; PáDUA; SHANG, 2018)

conducted a series of studies concerning exception handling and software quality. In the first

study, they conducted an investigation on the prevalence of exception handling anti-patterns

23

across 16 open source projects (Java and C#). They claim that the misuse of exception handling

can cause catastrophic software failures, including application crashes. They found that all 19

exception handling anti-patterns taken into account in the study are broadly present in all subject

projects, however, only 5 of them (unhandled exception, generic catch, unreachable handler,

over-catch, and destructive wrapping) are prevalent. Next, (PáDUA; SHANG, 2017a) conducted

a study revisiting the exception handling practices by analyzing the flow of exceptions from the

source of exceptions until its handling blocks in 16 open-source projects (Java and C#). Once

researchers understood that exception handling practices may lead to software failures, their

identification highlight the opportunities of leveraging automated software analysis to assist in

exception handling practices.

Finally, the third study of (PáDUA; SHANG, 2018) focuses on understanding the

relationship between exception handling practices and post-release defects. They investigated

the relationship between post-release defect proneness and: (i) exception flow characteristics;

and (ii) 17 exception handling anti-patterns. Their finds suggests that development teams should

find a way to improve their exception handling practices and avoid the anti-patterns (e.g., dummy

handler, generic catch, ignoring interrupted exception, and log and throw) that are found to have

a relationship with post-release defects.

(COELHO et al., 2017) mined 6,000 stack traces from over 600 open source projects

issues on GitHub and Google Code searching for bug hazards regarding exception handling.

Additionally, they surveyed 71 developers involved in at least one of the projects analyzed. As a

result, they found four bug hazards that may cause bugs in Android applications: (i) cross-type

exception wrapping; (ii) undocumented unchecked exceptions raised by the Android platform

and third-party libraries; (iii) undocumented check exceptions signaled by native C code; and

(iv) programming mistakes made by developers. The survey’s results corroborate the stack trace

findings, indicating that developers are unaware of frequently occurring undocumented exception

handling behavior.

Similar to the studies cited, our study investigates practices for EH testing in 27

long-lived Java libraries from open-source systems that represent systems with more than 11

years of active development. We generated a total of 12,331 software mutants and the systems

present effective test suites for EH code, where more than 70% of the defects being identified.

24

3.2 Exception Handling Testing

(JI et al., 2009) proposes 5 types of exception handling code mutants: Catch Block

Replacement (CBR), Catch Block Insertion (CBI), Catch Block Deletion (CBD), Placing Try

Block Later (PTL), Catch and Rethrow Exception (CRE). (KUMAR et al., 2011) develops 5

types of mutants for exception handling code, namely: Catch Clauses Deletion (CCD), Throw

Statement Deletion (TSD), Exception Name Change (ENC), Finally Clause Deletion (FCD) and

Exception Handling Modification (EHM). These operators try to replace, insert, delete some

capture blocks, add statements to re-launch a capture block, and try to rearrange try blocks

by including statements with some relevant references after the capture blocks. In our study,

we employed 7 mutation operators: 5 mutation operators (CBR, CBI, CBD, PTL, and CRE);

and, 2 operators Finally Block Deletion (FBD) and TSD. Our study generated a total of 12,331

software mutants as follows: 98 (CBI), 2,519 (CBD), 2,519 (CRE), 404 (FBD), 84 (PTL), 80

(CBR), and 6,627 (TSD).

The work of (ZHANG; ELBAUM, 2014) presents an automated approach to support

the detection of faults in exception handling code that deals with external resources. The study

revealed that 22% of the confirmed and fixed bugs have to do with poor exceptional handling

code, and half of those correspond to interactions with external resources. In our study we

identified as a result that despite presenting high coverage for instruction and branches in the

overall source code and EH code, the tests are still mostly exercising non-exceptional flows

within the programs, where the exception behaviors are not being tested.

In a recent study, (ZHAI et al., 2019) undertook a study of code coverage in popular

Python projects: flask, matplotlib, pandas, scikit-learn and scrapy. In this study, the authors

found that coverage depends on control flow structure, with more deeply nested statements being

significantly less likely to be covered. Other findings of the study were that the age of a line

per se has a small (but statistically significant) positive effect on coverage. Finally, they found

that the kind of statement (e.g., try, if, except, and raise) has varying effects on coverage, with

exception handling statements being covered much less often. The results suggest that developers

in Python projects have difficulty writing test sets that cover deeply-nested and error-handling

statements, and might need assistance covering such code. Our study used long-lived Java

libraries, and a deduction from the identified results was that despite presenting high coverage

for instruction and branches in the overall source code and EH code, the tests are still mostly

exercising non-exceptional flows within the programs, where the exception behaviors are not

25

being tested.

3.3 Code Coverage and Defect-Free Software

(INOZEMTSEVA; HOLMES, 2014a) conducted one of the first large studies that

investigated the correlation between code coverage and test effectiveness. Their study took into

account 31,000 test suites generated for five large Java systems. They measured code coverage

(statement, branch, and modified condition) using these test suites and employed mutation testing

to evaluate the effectiveness of such test suites in revealing the injected faults. They found that

there is a low to moderate correlation between coverage and effectiveness when the number

of test cases in the suite is controlled for this purpose. (KOCHHAR et al., 2015) conducted a

study seeking out to investigate the correlation between code coverage and its effectiveness in

real bugs. The experiment was performed taking into account 67 and 92 real bugs from Apache

HTTPClient and Mozilla Rhino, respectively. They used a tool, called Randoop, to generate

random test suites with varying levels of coverage and run them to analyze the capability of these

synthetic test suites in detecting the existing bugs in both systems. They found that there is a

statistically significant correlation between code coverage and bug detection effectiveness.

(Kochhar et al., 2017) performed a large scale study concerning the correlation

between real bugs and code coverage of exiting test suits. This study took into account 100

large open-source Java projects. They extracted real bugs recorded in the project’s issue tracking

system after the software release and analyzed the correlations between code coverage and these

bugs. They found that the coverage of actual test suites has an insignificant correlation with the

number of bugs that are found after the software release.

(SCHWARTZ et al., 2018) argue that previous work provide mix results concerning

the correlation between code coverage and test effectiveness (i.e., some studies provide evidence

on a statistically significant correlation between these two factors, while others do not). Thus,

they hypothesize that the fault type is one of the sources that may be leading to these mixed

results. To investigate this hypothesis, they have studied 45 different types of faults and evaluated

how effectively human-created test suites with high coverage percentages were able to detect

each type of fault. The study was performed on 5 open-source projects (Commons Compress,

Joda Time, Commons Lang, Commons Math, and JSQL Parser), which have at least 80%

statement coverage. The mutation testing technique was employed to seed 45 types of faults in

the program’s code in order to evaluate the effectiveness of the existing unit test suites in the

26

detection of such fault types. Their findings showed that, with statistical significance, there were

specific types of faults found less frequently than others. Additionally, based on their findings,

they suggest developers should put more focus on improving test oracles strength along with

code coverage to achieve higher levels of test effectiveness.

Our study analyzes the test coverage compared to EH code. We developed a tool,

called XaviEH, which employs both coverage and mutation analysis as proxies for the quality of

EH testing in a certain system. Our findings suggest that EH code is, in general, less covered

than regular code (i.e. non-EH).

27

4 EXPERIMENTAL DESIGN

Our study aims at investigating practices for EH testing in open-source systems.

To achieve this, we selected 27 long-lived Java libraries to serve as subjects in our empirical

evaluation (see Section 4.1). Hence, we ask the following research questions:

RQ1. What is the test coverage of EH code in long-lived Java libraries?

First, we measure EH testing adequacy in terms of code coverage measures. We

employ a variant of long-established coverage criteria in the literature (see Chapter 4.4) to

provide the first insight regarding the extent to which the test suites of the studied Java libraries

exercise EH code.

RQ2. What is the difference between EH and non-EH code coverage in long-lived Java libraries?

In addition to measuring the coverage of EH code, we also measure the coverage

of non-EH code in each library. By controlling the EH coverage with its non-EH counterpart,

we can reason on how EH testing differs from other testing activities to better understand how

(in)adequate EH testing may be.

RQ3. What is the effectiveness of EH testing in long-lived Java libraries?

We employ mutation testing to assess the effectiveness of EH testing. By leveraging

EH mutation operators derived from real EH bugs, we create artificial defects that are similar to

EH bugs found in real-world software systems. Next, we measure the mutation score and use it

as a proxy for the effectiveness of EH testing.

RQ4. To what extent are there EH bugs that are statistically harder to detect by test suites of

long-lived Java libraries?

We employ a combination of the Friedman (FRIEDMAN, 1940) and Nemenyi

(DEMsAR, 2006) tests to statistically assess whether there are types of EH bugs that are more

difficult to detect by the studied libraries’ test suites than others. We aspire to find a set of

EH bugs that developers must be aware of during testing, aiming at fostering knowledge and

improving the effectiveness of EH testing.

The rest of this chapter details the methodology employed in our empirical study to

answer the research questions presented above. The complete dataset, source code and results

for this empirical study is available at our replication package (LIMA et al., 2020).

28

4.1 Selection of Long-lived Java Libraries

Our study focuses on the study of EH testing. However, EH is not a trivial activity in

software development (SHAH et al., 2010). First, the need for EH commonly arises as systems

evolve and are exposed to a wide range of usage scenarios that expose runtime flaws (CACHO et

al., 2014b; PáDUA; SHANG, 2018; CHEN et al., 2019). Second, EH testing is considered more

challenging than non-EH testing due to its complex runtime and ‘flakiness’ nature (ZHANG;

ELBAUM, 2014; ECK et al., 2019). Thus, to properly study EH testing, we need long-lived

subject systems that attend to a large number of users and usage scenarios. In addition, we

need systems with reputably good quality to maximize the chances that the development team is

versed and employ good practices in both EH handling and testing.

Therefore, we turned our attention to the Apache Software Foundation ecosystem1.

The Apache Foundation is a well-known open-source software community that leads the contin-

uous development of open-source general-purpose software solutions. Not only this community

hosts long-lived systems in active development (Apache’s Commons Collections library, for

instance, is now 17 year old) but it is also known to follow good software engineering practices,

where its systems have been the object of a plethora of previous empirical studies (SHI et al.,

2011; BARBOSA et al., 2014; AHMED et al., 2016; SCHWARTZ et al., 2018; HILTON et al.,

2018; Digkas et al., 2018; VIEIRA et al., 2019; Zhong; Mei, 2019).

For this particular study, we considered libraries of the Apache Commons Project,

which is an Apache project focused on all aspects of reusable Java components2. We focused

on libraries because they tend to be more generic and present more usage scenarios than other

systems. As a selection criteria for our study, a library should: (i) be developed in Java; (ii)

employ Maven or Graddle as build system; (iii) present an automatically executable and passing

test suite; (iv) be a long-lived system; and (v) be correctly handled by Spoon (PAWLAK et al.,

2016), one of the the tools we used to build XaviEH (see Chapter 4.3). To identify long-lived

libraries, we computed the distribution of all libraries’ age in years. Hence, we considered

long-lived systems, all libraries above the 3rd quartile in the distribution, which, for this study,

represent systems with more than 11 years of active development.

As a result, we selected 21 libraries out of the 96 available in Apache Commons. We

provide details about each selected library in the first chapter of Table 1. Nevertheless, while fit
1 https://apache.org/index.html#projects-list
2 https://commons.apache.org/

https://apache.org/index.html#projects-list
https://commons.apache.org/

29

Table 1 – Summary of selected libraries. While the first chapter depicts the libraries from Apache
Commons, the second chapter indicates the selected libraries from other ecosystems.
We provide the version we studied of each library followed by size metrics, such as
LOC, number of throw instructions, number of try blocks etc.

Library Version #LoC #Classes #Throw #Try #Catch #Finally #Years

BCEL 6.2 61100 344 406 147 143 5 18
BeanUtils 1.9.3 32150 98 364 126 164 0 18
CLI 1.4 6245 21 29 12 11 1 17
Codec 1.11 18559 55 97 28 22 8 16
Collections 4.2 68319 270 725 28 44 1 18
Compress 1.18 47741 183 425 137 73 39 16
Configuration 2.4 66869 178 306 235 159 96 16
DBCP 2.5 23132 50 279 796 846 23 18
DbUtils 1.7 8850 39 46 41 40 20 16
Digester 3.3.2 22858 132 110 68 72 7 18
Email 1.5 6115 19 74 36 32 9 15
Exec 1.3 4600 26 29 23 23 6 14
FileUpload 1.3.3 6884 23 50 25 26 6 17
Functor 1.0 17617 135 115 0 0 0 16
IO 2.6 28691 112 292 106 80 8 17
Lang 3.8.1 78174 124 380 76 81 5 17
Math 3.6.1 223110 740 1494 118 124 4 16
Net 3.6 47107 175 159 174 180 24 17
Pool 2.6.1 13629 33 79 132 70 79 18
Proxy 1.0 4112 37 36 23 31 0 11
Validator 1.6 17677 62 68 40 49 1 17

Gson 2.8.5 14863 52 222 56 75 5 11
Hamcrest 2.1 7834 77 19 12 13 0 13
Jsoup 1.11.3 18111 55 46 33 32 3 11
JUnit 4.12 17200 149 101 99 119 17 19
Mockito 2.23.11 33505 297 236 91 98 20 12
X-Stream 1.4.11.1 37475 313 461 248 362 19 16

for our empirical study, to consider only libraries from the Apache community would represent a

threat to the study’s generability and diversity (NAGAPPAN et al., 2013). Hence, we selected 6

additional non-Apache libraries that adhere to the same inclusion criteria discussed above. These

were selected considering their ranking on open source platforms, such as GitHub, and personal

experience from the authors in using these libraries. The additional libraries are depicted in the

second chapter of Table 1. In total, our empirical study considered 27 long-lived libraries from

different open source ecosystems.

After selecting the 27 libraries employed in the study, we performed the data collec-

tion. On March 2019, we downloaded the latest available release of each library in which we

could automatically build and execute the test suite without any failing test.

30

Figure 1 – Internal steps performed by XaviEH when evaluating the EH testing practices of a
software system.

4.2 Assessing Exception Handling Testing with XaviEH

To perform our study, we developed the XaviEH tool. Given a certain software

system, XaviEH is able to automatically perform an analysis regarding the the system’s practices

on EH testing. It provides a report on the adequacy and effectiveness of the system’s test suite

when testing EH code. Figure 1 illustrates the execution steps of XaviEH for a software system.

In Step (1), XaviEH obtains the system’s source code. In case the system is hosted

on GitHub, one can provide the GitHub URL, and XaviEH will use JGit3 to download the source

code. Otherwise, one can simply provide the source code to XaviEH.

In Step (2), XaviEH executes the system’s test suite to verify that all tests are passing.

This is necessary to ensure that the next steps will be correctly executed. XaviEH uses the

maven-invoker4 and gradle-tooling-api5 libraries to run the tests automatically.

Step (3) involves the mutation analysis. XaviEH generates all possible first-order

mutants of the system being analyzed. To do this, XaviEH first searchs the system’s source code

to identify all classes eligible for mutation. In this study, a class is considered eligible if it has

any code structure that can be affected (mutated) by at least one of the seven mutation operators

we employ (see Chapter 4.3). By doing so, XaviEH creates an in-memory data structure that

tracks eligible classes and mutation operators that can be applied to each class.
3 https://www.eclipse.org/jgit/
4 https://maven.apache.org/shared/maven-invoker/
5 https://docs.gradle.org/current/userguide/embedding.html

https://www.eclipse.org/jgit/
https://maven.apache.org/shared/maven-invoker/
https://docs.gradle.org/current/userguide/embedding.html

31

Next, for each eligible class, XaviEH applies all mutation operators that can be

applied to the class, recording which operator was applied to which class. A mutation operator

may be applied to an eligible class more than once. In this case, XaviEH ensures that successive

changes made by a specific mutation operator within the same eligible class do not affect the

same location twice, preventing duplicate mutants from being generated. To perform both code

search and mutant generation tasks, XaviEH uses Spoon6, a library for parsing and transforming

Java source code.

For each mutant, XaviEH runs the system’s test suite against it, recording the

passing and failing test cases. This task is also performed using the maven-invoker and

gradle-tooling-api. Finally, at the end of Step (3), XaviEH provides a mutation analysis

report of the system being analyzed.

In Step (4), XaviEH performs the test coverage analysis. To do this, XaviEH employs

the JaCoCo7 plug-in, a Java code coverage library for monitoring and tracking code coverage.

For each system, XaviEH collects information to compute a suite of 23 test coverage metrics, as

detailed in Chapter 4.4.

Finally, in Step (5), XaviEH summarizes the mutant and coverage analysis for the

system under study. It generates a final report containing information on the number of generated

and killed mutants, the mutation score, and the coverage metrics in CSV files.

4.3 Mutation Operators and Analysis

As discussed in Section 2.2, we used mutation testing to assess the effectiveness of

the test suites under study on identifying defects related to EH code. Hence, we employed a set

of EH-specific mutation operators proposed in previous studies (JI et al., 2009; KUMAR et al.,

2011). Such mutation operators are based on real-world defects collected from empirical studies

in open-source software. Thus, they mirror real defects introduced by developers. In total, we

employed 7 mutation operators, as detailed in Table 2. The first 5 mutation operators (CBR, CBI,

CBD, PTL, and CRE) were proposed by (JI et al., 2009), and the final 2 operators (FBD and TSD)

were proposed by (KUMAR et al., 2011).
6 https://spoon.gforge.inria.fr/
7 https://www.eclemma.org/jacoco/

https://spoon.gforge.inria.fr/
https://www.eclemma.org/jacoco/

32

Table 2 – Mutation operators employed in this study. All operators are based on real-world
defects from open-source systems.

Operator Tranformation in the Code

CBR Replaces the catch block with derived exception types according to the invoking excep-
tion hierarchy (JI et al., 2009).

CBI Creates complete catch modules to conceal all types of exceptions (JI et al., 2009).

CBD Deletes the whole catch block to propagate the thrown exceptions (JI et al., 2009).

PTL Brings into the try block, statements placed after the try block that reference variables
inside the try block (JI et al., 2009).

CRE Re-throws the caught exceptions which are propagated to the upper modules (JI et al.,
2009).

FBD Deletes the whole finally block to propagate the thrown exceptions (KUMAR et al.,
2011).

TSD Deletes the throw statement that should raise an exception (KUMAR et al., 2011).

4.4 Code Coverage Metrics

In this study, we adopted three different criteria to measure code coverage: instruc-

tion, branch, and method coverage. We have used the JaCoCo tool to compute the code coverage

metrics. Instead of statements, JaCoCo computes the code coverage by analyzing bytecode

instructions. Thus, we chose instruction coverage instead of statement coverage for compliance

purposes.

We considered three sets of coverage metrics. In the first set, we computed the overall

instruction, branch and method coverage, i.e. considering the system’s entire code base. This

is necessary for us to have a baseline of each system’s general coverage, so that we can assess

whether the EH code coverage presents any disparity when compared to the overall coverage.

We detail the overall code coverage metrics in the first chapter of Table 3.

Next, the coverage metrics in the second set are tailored for EH code. It considers

the instructions and branches inside try, catch and finally blocks, for instance. These are

detailed in the second chapter of Table 3. Finally, the third set of coverage metrics is composed

of complements for the EH-specific metrics.

33

Table 3 – Code coverage metrics computed by XaviEH. The first set of metrics are computed
considering the system’s entire code base. The second set of coverage metrics are
specific for exception handling code. Finally, the third set is composed of complements
to the exception handling coverage metrics.

Metric Meaning
IC The percentage of instructions exercised by the test suite.
BC The percentage of branches exercised by the test suite.
MC The percentage of methods exercised by the test suite.

Exception Handling Instruction Coverage (EH_IC) The percentage of instruction in try, catch, and finally blocks plus all throw instruc-
tions exercised by the test suite.

Exception Handling Branch Coverage (EH_BC) The percentage of branches in try, catch, and finally blocks exercised by the test
suite.

Try Instruction Coverage (TRY_IC) The percentage of instructions in try blocks exercised by the test suite.
Try Branch Coverage (TRY_BC) The percentage of branches in try blocks exercised by the test suite.
Catch Instruction Coverage (CATCH_IC) The percentage of instructions in catch blocks exercised by the test suite.
Catch Branch Coverage (CATCH_BC) The percentage of branches in catch blocks exercised by the test suite.
Finally Instruction Coverage (FINALLY_IC) The percentage of instructions in finally blocks exercised by the test suite.
Finally Branch Coverage (FINALLY_BC) The percentage of branches in finally blocks exercised by the test suite.
Throw Instruction Coverage (THROW_IC) The percentage of throw instructions exercised by the test suite.
Throws Method Coverage (THROWS_MC) The percentage of methods with a throws clause in its signature exercised by the test

suite.

Non-Exception Handling Instruction Coverage (NON_EH_IC) The percentage of instructions exercised by the test suite that are not throw and not in
try, catch, and finally blocks.

Non-Exception Handling Branch Coverage (NON_EH_BC) The percentage of branches exercised by the test suite that are not in try, catch, and
finally blocks.

Non-Try Instruction Coverage (NON_TRY_IC) The percentage of instructions exercised by the test suite that are not in try blocks.
Non-Try Branch Coverage (NON_TRY_BC) The percentage of branches exercised by the test suite that are not in try blocks.
Non-Catch Instruction Coverage (NON_CATCH_IC) The percentage of instructions exercised by the test suite that are not in catch blocks.
Non-Catch Branch Coverage (NON_CATCH_BC) The percentage of branches exercised by the test suite that are not in catch blocks.
Non-Finally Instruction Coverage (NON_FINALLY_IC) The percentage of instructions exercised by the test suite that are not in finally blocks.
Non-Finally Branch Coverage (NON_FINALLY_BC) The percentage of branches exercised by the test suite that are not in finally blocks.
Non-Throw Instruction Coverage (NON_THROW_IC) The percentage of instructions exercised by the test suite that are not throw.
Non-Throws Method Coverage (NON_THROWS_MC) The percentage of methods exercised by the test suite without a throws clause in its

signature.

4.5 Preliminary Observation of the Libraries’ Overall Coverage

To properly assess EH testing adequacy in terms of EH code coverage, we need to

observe the systems’ overall coverage to serve as a point of comparison. Otherwise, any high (or

low) levels of EH code coverage that we observe in a software system may be due to the high (or

low) levels of overall coverage in the system. Thus, this serves as baseline that we can take into

account when drawing conclusions from our observations.

Fig. 2 presents boxplots depicting the distribution of overall instruction, branch,

and method coverage, as detailed in Chapter 4.4 and Table 3. Note that the distributions were

computed considering all the 27 studied libraries. The median values for IC, BC and MC are 82%,

78% and 83%, respectively. One must notice that apart from 2 outliers, all studied libraries tend

to present coverage degrees in medium to high echelons, reaching more than 95% of coverage

for some systems in all metrics. This indicates that the libraries under study present mature

testing practices for the systems’ overall source code.

34

Figure 2 – Overall code coverage boxplots of the 27 studied libraries (IC, BC, and MC).

Figure 3 – XaviEH architecture, most important classes for operation.

4.6 XaviEH architecture

An important point in the development of systems is the architecture involved, it is

possible to analyze the fundamental structure for the functioning of the developed tool. Figure 3

illustrates the architecture of XaviEH, its main points are explained in the points below:

– Main Component: is responsible for obtaining the user’s input information, processing

the input and making the correct execution of the classes Executors for the data processing

35

to take place correctly.

– Classes Executors: they are responsible for all the initialization of the customized classes

of SPOON (Runners and Processors). It is also responsible for other uses of functions in

the classes Utilities and classes Models. It also does all the analysis of the projects used

for the study, among them, whether it is passing the tests or not and whether they have

been used previously. Another great importance of this class is that it generates the reports

of the jacoco, which are essential for the coverage analysis of the analyzed projects.

– Runner Component: is responsible for executing customized Processors, more specifi-

cally, initializes the SPOON API correctly, and executes the Processors passed by Execu-

tors. It also controls the extraction of the selected classes of projects that will be analyzed

by Processors.

– Processor Component: is composed by responsible for the analyzes and modifications

made in each class analyzed in the project, this is where the mutations and analyzes actually

take place. Each Processor in the project is equivalent to a type of mutation (CBR, CBI,

CBD, PTL, CRE, FBD and TSD).

– Util Component: is composed by classes used to support some task during the processes,

among them, generation and writing of Extensible Markup Language (XML) or Comma

Separated Values (CSV) and search for projects in GIT.

– Model Component: is composed by classes used as models for both input and output

data in XaviEH processes.

36

5 STUDY RESULTS

In this chapter, we present the results obtained after applying our empirical strategy.

5.1 RQ1. What is the test coverage of EH code in long-lived Java libraries?�

�

	
Summary of RQ1: try and finally blocks are largely more covered than catch blocks

and throw statements, indicating that the test suites are struggling to raise and test excep-

tional behaviors in the programs.

Table 4 presents all computed code coverage metrics for all systems included in this

study. Not all metrics could be computed for all systems. For instance, the BeanUtils library

presents no finally block in its source code. As a result, all finally-related coverage metrics

(FINALLY_IC and FINALLY_BC) could not be computed. We indicate with a ‘-’ all cases in

which a certain coverage metric could not be computed for a certain system.

The boxplots in Fig. 4 show the distribution of general coverage metrics for EH-

related code. These are the EH coverage metrics that correspond to the overall coverage metrics

displayed in Fig. 2. The coverage degree of EH_IC ranges from 55% to 74%, EH_BC ranges from

54% to 78%, and THROWS_MC ranges from 79% to 94%. Additionally, one should notice there

exist libraries with 100% coverage for EH_BC and THROWS_MC.

We can draw interesting observations when comparing the EH-related coverage with

the equivalent coverage metrics for the whole system displayed in Fig. 2. First, we observe

a larger deviation in the adequacy of EH testing than in overall testing. This is depicted by

how the boxplots for EH coverage tend to be less compact than the overall ones, which tend to

indicate that the EH testing practices tend to be less mature than the overall testing ones. When

considering instruction coverage for EH code, for example, we see systems with less than 40%

of their EH instructions being covered, where the smallest overall instruction coverage is above

60%. Nevertheless, this is not always the case. We observed that a few systems reached 100%

coverage EH methods, which did not occur for overall method coverage in any system.

We also plotted boxplots detailing the internal distribution of EH_IC (see Fig. 5) and

EH_BC (see Fig. 6). Looking at Figure 5 and the data in Table 4, one can see that instructions

in try and finally blocks have the best coverage degrees. In fact, they assume high levels of

coverage if one consider the interquartile interval, ranging from 77% to 91% for TRY_IC and

from 64% to 99% for FINALLY_IC. Differently, when considering the lowest quartile, the throw

37

Table 4 – Computed general code coverage measures per library.
L

ib
ra

ry
IC

B
C

M
C

E
H

_I
C

E
H

_B
C

T
RY

_I
C

T
RY

_B
C

C
A

T
C

H
_I

C
C

A
T

C
H

_B
C

FI
N

A
L

LY
_I

C
FI

N
A

L
LY

_B
C

T
H

R
O

W
_I

C
T

H
R

O
W

S_
M

C

B
C

E
L

0.
44

0.
38

0.
48

0.
31

0.
33

0.
38

0.
35

0.
13

0.
25

0.
15

0.
11

0.
01

0.
70

B
ea

nU
til

s
0.

65
0.

65
0.

68
0.

52
0.

48
0.

68
0.

65
0.

32
0.

26
-

-
0.

43
0.

78

C
L

I
0.

96
0.

93
0.

94
0.

97
1.

00
1.

00
1.

00
1.

00
-

1.
00

-
0.

90
1.

00

C
od

ec
0.

96
0.

91
0.

90
0.

78
0.

97
0.

84
0.

97
0.

50
-

0.
88

-
0.

62
0.

87

C
ol

le
ct

io
ns

0.
87

0.
81

0.
87

0.
68

0.
68

0.
88

0.
63

0.
63

1.
00

0.
57

1.
00

0.
64

0.
94

C
om

pr
es

s
0.

85
0.

76
0.

85
0.

66
0.

75
0.

86
0.

78
0.

18
0.

25
0.

91
0.

68
0.

30
0.

93

C
on

fig
ur

at
io

n
0.

88
0.

84
0.

91
0.

76
0.

74
0.

81
0.

77
0.

45
0.

42
1.

00
0.

70
0.

72
0.

93

D
B

C
P

0.
70

0.
70

0.
92

0.
55

0.
68

0.
92

0.
71

0.
02

0.
13

0.
86

0.
75

0.
20

0.
94

D
bU

til
s

0.
64

0.
77

0.
57

0.
66

0.
77

0.
82

0.
71

0.
07

-
0.

93
0.

88
0.

41
0.

34

D
ig

es
te

r
0.

66
0.

65
0.

74
0.

57
0.

53
0.

83
0.

67
0.

18
0.

13
1.

00
0.

50
0.

22
0.

86

E
m

ai
l

0.
72

0.
67

0.
81

0.
65

0.
57

0.
77

0.
67

0.
59

0.
75

0.
29

0.
15

0.
24

0.
87

E
xe

c
0.

72
0.

63
0.

74
0.

42
0.

54
0.

43
0.

52
0.

27
0.

50
0.

75
0.

67
0.

31
0.

65

Fi
le

U
pl

oa
d

0.
80

0.
76

0.
67

0.
69

0.
69

0.
79

0.
79

0.
24

-
0.

81
0.

50
0.

44
0.

68

Fu
nc

to
r

0.
82

0.
66

0.
90

0.
23

-
-

-
-

-
-

-
0,

23
-

IO
0.

90
0.

88
0.

89
0.

78
0.

78
0.

91
0.

79
0.

18
0.

75
0.

82
0.

70
0.

74
0.

91

L
an

g
0.

96
0.

91
0.

95
0.

85
0.

85
0.

93
0.

86
0.

82
0.

70
1.

00
1.

00
0.

72
0.

97

M
at

h
0.

92
0.

85
0.

87
0.

65
0.

72
0.

92
0.

91
0.

53
0.

53
0.

73
-

0,
59

0.
89

N
et

0.
33

0.
26

0.
31

0.
13

0.
14

0.
16

0.
16

0.
02

0.
03

0.
10

0.
00

0,
10

0,
14

Po
ol

0.
84

0.
79

0.
89

0.
85

0.
86

0.
93

0.
87

0.
55

0.
75

0.
98

1.
00

0.
71

0.
95

Pr
ox

y
0.

82
0.

80
0.

85
0.

55
0.

43
0.

52
0.

43
1.

00
-

-
-

0.
62

1.
00

Va
lid

at
or

0.
86

0.
76

0.
81

0.
52

0.
54

0.
75

0.
60

0.
17

0.
30

0.
00

-
0.

43
0.

86

G
so

n
0.

84
0.

79
0.

85
0.

67
0.

66
0.

83
0.

63
0.

47
1.

00
1.

00
1.

00
0.

34
0.

97

H
am

cr
es

t
0.

83
0.

95
0.

71
0.

66
1.

00
1.

00
1.

00
0.

55
-

-
-

0.
26

1.
00

Js
ou

p
0.

84
0.

78
0.

85
0.

73
0.

75
0.

87
0.

86
0.

70
-

0.
00

0.
00

0.
30

0.
88

JU
ni

t
0.

86
0.

83
0.

88
0.

66
0.

64
0.

83
0.

68
0.

45
0.

45
0.

93
0.

88
0.

54
0.

94

M
oc

ki
to

0.
87

0.
86

0.
89

0.
83

0.
83

0.
93

0.
85

0.
68

0.
67

1.
00

1.
00

0.
62

0.
90

X
-S

tr
ea

m
0.

78
0.

74
0.

77
0.

65
0.

72
0.

83
0.

75
0.

13
0.

17
0.

87
0.

50
0.

14
0.

65

38

Figure 4 – Distribution of general EH-related code coverage metrics for the systems under study.

instructions and catch blocks have the worst coverage, with 25% and 17%, respectively. Hence,

this suggests that THROW_IC and CATCH_IC are those the impact the general EH_IC the most.

Figure 5 – EH instruction code coverage boxplots of studied libraries.

39

Looking at Fig. 6 and the data in Table 4, one can see that the branches in try and

finally blocks have the better coverage when compared to the branches in catch blocks. In

fact, if one consider the median of TRY_BC (73%) and FINALLY_BC (70%), one will see that

about three-quarters of CATCH_BC is covered less than the median coverage of TRY_BC and

FINALLY_BC. Thus, this suggests that CATCH_BC coverage is the one that impact most of the

EH_BC coverage.

When analyzing the details of both instruction and branch coverage for EH code,

we find a similar pattern, where try and finally blocks are largely more covered than throw

instructions and catch blocks. This is an worrisome observation because try and finally

blocks are always executed in non-exceptional behaviors of the system. Hence, we deduct that

the test suites of the studied libraries are failing to raise exceptions. Thus, despite presenting

high coverage for instruction and branches in the overall source code and EH code, the tests are

still mostly exercising non-exceptional flows within the programs, where the exception behaviors

are not being tested.

Figure 6 – EH branch code coverage boxplots of studied libraries.

40

5.2 RQ2. What is the difference between EH and non-EH code coverage in long-lived

Java libraries?�
�

�
�

Summary of RQ2: EH code is significantly less covered by test suites than non-EH code,

especially regarding instructions and branches within catch blocks and throw instructions.

To answer this research question, we first computed the complementary code cov-

erage metrics (see Table 3) for each studied library and summarize them in Table 5. Next, we

employ two statistical tests to compare EH and non-EH code coverage values, in which we can

verifying whether there are statistically significant differences between them. The first test is the

Kolmogorov–Smirnov test (KS), and the second is the Mann-Whitney test (MW), as detailed

next.

The KS is a two-sided test for the null hypothesis that two independent samples are

drawn from the same continuous distribution. We test this null hypothesis by taking into account

pairs of samples of non-EH and EH coverage metrics (see Tables 3, 4 and 5). Consider instruction

coverage, for example, where we abbreviate it to simply A for brevity. We measured both EH_IC

and NON_EH_IC for all 27 libraries under study. We formulate our null hypothesis as H A
0 :

NON_EH_IC= EH_IC. In case this KS null hypothesis cannot be rejected, we assume that non-EH

and EH code coverage measures have the same distribution, i.e., there is no statistical difference

in instruction coverage for EH and non-EH code when considering all libraries. However, in

case the KS null hypothesis is rejected, we assume the alternative hypothesis H A
1 : NON_EH_IC

6= EH_IC, which indicates statistical difference in instruction coverage between EH and non-EH

code.

In case statistical difference is indicated by the KS test, we can employ the MW test

to assert whether the coverage values in non-EH code are higher than the coverage values in

EH code, or vice-versa. Consider the instruction coverage metric, for example. The MW test

considers the null hypothesis H A
0 : NON_EH_IC > EH_IC. If the MW null hypothesis cannot be

rejected, we assume that the instruction coverage of non-EH code is significantly greater than

the instruction coverage in EH code. Otherwise, we assume MW’s alternative hypothesis (H A
1 :

NON_EH_IC < EH_IC), which indicates that instruction coverage in EH code is significantly

greater than in non-EH code. Table 6 presents the statistical tests results for all coverage metrics

with the significance level of α < 0.05.

To enhance this analysis, in Fig. 7, we depict boxplots for the instruction, branch and

method coverage for both non-EH and EH code. When comparing the boxplots, one can see that

41

Table 5 – Computed complementary code coverage measures per library.

L
ib

ra
ry

NO
N_

EH
_I

C
NO

N_
EH

_B
C

NO
N_

TR
Y_

IC
NO

N_
TR

Y_
BC

NO
N_

CA
TC

H_
IC

NO
N_

CA
TC

H_
BC

NO
N_

FI
NA

LL
Y_

IC
NO

N_
FI

NA
LL

Y_
BC

NO
N_

TH
RO

W_
IC

NO
N_

TH
RO

WS
_M

C

B
C

E
L

0.
45

0.
04

0.
44

0.
39

0.
44

0.
38

0.
44

0.
39

0.
45

0.
47

B
ea

nU
til

s
0.

66
0.

16
0.

64
0.

65
0.

66
0.

67
0.

65
0.

65
0.

65
0.

66
C

L
I

0.
96

0.
76

0.
96

0.
93

0.
96

0.
93

0.
96

0.
93

0.
96

0.
93

C
od

ec
0.

97
0.

54
0.

96
0.

91
0.

96
0.

91
0.

96
0.

91
0.

97
0.

91
C

ol
le

ct
io

ns
0.

87
0.

41
0.

87
0.

81
0.

87
0.

81
0.

87
0.

81
0.

87
0.

87
C

om
pr

es
s

0.
85

0.
28

0.
85

0.
76

0.
85

0.
76

0.
85

0.
76

0.
85

0.
82

C
on

fig
ur

at
io

n
0.

89
0.

38
0.

88
0.

84
0.

88
0.

84
0.

88
0.

84
0.

88
0.

91
D

B
C

P
0.

78
0.

13
0.

64
0.

70
0.

80
0.

71
0.

69
0.

70
0.

71
0.

89
D

bU
til

s
0.

63
.

0.
10

0.
62

0.
78

0.
65

0.
77

0.
63

0.
77

0.
64

0.
84

D
ig

es
te

r
0.

67
0.

14
0.

65
0.

65
0.

67
0.

65
0.

66
0.

65
0.

67
0.

72
E

m
ai

l
0.

74
0.

19
0.

72
0.

67
0.

72
0.

67
0.

73
0.

69
0.

74
0.

77
E

xe
c

0.
78

0.
21

0.
75

0.
64

0.
73

0.
63

0.
72

0.
63

0.
73

0.
75

Fi
le

U
pl

oa
d

0.
81

0.
25

0.
80

0.
76

0.
80

0.
76

0.
80

0.
77

0.
80

0.
67

Fu
nc

to
r

0.
83

0.
38

0.
82

0.
66

0.
82

0.
66

0.
82

0.
66

0.
83

0.
90

IO
0.

92
0.

50
0.

90
0.

89
0.

91
0.

88
0.

90
0.

88
0.

91
0.

88
L

an
g

0.
96

0.
75

0.
96

0.
91

0.
96

0.
91

0.
96

0.
91

0.
96

0.
95

M
at

h
0.

93
0.

41
0.

92
0.

85
0.

93
0.

85
0.

92
0.

85
0.

93
0.

87
N

et
0.

36
0.

03
0.

35
0.

28
0.

34
0.

27
0.

33
0.

26
0.

33
0.

40
Po

ol
0.

84
0.

26
0.

83
0.

78
0.

85
0.

79
0.

84
0.

79
0.

85
0.

88
Pr

ox
y

0.
84

0.
22

0.
84

0.
82

0.
82

0.
80

0.
82

0.
80

0.
83

0.
84

Va
lid

at
or

0.
87

0.
31

0.
86

0.
76

0.
87

0.
76

0.
86

0.
76

0.
87

0.
81

G
so

n
0.

85
0.

36
0.

84
0.

80
0.

84
0.

79
0.

83
0.

79
0.

85
0.

83

H
am

cr
es

t
0.

84
0.

24
0.

83
0.

95
0.

84
0.

95
0.

83
0.

95
0.

84
0.

71
Js

ou
p

0.
84

0.
35

0.
84

0.
78

0.
84

0.
78

0.
84

0.
78

0.
84

0.
85

JU
ni

t
0.

87
0.

30
0.

86
0.

83
0.

87
0.

83
0.

86
0.

83
0.

86
0.

88
M

oc
ki

to
0.

88
0.

34
0.

87
0.

86
0.

87
0.

86
0.

87
0.

86
0.

88
0.

89
X

-S
tr

ea
m

0.
79

0.
25

0.
77

0.
74

0.
78

0.
75

0.
78

0.
74

0.
79

0.
78

42

Table 6 – Summary of hypothesis statement and the statistics test results.

KS Hypothesis p-value MW Hypothesis p-value

H A
0 : NON_EH_IC = EH_IC ()

9.8×10−5 H A
0 : NON_EH_IC > EH_IC ()

6.2×10−5

H A
1 : NON_EH_IC 6= EH_IC () H A

1 : NON_EH_IC < EH_IC ()

H B
0 : NON_EH_BC = EH_BC ()

2.1×10−8 H B
0 : NON_EH_BC > EH_BC ()

3.0×10−7

H B
1 : NON_EH_BC 6= EH_BC () H B

1 : NON_EH_BC < EH_BC ()

H C
0 : NON_THROWS_MC = THROWS_MC ()

3.0×10−2 H C
0 : NON_THROWS_MC > THROWS_MC ()

2.0×10−2

H C
1 : NON_THROWS_MC 6= THROWS_MC () H C

1 : NON_THROWS_MC < THROWS_MC ()

H D
0 : NON_THROW_IC = THROW_IC ()

1.8×10−7 H D
0 : NON_THROW_IC > THROW_IC ()

1.5×10−7

H D
1 : NON_THROW_IC 6= THROW_IC () H D

1 : NON_THROW_IC < THROW_IC ()

H E
0 : NON_TRY_IC = TRY_IC ()

8.0×10−1 H E
0 : NON_TRY_IC > TRY_IC (?)

N/A
H E

1 : NON_TRY_IC 6= TRY_IC () H E
1 : NON_TRY_IC < TRY_IC (?)

H F
0 : NON_CATCH_IC = CATCH_IC ()

2.9×10−7 H F
0 : NON_CATCH_IC > CATCH_IC ()

2.1×10−6

H F
1 : NON_CATCH_IC 6= CATCH_IC () H F

1 : NON_CATCH_IC < CATCH_IC ()

H G
0 : NON_FINALLY_IC = FINALLY_IC ()

1.6×10−1 H G
0 : NON_FINALLY_IC > FINALLY_IC (?)

N/A
H G

1 : NON_FINALLY_IC 6= FINALLY_IC () H G
1 : NON_FINALLY_IC < FINALLY_IC (?)

H H
0 : NON_TRY_BC = TRY_BC ()

5.4×10−1 H H
0 : NON_TRY_BC > TRY_BC (?)

N/A
H H

1 : NON_TRY_BC 6= TRY_BC () H H
1 : NON_TRY_BC < TRY_BC (?)

H I
0 : NON_CATCH_BC = CATCH_BC ()

8.8×10−4 H I
0 : NON_CATCH_BC > CATCH_BC ()

3.2×10−4

H I
1 : NON_CATCH_BC 6= CATCH_BC () H I

1 : NON_CATCH_BC < CATCH_BC ()

H J
0 : NON_FINALLY_BC = FINALLY_BC ()

1.6×10−1 H J
0 : NON_FINALLY_BC > FINALLY_BC (?)

N/A
H J

1 : NON_FINALLY_BC 6= FINALLY_BC () H J
1 : NON_FINALLY_BC < FINALLY_BC (?)

the EH instruction coverage (EH_IC) is lower than non-EH instruction coverage (NON_EH_IC).

This perception is confirmed by the statistical tests results that reject the KS null hypothesis

H A
0 : NON_EH_IC= EH_IC and did not reject the MW null hypothesis H A

0 : NON_EH_IC> EH_IC.

This indicates that not only the instruction coverage of EH and non-EH code are statistically

different but also that non-EH code is statistically more covered than EH code.

On the other hand, when considering branch coverage, EH code (EH_BC) seems to

be more covered than non-EH code (NON_EH_BC). Indeed, this perception is confirmed by the

statistical tests results that reject the KS null hypothesis H B
0 : NON_EH_BC = EH_BC and also

reject the MW null hypothesis H B
0 : NON_EH_BC> EH_BC. This is a counter intuitive observation

given the results previously observed in our study. We address this during our study’ discussion

(see Chapter 6).

Finally, different from instruction and branch coverage, the values of method cover-

age for EH code (THROWS_MC) and non-EH code (NON_THROWS_MC) are visually similar. However,

this perception is not confirmed by the statistical tests that reject both the KS null hypothesis

43

Figure 7 – Overall EH and non-EH code coverage boxplots of studied libraries.

H C
0 : NON_THROWS_MC = THROWS_MC and the MW null hypothesis H C

0 : NON_THROWS_MC >

THROWS_MC. This indicates that methods without a throws clause are significantly less covered

than methods with a throws clause. Implications for this finding are also addressed in our

discussion chapter.

Fig. 8 presents boxplots detailing instruction coverage metrics for non-EH and EH

code. It depicts coverage values for throw instructions and instructions in try, catch and

finally blocks, respectively. When comparing the boxplots of THROW_IC and NON_THROW_IC

metrics, one may notice that the throw instructions are less covered than the non-throw instruc-

tions. This perception is confirmed by the statistical tests results that reject the KS null hypothesis

H D
0 : NON_THROW_IC = THROW_IC and accept the MW null hypothesis H D

0 : NON_THROW_IC >

THROW_IC. This indicates that even though the systems under study present a fairly high level

of instruction coverage (see Fig. 2), the instructions that actually raise exceptions are not well

covered.

When comparing the boxplots of CATCH_IC and NON_CATCH_IC coverage, one can

see that the instructions inside catch blocks are covered less than the instructions outside

catch blocks. Once again, the statistical tests results confirm this perception by rejecting the

KS null hypothesis H F
0 : NON_CATCH_IC = CATCH_IC and accepting the MW null hypothe-

44

Figure 8 – The EH and non-EH instruction coverage boxplots of studied libraries.

sis H F
0 : NON_CATCH_IC > CATCH_IC. This represents additional evidence that EH code is

considerably less covered than non-EH code.

However, when we look at the coverage inside try and finally blocks and their

counterparts (i.e., the coverage of instructions outside try and finally blocks) we realize they

are similar. This perception is confirmed by the statistical tests when both the KS and MW null

hypotheses (H E
0 : NON_TRY_IC = TRY_IC and H G

0 : NON_FINALLY_IC = FINALLY_IC) are

accepted. Since try and finally blocks are commonly executed when no exceptional behavior

is exercised, this observation corroborates with previous findings that code that handle exceptions

are not properly tested.

The boxplots of Fig. 9 shows the branch coverage distribution of EH and non-EH

code. When comparing the boxplots of CATCH_BC and NON_CATCH_BC, one must notice that

branches inside catch blocks are less covered than branches outside catch blocks. Once

more, the statistical test results confirm this perception by rejecting the KS null hypothesis H I
0 :

NON_CATCH_BC = CATCH_BC and accepting the MW null hypothesis H I
0 : NON_CATCH_BC >

CATCH_BC.

However, when we compare the coverage of branches inside try and finally

blocks with their counterparts (the coverage of branches outside try and finally blocks) we

45

Figure 9 – The EH and non-EH branch coverage boxplots of studied libraries.

realize they are similar. This perception is also confirmed by the statistical tests when both

the KS and MW null hypotheses (H H
0 : NON_TRY_BC = TRY_BC and H J

0 : NON_FINALLY_BC

= FINALLY_BC) are accepted. Once again, all findings regarding branch coverage add to the

observation that code which raises and handle exceptions are statistically less covered than

regular code.

5.3 RQ3. What is the effectiveness of EH testing in long-lived Java libraries?�

�

	
Summary of RQ3: The systems under study present effective test suites for EH code, where

more than 78% of the defects being identified. However, the systems present difficulties in

identifying defects in finally blocks.

In this study, we employ mutation testing to assess the effectiveness of EH testing

in the libraries under study, as detailed in Section 4.2. In Table 7, we present results of the

mutation testing analysis we performed. For each mutation operator (see Chapter 4.3), we show

the number of mutants killed by the test suite, the number of mutants left alive, and the mutation

score.

Furthermore, in Fig. 10, we present boxplots showing the mutation score distribution

for all libraries and each mutation operator. Note that we computed the distributions considering

46

Table 7 – Details of the mutation testing analysis for each library. Column L indicates the number
of live mutants, column D indicates the number of killed mutants, and S indicates the
mutation score.

L
ib

ra
ry

CB
I

CB
D

CR
E

FB
D

PT
L

CB
R

TS
D

OV
ER

AL
L

L
D

S
L

D
S

L
D

S
L

D
S

L
D

S
L

D
S

L
D

S
L

D
S

B
C

E
L

1
6

0.
86

23
11

3
0.

83
23

11
3

0.
83

4
1

0.
20

0
3

1.
00

1
11

0.
92

11
0

29
6

0.
73

16
2

54
3

0.
77

B
ea

nU
til

s
1

9
0.

90
42

84
0.

67
24

10
2

0.
81

0
0

0.
00

0
8

1.
00

0
13

1.
00

18
5

17
9

0.
49

25
2

39
5

0.
61

C
L

I
0

0
0.

00
1

10
0.

91
1

10
0.

91
0

1
1.

00
0

0
0.

00
0

0
0.

00
1

28
0.

97
3

49
0.

94
C

od
ec

0
0

0.
00

3
18

0.
86

3
18

0.
86

8
0

0.
00

0
0

0.
00

0
0

0.
00

42
55

0.
57

56
91

0.
62

C
ol

le
ct

io
ns

0
0

0.
00

4
24

0.
86

4
24

0.
86

1
0

0.
00

0
1

1.
00

0
0

0.
00

15
9

56
6

0.
78

16
8

61
5

0.
79

C
om

pr
es

s
0

5
1.

00
13

05
7

0.
81

14
56

0.
80

36
3

0.
08

0
3

1.
00

9
0

0.
00

21
6

20
9

0.
49

28
8

33
3

0.
54

C
on

fig
ur

at
io

n
1

6
0.

86
3

12
5

0.
98

3
12

5
0.

98
2

93
0.

98
0

4
1.

00
0

4
1.

00
21

26
4

0.
93

30
62

1
0.

95
D

B
C

P
3

7
0.

70
61

7
16

3
0.

21
61

1
16

9
0.

22
6

17
0.

74
0

8
1.

00
0

7
1.

00
79

20
0

0.
72

13
16

57
1

0.
30

D
bU

til
s

0
0

0.
00

11
20

0.
65

11
20

0.
65

3
17

0.
85

0
1

1.
00

0
0

0.
00

30
16

0.
35

55
74

0.
57

D
ig

es
te

r
4

1
0.

20
22

41
0.

65
22

41
0.

65
5

2
0.

29
0

3
1.

00
1

3
0.

75
79

31
0.

28
13

3
12

2
0.

48
E

m
ai

l
0

3
1.

00
2

02
7

0.
93

3
26

0.
90

8
1

0.
11

0
1

1.
00

0
3

1.
00

2
72

0.
97

15
13

3
0.

90
E

xe
c

0
2

1.
00

6
15

0.
71

4
17

0.
81

3
2

0.
40

0
0

0.
00

0
1

1.
00

0
29

1.
00

13
66

0.
84

Fi
le

U
pl

oa
d

0
0

0.
00

7
15

0.
68

6
16

0.
73

5
1

0.
17

0
0

0.
00

0
0

0.
00

26
24

0.
48

44
56

0.
56

Fu
nc

to
r

0
0

0.
00

0
0

0.
00

0
0

0.
00

0
0

0.
00

0
0

0.
00

0
0

0.
00

90
25

0.
22

90
25

0.
22

IO
0

2
1.

00
40

38
0.

49
46

32
0.

41
2

6
0.

75
0

1
1.

00
0

2
1.

00
37

25
5

0.
87

12
5

33
6

0.
73

L
an

g
0

2
1.

00
13

05
8

0.
82

15
56

0.
79

1
4

0.
80

0
3

1.
00

0
1

1.
00

88
29

2
0.

77
11

7
41

6
0.

78
M

at
h

6
6

0.
50

21
09

4
0.

82
20

09
5

0.
83

4
0

0.
00

0
5

1.
00

4
5

0.
56

41
4

10
80

0.
72

46
9

12
85

0.
73

N
et

1
5

0.
83

31
12

9
0.

81
26

13
4

0.
84

9
15

0.
63

1
5

0.
83

0
3

1.
00

47
11

2
0.

70
11

5
40

3
0.

78
Po

ol
1

3
0.

75
8

05
7

0.
88

8
05

7
0.

88
46

33
0.

42
0

7
1.

00
0

1
1.

00
15

64
0.

81
78

22
2

0.
74

Pr
ox

y
0

0
0.

00
0

23
1.

00
1

22
0.

96
0

0
0.

00
0

0
0.

00
0

0
0.

00
0

36
1.

00
1

81
0.

99
Va

lid
at

or
0

1
1.

00
10

30
0.

75
11

29
0.

73
1

0
0.

00
0

3
1.

00
0

2
1.

00
18

50
0.

74
40

11
5

0.
74

G
so

n
0

3
1.

00
6

49
0.

89
5

50
0.

91
1

4
0.

80
0

1
1.

00
0

4
1.

00
26

19
6

0.
88

38
30

7
0.

89
H

am
cr

es
t

0
0

0.
00

1
11

0.
92

1
11

0.
92

0
0

0.
00

0
0

0.
00

0
0

0.
00

7
12

0.
63

9
34

0.
79

Js
ou

p
0

0
0.

00
2

30
0.

94
2

30
0.

94
1

2
0.

67
0

3
1.

00
0

0
0.

00
11

35
0.

76
16

10
0

0.
86

JU
ni

t
0

5
1.

00
7

08
3

0.
92

9
81

0.
90

6
11

0.
65

0
2

1.
00

0
3

1.
00

20
81

0.
80

42
26

6
0.

86
M

oc
ki

to
1

10
0.

91
4

07
6

0.
95

7
73

0.
91

7
13

0.
65

0
0

0.
00

0
0

0.
00

25
21

1
0.

89
44

38
3

0.
90

X
-S

tr
ea

m
1

2
0.

67
36

19
6

0.
84

32
20

0
0.

86
8

11
0.

58
2

19
0.

90
1

1
0.

50
16

0
30

1
0.

65
24

0
73

0
0.

75

47

Figure 10 – Mutation scores distribution bloxpots.

only the mutation scores of libraries in which we were able to generate at le ast one mutant using

the mutation operator associated with the boxplot. In this study, we generated a total of 12,331

software mutants as follows: 98 (CBI), 2,519 (CBD), 2,519 (CRE), 404 (FBD), 84 (PTL), 80 (CBR),

and 6,627 (TSD).

When looking at both the table and figure, one must notice that the systems under

study achieved mean and median values mutation score above 70% for all but one mutation oper-

ator (FBD), which is considerably high when compared with other studies in the literature (Reales

et al., 2014; GOPINATH et al., 2014; INOZEMTSEVA; HOLMES, 2014b). When taking into

account all mutation operators, the median mutation score achieved is 78%. This indicates that

the test suites in the studied libraries managed to detect a median of 78% of artificially injected

defects. Operators such as CBR and PTL, for example, present median mutation scores of 100%,

indicating that the test suites of most of the systems under study identified all bugs related to

wrongly declared exceptions in catch blocks and wrongly placed instructions in try blocks.

Nevertheless, this is not the case for all mutation operators. We observe a median

mutation score of 59% for the FBD operator, reaching even 0% for some systems. This indicates

that the libraries under study struggle in identifying defects in finally blocks. This is an

interesting observation because we showed in the previous research question that finally

48

blocks are highly covered. Hence, although being able to exercise EH code in finally blocks,

the test suites have difficulties in actually identifying defects in them.

It is important to notice that not all mutation operators generated a similar number of

mutants. On the contrary, there are large differences between operators, such as TSD generating

a total of 6,627 mutants for all systems and CBR generating only 80 mutants overall. However,

there seems to be no relationship between the number of mutants generated as the mutation

score achieved. For example, two operators with a small number of generated mutants, such

as FBD and PTL, represent the operators with smallest and highest median of mutation score,

respectively. The relationship between number of mutants and the respective effectiveness of the

test suite for this type of defects is still open for investigation.

5.4 RQ4. To what extent are there EH bugs that are statistically harder to detect by test

suites of long-lived Java libraries?�

�

	
Summary of RQ4: There are EH bugs that are statistically harder to detect than others. In

specfic, EH bugs of types FBD, TSD, CRE, and CBD are more difficult to detect than EH bugs

of type PTL.

To properly answer this research question, we employed a statistical test to verify

whether there is any significant difference between the effectiveness of the studied libraries’

test suites in detecting different types of artificially injected EH bugs (i.e., EH mutants). We

used the Friedman test (FRIEDMAN, 1940), which aims at quantifying the consistency of the

results obtained by a test suite when applied over several types of EH bugs, generated using

different type of mutation operators, according to their average performance rankings (for each

test suite, the highest mutation score getting rank 1, the second-highest rank 2 and so on). In

the current setting, the null hypothesis states that there is no statistical difference in detecting

different types of EH bugs. If the Friedman null hypothesis is rejected, a post-hoc test must be

applied to identify what type of EH bug is significantly easier/harder to detect than others. For

this purpose, we adopt the post-hoc Nemenyi test (DEMsAR, 2006).

To ensure that the Friedman’s test will yield significant results, the data points cannot

present missing values. Since XaviEH could not generate mutants for a few operators in some

libraries (see Table 7), we selected for this analysis only the test suites of libraries that XaviEH

could generate mutants for all mutation operators, which represents a total of 15 studied libraries.

Despite losing data points for this analysis, we can still observe statistically significant results

49

Table 8 – The ranks and average rank of mutation scores.

Library CBI CBD CRE FBD PTL CBR TSD

BCEL 3.0 4.5 4.5 7.0 1.0 2.0 6.0
Compress 1.5 3.0 4.0 6.0 1.5 7.0 5.0
Configuration 7.0 4.5 4.5 3.0 1.5 1.5 6.0
DBCP 5.0 7.0 6.0 3.0 1.5 1.5 4.0
Digester 7.0 3.5 3.5 5.0 1.0 2.0 6.0
Email 2.0 5.0 6.0 7.0 2.0 2.0 4.0
IO 2.0 6.0 7.0 5.0 2.0 2.0 4.0
Lang 2.0 4.0 6.0 5.0 2.0 2.0 7.0
Math 6.0 3.0 2.0 7.0 1.0 5.0 4.0
Net 3.5 5.0 2.0 7.0 3.5 1.0 6.0
Pool 6.0 3.5 3.5 7.0 1.5 1.5 5.0
Validator 2.0 4.0 6.0 7.0 2.0 2.0 5.0

Gson 2.0 5.0 4.0 7.0 2.0 2.0 6.0
JUnit 2.5 4.0 5.0 7.0 2.0 2.0 6.0
X-Stream 4.0 3.0 2.0 6.0 1.0 7.0 5.0

Average Rank 3.7 4.3 4.4 5.9 1.7 2.7 5.3

because Friedman’s test guidelines state that p-values are reliable for more than 6 measurements

(libraries test suites in our study).

For each libraries’ test suite, we used the set of all 7 EH mutation operators and

ranked them according to their mutation scores. Consider the BCEL library, for example. The

PTL operator presented the highest mutation score, which indicates that this was the easiest type

of EH bug to detect in this library, yielding a rank 1. Similarly, the FBD operator received the

rank 7 because it presented the lowest mutation score for all operators in the BCEL library. Next,

we averaged the rankings for all mutation operators and produced the final average ranking. We

present all computed rankings in Table 8.

According to the Friedman test, the average ranking difference is significant with

p-value = 1.2×10−4. Hence, we attest that there exists types of EH bugs that are statistically

harder to identify by the test-suites under study. Next, we employed Nemenyi’s post-hoc test,

which showed a Critical Difference of Critical Difference (CD) = 2.32. In this context, the

performance of two mutation operators is said to be significantly different if their average ranking

differ by at least the CD level. The CD metric is computed using Equation 5.1, where k is the

number of mutation operators, N is the number of test suites (libraries), and qα is a pre-calculated

critical value that one must pick up from a reference table by observing the value of k and the

50

confidence interval (α). Thus, for our study k = 7, N = 15, α = 0.05, and q0.05 = 2.948.

CD= qα

√
k(k+1)

6N
(5.1)

Based on these results, we can conclude that the FBD and TSD mutation operators

generate EH bugs that are statistically more difficult to detect than EH bugs generated by the

PTL and CBR mutation operators. Additionally, the CRE and CBD operators generate EH bugs

that are significantly harder to detect than EH bugs generated by the PTL operator. Even though

we observe differences in the ranking between FBD, TSD, CRE, and CBD, we cannot ascertain

significant statistical difference between them. This indicates that, according to our empirical

study, these are equally the most difficult types of EH bugs to detect.

51

6 DISCUSSION

In this chapter, we sum up the most important findings of our empirical study and

discuss their implications. Finally, we briefly discuss on how XaviEH could be used in practice.

6.1 On the Adequacy of EH Testing

In RQ1-2, we present empirical and statistical evidence that EH code is less covered

than regular code in the systems under study. Moreover, we show that within coverage of EH

code, instructions and branches inside catch blocks and throw instructions are statistically less

covered than instructions and branches in try and finally blocks. This indicates that not only

EH code (statements in catch blocks) is not properly covered by test suites but also that these

suites are not able to reach the code parts responsible to raise exceptions (throw statements).

In fact, we have computed the Spearman’s correlation between throw instruction coverage

(THROW_IC) and catch blocks’ instruction (CATCH_IC) and branch (CATCH_BC) coverage. The

result shows a strong correlation in both cases with ρ = 0.582664 (THROW_IC and CATCH_IC)

and ρ = 0.674882 (THROW_IC and CATCH_BC). This is an worrisome finding since the main goal

of EH testing should be raising exceptions in order to test exceptional behaviors in the programs.

For without even raising exceptions, developers cannot test whether the code to handle the

exception is correct.

Hence, our study shows that developers need better support in designing test cases

that exercise exceptional behaviors. In addition to creating guidelines, this may be accomplished

through search-based testing (MCMINN, 2004), where optimization algorithms and metaheuris-

tics are used to automatically generate test cases according to a certain objective function. In this

case, one could set the coverage of throw instructions and branches and instructions inside catch

blocks as a goal. To the best of our knowledge, there is few work in this direction (ROMANO et

al., 2011).

6.2 On the Effectiveness of EH Testing

RQ3-4 show that despite not properly covering EH code, the test suites of the

libraries under study are surprisingly effective in identifying artificially injected faults (EH

mutants). Most of the systems presented mutation scores of more than 70% for most mutation

operators. However, this was not the case for all operators. In fact, we showed that there do exist

52

statistically harder types of EH bugs to identify. These are commonly related to mutations in

throw statements and catch and finally blocks. This is an interesting finding that corroborate

with what we have previously discussed. The code in EH mechanism that actually raises (throw

statements) and handles exceptions (statements in catch blocks) seems to be the most fragile, in

which it is less covered and more difficult to identify faults.

6.3 On the Usefulness of XaviEH

Our empirical study was powered by XaviEH, a tool that automatically generates

a complete analysis and report of EH coverage and mutation testing for a certain Java system.

XaviEH can be easily employed by developers as an EH testing diagnostics tool. Based on

XaviEH outputs, developers can plan and improve their test suites regarding EH code.

Furthermore, given its full automated features, XaviEH could be also accommodated

in continuous integration pipelines. In this context, developers would receive EH testing reports

in each commit, which could create and foster a culture of continuous improvement of EH testing

practices. In addition, XaviEH’s outputs could be employed as metrics and proxies of internal

quality, as well as goals to be achieved by the development team.

53

7 THREATS TO THE VALIDITY

The threats to the validity of our investigation are discussed using the four threats

classification (conclusion, construct, internal, and external validity) presented by (WOHLIN et

al., 2012).

7.1 Conclusion Validity

Threats to the conclusion validity are concerned with issues that affect the ability to

draw correct conclusions regarding the treatment and the outcome of an experiment. To deal with

this threat, we carefully chose proper statistical tests (KS, MW, Friedman, and Nemenyi tests)

that have been investigated and validated in previous studies (KUMAR et al., 2011), (JI et al.,

2009). We also selected correlation measures (Spearman’s rank-order correlation coefficient) to

investigate the relationship between different aspects of EH testing (by means of code coverage

and mutation analysis) and its effectiveness. Additionally, we have observed the assumptions

(e.g., samples distribution, dependence, and size) of all statistical tests we used, trying to avoid

wrong conclusions. Finally, regarding the limited set of long-lived Java libraries, we collected

them from open source communities following a carefully defined set of criteria to ensure the

disposal of other libraries that were not aligned with the study.

7.2 Internal Validity

Threats to the internal validity are influences that can affect the independent variable

with respect to causality, without the researcher’s knowledge. Thus they threat the conclusion

about a possible causal relationship between treatment and outcome. Even not being interested

in drawing causal relationships in our study, we have identified that some independent variables

not known by us have some influence on the relationship between the EH code coverage and the

mutation scores distribution in the studied libraries.

7.3 Construct Validity

Construct validity concerns generalizing the result of the study to the concept or

theory behind the study. To avoid inconsistencies in the interpretation of the results and research

question, a peer debriefing approach was adopted for both research design validation and

54

document review. Additionally, we developed a tool, XaviEH, in order to automate most of the

study’s parts, with an aim to avoid or alleviate the occurrence of human-made mistakes (or bias)

during the execution of our experiments.

7.4 External Validity

Threats to external validity are conditions that limit our ability to generalize the

results of our study to industrial practice. The main threats to this validity are related to the

domain and sample size (i.e., the 27 libraries) we used in this study. Concerning the sample

domain, we try to deal with this threat by arguing that the library domain is an interesting one

that presents several and different usage scenarios, which is quite interesting from the a testing

evaluation point of view. Additionally, concerning the sample size, we dealt with this threat

by using diversity and longevity criteria. We chose libraries from Apache and picked up other

well-know libraries developed by other development teams to get more diversity in terms of team

knowledge, skills, and coding practices. Finally, we chose libraries that are long-lived as a way

to guarantee a degree of maturity and stability.

55

8 CONCLUSION AND FINAL REMARKS

In this study, we empirically explored EH testing practices by analyzing in which

degree the EH code is covered by unit-test suites of 27 long-lived java libraries and how effective

are these test suites in detecting artificially injected EH faults. Our findings suggest that, indeed,

EH code is, in general, less covered than non-EH code. Additionally, we gather evidence

indicating that the code within catch blocks and the throw statements have a low coverage

degree. However, even being less covered, the mutation analysis shows that, the test suites are

able to detect most of artificial EH faults.

To the best of our knowledge, this is the first study that empirically addresses this

concern. Thus, the results achieved in this study can be seen as a starting point for further

investigation regarding testing practices for EH code.

This study was deeply supported by the XaviEH tool. Without this level of automa-

tion, it would not be possible to manually extract and synthesize information regarding EH

code coverage and EH mutation scores. Therefore, we freely turn it available to the community

(LIMA et al., 2020). We include XaviEH’s source code and usage instructions.

As future work, we are interested in (i) investigating the performance of the libraries

test suites against real-world bugs; (ii) investigating the performance of the libraries test suites

in an software evolution scenario; (iii) exploring software systems from different domains; and

(iv) inspecting the test suites to identify and catalog what practices make a test suite better than

others regarding EH testing.

56

BIBLIOGRAPHY

AHMED, I.; GOPINATH, R.; BRINDESCU, C.; GROCE, A.; JENSEN, C. Can
testedness be effectively measured? In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. New York, NY,
USA: ACM, 2016. (FSE 2016), p. 547–558. ISBN 978-1-4503-4218-6. Disponível em:
http://doi.acm.org/10.1145/2950290.2950324.

Antinyan, V.; Derehag, J.; Sandberg, A.; Staron, M. Mythical unit test coverage. IEEE
Software, v. 35, n. 3, p. 73–79, May 2018.

BARBOSA, E. A.; GARCIA, A.; BARBOS, S. D. J. Categorizing faults in exception
handling: A study of open source projects. In: Software Engineering (SBES), 2014 Brazilian
Symposium on. [S. l.: s. n.], 2014. p. 11–20.

BAVOTA, G.; De Lucia, A.; Di Penta, M.; OLIVETO, R.; PALOMBA, F. An experimental
investigation on the innate relationship between quality and refactoring. Journal of Systems
and Software, Elsevier Ltd., v. 107, p. 1–14, sep 2015. ISSN 01641212.

BLOCH, J. Effective Java (2Nd Edition) (The Java Series). 2. ed. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2008. ISBN 9780321356680.

CACHO, N.; BARBOSA, E. A.; ARAUJO, J.; PRANTO, F.; GARCIA, A.; CESAR, T.;
SOARES, E.; CASSIO, A.; FILIPE, T.; GARCIA, I. How does exception handling behavior
evolve? an exploratory study in java and c# applications. In: IEEE. Software Maintenance and
Evolution (ICSME), 2014 IEEE International Conference on. [S. l.], 2014. p. 31–40.

CACHO, N.; CÉSAR, T.; FILIPE, T.; SOARES, E.; CASSIO, A.; SOUZA, R.; GARCIA,
I.; BARBOSA, E. A.; GARCIA, A. Trading robustness for maintainability: An empirical
study of evolving c# programs. In: Proceedings of the 36th International Conference on
Software Engineering. New York, NY, USA: ACM, 2014. (ICSE 2014), p. 584–595. ISBN
978-1-4503-2756-5. Disponível em: http://doi.acm.org/10.1145/2568225.2568308.

CHANG, B.-M.; CHOI, K. A review on exception analysis. Inf. Softw. Technol.,
Butterworth-Heinemann, Newton, MA, USA, v. 77, n. C, p. 1–16, set. 2016. ISSN 0950-5849.

CHEN, H.; DOU, W.; JIANG, Y.; QIN, F. Understanding exception-related bugs in large-scale
cloud systems. In: Proceedings of the 34rd ACM/IEEE International Conference on
Automated Software Engineering. New York, NY, USA: ACM, 2019. (ASE 2019).

COELHO, R.; ALMEIDA, L.; GOUSIOS, G.; DEURSEN, A. V.; TREUDE, C. Exception
handling bug hazards in android. Empirical Softw. Engg., Kluwer Academic Publishers,
Hingham, MA, USA, v. 22, n. 3, p. 1264–1304, jun. 2017. ISSN 1382-3256.

DEMsAR, J. Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res., JMLR.org, v. 7, p. 1–30, dez. 2006. ISSN 1532-4435. Disponível em:
http://dl.acm.org/citation.cfm?id=1248547.1248548.

Digkas, G.; Lungu, M.; Avgeriou, P.; Chatzigeorgiou, A.; Ampatzoglou, A. How do developers
fix issues and pay back technical debt in the apache ecosystem? In: 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering (SANER).
[S. l.: s. n.], 2018. p. 153–163.

http://doi.acm.org/10.1145/2950290.2950324
http://doi.acm.org/10.1145/2568225.2568308
http://dl.acm.org/citation.cfm?id=1248547.1248548

57

EBERT, F.; CASTOR, F.; SEREBRENIK, A. An exploratory study on exception handling bugs
in java programs. J. Syst. Softw., Elsevier Science Inc., New York, NY, USA, v. 106, n. C, p.
82–101, ago. 2015. ISSN 0164-1212.

ECK, M.; PALOMBA, F.; CASTELLUCCIO, M.; BACCHELLI, A. Understanding flaky
tests: The developer’s perspective. In: Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. New York, NY, USA: ACM, 2019. (ESEC/FSE 2019), p. 830–840.
ISBN 978-1-4503-5572-8. Disponível em: http://doi.acm.org/10.1145/3338906.3338945.

FILHO, J. L. M.; ROCHA, L.; ANDRADE, R.; BRITTO, R. Preventing erosion in exception
handling design using static-architecture conformance checking. In: Proceedings of the 11th
European Conference on Software Architecture. Cham: Springer International Publishing,
2017. (ECSA ’17), p. 67–83. ISBN 978-3-319-65831-5.

FRIEDMAN, M. A comparison of alternative tests of significance for the problem of m rankings.
The Annals of Mathematical Statistics, The Institute of Mathematical Statistics, v. 11, n. 1, p.
86–92, 03 1940.

GALLARDO, R.; HOMMEL, S.; KANNAN, S.; GORDON, J.; ZAKHOUR, S. B. The Java
Tutorial: A Short Course on the Basics. 6th. ed. [S. l.]: Addison-Wesley Professional, 2014.
864 p. (Java Series). ISBN 0134034082.

GARCIA, A. F.; RUBIRA, C. M.; ROMANOVSKY, A.; XU, J. A comparative study of
exception handling mechanisms for building dependable object-oriented software. Journal of
Systems and Software, v. 59, n. 2, p. 197–222, 2001. ISSN 0164-1212.

GOODENOUGH, J. B.; GERHART, S. L. Toward a theory of test data selection. IEEE
Transactions on software Engineering, IEEE, n. 2, p. 156–173, 1975.

GOPINATH, R.; JENSEN, C.; GROCE, A. Code coverage for suite evaluation by developers.
In: Proceedings of the 36th International Conference on Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2014. (ICSE 2014), p. 72–82. ISBN
9781450327565. Disponível em: https://doi.org/10.1145/2568225.2568278.

HILTON, M.; BELL, J.; MARINOV, D. A large-scale study of test coverage evolution.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. New York, NY, USA: ACM, 2018. (ASE 2018), p. 53–63. ISBN
978-1-4503-5937-5. Disponível em: http://doi.acm.org/10.1145/3238147.3238183.

INOZEMTSEVA, L.; HOLMES, R. Coverage is not strongly correlated with test suite
effectiveness. In: Proceedings of the 36th International Conference on Software
Engineering. New York, NY, USA: ACM, 2014. (ICSE 2014), p. 435–445. ISBN
978-1-4503-2756-5. Disponível em: http://doi.acm.org/10.1145/2568225.2568271.

INOZEMTSEVA, L.; HOLMES, R. Coverage is not strongly correlated with test suite
effectiveness. In: Proceedings of the 36th International Conference on Software
Engineering. New York, NY, USA: Association for Computing Machinery, 2014. (ICSE 2014),
p. 435–445. ISBN 9781450327565. Disponível em: https://doi.org/10.1145/2568225.2568271.

IVANKOVIć, M.; PETROVIć, G.; JUST, R.; FRASER, G. Code coverage at google. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering

http://doi.acm.org/10.1145/3338906.3338945
https://doi.org/10.1145/2568225.2568278
http://doi.acm.org/10.1145/3238147.3238183
http://doi.acm.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271

58

Conference and Symposium on the Foundations of Software Engineering. New York, NY,
USA: ACM, 2019. (ESEC/FSE 2019), p. 955–963. ISBN 978-1-4503-5572-8. Disponível em:
http://doi.acm.org/10.1145/3338906.3340459.

JI, C.; CHEN, Z.; XU, B.; WANG, Z. A new mutation analysis method for testing java
exception handling. In: IEEE. Computer Software and Applications Conference, 2009.
COMPSAC’09. 33rd Annual IEEE International. [S. l.], 2009. v. 2, p. 556–561.

JUST, R.; JALALI, D.; INOZEMTSEVA, L.; ERNST, M. D.; HOLMES, R.; FRASER, G. Are
mutants a valid substitute for real faults in software testing? In: Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. New York,
NY, USA: ACM, 2014. (FSE 2014), p. 654–665. ISBN 978-1-4503-3056-5.

KECHAGIA, M.; SPINELLIS, D. Undocumented and unchecked: Exceptions that spell trouble.
In: Proceedings of the 11th Working Conference on Mining Software Repositories. New
York, NY, USA: ACM, 2014. (MSR 2014), p. 312–315. ISBN 978-1-4503-2863-0.

KOCH, S. Software evolution in open source projects—a large-scale investigation. J. Softw.
Maint. Evol., John Wiley & Sons, Inc., USA, v. 19, n. 6, p. 361–382, nov. 2007. ISSN
1532-060X.

Kochhar, P. S.; Lo, D.; Lawall, J.; Nagappan, N. Code coverage and postrelease defects: A
large-scale study on open source projects. IEEE Transactions on Reliability, v. 66, n. 4, p.
1213–1228, Dec 2017.

KOCHHAR, P. S.; THUNG, F.; LO, D. Code coverage and test suite effectiveness: Empirical
study with real bugs in large systems. In: 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). [S. l.: s. n.], 2015. p. 560–564.
ISSN 1534-5351.

KUMAR, K.; GUPTA, P.; PARJAPAT, R. New mutants generation for testing java programs.
In: SPRINGER. International Conference on Advances in Communication, Network, and
Computing. [S. l.], 2011. p. 290–294.

LIMA, L.; ROCHA, L.; BEZERRA, C.; PAIXAO, M. Replication package for the paper:
“Assessing Exception Handling Testing Practices in Open-Source Software Systems”.
2020. We do not wish to make work under review publicly available. Nevertheless, we are happy
to privately share with reviewers and editors if requested. Disponível em: https://to.be.disclosed.

MARINESCU, C. Are the classes that use exceptions defect prone? In: ACM. Proceedings of
the 12th International Workshop on Principles of Software Evolution and the 7th annual
ERCIM Workshop on Software Evolution. [S. l.], 2011. p. 56–60.

MARINESCU, C. Should we beware the exceptions? an empirical study on the eclipse project.
In: IEEE. Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 2013
15th International Symposium on. [S. l.], 2013. p. 250–257.

Martins, A. L.; Hanazumi, S.; Melo, A. C. V. d. Testing java exceptions: An instrumentation
technique. In: 2014 IEEE 38th International Computer Software and Applications
Conference Workshops. [S. l.: s. n.], 2014. p. 626–631. ISSN null.

MCMINN, P. Search-based software test data generation: a survey. Software testing,
Verification and reliability, Wiley Online Library, v. 14, n. 2, p. 105–156, 2004.

http://doi.acm.org/10.1145/3338906.3340459
https://to.be.disclosed

59

NAGAPPAN, M.; ZIMMERMANN, T.; BIRD, C. Diversity in software engineering research.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering -
ESEC/FSE 2013. New York, New York, USA: ACM Press, 2013. p. 466.

OLIVEIRA, J.; BORGES, D.; SILVA, T.; CACHO, N.; CASTOR, F. Do android
developers neglect error handling? a maintenance-centric study on the relationship between
android abstractions and uncaught exceptions. J. Syst. Softw., Elsevier Science Inc.,
New York, NY, USA, v. 136, n. C, p. 1–18, fev. 2018. ISSN 0164-1212. Disponível em:
https://doi.org/10.1016/j.jss.2017.10.032.

OSMAN, H.; CHIs, A.; CORRODI, C.; GHAFARI, M.; NIERSTRASZ, O. Exception evolution
in long-lived java systems. In: Proceedings of the 14th International Conference on Mining
Software Repositories. Piscataway, NJ, USA: IEEE Press, 2017. (MSR ’17), p. 302–311. ISBN
978-1-5386-1544-7.

PáDUA, G. B. de; SHANG, W. Revisiting exception handling practices with exception flow
analysis. In: 2017 IEEE 17th International Working Conference on Source Code Analysis
and Manipulation (SCAM). [S. l.: s. n.], 2017. p. 11–20.

PáDUA, G. B. de; SHANG, W. Studying the prevalence of exception handling anti-patterns.
In: Proceedings of the 25th International Conference on Program Comprehension.
Piscataway, NJ, USA: IEEE Press, 2017. (ICPC’17), p. 328–331. ISBN 978-1-5386-0535-6.

PáDUA, G. B. de; SHANG, W. Studying the relationship between exception handling practices
and post-release defects. In: Proceedings of the 15th International Conference on Mining
Software Repositories. New York, NY, USA: ACM, 2018. (MSR ’18), p. 564–575. ISBN
978-1-4503-5716-6. Disponível em: http://doi.acm.org/10.1145/3196398.3196435.

PAIXAO, M.; KRINKE, J.; HAN, D.; RAGKHITWETSAGUL, C.; HARMAN, M. Are
developers aware of the architectural impact of their changes? In: ASE 2017 - Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software Engineering. [S.
l.: s. n.], 2017.

PAPADAKIS, M.; SHIN, D.; YOO, S.; BAE, D.-H. Are mutation scores correlated with real
fault detection?: A large scale empirical study on the relationship between mutants and real
faults. In: Proceedings of the 40th International Conference on Software Engineering. New
York, NY, USA: ACM, 2018. (ICSE ’18), p. 537–548. ISBN 978-1-4503-5638-1. Disponível em:
http://doi.acm.org/10.1145/3180155.3180183.

PAWLAK, R.; MONPERRUS, M.; PETITPREZ, N.; NOGUERA, C.; SEINTURIER, L. Spoon:
A library for implementing analyses and transformations of java source code. Softw. Pract.
Exper., John Wiley & Sons, Inc., New York, NY, USA, v. 46, n. 9, p. 1155–1179, set. 2016.
ISSN 0038-0644. Disponível em: https://doi.org/10.1002/spe.2346.

RASHKOVITS, R.; LAVY, I. Students’ misconceptions of java exceptions. In: RAHMAN, H.;
MESQUITA, A.; RAMOS, I.; PERNICI, B. (Ed.). Proceedings of the 7th Mediterranean
Conference on Information Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
(MCIS ’12), p. 1–21. ISBN 978-3-642-33244-9.

Reales, P.; Polo, M.; Fernández-Alemán, J. L.; Toval, A.; Piattini, M. Mutation testing. IEEE
Software, v. 31, n. 3, p. 30–35, May 2014. ISSN 1937-4194.

https://doi.org/10.1016/j.jss.2017.10.032
http://doi.acm.org/10.1145/3196398.3196435
http://doi.acm.org/10.1145/3180155.3180183
https://doi.org/10.1002/spe.2346

60

ROMANO, D.; PENTA, M. D.; ANTONIOL, G. An approach for search based testing of null
pointer exceptions. In: IEEE. 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation. [S. l.], 2011. p. 160–169.

SAWADPONG, P.; ALLEN, E. B. Software defect prediction using exception handling call
graphs: A case study. In: IEEE. High Assurance Systems Engineering (HASE), 2016 IEEE
17th International Symposium on. [S. l.], 2016. p. 55–62.

SCHWARTZ, A.; PUCKETT, D.; MENG, Y.; GAY, G. Investigating faults missed by test suites
achieving high code coverage. Journal of Systems and Software, v. 144, p. 106 – 120, 2018.
ISSN 0164-1212.

SHAH, H.; GöRG, C.; HARROLD, M. J. Why do developers neglect exception handling? In:
Proceedings of the 4th International Workshop on Exception Handling. New York, NY,
USA: ACM, 2008. (WEH ’08), p. 62–68. ISBN 978-1-60558-229-0.

SHAH, H.; GORG, C.; HARROLD, M. J. Understanding exception handling: Viewpoints of
novices and experts. IEEE Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA, v. 36, n. 2, p.
150–161, mar. 2010. ISSN 0098-5589.

SHAH, H.; HARROLD, M. J. Exception handling negligence due to intra-individual goal
conflicts. In: Proceedings of the 2009 ICSE Workshop on Cooperative and Human Aspects
on Software Engineering. Washington, DC, USA: IEEE Computer Society, 2009. (CHASE
’09), p. 80–83. ISBN 978-1-4244-3712-2.

SHAHROKNI, A.; FELDT, R. A systematic review of software robustness. Inf. Softw. Technol.,
Butterworth-Heinemann, Newton, MA, USA, v. 55, n. 1, p. 1–17, jan. 2013. ISSN 0950-5849.

SHI, L.; ZHONG, H.; XIE, T.; LI, M. An empirical study on evolution of api documentation.
In: Proceedings of the 14th International Conference on Fundamental Approaches to
Software Engineering: Part of the Joint European Conferences on Theory and Practice
of Software. Berlin, Heidelberg: Springer-Verlag, 2011. (FASE’11/ETAPS’11), p. 416–431.
ISBN 978-3-642-19810-6.

SINHA, S.; HARROLD, M. J. Analysis and testing of programs with exception handling
constructs. IEEE Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA, v. 26, n. 9, p. 849–871,
set. 2000. ISSN 0098-5589. Disponível em: http://dx.doi.org/10.1109/32.877846.

VIEIRA, R.; SILVA, A. da; ROCHA, L.; GOMES, J. a. P. From reports to bug-fix commits:
A 10 years dataset of bug-fixing activity from 55 apache’s open source projects. In:
Proceedings of the Fifteenth International Conference on Predictive Models and Data
Analytics in Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2019. (PROMISE’19), p. 80–89. ISBN 9781450372336. Disponível em:
https://doi.org/10.1145/3345629.3345639.

WIRFS-BROCK, R. J. Toward exception-handling best practices and patterns. IEEE Software,
v. 23, n. 5, p. 11–13, Sept 2006. ISSN 0740-7459.

WOHLIN, C.; RUNESON, P.; HST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLN,
A. Experimentation in Software Engineering. [S. l.]: Springer Publishing Company,
Incorporated, 2012. ISBN 3642290434, 9783642290435.

http://dx.doi.org/10.1109/32.877846
https://doi.org/10.1145/3345629.3345639

61

YANG, Y.; ZHOU, Y.; SUN, H.; SU, Z.; ZUO, Z.; XU, L.; XU, B. Hunting for bugs in code
coverage tools via randomized differential testing. In: Proceedings of the 41st International
Conference on Software Engineering. Piscataway, NJ, USA: IEEE Press, 2019. (ICSE ’19), p.
488–499. Disponível em: https://doi.org/10.1109/ICSE.2019.00061.

ZHAI, H.; CASALNUOVO, C.; DEVANBU, P. Test coverage in python programs. In:
Proceedings of the 16th International Conference on Mining Software Repositories.
Piscataway, NJ, USA: IEEE Press, 2019. (MSR ’19), p. 116–120. Disponível em:
https://doi.org/10.1109/MSR.2019.00027.

ZHANG, P.; ELBAUM, S. Amplifying tests to validate exception handling code: An extended
study in the mobile application domain. ACM Trans. Softw. Eng. Methodol., ACM, New
York, NY, USA, v. 23, n. 4, p. 32:1–32:28, set. 2014. ISSN 1049-331X. Disponível em:
http://doi.acm.org/10.1145/2652483.

Zhong, H.; Mei, H. An empirical study on api usages. IEEE Transactions on Software
Engineering, v. 45, n. 4, p. 319–334, April 2019.

ZHU, H.; HALL, P. A. V.; MAY, J. H. R. Software unit test coverage and adequacy. ACM
Comput. Surv., ACM, New York, NY, USA, v. 29, n. 4, p. 366–427, dez. 1997. ISSN
0360-0300. Disponível em: http://doi.acm.org/10.1145/267580.267590.

https://doi.org/10.1109/ICSE.2019.00061
https://doi.org/10.1109/MSR.2019.00027
http://doi.acm.org/10.1145/2652483
http://doi.acm.org/10.1145/267580.267590

	Title page
	Acknowledgements
	Resumo
	Abstract
	List of symbols
	Sumário
	Introduction
	Background
	Software Test Criteria and Adequacy
	Mutation Testing and Analysis
	Java Exception Handling

	Related Work
	Exception Handling and Software Bugs
	Exception Handling Testing
	Code Coverage and Defect-Free Software

	Experimental Design
	Selection of Long-lived Java Libraries
	Assessing Exception Handling Testing with XaviEH
	Mutation Operators and Analysis
	Code Coverage Metrics
	Preliminary Observation of the Libraries' Overall Coverage
	XaviEH architecture

	Study Results
	RQ1. What is the test coverage of EH code in long-lived Java libraries?
	RQ2. What is the difference between EH and non-EH code coverage in long-lived Java libraries?
	RQ3. What is the effectiveness of EH testing in long-lived Java libraries?
	RQ4. To what extent are there EH bugs that are statistically harder to detect by test suites of long-lived Java libraries?

	Discussion
	On the Adequacy of EH Testing
	On the Effectiveness of EH Testing
	On the Usefulness of XaviEH

	Threats to the Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion and Final Remarks
	Bibliography

