EFEITO DO CALOR DE ADSORÇÃO DA MISTURA CO₂-N₂ NA TEMPERATURA DE SAÍDA DE UMA COLUNA DE LEITO FIXO

Correia, L.S.; Rios, R. B.; Moreno, J.D.; Torres, A.E.B.; Bastos-Neto, M; Cavalcante Jr, C.; D. C. S. Azevedo

Universidade Federal do Ceará, Departamento de Engenharia Química

E-mail para contato: celio@gpsa.ufc.br

RESUMO – O aumento das emissões de dióxido de carbono é considerado o principal responsável pelo aquecimento global. Tecnologias que envolvem a captura do CO₂, como a PSA (*Pressure Swing Adsorption*) vêm ganhando cada vez mais espaço em pesquisa e desenvolvimento como alternativa promissora para reduzir emissões desse gás na atmosfera, uma vez que são relativamente mais simples e apresentam consumo energético reduzido. O entendimento da dinâmica de adsorção de misturas de gases contendo CO₂, em materiais nanoporosos, é de grande importância para o design de uma unidade PSA. No presente trabalho serão apresentadas curvas de *breakthrough* de CO₂-N₂ em uma amostra de carbono ativado e seu respectivo perfil de temperatura na saída da coluna de leito fixo. A variação da concentração de CO₂ será comparada com resultados de simulações usando um modelo matemático baseado na aproximação *Linear Driving Force* (LDF) como forma de avaliar o efeito do calor de adsorção nas condições em que foram realizados os experimentos.

1. INTRODUÇÃO

O aumento das emissões de dióxido de carbono é considerado o principal responsável pelo aquecimento global. De acordo com a *Energy Agency Working Partyon Fossil Fuels* (2002), mais de 85% da demanda de energia do mundo é atendida por meio de combustíveis fósseis, o que representa a emissão anual de 25 bilhões de toneladas de CO_2 para a atmosfera. Instalações de geração de energia movidas a combustíveis fósseis são responsáveis por um terço das emissões mundiais de CO_2 para a atmosfera. Isto resultou em esforços de pesquisa global para mitigar as emissões de gases causadores do efeito estufa e na busca por maneiras de capturar CO_2 diretamente de gases de combustão de usinas termoelétricas. Com isso, os processos ditos *Carbon Capture and Storage* (CCS) tem atraído muita atenção nos últimos anos por apresentarem métodos promissores para reduzir as emissões de dióxido de carbono na atmosfera. Os processos CCS envolvem a captura, o transporte e o armazenamento do CO_2 , geralmente em reservatórios geológicos subterrâneos. A composição típica de um gás de pós-combustão emitido a partir de uma usina termoelétrica contém 15-20 mol% de CO_2 , 5-9% de O_2 e o restante de N_2 (Adeyemo *et al.*, 2010). Portanto, o mais importante sistema binário para representar os gases de combustão é a mistura CO_2 - N_2 (Belmabkhout e Sayari, 2009). O entendimento da dinâmica de adsorção da mistura CO_2-N_2 em materiais nanoporosos é de grande importância para o *design* e otimização de unidades industriais de separação, tais como uma PSA. Uma ideia mais precisa dessa dinâmica de adsorção é obtido através da avaliação de dados obtidos em leito fixo com misturas multicomponentes (Grande *et al.*, 2013), associados ao estudo do equilíbrio e cinética de adsorção, assim como dos efeitos térmicos relacionados. No presente trabalho serão apresentados perfis de concentração e de temperatura na saída de uma coluna de leito fixo recheada com carbono ativado e alimentada com uma mistura gasosa (15 mol% CO_2 , 75 mol% N_2 e 10 mol% He) a 298 K. Duas situações serão analisadas por modelagem e simulação, sendo a primeira admitindo geração de calor dentro do leito e tal calor estimado a partir do calor isostérico de adsorção de cada componente da mistura e do uso de um balanço de energia na modelagem do processo. Na segunda situação será considerado que não há geração de calor durante a dinâmica de adsorção. Dessa forma, pode-se avaliar se nas condições em que os experimentos foram realizados, o calor de adsorção tem influência considerável ou não no perfil de concentração da saída da coluna.

2. MATERIAIS E MÉTODOS

2.1. Procedimento Experimental

Um sistema dinâmico para obtenção de curvas de *breakthrough* multicomponente foi projetado e montado e consiste de quatro controladores de vazão volumétrica, uma válvula de *back pressure*, uma válvula micrométrica, uma válvula *multi-loop*, um transdutor de pressão, um multímetro digital e dois cromatógrafos, sendo o primeiro para regeneração do leito de adsorvente e medição de curvas de *breakthrough* monocomponente e o segundo para obtenção de *breakthrough* multicomponentes.

Um cromatógrafo (Varian, EUA), modelo 450 GC, foi utilizado para regenerar uma coluna em aço inox de comprimento de 250 mm e diâmetro interno de 4,6 mm recheada com uma amostra de carbono ativado denominado C141 (Carbomafra, Brasil). O controle de temperatura no forno do 450 GC permite regenerações sob temperaturas de até 723 K e taxas de aquecimento de 1 a 100K/min. A saída da coluna foi acoplada à entrada de um detector de condutividade térmica (TCD), o que permitiu a obtenção de curvas de *breakthrough* monocomponente. Já a saída do TCD foi conectada a uma válvula *multi*-loop (Valco, EUA) com 12 *loops* de 1 mL. Cada *loop* foi utilizado para coletar alíquotas da mistura CO₂-N₂ em hélio em tempos pré-definidos ao longo de um experimento sob fluxo contínuo. Após a coleta e armazenamento das alíquotas da fase fluida, a composição da mistura presente em cada *loop* é analisada com o auxílio de um segundo cromatógrafo (Varian, EUA), modelo 430 GC, que consta de uma coluna modelo 60/90 Carboxen 1000 (Sigma-Aldrich, Canadá), específica para gases como CO_2 e N₂. Termopares e transdutores de pressão foram instalados na entrada e na saída da coluna de leito fixo. A mistura gasosa foi preparada por meio de ajuste das vazões de cada gás com auxílio de controladores de vazão mássica SideTrak 840 (Sierra Instruments, EUA) nas seguintes proporções: 15 mol% CO_2 , 75 mol% N₂ e 10 mol% He.

Foram realizados ensaios de adsorção monocomponente para CO_2 e N_2 a 298 K utilizando uma balança de suspensão magnética e adotando o procedimento apresentado em Bastos-Neto (2005).

2.2. Modelo Matemático

Um modelo matemático utilizado para reproduzir essa etapa deve considerar os fenômenos que ocorrem na fase gasosa, na fase sólida, onde a adsorção e difusão ocorrem, e na parede da coluna onde a energia pode ser transferida para (ou do) ambiente (Ribeiro *et al.*, 2008). Os balanços de massa, energia e momento (Figura 1) foram aplicados para descrever o comportamento da dinâmica de adsorção multicomponente em leito fixo (Cavenati *et al.*, 2006;. Ribeiro *et al.*, 2008).

As principais considerações e simplificações deste modelo são: (i) difusão nos microporos controla a resistência à transferência de massa, (ii) equilíbrio térmico é assumido entre a fase sólida (partícula) e a fase fluida (gás) e (iii) a parede da coluna troca energia com a fase gás dentro da coluna e com o ambiente externo.

Balanço de massa da fase fluida (0 < z < L):

$$\frac{\partial}{\partial z} \left(\varepsilon D_{ax} C_{g,T} \frac{\partial y_i}{\partial z} \right) - \frac{\partial}{\partial z} \left(u C_{g,i} \right) - \varepsilon \frac{\partial C_{g,i}}{\partial t} - (1 - \varepsilon) \left(\varepsilon_P \frac{\partial C_{g,i}}{\partial t} + \rho_{ap} \frac{\partial \overline{q_i}}{\partial t} \right) = 0$$

Balanço de massa para a partícula ($0 \le z \le L$):

$$\frac{\partial \overline{q}_i}{\partial t} = \frac{\Omega_c D_{c,i}}{r_c^2} (q_i^* - \overline{q}_i)$$

$$q_i^* = \frac{q_{\max,i} b_i P_i}{1 + \sum_{j=1}^n b_j P_j} \text{(Langmuir Estendido)}$$

Balanço de momento ($0 \le z \le L$):

$$-\frac{\partial P}{\partial z} = \frac{150\mu(1-\varepsilon)^2}{\varepsilon^3 d_p^2} u + \frac{1.75(1-\varepsilon)\rho}{\varepsilon^3 d_p} |u| u$$
$$P = C_{g,T}RT_g$$

Balanço de energia para a fase fluida (0 < z < L):

$$\frac{\partial}{\partial z} \left(\lambda \frac{\partial T_g}{\partial z} \right) - uC_{g,T}Cp_g \frac{\partial T_g}{\partial z} + \varepsilon RT_g \frac{\partial C_{g,T}}{\partial t} - 4 \left(\frac{h_w}{d_i} \right) (T_g - T_w) + (1 - \varepsilon)\varepsilon_p RT_g \frac{\partial C_{g,T}}{\partial t} + \rho_b \sum_{i=1}^n (-\Delta H_i) \frac{\partial \overline{q_i}}{\partial t} - \left[\varepsilon C_{g,T}Cv_g + (1 - \varepsilon) \left(\varepsilon_p \sum_{i=1}^n (C_{g,i}Cv_{g,i}) + \rho_{ap} \sum_{i=1}^n \overline{q_i}Cv_{ads,i} + \rho_{ap}Cp_s \right) \right] \frac{\partial T_g}{\partial t} = 0$$

Balanço de energia para a parede ($0 \le z \le L$):

$$\rho_{w}Cp_{w}\frac{\partial T_{w}}{\partial t} = \alpha_{w}h_{w}(T_{g} - T_{w}) - \alpha_{wl}U_{g}(T_{w} - T_{ref})$$

Figura 1 - Balanços de massa, energia e momentum para um sistema coma adsorção em leito fixo.

Condições iniciais e de contorno são apresentadas na Figura 2. O modelo matemático foi implementado no gPROMS (*Process System Enterprise*, UK) e foi solucionado numericamente usando o método de colocação ortogonal de elementos finitos (OCFEM).

O número de Nusselt, *Nu*, foi assumido como sendo 5,77, o que corresponde a um fluxo com perfil de velocidade e temperatura da parede constante passando por um tubo circular (Bird *et al.*, 2006). A condutividade térmica da mistura de gases, k_g , foi calculada como também apresentado em Bird *et al.* (2006) e considerando as condições de alimentação e assumido como constante essas condições ao longo da coluna. O coeficiente de dispersão axial foi calculado a partir de Lopes *et al.* (2009). Já os parâmetros geométricos e $\alpha_w e \alpha_{WI}$ foram calculados como relatado em Santos (2001). A difusividade dos microporos foi estimada utilizando o gPROMS a partir de uma comparação dos dados experimentais com o modelo. Os valores de U_g foram estimados através da correlação de Churchill & Bernstein (Kreith & Bohn, 2003) para convecção forçada por escoamento cruzado sobre cilindro. Os calores isostéricos de adsorção foram obtidos a partir do procedimento adotado em Bastin *et al.* (2008). Todos os outros parâmetros foram obtidos a partir de Perry *et al.* (1999).

Condições de contorno para z = 0: $u^{inlet} C_{g,i}^{inlet} = u C_{g,i} \Big|_{z=0} - \varepsilon D_{ax} C_{g,T} \Big|_{z=0} \frac{\partial y_i}{\partial z} \Big|_{z=0}$ $u^{inlet} C_{g,T}^{inlet} = u C_{g,T} \Big|_{z=0}$ $u^{inlet} C_{g,i}^{inlet} Cp_g T_g^{inlet} = u C_{g,i} Cp_g T_g \Big|_{z=0} - \lambda \frac{\partial T_g}{\partial z} \Big|_{z=0}$ Condições de contorno para z = L: $\frac{\partial (y_i C_{g,T})}{\partial z} \Big|_{z=L} = 0; \quad \frac{\partial u}{\partial z} \Big|_{z=L} = 0; \quad P \Big|_{z=L} = P^{outlet}; \quad \frac{\partial T_g}{\partial z} \Big|_{z=L} = 0$ Condições iniciais para t = 0: $C_{g,T} \Big|_{t=0} = C_{g,helio}^{inlet}; \quad y_{CO2} \Big|_{t=0} = 0; \quad y_{N2} \Big|_{t=0} = 0; \quad T_w = T_g \Big|_{t=0}$

Figura 2 - Condições iniciais e de contorno para o modelo matemático de um sistema de adsorção em leito fixo.

Durante a resolução desse modelo matemático, foram consideradas duas situações: Caso 1: geração de calor dentro do leito a partir do uso calor isostérico de adsorção de cada componente e do uso do balanço de energia. Caso 2: nenhum calor é gerado durante a dinâmica de adsorção. Para tal foi adotando, no balanço de energia, que o calor isostérico de adsorção é igual a zero para todos os componentes da mistura.

3. RESULTADOS E DISCUSSÕES

A Figura 3 (a) mostra as curvas de *breakthrough* da mistura CO_2 -N₂ em hélio (15 mol% de CO_2 , 75 mol% de N₂ e 10 mol% de He) a 0,1 MPa, 298 K e vazão de 8,98.10⁻⁷ m³/s no carbono ativado C141, bem como a simulação do modelo matemático considerando o calor isostérico de cada componente e sem considerá-lo durante a adsorção dos componentes. Mesmo estando a uma concentração de alimentação de apenas 15 mol%, o CO_2 apresenta uma capacidade de adsorção superior ao do N₂, a partir da análise da área sob a curva para cada gás. Isto pode ser explicado pelo fato de que o CO_2 apresenta temperatura crítica mais próxima à temperatura do experimento do que o nitrogênio, comportando-se, assim, mais como vapor condensável do que como gás supercrítico nesta condição, o que o torna menos volátil e facilita sua "condensação" durante a adsorção.

Figura 3 – (a) Curva de *breakthrough* de CO₂-N₂ em hélio (15 mol% de CO₂, 75 mol% de N₂ e 10 mol% de He) a 0,1 MPa, 298 K e vazão de 8,98.10⁻⁷ m³/s no carbono ativado C141. (b) Perfil de temperatura do gás na saída da coluna simulado a partir do modelo matemático para as mesmas condições do experimento. Símbolos: experimentos, Linhas: simulação do modelo matemático.

Na Figura 3 (b), observa-se a presença de dois picos para o caso 1. Estes picos estão relacionados qualitativamente ao processo de adsorção, uma vez que este é exotérmico. O primeiro

pico corresponde ao aumento da temperatura do gás na saída da coluna dado, principalmente, pela frente de concentração do N_2 , componente menos adsorvido, que avança mais rapidamente. Já o segundo pico corresponde ao calor gerado, principalmente, pela frente de concentração do CO_2 que avança mais lentamente, uma vez que o CO_2 é o componente mais preferencialmente adsorvido.

Observa-se também que tanto o modelo que considera calor gerado no interior da coluna devido à adsorção do CO₂ e do N₂, quanto o modelo que simula uma dinâmica de adsorção sem geração de calor, reproduziram bem os dados experimentais. A Tabela 1 apresenta os parâmetros estimados para a obtenção das curvas simuladas e do perfil de temperatura na saída da coluna. Como esperado, observa-se uma maior diferença, embora mínima, entre as curvas simuladas na região que imediatamente antecede o platô (tempo a partir de 350 s). Essa diferença se estende até aproximadamente 420 s (ver Figura 3 (a)). Para um leito com as dimensões da coluna utilizada nos experimentos e nas condições experimentais adotadas, o calor gerado durante essa etapa de adsorção na amostra C141 promoveu um aumento máximo de temperatura de apenas 6 K (ver Figura 3 (b)). Isso justifica o fato da consideração adotada no caso 2 ter pouco influenciado no comportamento da curva de *breakthrough*.

Considerando o sistema e as condições adotadas nesse trabalho, para uma situação em que se deseja conhecer o tempo da etapa de adsorção, avaliar alguns parâmetros de operação, e a tendência da curva, pode-se reduzir os esforços computacionais desconsiderando o balanço de energia, bem como evitar os esforços requeridos para se estimar ou medir os calores de adsorção para cada componente da mistura.

Leito / Coluna		Transporte		
L [m]	0,25	$D_{ax} [m^2/s]$	2,824×10 ⁻⁵	
d_i [m]	4,6×10 ⁻³	$D_c/r_c^{2}[s^{-1}]$	CO ₂ : 4×10 ⁻² / N ₂ : 8×10 ⁻²	
$\rho_b [\text{kg/m}^3]$	1065	h_w [W/m ² .K]	39,21	
$\rho_w [\text{kg/m}^3]$	7860	U_g [W/m ² .K]	30,17	
3	0.474	$\lambda [W/m.K]$	0	
	Partícula	Energia		
r_p [m]	4×10^{-4}	Cp_{g} [J/mol.K]	29,51	
$\rho_{ap} [\text{kg/m}^3]$	2026	Cv_g [J/mol.K]	21,19	
ε _P	0,486	Cp_s [J/kg.K]	820	
k_s	2	Cp_w [J/kg.K]	477	
Momento		Adsorção		
μ [Pa.s]	1.32×10^{-5}	q _{max} [mol/kg] (298 K)	7,71 (CO ₂) / 3,61 (N ₂)	
u^{inlet} [m/s]	0,054	<i>b</i> [MPa ⁻¹] (298 K)	5,36 (CO ₂) / 1,23 (N ₂)	
P ^{inlet} [MPa]	0,1505	ΔH [kJ/mol]	25,22 (CO ₂) / 17,68 (N ₂)	

Tabela 1 – Parâmetros do modelo matemático usado na simulação das curvas de breakthrough

4. CONCLUSÕES

Curvas de *breakthrough* de mistura CO₂-N₂ em He (15 mol% CO₂, 75 mol% N₂ e 10 mol% He)

a 0,1 MPa e 298 K foram conduzidos em uma coluna de leito fixo recheada com o carbono ativado C141. Um modelo matemático baseado na aproximação *Linear Driving Force* (LDF) foi utilizado. Os resultados de simulação desconsiderando a influência do calor de adsorção no perfil de concentração da saída da coluna foram avaliados comparando dados simulados com dados experimentais. Concluiu-se que para uma situação em que não é requerida tanta precisão na simulação da dinâmica de adsorção, o balanço de energia do modelo pode ser desconsiderado, bem como podem ser evitados os esforços de medições e estimativas do calor de adsorção de cada componente.

5. NOMENCLATURA

b_i	parâmetros de Langmuir, Pa ⁻¹	Р	pı bı	ressão da mistura gasosa na fase ulk, Pa
$C_{g,i}$	concentração na fase gasosa do componente <i>i</i> , mol/m ³	P_i	pı	ressão parcial do componente <i>i</i> , Pa
$C_{g,T}$	concentração total na fase gasosa, mol/m ³	q_i^{*}	с(с(oncentração adsorvida em equilíbrio om $C_{g,i}$, mol/kg
Cp_{g}	calor específico molar da mistura gasosa a pressão constante, J/mol.K	\overline{q}_i	C pa	oncentração adsorvida média da artícula, mol/kg
Cp_s	calor específico da partícula a pressão constante (por unidade de massa), J/kg.K	$q_{\max,i}$	ca is	apacidade máxima de adsorção da oterma de Langmuir, mol/kg
Cp_w	calor específico da parede a pressão constante (por unidade de massa), J/kg.K	R	co	onstante dos gases ideais, J/mol.K
Cv_{ads}	<i>i</i> calor específico molar do componente <i>i</i> na fase adsorvida a volume constante, J/mol.K	<i>r</i> _c	ra	io do microporo, m
Cv_g	calor específico molar da mistura gasosa a volume constante, J/mol.K	t	te	empo, s
$Cv_{g,i}$	calor específico molar do componente <i>i</i> a volume constante, J/mol.K	Т	te	mperatura da fase <i>bulk</i> , K
D_{ax}	coeficiente de dispersão axial, m ² /s	T_{ref}	te	mperatura ambiente, K
$D_{c,i}$	difusividade no microporo, m ² /s	T_w	te	mperatura da parede, K
d_i	diâmetro interno do leito, m	и	ve	elocidade superficial, m/s
d_p	diâmetro da partícula, m	U_{g}	C té	oeficiente global de transferência frmica, J/s.m ² .K
$h_{_{\scriptscriptstyle W}}$	coeficiente convectivo entre a mistura gasosa e a parede do leito, J/s.m ² .K	y_i	fr ac	ação molar do componente <i>i</i> , limensional
ΔH_i	calor de adsorção do componentei, J/mol	Z	po	osição axial, m
k _s	fator geométrico (0-plano; 1-cilindro; 2-esfera), adimensional			
Letro	as Gregas			
$\alpha_{_w}$	razão entre a área da superfície interna e o volume da p da coluna, m^{-1}	arede	ρ	densidade da mistura gasosa na fase bulk, kg/m ³
$\alpha_{_{wl}}$	razão logarítimica entre a área da superfície interna e o volume da parede da coluna. m^{-1}		$ ho_{ap}$	densidade aparente da partícula, kg/m^3

densidade do leito, kg/m^3

 $\rho_{\scriptscriptstyle b}$

 ε porosidade do leito, adimensional

 ε_{P} porosidade da partícula, adimensional

 λ coeficiente de dispersão axial da parede, J/s.m.K

 μ viscosidade da mistura gasosa na fase *bulk*, Pa.s

6. REFERÊNCIAS BIBLIOGRÁFICAS

ADEYEMO, A.; KUMAR, R.; LINGA, P.; RIPMEESTER, J.; ENGLEZOS, P. Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column. *Int. J. Green. Gas Con.*, v. 4, p. 478, 2010.

BASTIN, L.; BÁRCIA, P.S.; HURTADO, E.J.; SILVA, J.A.C; RODRIGUES, A.E; CHEN, B. A Microporous Metal-Organic Framework for Separation of CO_2/N_2 and CO_2/CH_4 by Fixed-Bed Adsorption. J. Phys. Chem. C, v. 112, p. 1575-1581, 2008.

BASTOS-NETO, M.; TORRES, A. E. B.; AZEVEDO, D. C. S.; CAVALCANTE JR., C. L. Methane adsorption storage using microporous carbons obtained from coconut shells. *Adsorption*, v. 11, p. 911-915, 2005.

BELMABKHOUT, Y.; SAYARI, A. Adsorption of CO_2 from Dry Gases on MCM-41 Silica at Ambient Temperature and High Pressure. 2: Adsorption of CO_2/N_2 , CO_2/CH_4 and CO_2/H_2 Binary Mixtures. *Chem. Eng. Sci.*, v. 64, p. 3729-3735, 2009.

BIRD, R.B., STEWART, W.E.; LIGHTFOOT, E.N. Transport Phenomena, revised seconded., *Wiley International*, New York, 2006.

CAVENATI, S.; GRANDE, C. A.; RODRIGUES, A. E. Separation of CH₄/CO₂/N₂ mixtures by layered pressure swing adsorption for upgrade of natural gas. *Chem. Eng. Sci.*, v. 61, p. 3893, 2006.

GRANDE, C. A.; BLOM, R.; MÖLLER, A.; MÖLLMER, J. High-pressure separation of CH₄/CO₂ using activated carbon.*Chem. Eng. Sci.*, v. 89, p. 10-20, 2013.

International Energy Agency Working Party on Fossil Fuels, Solutions for the21st century: zero emissions technologies for fossil fuels, OECD/IEA, Paris, FR, 1–50, 2002.

LOPES, F. V. S.; GRANDE, C. A.; RIBEIRO, A. M.; LOUREIRO, J. M.; EVAGGELOS, O.; NIKOLAKIS, V.; RODRÍGUES, A. E. Adsorption of H₂, CO₂, CH₄, CO, N₂ and H₂O in activated carbon and zeolite for hydrogen production. *Sep. Sci. Technol.*, v. 44, p. 1045-1073, 2009.

KREITH, Frank e BOHN, Mark S.. Princípios de Transferência de Calor. 6ª Edição. São Paulo. Pioneira Thomson Learning. 2003.

PERRY, R. H.; GREEN, D. W.; MALONEY, J. O. Perry's Chemical Engineers' Handbook, 7th ed., *McGraw-Hill*, New York, 1999.

RIBEIRO, A. M.; GRANDE, C. A.; LOPES, F. V. S.; LOUREIRO, J. M.; RODRÍGUES, A. E. A parametric study of layered bed PSA for hydrogen purification.*Chem. Eng. Sci.*, v. 63, p. 5258-5273, 2008.

SANTOS, M. P. S. Advanced modeling of PSA processes for biogas upgrading. Master Thesis, University of Porto, 2011.

- ρ_{w} densidade da parede, kg/m³
- Ω_c fator LDF [$\Omega_c = (k_s + 1)(k_s + 3)$]