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ABSTRACT 

This work proposes a novel framework that enables one to compare distinct iterative procedures with known rates of 
convergence, in terms of the computational effort to be employed to reach some prescribed vicinity of the optimal solu- 
tion to a given problem of interest. An algorithm is introduced that decides between two competing algorithms, which 
algorithm makes the best use of the computational resources for some prescribed error. Several examples are presented 
that illustrate the trade-offs involved in such a choice and demonstrate that choosing an algorithm over another with a 
higher rate of convergence can be perfectly justifiable in terms of the overall computational effort. 
 
Keywords: Decision Analysis; Computational Effort; Numerical Analysis Optimization 

1. Introduction 

It is not automatic that the runner with the longest stride 
will win a marathon, although it can be ascertained that 
she will complete the distance with the fewest number of 
strides. The same analysis can be applied to numerical 
algorithms: it is certain that the algorithm with the faster 
convergence rate will take fewer steps to converge, but it 
does not necessarily follow that its convergence is the 
fastest. This happens because convergence rate is often 
defined in terms of the iteration counter. Hence, an 
analysis based solely on such a rate is equivalent to pick- 
ing as the marathon winner the runner with the longest 
stride. 

This paper is concerned with proposing new measures 
for algorithm efficiency based on the computational ef- 
fort. Such a measure can be more appropriate than the 
usual convergence rate with respect to the iteration coun- 
ter. It permits us to assess how efficiently an algorithm 
employs the computational resources at hand, while 
searching for a solution to a given problem. That, in turn, 
allows one to compare algorithms not in terms of how 
many steps they employ to reach a solution, but based on 
how much computational effort (time) they apply to 
reach the solution. Alternatively, one can compare algo- 
rithms based on their usage of limited available computa- 
tional effort, i.e. given a fixed amount of computational  

effort, one would wish to identify which algorithms get 
closer to the solution while applying at most the pre- 
scribed effort. In terms of our initial analogy, that would 
be equivalent to letting an athlete run for a fixed amount 
of time, declaring the winner as the athlete who covers 
more ground in that prescribed time. 

We stress that this paper strives to classify algorithms 
for a given specific application. Hence, the rationale is to 
compare competing algorithms that can be used to solve 
a given problem up to some prescribed error tolerance, 
from a given starting point, with a view to identifying the 
alternative that makes the best use of the computational 
resources available. One could equivalently state that the 
proposed approach is instance-based, i.e. it focuses on 
identifying the best algorithm for a specific instance of a 
given problem. That can be viewed as a complement to 
the theory of computational complexity [1-3], which at- 
tempts to establish bounds—typically worst case scena- 
rio bounds—for the convergence time for general classes 
of algorithms, typically based on the dimension of the 
solution domain. Such an approach can be described as 
algorithm based, since it strives to classify algorithms 
based on their performance bounds, and individual prob- 
lem instances may have very little to do with these 
bounds, see for example [4,8], and [1,27]. It is worth 
pointing out that, under the proposed approach, the com- 
putational effort of an algorithm is no longer determined 
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by its convergence rate. Rather, it is determined by the 
total number of elementary operations (Floating point 
operations—FLOP, for example) iteration times per the 
total number of iterations [5-7]. 

The idea of identifying iterative procedures that en- 
hance the efficiency of the search for the solution of a 
given problem is hardly new. Multigrid methods [8,9], in 
which a system is first discretized on a grid, following 
which the grid resolution is systematically refined, are 
commonly used in the numerical solution of partial dif- 
ferential equations [8,9]. The objective is to save compu- 
tational resources in the process of reaching a vicinity of 
the optimal solution. Heuristic procedures, such as ge- 
netic algorithms [10], also rely on an efficient use of the 
computational resources, aiming at getting within a vi- 
cinity of the optimal solution in reduced time. However, 
when advocating for a given method over another one, 
one has often to rely on extensive empirical data or do- 
main specific mathematics, e.g. [11]. The novel feature 
in this paper is that it proposes a general framework to 
compare distinct iterative procedures with known rates of 
convergence based on the overall computational effort 
prior to convergence. 

The main contributions of this paper are twofold. 
Firstly, considering that the convergence time of an algo- 
rithm is not based on its iteration count, but rather on the 
overall computational effort it employs, we propose a 
framework for algorithm comparison based on how much 
of the (limited) computational resources each algorithm 
applies to reach a desired precision. Secondly, given two 
algorithms starting from the same initial point, we pro- 
pose a routine that identifies which algorithm requires 
less computational effort to converge, for any given error 
tolerance. The proposed routine requires a previous 
knowledge of the properties of both algorithms: order of 
convergence and rate of convergence; as well as the ratio 
of the computational efforts per iteration of the algo- 
rithms under consideration. 

This approach addresses directly a trade-off commonly 
encountered in the design of iterative algorithms. A 
higher rate or order of convergence is usually achieved at 
the cost of an increased computation time per iteration. If 
we specify a desired tolerance  , we can expect the 
number of iterations required to achieve this tolerance to 
be smaller for a faster converging algorithm for all small 
enough  . If we instead adopt total computation time as 
a metric, the question becomes whether or not faster 
convergence with respect to iteration will always over- 
come the disadvantage of an increased computation time 
per iteration, promising greater efficiency for all small 
enough  . We show that this is not the case, that is, an 
algorithm may have both higher rate and higher order of 
convergence than an alternative and still require greater 
computation time to achieve tolerance   for all 0  , 

provided the computation effort per iteration exceeds that 
of the alternative by a large enough factor. 

This paper is organized as follows. Section 2 addresses 
the properties of iterative algorithms. Section 3 derives 
bounds on the number of iterations to reach a desired 
precision. Section 4 makes use of these bounds to derive 
a framework for algorithm comparison based on the 
overall computational effort, and shows that, under some 
circumstances, algorithms with lower order of conver- 
gence can always converge faster than higher converging 
ones, provided the computation time per iteration of the 
latter algorithm exceeds that of the alternative by a large 
enough factor. Numerical experiments that illustrate the 
proposed approach are presented in Section 5. Finally, 
Section 6 concludes the paper. 

2. Numerical Formulation 

This paper deals with numerical algorithms which take 
the form a convergent iterative sequence  

 1 , 1,2,k kV T V k              (1) 

given a starting element , where 0 0

 is an operator on a normed linear space 
V v V

:T V V
 , V , and V  is the solution domain. The objective 
is to converge to a fixed point , 
which provides the solution to a given problem of inter- 
est. 

  ,V T V V   V

When assessing how many evaluations of mapping  
in Equation (1) are necessary until we found ourselves 
within a prescribed vicinity of the fixed point 

T

V  , two 
important attributes stand out, namely the order of con- 
vergence and the convergence rate, which are defined 
below: 

Definition 1 (Order of Convergence) The algorithm 
converges with order  if  d

1lim ,k
dk

k

V V
M

V V









            (2) 

for some scalar M   , e.g. [12].  
Definition 2 (Convergence Rate) An algorithm is 

said to have convergence rate M , if M  satisfies 
Equation (2).  

If 1d   and 1M  , the algorithm is said to be line- 
arly convergent. Observe that both the order of conver- 
gence  and the convergence rate d M  are defined 
with respect to the iteration counter. 

Remark 1 Note that both order of convergence and 
convergence rate are indicative of how fast an algorithm 
converges to the solution in terms of the number of itera- 
tions. While they may be used to obtain an estimate of 
how many iterations are needed for the algorithm to 
converge, they are not sufficient to determine the con- 
vergence time, for the latter depends also on how much 
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time each iteration takes up to be completed. 
Typically, one lets Algorithm (1) run for a finite num- 

ber of iterations, until a prescribed vicinity of the solu- 
tion  is reached. Let V  , 0    be a prescribed 
error tolerance. We can define the total number of itera- 
tions needed for convergence as  

 
0

min : .k
k

k V V 


           (3) 

Let  represent the computational effort of 
iteration  of Algorithm (1). Then, the overall compu- 
tational effort of Algorithm (1) to attain a desired preci- 
sion 

, 0kg k 
k

  is defined as  

 
 

1

.
k

n
n

G





 g                (4) 

In the present analysis, we assume that the overall 
computational time to attain precision   is proportional 
to the overall computational effort G  . Hence, the 
following analysis can be solely based on the overall 
computational effort. We also stress that computational 
time and computational cost are used interchangeably in 
this paper. 

Let  

, 0,1,k kV V k             (5) 

be a sequence of iteration errors with respect to the solu- 
tion. Without loss of generality, we employ a normalized 
error sequence  

0

, 0,1,k
k k




           (6) 

Note that, regardless of the value of 0 , 0V 1  . That 
greatly simplifies our subsequent analysis. Moreover, 

k  can be seen as the ratio of improvement at iteration 
 with respect to the initial solution. For the sake of 

simplicity, we assume that  
k

1 , 0.k
d

k

V V
M k

V V

 
  


 

That can be accomplished by having an arbitrarily 
high index  relabeled as zero. Hence, we have  k

1 , 0,d
k kM k     

which implies  
1

1 0,d
k k M d  
  M M           (7) 

Observe that a sufficient condition for the convergence 
of Algorithm (1) is .   1M

Remark 2 We note that , defined in Equation (7), 
is a renormalization of the convergence rate that takes 
into account the initial error 0

M

 , defined in (5). Such a 
renormalization is intended to simplify the subsequent 
analysis. Moreover, it enables us to assess the perfor- 

mance of the algorithm at iteration  by evaluating the 
attained relative improvement with respect to the initial 
solution 

k

k , as defined in (7). 

On the Definition of Computational Effort 
and Its Relation with the Computation Time 

It must be acknowledged that the actual computation 
time of an algorithm does depend on the platform run- 
ning the algorithm. Indeed, complexity theory acknow- 
ledges this issue and typically addresses it in two distinct 
ways:  
 Assuming that the analysis is carried on for a single 

platform, see for example [4].  
 By defining computational complexity (effort) in 

terms of elementary operations performed by the al- 
gorithm, e.g. [13].  

In this text we assume that the computational effort is 
defined in terms of elementary operations. We also as- 
sume that the elementary operations are defined in such a 
way that does not depend on the platform. Additionally, 
the overall computational time (cost) is assumed to be 
proportional to the overall computational effort, with the 
platform determining only what the constant of propor- 
tionality is. 

The definition of elementary operation is left to the 
user. Since our analysis is focused on the problem, the 
function  G   could be tailor-made for the problem. 
Or it could, alternatively, be a general function, such as a 
counter of floating point operations. 

3. An Upper Bound on the Iteration Counter 
Prior to Convergence 

In this paper, we represent an iterative algorithm of the 
form in (1) by the pair  ,M d . Hence,  ,A M d  
describes a convergence rate M  with respect to the 
iteration count, with an iterative algorithm of order . d

We start this section with an upper bound on the error 
achieved by an iterative Algorithm  , A M d , of the 
form in (1), formalized in Theorem 1 below.  

Theorem 1 Let ,k k 1  , be the sequence in (6). Then  
1

,


1

k
i

i
d

k 


M              (8) 

where  is the quantity defined in (7).  M
Proof. It follows from (7) that Equation (8) holds for 

1k  . Assume it also holds for . Then, Equation (2) 
implies  

k  n

1
d

n n  M  

1
d

 
 
 
 

1
1

n
i

i
d

n






M M  

1
1

1

n
i

i
d

n 





M  
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1
1

1
1

n
i

i
d

n
 





M  

Hence, Equation (8) also holds for  and that 
completes the proof.  

1n 

Let    be a prescribed error and assume . 
Suppose also that after  of iterations we have  

2d 
n

1

1 .

n
i

i
d

n 





 M  

The expression above yields:  

 1

1

log log
n

i

i

d 



 M MM  

 1
log

1

nd

d



 M  

 1 1lognd d   M  

   1log log logd dn d    M  

If , Equation (8) implies: 1d 
n M  

 .logn  M  

Consequently, an appropriate bound  k   on the 
number of iterations of Algorithm A  to reach a tole- 
rance   is  

   
, 1log

1 ,log logd

d
k

d






 
 

M

M 2,
    (9) 

which we refer to as the iteration cost. 

4. Algorithm Comparison Based on the 
Overall Computational Effort 

For the analysis in this section, we assume that the com- 
putational effort of Algorithm (1) does not change with 
the iteration counter, i.e. , 1kg g k  


. In the analysis 

that follows, we use k  , defined in (9), as an estimate 
for the quantity defined in (3), which indicates the num- 
ber of iterations required for a given Algorithm 

  , A M d  to reach a prescribed normalized error  . 
The objective is to assess the efficiency of the algorithm 
based on the overall computational effort prior to reach- 
ing the prescribed error  . Such an effort is defined as  

       
, 1log

1 ,log logd

d
E A G gk g

d


 

 2,

    

M

M 

(10) 

where g  is the per iteration effort (PIE): the computa- 
tional effort of a single iteration of Algorithm A , and 

 is the order of convergence of d A , and function 
 is defined in (4). :G  

Now, suppose we have an alternative algorithm  

 ,A M d   , with PIE . Then, in order to choose the 
best algorithm for a given problem, one can seek an in- 
terval 



I  for values of   that yield  

   .E A E A               (11) 

If both algorithms have convergence orders higher 
than 1  , 1d d   , Equation (11) implies  

     1 1log log log logd dg g    M M  

     1 1log log log logd dg g     M M  

  
  

1 log log
.

1 log log

d

d




 





M

M

 

Hence,  

 
  
  

1 log log

1 log log

d

d


 

 





M

M

        (12) 

is a threshold that indicates a situation when both algo- 
rithms are equivalent in terms of computational cost for a 
prescribed error  . Whenever g g  , algorithm A  
is more economical in terms of computational effort. 
Otherwise, A  is the more efficient algorithm to reach 
the prescribed error. 

When both  ,1A M  and  are linearly 
convergent, the threshold 

 ,1A M  
  becomes:  

  log log
.

loglog


 




 M

M

M

M
       (13) 

Observe that, in such case, the threshold is indepen- 
dent of the tolerance, but it does depend on the initial 
solution through , defined in (7). If only M  ,1A M  
is linear, the threshold becomes  

    
log

.
1 log logd


 

 




M

M

       (14) 

With the results above, one can define a general proce- 
dure for selecting between any two competing algorithms 

 ,A M d  and  ,A M d  , the one with the fastest 
convergence with respect to the overall computational 
effort. Such a procedure is centered on the per iteration 
effort ratio  

,
g

g



                (15) 

with g  and g  denoting, respectively the PIE of Al- 
gorithms A  and A . The procedure is summarized in 
Algorithm 1 below.  

Algorithm 1 (Algorithm Selection Procedure) 
1) Initialize  ,A M d  and  , A M d   , g  and 

g .  
2) Choose an appropriate error 0  .  
3) Evaluate  , by using Equation (15).  
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4) Determine     by choosing the appropriate ex- 
pression from Equation (12)-(14).  

5) Define .    ,I   
6) If I  , select Algorithm A  and terminate.  
7) Select Algorithm A  and terminate.  
In the following sections, we present some experi- 

ments which illustrate the tradeoffs for choosing from 
two iterative algorithms for solving a given problem. The 
experiments illustrate the thresholds for per iteration ra- 
tios and demonstrate the existence of situations for which 
the choice of a lower convergence algorithm is more effi- 
cient in terms of computational effort. 

4.1. A Perspective on the Proposed Approach 

We argue that the proposed approach to selecting algo- 
rithms for problem solving is instance-based in the sense 
that, given a problem and an initial solution, and fixed a 
desired tolerance, it guides the choice of which algorithm 
to apply. It enables us to select a priori which of the two 
alternatives converges employing less computational 
effort. So far as we know, no equivalent formulation has 
been introduced in the literature, which would be directly 
comparable. 

A related approach that could be contrasted with the 
present formulation is complexity theory. However, com- 
plexity theory is typically centered on the algorithms, 
often providing worst-case bounds on the convergence 
time of algorithms for classes of problems. Such bounds 
can have very little to do with the particular instance of 
interest [4,8]. Moreover, the responses obtained would be 
of different nature: complexity theory would identify, for 
a given problem, which of two algorithms has a better 
performance in a worst-case scenario. Hence, the re- 
sponse would be static and a single algorithm would be 
identified. The proposed approach, on the other hand, 
could identify different algorithms as the best alternative 
for different problem instances. In fact, an example is 
presented in the next section where two different prob- 
lem instances yield two different responses. Such an an- 
swer would not be possible within a complexity theory 
framework. 

4.2. Asymptotic Comparison of Algorithms 

Suppose A  and A  are two linearly convergent algo- 
rithms. Note that the ratio     in Equation (13) does 
not depend on  . Thus, even if A  has the theoretic- 
cally faster convergence rate, if it also has a PIE g  
sufficiently larger than that applicable to A , it will be 
the inferior choice for all tolerance values  . In this 
section we consider this type of comparison for arbitrary 
order of convergence . d

A common intuiton is that an algorithm with the better 
rate or order of convergence will eventually outperform 

an alternative, in the sense that the computation time will 
be smaller for all small enough  . Accordingly, we say 
that g  overtakes A  if for any two PIEs g , g  
there exists 0  such that    gkg k     for all 

0  , where  k  ,  k   are the respective itera- 
tion costs. If neither algorithm overtakes the other, we 
say they are computationally equivalent. 

Interestingly, this relation can be resolved by consider- 
ing the order of convergence  alone. To see this, we 
first note that the question reduces analytically to an 
evaluation of the the limit 

d

 0lim   , where 
     k k     , since if     then A  over- 

takes A , while if 0     then A  and A  are 
computationally equivalent. We next state the main re- 
sult. 

Theorem 2 Let  ,A M d  and  ,A M d 
1d 
  be 

two algorithms. Then if , or if  and 1d d 
1d    then A  and A  are computationally equivalent. 

Conversely, if 1d   and  then 1d   A  overtakes 
A .  

Proof. As remarked above, we proceed by evaluating 
 0lim   . The case of  follows di- 

rectly from Equation (13). Then suppose 
1d d  

,d d 1  . The 
derivative of  k   may be evaluated as 

      d
1

d d n ln  


 lk  . Using L’Hôpital’s rule 
we obtain  

   
   

 
 0

ln ln ln
lim ,

ln ln ln

d d

d d

 


 

 
   

which is a positive finite constant, thus the theorem holds 
for the case ,d d 1  . Finally, suppose 1d   and 

1d   . Then we similarly argue that  

   
 0

ln ln
lim ,

ln

d


 





  

M
 

so that A  overtakes A .  

5. Numerical Examples 

In order to grasp the meaning of the proposed analysis, a 
series of numerical experiments are presented in this sec- 
tion, which make comparisons between an incumbent 
algorithm  ,A M d  with PIE g  and a challenging 
algorithm  ,A M d   , with PIE g . The experiments 
depict a curve of threshold     values, as defined in 
Equations (12)-(14), for a prescribed range o conver- 
gence rates M  , for fixed values of  and dM  , d  . 
Such a curve is here called the effort ratio frontier. We 
recall that the )(  represents the per iteration effort 
ratio for which both A  and A  are equivalent in terms 
of the overall computational effort. For our experiments, 
we apply an initial point with 0 1   in (6), which im- 
plies M M  in (7), for each considered algorithm. 

Figure 1 comprises the effort ratio frontier for linearly  
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Figure 1. Effort ratio frontier,  A  0.8,1 , d d  1 . 

 
convergent algorithms  and . It 
is worth mentioning that, since both algorithms are linear, 
Equation (14) implies that the threshold 

0.8,1A    ,1A M 

    is inde- 
pendent of the prescribed error  . As a result, the fron- 
tier in Figure 1 is valid for all possible values of 

. As one can infer from Algorithm 1, the 
shadowed area below the frontier indicates the values of 
per iteration effort ratio 

 0,1 

   for which Algorithm A  
is more efficient. For values of   outside of this area, 
A  is a better choice. As an illustrative example, let us 

fix . For this value, we have , 
which means that 

0.7M     1.5 
A  is a better choice whenever 

1.5g g   and A  is a better choice whenever 
1.5g g  . 

In the second experiment, we wish to evaluate the ef- 
fect of the convergence rate on the behavior of the effort 
ratio frontier. To this end, we compare two linearly con- 
vergent algorithms  and , for 
varying 

 ,1A M   ,1A M 
M  , while presenting a series of frontiers, for 

selected values of rate M . The results are depicted in 
Figure 2. One can notice that, as the convergence rate 
increases, i.e. Algorithm  becomes slower, 
the value of the threshold 

 ,1A M
  


 increases. For example, 

 is preferable to  if  0.6A  
.6



,1  ,1A M 
 , if 0

 1.5 , if 0.7

 2.2 , if 0.8

 4.9 , if 0.9.

g g M

g g M

g g M

g g M

  
     
     
     

 

The third experiment is aimed at providing some in- 
sight on the influence of the order of convergence on the 
effort ratio frontier. Figure 3 conveys the frontier for an 
incumbent algorithm  and a challenging 
algorithm , for a fixed . Note that 

 for . That means that Algorithm  

0.9,3A 

37

 , 2A M 
0.M  

2010 
  1  
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Figure 2. Behavior of effort ratio frontier, d d  1 . 
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Figure 3. Effort ratio frontier,  A  0.9,3 , d  2 . 

 
A  is equivalent in terms of overall computation effort to 

a given  0.37,2A  , with the same effort per iteration. 
Moreover, any algorithm , with  , 2 : 0.27A M M   
g g  , is more efficient than A  for the selected error 
 . This illustrates that the intuition that a higher order 
algorithm  d d 

0

 is always better than its lower order 
counterpart can be misleading. Furthermore, by Theorem 
2, any two algorithms of order 2 and 3 are computation- 
ally equivalent, and it is therefore possible for the order 2 
algorithm to have strictly smaller computation time for 
all   . 

Our forth experiment generalizes the previous one and 
derives the effort ratio frontier for a challenging algo- 
rithm  , 2A M  , with varying M 

 9, ,A d
, competing 

against incumbent algorithms , 
for 

0.  2,3,4,5d 
2010  . The results are depicted in Figure 4. The 

curve for a given order of convergence , illu-  2, ,5d 
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Figure 4. Order of convergence, , M  0.9 d  2 . 

 
strates the thresholds     below which the choice of 
A  is more advantageous. The collection of curves 

comprising Figure 4 illustrate that a second order algo- 
rithm can outperform many higher order algorithms for 
appropriate values of per iteration effort. As an example, 
consider an algorithm , with  , 2 , 0.9A M M   

0.4g g  . Observe that an A  thus defined outper- 
forms every other depicted algorithm, even the fifth-or- 
der algorithm .  0.9,5A 

The fifth experiment, depicted in Figure 5, replicates 
the previous experiment for varying values of error 

0 
10 

. The thicker-red line is the frontier for a precision 
. The results show that lower order algorithms 

tend to be more attractive for higher values of 

50

 . How- 
ever, even for very low values of  , lower order algo- 
rithms can remain appealing. Note in Figure 5 that the 
region below the threshold     does not vanish as 

, even when 5010  A M , 2 
0.


A

 is competing 
against a fifth order algorithm . The set of 
curves for  show, for example, that any 
algorithm  outperforms an incumbent algo- 
rithm , whenever 

 95


0.6

,5
0.95,5A 
 0.7,2A 

 0.95,5A  g g  , for any pre- 
cision   up to the order of . 5010

In the last experiment, we randomly generated a ma- 
trix A  and a vector  to comprise a linear system of 
the form , with 2395 equations and unknowns. 
Two well known algorithms were employed to solve this 
system: Gauss-Seidel and Conjugate Gradient. For both 
algorithms, the convergence rate was estimated as  

b
Ax b

1

1
0

, where .
n

n
i i ix x

 
  

 
  

 
 

Here,  is the number of iterations up to conver- 
gence. The computational effort per iteration of each 
algorithm is the total number of sums and multiplications. 

Figure 6 illustrates the results: the red-solid line and the 
blue-dashed line are the effort ratio frontiers for two dis- 
tinct errors: 

n

510   and , respectively. For 
each choice of error, the Conjugate Gradient Algorithm is 
the best choice for effort ratios 

210 

  above the respective 
frontier, whereas the Gauss-Seidel Algorithm performs 
better for effort ratios below the frontier. The blue-round 
marker below the frontier indicates that the Gauss-Seidel 
Algorithm  10.51,A   outperforms the Conjugate 
Gradient Algorithm  0.31,1A  , for 210  . The 
red-square marker indicates that for a higher precision, 

510  , the Conjugate Gradient Algorithm 
 0.27,A  1  outdoes the Gauss-Seidel Algorithm 
 0.59A  ,1 . 

6. Concluding Remarks 

This paper introduces a novel approach for comparing 
algorithms in terms of their overall computational effort, 
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Figure 5. Influence of tolerance error on the boundary 
iteration effort,  0.95 . 
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Figure 6. Algorithm comparison for a linear system exam- 
ple. 
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rather than in terms of the convergence-order, conver- 
gence-rate pair. A threshold is derived for the ratio be- 
tween the per-iteration effort of two competing algo- 
rithms that indicate which of the competing algorithm 
makes the more efficient use of the computational re- 
sources available. In addition, an algorithm is proposed 
for choosing between two competing algorithms under 
the proposed setting, which makes use of this threshold. 

The derived results are applied in a few examples that 
provide an insight on the compromises involved in the 
proposed approach. The experiments illustrate that a low- 
er order algorithm can be more advantageous in terms of 
the overall computational effort to reach a prescribed 
error than a higher order counterpart. In particular, even 
as we let the prescribed error approach the order of 

, using a lower order algorithm can be more advan- 
tageous under suitable conditions. This demonstrates that 
an analysis of algorithms based only on their order and 
rate of convergence can be very misleading. By applying 
an analysis based on the computational effort, on the 
other hand, one can identify the algorithm that makes the 
best use of the (limited) computational resources made 
available. 

5010
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