
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FERNANDO DIONE DOS SANTOS LIMA

USING DEEP NEURAL NETWORKS FOR FAILURE PREDICTION IN HARD DISK

DRIVES

FORTALEZA

2018

FERNANDO DIONE DOS SANTOS LIMA

USING DEEP NEURAL NETWORKS FOR FAILURE PREDICTION IN HARD DISK

DRIVES

Dissertação apresentada ao Curso de Mestrado
Acadêmico em Ciência da Computação do
Programa de Pós-Graduação em Ciência da
Computação do Centro de Ciências da Univer-
sidade Federal do Ceará, como requisito parcial
à obtenção do título de mestre em Ciência da
Computação. Área de Concentração: Inteligên-
cia Artificial

Orientador: Prof. Dr. João Paulo Pordeus
Gomes

Co-Orientador: Prof. Dr. Javam de Cas-
tro Machado

FORTALEZA

2018

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

L698u Lima, Fernando Dione dos Santos.
 Using deep neural networks for failure prediction in hard disk drives / Fernando Dione dos Santos
Lima. – 2018.
 78 f. : il. color.

 Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação
em Ciência da Computação, Fortaleza, 2018.
 Orientação: Prof. Dr. João Paulo Pordeus Gomes.
 Coorientação: Prof. Dr. Javam de Castro Machado.

1. HDD failure prediction. 2. Deep learning. 3. RUL estimation. I. Título.
CDD 005

FERNANDO DIONE DOS SANTOS LIMA

USING DEEP NEURAL NETWORKS FOR FAILURE PREDICTION IN HARD DISK

DRIVES

Dissertação apresentada ao Curso de Mestrado
Acadêmico em Ciência da Computação do
Programa de Pós-Graduação em Ciência da
Computação do Centro de Ciências da Univer-
sidade Federal do Ceará, como requisito parcial
à obtenção do título de mestre em Ciência da
Computação. Área de Concentração: Inteligên-
cia Artificial

Aprovada em: 29/11/2018.

BANCA EXAMINADORA

Prof. Dr. João Paulo Pordeus Gomes (Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Javam de Castro Machado (Co-Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. José Maria Monteiro
Universidade Federal do Ceará (UFC)

Prof. Dr. Guilherme de Alencar Barreto
Universidade Federal do Ceará (UFC)

I dedicate this work to my family. My mother,

Tânia, who had left us before I joined the mas-

ter’s program, for supporting and believing in

me throughout life. My father, Francisco, and

my brothers, Ozéias and Camylla, for encourag-

ing me along this journey.

ACKNOWLEDGEMENTS

Foremost, I would like to express my gratitude to my advisor, Prof. João Paulo

Pordeus Gomes, for the continuous support of my master’s research, for his motivation, enthu-

siasm, and knowledge sharing.

Besides my advisor, I would like to thank my co-advisor, Prof. Javam de Castro

Machado, coordinator of Laboratório de Sistemas e Banco de Dados (LSBD), for his encour-

agement prior to my enrollment in the master’s degree and also for the support throughout the

development of this dissertation. Also, Prof. Roselia de Castro Machado has played a major

role motivating me and ensuring that LSBD is a great place to do research and work.

In addition to that, I thank the dissertation committee, Prof. José Maria Monteiro

and Prof. Guilherme Barreto, for the insightful comments, hard questions and suggestions to

improve this text.

To Francisco Lucas Falcão Pereira, for the deep contributions and work that made

this dissertation possible.

To my once girlfriend Raíssa Aquino Schatzmann, I would like to thank for all the

moments you took me out from home to have a good time and relief from all the stress that

writing a dissertation involves.

To all the friends whom I have had the pleasure to share moments at LSBD. You

have made this whole process more enjoyable. Particularly I would like to thank Ubiratan

Soares Netto, Elsa Martins, Denis Moraes Cavalcante, Davi Braga, Elvis Teixeira, Paulo Amora

and Manoel Rui.

To the Universidade Federal do Ceará for showing that a university can be public,

free and produce research of excellence.

To Lenovo for the funding this research.

“A pessoa que se vende recebe sempre mais do

que vale.”

(Barão de Itararé)

RESUMO

Discos rígidos (HDDs) ainda são a tecnologia de armazenamento mais amplamente utilizada

em sistemas de armazenamento de larga escala. Isso se deve principalmente à sua relação custo-

benefício em termos de custo por volume de armazenamento. Várias pesquisas foram feitas

para propor técnicas de detecção antecipada de falhas para estes dispositivos, visando aumen-

tar a disponibilidade dos sistemas de armazenamento e evitar a perda de dados. A previsão

de falhas em tais circunstâncias permitiria a redução dos custos decorrentes do tempo de in-

disponibilidade desses sistemas por meio de substituições antecipadas dos dispositivos, além da

migração de dados para estes novos dispositivos, evitando perdas de dados. Muitas das técnicas

propostas até agora realizam principalmente a detecção incipiente de falhas, não permitindo

o planejamento adequado de tais tarefas de manutenção. Neste trabalho, apresentamos várias

abordagens de estimativa de vida útil remanescente (RUL) para discos rígidos baseados em

parâmetros SMART. Tais abordagens incluem duas diferentes modelagens para o problema. A

primeira modelagem é a mais tradicional, baseada em regressão e que propicia uma fina gran-

ularidade na predição. A outra abordagem possibilita um maior controle sobre a granularidade

necessária pelo operador, através de configuração prévia, e consiste na modelagem do prob-

lema como uma tarefa de classificação multiclasse, ou multinomial. No contexto do problema

de classificação, exploramos também dois aspectos importantes para o problema de estimativa

de RUL: a ordinalidade entre classes, e o viés preditivo para classes que indicam um tempo de

vida reduzido, quando da ocorrência de classificações errôneas. Isso se dá através da aplicação

de uma codificação ajustável para as classes. Todos os modelos propostos são baseados em

redes neurais profundas (DNNs). Na avaliação dos modelos, um conjunto de dados proveniente

de uma companhia de armazenamento de dados em nuvem, e contendo amostras de 1,697 dis-

positivos que falharam, foi utilizado. Experimentos mostraram que as abordagens propostas

propiciam resultado satisfatórios na modelagem como problema de regressão, onde foi real-

izada uma análise aplicando métricas desenhadas para tarefas de prognóstico. Na modelagem

como problema de classificação tradicional nosso modelo obteve resultados superiores ao mod-

elo concorrente e, no problema de classificação assimétrica, melhora nas métricas que abordam

a ordinalidade juntamente com a assimetria.

Palavras-chave: Predição de falha em HDDs. Aprendizagem Profunda. Estimativa de RUL.

ABSTRACT

Hard disk drives (HDDs) are still the most widely used storage technology employed in large-

scale storage systems. This is mainly a result of its excellent cost-benefit relation in terms of

cost per gigabyte. Several research efforts have been done to propose early failure detection

techniques for these devices in order to improve storage systems availability and avoid data

loss. Failure prediction in such circumstances would allow for the reduction of downtime costs

through anticipated disk replacements, as well as the migration of data to new devices, avoiding

data loss. Many of the techniques proposed so far mainly perform incipient failure detection

thus not allowing for proper planning of such maintenance tasks. In this work, we present sev-

eral remaining useful life (RUL) estimation approaches for hard disk drives based on SMART

parameters. These approaches include two different modelings of the problem. The first is a

traditional regression-based that allows for fine-grained predictions. The other approach allows

for a greater control over the granularity needed by the systems operator, through a previous

configuration, and consists in the modeling of the problem as a multiclass, or multinomial,

classification task. In the context of the classification problem, we also explore two important

aspects of the RUL estimation task: the ordinality between classes, and the predictive bias to-

wards classes that indicate a reduced device lifetime, when an incorrect prediction takes place.

All models are based on Deep Neural Networks (DNNs). For evaluating the models, a dataset

produced by a cloud storage service provider, and including the complete time-series for 1,697

failing devices, was employed. Experiments showed that the proposed methods produced satis-

fying results in the regression-based task when assessed with metrics well-suited and designed

specifically for prognostics tasks. In the modeling as a traditional classification task, our model

produced superior results to the baseline model and, in the asymmetric and ordinal classification

task, it outperformed baselines in metrics where both ordinality and asymmetry were taken into

account.

Keywords: HDD failure prediction. Deep learning. RUL estimation.

LIST OF FIGURES

Figure 1 – Mean outage costs of data centers in the USA. Adapted from (Ponemon

Institute LLC, 2016) . 17

Figure 2 – A multilayer perceptron neural network with a single hidden layer and an

output layer with a single output neuron. 22

Figure 3 – Details of a SRN node from a single layer. The nodes enclosed in rectangular

boxes encapsulate the weight matrix multiplication plus a bias term given as

input to the corresponding function in the box. (Adapted from (OLAH, 2015).) 25

Figure 4 – Details of a LSTM memory cell. The nodes enclosed in rectangular boxes

encapsulate the weight matrix multiplication plus a bias term given as input

to the corresponding function in the box. Both Hadamard product and Sum

operations are point-wise. (Adapted from (OLAH, 2015).) 28

Figure 5 – Details of a GRU memory cell. The nodes enclosed in rectangular boxes

encapsulate the weight matrix multiplication plus a bias term given as input

to the corresponding function in the box. Both Hadamard product and Sum

operations are point-wise. (Adapted from (OLAH, 2015).) 30

Figure 6 – Architecture of the LSTM network found through optimization. 45

Figure 7 – Architecture of the CNN found through optimization. 46

Figure 8 – Predicted and real RUL for HDD Z300ZQST. 47

Figure 9 – Loss function along the iterations for CNN and LSTM 47

Figure 10 – Predicted and real RUL for HDD Z300ZQST with the modified loss function. 49

Figure 11 – Predicted and real RUL for HDD Z300NCXQ produced by the LSTM model.

The gray area represents an acceptable range defined by α = 30 for the prog-

nostic metrics. 51

Figure 12 – Architecture of the LSTM network. The two layers of LSTMs are in purple,

followed by the softmax layer . 55

Figure 13 – Training accuracy (left) and loss (right) for 30 days prediction horizon. . . . 55

Figure 14 – Interval settings for the decreasing RUL used in the experiments. 57

Figure 15 – Training accuracy (left) and loss (right) for 360 days prediction horizon. . . 58

Figure 16 – Depiction of the overall process performed in order to produce the best

trained neural network for a given hard disk drive S.M.A.R.T. time-series

dataset. 61

Figure 17 – Probability density function of the asymmetric Laplace distribution in three

cases: no asymmetry, positive asymmetry and negative asymmetry. 63

Figure 18 – Best encoding found by the method for the LSTM model. The bars represent

the probabilities for each health degree (class). 70

Figure 19 – Best encoding found by the method for the GRU model. The bars represent

the probabilities for each health degree (class). 71

LIST OF TABLES

Table 1 – Publications . 20

Table 2 – Related Work Comparison. 40

Table 3 – SMART attributes used for the regression task. 44

Table 4 – Performance of the prediction models under different metrics. 46

Table 5 – Performance of the CNN-based prediction models under different metrics.

The CNN* is the model trained with the customized loss function. W-RMSE

and W-α-λ are the metrics modified to incorporate the weighting scheme. . . 48

Table 6 – Performance of the prediction models combined with the initialization tech-

niques under different metrics. 50

Table 7 – Performance of the classifiers under different prediction horizon settings. . . 58

Table 8 – Confusion Matrix LSTM 30 Days. 58

Table 9 – Confusion Matrix RNN 30 Days. 59

Table 10 – Confusion Matrix LSTM 360 Days. 59

Table 11 – Confusion Matrix RNN 360 Days. 59

Table 12 – SMART attributes used in the classification task. 68

Table 13 – Numeric values for each health degree of the best encoding found by the

method for the LSTM model. 70

Table 14 – Numeric values for each health degree of the best encoding found by the

method for the GRU model. 70

Table 15 – Bayesian Optimization results for the two types of network 71

Table 16 – Performance of the methods under different classification metrics. 71

Table 17 – Confusion matrix of the regular LSTMs. 72

Table 18 – Confusion matrix of the LSTMs with (BECKHAM; PAL, 2016) method. . . 72

Table 19 – Confusion matrix of the LSTMs (BECKHAM; PAL, 2016) with trainable

vector method. 72

Table 20 – Confusion matrix of the LSTMs with (CHENG et al., 2008) method. 72

Table 21 – Confusion matrix of the LSTMs with ours method. 73

Table 22 – Confusion matrix of the regular GRUs. 73

Table 23 – Confusion matrix of the GRUs with (BECKHAM; PAL, 2016) method. . . . 73

Table 24 – Confusion matrix of the GRUs (BECKHAM; PAL, 2016) with trainable vec-

tor method. 73

Table 25 – Confusion matrix of the GRU (CHENG et al., 2008) method. 74

Table 26 – Confusion matrix of the GRUs with ours method. 74

LIST OF SYMBOLS

Loss function
Sigmoid function
Hyperbolic tangent function
Pointwise multiplication
Convolution operator

L

σ
θ
⊙
∗

CONTENTS

1 INTRODUCTION . 17

1.1 Contributions and text organization . 19

2 DEEP NEURAL NETWORKS . 21

2.1 Recurrent Neural Networks . 23

2.1.1 Simple Recurrent Networks . 24

2.1.1.1 Forward Pass . 24

2.1.1.2 Backward Pass . 26

2.1.2 RNNs with Long short-term memory . 26

2.1.2.1 Forward Pass . 27

2.1.2.2 Backward Pass . 28

2.1.3 RNNs with Gated recurrent unit . 29

2.1.3.1 Forward Pass . 30

2.1.3.2 Backward Pass . 31

2.2 Convolutional Neural Networks . 32

2.2.1 Forward Pass . 33

2.2.2 Backward Pass . 33

3 RELATED WORK . 35

3.1 A Fault Detection Method for Hard Disk Drives Based on Mixture of

Gaussians and Non-parametric Statistics 35

3.2 Predicting Disk Replacement towards Reliable Data Centers 36

3.3 BaNHFaP: A Bayesian Network Based Failure Prediction Approach for

Hard Disk Drives . 37

3.4 Health Status Assessment and Failure Prediction for Hard Drives with

Recurrent Neural Networks . 38

3.5 Related Work Comparison . 39

4 REMAINING USEFUL LIFE PREDICTION 41

4.1 Prognostics Metrics . 41

4.1.1 Prognostic Horizon . 42

4.1.2 α-λ Performance . 42

4.2 Dataset . 43

4.3 Remaining Useful Life Prediction . 43

4.3.1 Architecture of the LSTMs based network 44

4.3.2 Architecture of CNN found through optimization 45

4.3.3 Results and Discussion . 46

4.4 RNNs State Initialization . 49

4.4.1 Results and Discussion . 50

4.5 Conclusion . 51

5 HEALTH DEGREE PREDICTION . 53

5.1 Health Degree Prediction with LSTM Networks 53

5.1.1 Proposed Method . 53

5.1.1.1 RUL Binning . 54

5.1.1.2 Model Creation . 54

5.1.1.3 Failure Prediction . 55

5.1.2 Experimental Results . 56

5.1.2.1 Dataset . 56

5.1.2.2 Performance Evaluation . 56

5.2 Asymmetric Ordinal Health Degree Prediction 60

5.2.1 Proposed Method . 60

5.2.2 Custom Encoding . 61

5.2.3 Decoding . 63

5.2.4 Cost Function . 63

5.2.5 Finding the Encoding Parameters . 64

5.2.6 Baseline Encoding Schemes for Ordinal Classification 66

5.2.7 Experimental Results . 66

5.2.7.1 Dataset . 67

5.2.7.2 Results and Discussion . 67

5.3 Conclusion . 71

6 CONCLUSIONS AND FUTURE WORK 75

6.1 Conclusions . 75

6.2 Future Work . 75

BIBLIOGRAPHY . 77

17

1 INTRODUCTION

Nowadays, the reliability of data centers is a significant concern for most storage

service providers and end users. Failures on storage systems may not only result in temporary

data unavailability but also lead to permanent data loss (SCHROEDER; GIBSON, 2007). As

can be seen in figure 1, the unavailability, or downtime of data centers, resulted in an increasing

cost to these service providers. More precisely, an increase of 38% from 2010 to 2016 was

noticed.

Among all electronic devices, Hard Disk Drives (HDDs) exhibit one of the highest

failure rates, thus affecting the whole reliability of electronic systems (Ponemon Institute LLC,

2016). Moreover, HDDs are still the most widely used technology on large-scale storage sys-

tems given its cost/benefit relation (PINHEIRO et al., 2007) (YE et al., 2013). Such fact makes

the capability of predicting failures of HDDs, highly desirable. As a result, several works like

(LIMA et al., 2017; LI et al., 2014; QUEIROZ et al., 2016; XU et al., 2016; RINCóN et al.,

2017), addressed the problem of HDDs health monitoring in recent years.

Today, most HDDs are equipped with an embedded failure detection system named

Self-Monitoring, Analysis and Reporting Technology (SMART). The SMART system collects

a set of failure related measurements and monitor its progress over time. A failure is detected

if any of such measurements exceeds a given threshold. Although SMART is a widely used

method to detect failures, so far, no commercial system with failure prediction capability was

2016

Data center mean outage costs

In US Datacenters

2010 2013

$ 600.000,00$ 400.000,00$ 200.000,00

Figure 1 – Mean outage costs of data centers in the USA. Adapted from (Ponemon Institute
LLC, 2016)

18

developed.

Works like (QUEIROZ et al., 2016; WANG et al., 2013; WANG et al., 2014) pro-

posed methods to solve the incipient failure prediction task. In this work, the primary objective

was to detect abnormal behavior of HDDs that may indicate incipient failures. Such a problem

can be formulated as a single or binary classification task. In other works like (LIMA et al.,

2017; CHAVES et al., 2016; XU et al., 2016; LIMA et al., 2018), the authors propose meth-

ods to estimate the Remaining Useful Life (RUL) of HDDs. Considering the RUL estimation,

two modeling approaches are commonly chosen. The most straightforward modeling approach

considers the problem of estimating the RUL as a regression task and to the best of our knowl-

edge such an approach was not explored for HDDs. Even though such formulation may provide

accurate information regarding the RUL, such task is challenging. Moreover, in several appli-

cations, the decision maker can tolerate more coarse-grained information without performance

compromise. Based on such an idea, several works like (CHAVES et al., 2016; XU et al., 2016)

modeled the problems as a classification task where each class defines a degradation level of

the monitored equipment. This task is usually referred to as health degree, or status, prediction

(XU et al., 2016).

Among all methods for health status prediction on HDDs, the most successful are

based on Recurrent Neural Networks (RNN) (CHAVES et al., 2016). It is straightforward to

notice that the problem can be modeled as an ordinal classification task since, unlike regular

classification problems, all incorrect classifications shall not result in equal penalties. For in-

stance, consider a health status prediction problem with six degradation levels where the first

state defines a healthy system and the sixth state defines a situation of imminent failure. In

such a scenario, predicting a fourth-degree status for a severely degraded system (sixth level)

is significantly better than classifying it in the first degradation level. Another important aspect

is that errors in different directions shall also be unequally penalized. Considering the same

illustrative health status prediction problem, for a system in level three, one shall penalize pre-

dictions of level two, more than predictions of level four. Such a policy can be explained by the

fact that excessively early failure predictions may result in way-too-early maintenance actions

while late predictions can lead to failures.

19

1.1 Contributions and text organization

The hypotheses defended by this dissertation are that deep neural networks are suit-

able models to address the problems of health status assessment and RUL prediction for HDDs.

Moreover, this dissertation also defends that a more suitable encoding of health degrees, for

the health status assessment problem, can improve the predictions, when taking into account

particularities of the problem, such as the ordinal relationship between the health degrees.

The proposed methods were tested in a real-world public dataset collected by a

cloud storage service provider comprising 1,697 HDDs. On the basis of the results, we can

state that our proposals could adequately handle the particular aspects of both the health status

prediction and RUL estimation problems.

In summary, the main contributions of this dissertation are:

• An LSTM based neural network architecture for performing RUL prediction for HDDs.

• A CNN based neural network architecture for performing RUL prediction for HDDs.

• A study of the impacts of RNNs state initialization tailored for improving the prediction

of RUL for HDDs.

• An LSTM based neural network architecture for performing the prediction of health de-

grees for HDDs.

• An encoding technique for the health degrees that improves the predictions when taking

into account the ordinal and asymmetric nature of the problem.

As a result of the development and evaluation of these hypotheses, the papers in

table 1 were submitted and published, or are in submission process, to the scientific community.

This dissertation is organized as follows: Chapter 2 describes with more detail the

theoretical foundations of this work, such as recurrent neural networks and convolutional neural

networks; Chapter 3 delves in some related works that also addresses the problem of health

status assessment for HDDs; In chapter 4 we explore architectures of deep neural networks that

maximize their accuracy when performing RUL estimation. For this, both CNNs and RNNs,

more specifically LSTM and GRU, were employed. We also evaluate the impacts of a tailored

initialization of these RNNs in this task. Chapter 5 presents our LSTMs based solution for

addressing the longer prediction horizon on the health degree prediction problem. It also details

our custom encoding solution of health degree classes together with variants of two Deep RNNs

for ordinal classification with asymmetric costs. Finally, chapter 6 summarizes the contributions

presented and proposes where efforts to develop new work in the area should be directed.

20

Table 1 – Publications

Title Authors Venue

Predicting Failures in Hard
Drives with LSTM Networks Fernando Lima, Gabriel Amaral,

Lucas Leite, Joao Pordeus,
Javam Machado

BRACIS 2017

Remaining Useful Life
Estimation of Hard Disk Drives
based on Deep Neural Networks

Fernando Lima, Francisco Pereira,
Lucas Leite, Joao Pordeus,
Javam Machado

IJCNN 2018

Evaluation of Recurrent Neural
Networks for Hard Disk Drives
Failure Prediction

Fernando Lima, Francisco Pereira,
Iago Chaves, Joao Pordeus,
Javam Machado

BRACIS 2018

Asymmetric Ordinal Failure
Prediction for Hard Drives with
Deep Recurrent Neural Networks

Fernando Lima, Francisco Pereira,
Iago Chaves, Joao Pordeus,
Javam Machado

To Be Defined

21

2 DEEP NEURAL NETWORKS

Artificial neural networks (ANNs) were proposed as a computing model inspired

by the biological brains neural networks (ROSENBLATT, 1958). Their structure consists ba-

sically in a collection of small processing units, called artificial neurons, that are intertwined

by weighted connections. In this setting, the artificial neurons would represent the biological

neurons, and the weighted connections, like the synapses of the biological brains, the strength

of the signal between those neurons.

Such ANNs can be differentiated based on the way their connections are organized:

the ones whose connections form cycles, and those with acyclic connections. The ones with

acyclic connections are termed as feedforward neural networks (FNNs). This expression comes

from the fact that information flows through their inner computation, the function f modeled by

the neuron, being evaluated at some input x, to produce some output value y. There is no flow

where the output value is fed back to the neuron. Those with cyclic connections are referred

to as recurrent neural networks (RNNs). In this setting, the values produced as output by the

neuron are fed back and used during the computation of subsequent outputs.

The most known and widely used form of ANN is the MLP. In this neural network,

the units are arranged in layers, with connections feeding forward from neurons of one layer to

the next. MLPs with a single hidden layer can be expressed as a composition of two functions,

f (1) and f (2), connected in a chain such that its output, f (x), for a given input x, can be written

as f (x) = f (2)(f (1)(x)). The length of this chain is what defines the depth of the model, and

is what originated the terminology "deep learning". For this exemplified network, x is fed to

the input layer, f (1) is a hidden layer, and f (2) is the output layer. The forward computation, or

pass, consists in letting input information being fed to the input layer, then propagated through

the hidden layer(s), and finally to the output layer. This process is depicted in figure 2.

For each neuron in the hidden layers, their computation can be expressed as a

weighted sum of their inputs, followed by the application of an activation function. This com-

putation can be written as

ah =
I

∑
i=1

wibi

bh = θ(ah)

22

Where b is the final output of the neuron, θ is the activation function, wi is the

weight of the connection relative to the input index i and x is the input given to the neuron. An

interesting aspect to notice is that, without the application of a non-linear activation function,

such as hyperbolic tangent or sigmoid, even with successive computations of hidden layers, the

network would still produce a linear operation, which is equivalent to a network with a single

hidden layer performing a linear computation. This also means that it would only be capable

of producing linear separation boundaries. Another important aspect to take into account when

choosing the activation functions is whether they are differentiable, which allows it to be trained

with gradient-based optimization methods.

For the output layer, a similar process is performed, but both the activation function

and the number of output nodes must be chosen in accordance with the task being solved. The

following equations describe the forward pass of the output layer neurons.

a =
H

∑
i=1

whbh

b = θ(a)

Where b is the final output of the neuron, a is the summing of the activations from the outputs

of the previous layer, bh is the output given to the neuron by the h-th neuron in the last hidden

layer and wh is the weight of the connection of the hidden layer neuron relative to this output

neuron.

x1Input #1

x2Input #2

...
...

xNInput #N

h1

h2

hH

o1 Output #1

Input
Layer

(x)

Hidden
Layer
(f1)

Output
Layer
(f2)

Figure 2 – A multilayer perceptron neural network with a single hidden layer and an output
layer with a single output neuron.

Even though MLPs with a single hidden layer were proven to be capable of approx-

imating any continuous function (HORNIK et al., 1989), being referred to as universal function

23

approximators, they are more suitable for pattern classification than for sequence labeling. This

comes from the fact that the outputs modeled by their function mapping depends only on current

input, and not on any past or future ones. For general sequence processing, RNNs have been

proven to outperform FNNs.

As mentioned before, an ANN produces its predictions in the forward pass. In or-

der to find the weights for the connections that are better suited for a given problem, i.e. a

dataset of input-output pairs, several training algorithms can be employed. In case each arti-

ficial neuron performs a computation that is differentiable and assuming that the function that

measures the difference between expected output and the real outputs from the dataset, i.e. the

loss function, is also differentiable, gradient descent methods can be used to find these param-

eters that minimize such loss functions. The steps taken in order to compute the updates in

the weights based on the derivatives of the loss with respect to the parameters is known as the

backward pass. To calculate such derivatives for each parameter, one can successively apply

the chain rule for partial derivatives, which is a well-known technique named backpropagation

(CHAUVIN; RUMELHART, 2013).

In this chapter, we focus our attention on Convolutional neural networks (CNNs),

which are a class of feedforward neural networks, whose neurons perform a particular organi-

zation of connections and weight sharing mechanism, and on RNNs, more specifically Simple

recurrent networks, Long short-term networks, and Gated recurrent units. All of them will be

described in detail in the following sections, together with their forward and backward passes.

2.1 Recurrent Neural Networks

A recurrent neural network (RNN) is a neural network specifically designed for

addressing problems involving sequential data. This kind of neural network is capable of pro-

cessing really long sequences of information, even sequences whose length vary, scaling much

better than other types of neural networks (e.g. MLP). They have been largely employed on

several machine learning problems that can be modeled as sequential data.

Differently from feed-forward neural networks, RNNs allow for the occurrence of

cycles, which in turn allows for the propagation of the output in previous steps to be used for

new ones. Even though this seems to be a small change, this allows for RNNs to be capable of

mapping an entire sequence information to each output of the network. In fact, what happens is

that the network can store data from previous inputs in its internal state, through the recurrent

24

connections, which in turn is used to compute the network output. Also, analogously to the

universal function approximation theorem for neural networks, an RNN with a sufficient num-

ber of hidden units can approximate any measurable sequence-to-sequence mapping to arbitrary

accuracy (HAMMER, 2000).

Many varieties of RNN have been introduced in the literature, including Simple

Recurrent networks (e.g. Jordan and Elman), Long short-term memory networks and Gated

recurrent units. RNNs with LSTM and Gated recurrent units (GRU) have proven to be an

effective tool in modeling dependencies that exist over long sequences. They are effective

because they do not suffer from the classical learning problems of vanishing and exploding

gradients that affect simple RNNs (SRNs) (BENGIO et al., 1994). Despite the optimization

issues in their learning process, SRNs have been successfully applied recently in the task of

HDDs failure prediction (XU et al., 2016), leading to state-of-the-art results.

2.1.1 Simple Recurrent Networks

Elman networks, also known as Simple Recurrent Networks (SRNs), were proposed

by Elman (ELMAN, 1990) and essentially are back-propagation neural networks with the ex-

ception that past activations of the nodes are used in the computation of further steps. That is,

differently from feedforward neural networks, they allow for the occurrence of cycles, by basi-

cally setting the processing inputs of a given time step to be both the hidden layer activations of

the previous step as well as the current entry being processed from a sequence.

To perform the learning in such networks, a well-known algorithm is the back-

propagation through time (BPTT) (WERBOS, 1990). In the context of BPTT, the recurrent

connection of the nodes is unfolded in time, according to a desired number of steps, depending

on the length of the sequences for the task at hand, performing a standard backpropagation after.

The main difference between BPTT and the standard backprop is that in BPTT the errors flow

from both subsequent layers connection as well as from temporal (recurrent) connections.

2.1.1.1 Forward Pass

The following equations describe the steps performed in the forward phase of SRNs

for the j-th unit. Please notice that, differently from the equations for MLPs, we have written

25

them in matrix form, to simplify the notation.

a<t>
j = [Wbt−1] j +[Ux] j

b<t>
j = θ(a<t>

j)

Where θ is the activation function, b the hidden state vector, W the recurrent connection weights

and x the input vector. The notation [.] j indicates the j-th element in the vector. The bias term is

embedded inside of the input matrix. Noting that the subscript defines the entry at index t from

the sequence. Also, the connections’ weights are shared across all indexes.

As can be noticed, at each time step, or index < t >, the recurrent cell at layer h

produces activation values b<t>
h , which in turn can be used by the next layer neurons, at each

time step. This is especially useful when performing tasks that require predictions for each

entry in a sequence, which is precisely the kind of task tackled in the works approached in

this dissertation. There are also other paradigms, such as sequence-to-sequence, commonly

used for machine translation tasks, and also the many-to-one organization, which can be used

for whole-sequence classification tasks. In summary, depending on the task, different network

organizations. or topologies can be employed.

θ

bt−1

xtInput

bt

bt

Figure 3 – Details of a SRN node from a single layer. The nodes enclosed in rectangular boxes
encapsulate the weight matrix multiplication plus a bias term given as input to the
corresponding function in the box. (Adapted from (OLAH, 2015).)

26

2.1.1.2 Backward Pass

Different from MLPs, the loss function on recurrent networks depends not only on

the effect of the activation of a given time-step but also on the impacts of the activation on the

output of the subsequent time-step. So, assuming a loss function L , recurrent weight matrix

W , input weight matrix U , and that the derivative of the loss w.r.t the output of the recurrent cell

through the subsequent network layers are denoted as ∆o, the partial derivative of the loss w.r.t

the output of the recurrent cell j-th unit at time-step t is given by

∂L

∂b<t>
j

= [∆o+
∂L

∂a<t+1>
j

∂a<t+1>
j

∂b<t>
j

] j

= [∆o+
∂L

∂a<t+1>
j

W] j

and the derivative of the loss w.r.t the activations of the recurrent cell j-th unit at time-step t is

∂L

∂a<t>
j

= [
∂L

∂b<t>
j

∂b<t>
j

∂a<t>
j

] j

= [
∂L

∂b<t>
j

θ ′(a<t>
j)] j

Since all the weights, both recurrent and input, are shared across all time-steps of

the network, we need to sum their influence over all time-steps in order to obtain the gradient

of the loss w.r.t the weights. This can be expressed as

∂L

∂W
=

T

∑
t=1

∂L

∂a<t>
j

∂a<t>
j

∂W
=

T

∑
t=1

∂L

∂a<t>
j

b<t−1>
j

∂L

∂U
=

T

∑
t=1

∂L

∂a<t>
j

∂a<t>
j

∂U
=

T

∑
t=1

∂L

∂a<t>
j

x

2.1.2 RNNs with Long short-term memory

Even though standard RNNs were a great improvement over MLPs regarding their

capability to process sequences more naturally, their ability to keep contextual information (i.e.

dependencies) diminishes with the increase in the length of the sequence being processed. This

happens because the influence of an input on the network output either vanishes or explodes as

they are computed through the recurrent connections of the network. This is also known as the

vanishing or exploding gradient problem (BENGIO et al., 1994).

27

RNNs with Long short-term memory were proposed in order to address this issue.

They consist of a set of recurrently connected memory blocks, or cell states, each with a gating

mechanism that controls the flow of information into the state vector of the cell. These two

modifications enable the network to keep internal state information that occurred over long

intervals, improving its learning capabilities.

The standard LSTM version (GRAVES; SCHMIDHUBER, 2005) makes usage of

input, output and forget gates. The main idea is to control the contribution of the input data and

the previous hidden state adding or removing information to the cell state. In order to understand

how this gating mechanism improves the capability of the network to keep information, it is

important to perceive, for example, that as long as the input gate remains inactive, the internal

state of the cell will remain unchanged by new inputs, and can be made available later, by

activating the output gate.

As we will see in the following chapters, although LSTMs offer advantages over

standard RNNs, these are more noticeable when tackling problems with long-range dependen-

cies.

2.1.2.1 Forward Pass

The following equations define how all these gates, memory cell, and hidden state

activations are calculated for the forward pass of the j-th unit in an LSTM layer.

c̃<t>
j = θ([Wcb<t−1>] j +[Ucx] j) candidate state (2.1)

i j = σ([Wib<t−1>] j +[Uix] j) input gate (2.2)

f j = σ([Wf b<t−1>] j +[U f x] j) forget gate (2.3)

o j = σ([Wob<t−1>] j +[Uox] j) output gate (2.4)

c<t>
j = [i⊙ c̃<t>] j +[f ⊙ c<t−1>] j cell state (2.5)

b<t>
j = [o⊙θ(c<t>)] j output (2.6)

(2.7)

In these equations, t denotes the index being processed within a sequence x, and

⊙ is the Hadamard product. The recurrent and input matrices are W and U , respectively, with

a subscript indicating the associated gate, and b is the output of the network. Notice that the

values of the gates are calculated for each new input from the sequence.

28

σ σ θ σ

× +

× ×

θ

ct−1

bt−1

xInput

ct

bt

bt

Figure 4 – Details of a LSTM memory cell. The nodes enclosed in rectangular boxes encap-
sulate the weight matrix multiplication plus a bias term given as input to the cor-
responding function in the box. Both Hadamard product and Sum operations are
point-wise. (Adapted from (OLAH, 2015).)

2.1.2.2 Backward Pass

As we will compute the gradients backward, we start by calculating the gradient of

the output of the cell. Assuming that the derivative of the loss w.r.t the output of the recurrent

cell through the following network layers is denoted as ∆o, the gradient of the loss w.r.t the

output is given by

∂L

∂b<t>
j

= ∆o+
H

∑
h=1

Wj,h
∂L

∂b<t+1>
k

which basically takes into account the activations in the output (next) layer of the network plus

the influence on the outputs of the next timesteps.

For the output gates we have

∂L

∂o j
= σ ′([Wob<t−1>] j +[Uox] j)

C

∑
c=1

θ(c<t>
j)

∂L

∂b<t>
j

where C refers to all cell states. The gradients of the cell states is then given by

∂L

∂c<t>
j

= otθ ′(c<t>
j)

∂L

∂b<t>
j

+ f<t+1>
j

∂L

∂c<t+1>
j

that can be translated as the contribution of the current cell state on the output of the current

timestep plus the contribution on the cell state of the next timestep.

29

The forget and input gate gradients are

∂L

∂ f j
= σ ′([Wf b<t−1>] j +[U f x] j)

C

∑
c=1

c<t−1>
j

∂L

∂c<t>
j

and

∂L

∂ i j
= σ ′([Wib<t−1>] j +[Uix] j)

C

∑
c=1

c̃<t>
j

∂L

∂c<t>
j

The gradients of the input, forget and output gates internal parameters then become

∂L

∂Wi
=

T

∑
t=1

∂L

∂ i j

∂ i j

∂Wi
=

T

∑
t=1

∂L

∂ i j
σ ′([Wib<t−1>] j +[Uix] j)b<t−1>

j

∂L

∂Ui
=

T

∑
t=1

∂L

∂ i j

∂ i j

∂Ui
=

T

∑
t=1

∂L

∂ i j
σ ′([Wib<t−1>] j +[Uix] j)x

∂L

∂Wf
=

T

∑
t=1

∂L

∂ f j

∂ f j

∂Wf
=

T

∑
t=1

∂L

∂ f j
σ ′([Wf b<t−1>] j +[U f x] j)b<t−1>

j

∂L

∂U f
=

T

∑
t=1

∂L

∂ f j

∂ f j

∂U f
=

T

∑
t=1

∂L

∂ f j
σ ′([Wf b<t−1>] j +[U f x] j)x

∂L

∂Wo
=

T

∑
t=1

∂L

∂o j

∂o j

∂Wo
=

T

∑
t=1

∂L

∂o j
σ ′([Wob<t−1>] j +[Uox] j)b<t−1>

j

∂L

∂Uo
=

T

∑
t=1

∂L

∂o j

∂o j

∂Uo
=

T

∑
t=1

∂L

∂o j
σ ′([Wob<t−1>] j +[Uox] j)x

Finally, the derivative of the candidate state internal parameters are

∂L

∂Wc
=

T

∑
t=1

∂L

∂ c̃ j

∂ c̃ j

∂Wc
=

T

∑
t=1

∂L

∂ c̃ j
θ ′([Wcb<t−1>] j +[Ucx] j)b<t−1>

j

∂L

∂Uc
=

T

∑
t=1

∂L

∂ c̃ j

∂ c̃
∂Uc

=
T

∑
t=1

∂L

∂ c̃ j
θ ′([Wcb<t−1>] j +[Ucx] j)x

2.1.3 RNNs with Gated recurrent unit

Motivated by the LSTMs, the GRU was introduced by Cho (CHO et al., 2014) as a

new design of RNN cell that is capable of adaptively updating to and reading from the hidden

state. The main characteristic of such unit is the need for fewer parameters for operating, leading

to less computation and simpler implementations.

Instead of employing three gates, it uses only two, namely the reset and the update

gates. Also, to avoid the classical learning issues that affect RNNs, rather than utilizing an

30

internal memory cell, it forces the hidden state to have its values bound between the previous

hidden state and a candidate state (both values limited by the output of θ), calculated at the

processing of each new entry.

2.1.3.1 Forward Pass

The equations below specify the calculations performed in the forward phase of the

GRU cell to obtain the activation of the j-th hidden unit as well as the two gates needed for its

computation.

r j = σ([Wrb<t−1>] j +[Urx] j) reset gate (2.8)

z j = σ([Wzb<t−1>] j +[Uzx] j) update gate (2.9)

b̃<t>
j = θ([Wb(r⊙b<t−1>)] j +[Ubx] j) candidate state (2.10)

b<t>
j = z jb<t−1>

j +(1− z j)b̃<t>
j output (2.11)

Analogously to the LSTM equations defined above, the recurrent and input matrices

are W and U , respectively, with a subscript indicating the associated gate or state. x (a vector) is

an entry of a sequence, whose elements are processed, one at a time, respecting their positioning

t. The notation [.] j denotes the j-th element of a vector and b<t> is the hidden state produced

at timestep t.

σ σ θ

+

×

×

×1−

bt−1

xtInput

bt

bt

Figure 5 – Details of a GRU memory cell. The nodes enclosed in rectangular boxes encapsulate
the weight matrix multiplication plus a bias term given as input to the corresponding
function in the box. Both Hadamard product and Sum operations are point-wise.
(Adapted from (OLAH, 2015).)

31

2.1.3.2 Backward Pass

Following the same approach we did for the LSTM case, let’s assume that the deriva-

tive of the loss w.r.t the output obtained through the remaining layers of the network is ∆o, the

full derivative of the loss w.r.t the output is

∂L

∂b<t>
j

= ∆o+
H

∑
h=1

Wj,h
∂L

∂b<t+1>
k

The derivarive w.r.t the candidate state is

∂L

∂ b̃<t>
j

=
∂L

∂b<t>
j

∂b<t>
j

∂ b̃<t>
j

=
∂L

∂b<t>
j

∂b<t>
j

∂ b̃<t>
j

=
∂L

∂b<t>
j

(1− z j)

The reset gate derivate is

∂L

∂ r j
=

∂L

∂ b̃<t>
j

∂ b̃<t>
j

∂ r j

=
∂L

∂ b̃<t>
j

θ ′([Wb(r⊙b<t−1>)] j +[Ubx] j)[Wbb<t−1>] j

The derivative of the update gate is

∂L

∂ z<t>
j

=
∂L

∂b<t>
j

∂b<t>
j

∂ z<t>
j

=
∂L

∂b<t>
j

(b<t−1>
j − b̃<t>

j)

The derivatives of the update and forget gates internal parameters are

∂L

∂Wr
=

T

∑
t=1

∂L

∂ r j

∂ r j

∂Wr
=

T

∑
t=1

∂L

∂ r j
σ ′([Wrb<t−1>] j +[Urx] j)b<t>

j

∂L

∂Ur
=

T

∑
t=1

∂L

∂ r j

∂ r j

∂Ur
=

T

∑
t=1

∂L

∂ r j
σ ′([Wrb<t−1>] j +[Urx] j)x

∂L

∂Wz
=

T

∑
t=1

∂L

∂ z j

∂ z j

∂Wz
=

T

∑
t=1

∂L

∂ z j
σ ′([Wzb<t−1>] j +[Uzx] j)b<t>

j

∂L

∂Uz
=

T

∑
t=1

∂L

∂ z j

∂ z j

∂Uz
=

T

∑
t=1

∂L

∂ z j
σ ′([Wzb<t−1>] j +[Uzx] j)x

32

and the derivatives with respect to the candidate state internal parameters are

∂L

∂Wb
=

T

∑
t=1

∂L

∂ b̃ j

∂ b̃ j

∂Wb
=

T

∑
t=1

∂L

∂ b̃ j
θ ′([Wb(r⊙b<t−1>)] j +[Ubx] j)b<t−1>

j

∂L

∂Ub
=

T

∑
t=1

∂L

∂ b̃ j

∂ b̃
∂Ub

=
T

∑
t=1

∂L

∂ b̃ j
θ ′([Wb(r⊙b<t−1>)] j +[Ubx] j)x

2.2 Convolutional Neural Networks

Convolutional neural networks, or CNNs, introduced by LeCun et al. (LECUN

et al., 1998), are another kind of neural network that was successfully employed in a variety

of tasks. They were designed to process data whose structure are in grid-like format. Such

structures can be observed in data ranging from time-series, with timesteps collected at regular

intervals, and images, where the pixels form a two-dimensional grid. By utilizing convolution

layers in deep neural networks, state-of-the-art results were achieved in tasks about sequen-

tial modelings, such as sentence classification (CONNEAU et al., 2017) and signal processing

(HERSHEY et al., 2017), besides their traditional application on image classification.

CNNs work basically by reducing the number of connections, and therefore param-

eters, of the neurons in the hidden layer, if compared to a traditional fully-connected network.

This offers great advantage such as a reduction in the memory required to store the parameters

besides the efficiency in their computation. Essentially, each neuron only gets input from a lo-

cal region of the input data, often referred to as sparse connectivity. Also, all neurons share the

same kernel weights, or parameters also termed as filter. It is common to have multiple filters,

each giving a different interpretation (filtering) over the data, also called feature maps. Usually,

several convolution layers are applied sub-sequentially, with a pooling layer in-between.

The pooling layer is responsible for reducing the data dimension received as input,

increasing the invariance of the network to small changes, such as a shift in a signal. Besides

that, pooling also reduces the number of parameters to be learned by further layers, because

of the dimensional reduction it performs in the input. The most frequently used pooling layer

is the max-pooling, which takes the maximum value of the local input region given to each of

its neurons. This organization of multiple layers increases the range of inputs that neurons in

further layers receive, basically increasing their receptive fields relative to the initial input of

the network.

33

2.2.1 Forward Pass

The following equation defines the computation performed by each neuron in one

filter of a CNN for a single dimensional data with only one feature per entry:

ai = (X ∗W)i =
k

∑
m=0

WmXi+m (2.12)

bi = θ(ai) (2.13)

The output of each neuron of a filter map is the sum of the convolution operation, with a kernel

defined by W , with size k, performed on each channel (i.e. depth or feature), in this case,

only one, over the input data X . Optionally, the filtering result is passed through a non-linear

activation function σ , generally is the rectifier, which is known to result in networks with sparser

representations and faster training time (KRIZHEVSKY et al., 2012).

2.2.2 Backward Pass

Assuming that the derivative of the loss relative to the output of the layer is given

by ∂L
∂bi

, we are interested first in computing the derivative of the loss with respect to the network

activations

∂L

∂ai
=

∂L

∂bi

∂bi

∂ai

=
∂L

∂bi
θ ′(ai)

Now for the derivative of the activations with recpect to each element in the kernel W is

∂ai

∂Wm
=

∂
∂Wm

(
k

∑
n=0

WnXi+n) (2.14)

=
∂

∂Wm
(WmXi+m) (2.15)

= Xi+m (2.16)

from step 1 to step 2, observe that only index n = m contributes to the gradient of Wm. Finally,

the derivative of the loss with respect to each element in the kernel W is

∂L

∂Wm
=

T−k

∑
i=0

∂L

∂ai

∂ai

∂Wm

=
T−k

∑
i=0

∂L

∂bi
θ ′(ai)Xi+m

34

Notice that the last summation occurs because of the weight sharing that is performed by the

CNN layer.

35

3 RELATED WORK

In this chapter, we will present recent related work on the topic of HDD failure

prediction.

We start by discussing in section 3.1 the work of (QUEIROZ et al., 2016) that

formulates the HDD failure prediction problem as an incipient failure detection task. Following,

in section 3.2, we explore the work of (BOTEZATU et al., 2016) that also addresses the incipient

failure detection task.

Then, in section 3.3, we discuss the work of (CHAVES et al., 2016) that address

the prediction problem as coarse-grained regression with Bayesian networks. It bears similarity

with the classification approach because it predicts the RUL quantified as trimesters. Finally, in

section 3.4, we discuss the work of (XU et al., 2016) that models the problem as a multiclass

classification task, where the classes are the health degrees, or levels, of the devices.

3.1 A Fault Detection Method for Hard Disk Drives Based on Mixture of Gaussians and

Non-parametric Statistics

Queiroz et al. (QUEIROZ et al., 2016) proposed a failure prediction methodology

that is based on the paradigm of anomaly, or incipient failure, detection. The first step in their

method is to select the features that are the most relevant to discriminate a failing HDD. They

do so by running the Recursive Feature Elimination (RFE) technique using the Random Forest

(RF) as the basis classifier.

Once they have only the selected features at hand, they propose to construct a base-

line statistical model with SMART data captured only from healthy HDDs. The idea of this

model is to serve as a classifier to measure how likely a SMART sample is to have come from

a non-failing HDD. This model is built by fitting a Gaussian Mixture Model (GMM). The num-

ber of Gaussians is defined through the execution of the Bayesian information criterion (BIC),

which is a solution to avoid overfitting. Once they build this healthy HDD GMM model, they

create dissimilarity vectors also from the healthy HDDs relative to the GMM model through the

computation of log-likelihood.

In the fault detection procedure, they construct dissimilarity vectors for the HDDs

being tested, analogously to the step performed for healthy HDDs. Then they traverse these

newly created time series of dissimilarity vectors with a sliding window approach, for both

36

healthy and test samples, in order to estimate distributions of the vectors using Kernel Den-

sity Estimation (KDE), within the window. Finally, the difference between these distributions

is computed through Kullback-Leibler Divergence (KLD). If such divergence exceeds a pre-

defined threshold, then a fault is detected. Their approach is able to achieve 92.21% Failure

Detection Rate (FDR) at 0% False Alarm Rate (FAR).

3.2 Predicting Disk Replacement towards Reliable Data Centers

The problem of incipient failure detection was also investigated in Botezatu et al.

(BOTEZATU et al., 2016). In this work they propose a novel data mining approach that is

able to predict disk replacements based on historic disk replacement data from a cloud storage

service provider. As the work discussed in section 3.1, they also employ the use of SMART

sensors attributes. Their work has two main contributions, a selection of SMART attributes that

are informative for detecting when a disk should be replaced; and a statistical model built from

these attributes that achieve high accuracy when predicting disks that should be replaced.

As a first step, feature selection is employed to determine relevant SMART at-

tributes that are indicative of impending disks replacements. This is done by performing a

change point detection procedure, detecting change points in the attributes time series. They

argue that when an attribute is informative, it must present a significant shift in its value in a

moment (change point) before the device fails. This shift is represented by a change in the

distribution of the attribute in such a way that the sum of the log likelihood of the distribution

before and after the change point is maximized.

The time-series of the selected SMART attributes is then compacted, with the objec-

tive of producing a compact, but highly informative representation to be used in the prediction

model. They argue that this is needed since a single entry in the time-series is not informa-

tive enough and also that a model built only with entries representing only the last day of the

devices is not suited to anticipate such failures. Similar to the work in section 3.1, they also

employ a sliding window in this compaction. With a computed time window slide width, they

apply exponential smoothing, reducing the whole window to a single value, for each attribute.

The time window width is defined as the median of the distribution of the time stamps when the

significant change occurred.

Since the amount of samples is highly unbalanced for each class, failing and non-

failing devices, and classification algorithms tend to maximize overall accuracy (favoring the

37

class with most samples), they propose a class balancing technique. Their algorithm basically

runs a K-means clustering on the densest class, selecting the samples that are closer to the

centroid as representatives of this class. In this procedure, the number of clusters is set to a

number that is close to the number of samples of the other class.

To perform the detection of failing devices, they employ regularized greedy forests

(RGF) classifier using the datasets produced in the previous steps. They argue that this method

produces better predictions if compared to other ensemble methods, such as gradient boosted

decision trees (GBDT), and other classical methods, such as SVM or logistic regression. This

model achieves an accuracy of up to 98%, predicting failures with a Time In Advance (TIA) of

10-15 days.

A transfer learning technique is also explored enabling the creation of classifiers for

HDD models with few data. This additional step was able to provide an enhancement of up to

50% accuracy if compared to a classifier built with only the data at hand.

3.3 BaNHFaP: A Bayesian Network Based Failure Prediction Approach for Hard Disk

Drives

The work presented by Chaves et al. (CHAVES et al., 2016) explores a Bayesian

network for failure prediction of hard disk drives. To the best of our knowledge, this is the first

work that addresses the problem as a failure prediction task, not only incipient failure detection,

measuring the remaining number of months that the device would operate before failing. Their

method comprises two main steps, namely, preprocessing and estimation of parameters. Simi-

larly to the work in section 3.2 their method is also tested in a real-world dataset, collected by a

cloud storage service provider.

The proposed method starts by applying the same procedure used by (QUEIROZ et

al., 2016) for feature selection, described in 3.1. Later, they perform binning on the selected

SMART data using the MDLP algorithm, except for Power on Hours (POH) attribute, that

quantifies the amount of time that the HDD has been operating, which is discretized using

equal-width bins.

After that, the Bayesian Network parameters are estimated, which take into account

POH, RUL and SMART attributes as random variables. The parameters are estimated basically

by calculating the relative frequency that each node in the Bayesian network assumes one of

its possible values. Once these frequencies are computed, they apply Additive (or Laplace)

38

Smoothing, in order to obtain a better posterior probability.

With this model they are able to achieve a smaller density of both mean and median

of the quadratic errors is obtained if compared to the standard reliability-based approach used

as a baseline. In addition to that, they argue that an improvement of 28.3% and 17.6% of the

mean and median of the quadratic errors, respectively, can be noticed. Finally, they claim that

the model starts to produce accurate predictions ahead of the baseline method, for all HDDs in

the test dataset.

3.4 Health Status Assessment and Failure Prediction for Hard Drives with Recurrent

Neural Networks

Recently, Chang Xu et al. (XU et al., 2016) described a predictive model that per-

forms proactive drive failure prediction, that contrasts with the usual passive fault tolerance

technique. They argue that this approach allows the handling of failures in advance, and there-

fore greatly reduces impacts on both the availability and reliability of storage systems. Similarly

to the other works described in this chapter, their method also makes use of SMART sensors at-

tributes. The main contribution of this work is the claim that the HDD failure prediction problem

belongs to long-range dependency. In order to solve that, they propose the use of an RNN-based

solution to exploit the temporal dependencies in the time-series of SMART attributes.

Their model consists of three main steps: first, they quantify the health status of the

devices based on the amount of time before it breaks; second, they train an SRN neural network

to perform classification based on the health status computed previously; finally they give a

time-series of SMART attributes to this trained model to produce the predictions.

The first step receives as input a scheme that discretizes a predefined time interval

of the life of HDDs into bands, termed as health degrees, according to the remaining lifetime,

but argues that different settings can be employed. Despite that, they perform tests only in the

last month of the devices, split into six health degrees.

In the second step, they build a single layer SRN using BPTT as the training algo-

rithm. They justify the use of BPTT, arguing that it is more efficient than global optimization

methods, particularly for large-scale datasets, besides being suited for online learning. The

optimization of this network is performed using Stochastic Gradient Descent (SGD).

For the inference or prediction step, they feed the network with the ordered SMART

attribute sequences, together with the hidden state produced by previous entries, in order to ob-

39

tain a current prediction. After labeling the time series samples, a voting algorithm is employed

in the outputs of the last N consecutive samples before a time point, resulting in the final esti-

mate of the device’s health level.

They compare their method with five other methods: a Hidden Markov Model, a

Binary Neural Network, a Classification Tree, a multiclass Neural Network and Conditional

Random Fields. Three real-world datasets, from devices of different manufacturers, are em-

ployed in the evaluation. Their best results occur in the first dataset, where the model achieves

an FDR of 97.71% with a FAR of 0.06%. Overall, their method leads to results superior to all

baseline methods, but the Multiclass NN, for one of the datasets, where they achieve the same

FDR.

3.5 Related Work Comparison

Both the works of Queiroz et al. (QUEIROZ et al., 2016) and Botezatu et al.

(BOTEZATU et al., 2016) deal with the task of incipient failure detection. Even though they

approach the same task, a major difference regarding their assessment can be traced. The for-

mer assesses their method with a small dataset (MURRAY et al., 2005), comprising only 369

hard drives, with 191 failing devices, collected from a non-uniform setting, good drive data was

collected in a controlled uniform environment and the failed data comes from drives that were

operated by users, whilst the later utilizes a real-world public dataset (BACKBLAZE, 2016)

with 30.107 hard drives of two different brands, and two models per brand, of which 872 failed.

Note that the works of Chaves et al. (CHAVES et al., 2016) and Chang Xu et al.

(XU et al., 2016) are the only that aim to predict the RUL of HDDs. By analyzing both works,

we can state that Chang Xu et al. (XU et al., 2016) showed the most promising results. A

possible reason relies on the use of an RNN model, which is capable of directly handling the

time dependency that is inherent to the problem. On the other hand, the method proposed by

Chaves et al. (CHAVES et al., 2016) only considers a snapshot of the SMART attributes to

make an RUL prediction. Although the method proposed by Chang Xu et al. (XU et al., 2016)

had a remarkable performance, it is well known that RNNs suffer from the problem of gradients

vanishing/exploding. This problem is more evident for tasks with long-term dependencies.

Table 2 summarizes the main characteristics of each related work and how they

compare to one another, including the works presented in this dissertation.

40

Table 2 – Related Work Comparison.

Authors. (QUEIROZ et
al., 2016)

(BOTEZATU et
al., 2016)

(CHAVES et al.,
2016)

(XU et al.,
2016)

Ours

Research
Problem.

Fault detection. Fault detection Failure Predic-
tion (Classifica-
tion)

Failure Predic-
tion (Classifica-
tion)

Failure Pre-
diction (Clas-
sification and
Regression)

Dataset. (MURRAY
et al., 2005)
non-uniform

(BACKBLAZE,
2016)

(BACKBLAZE,
2016)

(ZHU et al.,
2013) and two
others

(BACKBLAZE,
2016)

Dataset
Timespan.

25 days 17 months 21 months 1 month 12 months

Main Tech-
nique.

Gaussian Mix-
ture Model

Regularized
Greedy Forest

Bayesian Net-
work

Simple RNN LSTMs, GRUs
and CNNs

41

4 REMAINING USEFUL LIFE PREDICTION

In this chapter, we will approach the health assessment problem of hard disk drives

failure as a regression task. More specifically, the task will consist in predicting the remain-

ing useful life, in days, until the device fails. To the best of our knowledge, no other work

approached this problem with such fine-grained modeling. A very likely reason for that is that

this modeling approach leads to a task that is harder to tackle, due to the accuracy requirements

imposed to perform such prediction.

We start by presenting a series of prognostics metrics, in section 4.1, that will be

employed when performing the evaluation of the proposed solutions for this regression problem.

Following that, in section 4.2 we describe the dataset used in the evaluation of the models

proposed in this chapter.

In section 4.3, we present a solution to the problem approaching it as a standard

regression task with RNNs and CNNs. In order to find adequate topologies for these networks,

we apply Bayesian optimization. A custom penalization technique that gives more importance

to the prediction as they approach the devices end of life is also evaluated. In order to assess the

results produced by this solution, we evaluate the resulting model with well-known prognostics

metrics.

Then, in section 4.4, we improve over this solution, by assessing how a set of ini-

tialization strategies for RNNs impacts on the prognostics metrics aforementioned.

Finally, in section 4.5 we provide conclusions and directions for future work taking

into account the results of both approaches explored for the health assessment problem.

4.1 Prognostics Metrics

Since failure prediction methods are an important tool in supporting decision mak-

ers, this leads to an increased demand in the assessment of the quality of such predictions. The

most straightforward metric that can be employed, since the prediction of Remaining Useful

Life (RUL) is essentially a regression problem, is to use the average Root Mean Squared Er-

ror (RMSE). Additionally, metrics that were designed specifically to quantify the trust in such

health assessment models were proposed by (SAXENA et al., 2009). In this dissertation, we

will use two of the metrics presented there. The first one is a modified version of Prognostic

Horizon metric. The second is the α-λ Performance metric. In the following subsections, we

42

will explain how the last two metrics are calculated.

4.1.1 Prognostic Horizon

The Prognostic Horizon (PH) calculates the time interval between the instant that

the device fails and the instant that the predictions coincide to the RUL according to a specified

performance criterion. The performance criterion is defined according to a α parameter, which

is an error margin around the true RUL. PH is calculated as follows:

PH = EoL− t (4.1)

where EoL is the instant when a device stops working, t = min{i | (i ∈ T)∧(rd
∗(i)−α ≤ rd(i)≤

rd
∗(i)+α)} is the instant when the predictions enter the error margin α , T is the set of trimesters

of a device d, rd(i) is the RUL estimated by the proposed method at time i regarding a device d

and rd
∗(i) is the ground truth RUL of d in i.

Notice that the lower the instant t, the higher the score obtained by the PH. Thus,

we can infer that an algorithm A yields reliable results farther in advance of an algorithm B if A

gets a PH greater than B.

We are using an improved version of the PH metric that considers the consistency

of the results. In this version, referred to as PH*, we consider that an instant is valid only if the

prediction enters the tolerance area defined by α and stays there until the failure instant.

4.1.2 α-λ Performance

The α-λ Performance quantifies the accuracy of a prediction within a specific time

instant. Similarly to PH, this metric verifies if a prediction coincides with the RUL of a device

considering an error margin α in a time instant λ . The α-λ Performance is calculated as

follows:

α-λ =

yes if (rd
∗(λ)−α ≤ rd(λ)≤ rd

∗(λ)+α)

no otherwise
(4.2)

where α is an error margin, λ is a time instant, rd(λ) is the RUL estimated by the proposed

method at time λ regarding a device d and rd
∗(λ) is the ground truth RUL of d in λ .

43

For the purpose of better evaluating the results of the proposed method, we varied

the α parameter of the α-λ Performance across the evaluated time interval. As the λ parameter

increases, the α parameter is diminished, resulting in a tighter error margin when the device is

closer to its EoL.

For both metrics, the parameter α was set to 45 days, meaning that a prediction

misplaced by a month and a half is tolerable.

4.2 Dataset

To assess the methods proposed in this chapter, we use a dataset provided by the

Backblaze Company. This dataset consists of the daily observation of 92,348 HDDs between

april/2013 and december/2016 (BACKBLAZE, 2016). These observations contain information

regarding the serial number, model, capacity, failure, and 90 SMART attributes of each device.

According to the Backblaze Company, a device is labeled as failed if: (i) it stops working, i.e.

does not turn on or does not receive commands or (ii) if SMART self-test fails for attributes 5,

187, 188, 197, or 198. Different manufacturers and device models may report different attributes

and most HDD models do not report all SMART attributes. In this case, the values not reported

are left blank.

To avoid a potential overfitting, we chose to perform the tests with the Seagate

ST4000DM000 model whose data are most plentiful. This model has 36,555 observed disks, of

which 1729 have failures. Of these, 32 were removed because their observation was interrupted

without a label indicating a failure or by having submitted observations after being labeled as

damaged. Thus, we used in fact for the test of the compared models a set of observations

on 1,697 instances. Also, as a preprocessing step, we scaled each feature individually by its

maximum absolute value, in a way that the maximum absolute value of the feature will be 1.

Due to technical limitations, we used the raw attributes returned by the feature se-

lection process described in (BOTEZATU et al., 2016). These attributes are described in Table

3.

4.3 Remaining Useful Life Prediction

In this section, we approach the prediction of the RUL of HDDs as a regression

problem. The task consists in predicting the remaining lifetime of a given HDD based on the

44

Attribute ID Attribute Name
SMART 1 Read Error Rate
SMART 5 Reallocated Sectors Count
SMART 7 Seek Error Rate

SMART 184 End-to-End error
SMART 187 Reported Uncorrectable Errors
SMART 188 Command Timeout
SMART 189 High Fly Writes
SMART 190 Temperature Difference
SMART 193 Load Cycle Count
SMART 194 Temperature
SMART 197 Current Pending Sector Count
SMART 198 Uncorrectable Sector Count
SMART 240 Head Flying Hours
SMART 241 Total LBAs Written
SMART 242 Total LBAs Read

Table 3 – SMART attributes used for the regression task.

current and previous SMART attributes. Based on that sequence of data, the model is inquired

to give an output RUL, measured in days, for the last SMART entry.

Two deep neural network models are explored. The first model is built using LSTMs

and the other one, CNNs. To find an adequate topology for these models, Bayesian optimization

was applied to select both the hyperparameters and the topology information for each network

type. The optimizer implementation was taken from (The GPyOpt authors,). The metric being

minimized by this Bayesian optimization routine was the cost function of the validation set,

which is the root mean squared error. The following sections present the architectures resulting

from the optimization procedure.

4.3.1 Architecture of the LSTMs based network

For the LSTMs based DNN, the Bayesian optimization routine could vary the num-

ber of recurrent layers and the size of the hidden state vector. The candidate values to be used

as the number of layers were [1,2,3,4]. The hidden state vector size could assume the values

[16,32,64,128]. The resulting architecture was defined to have two recurrent layers, each with

a hidden state of size 64 and a hyperbolic tangent activation function, with a fully-connected

neuron in the last layer, using identity as the activation function. The topology can be seen in

figure 6.

45

...

...

Fully-Connected Layer

RUL

SMARTS

RUL RUL RUL...

SMARTS SMARTS SMARTS

...

Figure 6 – Architecture of the LSTM network found through optimization.

4.3.2 Architecture of CNN found through optimization

For the optimization of the CNN DNN, 1D convolutional (Conv1D) layers were

employed. The optimizer was able to vary the absence of pooling layers between the convo-

lutional layers and the type of pooling applied (min, max or average). It was also possible to

choose the activation function of the convolution units as either the identity or the rectifier. The

number of Conv1D layers could be either two or three. For these layers, the optimizer could

vary the number of filters (between 5 and 50), their size (between 5 and 30), the stride applied

to the filters (between 2 and 20) and the type of padding to be applied to the sequences (either

zero-padding or no padding). Also, a fixed fully-connected layer, with a single neuron, was

set as the last layer in the network, to output the predicted RUL. A representation of the best

architecture found by the optimizer can be seen in figure 7.

It is important to emphasize that in order to have a daily output from the proposed

CNN architecture, for each SMART entry from an HDD time series, all sequences were am-

plified so that for each entry in a given sequence, a new sub-sequence was generated up to

that entry. This procedure was not necessary for the RNNs, as their functioning already allows

predictions at every new SMART entry.

For training the networks an Adam optimizer was used with an exponential decay-

ing learning rate. The training was run for 100000 epochs with learning rate starting at 0.003

and finishing at 0.0001. Also, a dropout of 0.4 was used on the LSTM layers. Cross-validation

46

SMARTS

360x15

Days

...

Conv1D

...

Feature Maps

24x45

Fully Connected

RUL

Conv1D

Feature Maps

5x40
Figure 7 – Architecture of the CNN found through optimization.

Metrics

Models RMSE PH* α −λ

LSTM 56.0752 193.6011 0.4692
CNN 64.3943 154.8583 0.3375
RNN 121.0135 0.0000 0.0780

Table 4 – Performance of the prediction models under different metrics.

was employed and the parameters were chosen based on the epoch with the smallest validation

set loss.

4.3.3 Results and Discussion

The LSTM and CNN networks were compared to an Elman Recurrent Neural Net-

work (RNN) according to the three aforementioned metrics. The RNN model was configured to

have two hidden layers, each with an internal state size of 64 units and a fully-connected layer,

without activation function. The same RNN configuration used in (LIMA et al., 2017). The

results for all three models are shown in Table 4.

As can be noticed, both deep learning models significantly outperformed the RNN

in all three metrics. It is also noticeable, according to the PH metric, that the RNN could not

provide consistent predictions for any of the HDDs. The zero value of the PH metric indicates

that none of the predictions could consistently stay inside the RUL band defined by the α

parameter for any HDD. These results may indicate that some temporal dependencies could not

be adequately modeled by a standard RNN.

We can also notice that LSTM outperformed CNN on all metrics. This result is

expected since LSTM models have built-in mechanisms to model time-dependent relations. To

47

RNN CNNLSTM
R
U
L

R
U
L

R
U
L

350

300

250

200

150

100

50

0

350

300

250

200

150

100

50

0

350

300

250

200

150

100

50

0

Days Days Days
0 100 200 3000 100 200 3000 100 200 300

Figure 8 – Predicted and real RUL for HDD Z300ZQST.

0 10000 20000 30000 40000

Epoch

0

2000

4000

6000

8000

10000

M
SE

LSTM Training Loss

Train
Validation

0 1000 2000 3000 4000

Epoch

0

2000

4000

6000

8000

10000

M
SE

CNN Training Loss

Train
Validation

Figure 9 – Loss function along the iterations for CNN and LSTM

provide a more tangible notion of the performance gap between all models, Figure 8 presents

the results for all models in HDD with serial number Z300ZQST.

The illustrative plot in Figure 8 depicts a typical behavior of most tested HDDs.

One can observe that both CNN and LSTM converge to the ground truth RUL earlier than RNN.

In addition to that, both models tend to stay very near to the ground truth as it approaches the

failure time.

An additional comparison between CNN and LSTM can be done regarding the con-

vergence of each model. Figure 9 shows the learning curve for both models. Considering this

result, we can verify that CNN has a significantly faster convergence (fewer iterations), although

LSTM achieved better results in all prognostics metrics.

One interesting aspect that can be noticed in Figure 8 and observed in many of the

tested HDDs, is the presence of a prediction gap for the CNN when the RUL reaches its lowest

values. This behavior is undesirable since, in a real application, a decision maker needs more

accurate predictions as the failure approaches. To overcome such problem, we tested a new

48

Metrics

Models RMSE PH* α −λ W-RMSE W-α −λ

CNN 64.3943 154.8583 0.3375 62.5862 0.2822
CNN* 61.8275 143.9450 0.2265 58.6983 0.2702

Table 5 – Performance of the CNN-based prediction models under different metrics. The CNN*
is the model trained with the customized loss function. W-RMSE and W-α-λ are the
metrics modified to incorporate the weighting scheme.

CNN model with a modified loss function. The modified loss function aims to emphasize the

notion that errors near the failure instant are more critical than errors when the RUL is high.

The new loss function is given by:

l =

√
∑N

i=1 wi(RULi − ˆRULi)2

∑N
i=1 wi

, (4.3)

where RUL is the real remaining useful life, ˆRUL is the predicted remaining useful

life and w are the weights of each prediction. In our setup, the weights are designed according

to the real RUL as follows:

wi =
180

180+RUL
, (4.4)

According to Eq. 4.4, predictions at a RUL = 1 will be weighted with a value close

to 1. This value decreases as RUL increases.

To assess the impact of the modified loss function, we created two additional met-

rics by modifying the RMSE and the α − λ metrics. In both metrics, we included the same

weighting scheme used in the loss function. As a consequence, both metrics shall weight more

the error occurrences for low RUL values. The results of the standard and these additional

metrics are shown in Table 5.

By observing the results on table 5, we can see that the modified loss function had

the desired impact on the weighted version of RMSE. We also noticed a small variation on the

modified α −λ . Also, as expected, the values of the regular metrics degraded. The effect of the

modified loss function illustrated in Figure 10.

As one can perceive, the prediction of the modified CNN moved towards the direc-

tion of the ground truth for low RUL values.

49

0 50 100 150 200 250 300 350

Days

0

50

100

150

200

250

300

350

R
U

L
CNN

Predicted
Ground Truth

0 50 100 150 200 250 300 350

Days

0

50

100

150

200

250

300

350

R
U

L

CNN*

Predicted
Ground Truth

Figure 10 – Predicted and real RUL for HDD Z300ZQST with the modified loss function.

4.4 RNNs State Initialization

In this section, we evaluate the sensitivity of RNN-based models to three hidden

state vectors initialization procedures in the task of HDD failure prediction, when approached

as a regression problem. According to (ZIMMERMANN et al., 2012) the initial state of an

RNN can have a significant impact on its performance. This fact is even more noticeable in

predictions where the initialization vector is used as a direct input for the RNN (i.e. the first

predictions). For the subsequent predictions, this effect is diminished. Aiming to improve the

performance of all RNNs, different approaches for initializing the state vectors of the networks

were explored.

A usual solution for the definition of an initialization vector is to set it to be equal

to zero. This is done expecting that the network is capable of reducing the impacts of a bad

initialization (e.g. zero) during the training. As it is the usual initialization technique, it is the

first strategy assessed.

Another possible initialization procedure is to apply noise over the values of the

initial state for each sequence. This would, in turn, result in a network that is less dependant

on the values of the initial state. A technique proposed by (ZIMMERMANN et al., 2012) goes

even further and makes the noise vary according to the error magnitude. We employ a simpler

version of this technique with a fixed noise, sampled from a normal distribution with mean 0

and standard deviation 0.1 and added to an initial state of zero. This one will be termed as

random initialization.

A last state initialization technique consists of making it a trainable parameter of

the model. The expectation is that the model is capable of learning an initial state optimized for

50

the task. An obvious downside is the addition of more parameters to be learned.

4.4.1 Results and Discussion

The architecture employed in the RNNs based models was the same found for the

LSTM network explored in section 4.3. All models were compared according to the three

prognostics metrics, presented in section 4.1, and the number of iterations until convergence.

Table 6 presents the average metric values of 3 repetitions for all RNN models. For both the

PH* and the α-λ Performance metrics, the parameter α was set to 30 days, meaning that a

prediction misplaced by a month is tolerable.

Results
Method Initialization RMSE PH* α −λ Iterations

SRNN
Zero 75.390411 78.94075145 0.2105486762 50270
Random 88.03063965 0.2023121387 0.1209358888 67967
Trained 66.30125216 51.19942197 0.2632570798 77700

GRU
Zero 59.77560713 158.4039017 0.3337110415 18350
Random 60.30418777 120.5283237 0.3188318023 19900
Trained 58.96779843 164.2450867 0.3087288983 24675

LSTM
Zero 57.43077586 167.2109827 0.3544073512 50270
Random 57.07623889 167.6136802 0.3684839272 39967
Trained 56.32258273 177.3947977 0.4113254414 54075

Table 6 – Performance of the prediction models combined with the initialization techniques un-
der different metrics.

As can be observed, LSTM had the best overall performance when considering only

the prognostics metrics even though the performance gap between GRU and LSTM was small.

It is also noticeable that, in general, for all RNNs the use of a trained initialization resulted in

better metric values. The impact of the initialization procedure is even more noticeable in the

PH* metric. This result is expected since using a better initialization vector may improve long-

term predictions, where the past information (previous SMART data) is scarce. The effect of

the trained initialization is illustrated in Figure 11. In this figure, we present one of the LSTM

predictions for HDD Z300NCXQ using zero, random and trained initialization techniques.

It is possible to verify that the trained initialization vector modifies the initial pre-

dictions by approximating them to the true RUL. Along the days the predictions of the trained

and the other strategies tend to be similar since the RNN learns to compensate the effect of a

bad initialization.

51

0 100 200 300

Days

0

50

100

150

200

250

300

350

R
U

L
Zero Initialization

Predicted
Ground Truth

0 100 200 300

Days

0

50

100

150

200

250

300

350

R
U

L

Random Initialization

Predicted
Ground Truth

0 100 200 300

Days

0

50

100

150

200

250

300

350

R
U

L

Trained Initialization

Predicted
Ground Truth

Figure 11 – Predicted and real RUL for HDD Z300NCXQ produced by the LSTM model. The
gray area represents an acceptable range defined by α = 30 for the prognostic met-
rics.

Concerning model convergence, GRU converged with a significantly smaller num-

ber of iterations when compared to both RNN and LSTM. Except for the GRU, we could not

notice any increment in the number of iterations when analyzing the effect of different initial-

ization procedures. This result may indicate that, although using a trained initialization strategy

adds adjustable parameters to the model, such modification does not affect the computational

burden of the final model.

4.5 Conclusion

In this chapter, we have approached the problem of hard drive failure prediction as

a regression task, which is the most straightforward modeling of the health status assessment

problem.

In section 4.3 we tested two deep learning models in the task of HDDs failure pre-

diction. We evaluated the performance of LSTM and CNN based architectures compared to a

Simple Recurrent Neural Network. The performance was assessed according to three classical

prognostics metrics.

Aiming to improve the performance of the CNN model for short RUL predictions

we also conducted experiments with a CNN generated with a weighted loss function. Addi-

tionally, we created two modified metrics to capture results that are more accurate in low RUL

situations.

Our experiments showed that LSTM had the best overall performance, followed by

CNN. Both outperformed the SRN model. Also, the modified CNN was able to improve the

52

predictions of CNN for low RUL situations.

In section 4.4 we assessed the impact of three initialization techniques with three dif-

ferent recurrent neural networks for failure prediction in Hard Disk Drives. Our results showed

that both LSTM and GRU outperformed the SRN in all prognostics metrics. The LSTM model

had the best overall performance. It is important to point that GRU achieved similar results

when compared to LSTM but with faster convergence.

We verified that the initialization procedures had a significant impact in almost all

prognostics metrics for the RNNs, being the trained initialization the best approach. Also, the

number of iterations was not significantly affected by the use of an initialization procedure.

Open research opportunities in the topics covered in this chapter include the evalua-

tion and proposal of different loss functions that can improve the prognostics metrics discussed

in section 4.1. Also, additional network architectures could be explored, besides the ones de-

fined by the parameters employed in the optimization problem discussed in section 4.3.

53

5 HEALTH DEGREE PREDICTION

In this chapter, we will approach the health assessment problem of hard disk drives

failure as a classification task. This brings an advantage when the decision maker can toler-

ate more coarse-grained information without performance compromise because it lessens the

accuracy requirements of the usual regression-based approach. As such, this modeling of the

problem turns it into an easier task to tackle.

In section 5.1, we present a solution to the problem approaching it as a standard

classification task. In this context, we compare our proposed solution to a competing one and

show how it performs better in a scenario where the prediction horizon required increases.

Then, in section 5.2, we improve over this solution, taking into account the specific

characteristics of the health assessment problem. These characteristics are the ordinal relation-

ship between the classes and the inherent bias that should favor predictions that indicate a worse

health degree, in case of wrong predictions.

Finally, in section 5.3 we provide conclusions and directions for future work taking

into account the results of both approaches explored for the health assessment problem.

5.1 Health Degree Prediction with LSTM Networks

In this section, we propose an approach for remaining useful life prediction for

HDDs in both long and short range prediction horizons through their categorization in RUL

intervals. To explore the long-term temporal relations on SMART data, we propose to use

LSTM networks.

The following sections are organized as follows: In section 5.1.1 we present our

LSTM based solution for failure prediction of HDDs. In section 5.1.2 we evaluate our proposed

solution and compare it to a baseline method.

5.1.1 Proposed Method

The proposed method consists essentially in three steps, namely, RUL Binning,

Model Creation, and Failure Prediction. The first is a preprocessing step, that allows for a

user of the method to adjust it to their needs. The second presents the model structure and how

it is trained. The third explains how to obtain predictions from an already built method.

54

5.1.1.1 RUL Binning

Similar to the work of (CHAVES et al., 2016) we perform a discretization of the

remaining useful life attribute of the HDDs, but with several particularities. Instead of evenly

spaced intervals for discretization (e.g. trimesters, months, days), we apply a custom spaced

binning of the RUL, allowing user-specified configuration of the method hereby proposed. One

can see that a benefit of this approach is to have a more fine-grained control of the prediction.

For example, by defining a spacing between the discretization buckets that have smaller values

as those buckets become closer to the end of the device’s useful life, leads to a gradual increase

in the information precision for such scenario.

After performing the RUL binning, we can tackle the problem as a multi-label clas-

sification task, instead of a regression problem.

5.1.1.2 Model Creation

As we are interested in the categorization of each SMART data sample from a given

HDD time-series, it is straightforward to create a model using an LSTM architecture that pro-

duces an output for each input entry from a sequence. The entry, in this case, is a vector

containing the SMART attributes for a given day. As we feed those entries successively to this

network, it will produce an output for each entry. By taking those multiple results from the net-

work, we can view its output as also a sequence, with the same length as the original time-series

that was processed. In the proposed modeling, the input and output correspond, respectively, to

the SMART data time-series of a given HDD and their respective RUL bins.

Our model employs two stacked layers of LSTM networks, with standard feed-

forward connections between the two layers, and recurrent ones within the same layer. Such

multi-layer LSTMs are known to more naturally capture the structure of sequences and to

achieve better performance on difficult temporal tasks (HERMANS; SCHRAUWEN, 2013).

A depiction of this architecture can be seen in figure 12.

Even though our experiments are performed on a dataset with a considerable amount

of data, we apply Dropout (SRIVASTAVA et al., 2014) to the feed-forward connections of both

LSTM layers, as a preventive measure.

A fully connected standard neural network, without activation function in its neu-

rons (i.e. linear), is later applied to the output of the last LSTM layer at each timestep (SMART

55

σσσ tanh

+
tanh

σσσ tanh

+
tanh

σσσ tanh

+
tanh

...

xt xt+1 xt+w

σσσ tanh

+
tanh

σσσ tanh

+
tanh

...

...

σσσ tanh

+
tanh

Figure 12 – Architecture of the LSTM network. The two layers of LSTMs are in purple, fol-
lowed by the softmax layer

0 200 400 600 800 1000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

LSTM
RNN

0 200 400 600 800 1000

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
ro

ss
E

nt
ro

py
E

rr
or

LSTM
RNN

Figure 13 – Training accuracy (left) and loss (right) for 30 days prediction horizon.

data sample). This effectively maps the hidden state vector into a vector whose dimensions

match the number of intervals in which the RUL was discretized in the first step of our method.

Afterward, the output (logits) of this layer is then given to a softmax activation

function, which produces an estimate of the discrete probability distributions of the RUL bins.

During the training of the model, the cross-entropy objective function (i.e. negative

log probability) is employed.

5.1.1.3 Failure Prediction

Finally, in order to perform the Failure Prediction step, the time-series of SMART

data collected from a target HDD is given, following the chronological order of the samples, as

input to the network built from the proposed architecture, described in the previous subsection.

Basically, for each SMART data entry, the predicted RUL bin is the one whose probability is

higher in the output of the softmax layer.

56

5.1.2 Experimental Results

The method proposed in this section was implemented in Python, using Pandas

0.18.1 (MCKINNEY, 2008–) and NumPy 1.12.0 libraries for data preprocessing. In addition,

we used TensorFlow 1.0.1 (ABADI et al., 2016) for implementing Neural Networks with equa-

tions running on GPU. In order to compare the different methods, we used metrics contained in

scikit-learn 0.18.1 (PEDREGOSA et al., 2011) library.

5.1.2.1 Dataset

For purposes of evaluating the method proposed, we use the data provided by Back-

blaze Company. This dataset is comprised of the daily observation of 92,348 HDDs during the

period from 04/10/2013 to 12/31/2016. These observations contain information regarding the

serial number, model, capacity, fault, and 90 SMART attributes of each device. According to the

Backblaze Company, a device is labeled as faulty if it stops working (does not turn on or does

not receive commands), or if SMART self-test fails for attributes 5, 187, 188, 197, or 198. Most

HDD models do not report all SMART attributes. In this case, the values not reported are left

blank. In addition, different manufacturers and device models may report different attributes.

To avoid a potential overfitting, we chose to perform the tests with the Seagate

ST4000DM000 model whose data are most plentiful. This model has 36,555 observed disks, of

which 1729 have failures. Of these, 32 were removed because their observation was interrupted

without a label indicating a failure or by having submitted observations after being labeled as

damaged. Thus, we used in fact for the test of the compared models a set of observations on

1,697 instances.

For this experiment, use all the SMART attributes collected by Backblaze for the

chosen model. The selected attributes were: 1, 3, 4, 5, 7, 9, 10, 12, 183, 184, 187, 188, 189,

190, 191, 192, 193, 194, 197, 198, 199, 240, 241 and 242, each having its raw and normalized

values included.

5.1.2.2 Performance Evaluation

To verify the performance of the LSTM model we performed short-term and long-

term failure predictions. In both tests, the task is to classify each sample in one of the six RUL

intervals. However, the RUL intervals are defined within one month before failure for the short-

57

360 days interval

R6 R5 R4 R3 R2 R1

90 days 60 days 30 days90 days 60 days 30 days

30 days interval

R6 R5 R4 R3 R2 R1

7 days 7 days 5 days 5 days 3 days 3 days

Figure 14 – Interval settings for the decreasing RUL used in the experiments.

term prediction and one year for the long-term prediction, as can be seen in Figure 14. The

proposed model was compared to an Elman RNN and a Random Forest classifier. Both the

Elman and LSTM recurrent networks implemented for the experiments follow the multilayer

architecture described in section 5.1.1. To define the unrolling parameter of the truncated BPTT

applied during the training of the networks, a grid search was performed in the intervals [2,30]

and [2,360] for short and long-term prediction scenarios respectively. The parameters found

for the BPTT unrolling were 6, for the RNN, in both scenarios, and, for the LSTM, 30 days

for short and 360 days for long-term. The internal memory was defined to have size 10 and

64 for short and long-term predictions, respectively, in both networks. For the experiments of

Random Forest classifier, we used 200 estimators (trees) with no depth limit. In addition, we

use bootstrap, which optimizes the construction of the forest, reducing the dependence between

its trees. The other parameters were set as the standards of the sklearn library.

Table 16 shows the performance of each method for the long and short-term pre-

diction tasks. Since the datasets are unbalanced, we used Micro and Macro F-measures as

performance indicators. The Micro-averaged F-score basically consists of calculating the F-

score taking the sum of the true positives, false positives and false negatives for all classes. The

Macro-averaged version simply performs an average over the individual F-scores calculated for

each class. Therefore, the Micro F1 tends to bias the metric toward the most populated classes,

whereas the Macro treats all classes equally (SOKOLOVA; LAPALME, 2009).

As can be noticed, for the short-term prediction task, the recurrent methods achieved

similar results. However, for the long-term predictions, LSTM achieved the best results, fol-

lowed by the RNN. The best performance of the recurrent methods is expected since both use

historical information to perform future predictions. The significant performance gap between

58

Classification performance

30 Days 360 Days

Model Micro F1 Macro F1 Micro F1 Macro F1

LSTM 0.9840 0.9840 0.7169 0.6861
RNN 0.9819 0.9818 0.3044 0.2547
RF 0.2513 0.1660 0.2598 0.2389

Table 7 – Performance of the classifiers under different prediction horizon settings.

0 200 400 600 800 1000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

LSTM
RNN

0 200 400 600 800 1000

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
ro

ss
E

nt
ro

py
E

rr
or

LSTM
RNN

Figure 15 – Training accuracy (left) and loss (right) for 360 days prediction horizon.

Predicted

R1 R2 R3 R4 R5 R6

A
ct

ua
l

R1 1985 10 14 14 7 12
R2 14 1953 4 11 9 12
R3 7 0 1392 3 3 7
R4 2 0 0 1392 3 1
R5 0 0 0 0 834 3
R6 0 0 0 0 0 834

Table 8 – Confusion Matrix LSTM 30 Days.

LSTM and RNN in long-term predictions enforces our initial hypothesis that gradient vanish-

ing/exploding problems may be observed in Elman networks.

A more detailed analysis regarding the performances of RNN and LSTM can be

seen in the confusion matrices in Tables 8, 9, 10 and 11. It is interesting to perceive that for the

long-term prediction (360 days), in addition to achieving the best Micro and Macro F1 scores,

the LSTM model tends to produce errors that are concentrated in classes near the correct one.

Since this is not observed for the RNN we can state that the LSTM classification errors can be

seen as less severe than RNN errors.

59

Predicted

R1 R2 R3 R4 R5 R6

A
ct

ua
l

R1 1972 17 18 14 7 14
R2 12 1953 5 11 9 13
R3 3 2 1392 3 3 9
R4 0 0 2 1391 4 1
R5 0 3 0 0 831 3
R6 0 1 0 0 0 833

Table 9 – Confusion Matrix RNN 30 Days.

Predicted

R1 R2 R3 R4 R5 R6

A
ct

ua
l

R1 5397 1800 875 891 954 729
R2 691 5248 1552 906 1103 643
R3 752 612 11415 2732 1964 1543
R4 403 279 560 11897 2652 1789
R5 260 235 144 552 18914 2919
R6 129 17 159 149 275 18736

Table 10 – Confusion Matrix LSTM 360 Days.

Predicted

R1 R2 R3 R4 R5 R6

A
ct

ua
l

R1 2935 1468 1206 983 2503 1551
R2 2047 1330 1201 1122 2656 1787
R3 2932 2101 2106 2155 5647 4077
R4 1762 1329 1495 1911 5833 5250
R5 1416 1034 1180 1803 7225 10366
R6 579 348 329 410 2896 14903

Table 11 – Confusion Matrix RNN 360 Days.

Another illustration of the difference between LSTM and RNN can be seen in Fig-

ures 13 and 15. These figures show the training accuracy and loss function evaluations for short

and long-term predictions respectively. For the short-term prediction, we can see that the meth-

ods exhibit similar curves indicating that both models learn along the iterations. However, it is

noticeable that the RNN can not decrease the training error or improve the performance on the

test set for the long-term prediction task.

60

5.2 Asymmetric Ordinal Health Degree Prediction

In this section, we propose an improvement over the method discussed in section

5.1 that explores particularities in the task of remaining useful life prediction for HDDs. More

specifically, the method discussed in this section takes into account two important factors for

this task: the ordinal nature between the health degrees and also a bias towards mispredictions

that indicate worse health levels. To do so, we propose an encoding scheme for the health

degrees that takes into account these two aspects. We also assess this method in a real-world

dataset, collected by a storage cloud service provider.

The following sections are organized as follows: In section 5.2.1 we present our

class encoding scheme for ordinal biased classification tasks. Then, in section 5.2.6 we briefly

discuss about competing encoding techniques for the ordinal classification task that will be used

as baseline. Finally, in section 5.2.7 we evaluate our proposed solution in the problem of HDD

health degree prediction and compare it to four baseline solutions, three of them designed for

ordinal tasks. We evaluate the method applied to two different RNN architectures, LSTMs and

GRUs.

5.2.1 Proposed Method

As we are targeting the problem of health assessment of hard disk drives it is

straightforward to interpret each health level as a separate class. This naturally leads to the

modeling of this problem as a classification task. In addition to that, since there is a clear or-

dering between the different health classes that a device can be labeled, the problem becomes

an ordinal classification task. Moreover, misclassifications that cause a device to be predicted

in a better health state, i.e. predicted as healthier, than its true state, could obviously lead to

more severe consequences (e.g. data loss, service outage). So, a mechanism to prevent such

scenarios must be employed, such as penalizing misclassifications differently depending on the

positioning of the prediction relative to the ground truth.

In order to solve this asymmetric ordinal classification problem, a novel method

is proposed. This new method encompasses two changes to the usual architectures of neural

networks employed on standard classification problems. One of them is to define an encoding

on the labeling of classes that could lead to an improved ordinal classification model, taking

into account the asymmetry towards lower health levels. This also implies in employing a more

61

adequate loss function for optimizing the parameters of the network for such encoding. The

other change is to define an additional static layer to the neural network, capable of decoding

the predicted encodings to their corresponding classes (i.e. health level).

Figure 16 summarizes the proposed method whose steps will be described in the

following sections.

< Skew, Scale >

Loss

Target Encoded

 Health Degrees

Backpropagation Through Time

360

Target Health Degrees

Health Degree Timeline (over the last 360 days)

[Data Set]

…

1

S.M.A.R.T Atributes

Predicted Encoded

Health Degrees

Health Degree

Encoding

Optimizer

Predicted

Health Degrees

Kappa

Kappa

Evaluation

Trainned

Network

Health

Degree

Decoding

Recurrent

Neural

Network

Distribution

Loss

[Training]

[Optimizing]

H,
S.M.A.R.T Atributes Health Degree

… …

Time-series Entry

Time-series Data

Daily Colected Data

Best Trainned

Neural Network

Day 360 Day T Day 1Day+1 Day-1

Figure 16 – Depiction of the overall process performed in order to produce the best trained
neural network for a given hard disk drive S.M.A.R.T. time-series dataset.

5.2.2 Custom Encoding

The usual encoding applied in classification tasks is the 1-of-m (also known as one-

hot) encoding. This consists in producing for each class a target that is a vector of the form

(0, ...,0,1,0, ...,0), with only an element set to 1 and all others as 0. With this formulation, a

model is expected to produce probabilities of a data point to belong to different classes. The

main issue with this scheme for ordinal classification is that no ordering relation between the

classes is obtainable. For ordinal classification problems, it is usual to define the encoding to

be an integer encoding (i.e. to map each class to an integer, respecting their ordering). Taking

such encoding, it is possible to measure a distance between two target values, allowing for

different penalization depending on it. The work (BECKHAM; PAL, 2016) can be seen as

a variation of this technique. (CHENG et al., 2008) propose a different encoding for ordinal

classification that labels any data point that belongs to a class K, to belong to all lower classes as

well. This allows for the models to quantify for each prediction produced under such encoding

62

by how many classes it is misplaced. Thus, a clear ordering between classes can be modeled.

For solving the asymmetric aspect, not only the distance between classes must be taken into

account, but also the direction of such distance. We aim to propose an encoding that handles

both issues.

Like the one-hot encoding approach, ours also defines a probability distribution over

the categories. A significant difference, though, is that we model the encoding to guarantee that

other classes also get probability values other than zero. The fundamental idea is to define class

probabilities such that smaller values mean undesired result. For both lower and higher classes,

we ensure that their probability values are set in a decremental fashion, based on their distance to

the ground truth. In order to enforce a higher penalization for predictions in the wrong direction,

a skew is applied to this distribution, where it is expected to have overall higher probabilities

concentrated below the ground truth if compared to classes above it. In other words, we enforce

a penalization for mispredictions lower than the ground truth, and even greater penalizations

for mispredictions higher than it, all based on their distance to the true label. Thus, if a data

point belongs to class C, we define a function f , that maps each position in the target vector

t, such that tk = f (k), with f (k) > f (k − 1), for k ≤ C and f (k) > f (k + 1) for k > C, with

∑C
k=0 f (k)> ∑n

k=C+1 f (k).

A probability function whose characteristics can be explored in order to satisfy such

requirements is the asymmetric Laplace distribution (KOZUBOWSKI; PODGORSKI, 2000).

Thus, as a starting point for defining the function f , the asymmetric Laplace probability mass

function was employed, with a later procedure for normalizing the resulting target vector to en-

sure the values sum one. This probability function is governed by three parameters. Namely, the

location m, which moves the center of the distribution, the skew µ , that measures the asymme-

try, and the scale λ , that defines how sharp the distribution is. A natural choice for the location

is the classes ground truth values themselves. The other two parameters then, become hyper-

parameters of the encoding, which must be tailored for the problem. A constraint that must be

applied to these parameters, though, is that the original class values fed to the function f must

be recoverable, that is, the encoding tx produced by f (x) for a data point x, when applying a

decoding function q(tx), must produce the original x class. Equation 5.1 shows the probabil-

ity density function p explained above and Figure 17 shows the probability density function in

three cases: no skew, positive skew and negative skew.

63

Without Skew
Positive Skew
Negative Skew

Figure 17 – Probability density function of the asymmetric Laplace distribution in three cases:
no asymmetry, positive asymmetry and negative asymmetry.

p(x;m,λ ,µ) =
(

λ
µ +1/µ

)
.

exp((λ/µ)(x−m)) if x < m

exp(−λ µ(x−m)) if x ⩾ m
(5.1)

5.2.3 Decoding

For decoding target values produced by the encoding procedure described above,

we add an additional layer past the output layer. This layer performs an operation whose results

are in the range [0,k−1], with k being the number of classes in the problem. Since the output

layer of our network produces probability distributions over all classes, we defined that this

operation performed is the probability-weighted average over all class values, which is precisely

the definition of the expected value of a discrete random variable. This operation can be written

as

ŷx =
k−1

∑
n=0

nt̂x[n] (5.2)

where k is the number of classes, t̂x is the output of the network for the data-point x

and ŷx is the final output of the network after decoding.

5.2.4 Cost Function

To find the parameters of the network an adequate loss function must be defined.

Since the network produces as an intermediate step a discrete probability distribution over the

64

classes and the target vector is also a distribution, a function that measures the distance of such

distributions can be employed. For this, the Jensen-Shannon divergence (JSD), which is a dis-

similarity measure between probability distributions, based on the Kullback-Leibler divergence

(KLD), was used. Clear advantages of this measure over KLD as a loss function are its bound-

ness, smoothness, and symmetry. It is defined by

JSD(P ∥ Q) =
1
2

D(P ∥ M)+
1
2

D(Q ∥ M) (5.3)

where M is

M =
1
2
(P+Q) (5.4)

and KLD in turn, for the discrete case, is calculated as follows

DKL(P∥Q) =−∑
i

P(i) log
Q(i)
P(i)

, (5.5)

5.2.5 Finding the Encoding Parameters

As aforementioned, the encoding is defined by a distribution mass function ex-

tracted from an asymmetric Laplace probability density function. The two parameters are the

skew µ , that measures the asymmetry, and the scale λ , that defines how sharp the distribution

is. In addition, we need to ensure that the parameters will lead to predictions that respect class

ordering and that will favor lower class values. For doing so, we need a metric that can be tuned

specifically for these two requirements.

The Cohen’s Kappa (COHEN, 1960) is a metric which compares the agreement of

two categorical raters that can be used to measure how close the output of a trained classifier

is to the ground truth output. However, the Cohen’s Kappa treats disagreements equally, which

is unwanted for the problem of ordinal classification. Therefore, the weighted Cohen’s kappa

(COHEN, 1968), that allows for custom importance to the disagreements, is applied to this

problem. The weighted Cohen’s kappa κ , as shown in (BECKHAM; PAL, 2016), is defined as

follows:

κw = 1−
∑i, j Wi jOi j

∑i, j Wi jEi j

where O is the k×k confusion matrix of the output of the trained neural network and E is a k×k

matrix related with the expected values. The matrix E is defined as the outer product between

65

the vector of column sums of the expected one hot encoded class and the vector of columns

sums of the predictions, and then E is normalized to have the same total sum as O. Also, W is

a k× k matrix of weights that is the cost of disagreement between different misclassifications.

The matrix W is defined by us and it is important to notice that, for i = j, Wi j must be 0, which

means we must not penalize the agreements between the two matrices O and E. If κw = 0 then

the trained classifier does no better than a random choice classifier. If κw = 1 then the classifier

agrees completely with the expected values.

Since we can define the weight matrix W , we can use costs that can naturally penal-

ize more distant misclassifications by defining higher costs as they are more distant to the diag-

onal. One possibility is using the symmetric κw matrix that determines the quadratic weighted

kappa, defined as the following:

Wi j = (i− j)2, for i, j ∈ {0,1 . . .k−1}

In a similar way, we can define weights that ensure the aforementioned asymmetri-

cal aspect of the problem, establishing lower cost values below the diagonal. We also defined

the following asymmetric κw matrix:

Wi j =

(i− j)2 if i ⩽ j

(i− j)2/α if i > j
, for i, j ∈ {0,1 . . .k−1}

where α is an asymmetry factor, that the higher its value is, bigger is the impact of misclassifi-

cations in the undesired direction.

Therefore, we can model the search of these parameters as an optimization problem,

as shown in Equation 5.6.

max
λ ,µ

g(λ ,µ) (5.6a)

subject to |ŷk − k|−0.5 < 0, k = 0, . . . ,K −1. (5.6b)

where g returns the kappa κw for a fixed asymmetric kappa matrix W as described

above, for a fixed α , and for the matrix O obtained from the predictions. The predictions, in

turn, are produced by a classifier trained with the custom encoding generated by the asymmetric

Laplace probability mass function defined by the parameters λ and µ .

66

Also, in the constraint presented in Equation 5.6b, ŷk is the decoded value of class

k of the encoding governed by the parameters λ and µ , as shown in Equation 5.2. This is a

recoverability constraint that allows us to recover the original class k, ensuring that the expected

value of the discrete distribution is not far from the integer value k.

To solve this optimization problem, several methods can be applied, such as meta-

heuristics and Bayesian optimization. As this optimization problem involves a full training of a

neural network for its evaluation, which is a time-consuming task, and since we are in a domain

where our knowledge about the impacts of the parameters on the Kappa are scarce, Bayesian

optimization is particularly suitable.

5.2.6 Baseline Encoding Schemes for Ordinal Classification

In the context of the ordinal classification problem, Cheng (CHENG et al., 2008)

proposed a different way of representing the class labels where, if a data point belongs to a

category k, it also belongs to all the lower categories {0, . . . ,k−1}. They achieved good results

compared to a standard neural network method in datasets with the ordinal aspect.

Also, Beckham and Pal (BECKHAM; PAL, 2016) explored the possibility of the

addition of a new layer after the final softmax layer to deal with the ordinal aspect of the prob-

lem. They added a layer with output size one and with fixed values (referred as vector a) and

employed the squared error loss. Also, they tried to learn the values of the vector a. According

to the authors, their reformulation can achieve better values in the quadratic weighted kappa

metric, arguing that in fact it directly optimizes this metrics, and produces competitive results

when compared to other ordinal classification techniques.

5.2.7 Experimental Results

All methods were implemented in Python 3. Additional libraries were used, namely

Numpy 1.14.2 (OLIPHANT, 2006), Tensorflow 1.7.0 (ABADI et al., 2016) for the creation

and execution of the models, Pandas 0.22.0 (MCKINNEY, 2008–) and scikit-learn 0.18.1 (PE-

DREGOSA et al., 2011) for data preprocessing. Also, GPyOpt 1.2.1 (The GPyOpt authors,)

was employed to perform Bayesian Optimization.

67

5.2.7.1 Dataset

All experiments were performed on a public dataset provided by the Backblaze

Company (BACKBLAZE, 2016) to evaluate the performance of the proposed and baseline

methods. This dataset contains daily SMART observations of thousands of HDDs of different

models from various manufacturer between April 2013 and December 2016. These observa-

tions were collected until either the disk stops working (e.g. won’t power up, does not respond

to commands anymore), or until it has shown signs that it will stop soon (e.g. SMART statistics

of critical attributes indicate a failure). Then the disk is marked as failed in the dataset.

It was assumed that HDDs of a single model from the same manufacturer have sim-

ilar degradation over time. Therefore, to perform the experiments, it was selected only disks of

the model Seagate ST4000DM000, which is the one with the biggest number of samples in the

dataset. From this specific model, there are 36,555 observed disks, of which only 1,729 have

failed. Also, 32 were excluded because of inconsistencies. Specifically, either their observa-

tions were interrupted without a label indicating a failure or they had additional observations

submitted after being flagged as failed. In the end, 1,697 instances were used. From the final

set of disks, it was used a) 997 disks for training, b) 333 disks for validation, and c) 367 disks

for testing.

Due to technicalities, only a limited number of the SMART attributes collected in

the dataset for this manufacturer model were used. The observed raw attributes returned by

the feature selection process performed in (BOTEZATU et al., 2016) have been chosen. These

features are described in Table 12.

5.2.7.2 Results and Discussion

To verify the performance of the proposed method applied to the health assessment

problem in hard disk drives, two types of deep recurrent neural networks namely, LSTM and

GRU networks, were used. The architecture of both networks was the same presented in (LIMA

et al., 2017), which defines two recurrent neural network layers with state vector size of 64 and

a single fully connected single perceptron as the output layer. The network is represented in

Figure 12.

We compared our method with other four approaches: a) standard classification

strategy with one-hot encoding and cross-entropy as the loss function, b) the work of (BECK-

68

Attribute ID Attribute Name
SMART 1 Read Error Rate
SMART 5 Reallocated Sectors Count
SMART 7 Seek Error Rate

SMART 184 End-to-End error
SMART 187 Reported Uncorrectable Errors
SMART 188 Command Timeout
SMART 189 High Fly Writes
SMART 190 Temperature Difference
SMART 193 Load Cycle Count
SMART 194 Temperature
SMART 197 Current Pending Sector Count
SMART 198 Uncorrectable Sector Count
SMART 240 Head Flying Hours
SMART 241 Total LBAs Written
SMART 242 Total LBAs Read

Table 12 – SMART attributes used in the classification task.

HAM; PAL, 2016), with the squared-error reformulation and a fixed vector a, c) the work of

(BECKHAM; PAL, 2016), with the squared-error reformulation and a trainable vector a, and

d) the work of (CHENG et al., 2008), with the multi-threshold encoding approach and mean

squared error as the loss function.

As aforementioned in section 5.2.1, there are two hyperparameters in the proposed

custom encoding that comes from the Laplace probability function: the skew and the scale of

the distribution. In order to find these parameters, since the training of the recurrent neural

network classifier is a time-consuming process, a Bayesian Optimization with restrictions was

performed over the already defined problem in Equation 5.6. The goal of the optimization was

to maximize the weighted Cohen’s Kappa with the asymmetric W matrix, whose asymmetry

factor parameter was defined as α = 4 showed in equation 5.7.

κasymw =

0 1 4 9 16 25

0.25 0 1 4 9 16

1.00 0.25 0 1 4 9

2.25 1.00 0.25 0 1 4

4.00 2.25 1.00 0.25 0 1

6.25 4.00 2.25 1.00 0.25 0

(5.7)

The range of possible values of the skew and scale was within the interval [0,100].

The optimization was performed once for each type of network (LSTM and GRU) and the

69

results of the best hyperparameters found by the process can be seen in Table 15. Also, Figures

18 and 19 shows the encoding created by these parameters for the LSTM and GRU networks,

respectively. In those figures, the bars represent the probability, or contribution, of each class in

the encoding according to the distribution.

To compare the performance of the methods, three metrics were considered: i) ac-

curacy of the classification, ii) the symmetric quadratic weighted kappa with the weight matrix,

W , shown in Equation 5.8, and iii) the asymmetric weighted kappa with the weight matrix W

being the same as the one used to execute the optimization, shown in Equation 5.7. Table 16

presents the average metric values of 3 repetitions for all models.

κsymw =

0 1 4 9 16 25

1 0 1 4 9 16

4 1 0 1 4 9

9 4 1 0 1 4

16 9 4 1 0 1

25 16 9 4 1 0

(5.8)

As can be observed, LSTM had the best overall performance when considering all

metrics even though the performance gap between GRU and LSTM was small, except for the

accuracy, which showed approximately 6% difference. It is noticeable that for the regular meth-

ods, both GRU and LSTM, their accuracy exceeded all other methods. This is expected, since

they were designed to optimize for accuracy, not taking into account both the class imbalance

and ordering issues.

Now for the Symmetric Kappa metric, the method based on the encoding defined

by (CHENG et al., 2008) showed the best results, for both recurrent network models. This

comes as a surprise, since (BECKHAM; PAL, 2016) based solutions were designed to directly

optimize the Quadratic Weighted kappa metric, which is precisely the Symmetric Kappa metric.

Our method outperformed all others under the Asymmetric Weighted Kappa metric.

A more detailed analysis regarding the performances of the methods can be seen

in the confusion matrices in Tables 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26. As expected

our method led to the smallest concentration of predictions above the diagonal of the matrices,

which indicates smaller errors suggesting that a device is healthier than it really is. This can be

noticed for both networks, LSTMs and GRUs.

70

H1 H2 H3 H4 H5 H6

H1 Encoding

0.0

0.5

1.0

H1 H2 H3 H4 H5 H6

H2 Encoding

0.0

0.5

1.0

H1 H2 H3 H4 H5 H6

H3 Encoding

0.0

0.5

1.0

H1 H2 H3 H4 H5 H6

H4 Encoding

0.0

0.5

1.0

H1 H2 H3 H4 H5 H6

H5 Encoding

0.0

0.5

1.0

H1 H2 H3 H4 H5 H6

H6 Encoding

0.0

0.5

1.0

Figure 18 – Best encoding found by the method for the LSTM model. The bars represent the
probabilities for each health degree (class).

Health Degree H1 H2 H3 H4 H5 H6
H1 Encoding 1.00 0.00 0.00 0.00 0.00 0.00
H2 Encoding 0.20 0.80 0.00 0.00 0.00 0.00
H3 Encoding 0.05 0.19 0.76 0.00 0.00 0.00
H4 Encoding 0.01 0.05 0.19 0.75 0.00 0.00
H5 Encoding 0.00 0.01 0.05 0.19 0.75 0.00
H6 Encoding 0.00 0.00 0.01 0.05 0.19 0.75

Table 13 – Numeric values for each health degree of the best encoding found by the method for
the LSTM model.

Health Degree H1 H2 H3 H4 H5 H6
H1 Encoding 1.00 0.00 0.00 0.00 0.00 0.00
H2 Encoding 0.20 0.80 0.00 0.00 0.00 0.00
H3 Encoding 0.05 0.19 0.76 0.00 0.00 0.00
H4 Encoding 0.01 0.05 0.19 0.75 0.00 0.00
H5 Encoding 0.00 0.01 0.05 0.19 0.75 0.00
H6 Encoding 0.00 0.00 0.01 0.05 0.19 0.75

Table 14 – Numeric values for each health degree of the best encoding found by the method for
the GRU model.

Another interesting aspect that can be observed in the confusion matrices produced

by our method is that there is an improvement in the accuracy of classification for the classes H1

and H2 if compared to the other methods. These classes can be considered as the most critical

ones since they are the nearest classes to the devices’ end-of-life. So, our method also produced

an improved classification accuracy for those critical classes.

71

H1 H2 H3 H4 H5 H6

H1 Encoding

0.0

0.5

1.0

H1 H2 H3 H4 H5 H6

H2 Encoding

0.0

0.5

1.0

H1 H2 H3 H4 H5 H6

H3 Encoding

0.0

0.5

1.0

H1 H2 H3 H4 H5 H6

H4 Encoding

0.0

0.5

1.0

H1 H2 H3 H4 H5 H6

H5 Encoding

0.0

0.5

1.0

H1 H2 H3 H4 H5 H6

H6 Encoding

0.0

0.5

1.0

Figure 19 – Best encoding found by the method for the GRU model. The bars represent the
probabilities for each health degree (class).

Network Skew Scale
LSTM 72.04848 100.0
GRU 61.240208 81.48958

Table 15 – Bayesian Optimization results for the two types of network

Results
Network Method Accuracy Sym. Kappa Asym. Kappa

LSTM

Regular 76.0799% 0.8310 0.8154
Ord 1 68.9132% 0.8566 0.8775
Ord 1 train 69.7843% 0.8577 0.8728
Ord 2 73.3878% 0.8596 0.8640
Ours 67.8942% 0.8568 0.8896

GRU

Regular 70.7535% 0.8210 0.8318
Ord 1 59.5668% 0.8394 0.8641
Ord 1 train 64.7180% 0.8440 0.8648
Ord 2 69.2230% 0.8543 0.8697
Ours 67.5716% 0.8401 0.8800

Table 16 – Performance of the methods under different classification metrics.

5.3 Conclusion

In this chapter we have approached the problem of hard drive failure prediction as

a classification task, also termed as health status assessment problem.

In section 5.1 we proposed a deep learning based solution which employed LSTMs

as a building block for a neural network architecture. This model achieved similar results if

compared to the method of (XU et al., 2016) in the short-term prediction task (i.e. one-month

interval). In the long-term prediction (i.e. twelve months interval) the proposed model outper-

formed the baseline in all metrics. Also, the method produced less severe (or near) errors, that

72

Predicted

H1 H2 H3 H4 H5 H6

A
ct

ua
l

H1 6315 594 1224 678 1459 376
H2 435 5820 1423 717 1347 401
H3 217 177 13432 1263 3049 880
H4 84 0 1220 12329 3161 786
H5 49 0 466 520 20535 1454
H6 235 0 0 0 1827 17403

Table 17 – Confusion matrix of the regular LSTMs.

Predicted

H1 H2 H3 H4 H5 H6

A
ct

ua
l

H1 5307 2065 1476 1518 189 81
H2 177 6189 2148 1402 143 84
H3 69 2106 13308 2788 608 139
H4 38 244 3415 13082 698 103
H5 0 11 1833 4828 16068 284
H6 0 0 24 2282 2794 14365

Table 18 – Confusion matrix of the LSTMs with (BECKHAM; PAL, 2016) method.

Predicted

H1 H2 H3 H4 H5 H6

A
ct

ua
l

H1 5461 1711 1422 1804 167 81
H2 249 5881 1988 1797 113 115
H3 150 1421 13144 3724 446 133
H4 120 95 2598 13885 741 141
H5 33 44 854 5319 16440 334
H6 0 36 99 2206 1586 15538

Table 19 – Confusion matrix of the LSTMs (BECKHAM; PAL, 2016) with trainable vector
method.

Predicted

H1 H2 H3 H4 H5 H6

A
ct

ua
l

H1 6225 1033 1402 1271 577 138
H2 493 6031 1584 1318 572 145
H3 209 1227 13111 2950 1137 384
H4 60 205 2180 13570 1122 443
H5 11 5 1002 3520 17629 857
H6 0 0 19 1601 1085 16760

Table 20 – Confusion matrix of the LSTMs with (CHENG et al., 2008) method.

73

Predicted

H1 H2 H3 H4 H5 H6

A
ct

ua
l

H1 6592 1142 1624 1049 164 75
H2 902 6347 1720 989 112 73
H3 130 3406 13131 1803 418 130
H4 6 791 4320 11858 550 55
H5 1 36 2859 4309 15606 213
H6 0 0 260 1997 2954 14254

Table 21 – Confusion matrix of the LSTMs with ours method.

Predicted

H1 H2 H3 H4 H5 H6

A
ct

ua
l

H1 5562 1428 2688 146 524 298
H2 795 4457 3831 190 574 296
H3 352 59 16350 724 898 635
H4 95 0 5145 10446 1236 658
H5 70 0 4035 755 17242 922
H6 252 0 1141 0 1502 16570

Table 22 – Confusion matrix of the regular GRUs.

Predicted

H1 H2 H3 H4 H5 H6

A
ct

ua
l

H1 3672 3662 1777 1290 182 63
H2 192 4112 4430 1179 162 68
H3 60 1776 12657 3866 553 106
H4 30 187 4241 9733 3319 70
H5 0 0 2606 4594 15187 637
H6 0 0 69 2415 3969 13012

Table 23 – Confusion matrix of the GRUs with (BECKHAM; PAL, 2016) method.

Predicted

H1 H2 H3 H4 H5 H6

A
ct

ua
l

H1 5041 2260 1392 1761 128 64
H2 263 5943 1941 1826 109 61
H3 80 1791 11993 4654 373 127
H4 46 177 2608 14025 597 127
H5 0 127 729 8053 13830 285
H6 0 11 43 2577 4026 12808

Table 24 – Confusion matrix of the GRUs (BECKHAM; PAL, 2016) with trainable vector
method.

74

Predicted

H1 H2 H3 H4 H5 H6

A
ct

ua
l

H1 5111 2151 1469 1527 272 116
H2 679 5052 2437 1617 264 94
H3 233 1522 12305 4102 688 168
H4 65 292 2215 13579 1196 233
H5 15 22 1339 4562 16607 479
H6 8 29 110 1962 2032 15324

Table 25 – Confusion matrix of the GRU (CHENG et al., 2008) method.

Predicted

H1 H2 H3 H4 H5 H6

A
ct

ua
l

H1 6474 1801 1066 897 318 90
H2 833 6857 1201 918 266 68
H3 565 3372 12851 1298 826 106
H4 243 1457 3372 11626 827 55
H5 33 686 2460 4029 15611 205
H6 0 0 537 1194 4414 13320

Table 26 – Confusion matrix of the GRUs with ours method.

is, misclassifications were closer to the ground truth if compared to the baseline.

In section 5.2 we proposed a novel method for encoding classes for ordinal clas-

sification problems. Additionally, we assessed this method, together with other four methods

for the task of failure prediction in Hard Disk Drives. All methods were tested with a dataset

of 1,697 HDDs collected on a period of almost 4 years. This encoding scheme was applied

in two deep neural networks, one based on LSTMs and other on GRUs. In order to tune the

hyperparameters of the encoding scheme, Bayesian optimization was applied. Our experiments

showed that all methods that propose different encoding for the classes outperformed the stan-

dard classification approach when assessed on metrics that consider the ordinal nature of the

tasks. Also, the proposed encoding scheme had the best performance for the metric that takes

into account both the asymmetry and ordinal aspects of the task. Besides that, it also improved

the classification accuracy for the most critical classes, the ones near the device end-of-life.

Future work includes exploring different encoding schemes parameters for each

class separately, which would require an optimization whose amount of parameters is propor-

tional to the number of classes. Also, another topic is finding more suitable loss functions that

would directly optimize the kappa, including the encoding parameters.

75

6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation, we explored the problem of health assessment of hard disk

drives with deep neural networks. The problem was modeled with two different approaches,

as a regression task, and as a classification task. The regression task consisted in predicting

the remaining useful life of the device in days up to its failure. The classification task, in its

turn, simplified the regression problem by splitting the prediction interval into sub-intervals, or

health degrees.

For the regression task, DNNs based on CNNs, LSTMs and GRUs were assessed.

The topology and hyperparameters of both feedforward and recurrent networks were tuned

through Bayesian Optimization. The resulting optimized networks outperformed SRNs when

evaluated under three classical prognostics metrics. In addition to that, three hidden state vector

initialization strategies were assessed for the recurrent neural networks. These initializations

had a significant impact in almost all prognostics metrics without significantly affecting the

iterations required for training.

In the classification approach, we proposed an LSTM based solution that outper-

formed the state-of-the-art method, which was based on SRN, in the long-term prediction hori-

zon, while producing similar results in the short-term setting. Also, the modeling of the health

assessment problem as a classification task led to particularities such as the ordinal and asym-

metric aspects between the resulting classes, that were tackled by the proposal of an adjustable

encoding scheme. This encoding scheme resulted in improved classification results.

All experiments were conducted with real-world data of 1,697 HDDs collected on

a period of almost 4 years.

6.2 Future Work

Open research opportunities in the topics covered in this dissertation include the

evaluation and proposal of different loss functions that can improve the prognostics metrics

discussed in section 4.1. In addition to that, other network architectures could be explored, by

allowing additional parameters to be optimized through the Bayesian optimization procedure

discussed in section 4.3.

76

Another avenue to be explored is, in the context of the classification task, the eval-

uation of employing different encoding schemes parameters for each class separately. Also,

another topic is finding more suitable loss functions that would directly optimize the kappa,

including the encoding parameters.

77

BIBLIOGRAPHY

ABADI, M.; AGARWAL, A.; BARHAM, P.; BREVDO, E.; CHEN, Z.; CITRO, C.;
CORRADO, G. S.; DAVIS, A.; DEAN, J.; DEVIN, M. et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

BACKBLAZE. Hard Drive Data and Stats. 2016. [Online; accessed 2017-04-26]. Available
at: https://www.backblaze.com/b2/hard-drive-test-data.html.

BECKHAM, C.; PAL, C. A simple squared-error reformulation for ordinal classification.
arXiv preprint arXiv:1612.00775, 2016.

BENGIO, Y.; SIMARD, P.; FRASCONI, P. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, IEEE, v. 5, n. 2, p. 157–166,
1994.

BOTEZATU, M. M.; GIURGIU, I.; BOGOJESKA, J.; WIESMANN, D. Predicting disk
replacement towards reliable data centers. In: ACM. Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. [S.l.], 2016. p. 39–
48.

CHAUVIN, Y.; RUMELHART, D. E. Backpropagation: theory, architectures, and
applications. [S.l.]: Psychology Press, 2013.

CHAVES, I. C.; PAULA, M. R. P. de; LEITE, L. G.; QUEIROZ, L. P.; GOMES, J. P. P.;
MACHADO, J. C. Banhfap: A bayesian network based failure prediction approach for hard
disk drives. In: IEEE. Intelligent Systems (BRACIS), 2016 5th Brazilian Conference on.
[S.l.], 2016. p. 427–432.

CHENG, J.; WANG, Z.; POLLASTRI, G. A neural network approach to ordinal regression.
In: IEEE. Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computational
Intelligence). IEEE International Joint Conference on. [S.l.], 2008. p. 1279–1284.

CHO, K.; MERRIËNBOER, B. V.; GULCEHRE, C.; BAHDANAU, D.; BOUGARES, F.;
SCHWENK, H.; BENGIO, Y. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

COHEN, J. A coefficient of agreement for nominal scales. Educational and psychological
measurement, Sage Publications Sage CA: Thousand Oaks, CA, v. 20, n. 1, p. 37–46, 1960.

COHEN, J. Weighted kappa: Nominal scale agreement provision for scaled disagreement or
partial credit. Psychological bulletin, American Psychological Association, v. 70, n. 4, p. 213,
1968.

CONNEAU, A.; SCHWENK, H.; BARRAULT, L.; LECUN, Y. Very deep convolutional
networks for text classification. In: Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. [S.l.:
s.n.], 2017. v. 1, p. 1107–1116.

ELMAN, J. L. Finding structure in time. Cognitive science, Wiley Online Library, v. 14, n. 2,
p. 179–211, 1990.

https://www.backblaze.com/b2/hard-drive-test-data.html

78

GRAVES, A.; SCHMIDHUBER, J. Framewise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Networks, Elsevier, v. 18, n. 5-6, p. 602–610,
2005.

HAMMER, B. On the approximation capability of recurrent neural networks. Neurocomput-
ing, Elsevier, v. 31, n. 1-4, p. 107–123, 2000.

HERMANS, M.; SCHRAUWEN, B. Training and analysing deep recurrent neural networks.
In : Advances in Neural Information Processing Systems. [S.l. : s.n.], 2013. p. 190–198.

HERSHEY, S.; CHAUDHURI, S.; ELLIS, D. P.; GEMMEKE, J. F.; JANSEN, A.; MOORE, R.
C.; PLAKAL, M.; PLATT, D.; SAUROUS, R. A.; SEYBOLD, B. et al. Cnn architectures for
large-scale audio classification. In : IEEE. Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on. [S.l.], 2017. p. 131–135.

HORNIK, K.; STINCHCOMBE, M.; WHITE, H. Multilayer feedforward networks are
universal approximators. Neural networks, Elsevier, v. 2, n. 5, p. 359–366, 1989.

KOZUBOWSKI, T. J.; PODGORSKI, K. of laplace distribution. Computational Statistics, v.
15, p. 531–540, 2000.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing systems.[S.l.:
s.n.] , 2012. p. 1097–1105.

LECUN, Y.; BOTTOU, L.; BENGIO, Y.; HAFFNER, P. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, IEEE, v. 86, n. 11, p. 2278–2324, 1998.

LI, J.; JI, X.; JIA, Y.; ZHU, B.; WANG, G.; LI, Z.; LIU, X. Hard drive failure prediction using
classification and regression trees. In : 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. [S.l. : s.n.] , 2014. p. 383–394. ISSN
1530-0889.

LIMA, F. D. dos S.; AMARAL, G. M. R.; LEITE, L. G. de M.; GOMES, J. P. P.; MACHADO,
J. de C. Predicting failures in hard drives with lstm networks. In : IEEE. 2017 Brazilian
Conference on Intelligent Systems (BRACIS). [S.l.], 2017. p. 222–227.

LIMA, F. D. dos S.; PEREIRA, F. L. F.; LEITE, L. G. de M.; GOMES, J. P. P.; MACHADO, J.
de C. Remaining useful life estimation of hard disk drives based on deep neural networks. In :
IEEE. Neural Networks, 2018. IJCNN 2018.(IEEE World Congress on Computational
Intelligence). IEEE International Joint Conference on. [S.l.], 2018.

MCKINNEY, W. Pandas: a python data analysis library. 2008. [Online; accessed
2017-04-26]. Available at: http://pandas.sourceforge.net.

MURRAY, J. F.; HUGHES, G. F.; KREUTZ-DELGADO, K. Machine learning methods for
predicting failures in hard drives: A multiple-instance application. Journal of Machine
Learning Research, v. 6, n. May, p. 783–816, 2005.

OLAH, C. Understanding LSTM Networks. 2015. [Online; accessed 2017-04-26].
Available at: http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

OLIPHANT, T. E. A guide to NumPy. [S.l.]: Trelgol Publishing USA, 2006. v. 1.

http://pandas.sourceforge.net
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

79

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.;
GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V. et al.
Scikit-learn: Machine learning in python. The Journal of Machine Learning Research,
JMLR. org, v. 12, p. 2825–2830, 2011.

PINHEIRO, E.; WEBER, W.-D.; BARROSO, L. A. Failure trends in a large disk drive
population. In: Proceedings of the 5th USENIX Conference on File and Storage
Technologies. Berkeley, CA, USA: USENIX Association, 2007. (FAST ’07), p. 2–2.

Ponemon Institute LLC. Cost of Data Center Outages. [S.l.], 2016. [Online; accessed
2018-08-23]. Available at: https://www.vertivco.com/en-us/insights/articles/pr-campaigns-
reports/benchmark-series/.

QUEIROZ, L. P.; RODRIGUES, F. C. M.; GOMES, J. P. P.; BRITO, F. T.; CHAVES, I. C.;
PAULA, M. R. P.; SALVADOR, M. R.; MACHADO, J. C. A fault detection method for hard
disk drives based on mixture of gaussians and non-parametric statistics. IEEE Transactions
on Industrial Informatics, IEEE, 2016.

RINCóN, C. A. C.; PâRIS, J.; VILALTA, R.; CHENG, A. M. K.; LONG, D. D. E. Disk
failure prediction in heterogeneous environments. In: 2017 International Symposium on
Performance Evaluation of Computer and Telecommunication Systems (SPECTS). [S.l.:
s.n.], 2017. p. 1–7.

ROSENBLATT, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, American Psychological Association, v. 65,
n. 6, p. 386, 1958.

SAXENA, A.; CELAYA, J.; SAHA, B.; SAHA, S.; GOEBEL, K. On applying the prognostic
performance metrics. In: Proceedings of the Annual Conference of the Prognostics and
Health Management Society, 2009. [S.l.: s.n.], 2009. p. 1–16.

SCHROEDER, B.; GIBSON, G. A. Disk failures in the real world: What does an mttf of 1,
000, 000 hours mean to you? In: FAST. [S.l.: s.n.], 2007. v. 7, n. 1, p. 1–16.

SOKOLOVA, M.; LAPALME, G. A systematic analysis of performance measures for
classification tasks. Information Processing & Management, Elsevier, v. 45, n. 4, p. 427–437,
2009.

SRIVASTAVA, N.; HINTON, G.; KRIZHEVSKY, A.; SUTSKEVER, I.; SALAKHUTDINOV,
R. Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, JMLR. org, v. 15, n. 1, p. 1929–1958, 2014.

The GPyOpt authors. GPyOpt: A Bayesian Optimization framework in python. [Online;
accessed 2017-06-26]. Available at: http://github.com/SheffieldML/GPyOpt.

WANG, Y.; MA, E. W. M.; CHOW, T. W. S.; TSUI, K. A two-step parametric method for
failure prediction in hard disk drives. IEEE Transactions on Industrial Informatics, v. 10,
n. 1, p. 419–430, Feb 2014. ISSN 1551-3203.

WANG, Y.; MIAO, Q.; MA, E. W. M.; TSUI, K.; PECHT, M. G. Online anomaly detection for
hard disk drives based on mahalanobis distance. IEEE Transactions on Reliability, v. 62, n. 1,
p. 136–145, March 2013. ISSN 0018-9529.

https://www.vertivco.com/en-us/insights/articles/pr-campaigns-reports/benchmark-series/
https://www.vertivco.com/en-us/insights/articles/pr-campaigns-reports/benchmark-series/
http://github.com/SheffieldML/GPyOpt

80

WERBOS, P. J. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, IEEE, v. 78, n. 10, p. 1550–1560, 1990.

XU, C.; WANG, G.; LIU, X.; GUO, D.; LIU, T.-Y. Health status assessment and failure
prediction for hard drives with recurrent neural networks. IEEE Transactions on Computers,
IEEE, v. 65, n. 11, p. 3502–3508, 2016.

YE, Z.-S.; XIE, M.; TANG, L.-C. Reliability evaluation of hard disk drive failures based on
counting processes. Reliability Engineering System Safety, v. 109, p. 110 – 118, 2013. ISSN
0951-8320.

ZHU, B.; WANG, G.; LIU, X.; HU, D.; LIN, S.; MA, J. Proactive drive failure prediction for
large scale storage systems. In: IEEE. 2013 IEEE 29th Symposium on Mass Storage
Systems and Technologies (MSST). [S.l.], 2013. p. 1–5.

ZIMMERMANN, H.-G.; TIETZ, C.; GROTHMANN, R. Forecasting with recurrent neural
networks: 12 tricks. In: Neural Networks: Tricks of the Trade. [S.l.]: Springer, 2012. p.
687–707.

	Title page
	Acknowledgements
	Resumo
	Abstract
	List of symbols
	Contents
	Introduction
	Contributions and text organization

	Deep Neural Networks
	Recurrent Neural Networks
	Simple Recurrent Networks
	Forward Pass
	Backward Pass

	RNNs with Long short-term memory
	Forward Pass
	Backward Pass

	RNNs with Gated recurrent unit
	Forward Pass
	Backward Pass

	Convolutional Neural Networks
	Forward Pass
	Backward Pass

	Related Work
	A Fault Detection Method for Hard Disk Drives Based on Mixture of Gaussians and Non-parametric Statistics
	Predicting Disk Replacement towards Reliable Data Centers
	BaNHFaP: A Bayesian Network Based Failure Prediction Approach for Hard Disk Drives
	Health Status Assessment and Failure Prediction for Hard Drives with Recurrent Neural Networks
	Related Work Comparison

	Remaining Useful Life Prediction
	Prognostics Metrics
	Prognostic Horizon
	- Performance

	Dataset
	Remaining Useful Life Prediction
	Architecture of the LSTMs based network
	Architecture of CNN found through optimization
	Results and Discussion

	RNNs State Initialization
	Results and Discussion

	Conclusion

	Health Degree Prediction
	Health Degree Prediction with LSTM Networks
	Proposed Method
	RUL Binning
	Model Creation
	Failure Prediction

	Experimental Results
	Dataset
	Performance Evaluation

	Asymmetric Ordinal Health Degree Prediction
	Proposed Method
	Custom Encoding
	Decoding
	Cost Function
	Finding the Encoding Parameters
	Baseline Encoding Schemes for Ordinal Classification
	Experimental Results
	Dataset
	Results and Discussion

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Dissertation.pdf
	Title page
	Acknowledgements
	Resumo
	Abstract
	List of symbols
	Sumário
	Introduction
	Contributions and text organization

	Deep Neural Networks
	Recurrent Neural Networks
	Simple Recurrent Networks
	Forward Pass
	Backward Pass

	RNNs with Long short-term memory
	Forward Pass
	Backward Pass

	RNNs with Gated recurrent unit
	Forward Pass
	Backward Pass

	Convolutional Neural Networks
	Forward Pass
	Backward Pass

	Related Work
	A Fault Detection Method for Hard Disk Drives Based on Mixture of Gaussians and Non-parametric Statistics
	Predicting Disk Replacement towards Reliable Data Centers
	BaNHFaP: A Bayesian Network Based Failure Prediction Approach for Hard Disk Drives
	Health Status Assessment and Failure Prediction for Hard Drives with Recurrent Neural Networks
	Related Work Comparison

	Remaining Useful Life Prediction
	Prognostics Metrics
	Prognostic Horizon
	- Performance

	Dataset
	Remaining Useful Life Prediction
	Architecture of the LSTMs based network
	Architecture of CNN found through optimization
	Results and Discussion

	RNNs State Initialization
	Results and Discussion

	Conclusion

	Health Degree Prediction
	Health Degree Prediction with LSTM Networks
	Proposed Method
	RUL Binning
	Model Creation
	Failure Prediction

	Experimental Results
	Dataset
	Performance Evaluation

	Asymmetric Ordinal Health Degree Prediction
	Proposed Method
	Custom Encoding
	Decoding
	Cost Function
	Finding the Encoding Parameters
	Baseline Encoding Schemes for Ordinal Classification
	Experimental Results
	Dataset
	Results and Discussion

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

	Dissertation.pdf
	Title page
	Acknowledgements
	Resumo
	Abstract
	List of symbols
	Sumário
	Introduction
	Contributions and text organization

	Deep Neural Networks
	Recurrent Neural Networks
	Simple Recurrent Networks
	Forward Pass
	Backward Pass

	RNNs with Long short-term memory
	Forward Pass
	Backward Pass

	RNNs with Gated recurrent unit
	Forward Pass
	Backward Pass

	Convolutional Neural Networks
	Forward Pass
	Backward Pass

	Related Work
	A Fault Detection Method for Hard Disk Drives Based on Mixture of Gaussians and Non-parametric Statistics
	Predicting Disk Replacement towards Reliable Data Centers
	BaNHFaP: A Bayesian Network Based Failure Prediction Approach for Hard Disk Drives
	Health Status Assessment and Failure Prediction for Hard Drives with Recurrent Neural Networks
	Related Work Comparison

	Remaining Useful Life Prediction
	Prognostics Metrics
	Prognostic Horizon
	- Performance

	Dataset
	Remaining Useful Life Prediction
	Architecture of the LSTMs based network
	Architecture of CNN found through optimization
	Results and Discussion

	RNNs State Initialization
	Results and Discussion

	Conclusion

	Health Degree Prediction
	Health Degree Prediction with LSTM Networks
	Proposed Method
	RUL Binning
	Model Creation
	Failure Prediction

	Experimental Results
	Dataset
	Performance Evaluation

	Asymmetric Ordinal Health Degree Prediction
	Proposed Method
	Custom Encoding
	Decoding
	Cost Function
	Finding the Encoding Parameters
	Baseline Encoding Schemes for Ordinal Classification
	Experimental Results
	Dataset
	Results and Discussion

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

	Página em branco
	Página em branco
	Dissertation.pdf
	Title page
	Acknowledgements
	Resumo
	Abstract
	List of symbols
	Sumário
	Introduction
	Contributions and text organization

	Deep Neural Networks
	Recurrent Neural Networks
	Simple Recurrent Networks
	Forward Pass
	Backward Pass

	RNNs with Long short-term memory
	Forward Pass
	Backward Pass

	RNNs with Gated recurrent unit
	Forward Pass
	Backward Pass

	Convolutional Neural Networks
	Forward Pass
	Backward Pass

	Related Work
	A Fault Detection Method for Hard Disk Drives Based on Mixture of Gaussians and Non-parametric Statistics
	Predicting Disk Replacement towards Reliable Data Centers
	BaNHFaP: A Bayesian Network Based Failure Prediction Approach for Hard Disk Drives
	Health Status Assessment and Failure Prediction for Hard Drives with Recurrent Neural Networks
	Related Work Comparison

	Remaining Useful Life Prediction
	Prognostics Metrics
	Prognostic Horizon
	- Performance

	Dataset
	Remaining Useful Life Prediction
	Architecture of the LSTMs based network
	Architecture of CNN found through optimization
	Results and Discussion

	RNNs State Initialization
	Results and Discussion

	Conclusion

	Health Degree Prediction
	Health Degree Prediction with LSTM Networks
	Proposed Method
	RUL Binning
	Model Creation
	Failure Prediction

	Experimental Results
	Dataset
	Performance Evaluation

	Asymmetric Ordinal Health Degree Prediction
	Proposed Method
	Custom Encoding
	Decoding
	Cost Function
	Finding the Encoding Parameters
	Baseline Encoding Schemes for Ordinal Classification
	Experimental Results
	Dataset
	Results and Discussion

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

