

### UNIVERSIDADE FEDERAL DO CEARÁ

## **CENTRO DE CIÊNCIAS**

## PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

# SEMI-SÍNTESE E AVALIAÇÃO DA ATIVIDADE CITOTÓXICA E ANTIMICROBIANA DE DERIVADOS DA ANNONALIDA, DITERPENO ISOLADO DE Humirianthera ampla.

AKENATON ONASSIS CARDOSO VIANA GOMES

FORTALEZA

2014

#### AKENATON ONASSIS CARDOSO VIANA GOMES

# SEMÍ-SÍNTESE E AVALIAÇÃO DA ATIVIDADE CITOTÓXICA E ANTIMICROBIANA DE DERIVADOS DA ANNONALIDA, DITERPENO ISOLADO DE Humirianthera ampla.

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Química da Universidade Federal do Ceará como requisito para a obtenção do Título de Mestre em Química.

Área de concentração: Química Orgânica.

Orientadora: Profa. Dra. Maria da Conceição Ferreira Oliveira

Co-orientador: Dr. Ricardo de Araújo Marques

### FORTALEZA

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca de Ciências e Tecnologia

G612s Gomes, Akenaton Onassis Cardoso Viana.

Semi-síntese e avaliação da atividade citotóxica e antimicrobiana de derivados da annonalida, diterpeno isolado de *Humirianthera ampla* / Akenaton Onassis Cardoso Viana Gomes. – 2014. 119 f. : il.

Dissertação (Mestrado em Química) – Universidade Federal do Ceará, Centro de Ciências, Departamento de Química Orgânica e Inorgânica, Programa de Pós-Graduação em Química, Fortaleza, 2014.

Àrea de Concentração: Química Orgânica. Orientação: Profa. Dra. Maria da Conceição Ferreira Oliveira. Coorientação: Dr. Ricardo de Araújo Marques.

1. Anti-infecciosos. 2. Diterpenos. 3. Humirianthera ampla. 4. Agentes antineoplásicos. I. Título.

CDD 540

Esta Dissertação foi aprovada como parte dos requisitos necessários à obtenção do Grau de Mestre em Química, área de concentração Química Orgânica, outorgada pela Universidade Federal do Ceará, em cuja Biblioteca de Ciências e Tecnologia/UFC encontra-se à disposição dos interessados.

Akenaton Onassis Cardoso Viana Gomes

122

### DISSERTAÇÃO APROVADA EM: 18/07/2014.

#### EXAMINADORES:

Profa. Dra. Maria da Conceição Ferreira de Oliveira Universidade Federal do Ceará – UFC

Prof. Dr. Edson'Rodrigues Filho Universidade Federal de São Carlos - UFSCar

Prof. Dr. Lourivaldo da Silva Santos Universidade Federal do Pará – UFPA

#### AGRADECIMENTOS

Agradeço aos meus pais Antonio Gomes Rodrigues e Valdiana Cardoso Viana Gomes por todo carinho, apoio e incentivo. Ao meu irmão Orleans pelo carinho e amizade.

À minha segunda família Dona Irene, Renata Ingrid e Renato por todo carinho, por participarem diretamente da minha vida e por darem todo o apoio que precisei.

À Professora Dr<sup>a</sup>. Maria da Conceição Ferreira Oliveira pela contribuição com seus conhecimentos e por estes anos de convivência tão agradável.

Ao Dr. Ricardo de Araújo Marques por estar presente em todas as etapas do trabalho, pela grande amizade, pela contribuição com seus conhecimentos e discussões que muito contribuíram para meu crescimento.

Ao Professor Dr. Marcos Carlos de Mattos por sempre estar disposto a ajudar e pelas contribuições ao longo destes dois anos de convivência.

À Professora Dr<sup>a</sup> Cláudia do Ó Pessoa e a doutoranda Fátima de Cássia Evangelista de Oliveira pela realização dos ensaios de atividade citotóxicos.

Ao Professor Dr. Hélio Vitoriano Nobre Júnior e ao mestrando João Batista de Andrade Neto pela realização dos ensaios de atividade antimicrobiana e pela amizade.

Aos examinadores, pela participação na banca de mestrado e por contribuírem para essa dissertação.

Aos amigos de laboratório: Ricardo, Régis, Gledson, Rayane, Fátima, Victor, Thiago, Carol, Danny, Manu, Leandro, Maria, Fernando, Aquino, Bruna e Reinaldo pelo convívio e por contribuírem no meu desenvolvimento profissional.

Aos meus amigos Diego, Moacir, Celso, Rafael, Gabi, Gleyciara e Dejane pelo convívio, carinho e companheirismo.

Aos meus amigos Silvio, Edinho, Flávio, Tiago, Tati, Maria Alice, Sr. Ricardo, Dona Antonia, Anderson, Christian, Gleydson, Marcelo, Cirlene, Luquinhas, Very, Clara, Lucineide e Dona Célia que tanto torcem para meu desenvolvimento pessoal e profissional, e por transmitirem alegria no momento que precisei.

Ao Programa de Pós-Graduação em Química e a Universidade Federal do Ceará, pela oportunidade de realização deste trabalho.

Ao CNPq pela bolsa concedida.

Enfim, a todos que de alguma forma contribuíram para realização deste trabalho, MUITO OBRIGADO!

#### RESUMO

O diterpeno pimarano annonalida (11) foi isolado das raízes de *Humirianthera ampla* e convertido quimicamente nos derivados ANN-ACET (79), ANN-PROP (80), ANN-HEXA (81), ANN-DECA (82) e ANN-Cl (83). Destes, os compostos 80-83 são inéditos na literatura. Os produtos naturais 16 e 17, e os derivados semi-sintéticos de 11 foram testados em ensaios de atividade citotóxica contra as linhagens celulares tumorais humanas OVCAR-8 (ovário), HCT-166 (cólon), HL-60 (leucemia) e SF-295 (glioblastoma), e atividade antimicrobiana contra cepas de *Escherichia coli* (ATCC 10536), *Pseudomonas aeruginosa* (ATCC 1026), *Staphylococcus aureus* (ATCC 6538), *Bacillus subtilis* (ATCC 6633) e *Candida albicans* (ATCC 10231). A annonalida (11) apresentou elevada citotóxica que 11 contra duas das quatro linhagens testadas (0,32 µg/mL contra HL-60 e 2,56 µg/mL contra OVCAR-8). Nos ensaios de atividade antimicrobiana, os compostos não apresentaram halo de inibição contra bactérias e FICI=1,5 (não apresentando sinergismo com fluconazol) contra fungos resistentes.

**Palavras chave**: Annonalida, diterpenos pimaranos, atividade citotóxica, atividade antimicrobiana, *Humirianthera ampla*.

#### ABSTRACT

The pimarane diterpeno annonalida (11) was isolated from roots of *Humirianthera ampla* and chemically converted into derivatives ANN-ACET (79), ANN-PROP (80), ANN-HEXA (81), ANN-DECA (82) e ANN-Cl (83). Among them, compounds 80-83 are new in the literature. Natural products 16 and 17, and the semisynthetic derivatives 11 were tested in cytotoxicity assays against the human tumor cell lines OVCAR-8 (ovarian), HCT-116 (colon), HL-60 (leukemia) and SF-295 (glioblastoma), and antimicrobial activity against strains of *Escherichia coli* (ATCC 10536), *Pseudomonas aeruginosa* (ATCC 1026), *Staphylococcus aureus* (ATCC 6538), *Bacillus subtilis* (ATCC 6633) and *Candida albicans* (ATCC 10231). Annonalida (11) showed high cytotoxicity against SF-295 (IC<sub>50</sub> 0.09 mg/mL), and compound 80 was more active than 11 against two of the four strains tested (0.32  $\mu$ g/mL against HL-60 and 2.56  $\mu$ g/mL against bacteria, and FICI=1.5 (no synergism with fluconazole) against resistant fungi.

**Keywords**: Annonalide, pimamare diterpenoids, cytotoxic activity, antimicrobial activity, *Humirianthera ampla*.

## LISTA DE ILUSTRAÇÕES

| Figura 1: Representação estrutural de agentes antineoplásicos derivados de plan                                   | tas, |
|-------------------------------------------------------------------------------------------------------------------|------|
| utilizados clinicamente                                                                                           | 2    |
| Figura 2: Representação estrutural de vindesina (8), vinorelbina (9) e vinflunina (10)                            | 3    |
| Figura 3: Representação estrutural da annonalida (11).                                                            | 4    |
| Figura 4: Representação estrutural do esqueleto pimarano e análogos estruturais                                   | 5    |
| Figura 5: Representação estrutural do humirianthol 16 e acrenol 17                                                | 6    |
| Figura 6: Representação estrutural de 18, 20, 27 e seus derivados semi-sintéticos 28-30.                          | 8    |
| Figura 7: Representação estrutural dos compostos 31-37.                                                           | 9    |
| Figura 8: Representação estrutural dos compostos 38-43.                                                           | 9    |
| Figura 9: Representação estrutural dos compostos 44-47.                                                           | . 10 |
| Figura 10: Representação estrutural dos compostos 48-50.                                                          | . 10 |
| Figura 11: Representação estrutural do composto 51                                                                | .11  |
| Figura 12: Representação estrutural dos compostos 52-55                                                           | .11  |
| Figura 13: Representação estrutural dos compostos 56-61.                                                          | . 12 |
| Figura 14: Representação estrutural dos compostos 62-63.                                                          | . 12 |
| Figura 15: Representação estrutural dos compostos 64-69.                                                          | . 13 |
| Figura 16: Representação estrutural dos compostos 70                                                              | . 13 |
| Figura 17: Representação estrutural dos compostos 71-78.                                                          | . 14 |
| Figura 18: Representação estrutural dos derivados semi-sintéticos da annonalida 11                                | . 19 |
| Figura 19: Representação do experimento de atividade antifúngica, contra cepas                                    | de   |
| Candida                                                                                                           | . 22 |
| Figura 20: Determinação do Índice de Combinação Inibitória Fracionária                                            | . 23 |
| Figura 21: Espectro de massas de alta resolução da annonalida (11).                                               | . 26 |
| Figura 22: Espectro de absorção na região do infravermelho da annonalida (11)                                     | . 27 |
| <b>Figura 23</b> : Espectro de RMN <sup>1</sup> H da annonalida ( $C_5D_5N/500MHz$ )                              | . 29 |
| Figura 24: Expansão 1 do espectro de RMN <sup>1</sup> H da annonalida (C <sub>5</sub> D <sub>5</sub> N/500MHz)    | . 30 |
| Figura 25: Expansão 2 do espectro de RMN <sup>1</sup> H da annonalida (C <sub>5</sub> D <sub>5</sub> N/500MHz)    | . 31 |
| Figura 26: Expansão 3 do espectro de RMN <sup>1</sup> H da annonalida (C <sub>5</sub> D <sub>5</sub> N/500MHz)    | . 32 |
| <b>Figura 27</b> : Espectro de RMN de ${}^{13}$ C-BB da annonalida (C <sub>5</sub> D <sub>5</sub> N/125MHz)       | . 33 |
| <b>Figura 28:</b> Espectro de RMN de ${}^{13}$ C-DEPT135° da annonalida (C <sub>5</sub> D <sub>5</sub> N/125 MHz) | . 34 |
| Figura 29: Espectro de massas de alta resolução de ANN-ACET (79)                                                  | . 42 |
| Figura 30: Espectro de absorção na região do infravermelho de ANN-ACET (79)                                       | .43  |
| Figura 31: Espectro de RMN <sup>1</sup> H da ANN-ACET (CDCl <sub>3</sub> /300MHz).                                | .45  |
| Figura 32: Espectro de RMN de <sup>13</sup> C-BB da ANN-ACET (CDCl <sub>3</sub> /75 MHz).                         | . 46 |
| Figura 33: Espectro de RMN de <sup>13</sup> C-DEPT135° da ANN-ACET (CDCl <sub>3</sub> /75 MHz)                    | .47  |
| Figura 34: Espectro de RMN 2-D HMBC <sup>1</sup> H- <sup>13</sup> C de ANN-ACET (CDCl <sub>3</sub> /75 MHz)       | . 48 |
| Figura 35: Espectro de massas de alta resolução de ANN-PROP (80)                                                  | . 50 |
| Figura 36: Espectro de absorção na região do infravermelho de ANN-PROP (80)                                       | . 51 |
| Figura 37: Espectro de RMN <sup>1</sup> H de ANN-PROP (CDCl <sub>3</sub> /300 MHz)                                | . 53 |
| Figura 38: Espectro de RMN <sup>13</sup> C-BB de ANN-PROP (CDCl <sub>3</sub> /75 MHz).                            | . 54 |
| Figura 39: Expansão do espectro de RMN <sup>13</sup> C-BB de ANN-PROP (CDCl <sub>3</sub> /75 MHz)                 | . 55 |

| Figura 40: Espectro de RMN <sup>13</sup> C-DEPT 135° de ANN-PROP (CDCl <sub>3</sub> /75 MHz)56                         |
|------------------------------------------------------------------------------------------------------------------------|
| Figura 41: Expansão doespectro de RMN <sup>13</sup> C-DEPT 135° de ANN-PROP (CDCl <sub>3</sub> /75                     |
| MHz)                                                                                                                   |
| Figura 42: Espectro de RMN 2-D HMBC <sup>1</sup> H- <sup>13</sup> C de ANN-PROP (CDCl <sub>3</sub> /75 MHz) 58         |
| Figura 43: Expansão do espectro de RMN 2-D HMBC <sup>1</sup> H- <sup>13</sup> C de ANN-PROP (CDCl <sub>3</sub> /75     |
| MHz)                                                                                                                   |
| Figura 44: Espectro de massas de alta resolução de ANN-HEXA (81)61                                                     |
| Figura 45: Espectro de absorção na região do infravermelho de ANN-HEXA (81) 62                                         |
| Figura 46: Espectro de RMN <sup>1</sup> H de ANN-HEXA (CDCl <sub>3</sub> /300 MHz)64                                   |
| Figura 47: Expansão 1 do espectro de RMN <sup>1</sup> H de ANN-HEXA (CDCl <sub>3</sub> /300 MHz)65                     |
| Figura 48: Espectro de RMN <sup>13</sup> C-BB de ANN-HEXA (CDCl <sub>3</sub> /75 MHz)66                                |
| Figura 49: Expansão do espectro de RMN <sup>13</sup> C-BB de ANN-HEXA (CDCl <sub>3</sub> /75 MHz)67                    |
| Figura 50: Espectro de RMN <sup>13</sup> C-DEPT 135° de ANN-HEXA (CDCl <sub>3</sub> /75 MHz)68                         |
| Figura 51: Expansão do espectro de RMN <sup>13</sup> C-DEPT 135° de ANN-HEXA (CDCl <sub>3</sub> /75                    |
| MHz)                                                                                                                   |
| <b>Figura 52</b> : Espectro de RMN 2-D HMBC <sup>1</sup> H- <sup>13</sup> C de ANN-HEXA (CDCl <sub>3</sub> /75 MHz) 70 |
| Figura 53: Espectro de massas da ANN-DECA (82)72                                                                       |
| Figura 54: Espectro de absorção na região do infravermelho de ANN-DECA (82)73                                          |
| Figura 55: Espectro de RMN <sup>1</sup> H de ANN-DECA (CDCl <sub>3</sub> /300 MHz)75                                   |
| Figura 56: Espectro de RMN <sup>13</sup> C-BB de ANN-DECA (CDCl <sub>3</sub> /75 MHz)                                  |
| Figura 57: Expansão do espectro de RMN <sup>13</sup> C-BB de ANN-DECA (CDCl <sub>3</sub> /75 MHz)77                    |
| Figura 58: Espectro de RMN <sup>13</sup> C-DEPT 135° de ANN-DECA (CDCl <sub>3</sub> /75 MHz)78                         |
| Figura 59: Expansão do espectro de RMN <sup>13</sup> C-DEPT 135° de ANN-DECA (CDCl <sub>3</sub> /75                    |
| MHz)79                                                                                                                 |
| Figura 60: Espectro de RMN 2-D HMBC <sup>1</sup> H- <sup>13</sup> C de ANN-DECA (CDCl <sub>3</sub> /75 MHz) 80         |
| Figura 61: Espectro de massas de alta resolução de ANN-Cl (83)82                                                       |
| Figura 62: Espectro de absorção na região do infravermelho de ANN-Cl (83)83                                            |
| Figura 63: Espectro de RMN <sup>1</sup> H de ANN-Cl (CDCl <sub>3</sub> , 300 MHz)85                                    |
| Figura 64: Espectro de RMN <sup>13</sup> C-BB de ANN-Cl (CDCl <sub>3</sub> , 75 MHz)                                   |
| Figura 65: Espectro de RMN <sup>13</sup> C-DEPT 135° de ANN-Cl (CDCl <sub>3</sub> , 75 MHz)87                          |

#### LISTA DE TABELAS

Tabela 1: Derivados semi-sintéticos da vimblastina (1) em uso clínico no tratamento do **Tabela 2**: Dados de RMN de<sup>1</sup>H e <sup>13</sup>C (C<sub>5</sub>D<sub>5</sub>N/300-75 MHz) para o diterpeno annonalida Tabela 3: Dados das reações de acilação da annonalida (11) para formação dos derivados **Tabela 4**: Dados espectrais de RMN <sup>1</sup>H e <sup>13</sup>C do Humirianthol (C<sub>5</sub>D<sub>5</sub>N, 500/125 MHz). Comparação com dados da literatura, DMSO-d<sub>6</sub> a 100 MHz (GRAEBNER, 2000)......24 **Tabela 5**: Dados espectrais de RMN <sup>1</sup>H e <sup>13</sup>C do Acrenol ( $C_5D_5N$ , 500/125 MHz). Comparação com dados da literatura, DMSO-d<sub>6</sub> a 100 MHz (GRAEBNER, 2000)......25 **Tabela 6**: Dados espectrais de RMN <sup>1</sup>H e <sup>13</sup>C de annonalida ( $C_5D_5N$ , 500/125 MHz). Comparação com dados da literatura, C<sub>5</sub>D<sub>5</sub>N a 300/75 MHz (MARQUES, 2007)......35 **Tabela 7**: Dados espectrais de RMN de <sup>1</sup>H dos derivados **79-83** (CDCl<sub>3</sub>, 300/75 MHz)...39 **Tabela 8**: Continuação dos dados espectrais de RMN de <sup>1</sup>H dos derivados 79-83 (CDCl<sub>3</sub>, Tabela 9: Dados espectrais de RMN <sup>13</sup>C dos derivados 79-83 (CDCl<sub>3</sub>, 300/75 MHz)..... 40 Tabela 10: Continuação dos dados espectrais de RMN <sup>13</sup>C dos derivados 79-83 (CDCl<sub>3</sub>, **Tabela 11**: Dados espectrais de RMN <sup>1</sup>H e <sup>13</sup>C de ANN-ACET (CDCl<sub>3</sub>, 300/75 MHz)...49 **Tabela 12**: Dados espectrais de RMN <sup>1</sup>H e <sup>13</sup>C de ANN-PROP (CDCl<sub>3</sub>, 300/75 MHz)....60 **Tabela 13**: Dados espectrais de RMN <sup>1</sup>H e <sup>13</sup>C de ANN-HEXA (CDCl<sub>3</sub>, 300/75 MHz)...71 **Tabela 14**: Dados espectrais de RMN <sup>1</sup>H e <sup>13</sup>C de ANN-DECA (CDCl<sub>3</sub>, 300/75 MHz)...81 Tabela 15: Dados espectrais de RMN <sup>1</sup>H e <sup>13</sup>C de ANN-Cl (CDCl<sub>3</sub>, 300/75 MHz).......88 **Tabela 16**: Valores de IC<sub>50</sub> em  $\mu$ g/mL após 72 h de exposição dos produtos naturais **11**, **16** e 17, e dos derivados 79-83 comparados com os dados da literatura (MARQUES, 2011) 

#### LISTA DE ESQUEMAS

| Esquema 1: Síntese dos | derivados 79- | - <b>83</b> da anr | nonalida ( <b>1</b> | 1)        |        | 34 |
|------------------------|---------------|--------------------|---------------------|-----------|--------|----|
| Esquema 2: Mecanismo   | de acilação d | e álcoois          | catalisada j        | por DMAP. | •••••• | 35 |

### LISTA DE ABREVIATURAS E SIGLAS

 $\delta$  – Deslocamento químico µM - Micromolar CCD – Cromatografia em Camada Delgada COSY – Correlation Spectroscopy DMSO – Dimetilsulfóxido DMAP - Dimetilaminopiridina DEPT 135° – Distortionless Enhancement by Polarization Transfer 135° EMAR - Espectro de Massas de Alta Resolução FICI – Fractionary Inhibitory Concentration HMBC – Heteronuclear Multiple Bond Coherence HSQC – Heteronuclear Single Quantum Coherence IV - Infravermelho J – Contante de acoplamento LABEL/UFC-Laboratório de Bioprospecção e Experimentação em Leveduras Faculdade de Farmácia da Universidade Federal do Ceará) MHz – Megahertz m/z – relação massa/carga PN – Produto Natural RMN<sup>13</sup>C - BB - Ressonância Magnética Nuclear de Carbono-13 - Broad Band

RMN<sup>1</sup>H – Ressonância Magnética Nuclear de Hidrogênio-1

| 1.            | INTRODUÇÃO1                                                                                                    |
|---------------|----------------------------------------------------------------------------------------------------------------|
| 2.            | LEVANTAMENTO BIBLIOGRÁFICO5                                                                                    |
| 2.1           | DITERPENOS PIMARANOS                                                                                           |
| 2.2           | HISTÓRICO DA DESCOBERTA DA ANNONALIDA5                                                                         |
| 2.3           | DITERPENOS PIMARANOS E DERIVADOS COM ATIVIDADE CITOTÓXICA.7                                                    |
| 3.            | OBJETIVOS                                                                                                      |
| 4.            | PROCEDIMENTO EXPERIMENTAL                                                                                      |
| 4.1           | MÉTODOS CROMATOGRÁFICOS14                                                                                      |
| 4.2           | MÉTODOS ESPECTROMÉTRICOS15                                                                                     |
| 4.2.          | 1 Ressonância Magnética Nuclear (RMN)15                                                                        |
| 4.2.2         | 2 Espectroscopia de Absorção na Região do Infravermelho (IV)15                                                 |
| 4.2.          | 3 Espectrometria de Massas de Alta Resolução (EMAR)16                                                          |
| 4.3           | SOLVENTES E REAGENTES                                                                                          |
| 4.4           | COLETA DE H. ampla                                                                                             |
| 4.5           | ISOLAMENTO DA ANNONALIDA (11)16                                                                                |
| 4.6           | PREPARAÇÃO DE DERIVADOS DA ANNONALIDA (11) 17                                                                  |
| 4.7<br>DEI    | ENSAIOS DE ATIVIDADE BIOLÓGICA DA ANNONALIDA E SEUS<br>RIVADOS                                                 |
| 4.7.          | 1 Atividade citotóxica em células tumorais20                                                                   |
| 4.8           | ENSAIO DA ATIVIDADE ANTIMICROBIANA                                                                             |
| 4.8.          | 1 Microrganismos                                                                                               |
| 4.8.          | 2 Teste de atividade antibiótica (Ensaio de disco-difusão)21                                                   |
| 4.8.          | 3 Avaliação <i>in vitro</i> da atividade antifúngica21                                                         |
| 4.8.4<br>técn | 4 Avaliação do efeito sinérgico dos compostos alvo com o fluconazol, por meio da<br>ica do <i>checkerboard</i> |
| 5.            | RESULTADOS E DISCUSSÃO                                                                                         |
| 5.1           | ISOLAMENTO DA ANNONALIDA (11), HUMIRIANTHOL (16) E ACRENOL (17)<br>23                                          |
| 5.2           | OBTENÇÃO DE DERIVADOS DA ANNONALIDA (11) POR SÍNTESE QUÍMICA<br>36                                             |
| 5.2.          | 1 Identificação estrutural de ANN-ACET (79)42                                                                  |
| 5.2.          | 2 Identificação estrutural de ANN-PROP (80)                                                                    |

# SUMÁRIO

| 5.2.3 Identificação estrutural de ANN-HEXA (81)                                                            | 61            |
|------------------------------------------------------------------------------------------------------------|---------------|
| 5.2.4 Identificação estrutural de ANN-DECA (82)                                                            | 72            |
| 5.2.5 Identificação estrutural de ANN-Cl (83)                                                              | 82            |
| 6. AVALIAÇÃO DA ATIVIDADE CITOTÓXICA                                                                       | 89            |
| 7. AVALIAÇÃO DA ATIVIDADE ANTIMICROBIANA                                                                   | 90            |
| 8. CONCLUSÃO                                                                                               | 91            |
| REFERÊNCIAS                                                                                                | 92            |
| ANEXO A - ESPECTRO DE RMN <sup>1</sup> H DO HUMIRIANTHOL (C <sub>5</sub> D <sub>5</sub> N /500 MHz)        | 98            |
| ANEXO B - EXPANSÃO 1 DO ESPECTRO DE RMN <sup>1</sup> H DO HUMIRIANTI $(C_5D_5N/500MHz)$ .                  | HOL<br>99     |
| ANEXO C - EXPANSÃO 2 DO ESPECTRO DE RMN <sup>1</sup> H DO HUMIRIANTI $(C_5D_5N/500MHz)$ .                  | HOL<br>. 100  |
| ANEXO D - ESPECTRO DE RMN DE <sup>13</sup> C DO HUMIRIANTHOL (C <sub>5</sub> D <sub>5</sub> N/125 M<br>101 | [Hz).         |
| ANEXO E - ESPECTRO DE RMN DE <sup>13</sup> C-DEPT135° DO HUMIRIANTI $(C_5D_5N/125 \text{ MHz})$            | HOL<br>. 102  |
| ANEXO F - ESPECTRO DE RMN DE <sup>1</sup> H DO ACRENOL (C <sub>5</sub> D <sub>5</sub> N/500MHz)            | . 103         |
| ANEXO G - EXPANSÃO 1 DO ESPECTRO DE RMN DE <sup>1</sup> H DO ACREI $(C_5D_5N/500MHz)$                      | NOL<br>. 104  |
| ANEXO H - EXPANSÃO 2 DO ESPECTRO DE RMN DE <sup>1</sup> H DO ACREI $(C_5D_5N/500MHz)$ .                    | NOL<br>. 105  |
| ANEXO I - EXPANSÃO 3 DO ESPECTRO DE RMN DE <sup>1</sup> H DO ACREI $(C_5D_5N/500MHz)$ .                    | NOL<br>. 106  |
| ANEXO J - ESPECTRO DE RMN DE <sup>13</sup> C DO ACRENOL (C <sub>5</sub> D <sub>5</sub> N/125 MHz)          | . 107         |
| ANEXO K - ESPECTRO DE RMN DE <sup>13</sup> C-DEPT135° DO ACRENOL (C <sub>5</sub> D <sub>5</sub> N MHZ).    | /125<br>. 108 |