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The so-called configurational entropy (CE) framework has proved to be an efficient instrument to study 
nonlinear scalar field models featuring solutions with spatially-localised energy, since its proposal by 
Gleiser and Stamapoulos. Therefore, in this work, we apply this new physical quantity in order to 
investigate the properties of degenerate Bloch branes. We show that it is possible to construct a 
configurational entropy measure in functional space from the field configurations, where a complete set 
of exact solutions for the model studied displays both double and single-kink configurations. Our study 
shows a rich internal structure of the configurations, where we observe that the field configurations 
undergo a quick phase transition, which is endorsed by information entropy. Furthermore, the Bloch 
configurational entropy is employed to demonstrate a high organisational degree in the structure of the 
configurations of the system, stating that there is a best ordering for the solutions.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the last years, the study of phenomenological properties in 
braneworld models are increasing. We have recent works explain-
ing anomalies in the meson B decay [1] and in the neutrinos 
physics [2], performing bounds into corrections to Coulomb’s law 
[3,4], into electrical conductivity [5], as also adjusting parameters 
to the experimental data of the nucleon-nucleus total cross-section 
of various chemical elements [6]. Applications to Myers–Perry’s 
black holes [7] and results based on the observation of gravita-
tional waves [8] are interesting issues about new insights in the 
braneworld framework.

In this context, a well-known model is the Bloch brane scenario, 
proposed by Bazeia and Gomes [9]. This thick brane model is gen-
erated by two interacting scalar fields that perform the thickness 
of the model that solves several issues in the fields localisation 
present in thin models [10,11], as well as in the Randall–Sundrum 
models [12,13]. Moreover, the structure of this scenario is based 
on domain walls, which have some interesting application in sev-
eral branches of Physics as in high energy physics [14], cosmology 

* Corresponding author.
E-mail addresses: wilamicruz@gmail.com (W.T. Cruz), davi@fisica.ufc.br

(D.M. Dantas), rafael.couceiro@ufabc.edu.br (R.A.C. Correa), carlos@fisica.ufc.br
(C.A.S. Almeida).
http://dx.doi.org/10.1016/j.physletb.2017.07.020
0370-2693/© 2017 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
[15,16], quantum field theory [17] and propositions about the grav-
itational waves observation [18].

The authors of the works [19–21] have shown the existence of 
more general Bloch brane solutions in which a degeneracy parame-
ter is responsible for the raising of two-kink solutions. That model 
is the so-called degenerate Bloch brane (DBB), where the energy of 
the field configuration in the superpotential is precisely the same 
with regarding all parameter associated with the domain wall [19]. 
So, we have the formation of a double brane structure with a split-
ting effect that is magnified by the approaching of the degeneracy 
parameter to a critical value.

This transition from single-kink solution to double-kink (or 
multi-kink) solutions have some physical implications. The multi-
kinks appear in dispersive non-linear system, where single-kinks 
are no more stables [22]. Ref. [23] shows the appearance of 
double-kink soliton in the sine-Gordon model under the pertur-
bation of a space-dependent force. The experimental application of 
multi-kink concepts arises, among other, in the mobility hystere-
sis in a damped driven commensurable chain of atoms [24] and 
in arrays of Josephson junctions [25]. Specifically in the context of 
braneworlds, the presence of the massive resonant Kaluza–Klein 
modes is dependent upon transition parameter. A resonant KK 
mode is an extradimensional massive mode of a field with a fi-
nite lifetime, which can bring some interesting phenomenology to 
braneworlds branch [1,4,26–28]. The study of resonances for grav-
ity and fermions in the symmetric and asymmetric cases of the 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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usual Bloch branes was performed in Ref. [29]. However, more in-
teresting results are present in the DBB scenarios [21,30]. In this 
case the degeneracy constant tends to a critical value, a highly 
KK gravity mode coupled to the brane is observed [30], and also 
crucial issues in the localisation of massless fermions are clari-
fied [21]. Moreover, the gauge field resonances are present only 
in the double-kink version of sine-Gordon models [4]. In short, the 
double-kink models bring more stability to the models and richer 
physical applications.

On the other hand, the reference [31] reintroduces the concept 
of informational entropy, based on Shannon’s information entropy 
[32]. The so-called Configurational Entropy (CE) was constructed 
and applied to several nonlinear scalar field models featuring solu-
tions with spatially-localised energy. As presented in Ref. [31], the 
CE can solve energies of degenerate configurations. The approach 
presented in [31] have been used to study the non-equilibrium dy-
namics of spontaneous symmetry breaking [33], to obtain the sta-
bility bound for compact objects like Q-balls [34], to investigate the 
emergence of localised objects during inflationary preheating [35], 
and moreover to distinguish configurations with energy-degenerate 
spatial profiles [36]. The CE bounds the stability of various self-
gravitating astrophysical objects [37] and states in Lorentz Violat-
ing (LV) scenarios [38] and also provides information about the 
stability of the glueball states in a dynamical holographic AdS/QCD 
model [39]. In the topic of braneworlds, the CE was heretofore ap-
plied to sine-Gordon models [40], to models with f (R) [41], to 
f (R, T ) [42] theories of gravity, and to the Weyl brane [43], as well 
as to the topological abelian string–vortex in six dimensions [44].

Guided by the previous results involving degenerate two-field 
thick brane solutions, we propose in this work to investigate the 
Bloch brane solutions and degenerate versions by means of the CE 
information.

2. Bloch brane overview

A very interesting class of configuration in theories involving 
extra dimensions is that one where the scalar field give rise a do-
main wall, which is baptised in the literature as thick brane. It 
was shown that some kinds of two interacting scalar field poten-
tials can be used in order to describe the splitting of thick branes 
due to a first-order phase transition in a warped geometry. As a 
consequence, we can find remarkable and distinctive critical phe-
nomena in warped spacetimes, which can open a new window to 
study cosmological scenarios. Other efficient alternative to find an-
swers for the cosmological issues comes from the work by Bazeia 
and Campos [9], where it was studied a system described by two 
real scalar fields coupled with gravity in (4 + 1) dimensions in 
warped spacetime involving one extra dimension. In that work, it 
was found a rich class of brane configuration, which was called 
Bloch brane. The most important feature of the Bloch brane solu-
tions is its stability regarding the classical linear fluctuations of the 
scalar fields.

2.1. Bloch brane

The simplest Bloch brane setup is built with the coupling of 
two fields to gravity, as we describe below. The scalar fields de-
pend only on the extra dimension y. The usual action in five-
dimensional (5D) gravity can be represented by

S =
∫

d4xdy
√|g|

×
[
− R + 1 (

∂μφ∂μφ + ∂μχ∂μχ
)− V (φ,χ)

]
, (1)
4 2
where g = det(gμν) and R is the curvature scalar for the met-
ric ds2 = e2A ημνdxμdxν − dy2. From Eq. (1), we can obtain the 
following equation of motion and the corresponding modified Ein-
stein equations

φ′′ + 4A′φ′ = ∂V

∂φ
, χ ′′ + 4A′χ ′ = ∂V

∂χ
(2)

A′′ = −2

3

(
φ′ 2 + χ ′ 2

)
(3)

A′ 2 = 1

6

(
φ′ 2 + χ ′ 2

)
− 1

3
V (φ,χ), (4)

where prime stands for derivative with respect to y.
In order to obtain first order equations from the equations of 

motion, let us apply the so-called superpotential method [45–51]

V (φ,χ) = 1

8

[(
∂W

∂φ

)2

+
(

∂W

∂χ

)2
]

− 1

3
W 2(φ,χ), (5)

where W (φ, χ) is the superpotential, which from Ref. [45] is de-
fined by

W (φ,χ) = 2φ − 2

3
φ3 − 2rφχ2 , (6)

where r is a real thickness parameter that can vary in the interval 
r ∈ (0, 1/2).

We want to stress, however, that this particular superpotential 
has a fertile structure being very useful in a large number of phys-
ical applications. For instance, studies include topological defects, 
localisation of fermions on critical branes, supersymmetric theo-
ries, travelling solitons in Lorentz and CPT breaking systems, bags, 
junctions, and networks of BPS and non-BPS defects [9,19–21,45].

With the potential introduced in Eq. (5), we obtain the resulting 
first-order equations φ′ = 1

2
∂W
∂φ

, χ ′ = 1
2

∂W
∂χ and A′ = − 1

3 W , from 
which we find the solutions that describe our brane model. The 
solutions to the fields are

φ(y) = tanh(2ry), χ(y) = ±
(√

1

r
− 2

)
sech(2ry) . (7)

The upper limit r → 1/2 changes the Bloch brane profile, where 
two-field solution turns into one-field solution [9]. However, for 
the usual Bloch brane the two-kink profile is never achieved by 
variations in r. The warp factor e2A(y) is obtained by the solution 
of A′ = −W /3 in the form

A(y) = 1

9r

[
(1 − 3r) tanh2(2ry) − 2 ln cosh(2ry)

]
. (8)

For this model, the energy density is written as [9]

ε(y) = e2A(y)

[
1

2
φ′2 + 1

2
χ ′ 2 + V (φ,χ)

]
. (9)

We plot ε(y) in Fig. 1, that shows us the appearance of two 
peaks on the energy density for the interval 0 > r > 0.17. In 
Ref. [9] the authors have noticed the existence of a brane inter-
nal structure that is suppressed by the presence of gravity. The 
raising of such structure is related with a specific value of r. This 
issue will be addressed in the next section by CE concepts.

2.2. Degenerate I Bloch brane

Among other types of nonlinear field configurations coupled to 
gravity in (4 + 1) dimensions in warped space–time with one ex-
tra dimension. That is a specially important class of Bloch branes, 
which was coined degenerate Bloch brane (DBB) [19,21], due to 
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Fig. 1. ε(y) for Bloch brane.

degenerate energy in the superpotential parameters. These new 
classes of configurations, on the contrary of the usual Bloch branes, 
enable a control over the brane thickness without needing to 
change the potential parameter, but by means of a domain wall 
degeneracy parameter.

In such models, the scalar field manifests a transition from kink 
to double kink solution when a degeneracy parameter reaches a 
critical value with the following potential:

V (φ,χ) = 1

2

[(
∂W

∂φ

)2

+
(

∂W

∂χ

)2
]

− 4

3
W 2(φ,χ), (10)

and the new superpotential

W (φ,χ) = φ

[
λ

(
φ2

3
− a2

)
+ μχ2

]
, (11)

where λ, a and μ are real parameters that deform this superpo-
tential.

So, it has been found in Ref. [20] that there are two particu-
lar cases where the first-order differential equations can be solved 
analytically. The first set of solutions is given by [19]

χ(1)(y) = 2a2(√
c2

0 − 4a2

)
cosh(2μay) − c0

, (12)

φ(1)(y) =
a

(√
c2

0 − 4a2

)
sinh(2μay)(√

c2
0 − 4a2

)
cosh(2μay) − c0

, (13)

where c0 is the degeneracy parameter that also regulates the brane 
thickness (the larger is c0, the thinner is the brane) and it was 
considered as c0 < −2a and λ = μ. Moreover, in this case, the cor-
responding warp factor is written in the form

e A(y) = N

⎡
⎢⎢⎣ 2a2(√

c2
0 − 4a2

)
cosh(2μay) − c0

⎤
⎥⎥⎦

4
9 a2

×

× exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2a2
[

c2
0 ± 4a2 − c0

(√
c2

0 − 4a2

)
cosh(2aμy)

]

9

[(√
c2

0 − 4a2

)
cosh(2μay) − c0

]2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(14)
Fig. 2. ε(y) for DBB I with a = μ = 1.

An interesting feature of these solutions is that, for some values 
of c0 close to the critical value, namely ccrit

0 = −2a, the scalar field 
φ(1)(y) exhibits a double kink profile that reflects a formation of a 
double wall structure, extended along the extra dimension. On the 
other hand, the scalar field χ(1)(y), close to the critical value ccrit

0 , 
exhibits a flat top. In addition, we can observe in the warp factor 
the emergence of a controllable flat region, where one could think 
in a Minkowski-type metric region sandwiched between the two 
branes.

As we are interested in analysing the information-entropic mea-
sure of these configurations, it is interesting to show the energy 
density profile. Therefore with the results above we are able to 
construct the energy density (9), which is displayed in Fig. 2. From 
that figure, we can also note the appearance of two peaks when 
the degeneracy parameter is close to the critical value, signalising 
a richer structure for energy density.

2.3. Degenerate II Bloch brane

Following Ref. [21], with the same potential (10) and the super-
potential function (11), there is another class of degenerate Bloch 
brane solution, which we named DBB II. In this case, assuming 
c0 < 1/(16a2) and λ = 4μ, we find the following analytical solu-
tions [21]

χ(2)(y) = − 2a√(√
1 − 16c0a2

)
cosh(4μay) + 1

, (15)

φ(2)(y) =
a
(√

1 − 16c0a2
)

sinh(4μay)(√
1 − 16c0a2

)
cosh(4μay) + 1

. (16)

Furthermore, the corresponding warp factor is given by

e2A(y) = N

⎡
⎢⎢⎣− 2a√(√

1 − 16c0a2
)

cosh(4μay) + 1

⎤
⎥⎥⎦

16a2
9

×

× exp

⎧⎪⎨
⎪⎩−

4a2
[

1 + 8c0a2 +
(√

1 − 16c0a2
)

cosh(4aμy)
]

9
[(

1 +
√

1 − 16c0a2
)

cosh(4μay)
]2

⎫⎪⎬
⎪⎭ .

(17)
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Fig. 3. ε(y) for DBB II with a = μ = 1.

The solution presented in (17) is also known as critical Bloch 
brane due the appearance of a more pronounced flat region when 
the degeneracy parameter tends to its upper limit c0 → (

1/16a2
)
. 

After all, we note that the DBB I and DBB II are very similar mod-
els, as we can see by comparing the warp factors in the equations 
(14) and (17).

Finally, the resulting energy density is plotted in Fig. 3. The be-
haviour of the energy density of the DBB II solution is different 
from the two previous cases, since its energies are more localised 
and the peaks are more prominent. However, the DBB II model 
maintains the splitting of the maxima. In next section, we will ver-
ify by CE concepts, that these changes in the DBB II occur because 
the region where CE tends to the minimum is more narrow that 
in the DBB I and in the usual Bloch Brane cases.

3. Configurational entropy in Bloch brane scenario

The so-called configurational entropy (CE) [31] is correlated to 
the energy of a localised field configuration, where low energy sys-
tems are linked with small entropic measures [31].

The CE can be expressed by the following Fourier transform of 
the energy density [31,40,41]

F(ω) = 1√
2π

∞∫
−∞

ε(y)eiωy dy. (18)

The model where we apply the CE contains structures with 
spatially localised, square-integrable, bounded energy density func-
tions ε(y). Hence, we can define the so-called modal fraction that 
reads [31,33,34,36]

f (ω) = |F(ω)|2∫∞
−∞ dω|F(ω)|2 . (19)

Subsequently, we can work with the normalised modal fraction, 
defined as the ratio of the normalised Fourier transformed function 
and its maximum value f̃ (ω) = f (ω)/ fmax . So, localised and con-
tinuous function f̃ (ω) yields the following definition for the CE

S( f̃ ) = −
∞∫

−∞
dω f̃ (ω) ln

[
f̃ (ω)

]
. (20)

From the point of view of CE approach, it has been shown that 
it is possible to obtain important bounds in theories where un-
known parameters are presented. Here, it should be noted that the 
Fig. 4. CE for usual Bloch brane solution.

strategy of using c0 to map a different range of parameters for the 
energy density and the CE has been used successfully several times 
before. It is worth highlighting that the CE method was already 
employed for the flat case of degenerate kinks in two-field models 
[36]. In the present paper, we verify the influence of the gravity in 
these degenerate models and its implications on the fields locali-
sation and the changes in the critical points. The main motivation 
in our study is to show that there is a bound regarding the in-
ternal structure of DBB, where the warped geometry leads to the 
emergence of a controllable flat region, which is described by a 
Minkowski space–time. Through this analysis, we expect to under-
stand the phase transition phenomena in Bloch branes scenarios, 
providing tools for a better understanding of new brane cosmo-
logical models. Furthermore, we can point out the most probable 
parameter that allows us to have normalisable fermion zero-mode 
localised on the brane. In addition we have the value for the highly 
KK gravity modes coupled in these DBB models. Our methodology 
consists in quantify the CE in terms of the degeneracy parame-
ter c0. On this way, we can merge the entropy information with 
details of the structure of the defects like thickness and curvature.

3.1. CE in the usual Bloch brane

Now, we review the CE approach to the usual Bloch brane. 
Firstly we analyse the basic two-field setup from Eqs. (7). Due to 
the complexity of the solutions, we evaluate numerically the S( f̃ )
and show the result in Fig. 4. The graphic shows us that there is 
no minimum in the CE to this case and S( f̃ ) is reduced as the 
thickness of the brane is increased (r goes to zero). This result 
tells us that the region where we have the opening of the in-
ternal structure, namely, 0 < r < 0.17, corresponds to the region 
of lower CE. Therefore, in the range of lowest CE, the coupling 
to gravity does not destroy the presence of internal structure for 
the Bloch brane. From information-entropic measure point of view, 
that range matches the values of lower energy of the system, and 
thus explaining the stability of the configurations. This is an impor-
tant result from CE background, since that the problem concerning 
the stability of internal structure had not yet been sufficiently an-
swered in the literature.

The lack of a minimum CE for r �= 0 is related to the absence 
of a phase transition in the scalar field solutions. In fact, the so-
lution to φ(y) in this case does not present the transition kink to 
double-kink profile. In addition, the CE shows that the most promi-
nent Bloch configurations are those where the interaction between 
the fields is weak. In this case, we can argue that the CE selects 
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Fig. 5. CE for DBB I solution with a = μ = 1.

usual Bloch brane models that in a good approximation has its 
form dominated by the standard φ4 model.

3.2. CE in the degenerate I Bloch brane

We now turn our attention to the DBB I solution, that is ex-
pressed by the solutions in Eqs. (12) and (14). After numerical 
calculations, the CE for this case is presented in Fig. 5. Our fun-
damental goal is to show that the CE can be used to distinguish 
between such configurations. Moreover, as a Bloch brane is a thick 
brane that evolutes to a thicker one, which is called DBB, we are 
interested in describing the mechanism that can adequately facil-
itate the description of first order phase transitions. As a matter 
of fact, these transitions can provide a better understanding of the 
complex issues regarding brane splitting in warped geometries. In 
this case, we will see that the CE can be used as a key element for 
this description.

From Fig. 5, we can note that there is a minimum in the CE 
at c0 = −2.3. This point corresponds the phase transition for the 
scalar field solution. At this point, we have the raising of two-kink 
profile. In order to better identify the raising of the two-kink so-
lutions, we have plotted the first derivative of the scalar field in 
Fig. 6. In one-kink solution, the first derivative must assume a con-
stant value near the origin. However, when we have the two-kink 
solution, the φ′(0) must be a local minimum. We note the ap-
pearance of a minimum in φ′(0) at the critical point (c0 = −2.3). 
Therefore, the raising of two-kink profile occurs at the degeneracy 
parameter c0 corresponding to the minimum of the CE.

There is also a correspondence between the entropic informa-
tion and the matter-energy density along the extra dimension. 
For the region where c0 < −2.3, the ε(y) degenerate solutions 
Fig. 7. CE for DBB II solution with a = μ = 1.

have a single peak around y = 0. Our results also show that for 
−2.3 < c0 < −2.0 (see Fig. 2) the energy density acquires two 
peaks. The minimum of the CE at c0 = −2.3 is related to the 
appearance of a behaviour named brane internal structure, as re-
ported in Ref. [9].

3.3. CE in the degenerate II Bloch brane

The CE for the second class of degenerate solution is showed in 
Fig. 7. We also have a minimum entropy point defining the fron-
tier between the regions with kink and two-kink solutions. Since 
that Fig. 3 shows a more narrow and localised energy density, we 
verify by its CE in Fig. 7 that the interval where we have two-kink 
solutions should be very small. The minimum entropy c0 = 0.05
corresponds to the beginning of the formation of two-kink solu-
tions. This also can be verified by the scalar field and its derivative 
in terms of c0 near the phase transition, as plotted in Fig. 8. For 
the kink structure, the φ′(0) must have a maximum. However, in 
the interval 0.05 < c0 < 0.06 we have a local minimum to φ′(0)

indicating the emergence of two-kink profile.

4. Discussion and conclusions

We investigated the properties of a 5D braneworld generated 
by two scalar fields coupled to gravity from the viewpoint of the 
Configurational Entropy (CE) measure. The Bloch brane model is 
especially interesting in this scenario because it has a degener-
ate spatially-localised energy. The connection with the entropic 
information and the model is stated via the matter-energy den-
sity along the extra dimension. From the Fourier transform of the 
Fig. 6. Scalar field solution for DBB I case (left) and its first derivative (right) for a = μ = 1.
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Fig. 8. Scalar field solution for DBB II case (left) and its first derivative (right) for a = μ = 1.
energy density, we construct a relation between each degenerate 
energy density and its resulting CE.

The first new result is revealed when we consider the basic 
two-field thick brane setup. The increasing of the brane thick-
ness and the raising of the internal structure occurs at the lowest 
entropy values. There is no phase transition of the scalar field so-
lutions of the basic Bloch brane and this is expressed with the 
absence of local or global minima in the CE, as showed in Fig. 4.

For the Degenerate I Bloch Brane (DBB I) solution, the informa-
tion entropy reveals us special details concerning the brane forma-
tion. The link between the CE and the degenerate energy density 
solutions is presented in Fig. 5. The minimum CE for this case is 
1.32 and corresponds to the degenerate parameter c0 = −2.3. This 
is the turning point of the DBB I solution. Regarding the energy 
density, the lowest CE value corresponds to the raising of the in-
ternal structure, which can be observed in Fig. 2. We also observed 
that at minimum S( f̃ ) there is a phase transition where the kink 
solution to φ(y) converges into a two-kink one.

The DBB II case also presents a splitting effect in the energy 
density, however, it happens to a distinct value of the CE at the 
scalar field phase transition. The region where the CE tends to 
the minimum value is narrow, which reflects the narrow density 
energy distributions for this second model and, as expected, the 
interval where the two-kink solutions exists is very small if com-
pared with DBB I scenario.

One very important consequence of our analysis is that the flat 
region in the warp factor undergoes a kind of phase transition in 
a certain value of the degeneracy parameter, which is designated 
by the CE. Thus, such approach enables to predict which is the ap-
proximate value of the degeneracy parameter, and if the confining 
mechanism for the bulk particles will occur in that internal re-
gion. For instance, in scenarios where there is the localisation of 
fermions [21] on the degenerate Bloch branes, the CE provides the 
correct values of c0 for the localisation of fermionic zero modes 
inside the branes. Here, it is important to remark that the values 
of c0 are in accordance with that one found in Ref. [21]. Moreover, 
for the DBB II model, the double-kink region enables the existence 
of a strong resonant graviton coupled to brane with a larger life-
time [30].

The investigation in braneworld models using the CE approach 
can reveal interesting features of this kind of models. We will con-
tinue addressing this issue in future works.
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