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RESUMO 

 

As mudanças climáticas deverão ter graves consequências sociais e econômicas. No entanto, 

poucos estudos têm avaliado o impacto das incertezas da mudança climática na disponibilidade 

hídrica de complexos sistemas de redes de reservatórios. A incerteza é agravada quando os 

reservatórios não possuem monitoramento das vazões afluentes. Nesses casos, a regionalização 

dos parâmetros de modelos hidrológicos representa uma estratégia comum para se estimar as 

vazões afluentes. Propagar as incertezas associadas aos parâmetros para as bacias não 

monitoradas apresenta-se, no entanto, como um desafio metodológico ainda em discussão. 

Neste estudo, propõe-se uma estratégia de regionalização, baseada no método de classificação 

K-Nearest-Neighbor (K-N-N), que incorpora explicitamente as incertezas associadas aos 

parâmetros do modelo hidrológico. Tais incertezas, bem como aquelas provenientes da 

mudança climática, foram propagadas para as bacias não monitoradas dos reservatórios no 

estado do Ceará, tendo sido avaliada a disponibilidade hídrica do Hidrossistema Jaguaribe-

Metropolitano. Oito Modelos de Circulação Global (GCMs) da sexta fase do Coupled Model 

Intercomparison Project (CMIP6) foram usados para representar o clima futuro. A 

regionalização permitiu cálculo de vazões com NSE de 0.67 quando apenas uma bacia preditora 

é utilizada. Metade dos GCMs projetam um significativo aumento da disponibilidade hídrica 

no hidrossistema para o período 2021-2050, enquanto que a outra metade prevê diminuição ou 

manutenção. A incerteza dos parâmetros mostrou-se irrelevante frente a incerteza da mudança 

do clima. A metodologia proposta deve colaborar com a quantificação das incertezas no Ceará, 

servindo de ferramenta para o planejamento e gestão dos recursos hídricos locais. 

 

Palavras-chave: Incerteza paramétrica. Mudança climática. Regionalização. Disponibilidade 

hídrica. Modelo conceitual concentrado. 



 

ABSTRACT 

 

Climate change is expected to have extensive socioeconomic consequences. However, only a 

few studies have assessed the impact of future streamflow modelling uncertainties in water 

availability of complex reservoir network systems. This issue is aggravated when the reservoirs 

do not have inflow measurement. In these cases, regionalizing the hydrological model 

parameters is a common approach to streamflow estimation. However, propagating these 

uncertainties to ungauged catchments figures as a methodological question that remains 

unsolved. In this study we propose a regionalization procedure based on K-Nearest-Neighbor 

(K-N-N) classification method, that allows to incorporate explicitly the model parameter 

uncertainty. Climate change and model parameter uncertainties were propagated to ungauged 

reservoir catchments in Ceará and the future water availability of the Jaguaribe Metropolitan 

hydrossystem was assessed. Eight Global Circulation Models (GCMs) from the sixth phase of 

the Coupled Model Intercomparison Project (CMIP6) were used to represent future climate. 

The K-Nearest-Neighbours regionalization produced accurate streamflow prediction with an 

average NSE of 0.67, when only the first neighbour is used. Half of GCMs forecasted a 

significant increase of water availability for the period 2021-2050 in the hydrosystem, while 

the other half forecasted decrease or maintenance. Parameter uncertainty showed to be 

negligible in comparison to climate change uncertainty. The proposed framework is expected 

to collaborate with uncertainty assessment in Ceará, as a tool for water resources planning and 

management. 

 

Keywords: Parameter uncertainty. Climate change. Regionalization. Water availability. 

Conceptual hydrological model. 
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1 INTRODUCTION 

 

Hydrological modelling uncertainties have been subject of interest of the scientific 

community on the last decades (LIU; GUPTA, 2007; MCMILLAN et al., 2011; TUNG, 2018; 

VALLAM; QIN; YU, 2014). In fact, natural processes randomness makes difficult to predict 

real systems responses. This randomness results in a natural uncertainty. Additionally, human 

inability to precisely access information emergent from nature produces an epistemic (or 

informational) uncertainty (TUNG, 2018). 

Epistemic uncertainty appears in hydrological modelling in three categories: input, 

model structure and parameter uncertainties (GUPTA; GOVINDARAJU, 2019). Input 

uncertainty is present, for instance, in precipitation and streamflow observed data, resulting 

from instrument inaccuracies. Additionally, the hydrological model itself is an uncertainty 

source, since it simplifies the natural system, most of the time using deterministic equations to 

mimic it. Then, the distance between model and reality and the inability of the former to explain 

the latter in its complexity result in structural uncertainty. Model parameter identification is a 

third source of epistemic uncertainty. In fact, different parameter sets may result in an 

equivalent goodness-of-fit of model response to observed data, that is what Beven and Binley 

(1992) called equifinality. 

The uncertainties present in hydrological data and those added by modelling are 

propagated along the process of  hydrological information production and have impact in water 

resources planning and management, whose decisions are based in this information (SORDO-

WARD et al., 2016). 

In order to reduce these uncertainties, either by using sophisticated methods for 

measurement, or model calibration, or by improving the hydrological model, it is necessary not 

only to identify and understand the uncertainties, but also to quantify them. This quantification 

allows to assess hydrological information reliability, subsidizing decision making, and also to 

identify the uncertainties sources more sensitive, promoting an efficient uncertainty reduction 

(LIU; GUPTA, 2007). 

Climate change represent an uncertainty source that may impact society activities 

on the next decades. This natural and anthropic uncertainty can be assessed by Global 

Circulation Models (GCMs) projections for different emission scenarios. The Coupled Model 

Intercomparison Project (CMIP) brings together many GCMs data, which are valuable to 

climate change uncertainties quantification (GONDIM et al., 2018). 

In addition, the development of Monte Carlo Markov Chain (MCMC) samplers 
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meant advances in uncertainty quantification by Bayesian inference. This approach is mainly 

used for parameter uncertainty quantification (ENGELAND et al., 2016; GUPTA; 

GOVINDARAJU, 2019; LIU et al., 2017).  

In the State of Ceará, where the water is stored in complex reservoir networks under 

high hydroclimate variability, the assessment of these uncertainties and their impact on the 

water resources management have a practical relevance (LIMA NETO; WIEGAND; CARLOS 

DE ARAÚJO, 2011; MAMEDE et al., 2012). The inflow data scarcity of the most relevant 

reservoirs generates the need of predicting in ungauged basins by a regionalization framework, 

which allow to transfer information from one or more gauged catchments to the ungauged ones. 

This regionalization should also propagate the involved hydrological uncertainties.  

In this study, a regionalization procedure is proposed to propagate parameter 

uncertainty to reservoir catchments in Ceará. The impact of climate change uncertainty on the 

water availability of the most important hydrosystem in Ceará (i.e. Jaguaribe Metropolitan 

hydrosystem) was also evaluated and compared to the impact of parameter uncertainty. 

 

1.1 Objectives 

 

The main goal of this study was to assess the climate change and parameter 

uncertainties propagated to the ungauged reservoir catchments in Ceará, evaluating their 

impacts on the water availability of the Jaguaribe Metropolitan hydrosystem. 

For this task, some specific goals were designed: 

a) Developing an approach for hydrological model parameter regionalization that 

is capable to predict the inflow for the reservoirs in the State of Ceará, under 

parameter uncertainty; 

b) Evaluating the adequate number of donor catchments in the regionalization 

approach to predict model parameters in ungauged catchments in Ceará; 

c) Assessing climate change impacts on the future water availability of Jaguaribe 

Metropolitan hydrosystem, according to CMIP6 GCMs; and 

d) Comparing climate change and parameter uncertainties in the Jaguaribe 

Metropolitan hydrosystem water availability assessment. 
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1.2 Dissertation structure 

 

Following the recent trends in the Departamento de Engenharia Hidráulica e 

Ambiental of the Universidade Federal do Ceará, this dissertation was structured based on 

scientific articles. Thus, two articles composed the main chapters of this dissertation, as follow: 

a) A K-Nearest-Neighbor regionalization approach to propagate model parameter 

uncertainty to ungauged catchments; and 

b) Assessment of a hydrosystem water availability: a comparison between 

parameter and climate change uncertainties, using CMIP6 models. 

 

Internal structure of these chapters followed the traditional structure of the scientific 

articles. A closing section summarized briefly the main conclusions of both researches. 

References of both articles are presented together in the end of the dissertation. 
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2  FIRST ARTICLE 

 

A K-Nearest-Neighbor regionalization approach to propagate model parameter 

uncertainty to ungauged catchments. 

 

Abstract: 

Regionalizing hydrological model parameters is a common approach to streamflow estimation 

in ungauged catchments. However, parameter identification in gauged catchments is subject to 

uncertainty, which is propagated in regionalization. In this study, we propose a regionalization 

procedure based on the K-Nearest-Neighbour (K-N-N) classification method, that allows to 

incorporate explicitly model parameter uncertainty. The Differential Evolution Adaptive 

Metropolis (DREAM) was applied to a conceptual, lumped model calibration and uncertainty 

assessment. Six physiographic characteristics were assumed for catchment similarity in 

parameter regionalization. We tried one (1-N-N), three (3-N-N), and five (5-N-N) nearest donor 

catchments in K-N-N regionalization, which was cross-validated within 28 streamgauges data 

set. Regionalization produced accurate streamflow series prediction (NSE>0.55). Frequently, 

1-N-N approach (NSE=0.67) was a parameter predictor better than 3-N-N (NSE=0.62) or 5-N-

N (NSE=0.55). The proposed framework showed to be a valuable tool for water resources 

management, besides it can be replicated in different hydrological model parameter 

regionalization. 

 

Keywords: Regionalization. K-Nearest-Neighbour. Conceptual hydrological model. Parameter 

uncertainty. Bayesian inference. 
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2.1 Introduction 

 

Rainfall-runoff modelling is an essential tool for water resources management 

(KURTZ et al., 2017; RIVAS-TABARES et al., 2019). Basically, this kind of hydrological 

model simulates the streamflow produced in a catchment driven by the local climatic 

conditions. Such approach allows hydrologists to fill gaps in streamflow series and to predict 

streamflow under different climate scenarios, for example. Water resources managers use this 

modelling-based information to estimate the water availability and to assess the water security 

(TRINH et al., 2016; LAFONTAINE et al., 2019). 

Model complexity depends on its structure, which can physically represent the 

hydrological processes in different time scales or only a simple abstraction of them, as in the 

conceptual models. The model spatial discretization is also an issue. For instance, distributed 

models divide the catchment area in several cells or in sub-catchments and consider different 

land properties, while lumped models assume the entire catchment as a uniform unit, 

disregarding the catchment spatial variability. However, many studies have shown that more 

complexity in hydrological modelling does not imply better performance (JAKEMAN; 

HORNBERGER, 1993; ULIANA et al., 2019; VANSTEENKISTE et al., 2014). Actually, 

conceptual lumped models (CLMs) have been widely used in scientific and practical 

applications, since they are less demanding in data and computational processing than 

processes-oriented distributed ones, besides the former can provide a similar performance for 

the same goals (BENNETT et al., 2016; PONCELET et al., 2017; SEZEN et al., 2019).  

In CLMs, the model parameters are the major control of the rainfall-runoff 

transformation. These parameters implicitly represent the average physiographic characteristics 

across the catchment. Even if the parameters are related to the physics of the catchment, they 

cannot be measured in the field. So, in order to determine them, a calibration procedure should 

be carried out, which allows finding the parameters set that best fits the model response to the 

observed streamflow. 

Although a manual calibration of CLMs can produce sound results, it demands 

more hydrological expertise, normally does not deal with parameter uncertainty and can be very 

exhaustive. Therefore, automatic model calibration became a common procedure in hydrology 

(BARROS, 2007; GAO et al., 2019; NDIRITU; DANIELL, 2001; SHAHED BEHROUZ et al., 

2020; ZAKERMOSHFEGH; NEYSHABOURI; LUCAS, 2008). In this context, many 

optimization algorithms based on heuristics have been developed on the last decades, such as 

the Particle Swarm Optimization (PSO) (KENNEDY; EBERHART, 2001), the Shuffled 
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Complex Evolution (SCE-UA) (DUAN; SOROOSHIAN; GUPTA, 1992) and the Evolutionary 

Algorithms (FOGEL, 1997). 

However, either using a manual or an automatic calibration, no set of parameters 

will give a perfect prediction for streamflow. Many sets of parameters can be considered equally 

good, depending on which metric is used for testing the model goodness-of-fit. Beven and 

Binley (1992) called this uncertainty in parameter identification as equifinality, which more 

recently Smith (2014) named non-identifiability. 

Two main approaches can incorporate the parametric uncertainty in model 

calibration: a multi-objective (or multi-criteria) optimization and the Bayesian algorithms. A 

multi-criteria calibration considers more than one measure of goodness-of-fit. Each one 

evaluates one aspect of the streamflow series, either the peaks, the recession or the mean flow. 

For this approach, in a feasible set of parameters, some solutions can be considered dominated 

by the others. A parameter solution is dominated by another one, when the latter provides a 

better model performance, according to all selected criteria.  The non-dominated solutions, in 

turn, are those that present a trade-off of performance, making impossible to choose a better 

solution among them. The non-dominated parameter values form a set of best solutions, called 

Pareto front. In this regard, multi-criteria versions of heuristic algorithms began to be 

developed, such as the Multi-objective Particle Swarm Optimization – MOPSO (COELLO; 

LECHUGA, 2002) and the Multi-objective Shuffled Complex Evolution - MOSCEM 

Metropolis (VRUGT et al., 2003), which has been widely applied for model calibration and 

equifinality assessment (BARROS et al., 2010; HERNANDEZ-SUAREZ et al., 2018; 

KAMALI; MOUSAVI; ABBASPOUR, 2013).  

In the Bayesian inference, the model parameters are considered as random 

variables, whose distributions can be gradually approached by observed data assimilation. In 

this way, Beven and Binley (1992) proposed the Generalized Likelihood Uncertainty 

Estimation  (GLUE), which uses maximum likelihood estimators to find out the parameter 

distribution. Afterwards, Vrugt et al. (2008) developed the Differential Evolution Adaptive 

Metropolis (DREAM), a Markov Chain Monte Carlo (MCMC) sampler that provides a fast 

convergence in Bayesian inference, which showed to be  a very useful tool for hydrological 

model calibration under uncertainty (ASFAW; SHUCKSMITH; MACDONALD, 2016; 

RWASOKA et al., 2014; SHAFII; TOLSON; MATOTT, 2014). 

However, the most of rainfall-runoff model applications has been carried out for 

ungauged catchments, where streamflow data do not exist or are very scarce. Because of its 

important role in real-world problems, predicting in ungauged basins (PUB) has been 
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recognized as one of the main scientific frontiers in hydrological sciences (WAGENER; 

MONTANARI, 2011) and was targeted as a major scientific initiative of the past decade by the 

International Association of Hydrological Sciences (IAHS) (SIVAPALAN et al., 2003). 

Basically, PUB normally involves applying regionalization techniques, which 

transfer hydrological models and parameters calibrated from a set of donor gauged basins, in 

order to predict hydrological dynamics and/or statistics for ungauged systems. Three 

approaches are normally used for transferring calibrated parameters: regression (parameter 

estimation from relations to catchment physical and climatic characteristics), nearest 

neighbours (parameter transfer from catchments similar in attribute space) and geostatistics 

(parameter spatial interpolation) (e.g. MERZ AND BLÖSCHL 2004, VIVIROLI et al. 2009, 

SAMUEL et al. 2011, WALLNER et al. 2013). 

In the State of Ceará located in the semi-arid northeast of Brazil, many surface 

reservoirs have been built, to overcome dry seasons and recurrent pluriannual droughts that 

have induced serious social impacts and economic losses in the last century. In Ceará, there are 

more than 25,000 reservoirs (>0.5 hm³) (CAMPOS et al., 2016), with 155 of them being 

operated by government agencies. These regulated reservoirs store about 18.6 billion m3, which 

supports the greater part of the state water supply (>90%) (SOUZA FILHO, 2018).  

Despite their very important role on the water availability, those reservoirs do not 

have inflow measurement. For this reason, practitioners have estimated the inflow series to the 

reservoirs assuming the discharge from the nearest upstream streamgauge, with simple water 

balance for streamflow propagation. However, there are two main limitations for this approach. 

First, the rainfall-runoff processes of the ungauged area are not taken into account. Second, the 

modelling uncertainty is neglected. Thus, hydrological model regionalization is needed for the 

reservoirs in the State of Ceará. 

The goal of this work is to develop a streamflow regionalization approach that is 

capable to predict the inflow and its associated parameter uncertainties for the reservoirs in the 

State of Ceará, NE Brazil. We use DREAM to calibrate a conceptual lumped rainfall-runoff 

model and to assess the model parameter uncertainty. Then, we propose a K-Nearest-

Neighbours (K-N-N) regionalization approach for the calibrated parameters, which allows the 

propagation of parameter uncertainty to ungauged catchments, considering six physiographic 

characteristics. To evaluate the regionalization performance, cross-validation of gauged 

catchments is applied. 
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2.2 Study area hydro-climatology 

 

The State of Ceará (148,000 km2) has about 90% of its territory in a semi-arid 

region, called Polygon of Droughts. Mean annual rainfall is about 800 mm, ranging from more 

than 1,200 mm close to the coast to less than 650 mm in a large dryland landscape that extends 

from the coast to the interior borders (SOUZA FILHO, 2018). Rainfall is concentrated mainly 

within the rainy season, which normally lasts four months (February-May). Interannual rainfall 

variability is high with a coefficient of variation (CV) of 0.36 (GÜNTNER; BRONSTERT, 

2004). Temporal variability is also highly significant on seasonal and weekly scales. The annual 

potential evaporation (class A pan) of the semiarid region is about 2,200 mm (SUDENE 1980). 

Groundwater resources are scarce and concentrated. They occur mainly in 

sedimentary rocks: the interior Iguatu Basin, the Araripe/Cariri Basin in the very south, the 

Apodi Plateau in the east, the Ibiapaba Plateau in the west and the sedimentary rocks on the 

coast (FRISCHKORN; SANTIAGO; DE ARAUJO, 2003). Local alluvial aquifers in 

riverscapes are well spread over the state and embedded in crystalline bedrocks with a low 

density of fractures (FRISCHKORN; SANTIAGO; DE ARAUJO, 2003). 

About 80% of the study area is characterized by crystalline bedrock and shallow 

soils. A xerophytic thorn-bearing woodland, mainly deciduous in the dry seasons, is the 

dominant natural vegetation type: the Brazilian dry forest called Caatinga. Real 

evapotranspiration is about 78% of annual rainfall, with percolation to the underlying 

groundwater or bedrock system 9% and runoff 13% on average (SUDENE, 1980). Mean annual 

flow of large rivers ranges from 10 to 20% of annual rainfall and the respective CV is generally 

above 1.0 (GÜNTNER; BRONSTERT, 2004). It is expected that the large rivers are dominantly 

endogenous throughout the rainy seasons and interact with the underlying groundwater, mainly 

by groundwater recharge (based on COSTA et al. 2012, 2013). 

 

2.3 Climate and hydrology data  

 

We selected twenty-eight streamgauges from the Brazilian Water Agency (ANA) as 

streamflow database to calibrate and validate the rainfall-runoff model. The drainage area of 

selected stations varies from 46 km² to 48,000 km² (Figure 1). Only the streamgauges with 

monthly data series with duration equal to or longer than 10 years were chosen. These gauges 

are well distributed over the state and their catchments cover most of it. 
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Figure 1 – The twenty-eight selected streamgauges in the state of Ceará, NE Brazil. 

 
Source: Elaborated by the author. 

 

Monthly rainfall time series of the streamgauge catchments were based on 815 rain 

gauges data from different state-based and national Institutes, which were made available by 

ANA. The inverse distance weighting was used as interpolation approach, which allowed 

considering a smooth precipitation variation between the rain gauges and to estimate the 

precipitation in locations with no available data (PLOUFFE; ROBERTSON; 

CHANDRAPALA, 2015). The period of the rainfall series was from 1910 to 2017. 

Daily meteorological data (air temperature, air humidity and short-wave radiation) 

were made available by the Brazilian Institute of Meteorology (INMET), to calculate potential 

evapotranspiration with the Penman-Monteith equation. The monthly evapotranspiration time 

series of the streamgauge catchments were derived using the Thiessen polygons. 

 

2.4 Methods  

 

The proposed framework (Figure 2) allows to predict streamflow in ungauged 

catchments, using a K-N-N regionalization approach that transfers rainfall-runoff model 

parameters from donor catchments to the targeted ones. In this regionalization, a similarity 
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assessment between donor and targeted catchments was driven by six catchment physiographic 

characteristics. A multiple linear regression model was used to obtain the weighting coefficient 

of each characteristic, providing, in this way, the relevance of that characteristic for streamflow 

prediction. 

The developed approach differs from the traditional regionalization, because it 

propagates rainfall-runoff model parameter uncertainty to ungauged catchments. The DREAM 

algorithm was used to calculate the parameter distributions from the donor catchments. The 

rainfall-runoff model selected was Soil Moisture Accounting Procedure (SMAP), a conceptual 

lumped model, which have been frequently applied for water resources assessment in Ceara 

drylands (FERNANDES et al., 2017; SILVEIRA; SOUZA FILHO; VASCONCELOS JÚNIOR, 

2017). 

 

Figure 2 – Proposed framework for streamflow prediction to ungauged catchments under 

parameter uncertainty, using a K-N-N regionalization approach. 

 

Source: Elaborated by the author. 

 

2.4.1  Rainfall-runoff model 

 

The streamflow generation at catchment scale was simulated by the monthly 

version of the Soil Moisture Accounting Procedure (SMAP) (FERNANDES et al., 2017; 

LOPES; BRAGA; CONEJO, 1981; SILVEIRA; SOUZA FILHO; VASCONCELOS JÚNIOR, 

2017). Figure 3 provides an overview of the model structure, showing connected reservoirs, 

inputs, internal water fluxes and outputs. In its monthly version, SMAP has two reservoirs, soil 

(𝑅𝑠𝑜𝑖𝑙) and underground (𝑅𝑢𝑛𝑑𝑒𝑟𝑔𝑟), which simply represent the vadose zone and the aquifer, 

respectively. 
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Figure 3– Monthly SMAP model structure 

representation with connected reservoirs, 

inputs, internal water fluxes and outputs. 

 

Source: Adapted from Lopes et al. 1981. 
 

Applying mass conservation for both reservoirs, the following equations are 

formulated: 

𝑑 𝑅𝑠𝑜𝑖𝑙

𝑑𝑡
= 𝑃 − 𝐸𝑠 − 𝐸𝑟 − 𝑅𝐸𝐶 

(1) 

 

𝑑 𝑅𝑢𝑛𝑑𝑒𝑟𝑔𝑟

𝑑𝑡
= 𝑅𝐸𝐶 − 𝐸𝑏 (2) 

Where 𝑃,  𝐸𝑟, 𝐸𝑠,  𝑅𝐸𝐶 and 𝐸𝑏 is the precipitation, the real evapotranspiration, the 

surface runoff (or the fast flow), the aquifer recharge and the baseflow (or the slow flow), 

respectively. 

Real evapotranspiration depends on the potential evapotranspiration (𝐸𝑃) and the 

soil moisture in the vadose zone (
𝑅𝑠𝑜𝑖𝑙

𝑆𝐴𝑇
). This relation is mimicked by equation (3): 

𝐸𝑟 = (
𝑅𝑠𝑜𝑖𝑙

𝑆𝐴𝑇
) 𝐸𝑃 (3) 

The average catchment characteristics drive the flux between the reservoirs and 

their outflow, as follow: 

𝐸𝑠 = 𝑃 (
𝑅𝑠𝑜𝑖𝑙

𝑆𝐴𝑇
)

𝑃𝐸𝑆

 (4) 

𝐸𝑏 = [1 − (
1

2
)

1
𝐾

] 𝑅𝑢𝑛𝑑𝑒𝑟𝑔𝑟 (5) 
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𝑅𝐸𝐶 = 𝐶𝑅𝐸𝐶 (
𝑅𝑠𝑜𝑖𝑙

𝑆𝐴𝑇
)

4

𝑅𝑠𝑜𝑖𝑙 (6) 

 

Where 𝑆𝐴𝑇, 𝑃𝐸𝑆, 𝐶𝑅𝐸𝐶 and 𝐾 are the model parameters that have to be calibrated. 

These parameters may be related to the catchment physiographic characteristics. 𝑆𝐴𝑇 

represents the maximum depth of the soil reservoir. So, 
𝑅𝑠𝑜𝑖𝑙

𝑆𝐴𝑇
 is the relative soil moisture, which 

is relevant for the computation of surface runoff (fast flow), aquifer recharge and also real 

evapotranspiration. 𝑃𝐸𝑆 and 𝐶𝑅𝐸𝐶 are dimensionless coefficients, which are a function of the 

catchment shape, the relief, the soil texture and permeability, driving the infiltration-runoff 

partition and the (deep) percolation towards the aquifer. Finally, 𝐾  controls the aquifer 

discharge, which generates baseflow (slow flow). 

According to Lopes et al. (1981) and Alexandre (2005), the four model parameters 

are limited by the following ranges: 

 

Table 1 - SMAP parameter ranges. 

Parameter 
Limit 

Inferior Superior 

𝑆𝐴𝑇 400 5000 

PES 0.1 10 

CREC 0 70 

K 1 6 
Source: Elaborated by the author. 

 

The initial values of both reservoirs determine the model initialization. Assuming 

that the local semi-arid aquifers dry out after 6-8 months of dry season, we set the initial 

underground reservoir value as zero at the beginning of the rainy season. For the soil reservoir, 

we arbitrarily initialized it as 30% of 𝑆𝐴𝑇 . The effect of the model initialization on the 

streamflow simulation was minimized by a model warm-up of 12 months, which showed to be 

enough computation time for the simulation convergence of the monthly SMAP model. 

 

2.4.2  Model calibration and validation under parameter uncertainty 

 

In order to take into account the parameter uncertainty, we used the algorithm 

DREAM (VRUGT et al., 2008) to calibrate the SMAP parameters. DREAM uses a MCMC 

sampler, which allows to determine the model parameters under a Bayesian inference approach. 

In this procedure, the information about the parameter values (𝜃)  and its uncertainty are 
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provided by probability distributions, while data observation (𝐷) in comparison to the model 

response updates those distributions, as it is summarized in equation (7) (BLITZSTEIN; 

HWANG, 2019): 

𝑃(𝜃|𝐷) =  
𝑃(𝜃)𝑃(𝐷|𝜃)

𝑃(𝐷)
  (7) 

Where 𝑃(𝜃) and 𝑃(𝜃|𝐷) represent the prior and posterior distribution of 𝜃. 𝑃(𝐷) 

is a scalar and does not depend on 𝜃, so calculating 𝑃(𝐷) is irrelevant to 𝜃 updating. 𝑃(𝐷|𝜃) 

denotes the probability of obtaining observation 𝐷 given 𝜃, and it is equivalent to the likelihood 

function  𝐿(𝐷) . From 𝐿(𝐷)  we update the distribution of 𝜃 , weighting the sampled values 

(VRUGT et al., 2008). 

We assumed that model errors, which are defined as the difference between the 

model response and observation, are independent and Gaussian distributed. So, the likelihood 

function could be calculated as in equation (8) (VRUGT, 2016). 

𝐿(𝐷) =  ∏
1

√2𝜋𝜎𝑒
2

 𝑒𝑥𝑝 [−
1

2
(

𝑒𝑡

𝜎𝑒
)

2

]

𝑛

𝑡=1

 (8) 

Where 𝑒𝑡 is the model error and 𝜎𝑒 is its standard deviation. Due to the model non-

linearity, a sampler was required to obtain the 𝜃  posterior distribution. That sampler was 

provided by DREAM. The MCMC is an algorithm of fast convergence, which determines the 

posterior distribution of parameters and its uncertainty by the ensemble of chains. 

Then, the uncertainty is propagated by simulating rainfall-runoff transformation for 

each set of parameters from the 100-last elements of the 10-converged chains. The performance 

of the 1000 streamflow simulated series was evaluated using the Nash-Sutcliffe Efficiency 

Coefficient (𝑁𝑆𝐸) (equation 9), which is considered an adequate goodness-of-fit measure for 

hydrological model calibration and validation (LIN; CHEN; YAO, 2017). 

𝑁𝑆𝐸 =  1 −
∑ (𝑄𝑜𝑏𝑠𝑡

− 𝑄𝑐𝑎𝑙𝑐𝑡
)2𝑛

𝑡=1

∑ (𝑄𝑜𝑏𝑠𝑡
− 𝑄𝑜𝑏𝑠

̅̅ ̅̅ ̅̅ )2𝑛
𝑡=1

 (9) 

Where 𝑄𝑜𝑏𝑠𝑡
 and 𝑄𝑐𝑎𝑙𝑐𝑡

 are the streamflow observations and the model response, 

respectively, and 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  is the average streamflow observation. 𝑁𝑆𝐸 varies between 1 and -∞. 

Hypothetically, it achieves the unity when there is no deviation between observation and the 

model response, while negative values for 𝑁𝑆𝐸 indicates that 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  is a better estimation than 

the model response. Moriasi et al. (2007) point out that values of 𝑁𝑆𝐸 around 0.5 or more are 

considered satisfactory for hydrological modelling. So, the 1000 streamflow simulated series 

for each catchment result a set of 1000 𝑁𝑆𝐸 values. 
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To validate the calibration of each streamgauge, we selected 30% of the whole time 

series, which was not used in calibration, according to the Split-Sample Test (Klemes 1986). 

Moreover, we included both wet and dry years in the selection, in order to represent fairly the 

climate regime in calibration and validation.  

 

2.4.3  Regionalization procedure  

 

Since the model parameters may be related to the average characteristics of the 

catchment, we expect that similar catchments may present similar parameters. Therefore, we 

selected six physiographic characteristics, which could help estimate the model parameters in 

ungauged systems. 

Characteristics, such as the portion area on the crystalline bedrock and the available 

water capacity (AWC), may provide information about the storage capacity of the catchment. 

Since the Curve Number varies accordingly to the soil group and the dominant land use, it may 

be related to infiltration-runoff relationships, soil moisture and (deep) percolation. Other 

characteristics, such as the drainage density, the average slope and the compactness coefficient 

of the catchment, may be connected to the water transport in the catchment. Table 2 summarizes 

the selected characteristics and their database source, which enabled us to calculate their 

average values for each streamgauge catchment.  

 

Table 2 - Catchment physiographic characteristics. 

Characteristic Source 

Portion area on crystalline bedrock - Cryst Regionalized Data (COGERH 2013) 

Gravelius Compactness Coefficient - Kc Calculated by the author  

Drainage density – DD Regionalized Data (COGERH 2013) 

Available water capacity– AWC Regionalized Data (COGERH 2013) 

Average Catchment Slope - Slope Brasil em Relevo (MIRANDA, 2005) 

Runoff Curve Number – CN GCN250 (JAAFAR; AHMAD, 2019) 
Source: Elaborated by the author. 

 

Those average catchment characteristics were then used for the K-Nearest-

Neighbour (K-N-N) regionalization approach, in order to estimate the model parameters for 

ungauged catchments. K-N-N is a classification method that recognizes the similarity between 

the elements of a classified group and a new unclassified element. This similarity is based on a 

measure of distance between the new element and the other ones in a space of chosen 

characteristics (CUNNINGHAM; DELANY, 2007). 
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So, the ungauged catchment was related to the more similar gauged catchments, 

according to their physiographic characteristics. We used the parameter distributions, which 

were obtained by applying DREAM, from the donor catchments to the targeted one. The 

Euclidean distance (equation 10) was assumed as similarity measure. Before applying the 

equation 10, we standardized the characteristic variables, removing their scales and dimensions. 

Also, as each characteristic has its own relevance to the rainfall-runoff process, we weighted 

their standardized values after their influence on runoff generation at catchment scale. 

We assumed that the most relevant characteristics are more correlated to the long-

term streamflow. So, to obtain the weighting coefficients, we fitted a multiple linear regression 

between the standardized physiographic characteristics and the streamflow in mm/year 

(SOUZA FILHO; LALL, 2003). We also included annual precipitation (P) as an independent 

variable, since it is the most relevant driving force of the rainfall-runoff process. This variable 

was also standardized. Finally, the regression coefficients gave the weights for the K-N-N 

regionalization. 

𝐷𝐸(𝑎,𝑏) = √∑[𝑤𝑖(𝑐𝑖𝑎
− 𝑐𝑖𝑏

)]
2

𝑛

𝑖=1

 (10) 

𝐷𝐸(𝑎,𝑏)
 is the Euclidean distance between the catchments 𝑎 and 𝑏 in the streamflow 

space. 𝑐𝑖𝑎
and 𝑐𝑖𝑏

represent the standardized physiographic characteristic 𝑖 of the catchments 𝑎 

and 𝑏. 𝑤𝑖 represent the weight of the characteristic 𝑖. 

We tried one (1-N-N), three (3-N-N), and five (5-N-N) nearest donor catchments. 

For the 1-N-N approach, the 1000-values set of parameters came directly from the nearest donor 

catchment, while for the 3-N-N and 5-N-N ones, the 1000 parameters were randomly selected 

from the three and five nearest donor catchments, respectively. To evaluate the performance of 

the proposed regionalization, we used a cross-validation approach. We considered each one of 

the twenty-eight streamgauge catchments as an ungauged one and the rest of them as possible 

donor catchments. Thus, we first transferred the parameter distributions from the donor 

catchments to the ungauged ones, after the regionalization procedure, then, we simulated a set 

of streamflow series for the ungauged catchment. Finally, 𝑁𝑆𝐸 was calculated to evaluate the 

regionalization performance. 
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2.5 Results and Discussion 

 

2.5.1 Calibrated parameters and semi-arid catchment hydrology 

 

The 1000-value sets of calibrated parameters were used to establish the posterior 

parameter distributions, which were assessed using their histograms for each streamgauge 

(Figure 4a and 4b). In general, DREAM was able to find out ‘well-behaved’ posterior 

distributions from priors. 𝑆𝐴𝑇  and 𝑃𝐸𝑆  parameter sets resulted in bell-shaped histograms, 

which implied that these parameters were well identifiable. Moreover, sharp 𝑆𝐴𝑇  and 𝑃𝐸𝑆 

distributions indicated low equifinality of these parameters. 

𝑆𝐴𝑇  values varied from low to intermediate (< 3000 mm), wherein the most of 

streamgauges (twenty-four out of twenty-eight) presented 𝑆𝐴𝑇 values lower than 2000 mm. 

These outcomes are probably related to the dominant presence of shallow soils, rock outcrops 

and low-capacity of natural and anthropized dry forest. Moreover, most of streamgauges 

(exactly ¾) had also low to intermediate 𝑃𝐸𝑆 values (< 5), which facilitate runoff generation at 

infiltration-runoff partition. This finding was expected for the studied catchments, where the 

fast flow is the main component of the large and medium-sized river streamflow. 

The semi-arid river intermittence came from a negligible aquifer storage capacity 

that produces low baseflow. This natural pattern was mimicked by the low 𝐶𝑅𝐸𝐶 values found 

in the calibration. Actually, a 𝐶𝑅𝐸𝐶  close to zero means no relevant aquifer recharge is 

produced and, consequently, no underground reservoir. This result is similar to the outcomes 

from Alexandre (2005), who found very low CREC values for Ceará-based catchments after 

traditional SMAP calibration approaches. 

Moreover, when 𝐶𝑅𝐸𝐶 is (almost) zero, 𝐾, which drives the underground reservoir 

storage depletion, is indifferent, because negligible aquifer storage provides no relevant 

baseflow, whatever its depletion is. Therefore, 𝐾 could assume any value from its given range. 

This CREC and K pattern was found out in twenty-five out of the selected streamgauges (see 

Figure 5: high K standard deviation and high CREC skewness), and was depicted in Figures 

6a1, 6a2 and 6a3 that show the 36130000, 36125000 and 36270000 streamgauge, respectively.  
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Figure 4a – Parameter posterior distributions for streamgauges from 34740000 to 

36045000. 

 
Source: Elaborated by the author. 
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Figure 4b – Parameter posterior distributions for the streamgauges from 36070000 to 

36580000. 

 
Source: Elaborated by the author. 
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However, three streamgauges presented a different CREC and K pattern (see Figure 

5), as one can closely observe in Figure 6b1, 6b2 and 6b3. The 34740000 streamgauge (Figure 

6b1) is located in the sedimentary Ibiapaba Plateau on the East border of Ceará. Its catchment 

is the only one that presented zero portion area on the crystalline bedrock, which may indicate 

a relevant aquifer storage in the sedimentary layers during the wet years. Therefore, this aquifer 

may sustain the baseflow detected in the 34740000 streamgauge, although the low values of K 

imply a slower groundwater flow response. The 35950000 streamgauge catchment (Figure 6b2) 

presented a very low average slope (<4%) due to a large portion of lowlands, which can favour 

the recharge into local aquifers (relevant CREC values), draining fast out (higher K values) 

because of dominant intermittent groundwater flow there. The 36580000 streamgauge 

catchment (Figure 6b3) behaved similarly to the latter one, but no clear reason could be 

formulated from the average physiographic characteristics of the catchment. 

 

Figure 5 – 𝐶𝑅𝐸𝐶 skewness vs. and 𝐾 standard deviation. 

 

Source: Elaborated by the author. 
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Figure 6 – The 𝐶𝑅𝐸𝐶  and 𝐾  posterior distributions for the streamgauges: 36130000 (a1), 

36125000 (a2), 36270000 (a3), 34740000 (b1), 35950000 (b2), and 36580000 (b3), where the 

first three show similar distributions to 25 streamgauges and the last three a particular pattern 

explained in the text. 

 

Source: Elaborated by the author. 

 

 

2.5.2  Rainfall-runoff model performance in calibration and validation 

 

Simulating the rainfall-runoff model using the 1000-value parameter set, we 

calculated 1000 streamflow series, which represent the involved parametric uncertainty. First, 

we analysed the model performance visually in calibration and validation. For instance, we 

plotted the observed and the 1000 simulated streamflow time series for 34740000 and 36260000 

streamgauge catchments (Figure 7). We found that the model predicted the recession limb of 

the hydrographs and the non-flow periods, accurately. In recession, the uncertainty band 

became larger and often enveloped the observed streamflow. The model also predicted 

accurately the rising limb of the hydrographs with a narrow uncertainty band. On the other 

hand, larger errors were observed for streamflow peaks in both calibration and validation. 

Moreover, the interannual streamflow variability was well fitted by the applied approach, 

including extreme wet years, (very) sharp streamflow state transition and hydrological 

droughts. 
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Figure 7 –Simulated and observed streamflow time series for the 34740000 and 

36260000 streamgauges.  

 

Source: Elaborated by the author. 

 

The evaluation of the 1000-simulated streamflow series provided 1000 𝑁𝑆𝐸values 

for each streamgauge in calibration and validation. The average and the standard deviation of 

the 𝑁𝑆𝐸  sets are presented in Figure 8. In twenty-three out of the twenty-eight evaluated 

streamgauges, the average 𝑁𝑆𝐸 evaluated in the calibration period (𝑁𝑆𝐸𝑐𝑎𝑙) was higher than 

the average 𝑁𝑆𝐸 for validation (𝑁𝑆𝐸𝑣𝑎𝑙), as expected. For twenty-six streamgauges, 𝑁𝑆𝐸𝑐𝑎𝑙 

and 𝑁𝑆𝐸𝑣𝑎𝑙 were higher than 0.5 and for all of them NSE were higher than 0.4. Then, the model 

performance results can be considered satisfactory for monthly dryland streamflow after 

Moriasi et al. (2007). Additionally, we also found that the differences between 𝑁𝑆𝐸𝑣𝑎𝑙  and  

𝑁𝑆𝐸𝑐𝑎𝑙  standard deviations were negligible (less than 0.100) (Figure 8). Therefore, model 

performance uncertainty was slightly the same for calibration and validation. 
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Figure 8 – Average and Standard Deviation of 1000 NSE values for each 

studied streamgauge in calibration and validation. See details in the text. 

 
Source: Elaborated by the author. 

 

2.5.3  Catchment physiographic characteristics and weighting coefficients 

 

Table 3 summarizes physiographic characteristics calculated for the selected 

streamgauge catchments. The average portion area on crystalline bedrock (Cryst) was 

approximately 80%, with more than ¾ of catchments presenting values superior than 90%. Only 

one catchment (34740000) was completely located in a sedimentary region. Gravelius 

Compactness Coefficient (Kc) ranged from 1.8 to 3.2, indicating that the study area catchment 

shapes are quite irregular. In addition, average drainage density (DD) was about 0.8 km/km², 

which is a low value for density in a rocky region. The average catchment slope was also low 

(< 10%), excepting only one very steep catchment (35740000) (slope > 20%). Available Water 

Capacity (AWC) presented an average of 75 mm and a standard deviation of 11 mm, which is 
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related to the shallow soil in the study area. Average Runoff Curve Number (CN) was 

intermediate (77). 

 

Table 3 - Average physiographic characteristics of the selected streamgauge catchments.  

Streamgauge 
Cryst  

(%) 
Kc 

DD 

(km/km2) 

AWC 

(mm) 

Slope 

 (%) 
CN  

34740000 0 2.17 0.62 55.5 7.2 76.9 

35050000 44 2.01 0.61 56.6 9.2 75.3 

35125000 93 1.81 1.00 66.0 8.0 76.7 

35170000 77 2.18 0.89 68.9 8.2 76.6 

35210000 96 2.76 1.01 74.6 7.2 76.8 

35260000 93 2.53 0.93 60.5 7.6 76.8 

35275000 87 2.25 0.92 67.4 7.0 76.8 

35370000 96 2.19 0.83 61.5 6.7 77.1 

35650000 92 2.55 0.74 74.7 8.5 76.0 

35740000 99 2.28 0.53 109.4 22.3 79.2 

35880000 87 2.39 0.76 85.2 8.5 76.1 

35950000 81 2.11 0.71 85.6 3.7 75.7 

36020000 92 2.37 0.73 76.6 5.3 76.6 

36045000 73 2.99 0.71 75.4 6.1 76.6 

36070000 86 2.75 0.74 70.1 6.4 76.6 

36125000 73 2.25 0.70 84.8 8.0 76.4 

36130000 66 2.83 0.55 92.8 8.7 76.6 

36160000 81 2.86 0.72 75.2 7.0 76.6 

36210000 40 2.07 0.66 97.4 7.8 77.3 

36250000 41 3.21 0.61 71.6 5.2 76.3 

36260000 48 2.28 0.69 81.2 6.5 76.5 

36270000 56 2.19 0.79 75.1 6.7 76.5 

36290000 67 2.43 0.80 78.8 6.9 76.6 

36320000 78 2.79 0.77 76.9 7.1 76.7 

36390000 79 2.90 0.84 74.6 6.7 76.7 

36470000 97 2.46 1.01 75.0 8.8 77.3 

36520000 98 2.18 1.09 64.9 8.0 77.2 

36580000 96 2.71 0.99 69.2 7.2 77.0 
Source: Elaborated by the author. 
 

Then, a multiple linear regression based on the aforementioned standardized 

catchment characteristics and the standardized (dimensionless) long-term precipitation was 

fitted to the average standardized specific runoff (𝑞) (equation 11), whose coefficients were 

adopted as weights for the K-N-N regionalization approach. The fitted regression presented a 

coefficient of determination of 0.78 (Figure 9), which may indicate that both the physiographic 

characteristics and the precipitation are strongly related to the long-term streamflow in the study 

area. 
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𝑞 = 0.325𝐶𝑟𝑦𝑠𝑡 − 0.020𝐾𝑐 − 0.096𝐷𝐷 − 0.208𝐴𝑊𝐶 − 0.176𝑆𝑙𝑜𝑝𝑒 + 0.181𝐶𝑁 + 1.003𝑃 (11) 

 

According to the coefficients, the precipitation was the most important variable for 

the long-term streamflow prediction, as expected. However, some physiographic characteristics 

showed to be relevant, as the portion area on the crystalline bedrock (Cryst), the Available Water 

Capacity (AWC), the Curve Number (CN) and the catchment average slope. On the other hand, 

the influence of the Gravelius Compactness Coefficient (Kc) and the drainage density (DD) 

were much less important on the long-term streamflow, and probably on the monthly 

streamflow as well. 

 

Figure 9 – Comparison between the observation and 

the average specific runoff based on the multiple 

linear regression of the physiographic characteristics 

and the precipitation. The twenty-eight selected 

streamgauges were taken into account. 

 

Source: Elaborated by the author. 
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2.5.4 Regionalization application  

 

For each streamgauge catchment, we determined the five nearest neighbours and 

the respective set of 1000-value parameter distributions, according to the 1-N-N, 3-N-N and 5-

N-N regionalization approach. Then, we calculated streamflow under parametric uncertainty 

with SMAP, obtaining 1000 series for each analysed catchment. As example, we plotted the 

streamflow prediction band (5%-95%) for the 36260000 and 34740000 streamgauges (Figure 

10). These results were compared to the observed data. 

 

Figure 10 – Streamflow prediction band (5%-95%) for 36260000 and 34740000 

streamgauges calculated by SMAP using the regionalized parameters according 

to 1-N-N, 3-N-N, and 5-N-N. 

 

Source: Elaborated by the author. 
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For the 36260000 streamgauge, which represents the average physiographic 

conditions in the study area, 1-N-N regionalization captured well most streamflow in the 

evaluated period, although 3-N-N was necessary to reach some peaks. The prediction band 

became too large when more neighbours (5-N-N) were used, in exchange of little prediction 

performance improvement. On the other hand, for the 34740000 streamgauge, whose catchment 

is the unique completely inside a sedimentary basin, using more neighbours allowed the model 

to capture many streamflow peaks that were far to be matched by the 1-N-N approach, but it 

increased considerably the prediction band. 

In order to evaluate the performance of the three regionalization approaches for all 

catchments, we calculated the 𝑁𝑆𝐸, naming 𝑁𝑆𝐸𝑟𝑒𝑔 1−𝑁−𝑁, 𝑁𝑆𝐸𝑟𝑒𝑔 3−𝑁−𝑁, and 𝑁𝑆𝐸𝑟𝑒𝑔 5−𝑁−𝑁 

for the 1-N-N, 3-N-N, and 5-N-N approach, respectively. The 𝑁𝑆𝐸𝑣𝑎𝑙 was used as reference for 

goodness-of-fit of the 𝑁𝑆𝐸𝑟𝑒𝑔 , assuming the validation period for the evaluation of 𝑁𝑆𝐸𝑟𝑒𝑔  as 

well, since the real-world model assessment was carried out in that period. The Figure 11 shows 

the overall NSE results, providing its average and its standard deviation for 1-N-N, 3-N-N, and 

5-N-N approaches, and for using just the catchment calibrated parameters (validation). 

Average 𝑁𝑆𝐸𝑟𝑒𝑔  were 0.55, 0.62 and 0.67 for 1-N-N, 3-N-N, and 5-N-N, 

respectively. For most streamgauges, average 𝑁𝑆𝐸𝑟𝑒𝑔 was also close to the respective average 

𝑁𝑆𝐸𝑣𝑎𝑙, and in some cases 𝑁𝑆𝐸𝑟𝑒𝑔 values were even higher than the 𝑁𝑆𝐸𝑣𝑎𝑙, which showed 

that developed regionalization strategy worked well for the study area. 

Even if for few streamgauges (e.g. 34740000, and 36580000) 3-N-N and 5-N-N 

provided on average more accurate prediction than 1-N-N, we found a consistent deterioration 

of the prediction performance with the increasing number of neighbours for most of 

streamgauges (e.g. 35740000, 36210000, and 36260000). Moreover, in these cases, the 

𝑁𝑆𝐸𝑟𝑒𝑔 3−𝑁−𝑁  and 𝑁𝑆𝐸𝑟𝑒𝑔 5−𝑁−𝑁  variability became quite higher, leading to large model 

uncertainty. 
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Figure 11– Overall NSE results: average and standard deviation from 1-N-N, 

3-N-N, and 5-N-N approaches, and from using just the catchment calibrated 

parameters (validation). Only the validation period was considered in the 

𝑁𝑆𝐸 evaluations.  

 

Source: Elaborated by the author. 

 

Table 4 - Number of streamgauges distributed in classes according to the 

absolute difference between the average values of 𝑁𝑆𝐸𝑟𝑒𝑔   and 𝑁𝑆𝐸𝑣𝑎𝑙  (Δ), 

considering the three regionalization approaches (1-N-N, 3-N-N and 5-N-N). 

Number of 

Neighbours 

Class  

Δ ≤ 0.05 0.05< Δ ≤ 0.2 0.2< Δ ≤ 0.6 Δ >0.6 Total 

1-N-N 11 11 6 0 28 

3-N-N 9 13 4 2 28 

5-N-N 7 10 9 2 28 

Source: Elaborated by the author. 
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2.6 Conclusion 

 

In this study, we estimated the parameter model uncertainty for twenty-eight 

streamgauge catchments in the State of Ceará, NE Brazil, and we proposed a regionalization 

approach, which was based on the K-Nearest-Neighbours classification, to predict streamflow 

and to assess the uncertainty in ungauged catchments. 

The considered physiographic characteristics in the similarity assessment of the 

catchments provided a satisfactory estimation of the model parameters. The K-Nearest-

Neighbours regionalization produced accurate streamflow prediction with an average 𝑁𝑆𝐸 of 

0.67, when only the first neighbour is used. In fact, results showed that the first nearest 

neighbour frequently was a parameter predictor better than a combination of the three or five 

nearest neighbours, which can significantly increase the uncertainty of streamflow prediction.  

The uncertainty band generated by regionalized parameters allowed to capture more observed 

streamflow data, leading to a better representation of streamflow states than the calibrated 

parameters for some catchments. 

The framework developed in this study allows to assess uncertainty of rainfall-

runoff models due to parameter equifinality to ungauged catchments, considering explicitly this 

uncertainty in the regionalization. This approach also represents a very relevant tool to be 

applied for the water resources management in the State of Ceará, providing inflow prediction 

to the main reservoirs and their associated uncertainties. Besides it may be useful for other 

similar dryland regions in the world. 
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3 SECOND ARTICLE 

 

Assessment of a hydrosystem water availability: a comparison between parameter and 

climate change uncertainties, using CMIP6 models. 

 

Abstract: 

Climate change is expected to induce extensive socioeconomic consequences. However, only a 

few studies have assessed the impact of climate change uncertainties on water availability of 

complex reservoir network systems. In this study, we propagated climate change and model 

parameter uncertainties in water availability simulation of the Jaguaribe-Metropolitan 

hydrossystem, in Brazilian northeast. Eight Global Circulation Models (GCMs) from the sixth 

phase of Coupled Model Intercomparison Project (CMIP6) were used to represent future 

climate. Differential Evolution Adaptive Metropolis (DREAM) was used to assess parameter 

uncertainty, propagated to ungauged reservoir drainage areas with a K-Nearest-Neighbor 

regionalization approach. Half of GCMs indicated a significant increase in water availability 

for the period between 2021 and 2050, while the other half indicated decrease or no significant 

change. Parameter uncertainty showed to be negligible in comparison to climate change 

uncertainty. 

 

Keywords: Climate change, CMIP6, water availability, parameter uncertainty. 
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3.1 Introduction 

 

Remarkable climate-driven alterations in the occurrence of hydrologic variables 

have been described by the scientific literature in the last decades, e.g. precipitation and 

streamflow trends; changes in the magnitude and frequency of droughts and floods; and water 

availability (BURN; HAG ELNUR, 2002; GROISMAN et al., 2004; HAMLET et al., 2007; 

KHATTAK; BABEL; SHARIF, 2011; PETROW; MERZ, 2009; ROOD et al., 2008). Water 

resources alterations related to hydroclimatic changes may have extensive environmental and 

socioeconomic impacts and must be considered for a better long-term planning and 

management (BUYTAERT et al., 2010; DÖLL et al., 2014; IGLESIAS; GARROTE, 2015; 

KHATTAK; BABEL; SHARIF, 2011; MIDDELKOOP et al., 2001; MILLY et al., 2008; POFF 

et al., 2016; ROOD et al., 2008). Despite the growing scientific interest, the modelling and 

quantification of these changes are still subject to high uncertainty (CLARK et al., 2016; 

KUNDZEWICZ et al., 2018; MAIER et al., 2016; RAJE; KRISHNAN, 2012). Managers need 

to assess these uncertainties in their decisions to efficiently increase the reliability and the 

adaptation of the hydrosystems to climate change impacts (BORGOMEO et al., 2014; HER et 

al., 2019; MINVILLE; BRISSETTE; LECONTE, 2010). 

The uncertainty in future streamflow modelling arise mainly from: i) the long-term 

simulation of climatological variables (e.g. precipitation, temperature and wind speed) by 

General Circulation Models (GCMs); ii) the transformation of the future climate variables into 

future runoff by hydrologic models; and iii) the downscaling of the climatological forcing. The 

first two are going to be discussed in this research.  

The first, climate uncertainty, is related to the choice of the GCMs, the greenhouse 

emission scenarios and horizons (POFF et al., 2016; VETTER et al., 2017). These scenarios 

are related to radiative forcing, a variable that quantifies Earth energy flux changes driven by 

climate change. There are several GCMs developed by different research institutions, each with 

its own premises, physical formulation and resolutions. The GCMs are brought together as part 

of the Coupled Model Intercomparison Project (CMIP) (MEEHL et al., 2000) that is in its sixth 

phase, the CMIP6 (EYRING et al., 2016). The climate uncertainty is traditionally quantified by 

considering a multi-GCM ensemble with the spread between the members as the amount of 

uncertainty (KNUTTI et al., 2010; MURPHY et al., 2004; PARKER, 2010). Despite the 

limitations and the spread of results from different GCMs, they remain the only reliable manner 

for long-term simulating climate variables (HER et al., 2019; MURPHY et al., 2004; RAJE; 

KRISHNAN, 2012; WIDÉN-NILSSON; HALLDIN; XU, 2007). 
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The second source of uncertainty, the hydrologic uncertainty, depends on the choice 

of the hydrologic model structure and the equifinality of its parameters (BASTOLA; MURPHY; 

SWEENEY, 2011; HER; CHAUBEY, 2015; POFF et al., 2016). The structure defines how, and 

which processes are represented. Although complex hydrologic models can reproduce more 

specific processes, they require more parameters and larger datasets that can increase the 

uncertainty. Thus, the model structure is often determined based on data availability and the 

required information. Simpler models with acceptable performance are preferable (HER et al., 

2019). 

Parameter uncertainty or equifinality consists in the existence of multiple parameter 

sets that result in hydrologic models with similar performance in calibration. Equifinality results 

in parameter non-identifiability and it is an inevitable source of hydrological modelling 

uncertainty (BEVEN, 2006; HER; CHAUBEY, 2015). Equifinality is often quantified using a 

Bayesian approach, which considers model parameters as random variables, estimating its 

probability distribution through observed data assimilation. Formal and informal Bayesian-

inference-based algorithms have been developed on the last decades (VRUGT et al., 2009). For 

instance, the Generalized Likelihood Uncertainty Estimation (GLUE), proposed by Beven and 

Binley (1992), assess parameter uncertainty in an informal approach. Vrugt et al. (2008) 

developed the Differential Evolution Adaptive Metropolis (DREAM), a Markov Chain Monte 

Carlo (MCMC) scheme that allows formal assessment of parameter uncertainty in model 

calibration. GLUE and DREAM present similar performance. However, DREAM attempts to 

disentangle the effect of equifinality from the others predictive uncertainties in modal 

calibration (VRUGT et al., 2009).  

Some studies compared parameter and climate change uncertainties (HER et al., 

2019; LUDWIG et al., 2009). According to Ludwig et al. (2009), hydrological models generate 

more uncertainties than GCMs. Her et al. (2019), in turn, found out that climate uncertainty has 

a more relevant effect on rapid hydrological components, while equifinality is dominant for 

slow components. They also found that GCMs uncertainties are larger in precipitation 

projections than in temperature. 

All these studies focus on hydro climatological variables (e.g. streamflow, 

precipitation and evapotranspiration) and none have addressed the impact of the uncertainty of 

future climate modelling on water resources management. 

Another practical issue is how to address these uncertainties to ungauged 

catchments. In this regard, Estacio et al. (2020) proposed, in an unpublished work, a 

methodology to propagate parameter uncertainty from gauged to ungauged catchments. This 
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methodology, reproduced here, uses a K-Nearest-Neighbor (K-N-N) regionalization approach 

combined with DREAM to assess parameter uncertainty. 

In this study, we assessed the uncertainty in streamflow modelling under climate 

change, and its impacts in the performance of a reservoir system operation and in water 

availability. For this, we coupled the traditional methodology for future climate uncertainty 

assessment (i.e. considering different GMC and scenarios for the climate uncertainty), and the 

Bayesian MCMC approach to the hydrogical model parameters uncertainty, using the 

framework and outcomes from Estacio et al. (2020). These uncertainties were propagated into 

a reservoir system operation model, in order to assess its water availability in climate change 

conditions. We also assessed the hydrosystem water availability in the 20th century climate 

conditions. The Jaguaribe-Metropolitan hydrossystem in the State of Ceará, Brazil, was 

considered as case study. 

 

3.2 Study area hydro-climatology and hydraulic infrastructure  

 

Jaguaribe basin (75,669 km²) is located in the northeast of Brazil between 4º 30’ S 

and 7º 45’ S latitudes and 37º 30’ W and 41º 00’ W longitudes. Its main river, Jaguaribe, is the 

biggest in the Brazilian Oriental Atlantic Northeast Hydrographic Region, and the most 

important water resource in State of Ceará, accounting for 72% of its reservoir storage capacity 

(SOUZA FILHO, 2018). 

 Hydro-climatology of the region is marked by high annual and interannual 

variability, with a six month dry season and frequent pluriannual droughts (SOUZA FILHO, 

2018). Annual rainfall ranges from 500 mm to 1200 mm, with 75% of total amount concentrated 

in 4 months of the year (February–May) (GONDIM et al., 2018). Average temperatures are 

high (24 – 27 ºC) in the four seasons. High potential evapotranspiration rates (>1500 mm/year) 

result in a water deficit ranging from 500 to 1200 mm/ year (INSTITUTO BRASILEIRO DE 

GEOGRAFIA E ESTATÍSTICA (IBGE), 1999). 

The shallow soils of the region, situated mainly on crystalline bedrock (80%), result 

in scarce groundwater resources. For this reason, the construction of surface reservoirs was the 

main strategy adopted by local government to provide water for multiple uses (SOUZA FILHO, 

2018). 

The three biggest reservoirs in Ceará, Castanhão (6.70 billion m³), Orós (1.94 

billion m³) and Banabuiú (1.60 billion m³), are located in Jaguaribe basin. They represent 55% 
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of total storage capacity of Ceará reservoirs (18.60 billion m³), and 79% of the basin (13.00 

billion m³) (ANA, 2017). 

Channels connect Jaguaribe basin to smaller reservoirs in Metropolitan Area of 

Fortaleza (MAF). These reservoirs supply drinking water for 4 million people in MAF, besides 

attending water demands of local industries. Jaguaribe-Metropolitan reservoirs and channels 

form the Jaguaribe-Metropolitan hydrossystem. 

The study area (Figure 12) occupies 65,310 km², including Castanhão, Orós and 

Banabuiú catchments, and the catchments of other five reservoirs in MAF (Aracoiaba, Gavião, 

Pacajus, Pacoti-Riachão and Sítios-Novos). 

Because Castanhão and Pacajus are downstream from Orós and Aracoiaba, 

respectively (see Figure 12), for the first two we considered the incremental drainage areas (and 

not the total catchment) in rainfall-runoff modelling. 

 

 

Figure 12 – Catchment area of the reservoirs in the 

study area. 

 

Source: Elaborated by the author. 
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3.3 General framework 

 

The proposed framework (Figure 13) allows to assess Jaguaribe-Metropolitan 

hydrossystem water availability in both present (20th century) and future climate conditions, 

incorporating parameter and climate change uncertainties. For this, we simulated streamflow in 

the reservoir catchments with observed climate data and projections from eight GCMs from 

CMIP6. The rainfall-runoff model was the monthly Soil Moisture Accounting Procedure 

(SMAP), a conceptual lumped model, which has been frequently applied for water resources 

assessment in Brazil. 

Parameters of SMAP were obtained using a K-N-N regionalization approach, 

proposed by Estacio et al. (2020), which assimilates parameter uncertainty in model calibration 

and allows to propagate it from gauged catchments to ungauged ones. Through this approach, 

we obtained a set of parameters that represent equifinality. Simulation of reservoir operation 

was used to estimate the water availability of the eight targeted reservoirs. 

 

Figure 13 – Proposed framework for water availability assessment under parameter 

and climate change uncertainties. 

 

Source: Elaborated by the author. 
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3.4 Precipitation and evapotranspiration data for the present climate (20th century) 

 

Precipitation representing present climate was obtained from the records from 815 

rain gauges, provided by the Brazilian National Water Agency (ANA). An inverse distance 

weighting approach (PLOUFFE; ROBERTSON; CHANDRAPALA, 2015) was used to 

interpolate local precipitation from the gauges to the targeted reservoir catchment areas. 

Monthly precipitation series were calculated from 1910 to 2017. This data was assumed to 

represent 20th century precipitation regime. 

Potential evapotranspiration was calculated with the Hargreaves-Samani equation, 

which estimates it from temperature and latitude. Temperature data was obtained from the 

meteorological data processed by Xavier, King and Scanlon (2016). Monthly 

evapotranspiration was interpolated from stations into the catchments with a weighting average 

using the Thiessen polygons. 

 

3.5 CMIP6 climate change models and scenarios 

 

In its sixth phase, the Coupled Model Intercomparison Project (i.e. CMIP6) 

proposed a new integrated structure that attempts to respond the major required improvements 

identified in the previous editions (EYRING et al., 2016). With the first model simulations in 

2016 (EYRING et al., 2016), CMIP6 has released, since then, historical and projection outputs 

for a couple of GCMs. 

In this study we considered eight recent models (Table 5) from CMIP6 dataset to 

represent the climate change uncertainty that may impact water availability. 

 

Table 5 - Global Circulation Models from CMIP6 considered 

in the study and its respective sources. 

Model Source 

BCC-CSM2-MR (WU et al., 2018) 

CanESM5 (SWART et al., 2019) 

FGOALS-g3 (LI, 2019) 

IPSL-CM6A-LR (BOUCHER et al., 2018) 

MIROC6 (TATEBE; WATANABE, 2018) 

MPI-ESM1-2-HR (VON STORCH et al., 2017) 

MRI-ESM2-0 (YUKIMOTO et al., 2019) 

NESM3 (CAO, 2019) 
Source: Elaborated by the author. 
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Scenario Model Intercomparison Project (ScenarioMIP) defines standard possible 

climate forcing pathways within CMIP6 and uses the same emission scenarios for the ensemble 

of GCMs. Each one of these projections were designed in collaboration with the scientific 

community, considering different pathways for the global development (O’NEILL et al., 

2014). We considered two Shared Socioeconomic Pathways (SSP) designed by ScenarioMIP: 

SSP2-4.5 and SSP5-8.5.  

In SSP2-4.5, historical tendencies of global development are maintained, with an 

intermediate radiative forcing (4.5 W/m²). SSP5-8.5, in turn, considers intense socioeconomical 

development based on the exploitation of fossil fuel, producing a higher radiative forcing (i.e. 

8.5 W/m²) (O’NEILL et al., 2014).  

Monthly precipitation and temperature for the next thirty years (2021-2050) were 

calculated from GCMs forecasts for both scenarios. All consideration of future condition in this 

study considers this thirty-year period. Thiessen polygons were used to interpolate the climate 

variable projections from GMSs grids to catchments area. 

A bias-correction procedure was performed to reduce the interpolation errors and 

inaccuracies inherent to GCMs. For this, we compared historical outputs of the GCMs to the 

observed data, assuming the models would reproduce the same pattern in prediction errors. 

Thus, the same bias-correction used in historical projections was used for future climatic 

projections. Historical and observed precipitation data comprise the period from 1911 to 2014, 

and temperature, from 1980 to 2013. We corrected precipitation using a gamma-gamma 

transformation (SHARMA; BABEL, 2018), which was applied to each month, correcting also 

the seasonality. For temperature, we used the monthly mean correction, which presented 

accurate results (SALVI; KANNAN; GHOSH, 2011). Potential evapotranspiration in future 

conditions (2021-2050) was calculated from corrected temperature using the Hargreaves-

Samani equation. 

 

3.5.1 Rainfall-runoff model, regionalization and parameter uncertainty 

 

We used Soil Moisture Accounting Procedure (SMAP), a conceptual lumped 

rainfall-runoff model (FERNANDES et al., 2017; LOPES; BRAGA; CONEJO, 1981; 

SILVEIRA; SOUZA FILHO; VASCONCELOS JÚNIOR, 2017), to obtain the reservoir inflows 

produced in the catchments in the present (20th century) and future (2021-2050) conditions.  
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Since we wanted to assess the long-term water availability, we chose the monthly 

version of SMAP, which represents the flows in the watershed through soil and underground 

reservoirs. The monthly version of SMAP has four parameters, named 𝑆𝐴𝑇, 𝑃𝐸𝑆, 𝐶𝑅𝐸𝐶 and 

𝐾, controlling internal water fluxes and outputs. 

SMAP could not be calibrated for the catchments, because there are no records of 

the reservoirs inflow. Instead, we used a regionalization method to estimate SMAP parameters 

for the catchments. The parameter regionalization was based on the K-Nearest-Neighbor 

algorithm, proposed in an unpublished study by Estacio et al. (2020). The method estimates the 

parameters of the rainfall-runoff model in ungauged catchments based on the similarity with 

the gauged catchments in the region. Estacio et al. (2020) selected twenty-eight streamgages in 

the State of Ceará as donor catchments and used monthly SMAP. We considered only one donor 

catchment in the regionalization, which gives best estimation of parameters (ESTACIO et al., 

2020). 

Estacio et al. (2020) considered parameter uncertainty and propagated it to the 

ungauged catchments through the regionalization. The proposed framework calibrated the 

gauged catchments using the Differential Evolution Adaptive Metropolis (DREAM), a Markov 

chain Monte Carlo (MCMC) sampler that can be used to simultaneously calibrate models and 

determine parameter uncertainty based on Bayesian inference (VRUGT et al., 2008). 

Using this regionalization approach, we obtained for each reservoir catchment a set 

of 1000 values of the four parameters of SMAP, representing the parameter uncertainty. Then, 

we calculated the reservoir inflows, obtaining 1000 series for each catchment, considering 20th 

century climate conditions and GCM projections for future climate (2021-2050). In order to 

assess climate uncertainty without parameter uncertainty effect, we also considered the inflow 

series generated using median parameters. 

 

3.5.2 Hydrosystem simulation and water availability assessment 

 

The targeted reservoir networks, including monitored reservoirs upstream the 

targeted one (Figure 14), were simulated, in order to incorporate the hydrosystem efficiency in 

the water availability assessment. Only Gavião and Pacoti-Riachão reservoirs do not present 

other upstream monitored reservoirs. The channels of Jaguaribe-Metropolitan hydrosystem 

were not modeled, since their only function is transfer water between reservoirs, while this 

study focus on the hydrosystem global water availability. Total inflow produced in the targeted 
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reservoir catchments was calculated with SMAP and distributed to the incremental draining 

areas of each reservoir. 

Reservoirs upstream the targeted one were operated in simulations with the official 

draw-off discharges that can be granted for them, according to the Water Resources Office of 

State of Ceará (SRH-CE). A sensitivity analysis has shown for the reservoir networks of the 

region the draw-off rate of upstream reservoirs does not strongly affect the yield of the 

downstream reservoir (ESTACIO; SOUZA FILHO; PORTO, 2018). In fact, since streamflow 

regime in the study area concentrate flow in a short period of the year, most inflow of smaller 

reservoirs spills. On the other hand, the evaporation in these reservoirs represent a relevant 

portion of the water balance in the hydrosystem. Consequently, simulating the whole network 

is necessary to fairly represent this balance (ESTACIO; SOUZA FILHO; PORTO, 2018). 

Then, we calculated the individual inflow of the reservoirs in simulations by adding 

the drainage volume of the incremental watershed to the spills of the immediately upstream 

reservoirs. 

 

Figure 14 – Targeted reservoir networks of Jaguaribe Metropolitan hydrosystem. 

 
MINOR RESERVOIRS    

1- Quincoé 10- Parambu 17 – Jenipapeiro 24- Riacho do Sangue 31- Patu 
2- Trussu 11-Varzea do Boi 18- Thomás Osterne 25- Trapia II 32-Fogareiro 

3- Canoas 12-Arneiroz II 19- Joaqui Távora 26- São José I 33- Quixeramobim 

4- Muquém 13-Manual Balbino 20- Tatajuba 27- Monsenhor Tabosa 34- Pompeu Sobrinho 

5- Benguê 14-Prazeres 21-Ubaldinho 28- Pirabibu 35- Catro 

6- Faé 15- Quixabinha 22- Cachoeira 29- São José II 36- Itapebussu 

7- Favelas 16 – Tigre 23- Rosário 30- Serafim Dias 37- Amanary 

8- Triçi 10- Parambu 17 – Jenipapeiro 24- Riacho do Sangue 31- Patu 

9- Forquilha II 11-Varzea do Boi 18- Thomás Osterne 25- Trapia II 32-Fogareiro 

Source: Elaborated by the author. 
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The water balance in the reservoirs was calculated according to the mass 

conservation equation (12). The reservoir storage variation (
dV

dt
)  was calculated as the 

difference between inflow (A) and outflows. The main outflows considered in the simulations 

consist of the discharge drawn from the reservoir (D), spills (Sp), and evaporated discharge, 

which was calculated as the product of the evaporation rate (E) and the surface area of the 

reservoir S(V). 

𝑑𝑉

𝑑𝑡
= 𝐴 − 𝐷 − 𝑆𝑝 − 𝐸 × 𝑆(𝑉) (12) 

The elevation-area-capacity curves of the reservoirs, provided by Ceará Water 

Resources Management Company (COGERH), allow to consider surface area variations with 

the storage. Piché evaporimeter data from the nearest meteorological station of Brazilian 

Institute of Meteorology (IMET) was used to calculate evaporation rates in the reservoirs. In 

the future climate conditions, the increase in evaporation was considered at the same rate as the 

increase in evapotranspiration, calculated from bias-corrected temperature from the GCMs. 

Then, we calculated the long-term discharge that can be drawn with 90% of 

reliability (Q90). This value is a reference for reservoirs maximum discharge that can be granted 

according to local law (CAMPOS; SOUZA FILHO; LIMA, 2014). We adopted Q90 as the 

measure of water availability to be assessed in this work. 

The parameter uncertainty was taken account into Q90 evaluation by considering 

the 1000 streamflow series that resulted from parameter uncertainty. Thus, we found out 1000 

values of Q90 for each catchment in 20th century and for each GCM in both scenarios. Climate 

uncertainty was assessed by the ensemble of models and scenarios. We also calculated Q90 

using the streamflow series generated by the median parameter. In this way, we isolated climate 

uncertainty from parameter uncertainty. 

Since two targeted reservoirs (i.e. Castanhão and Pacajus) presented other targeted 

reservoirs upstream, a particular framework was developed to simulate these reservoir networks, 

considering the upstream targeted reservoir network (i.e. Orós and Aracoiaba networks) and the 

reservoirs in the incremental area of Castanhão and Pacajus (green reservoirs in Figure 14). 

From parameter uncertainty, we generated 1000 streamflow series for both incremental and 

upstream catchment. Thus, we randomly selected 1000 out of 106 (1000 times 1000) 

combinations of streamflow series for both catchments, keeping the original statistics of likely 

streamflow series. Then, we calculated Q90 as previously. 
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3.6 Results and discussion 

 

3.6.1 Present (20th century) and future (2021-2050) water availability 

 

Figure 15 shows the average Q90 and the respective coefficient of variation (CV) 

in 20th century and for each GCM in both scenarios. CV values varied from 0.02 to 0.17, 

indicating that parameter uncertainty propagated to Q90 results in a Q90 standard deviation 

with 2%-17% of the average. Moreover, present and future CV, considering each GCM 

separately, seem to be similar, with any general tendency of increase or decrease, due to climate 

change, which means that parameter uncertainty was conserved in the simulated scenarios. This 

result came from the fact that we used the same set of parameters for all simulations, ignoring 

any land use and cover changes. 

On the other hand, for most reservoirs, such Aracoiaba, Castanhão, Orós and Sítios 

Novos, CV tends to increase as the Q90 average decreases, meaning that smaller Q90 present 

relatively a larger (but not necessarily less accurate) prediction band. 
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Figure 15 – Average and coefficient of variation of Q90 for the main 

reservoirs of JMS in present (20th century) climate conditions and future 

(2021-2050) climate conditions according to eight GCMs in two scenarios. 

 

 
 

 
Source: Elaborated by the author. 
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The relative anomalies in the average Q90 (Figure 16) varied significantly with 

GCMs and scenarios. According to seven of the eight GCMs, Aracoiaba water availability is 

going to decrease (73% maximum), while Sítios Novos Q90 are going to increase (320% 

maximum). For the other reservoirs, including Castanhão, Orós e Banabuiú, nearly half of 

GCMs indicate an increase of water availability, while the rest projects a decrease or 

maintenance of Q90 value. 

 

Figure 16 – Average Q90 relative anomalies for the main reservoirs of JMS according 

to eight GCMs in two scenarios. 

 

 

Source: Elaborated by the author. 
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MIROC6 and NESM3 increased the average Q90 from scenario SSP 2 – 4.5 to SSP 

5 – 8.5, while BCC-CSM2-MR, IPSL-CM6A-LR, and MPI-ESM1-2-HR decreased. The other 

models approximately kept the average Q90. Surprisingly, the biggest anomalies are observed 

for the larger reservoirs.  

The positive anomalies are more significant than the negative ones, which could 

indicate an increase of water availability for the reservoirs of JMS. These results contrasts with 

the outcomes found out by Gondim et al.(2018), who assessed water avaliability in Jaguaribe 

basin, using CMIP5 models for the period 2025-2055. In the later, most GCMs indicate decrease 

in water availability. 

 

3.6.2 Parameter and Climate Change uncertainties 

 

Since climate change uncertainty emerge from the ensemble of GCM projectios, 

we also evaluate together the eight GCM responses propagated to Q90. Thus, we assessed the 

distribution of these responses in two case studies, considering: (1) the whole set of parameters, 

which allow to combine parameter and climate change uncertainty; and (2) the median 

parameters, in order to isolate climate change uncertainty. Q90 distributions for both case 

studies were analyzed using their boxplots (Figure 17) 

For all reservoirs and in both scenarios, Q90 considering only climate change 

uncertainties presented a similar median as Q90 for combined uncertainty. Moreover, Q90 for 

combined uncertainty is only slightly more spread than the former. That difference is probably 

due the added parameter uncertainty, which adds dispersion to Q90 distribution. However, that 

result is not conclusive, since Q90 sets in both case studies are not equally sized. 
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Figure 17 – Analysis of climate change and combined (climate change and parameter) 

uncertainties: Q90 boxplots for the main reservoirs of JMS in two scenarios. 

 

 

 
Source: Elaborated by the author. 
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In order to compare Q90 spread, as a measure of uncertainty in both case studies 

(climate change and combined uncertainties), we performed a statistic test. Classical Levene’s 

test allow to compare two data set variances, with null hypothesis of homoscedasticity (i.e. no 

difference between variances) (LEVENE, 1960). We performed this test assuming a 

significance level of 0.05, and found out the following p-values: 

 

Table 6- p-values for Levene’s test to compare Q90 

variance from climate change uncertainty analysis and 

combined uncertainty analysis.  

p-values Scenario 

Reservoir SSP 2 - 4.5 SSP 5 - 8.5 

Aracoiaba 0.91 0.95 

Banabuiú 0.96 0.99 

Castanhão 0.95 0.99 

Gavião 1 1 

Orós 0.96 0.98 

Pacajus 0.9 0.87 

Pacoti-Riachão 0.75 0.52 

Sítios-Novos 0.76 0.83 
Source: Elaborated by the author. 

 

There is no statistical evidence to reject the null hypothesis that Q90 variance from 

climate uncertainty is identical to combined uncertainty one. Thus, under those circumstances, 

parameter calibration had a minor effect in combined uncertainty, compared to climate change 

uncertainty. 

 

3.7 Conclusions 

 

In this study we propagated climate change and model parameter uncertainties in 

water availability assessment for a complex hydrosystem. Half of the selected models indicated 

a significant increase in water availability of the Jaguaribe Metropolitan hydrosystem for the 

period between 2021 and 2050. The other half indicated a less significant decrease or 

maintenance of water availability. 

The expected increase in water availability of the Jaguaribe Metropolitan 

hydrosystem contradicts the projections from the GCMs of CMIP5. Including the new GCMs 

from CMIP6, since they are made available, is recommended. In addition, water availability 

assessment must include the evaluation of water demand tendencies in addition to the climate 

change effects.  
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Adding parameter equifinality to climate change uncertainty showed no statistical 

evidence of increase of uncertainty in simulated water availability. Thus, climate change 

projections represent more relevant uncertainties to future water availability in Jaguaribe-

Metropolitan, than parameter equifinality. Further research is recommended to compare GCMs 

projection uncertainties to those produced by climatological forcing downscaling techniques. 

CMIP6 has brought together improved GCMs in an integrated system that helps 

scientists to assess climate change effects under different scenarios. However, uncertainties in 

the future climate and its effects on society will persist until GCMs fairly represent the complex 

atmospheric dynamics in global scale. 
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4 CONCLUSION 

 

This study achieved a parameter regionalization approach based on the K-Nearest-

Neighbors classification method that is capable to propagate model parameter uncertainty and 

to predict streamflow to ungauged reservoir catchments in Ceará. Using the regionalized 

parameters, the water availability in Jaguaribe Metropolitan hydrosystem was assessed in 

present and future climate conditions under climate change conditions, considering eight 

CMIP6 GCMs projections. 

The K-Nearest-Neighbors regionalization produced accurate streamflow series 

projections with an average NSE of 0.67 when one donor catchment is used. Results also 

showed that using one donor catchment frequently resulted in a better performance than using 

a combination of three or five donor catchments to predict the model parameters. 

CMIP6 GCMs projections indicated an average tendency of increase for Jaguaribe 

Metropolitan hydrosystem water availability. However, including new GCMs projections, since 

they are made available, is recommended. In addition, water demand scenarios evaluation 

should be included to a complete water availability assessment. 

Climate change projections showed to be a more relevant source of uncertainty in 

future water availability assessment than parameter non-identifiability, highlighting the need of 

a continuous improvement of atmospheric dynamic representation by GCMs. 

The framework developed in this dissertation is expected to collaborate with 

uncertainty assessment in Ceará as a tool for water resources planning and management. 

However, uncertainties in hydrological modelling and its effects on society will persist until a 

general framework for natural, antrophic, and informational uncertainty quantification is 

developed. 
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