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Much is discussed if obesity or diet components modify the “healthy” microbiota or if microbiota
modifications trigger events that culminate in obesity. This association is probably reciprocal,
and inflammation has crucial participation on it. We will discuss recent studies showing gut
microbiome as an obesogenic factor and the mechanisms linked to the associated of diet,
microbiota, and low-grade inflammation.

CAN THE GUT MICROBIOTA REGULATE BODY WEIGHT?

Obesity is a growing epidemy, despite the efforts to contain it. The inflammation generated by
the adipocyte hypertrophy and hyperplasia initiates crosstalk between adipocyte and resident
macrophage (M2) in white adipose tissue (WAT). Once activated, both adipocyte and activated
macrophage (M1) release several adipokines that trigger the infiltration of other immune cells
such as neutrophils, CD8+ and CD4+ T cells (1). Tissue-resident innate lymphocytes also play
an important role in the homeostasis of WAT and, consequently, in obesity. Although this resident
lymphocyte plays regulatory and anti-inflammatory properties in non-obese individuals, obesity
promotes changes in the profile of these cells (2). Invariant Natural Killer cells (iNKT) andmucosal-
associated invariant T cells (MAIT) are important examples. The frequency of iNKT is reduced in
WAT in obesity and is inversely related to the degree of obesity, insulin resistance and fasting blood
glucose, suggesting that these cells play a role against metabolic disorders associated with obesity
(1, 2). MAIT cells also present reduced frequency and change of phenotype in WAT in obesity,
reducing IL-10 synthesis and gamma interferon (IFNγ) and increasing IL-17 production (1, 2) and
can play an important role in the progression of inflammation (3).

Adipocytes also produce macrophage colony-stimulating factor (M-CSF-1), causing an
increased influx of monocytes from bone marrow-derived precursors and regulating macrophage
differentiation and survival (4, 5). The expanded WAT also secrets pro-inflammatory and
prothrombotic factors such as interleukin (IL)-1β, IL-6, tumoral necrosis factor (TNF), monocytes
and macrophages chemoattractant protein (MCP-1/CCL2), C-reactive protein (CRP), tissue factor
and factor VII, plasminogen activator inhibitor type-1 (PAI-1) (6). This pro-inflammatory,
prothrombotic environment contributes to the onset of obesity-related complications such as
metabolic syndrome, insulin resistance, hypertension, and systemic sterile inflammation.

One of the first studies linking obesity and microbiota was conducted by Ley et al. (7),
showing that obesity is associated with a specific microbiota profile. The gut microbiota of healthy
individuals is mostly composed of Firmicutes (70%) and the Bacteroidetes (30%). Other minor
phyla are Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia (8). The genetically
obese ob/ob mice have in their microbiota 50% fewer Bacterioidetes and a higher proportion
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of Firmicutes when compared to lean mice. This altered ratio
between Firmicutes and Bacteroidetes (F/B ratio) has also been
described in obese individuals (9). Nonetheless, obesity in
adulthood is influenced by several factors besides the different
profiles of gut microbiota and, until now, studies have not found
enough consistency to point out specific obesogenic bacteria
(10). However, preclinical studies revealed that the obesogenic
microbiota profile could be transmitted from twins discordant
for obesity to germ-free (GF) mice. When the fecal microbiota
of the obese twin is transplanted to GF mice, the mice eventually
become obese, the same occurring with the transplantation of
microbiota from the lean twin to GF mice. Moreover, obesity
was prevented when mice carrying the obese twin’s microbiota
were kept in the same cage with mice carrying the lean twin’s
microbiota (11).

SINCE CHANGES IN MICROBIOTA
PREDISPOSE TO OBESITY, WHAT
DETERMINE THE TYPES OF BACTERIA
THAT INHABIT THE GUT?

The influence of microbiota on obesity development and
low-grade inflammation seems to occur even before or
immediately after birth. The gut-associated lymphoid tissues
(GALT) are formed during embryogenesis and become mature
during the microbial colonization, after birth. Bacterial antigens
were recognized by the intestinal epithelium via pattern
recognition receptors (PRR), such as Toll-like receptors (TLRs)
and nucleotide-binding oligomerization domain 1 (NOD-1)

FIGURE 1 | An overview of the relationships described in this opinion paper. An obesogenic profile (characterized by a very high Firmicutes/Bacteroidetes ratio, F/B)

can be caused in the fetus by conditions such as maternal obesity, caesarian section, infections, or antibiotics treatments during pregnancy. The immune and

pro-inflammatory response caused by intestinal dysbiosis over life can eventually lead the individual to obesity in adulthood. This scenario can be worsened by the

chronic intake of a high-fat diet, responsible for the increase of bacteria producing hydrogen disulfide (H2S-bacteria) and pathogenic bacterial lipopolysaccharide (LPS)

translocation. A healthy dietary pattern and physical activity may contribute to revert dysbiosis. Although probiotics and fecal microbiota transplantation could

eventually improve this condition, presently, there is not enough clinical evidence supporting the adoption of such intervention.

(12, 13). Changes in the microbial composition, which occur in
the presence of obesity, disrupt the barrier integrity promoted
by GALT, increase the intestinal permeability, favor bacterial
translocation that triggers the inflammatory process (14).

Maternal obesity, caesarian section (CS), infections, and
antibiotic utilization were described as factors influencing obesity
(15) (Figure 1). Antibiotic therapy in the perinatal period is
associated with intestinal microbiota disruption and metabolic
changes sufficiently strong to affect body composition in late
childhood (16, 17). Indeed, babies from mothers receiving
antibiotics during the last gestational trimester presented an 84%
higher risk of obesity (16). Moreover, CS is associated with the
reduction in Bacteroidetes abundance and microbiota diversity in
the first 2 years of life. Systemic levels of CXCL10 and CXCL11
chemokines were also reduced in children born by CS (17).
Young adults born by CS have a higher risk for increased central
and peripheral adiposity than those born by vaginal delivery (18).
These associations are stronger in children whose mothers were
obese compared to children of non-obese mothers (19).

WHAT IS THE PARTICIPATION OF THE
INFLAMMATION IN THIS SCENARIO?

Previous studies clarified the crosstalk between the immune
system and microbiota in obesity (20). The IgA is produced
by intestinal B cells after interaction with T follicular helper
cells (TFH) and secreted into the gut lumen covering bacteria
membrane and reducing gut colonization (20, 21). Although
bacteria-IgA binding participates in hosting defense against
pathogens, IgA can also regulate the gene expression of
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some gut bacteria population and intestinal cells. It has been
proposed that IgA promotes colonization of a healthy microbiota
reducing dysbiosis (22). It was tested in MyD88−/− mice
that develop obesity faster than controls and are defective in
TFH and IgA (23). The expansion of WAT in MyD88−/− is
associated with the increase of Desulfovibrio and the loss of
Clostridia populations. When mice were treated with antibiotics
or replacement of Clostridia, the weight gain was reduced,
confirming a cause-effect interaction (20). It suggests that by
regulating IgA production, TFH cells maintain the intestinal
Clostridia population, reducing fatty acids (FA) absorption and
protecting the host against obesity.

Previous studies addressed the interaction of microbiota, and
pro-inflammatory markers (24) showed that Bifidobacterium,
Faecalibacterium, Ruminococcus, and Prevotella genus
abundances were inversely associated with blood levels of
CRP or pro-inflammatory cytokines (14, 25–29). Besides the
abundance of a specific genus, gut microbial diversity has also
been related to obesity. Individuals with low microbial diversity
presented higher blood leukocyte count and CRP level that
is related to higher triglyceridemia and lower high-density
lipoprotein (HDL) levels, insulin resistance and increased risk of
atherosclerosis-associated disorders (30).

The decrease in commensal bacteria levels and diversity
(dysbiosis) permit the establishment of foreign bacteria,
increasing the lipopolysaccharide (LPS) concentration in the gut
lumen (Figure 1). LPS can reach systemic circulation by crossing
the intestinal mucosa through altered tight junctional complex
or linked to dietary fat incorporated into chylomicrons. In the
plasma, LPS is transported bound to lipoproteins. Initially, LPS
is transported in chylomicrons and then distributed to the other
lipoproteins, mainly HDL (31). LPS increases the scavenger
receptor binding to lipoproteins, as well as the endocytoses
in endothelium and adipocytes. The expanded adipocytes
and activated macrophages internalize LPS-rich lipoproteins
(32), perpetuating the expansion and inflammation of the
WAT. Indeed, LPS triggers the innate immune response on
macrophages and adipocytes via TLR4 signaling, resulting in
nuclear factor-kappa B (NF-κB) release and pro-inflammatory
cytokine production (14, 33).

HOW CAN THE DIET FAVOR THE
OBESOGENIC MICROBIOTA?

Previous studies have demonstrated the effect of high-fat
diets (HFD) in increasing Firmicutes/Bacteroidetes ratio and in
inducing dysbiosis (34–40) (Figure 1). Not only the amount of
fat but also the type of FA may influence microbiota. Saturated
FA (SFA) promotes dysbiosis by increasing H2S-bacteria, which
results in the disruption of epithelial integrity by suppression of
the tight junction proteins (41). Comparing the effects of HFD
with different FAs, SFA quickly and persistently increased the
proportion of H2S-bacteria over time. When SFA was replaced
by ω6-polyunsaturated FAs (ω6-PUFA), the proportion of H2S-
bacteria remained stable, while replacing SFA for ω3-PUFA, the
proportion of H2S-bacteria was reduced. This result aggregates

beneficial effects to ω3-PUFA, a well-known systemic anti-
inflammatory agent.

HFD may also favor obesity not only by promoting dysbiosis
but directly by favoring the entry of bacterial components such
as LPS (42) (Figure 1). As mentioned before, the absorption
of dietary fat facilitates the absorption of LPS since both
are transported by chylomicron (43). In the WAT, LPS and
palmitic acid increase expression of chemokines and cytokines
such as MCP-1 and IL-1β, and inflammation-related enzymes
such cyclooxygenase-2, inducing macrophages infiltration and
adipocyte expansion. In the liver, palmitic acid also increases
the ceramide synthesis of CD36 and free-fatty-acid receptor-1
(FFA1/Gpr40) (41).

Protein-rich/carbohydrate-poor diet may also lead to
dysbiosis, changes in barrier integrity and inflammatory
activity. Unabsorbed proteins reach the colon, where microbiota
exchanges fermentation substrate from carbohydrates to
proteins, increasing colonic transit time and pH (41, 44).
Protein fermentation increases H2S, reactive oxygen
species and ammonia production and reduces butyrate
and Roseburia/Eubacterium abundance, suggesting a worse
microbiota profile (45–47). Nonetheless, microbial metabolites
from the proteolysis of the essential amino acid tryptophan
also influence and modulate host microbiota. Indole groups
bind aryl hydrocarbon receptor (AHR) that interfere with
several metabolic steps, activate the immune system and reduce
intestinal permeability (48).

The presence of non-digested carbohydrates in the colon
increases the short-chain FAs produced by microbiota
fermentation. These FAs can be absorbed and contribute to
the host energy input. In addition to the additional energy
absorption caused by short-chain FAs absorption, dysbiosis
decreases the expression of FIAF (a lipase lipoprotein inhibitor),
stimulating fat deposition in the WAT (33).

HOW ARE WE FIGHTING
OBESITY-RELATED DYSBIOSIS?

Changing in diet and physical activity are crucial points
in the treatment of obesity. Some studies suggest that
such changes can alter not only bodyweight but also the
microbiota in those individuals. The effects of physical
activity modifying microbiota composition and metabolism
have been studied, but the results are still controversial (49).
Previous studies (50, 51) observed in HFD-fed animals that
moderate and high-intensity exercise induced an abundance
of Bacteroidetes in the colon. Nonetheless, an abundance of
Firmicutes after physical exercise was also observed in animals
with and without diabetes compared to sedentary ones (52).
Thus, the influence of exercise on microbiota needs to be
carefully evaluated.

Some of the well-established approaches, such as adopting a
healthy dietary pattern (53–55), by reducing saturated fat and
increasing fiber and antioxidant compounds intake (56, 57) have
partially reverse dysbiosis and obesity in experimental studies.
Nonetheless, it seems not to be enough to control obesity
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epidemy. Furthermore, new insights using pre and probiotics and
fecal microbiota transplantation (FMT) have now been tested in
humans (Figure 1).

Akkermansia muciniphila, which is a mucin-degrading
bacterium that resides in the mucus layer, has been the most
studied, mainly in animal models (58, 59). Clinical studies
(60, 61) showed that, in overweight/obese individuals, the oral
supplementation of A. muciniphila reduced insulin resistance
and plasma total cholesterol and levels of blood markers for
liver dysfunction and inflammation. However, there was only
a modest effect on body weight and composition with A.
muciniphila supplementation.

Although FMT could be a rational strategy to treat
obesity-linked dysbiosis (62), few clinical studies have assessed
FMT in individuals with metabolic syndrome or obesity (63–67).
Results are until now disappointing, despite the improvement
in insulin sensitivity seen in two studies (66, 67), none of
them presented promising results in terms of weight loss
or reduction in the inflammatory profile. It is confirmed
by recent reviews (68, 69) reinforcing the need for studies
evaluating themechanisms by which FMT affect host metabolism
and its long-term effects. Moreover, the best preparation,
concentration and form of administration of FMT should
be defined.

In summary, the study of the complex network formed by
gut microbiota, obesity, and inflammation are only in its first
steps. The role of the dysbiosis in the genesis of obesity has
been progressively uncovered, and the infectious component
of this disease has gained more interest. However, up to date,
no intervention based on microbes was able to reduce body
weight effectively and persistently. Considering the relatively
well-established relationship between microbiota and obesity
in preclinical studies, additional efforts are necessary for the
development of clinical interventions that support themicrobiota
manipulation as a realistic alternative to combat obesity.
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