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Resumo

D adas as incertezas da indústria do petróleo a nível mundial, existe uma
crescente preocupação com o planejamento da produção das refinarias.

Embora existam modelos para este planejamento, eles são bastante limitados em
sua utilização, pois abrangem poucos cenários de operação. Este estudo descreve
uma abordagem integrada envolvendo a simulação de unidades e a otimização
não-linear das operações de blending a fim de obter um planejamento da produção
que maximize o lucro obtido. O problema é modelado através da interface do
software LINGO 16.0 e é resolvido utilizando-se o Global Solver do aplicativo. Um
estudo de caso com base na Refinaria de Paulínia é apresentado e as cargas externas,
a adição de produtos e a avaliação do preço dos produtos são estudadas, alcançando
a solução ótima global para o blending em menos de um segundo em todos os
cenários analisados, garantindo assim a utilidade do modelo no planejamento da
produção de refinarias, sendo também importante para as análises de sensibilidade
e a determinação dos pontos de equilíbrio para cargas externas e novos produtos.
Os resultados apontam que esta nova abordagem tem um potencial considerável
para obter ganhos significativos em termos de planejamento e aumento nos lucros.
A flexibilidade do modelo aliada com a sua rápida obtenção de boas soluções são
destaques da abordagem proposta.

Palavras-chave: Otimização de refinarias. Planejamento da produção. Sistemas
de suporte à decisão. Programação não-linear.



Abstract

B
ecause of its potential benefits, petroleum refineries are increasingly concerned
about their planning operations. Although models for this planning exist, they

are bounded into their usefulness. This study describes an integrated approach
involving nonlinear optimization and simulation of refinery units in order to obtain
a production planning for a given refinery that maximizes profit. The problem is
modeled through the LINGO 16.0 software interface and is solved using LINGO’s
Global Solver. A case study pertaining Refinaria de Paulínia (REPLAN) is proposed,
and external loads, product adding, and product pricing is studied, achieving global
optimum solution for the blending on less than a second on every case, assuring the
model usefulness into refinery planning and being important to sensitivity analyses
and the determination of break-even points of external loads and of new products.
The results indicate that this new approach has a considerable potential for achieving
significant gains in terms of planning and profit increase. The flexibility of the model
allied with its quick generation of good solutions is highlighted.

Keywords: Refinery optimization. Production planning. Decision support
systems. Nonlinear programming.
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Chapter 1
Introduction

A refinery consists of multiple processes that divide, blend and react hundreds of
hydrocarbon types, inorganic and metallic compounds, with the purpose of obtaining
commercial products. In a refinery, the required characteristics of a product are fixed.
However, crude oil has characteristics that depend on crude origin. Then, if the crude oils
change and products are fixed, refineries must adapt their operational configurations.

In addition, a refinery suffers from rising oil prices, advances in environmental
restrictions and pressure from consumers for lower prices, thus working with narrow
profit margins. It is vital for a refinery to operate as nearly as possible on its optimal
level and to seek opportunities for increasing the profits. However, without some form
of computational modeling, an optimum production plan that maximizes profit is hard
to obtain. These are the reasons for virtually every refiner nowadays to use advanced
process engineering tools to improve business results (MORO, 2003).

Since the invention of the Simplex algorithm by Dantzig in 1947, many computational
mathematical models have been applied to solve specific subjects of a refinery, such
as gasoline blending, refinery scheduling and planning (BODINGTON; BAKER, 1990).
Láng et al. (1991) present an algorithm and a FORTRAN program for modeling crude
distillation and vacuum columns. The proposed approach presents a good convergence
and low memory requirements. Nevertheless, the proposed algorithm cannot guarantee
the optimality of the generated solutions.

Shobrys and White (2002) present a review of the integration bottlenecks on planning,
scheduling, and control of refining and petrochemical companies. Although linear
programming models are most commonly applied, the introduction of reformulated
gasolines has led the planners to use nonlinear models. Pinto, Joly and Moro (2000)
present a nonlinear planning model for refinery production, analyzing different market
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scenarios of Presidente Bernardes Cubatão refinery (RBPC) and Henrique Lage refinery
(REVAP), and then comparing the results with the current situation of both refineries.
The model has a great potential for increasing profitability embedded in the planning
activity, reaching several millions of dollars per year.

Pinto and Moro (2000) state that the existing commercial software for refinery
production planning, such as RPMS (Refinery and Petrochemical Modeling System) and
PIMS (Process Industry Modeling System) are based on very simple models that are
mainly composed of linear relations. The production plans generated by these tools are
interpreted as general trends as they do not take into account more complex process
models and/or nonlinear mixing properties.

Process unit optimizers based on nonlinear complex models that determine optimal
values for the process operating variables, as seen in More et al. (2010), have become
increasingly popular. However, most are restricted to only a portion of the plant.
Furthermore, single-unit production objectives are conflicting and therefore contribute
to suboptimal and even inconsistent production objectives (PINTO; MORO, 2000). Li
et al. (2006) present a linear programming model for integrated optimization of refining
and petrochemical plants, determining on a case study that the profit has an about $1.0
million increase per month comparing to the case without optimization. They conclude
that integrative optimization of refining and petrochemical plants is a developing trend
and it should attract more concern in the future.

Moro and Pinto (2004) present a review of the technology of process and production
optimization in the petroleum refining industry. An important conclusion of this study
is related to the improvement necessity of the optimization approaches. Although the
mathematical programming models can be useful in refining and petrochemical companies,
these approaches still lack many real characteristics of the modeled systems to be widely
applied in the corporate business. A nonlinear approach represents the real nature of the
processing units, as stated by Alattas, Grossmann and Palou-Rivera (2011). Therefore, a
linear model would result in a precision loss in the model results (LI; HUI; LI, 2005).

Bueno (2003) presents some procedures to support the operational planning performed
by oil refineries that are integrated to the logistics business of an oil company. A decision
support system based on Solver, a Microsoft Excel toolbox, is proposed, using simulation,
optimization and graphical interfaces combined with a what-if approach to support the
refinery planning. Bueno (2003) also recommended studies about external loads for their
importance on a macro view of the refinery network, which will be addressed here. Pitty
et al. (2008) and Koo et al. (2008) present a hybrid simulation-optimization model, with
discrete and continuous variables, of an integrated refinery supply chain. The proposed
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approach can capture the dynamic nature of the real system. In addition, the optimization
model can consider multiple objectives.

Gueddar and Dua (2011) present a compact nonlinear refinery model based on
input-output data from a process simulator, emphasizing the continuous catalytic reformer
and naphtha splitter units. These authors propose artificial neural networks to deal with
the complexity related with large amounts of data. However, there is not a focus on global
optimization issues in the proposed approach.

Menezes, Kelly and Grossmann (2013) develop a fractionation index model (FI) to
add nonlinearity to the linear refinery planning models. The FI model is developed as a
more accurate nonlinear model for the complex crude distillation unit (CDU) than the
fixed yield or the swing cuts models. The results are compared to the common fixed yield
and swing cuts models, concluding that the FI refinery planning model predicted higher
profit based on different crude purchase decision.

We can conclude that there is a lack of refinery-wide planning that considers the many
processes and its nuances, especially when using nonlinear models. In addition, the studies
do not employ other methods to increase profit besides optimization and modeling.

In this context, this study aims to obtain a production planning for the profit
maximization in a refinery, simulating and optimizing the blending operations through a
nonlinear programming model proposed by Bueno (2003) that considers crude distillation
units (CDU), fluid catalytic cracking units (FCC), hydrotreatment units (HDT) and
delayed coking units (DCU). It is proposed an addition to the Bueno (2003) model that
takes into account the acquisition of external intermediate loads for blending into the
refinery, allowing a realistic planning. This monograph also proposes methods combined
with optimization, such as sensitivity analysis and the determination of break-even points
of external loads and of new products, aiming to enhance the refinery planning and to
increase its profit.

The external loads are explored deeply by providing methods to study which
intermediates would be interesting to acquire. By comparing the results from similar
intermediates, we can analyze how different intermediate properties may influence the
acquisition choice. It is proposed a sensitivity analysis to evaluate the produced volume of
a product. This analysis can show capacity bottlenecks or undesirable products, enabling
the planner to look for unseen potential improvements and problems. The planning for
the addition of a new product in a refinery is poorly discussed in the literature. Analyzing
the feasibility of new products can introduce the refinery to more profitable markets. This
monograph proposes a deeper study in the subject by comparing several new products
and by classifying them by their profitability.



Chapter 2
Problem Description

A typical refinery carries out several physicochemical processes to obtain the required
products. We can describe the general planning model of a refinery assuming the existence
of several processing units, producing a variety of intermediate streams with different
properties that can be blended to constitute the desired kinds of products. A general
scheme of a refinery is presented in Figure 1. The n distillation units receive the oil,
distilling it into multiple intermediates that are going to possibly receive a load from
external sources and/or be transformed into other intermediates through the m process
units. The intermediates will be mixed on the k blending pools available, leaving the
refinery as one of the w specified products. The relation between the inputs and outputs,
plus the operational and intermediate costs, leads to the refinery profit.

Usually, in a refinery both oil acquisition and product selling are predefined by
the organization. Therefore, a minimum and a maximum market for a product, and
the volume of oil acquired are usually predefined in order to meet the organization
expectations (BUENO, 2003). The refineries must check the feasibility of this planning,
and in case of adversities (lack of supply, broken equipment, etc.), it must match to the
new reality. The volume of each oil type acquired is the most important information,
since it will affect the entire refining system.

Every distillation and process units have minimum and maximum loads required, and
operational costs, which are a function of the volume processed and of attributes that
determines the quantities and qualities of the intermediate products generated by the
unit. The refinery has inventories, which hold the intermediate volumes not blended due
to economical and/or product restrictions.
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Chapter 3
Models and Procedures

We intend to obtain a production planning in a given refinery that maximizes profit,
considering operational constraints. It is assumed an ideal mixture, as the compounds
in the petroleum are chemically similar, for easily adding intermediate volumes, thus
lowering computational times. Hereafter, the notation used for the design of the model
will be presented.

Similar to Bueno (2003), Pitty et al. (2008) and Koo et al. (2008), in this study
we propose an integrated approach, which is composed of a simulation-optimization
model and graphical interfaces. The simulation encompasses all distillation and process
units, while the optimization encompasses the intermediate volume in each blending pool
(QBLp), which is optimized for the objective of maximum profit, having as constraints
the entire scheme of the refinery and the market restrictions.

In this study we develop a model whose data is imported and exported using a
user-friendly interface. Such developments have proven to be of capital importance for
efficiently optimizing production planning and scheduling by accurately addressing quality
issues, as well as plant operational rules and constraints, in a straightforward way (JOLY,
2012). Through Excel’s interface, the necessary data to solve the model is inserted. The
data is merged into the mathematical model and then the LINGO solver finds optimum
values. These optimum values are exported to Excel and translated into information,
which enables analysis by decision-making industry professionals.

The sensitivity analysis works by varying one parameter from the model. After solving
the modified model, the results are collected and the impact of the parameter variation
is analyzed.

In refineries that receive intermediates from external sources, the load must be taken
into account at the planning to ensure good results. Thus, we add to this model the
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transfer of external intermediate loads to the refinery. The model is limited to adding
distilled intermediates that go directly to blending, since adding intermediates that go to
process units would largely increase the complexity of the model. The properties of the
load must be specified, since it will affect the blending.

The objective function (1) maximizes the profit of a refinery by subtracting the income
(product sale) from the purchase of crude oil, operational costs of units, and external
intermediate loads costs. The first term is the income generated by the products sold.
The second term represents the associated cost with crude oil purchase. The third term
refers to total operational cost of distillation units in the refinery. The fourth term refers
to total operational cost of processes units, except distillation, in the refinery. The fifth
term refers to the cost of purchasing the external loads of intermediates transferred to the
refinery. All symbols used in the equations are explained in the List of Symbols.

The set of constraints (2a), (2b), and (2c) are similar. The first refers to the volume
of distilled oil o in distillation unit d, the second refers to the total volume distilled in
unit d, and the third the total volume distilled of oil o. Constraint (3) refers to the total
volume of crude oil that enters the refinery.

The set of constraints (4) refers to the volume of distilled oil (intermediate) k that
leaves the distillation process plus the volume of the external load of intermediate k
transferred into the refinery (VTRi). The sets of constraints (5), (6), (7), and (8)
determine the specific mass, sulfur content, viscosity index and octane rating of each
intermediate k, considering the addition of the external intermediate load.

Similar to (2b), the set of constraints (9) refers to the total volume processed in unit
w. The sets (10) and (11) represents the specific mass and sulfur content in each unit w,
which is related to each intermediate that enters the unit.

The set of constraints (12) determines the volume fraction of intermediate t, which
is the product of a reaction of intermediate i. As the reaction occurs, there is some
expansion, especially at FCC. Along the expansion, there are changes in sulfur content,
being redistributed through the produced intermediates. The expansion of intermediate
i in unit w is determined in the set of restrictions (13). The sulfur content in the
intermediate t is determined by sets (14) and (15).

The intermediates produced or distilled i are either blended or stocked. Set of
constraints (16) determine that the volume of every intermediate transferred to the
blending pool of a product is the volume of the product produced, restating the ideal
mixture already discussed. Set of constraints (17), (18), (19), and (20) determine the
properties of the product: specific mass, sulfur content, viscosity index, and octane rating.
Set (21) refers the intermediates that will be stocked.
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The sets of constraints (22), (23), (24), and (25) establish the expenses of distillation
operation cost, processing unit operation cost, crude oil purchase, and external
intermediate load purchase, respectively. Set (26) determines the income generated by
product sales. The set (27) determines the distilled naphtha proportion on gasoline
produced.

The set of constraints (28) refers to the maximum and minimum market restraints for
each oil acquisition. Sets of constraints (29) and (30) determine the capacity limits of
distillation and non-distillation units respectively. Sets of constraints (31), (32), and (33)
establish the upper and/or lower proprieties for sulfur content, octane rating, and viscosity
index, respectively for each product. Similar to set (28), set of constraints (34) refers to
the maximum and minimum market restraints for the specific product p sale. Equation
(35) restricts the maximum and minimum distilled naphtha proportion in gasoline.

Equations (4, 5, 6, 7, 8, and 21) compute the contribution of external intermediate
loads into each one of the proprieties. Equation (25) determines the cost of external
intermediate loads. Equations (27) and (35) restrict the maximum and minimum distilled
naphtha proportion in gasoline.

Objective Function

max Z =
∑
p∈P

PPSp · PBLp −
∑
o∈O

POSo ·QDTo −
∑
d∈D

CDSd ·QDTd

−
∑
w∈W

CPRw ·QPRw −
∑
i∈I

CTSi · V TRi (1)

Balance Equations

Oil volume in distillation units

QDTo,d =
∑
c∈C

QDTo,d,c ∀ o ∈ O, d ∈ D (2a)

QDTd =
∑
o∈O

QDTo,d ∀ d ∈ D (2b)
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Oil volume by type

QDTo =
∑
d∈D

QDTo,d ∀ o ∈ O (2c)

Total oil volume
QDT =

∑
o∈O

QDTo (3)

Volume of distillate k

PDTk = V TRk +
∑
o∈O

∑
d∈D

∑
c∈C

QDTo,d,c ·RDTo,d,c,k ∀ k ∈ K (4)

Specific mass, sulfur content, viscosity index, and octane rating of distillate k

SPCk =

V TRk · SPCTk +
∑
o∈O

∑
d∈D

∑
c∈C

QDTo,d,c ·RDTo,d,c,k · SPCo,d,c,k

PDTk

∀ k ∈ K (5)

SULk =
V TRk · SPCTk · SULTk

PDTk · SPCk

+∑
o∈O

∑
d∈D

∑
c∈C

QDTo,d,c ·RDTo,d,c,k · SPCo,d,c,k · SULo,d,c,k

PDTk · SPCk

∀ k ∈ K

(6)

IV Ik =

V TRk · IV ITk +
∑
o∈O

∑
d∈D

∑
c∈C

QDTo,d,c ·RDTo,d,c,k · IV Io,d,c,k

PDTk
∀ k ∈ K (7)

OCTk =

V TRk ·OCTTk +
∑
o∈O

∑
d∈D

∑
c∈C

QDTo,d,c ·RDTo,d,c,k ·OCTo,d,c,k

PDTk
∀ k ∈ K (8)
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Volume of all intermediates processed in unit w

QPRw =
∑
e∈E

∑
i∈I

QPRi,w,e ∀ w ∈ W (9)

Specific mass and sulfur content of the load in unit w

SPCw =

∑
i∈I

∑
e∈E

QPRi,w,e · SPCi

QPRw

∀ w ∈ W (10)

SULw =

∑
i∈I

∑
e∈E

QPRi,w,e · SPCi · SULi

QPRw · SPCw

∀ w ∈ W (11)

Volume of intermediate t produced

PPRt =
∑
i∈I

∑
w∈W

∑
e∈E

QPRi,w,e ·RPRi,w,t,e ∀ t ∈ T (12)

Expansion of intermediate i processed through campaign e in unit w

EXPi,w,e =
∑
t∈T

RPRi,w,t,e ∀ i ∈ I, w ∈ W, e ∈ E (13)

Sulfur content of intermediate t produced in unit w

SULt,w = FSUt,w · SULw ∀ w ∈ W, t ∈ T (14)

Sulfur content of intermediate t

SULt =

∑
w∈W

SULt,w ·
(∑

i∈I

∑
e∈E

QPRi,w,e ·RPRi,w,t,e · SPCw,t,e

)
∑
i∈I

∑
w∈W

∑
e∈E

QPRi,w,e ·RPRi,w,t,e · SPCw,t,e

∀ t ∈ T (15)
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Volume of the product p obtained by the blending of intermediates

PBLp =
∑
i∈I

QBLi,p ∀ p ∈ P (16)

Specific mass, sulfur content, viscosity index, and octane rating of the product p
obtained by the blending of intermediates

SPCp =

∑
i∈I

QBLi,p · SPCi

PBLp

∀ p ∈ P (17)

SULp =

∑
i∈I

QBLi,p · SPCi · SULi

PBLp · SPCp

∀ p ∈ P (18)

IV Ip =

∑
i∈I

QBLi,p · IV Ii

PBLp

∀ p ∈ P (19)

OCTp =

∑
i∈I

QBLi,p ·OCTi · FOCi∑
i∈I

QBLi,p · FOCi

∀ p ∈ P (20)

Volume of intermediate i that is stocked

ESTi = PDTi + PPRi −
∑
w∈W

QPRi,w −
∑
p∈P

QBLi,p ∀ i ∈ I (21)

Unit costs (distillation and other processes)

CDT =
∑
d∈D

CDSd ·QDTd (22)

CPR =
∑
w∈W

CPRw ·QPRw (23)

Oil acquisition cost
CCP =

∑
o∈O

POSo ·QDTo (24)
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External intermediate loads acquisition cost

CTR =
∑
k∈K

CTSk · V TRk (25)

Income generated by product sales

RV P =
∑
p∈P

PPSp · PBLp (26)

Distilled naphtha proportion in gasoline produced

NPG =
QBLgasoline,NL1 +QBLgasoline,NP1

QBLgasoline

(27)

Constraints

Constraint for the volume of oil o acquired

V OLmin,o ≤ QDTo ≤ V OLmax,o ∀ o ∈ O (28)

Constraint for the volume of oil distilled in distillation unit d

QDTmin,d ≤ QDTd ≤ QDTmax,d ∀ d ∈ D (29)

Constraints for the volume of oil processed in unit w

QPRmin,w ≤ QPRw ≤ QPRmax,w ∀ w ∈ W (30)
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Constraints for sulfur content, octane rating, and viscosity index of product p

SULp ≤ SULmax,p ∀ p ∈ P (31)

OCTp ≥ OCTmin,p ∀ p ∈ P (32)

IV Imin,p ≤ IV Ip ≤ IV Imax,p ∀ p ∈ P (33)

Maximum and minimum volume constraints for the product p sale

MKCmin,p ≤ PBLp ≤MKCmax,p ∀ p ∈ P (34)

Maximum and minimum distilled naphtha proportion constraint in gasoline produced

NPGmin ≤ NPG ≤ NPGmax (35)



Chapter 4
Case Study

Refinaria de Paulínia (REPLAN) is one of the biggest refineries in Brazil. The
refinery is owned by PETROBRAS, and it is located in Paulínia (São Paulo). It has two
distillation units, two vacuum units, two FCC units, and one delayed coking and catalytic
hydrotreatment unit. Since the units of atmospheric distillation, vacuum distillation, and
the two units of FCC are very similar, they were considered as one. As stated by Bueno
(2003) this presumption greatly simplifies the model without losing precision. In Table 1
are shown the unit types in REPLAN and their processing capacities.

Table 1: Unit types and their processing capacities.

Unit type Processing capacity

Atmospheric distillation U-200 27,200 m3/day
Atmospheric distillation U-200A 27,000 m3/day
Vacuum distillation U-200 13,000 m3/day
Vacuum distillation U-200A 12,700 m3/day
Fluid Catalytic Cracking U-220 7,500 m3/day
Fluid Catalytic Cracking U-220 A 8,500 m3/day
Delayed Coking 5,600 m3/day
Hydrotreatment 5,000 m3/day

Source: Bueno (2003).

In Table 2 the percentage of different crude marks that is received on REPLAN is
presented. For this model, only representative fractions were considered: Marlim P-18,
Algerian Condensate, North Albacora, and Bonny Light.

The process units work on different campaigns, depending of the oils received and
the products desired. According to Bueno (2003), REPLAN operates its distillation
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Table 2: Benchmark crudes and their percentage received.

Benchmark crude Percentage of
received oils

Marlim P-18 66.40 %
Algerian Condensate 11.30 %
North Albacora 8.60 %
Bonny Light 7.90 %
Campos Basin 2.20 %
Light oils BTE 2.00 %
Asphalt oils 1.00 %
Heavy oils BTE 0.40 %
Lubricant oils 0.40 %
Total 100 %

Source: Bueno (2003).

units on HSC campaign (High Sulfur Content), which separates intermediates with
high sulfur content; ASPHALT campaign, which separates heavy vacuum residuum for
asphalt production; RATCRACK campaign, which separates atmospheric residuum and
NORMAL campaign, which does not separate by any characteristic of the intermediate.
Since no oils selected for this study have high sulfur content, and since asphalt production
is not analyzed in this case study, both HSC and ASPHALT campaigns are not considered.

The proposed model for REPLAN refinery is illustrated in Figure 2. The refinery
contains four units: Distillation (CDU), Delayed Coking (DCU), Hydrotreatment (HDT),
and Fluid Catalytic Cracking (FCC). The distillation separates crude oil into eight
intermediates: liquefied petroleum gas (LP1), light naphtha (LN1), heavy naphtha (HN1),
light gas oil (LD1), heavy gas oil (HD1), and kerosene (KR1). Those are likely blended
directly. Vacuum gas oil (GO), atmospheric residue (AR1), and vacuum residue (VR1)
must first be treated in process units before blend. External loads of intermediates can
be added in the system.
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Figure 2: Model of REPLAN refinery.
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The selection of the products is based in the table of product types sold, presented
in Table 3. Except for LPG, gasoline A, and petrochemical naphtha, which are the only
representative product of their group, only representative products were chosen for the
model, as aviation kerosene; diesel oil type B and type E, the last one by new market
requirements; fuel oil export grade, fuel oil grade 2A and grade 9A representing low,
medium and high viscosity oils, being selected by their composition, demand and quality
difference. Coke is assumed to be burned for internal energy generation, thus it is not
considered a product.

Table 3: Percentage of products sold by categories.

Category/Product %vol

1. Kerosene
a. Aviation kerosene 92%
b. Other 8%

2. Diesel
a. Type B 100%
b. Type E 0%

3. Fuel Oil
a. Export grade 27%
b. Type 2A 27%
c. Type 9A 4%
d. Other 42%

Source: Bueno (2003).

The model was solved in LINGO (Version 16), using the Global Solver. The solver
reached the global optimum ($ 43,604/month) on every case studied, assuring precision on
refinery planning results. The computational time required on each test was less than one
second on an Intel i5-2410M processor, 8 GB RAM machine, using Windows 7. The small
computational time assures the model usefulness into refinery planning, and is important
for sensitivity analyses and the determination of break-even points of external loads and
of new products.

In Table 4 we present the test performed, the total number of variables, the number
of iterations required by the solver, the average computational time required and its
standard deviation, which are calculated based on a sample of 10 executions for each
test, removing the highest and lowest value of the sample. For each test, there were
small fluctuations on the computational time required, as seen on the last column of
Table 4. Experiments to determine the nature of the fluctuations were conducted, such as
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hardware stress during solver’s execution. Since LINGO’s Global Solver is a deterministic
method of solving nonlinear problems (GAU; SCHRAGE, 2004) and the results from
the experiments showed variations of the computational time according to the stress on
hardware, we concluded that these fluctuations are caused by computational issues (such
as the concurrent use of cache memory by the simultaneous execution of other software).

As the number of iterations and the number of variables increases, the computational
time also tends to increase, although not in a linear form because each test has its own
peculiarities that influence the computational time required to solve through a specific
method. For computational effort reasons, it is important to take note that all decision
variables in the model are continuous.

Table 4: Computational time of global optimizations.

Optimization test Variables No.
iterations

Computational
time (s)

Standard deviation
of computational

time (s)

Bueno (2003) model 171 154 0.23 0.005
LPG test 172 259 0.34 0.009
Light Naphtha test 172 160 0.23 0.012
Aviation Kerosene test 172 212 0.25 0.005
Gasoline test 172 232 0.29 0.015
Petrochemical Naphtha test 172 241 0.31 0.005
Fuel Oil test 172 268 0.34 0.007
Fuel Oil 9B test 180 410 0.52 0.031
Fuel Oil 5B test 180 457 0.54 0.011
Fuel Oil 3B test 180 485 0.57 0.025

Source: Author.

Some external loads were studied to analyze if they are economically possible.
Three intermediate loads were studied, as presented in Table 5: Light Naphtha, LPG,
and Aviation Kerosene. Every load was introduced alone, with different volumes and
proprieties. It is important to note that all obtained results related to the break-even
point (BEP) and the sensitivity analysis refer to the REPLAN case study.

Light Naphtha

In the first two possibilities, we can see that the BEP varies according to the volume
of the intermediate load transferred. We can infer from the next three possibilities that
octane rating does not change the price, since huge quantities of the cut are needed to
change gasoline octane rating. On the last two possibilities, we can see that the BEP
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varies according to sulfur content, since sulfur content restrictions are very limited to
products that use light naphtha, e.g. diesel.

LPG

The actual price of LPG is 127.8 dollars/m3. Since LPG is not reacted nor belongs to
any other product nowhere in the refinery, the BEP equals to its acquisition price.

Kerosene

Kerosene shows a similar price to the same quantity of light naphtha, so we can infer
that they are equivalent choices. This equivalency gives flexibility for the refinery.

Table 5: External loads behavior.

Stream

External
volume added

(1000
m3/month)

Sulfur
content

Octane
rating

BEP (dollars/ m3)

Light Naphtha 200 0.01% 90 152.0

Light Naphtha 100 0.01% 90 162.2

Light Naphtha 100 0.01% 120 162.2

Light Naphtha 100 0.01% 40 162.2

Light Naphtha 100 1.00% 90 140.0

LPG 100 0.00% – 127.8

Aviation Kerosene 100 0.09% – 162.4

Source: Author.

There is a lack of studies about the effects of the product volumes in the refinery. A
sensitivity analysis can be used by the planner for studying the profit behavior by varying
the volume produced of a specific product, this manner planning what product should
be looked for increasing profit. Three products were analyzed: gasoline, petrochemical
naphtha, and fuel oil export grade, by manually varying the volume produced over a
range. The profit variation versus the volume produced of gasoline is presented in Figure
3. Gasoline presented a small profit variation, assuring the product with a good stability
over volume variation. A local optimum of 296,000 m3/month is shown in the graph.
Here, the planner can infer that small volume variations of gasoline produced do not
heavily affect the refinery profit.
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Figure 3: Sensitivity analysis for gasoline production. The dots represent the optimized profit
variation for the simulated data. The dashed line is the tendency line. Source: Author.
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The profit variation versus the volume produced of petrochemical naphtha is presented
in Figure 4. Through the linear pattern of petrochemical naphtha, we can infer that a
reduction on its production would benefit REPLAN on every case. The additional profit
would reach about 3,500 dollars/month for the total cease of production case. This
graph shows to the planner that petrochemical naphtha production should be avoided at
REPLAN.

Figure 4: Sensitivity analysis for petrochemical naphtha production. The dots represent the
optimized profit variation for the simulated data. The dashed line is the tendency line.
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The profit variation versus the volume produced of fuel oil export grade is presented
in Figure 5. There is a local optimum that reaches 1,650 dollars/month. However, there
is a wide range of production available to increase profit. The slope is steeper than
on gasoline analysis: a reduction of a mere 5,000 m3/month increases refinery profit by
approximately 670 dollars/month. The planner must pay attention to this behavior, since
a small variation could directly influence the profit.

Figure 5: Sensitivity analysis for fuel oil export production. The dots represent the optimized
profit variation for the simulated data. The dashed line is the tendency line.

-500

0

500

1000

1500

2000

90 110 130 150 170

P
ro

fi
t v

ar
ia

ti
on

 
(d

ol
la

rs
/m

on
th

)

Volume produced (1000 m³/month)

Source: Author.

In the literature, there is a lack of detailed economic analysis about product adding.
In this study, we propose a method for quickly evaluating the economical availability of
adding a new product in the planning. After the addition of the new product in the model,
the BEP was determined to analyze the impact caused by the product in the refinery.

Brazilian laws recognize 18 variations of fuel oil, which are classified based on viscosity
and sulfur content. The well-defined and continuous ranges of viscosity for fuel oils made
this type of product a suitable option for analysis. The products chosen were fuel oil
grade 3B, 5B, and 9B. They have low sulfur content (1.00% maximum) and present low,
medium, and high viscosity, respectively. The model was run several times, producing
a batch of 100,000 m3/month for each new product separately, varying the new product
price until the profit matched the original one. This way we found the BEP. The results
of the addition of each product are presented in Table 6.

Based on Table 6, we can infer that since fuel oil 5B and 9B have the same BEP, both
have the same profit capacity to the refinery for a batch of 100,000 m3/month. Fuel oil
3B presents the maximum viscosity possible, since low viscosity intermediates in fuel oil
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Table 6: New product addition.

(a) Fuel Oil 3B addition

Sulfur content

Lower Bound Real Upper Bound

Fuel Oil Exp. - 0.66% 2.00%

Fuel Oil 2A - 0.76% 5.50%

Fuel Oil 9A - 0.99% 5.50%

Fuel Oil 3B - 0.79% 1.00%

Viscosity index

Lower Bound Real Upper Bound

Fuel Oil Exp. 0.380 0.452 0.452

Fuel Oil 2A 0.490 0.530 0.530

Fuel Oil 9A 0.674 0.688 0.688

Fuel Oil 3B 0.530 0.553 0.553

BEP (dollars/m3) 42.89

(b) Fuel Oil 5B addition

Sulfur content

Lower Bound Real Upper Bound

Fuel Oil Exp. - 0.64% 2.00%

Fuel Oil 2A - 0.76% 5.50%

Fuel Oil 9A - 0.98% 5.50%

Fuel Oil 3B - 0.87% 1.00%

Viscosity index

Lower Bound Real Upper Bound

Fuel Oil Exp. 0.380 0.447 0.452

Fuel Oil 2A 0.490 0.520 0.530

Fuel Oil 9A 0.674 0.681 0.688

Fuel Oil 3B 0.592 0.610 0.618

BEP (dollars/m3) 34.29

(c) Fuel Oil 9B addition

Sulfur content

Lower Bound Real Upper Bound

Fuel Oil Exp. - 0.57% 2.00%

Fuel Oil 2A - 0.71% 5.50%

Fuel Oil 9A - 0.98% 5.50%

Fuel Oil 3B - 0.98% 1.00%

Viscosity index

Lower Bound Real Upper Bound

Fuel Oil Exp. 0.380 0.386 0.452

Fuel Oil 2A 0.490 0.500 0.530

Fuel Oil 9A 0.674 0.682 0.688

Fuel Oil 3B 0.674 0.684 0.688

BEP (dollars/m3) 34.29

Source: Author.

are the minority, for economic reasons. As the refinery must struggle to supply 100,000
m3/month of this product, the BEP increases. There is no problem of product limitation
by sulfur content in any case. Fuel oil 9B gets close to the sulfur content’s upper bound
because the main intermediates that add viscosity, like VR1, have high sulfur content.
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Conclusions

A global optimum in the blending operations was reached in every case studied using
LINGO optimization solver, assuring precise results on refinery planning. The model
presented a quick solution time in every test performed, which is very important for
sensitivity analyses that can be used by planners for studying refinery’s profit behavior.

The sensibility analyses showed that any variation on the produced volumes of gasoline
at REPLAN can strongly influence its profit, and the production of petrochemical naphtha
is bad at any volume produced. Other products as fuel oil export grade give flexibility
to REPLAN, as they weakly influence REPLAN’s profit. This type of analysis can show
capacity bottlenecks or undesirable products for any refinery and any product, enabling
the planners to look for unseen potential improvements and problems.

Another contribution of this work was the modeling of the external loads transfer to
the refinery. The addition of intermediate loads does not interfere deeply with the refinery
scheme, so it adds flexibility, an important characteristic for keeping up on the unstable
market of the petroleum industry. The BEP was obtained for several intermediates that
could be transferred into REPLAN, thus allowing a more detailed planning of the refinery
and an increase of its profitability. Adjusting the proposed model, it is possible to analyze
the acquisition of external loads for other refineries.

The properties of the external loads influence its BEP differently, as seen on REPLAN
study case: the light naphtha’s BEP is influenced by the sulfur content, while the octane
rating influences a lot less. It is also possible to determine equivalent products through
the BEP: at REPLAN, light naphtha and kerosene are equivalent acquisitions since their
BEP is the same.

The product adding allows the implementation of profitable new products into the
refinery production. It also allows the refinery to search for markets that are more
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profitable without disrupting the refinery scheme, since only the blending pools are
modified. Sensitivity analyses obtained the BEP of several new products that could
be produced at REPLAN and showed how the other products would be affected. By
determining the BEP, it is possible to evaluate the profitability of the new product.

With the use of the proposed model, these analyses can be easily and quickly applied
on refineries by planners, with significant advantages over simpler models.
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