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RESUMO

A tecnologia usando um número massivo de antenas é a chave para alcançar os potenciais
ganhos de capacidade em sistemas 5G. Sistemas MIMO (do inglês, multiple-input-multiple-

output) massivo consistem na exploração de um grande número de antenas na estação base
para servir a vários usuários simultaneamente. Para alcançar a capacidade total do sistemas
MIMO, o conhecimento do estado do canal na estação base é desejável. Em sistemas operando
em duplexação por divisão em frequência ((FDD) do inglês, frequency division duplexing),
o problema está na carga do canal de realimentação aumentar linearmente com o número de
antenas. Então, para canais de realimentação realistas, o overhead para a obtenção de informação
de canal total se torna proibitivo devido à quantidade massiva de elementos de antena. Assim, o
design eficiente na transmissão depende da informação do estado do canal, e consequentemente
a falta da informação completa emerge como um gargalo dos sistemas baseados em FDD
com MIMO massivo. Neste contexto, primeiramente desenvolvemos um arcabouço que usa a
técnica de compleção matricial para reduzir a carga do canal de realimentação explorando a
estrutura da matriz do canal com baixo posto. O arcabouço proposto é avaliado em dois cenários:
comunicações sem fio em backhaul e com múltiplos usuários. Além disso, mostramos que o erro
de reconstrução do canal está relacionado com o número de antenas da estação base e discutimos
o desempenho em relação à taxa de erro de bit e à capacidade do canal.

Quando o número de antenas na estações base é moderado, o problema de interferência entre
usuários alocados com o mesmos recursos de tempo-frequência precisa ser controlado eficien-
temente. A formatação de feixes (do inglês, beamforming) na transmissão é uma das técnicas
para lidar com a interferência entre múltiplos usuários. Assumindo o conhecimento do estado
do canal no domínio de feixes em sistemas MIMO massivos esparsos, propomos o projeto de
um pré-codificador baseado em máxima razão de transmissão ((MRT) do inglês, maximum ratio

transmission) que consiste em selecionar e otimizar os feixes dirigidos para os usuários no intuito
de maximizar a razão sinal-ruído mais interferência ((SINR) do inglês, signal-to-interference-

plus-noise ratio ) no usuário. Consideramos dois diferentes modelos de canal baseados em
variáveis independente e identicamente distribuídas e no modelo estocástico-geométrico, apre-
sentamos heurísticas de baixa complexidade para a seleção de feixes e adaptação de taxa, e
mostramos uma solução ótima para este problema. Resultados de simulação mostram que a
solução ótima pode alcançar um desempenho melhor que o esquema de beamforming com
forçagem a zero ((ZFBF) do inglês, zero-forcing beamforming). Além disso, comparado com
o pré-codificador MRT, as heurísticas propostas melhoram o desempenho do sistema em um
cenário esparso, que pode ser o caso nos canais MIMO com ondas milimétricas.

Finalmente, sob a perspectiva de um cenário com múltiplas células, propomos uma técnica de
transmissão espaço-temporal de pilotos baseado em seleção aleatória que mitiga ou elimina o
efeito da contaminação de pilotos em sistema MIMO massivo. O método espaço-temporal de



transmissão de pilotos utiliza a distribuição de Bernoulli para decidir a transmissão. Apesar da
simplicidade do esquema proposto, resultados de simulação mostram que a estimação do canal é
melhorada.

Palavras-chave: MIMO Massivo, Compleção Matricial, Realimentação, Múltiplos Usuários,
FDD, MRT, ZFBF, Estimação de Canal, Beamforming, MILP, Contaminação Piloto.



ABSTRACT

Massive multiple-input-multiple-output (MIMO) technology is a key to achieve the promised
capacity gains in 5G systems. Massive MIMO systems consist in the simultaneous deployment
of a large number of antennas in a base station (BS) to serve many user equipments (UEs).
For achieving the full potential capacity of MIMO, accurate knowledge of the channel state
information (CSI) at the BS is essential. In frequency division duplexing (FDD) systems, the
problem is that the channel feedback load grows linearly with the number of antennas. Then,
for practical feedback channels, the overhead to obtain full CSI becomes prohibitively large
due to the massive number of antenna elements. Thus, relying on CSI to design the downlink
transmission emerges as a bottleneck in FDD-based massive MIMO systems. In this context,
first, we develop a framework that uses the matrix completion (MC) technique to reduce the
uplink feedback channel overhead exploiting the low-rank channel structure of the channel
matrix. The proposed framework is evaluated in two application scenarios: wireless backhauling
communications and a multi-user (MU) scenario. Furthermore, we show that the decrease of
the reconstruction error is related to the number of BS antennas, and discuss the performance in
terms of bit error rate (BER) and goodput.

When the number of BS antennas is moderate, an interference problem among UEs allocated for
the same time-frequency resource has to be effectively handled. Transmit beamforming is one of
the techniques to deal with MU interference. Assuming knowledge of the beamspace channel
in a sparse massive MIMO system, we propose a precoder design based on the maximum ratio
transmission (MRT) that consists of selecting and optimizing the power of the beams steered
to the UEs in order to maximize the signal-to-interference-plus-noise ratio (SINR) at the UE.
Considering two different sparse channel models based on independent identically distributed
(i.i.d.) and geometric-stochastic beam domain representations, we propose low-complexity
heuristics to beam selection and rate adaptation, and discuss the optimal solution for this problem.
Simulation results show that our optimal solution can achieve a better performance than the
zero-forcing beamforming (ZFBF) scheme. Besides, compared to the linear MRT precoder, the
proposed low-complexity heuristics improve the performance of the system in a scenario with
channel sparsity, which may be the case in millimeter-wave MIMO channels.

Finally, under a multi-cell perspective, we propose a space-time pilot transmission technique
based on the space-time random pilot selection (ST-RPS) that mitigates or eliminates the effect
of pilot contamination in massive MIMO system. The space-time pilot transmission method
uses Bernoulli distribution to decide the transmission. Despite the conceptual simplicity of the
ST-RPS scheme, simulation results show that it improves the channel estimation accuracy.

Keywords: Wireless Communications, Massive MIMO, Matrix Completion, Feedback, Multi-



User, FDD, MRT, ZFBF, Channel Estimation, Beamforming, Mixed Integer Linear Programming,
Pilot Contamination.
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NOTATIONS

In this thesis the following conventions are used. Italic represents scalar quantities,
boldface lower-case letters indicate vectors, and boldface upper-case letters express matrices.

R i×j set of real-values numbers (i× j) matrix dimensions

C i×j set of complex-values numbers (i× j) matrix dimensions

xi i-th vector element

|xi | modulus of i-th vector element

xT transpose of vector x
xH Hermitian transpose of vector x
x∗ conjugate of vector x
‖x‖ `2 norm of vector x
Xi, j (i, j)-th matrix element

X−1 inverse of matrix X
IN N ×N identity matrix

1N “all ones” vector of dimensions N

‖X‖p norm p of matrix X
‖X‖2 spectral norm of matrix X
‖X‖F Frobenius norm of matrix X
‖X‖∗ nuclear norm of matrix X
|〈A, B〉| tr

(
AHB

)
� Hadamard product

⊗ Kronecker product

〈.〉 inner product

‖.‖∞ `∞ norm of a vector

vec vectorization operator

diag the diagonal operator

O(.) big O notation

� greater than or equal

E{.} the expectation operator
The collection of vectors uk ∈ R

n for 1 ≤ k ≤ d, denote uik is the i-th vector element,
[u1, . . ., ud] is a matrix dimension n× d where the k-th column is uk.
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1 INTRODUCTION

This thesis is inspired by the problems in the recent technology termed 5G or fifth-generation.
In this introductory chapter, the main motivation and objectives of this thesis are presented

in Sections 1.1 and 1.2, respectively. Section 1.3 describes the main assumption about the channel.
Section 1.4 depicts the thesis organization, and, finally, publications are listed in Sections 1.5.2
and 1.5.3.

The world has seen four generations of mobile communications; the first (1G) in
1980s supported only voice; the second (2G) in 1990s added data transmission to voice; the third
generation (3G) in 2001 extended the foundation of broadband data communication to support
basic Internet services; the fourth generation (4G) in 2009 added the long-term evolution (LTE)
system to achieve higher data rates paving the path for the future fifth generation (5G) of mobile
communications which is the focus of our work.

The 5G is under development, promising higher data rates and even higher efficiency
to mobile broadband communications [1]. However, the scope of 5G is much broader than just
further an enhanced mobile broadband communication. Instead, 5G is commonly described as a
platform that should enable wireless connectivity for mostly any kind of device or application as
presented in Figure 1.1. These are vehicle-to-vehicle (connected cars), massive machine type,
device-to-device (D2D), millimeter wave, long-term evolution advanced (LTE-A)/Wi-Fi inte-
gration and micro-BS communications. Furthermore, the 5G is assumed to enable connectivity
for a much more extensive range of new cases. For example, wireless connectivity for remote
control of machinery, wireless connectivity for traffic safety and control, and monitor/control
of infrastructure, virtual and augmented reality, tree dimension and ultra-high dimension video
and haptic feedback applications, industrial automation and applications in health, such as re-
mote surgery, smart cities, data from multiple domains (transportation, public administration,
emergency services and weather sensing), and others [2].

The vast range of use cases in 5G means that the capabilities in this generation have
to extend far beyond that previous ones. The 5G should support high peak data rates of 10 Gbits/s.
In urban and suburban environments, the forecast considers 100 Mbit/s, which means an increase
of factor 10 compared to what can be provided with current technologies. Another aspect is
the lower latency, where the order of 1 ms is often mentioned. The extreme reliability is also
considered. It means very different things, for instance, an extremely low error rate (below 10−9),
or the ability to retain connectivity even in cases of unexpected events including natural disaster.
The energy efficiency is an emerging requirement where the cost of energy needed to operate the
network is a significant and operational expense part for many operators [2].
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Figure 1.1 – Deployment scenario envisioned for 5G cellular system.

Source: Created by the author.

1.1 Motivation

Consider the 4G and 5G networks showed in Figure 1.2. Note that the 4G system
can serve one UE1 with a broad beam, while the 5G network has narrow beams which can give
support to more than one UE simultaneously These beams are provided by the increase on the
number of antenna elements at the BS. Thereby, the BS with a large number of antennas is
named as massive MIMO BS. It means a large number of antennas is generating narrow beams
with potential to light UEs in distinct regions, configuring a MU massive MIMO scenario.

Figure 1.2 – Evolution of a 4G network into 5G Massive MIMO with active phased-array anten-
nas (APAA) with massive antenna elements network.

Source: [3].

Massive MIMO is one of the key technologies for the 5G wireless communication
1 The UE is any device used directly by an end-user to communicate.
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systems due to its potential to achieve high data rates and its robustness against interference,
fading, hardware imperfections and failure [4]. In his seminal paper, Marzetta [5] showed that
when the number of antennas grows very large, the effect of additive noise decreases, as well
as the required transmitted energy per bit. The development of the new systems with massive
MIMO can work in two operation modes, one based on time operation called time division
duplexing (TDD) and another based on frequency operation called FDD. In TDD systems, the
uplink and downlink transmissions are carried out using same frequency band, but separated in
the time. Therefore, one can offer rely on channel reciprocity to acquire the CSI. However, the
channel reciprocity may not hold, in practice, due to the calibration error between the uplink and
downlink radio frequency (RF) chains [6, 7].

On the other hand, the uplink and downlink in the FDD systems utilize different
frequencies. It is considered to be more effective under symmetric traffic and delay-sensitive
applications due to small latency, continuous channel estimation, and backward compatibility.
Moreover, the FDD operation mode is employed in most wireless systems of nowadays. However,
FDD has a problem related with the channel feedback overhead that grows linearly with the
number of BS (transmit) antennas [8]. Then, for practical feedback channels with limited
transmission rate, the overhead to obtain the full CSI becomes prohibitively large due to the
massive number of antenna elements. Thus, relying on CSI to design the downlink transmission
emerges as a bottleneck in FDD systems. Furthermore, to fully utilize the spatial multiplexing
and array gains expected for such promising technology, an accurate knowledge of CSI at the
BS is essential to apply linear precoders as MRT or ZFBF.

Massive MIMO systems have potential to achieve high data rates mainly when more
UEs are allocated the same frequency resource. Under this MU perspective, the systems have a
huge potential to decrease the power consumption and to improve the communication system
performance [9]. However, when the number of BS antennas is moderate, intra-cell interference
among UEs appears and has to be effectively handled. Transmit beamforming is one of the
techniques that achieves enhanced performance in MU massive MIMO systems, determining
the complex antenna gains that optimize some performance criterion, e.g., the sum rate. The
beamforming means that each data signal is sent from all antennas, but with different amplitude
and phase to direct the signal spatially as shown in Figure 1.2 (right).

Under a multi-cell perspective, the massive number of antennas and more supported
UEs intensify the problem for every UE and BSs to have orthogonal sequences in order to esti-
mate the channel coefficients. This means that in the channel estimation stage, the performance
is decreased since the interference is an extra problem. The inter-cell interference problem
between any ordinary interfering BS of a mobile network is known as pilot contamination in
the literature [5], which occurs when two pairs UE-BS use the same pilot sequence (also known
as a reference signal). However, under a strictly coordinated control, it can be suppressed by
using different pilots in adjacent cells in the conventional system with a small number of UEs
(e.g., two). Meanwhile, the massive MIMO is supposed to have ten times more active UEs at
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the same time/frequency resource than conventional systems which leads to more severe pilot
contamination [10].

1.2 Main Contributions

This thesis deals with three key problems of 5G deployment, namely channel feed-
back in FDD systems, beamforming design, and pilot contamination. The main contributions of
the work can be summarized as follows:

• A general framework for reducing the feedback load in FDD systems using matrix
completion;

• A precoder design based on the beam domain channel representation to deal with
the intra-cell interference;

• A space-time random pilot selection scheme for minimizing the pilot contamination
in a multi-cell scenario.

1.3 Main Assumptions

Many discussions about the wireless channel were raised over the last years. This
thesis relies on the assumption of poor scattering channel, where the number of dominant
multipaths is much smaller compared to the number of antennas. Finite scattering models are
usually adopted for millimeter-wave (mmWave) scenarios [11]. For example, of 60 GHz with
massive MIMO, the high path loss will lead the primary propagation paths to be only the
line-of-sight (LOS) or the first and second order reflections [12, 13].

Other scenarios also present a low number of scatterers. For example, in a scenario
where the BS is equipped with a large number of antennas located in an elevated position with
few scatterers around (e.g., on the top of a high building, a dedicated tower, or a unmanned
aerial vehicle platform), and mainly characterized by rich local scatterers around the UE (e.g.,
the classical one-ring model [14, 15]). Meanwhile, for arrays with small aperture, antennas
are highly directive, further reducing the number of surrounding scatterers. Hence, the angular
spread seen by the BS is quite small and the number of incoming signal paths is also limited.

Moreover, several related works assume similar insights [7, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27]. Thereby, for the considered scenarios in this work, the channel matrix is
assumed to have low-rank or at least have deficient rank.

1.4 Thesis Organization

This thesis is organized as follows:
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Chapter 1 presented an introduction about the next generation of mobile communi-
cations considering the massive MIMO system and raised some problems related with this new
technology.

Chapter 2 presents the use of MC technique to reduce the FDD uplink feedback
channel overhead exploiting the low-rank structure in the channel matrix for its accurate re-
construction from a few feedback information. In this context, a general framework which
uses a matrix completion technique is proposed as a solution to the CSI feedback and recon-
struction problem. The proposed framework is evaluated in two application scenarios: wireless
backhauling communications and a clustered MU scenario uplink scenario.

Chapter 3 describes a formulation of a precoder design that exploits the geometric
sparsity of the MU massive MIMO channel considering a practical rate assignment based on the
modulation and coding scheme (MCS) of the LTE table, beam selection, and power optimization.
An optimal solution to capacity following the MRT principle is shown. A heuristic based on
Lagrangean relaxation and three additional simple heuristics are presented.

Chapter 4 describes a scheme based on a space-time pilot transmission, named
ST-RPS, to mitigate the destructive effect of pilot contamination. The space-time pilot method
uses Bernoulli distribution to decide about the transmission. The obtained simulation results
show that the scheme leads to improved channel estimation accuracy due the reduction of pilot
contamination.

Chapter 5 concludes this thesis by summarizing the main conclusions and listing
some perspectives for future work.

The organization of the thesis is illustrated in Figure 1.3.

Figure 1.3 – Organization of the thesis in a block-diagram.

Source: Created by the author.
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1.5 Scientific Production

The publications produced during the thesis period are listed below. Those publi-
cations may be divided into two general categories: main and related publications. The main
publications served as the basis for this thesis, while the related ones are about correlated topics.

1.5.1 Technical Reports

These are the reports that served as the basis for some problems addressed in this
thesis. The first and third parts of this thesis which are related to Chapters 2 and 4, respectively,
were developed under the context of Ericsson/UFC technical cooperation projects:

• UFC. 34: Transceiver Design in MIMO Communication Systems: Distributed Pro-

cessing and Very-Large-Scale Approaches, February/2014 - August/2014;

• UFC. 41: Distributed Optimization and Very Large-MIMO Transceivers for 5G

Wireless Communication Systems, October/2014 - May/2016,

in which a number of four technical reports, one in UFC.34 and three in UFC.41 were delivered:

• VALDUGA, S. T.; ALMEIDA, A. L. F. de. Fourth Technical Report UFC/Ericsson
- Channel Estimation in Very-Large Scale MIMO. GTEL-UFC, July 2014;

• VALDUGA, S. T.; ALMEIDA, A. L. F. de. First Technical Report UFC/Ericsson -
CSI Feedback and Reconstruction Using Matrix Completion for Massive MIMO
Systems. GTEL-UFC, Mar. 2015;

• VALDUGA, S. T.; ALMEIDA, A. L. F. de. Second Technical Report UFC/Ericsson
- Feedback Signaling and CSI Reconstruction Using Completion Techniques.
GTEL-UFC, Oct. 2015;

• VALDUGA, S. T.; ALMEIDA, A. L. F. de. Third Technical Report UFC/Ericsson
- CSI Feedback and Reconstruction Using Matrix Completion and Tensor Com-
pletion for FDD Uplink Multi User Massive MIMO. GTEL-UFC, Feb. 2016.

Also, a request for a patent application named Reduced feedback data using matrix completion

for CSI acquisition was performed.

1.5.2 Main Publications

The following journal paper and a letter were produced:

• VALDUGA, S. T. et al. A Framework to Channel Feedback and Reconstruction
using Matrix Completion in Massive MIMO Systems, Journal of Communication
and Information Systems - JCIS, Oct. 2017. Under review.
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• VALDUGA, S. T. et al. Minimization of Pilot Contamination Effect with Space-Time
Pilot Transmission Scheme, 2018. To be submitted.

The second part of this thesis is related to Chapter 3 which includes a one-year
internship at the I3S Laboratory, CNRS, France, under the context of the following I3S/UFC
technical cooperation project:

• Massive MIMO Systems: Project and Modeling of the Large Scale MIMO Systems,
February/2016 - February/2017.

As a result of this internship, a conference and a journal paper were produced:

• VALDUGA, S. T. et al. Low complexity beam selection for sparse massive
MIMO systems. In: PROC. Int. Symp. Wireless Communication Systems (ISWCS).
Italy: [s.n.], Aug. 2017. p. 414–419. DOI: 10.1109/ISWCS.2017.8108150;

• VALDUGA, S. T. et al. Low-Complexity Heuristics to Beam Selection and Rate
Adaptation in Sparse Massive MIMO Systems. Transactions on Emerging Telecom-
munications Technologies - ETT, Feb. 2018. Submitted.

1.5.3 Related Publications

Some works were produced during the last years of this doctoral thesis, in the context
of codebooks for MIMO systems:

• VALDUGA, S. T. et al. Low-Complexity Codebook-Based Beamforming with
Four Transmit Antennas and Quantized Feedback Channel. In: 2014 IEEE
Wireless Communications and Networking Conference (WCNC). [S.l.: s.n.], Apr.
2014. p. 1212–1217. DOI: 10.1109/WCNC.2014.6952322;

• VALDUGA, S. T. et al. Esquema MIMO Beamforming Otimizado para Canal
de Retorno de Baixa Taxa de Transmissão. In: XXXIII Simpósio Brasileiro de
Telecomunicações, 2015, Juiz de Fora, Anais do XXXIII SBrT. [S.l.: s.n.], 2015.
p. 1–5;

• VALDUGA, S. T. et al. Codebook Design and Performance Analysis of Quantized
Beamforming under Perfect and Imperfect Channel State Information. Journal of
Communication and Information Systems - JCIS, v. 32, n. 1, p. 161–171, 2017.
DOI: 10.14209/jcis.2017.16.

1.5.4 How to Read This Thesis

This thesis has three chapters that cover different aspects of massive MIMO systems.
Every chapter is meant to be self-contained so that the reader can read them independently
without loosing significant information.

https://doi.org/10.1109/ISWCS.2017.8108150
https://doi.org/10.1109/WCNC.2014.6952322
https://doi.org/10.14209/jcis.2017.16
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2 MATRIX COMPLETION AS A SOLUTION FOR A FEEDBACK CHANNEL PROB-
LEM IN MASSIVE MIMO SYSTEMS

This chapter investigates the use of MC in order to reduce the FDD uplink feedback channel
overhead, called here as the feedback channel problem. Our approach capitalizes on the

low-rank structure of the MIMO channel.
The MC technique is capable of recovering an unknown low-rank matrix, exactly

or approximately, from undersampled observations, with or without noise [38, 39]. Under mild
conditions, from the knowledge of a fraction of its entries (the matrix elements [40]) the desired
matrix can be recovered by minimizing the nuclear norm (sum of singular values) of the observed
matrix. According to the MC theory, only a few randomly chosen entries of the matrix are
enough for the recovery of the whole matrix with good accuracy. In this context, there is a vast
body of literature on MC theory and algorithmic solvers, as well as on more general matrix
approximation problems such as the Netflix problem [41] (see Figure 2.1), collaborative filtering,
target estimation [42], sensor localization [43], machine learning [44], control [45], multi-linear
algebra [46], and many others.

Figure 2.1 – Example of matrix completion problem in recommendation systems, e.g., given
less than 1% of the movie ratings which the objective is to find missing ratings.

Source: [47]

2.1 Motivation

To fully utilize the spatial multiplexing and array gains expected with such a promis-
ing technology such MIMO, an accurate knowledge of the CSI at the BS is essential to apply
linear precoders as a simple MRT or a ZFBF, for instance. Since Marzetta’s paper [5] showed
that TDD is preferable for massive MIMO systems, many researchers have focused on providing
solutions for that. In TDD, the uplink pilots are exploited to estimate the channel directly at
the BS. The FDD is generally considered to be more effective under symmetric traffic and
delay-sensitive applications due to small latency, continuous channel estimation, and backward



Chapter 2. Matrix Completion as a Solution for a Feedback Channel Problem in Massive MIMO Systems 29

compatibility. Moreover, in most wireless systems built today the FDD operation mode is gen-
erally employed. Consequently, it is important to identify and develop solutions for potential
issues arising on FDD-based massive MIMO technique.

2.2 Objectives and Main Contributions

Knowing that the feedback rate is one critical aspect in real-world wireless systems,
the aim is to provide a solution to the problem of CSI acquisition at the BS with reduced load in
the feedback channel of FDD-based massive MIMO systems. To the best of our knowledge, this
work is the first to propose the use of MC in a general CSI feedback and reconstruction framework
for massive MIMO systems. In the present work, upon reception of downlink pilots from the
Tx, for example a macro BS, the receiver side (Rx), i.e., a micro-BS or a UE undersamples
either the received pilot data matrix or the estimated channel matrix (depending on the chosen
scheme), and feeds only a fraction of their entries back to the Tx. By capitalizing on MC, the
Tx recovers the downlink pilots for subsequent channel estimation, or to directly reconstructs
the downlink channel. Thereby, the transmitter is able to design simple linear precoders [48,
49] and beamformers that consider a full-channel knowledge. Our results show that, when the
channel matrix has a low-rank structure, the proposed feedback and reconstruction schemes yield
accurate CSI estimation with minimal feedback overhead, which translates into a high energy
efficiency and low complexity at the Rx, a desired feature for power-limited uplink transmissions.

2.2.1 Organization

We investigate the application of the MC technique as a solution to the CSI feedback
and reconstruction problem. In this context, we explore the low-rank structure of the channel
matrix for its accurate reconstruction from a few feedback information. We propose a general
framework and show the usefulness of the proposed framework in two application scenarios:
wireless backhauling communications and a MU uplink scenario. We discuss two feedback
methods based on ECU and DDU, which are respectively based on undersampling of the
estimated channel and/or the received data. Furthermore, we show that the decrease of the
reconstruction error is related to the number of antennas in a massive MIMO system. We
formulate the performance in terms of BER and goodput considering a minimum mean square
error (MMSE) estimator. Summarizing, in Section 2.3.1, we introduce the feedback channel
problem. Section 2.3.2 describes the system model. Section 2.3.3 addresses a formulation to
solve the MC problem. Section 2.3.5 proposes a solution with a general framework based on
two operation modes. Two application examples are presented in Section 2.4. In Section 2.5, the
simulation results are shown. Finally, Section 2.6 brings some concluding remarks.
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2.3 Proposed Framework to Channel Feedback and Reconstruction

2.3.1 Background

In massive MIMO, the spatial focusing of energy into ever-smaller regions of space
potentially brings huge improvements in throughput and radiated energy efficiency. Other
benefits could also include the extensive use of inexpensive low-power components, low latency
communication, simplification of the media access control (MAC) layer, and robustness to
intentional jamming [4]. To fully utilize the benefits of such a promising technology, an accurate
knowledge of the CSI at the BS is essential to apply linear precoders such as a simple MRT
or a ZFBF. Henceforth, we focus on FDD operation. In this context, one well-known problem
is that the channel feedback overhead grows linearly with the number of antennas [8, 50, 51,
52]. Then, for practical feedback channels with limited transmission rate, the overhead to obtain
full CSI becomes prohibitively large due to the massive number of antenna elements. Thus,
relying on CSI to design the downlink transmission emerges as a bottleneck in FDD systems.
Furthermore, for practical feedback channels, the rate is limited and it is acceptable not to assume
the transmission of full CSI to the BS. In this context, the availability of CSI at the transmitter
to design the downlink transmission is a bottleneck in FDD systems. It is worth mentioning
that in this thesis, we consider that the uplink feedback channel is error-free. Although this
assumption may not hold in practice, good channel coding is usually applied to add robustness
on the feedback channel against channel induced errors.

Solutions for reducing the amount of data to be sent via a limited feedback channel
usually resort to compressed sensing (CS) techniques. These solutions consider that the channel
matrices admit a sparse representation, for instance, because of the shared and limited local
scattering. Therefore, due to the sparse channel structure, CS techniques can reduce the training
sequence and feedback overheads [20, 53, 54, 55, 56]. In [20], a scheme to exploit the hidden
joint sparse structure of channel matrices via CS was proposed. In [53], an adaptive CS-based
feedback scheme was proposed, where the feedback structure can be dynamically configured
based on channel conditions, while [54] presents and discusses the use of sparsity-inspired CSI
acquisition techniques for massive MIMO, as well as the underlying mathematical theory in FDD
and TDD modes. In [55], based on the spatial correlation and channel conditions, the authors
suggested two compression methods for channel feedback to reduce the feedback overhead. A
hybrid limited feedback design is proposed for massive MIMO in [56]. They consider quantized
and codebook based feedbacks.

Solutions based on CS, however, rely on an adequate choice of a basis that provides
a sparse representation. If such a basis fails, it no longer represents the channel or its spatial
characteristics properly [55]. Additionally, a proper basis may need to be sent to the receiver,
which increases the signaling overhead in this case. Differently, the authors in [57] proposed
a channel estimation algorithm based on MC technique, assuming a switch-based mmWave
massive MIMO scenario. Here, MC is a technique that can be used to complete a matrix with
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missing elements. Comparing to CS techniques, the authors showed that MC technique can
achieve a near-optimal spectral efficiency with significantly lower complexity, since it does not
require basis as in CS, and it is immune to array response mismatch, as well.

Another solution is to exploit spatial correlation information. For instance, [58]
proposes to design grouping patterns, taking advantage of the spatial correlation mapping of
multiple antenna elements to a single representative value, using pre-designed patterns therein
referred to as antenna group beamforming (AGB). However, full CSI is not available at the
transmitter. Instead, the proposed scheme uses the pattern index to select the antenna group
and the codeword index for transmit beamforming, making such a scheme limited. Another
solution is presented in [59], which consists of a feedback scheme based on channel vector
quantization and beamforming. The authors propose codebooks and UE selection for scheduling
based on reliability information, channel quality indicator, channel direction indicator and rate
approximation. However, this solution does not provide CSI to the transmitter.

The idea of applying a completion technique to MIMO communication appeared
in [60] to obtain direction of arrival (DoA) for colocated MIMO radars. The solution consists
of either performing a matched filtering with a small number of randomly selected dictionary
waveforms or undersampling the received signal at random sampling instants and forward the
results to a fusion center. From the received samples and the sampling scheme, the fusion center
applies a MC technique to estimate the full matrix. In [25], the authors proposed a solution
to provide the CSI to the Tx for FDD massive MIMO systems. The proposal is to apply an
algorithm based on MC concepts. They consider that all scheduled UEs directly feed the full
received pilots back to which they apply a low-rank approximation for CSI recovery. Therein,
the authors formulate an optimization problem to the estimation of the channel under a low-rank
constraint without undersampling. However, full CSI is conveyed back to the Tx, which can be
a bandwidth consuming process. The approach of [61] estimates the channel matrix by means
of a MC technique. The method is numerically investigated by considering different scattering
environments for the MIMO channel model in an indoor scenario. Therein, the authors do not
assume a low-rank channel model.

This work advances further than [54, 61] by presenting the problem in detail, while
linking it to the massive MIMO paradigm. We also discuss two relevant application scenarios
where the proposed approach is appealing.

2.3.2 System Model

Consider a wireless communication system, where a BS represents the Tx and the
Rx can be represented by others BSs or the UEs. The Tx and Rx are equipped with MT and MR

antennas, respectively.
During the downlink training phase, the BS sends pilot sequences of length NT to

the Rx. The received signal at the Rx can be expressed as:

Y =HST +N ∈ MR ×NT, (2.1)
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where H ∈ CMR×MT is the channel matrix, S ∈ NT ×MT contains the pilot sequences, and N ∈
CMR×NT the additive white Gaussian noise term.

The channel model is expressed as a sum of a finite (small) number of specular paths,
as follows:

H =
1
√
P

P∑
p=1

αpar(θp)aTt (ϑp), (2.2)

where P defines the number of paths, αp is the fading amplitude associated with the p-th path,
and the steering vector is defined as [62]:

ar(θp) ,

[
1, e−j2π

ds
ξ cos(θp), . . ., e−j2π

(MR−1)ds
ξ cos(θp)

]T
, (2.3)

at(ϑp) ,

[
1, e−j2π

ds
ξ cos(ϑp), . . ., e−j2π

(MT−1)ds
ξ cos(ϑp)

]T
, (2.4)

where ds is the inter-element antenna spacing, ξ is the wavelength, and θp, ϑp ∈ [0, π] are the
angle of arrival (AoA) and angle of departure (AoD), respectively, associated with the p-th path.
Furthermore, the channel model described in Equation (2.2) is a stochastic multipath channel
[17].

2.3.3 Matrix Completion Technique

In this subsection, we discuss the low-rank matrix completion technique, following
the nuclear norm minimization concept. The nuclear norm is alternatively known by several other
names including the Schatten 1-norm, the Ky Fan r-norm, and the trace class norm. See [38, 63,
64] for a detailed discussion, full proofs and theoretical results of the exact and approximate
recovery results to MC theory. The results developed in [63] extend the theory of CS to different
structures, beyond the sparse structure. Furthermore, the MC theory benefits from the CS theory
jointly with probability tools [65].

The problem can be defined as follows. There is a data matrix Q ∈ Cn×n which we
would like to know as precisely as possible. However, only some entries of this matrix are
available and there is no way to find the unknown entries of it without imposing additional
conditions. Thus, the problem is ill-posed. However, if the matrix has low-rank or has approxi-
mately low-rank, then accurate or even exact recovery is possible by nuclear norm minimization
[45, 63, 66]. In this case, one may accurately recover a low-rank matrix from relatively few
measurements. Some results have shown that this is indeed possible [38, 39, 43, 64, 67].

More specifically, let Q be the desired matrix to be reconstructed. We assume that
only a few entries of Q are known. For instance, if a tuple (i, j) ∈ Ω, it means that the (i, j)-th
entry of Q is known.

To undersample Q, let PΩ : Cn×n→Cn×n denote the sampling operator defined by

PΩ(Q) =

Qi, j, if (i, j) ∈ Ω

0, otherwise,
(2.5)
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where Qi, j is the (i, j)-th entry of Q. The sampling operator simply undersamples its input matrix,
setting the output matrix entries corresponding to the unknown elements of Q to zero.

For a great enough number of samples, sampling uniformly at random is expected
to generate just a low-rank matrix with these samples. The classical problem of finding the
best low-rank approximation to a given full matrix Q is equivalent to solving the optimization
problem:

Q̂ =argmin
X

rank(X)

s.t.: PΩ(X) = PΩ(Q), (2.6)

where X is the matrix of variables and Q̂ is a element-wise reconstruction of Q [45, 68]. Notice
that the constraint in Equation (2.6) makes sure that the entries of X corresponding to the
known entries of Q are equal. However, in general, problem in Equation (2.6) is know to be a
nondeterministic polynomial-time (NP) hard problem [69]. An alternative method to solve the
problem using convex relaxation is proposed [45] as follows:

Q̂ =argmin
X

‖X‖∗

s.t.: PΩ(X) = PΩ(Q). (2.7)

More specifically, despite the fact that nuclear norm minimization was observed
to produce very low-rank solutions in practice [45, 64, 66], theoretical results showed that it
produces the minimum rank solution [63].

The nuclear norm is a convex function, and can be formulated using semidefinite
programming (SDP). Thereby, given a general matrix Q, which may not be semidefinite or
symmetric, the nuclear norm can be formulated in terms of SDP, by rewriting Equation (2.7) as
follows:

Q̂ =arg min
X,Q1,Q2

tr (Q1)+ tr (Q2)

s.t.: PΩ(X) = PΩ(Q), (2.8)[
Q1 X
XH Q2

]
� 0.

where the optimization variables are X,Q1 and Q2 . The optimization problem in Equation (2.8)
and Equation (2.7) are convex. Thereby, they can be solved using general solvers available in the
literature, e.g., [70].

In [67], Candès and Plan proved that if the entries of the matrix are corrupted by
noise, it is possible to recover the whole matrix with a few samples. Let us assume a noisy model
as follows:

Qi, j = Mi, j+ Zi, j (i, j) ∈ Ω, (2.9)

where Zi, j with (i, j) ∈ Ω contains statistical or deterministic noise. Let us apply the sampling
operator

PΩ(Q) = PΩ(M)+ PΩ(Z) (2.10)
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where Z ∈ Cn×n. The matrix M can be recovered solving the following problem:

M̂ =argmin
X
‖X‖∗

s.t.: ‖PΩ(X−Q)‖F ≤ ε . (2.11)

Assume that ‖PΩ(Z)‖F ≤ ε, where ε means a reconstruction error threshold. Further-
more, when the noise is white and Gaussian with variance σ2

n, then ε2 ≤ (m+
√

8m)σ2
n with

high probability [67], where m is the undersampling factor. The precision of estimation depends
on the structure of the targeted matrix. The singular values need to be sufficiently spread, or
incoherent (Candès [63] and Recht [64]) for reconstructing Q with only a few samples. In MC
theory [38, 63, 64, 67] the sampling is done uniformly at random, and some simple hypotheses
about the matrix Q were developed, which make it recoverable. Let us describe these hypotheses
briefly.

Consider the singular value decomposition (SVD) of the rank-P matrix Q:

Q =
P∑
i=1

σiuivH
i . (2.12)

Consider the SVD of Q described on Equation (2.12), PU and PV as the orthogonal
projections onto the column and row space of Q respectively (singular vectors):

PU =

P∑
i=1

uiuH
i , PV =

P∑
i=1

vivH
i .

We define the matrix E as

E ,
∑
i

uivH
i , PUE = E = EPV, EHE = PV, EEH = PU .

To recover the matrix from part of entries, the vectors ui and vi need to be “incoherent”
(µ) in some sense.

More specifically, the assumptions are as follows:
Assumption 1. There exists µ1 > 0 such that for all pairs (a, a′) ∈ n×n and (b, b′) ∈

n×n,

|〈ea, PUea′〉 −
P
n1

1a=a′ | ≤ µ1

√
P
n
, (2.13)

|〈eb, PVeb′〉 −
P
n2

1b=b′ | ≤ µ1

√
P
n
, (2.14)

where id=sam]e is a canonical vector and 1E the indicator function of an event E, e.g. 1a=a′ is
equal 1 if a = a′ and 0 if a , a′. |〈A, B〉| is defined as tr

(
AHB

)
.

Assumption 2. There exists µ2 > 0 such that for all (a, b) ∈ n×n

|Eab | ≤ µ2

√
P
n
. (2.15)
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If both assumptions hold, we say that the matrix Q obeys the strong incoherence
property with parameter µ =max(µ1, µ2).

Based on these hypotheses, [38] proposes the following theorem:

Theorem 1 Let Q ∈ Cn×n be a fixed matrix of rank-r obeying the strong incoherence property

with parameter µ. Suppose we observe m entries of Q with locations sampled uniformly at

random. Then, there is a positive numerical constant C such that if

m ≥ Cµ2nr log%10 n, (2.16)

where % is an integer positive number, then Q is the unique solution to Equation (2.7) with

probability at least 1−n−3, i.e., with high probability, nuclear norm minimization recovers all

the entries of Q without error.

2.3.4 Incoherence Property of Massive MIMO Channel

Following [38], the assumptions 1 and 2 of H when r = P = 1, can be measured by
the singular vector. Comparing Equation (2.2) with the SVD of H =

∑P
i=1σiuivH

i , the u1 = ar(θ)

and v1 = at(ϑ) are the singular vectors. Thus, all entries of PU have the same modulus 1/MR and
those of PV have the same modulus 1/MT . When a = a′ and b = b′,

〈ea, PUea′〉 = [PU]a,a′ =
1
MR
, (2.17)����〈ea, PUea′〉 −

1
MR

���� = 0, (2.18)

〈eb, PVeb′〉 = [PV]b,b′ =
1
MT
, (2.19)����〈eb, PVeb′〉 −

1
MT

���� = 0. (2.20)

When a , a′ and b , b′,

|〈ea, PUea′〉| = |[PU]a,a | =
1
MR
, (2.21)

|〈eb, PVeb′〉| = |[PV]b,b | =
1
MT
. (2.22)

Thus, the incoherence property for assumption 1 and 2 with µ = 1 is satisfied.
For r = P ≥ 2, and a sufficiently large number of antennas, the singular vectors of

the channel H converge to the steering vectors [57](see [71] for a detailed proof.). Thereby,
all entries of the left and right singular vectors have the same modulus 1/

√
MR and 1/

√
MT ,

respectively. Hence, a = a′ and b = b′

〈ea, PUea′〉 = [PU]a,a =
P
MR
, (2.23)

〈eb, PVeb′〉 = [PU]b,b =
P
MT
, (2.24)



Chapter 2. Matrix Completion as a Solution for a Feedback Channel Problem in Massive MIMO Systems 36

and, for a , a′ and b , b′,

|〈ea, PUea′〉| = [PU]a,a′ =

����� P∑
i=1

ui,au∗i,a′

����� (2.25)

≤

P∑
i=1
|ui,a | |u∗i,a′ | =

P
MR
, (2.26)

|〈eb, PVeb′〉| = [PV]b,b′ =

����� P∑
i=1

vi,bv ∗i,b′

����� (2.27)

≤

P∑
i=1
|vi,b | |v ∗i,b′ | =

P
MT
. (2.28)

Thus, equality µ =
√
P satisfies the incoherence property for assumptions 1 and 2 when MT, MR

are very large. This means that when H is large, it obeys the strong incoherence property with
µ ≈
√
P, and can be recovered with a small number of samples.

2.3.5 General Problem

In this section, we are interested in solving a general feedback problem.
To illustrate this problem, consider a conventional feedback scheme in a MIMO

system, where the full channel matrix is conveyed from the Rx back to the Tx. The number of
bits to be fed back is given by ν = κ log2(MRMT ), where κ depends on the accuracy of channel
information at the Rx. Assuming MT = MR = 100 and κ = 3, the Rx needs ν = 39.8631 bits to
convey the full CSI to the Tx.

In this context, we resort to MC techniques to solve the feedback overhead problem,
by exploiting the low-rank nature of the MIMO channel. The framework of the underlying idea
is shown in Figure 2.2. The process is initialized with the Tx sending a forward data to Rx and,

Figure 2.2 – Framework structure.
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after a pre-processing, Rx sends a reduced feedback data to Tx. For example, if the technique
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to obtain the CSI is based on pilot symbols, the forward data is a training sequence and the
pre-processing block is the channel estimator. The parameter m is introduced to describe the
undersampling factor related to the reduced feedback data. This factor is defined as a percentage
of entries in the matrix Q (e.g., m = 0.1 means that 10% of total entries were sent).

After receiving forward data sent by Tx, Rx may first pre-process such forward data.
The result is the matrix Q. Then, Rx undersamples Q and the undersampled data are sent through
the feedback channel. Tx receives the data and then applies MC to this matrix. At the end of
this step, the matrix Q is in turn reconstructed as Q̂. Finally, after a post-processing (channel
estimation), the CSI is made available at Tx.

Basically, there exist an information a priori at Tx needed to enable the application
of MC. For instance, Tx must know the number of antennas at Rx and the rank of the channel
matrix, which in general, are available at the BS [72]. Additionally, in particular applications
some information may not be mandatory but beneficial, such as the undersampling factor, which
is defined as the percentage of the entries of Y to be fed back, the data feedback mode, if multiple
modes are pre-defined, and the data distribution, which can dictate the way the undersampling
procedure is performed.

2.3.6 Rx Description

Although the framework is described for a single Rx, it can be extended to the case
with multiple receivers, say K Rxs. For instance, in a wireless backhaul scenario, there might
exist K micro-BSs as Rxs. As a second example, there might exist K UEs in a MU scenario,
since each one may have different goals. Thus, the framework may be applied individually. On
the other hand, the Tx along with multiple receivers may have the same goal. In this case, every
Rx would perform equally as they were a single Rx, being the Tx responsible for aggregating the
individual feedback data from the Rxs. As a third case, the Tx can make different subsets of Rxs
to send back different types of feedback data. Note that, regarding the a priori information at Tx,
it must apply for each link Tx-Rx and it is Rx-specific. That is, Tx has to know the number of
antennas at each Rx, as well as the rank of each channel matrix.

2.3.7 Operation Modes

Herein, two types of feedback data are visualized: (a) the received signal matrix Y,
or (b) the estimated channel matrix Ĥ. Based on this, we define two operation modes:

• DDU: in this mode, a fraction of the received signal Y is the feedback data, which
means that Q = Y. Therefore, there is no pre-processing step. Consequently, Rx
operates as a simple sampling device. Tx applies the completion algorithm to re-
construct Y. Due to the noise, the matrix Y is actually full-rank. Eventually, Tx
obtains a filtered version of Y, from which the channel matrix Ĥ is estimated as a
post-processing step.
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• ECU: in this mode, a fraction of the estimated channel Ĥ is the feedback data,
which means that Q = Ĥ. Therefore, the pre-processing is a channel estimation step
performed by the Rx taking into account the received signal Y. At Tx side, there is
no post-processing step.

The main steps of the systematic message exchange between Tx and Rx are illustrated
in Figure 2.3 for the DDU and ECU operating modes, respectively, and are summarized below:

• Tx sends the training sequence to Rx with a Tx preamble;

• Rx reads the Tx preamble. Then, Rx selects the mode and the undersampling factor.
The extracted samples and index set are fed back to Tx along the with Rx preamble;

• Tx reads the Rx preamble. Then, Tx recovers the full data by using a MC algorithm.

Figure 2.3 – Message exchange and processing between Tx and Rx for the DDU and ECU
modes.
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Basically, the preambles contain information about the pre-defined mode selection
and undersampling factor, as described in Table 2.1. In Tx preamble a sequence of bits A = [A1,
A2, A3] is used to choose between the DDU and ECU modes. A third mode, namely, full mode,
is also covered, which coincides with the standard feedback scheme. The Rx preamble contains
a sequence of bits B = [B1, B2, B3] to inform Tx what mode is in use. The bits A1 and B1 are
reserved for extra modes and possible future implementations.

Note that the main difference between DDU and ECU modes is associated with
the type of feedback data in Figure 2.4. Parameter T means the forward data time, Tf means
the feedback data time, Tus is the time needed to begin the undersampling, τ is the total
transmission interval, TDDU and TECU stand for the data transmission time in DDU and ECU
modes, respectively. In the DDU mode, the feedback data is the training sequence. Note that
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in the DDU mode the Rx does not need to wait the reception of the entire incoming signal. On
the other hand, in the ECU mode, the feedback data is the estimated channel. Thus, the Rx
needs to wait the reception of the entire incoming signal to estimate the channel. Therefore,
TDDU ≥ TECU.

Table 2.1 – Description of the Tx and Rx preamble.
Bits Downlink Bits Uplink

A1 A2 A3 Tx preamble B1 B2 B3 Rx preamble
0 0 Full Mode - Defines that either DDU,

ECU or full-CSI feedback (baseline)
can be chosen, Rx selects the mode of
operation.

0 0 Full Mode - Rx selects
whether undersampling is
used or not.

0 1 DDU mode - Direct data undersam-
pling, Tus is the time required for trig-
gering the undersampling operation,
i.e. the minimum value of T corre-
sponds to the time required to read the
preamble that defines the mode of op-
eration.

0 1 DDU mode - Direct data
undersampling.

1 0 ECU mode - Estimated channel under-
sampling.

1 0 ECU mode - Estimated
channel undersampling.

Source: Created by the author.

Figure 2.4 – Difference between DDU and ECU at the time.
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Remark 1 The DDU mode has low computational complexity, low latency, and low energy

consumption compared to the ECU mode, since it does not estimate the channel. If a full-duplex

capability is available, that is more likely to be beneficial in the wireless backhaul scenario [2],

Rx can feedback data to Tx while it is still receiving the signal Y. Thus, Tx can obtain CSI more

quickly and possibly use the time resources more efficiently by transmitting more data in the

same data transmission interval, as illustrated in Figure 2.4. Besides, the computational burden

associated with channel estimation is moved to the Tx side, which means that Rx saves energy

as it does not need to estimate the channel H. On the other hand, according to Equation (2.1),
Y contains an additive white noise term, which turns it a full-rank matrix. Even after a low-

rank approximation within the matrix completion procedure, the reconstructed matrix Ŷ is still

corrupted by the additive noise in the DDU mode, which is adverse for channel estimation. In

other words, while the ECU estimates the channel directly from Y and reconstructs Ĥ, which

is already a low-rank matrix, DDU makes use of low-rank approximations of Y to estimate the

channel from a corrupted version of Y.

Remark 2 The advantages and disadvantages of the two data feedback modes imply a tradeoff

between DDU and ECU. It would be interesting to have a criterion to switch between modes

whenever one is more advantageous than the other. For example, in a scenario of very high

signal-to-noise ratio (SNR), DDU is no longer affected by noise and it would perform close

to ECU (the simulation results confirm this claim). If the NMSE gap between both schemes is

tolerable DDU might be preferable due to the considerable energy saving compared to ECU.

In what follows, we illustrate the framework with two application examples: wireless
backhauling and a clustered MU scenario.

2.4 Application Scenarios

In this section, we apply the proposed framework in two relevant scenarios. The first
is a new problem imposed in massive MIMO systems with heterogeneous networks supporting
a macro-cell layer with additional small cells, where wireless backhauling communications
take place between the macro-BS and a micro-BS. The second one is related to MU channel
estimation in a clustered MU massive MIMO system.

2.4.1 Application Scenario 1: Wireless backhauling

In dense cell deployments, wired backhaul becomes expensive or even infeasible
due to the large number of network nodes to be connected. As an alternative to overcome this
limitation, millimeter-wave wireless backhaul, e.g., in 60 GHz, can be adopted [73, 74, 75].

Here we assume a wireless backhaul system in which Tx and Rx are represented
by a macro-BS and micro-BS, respectively. The Tx and Rx are equipped with massive MIMO
arrays and operate in FDD. Figure 2.5 illustrates an application of the framework proposed in
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Section 2.3.5 to the wireless backhauling scenario. In addition, we assume a small number of
dominant scatterers and local scattering is limited. By the superposition of a few reflected signals,
the channel matrix has low-rank and follows the model expressed in Equation (2.2). This is a
typical assumption for channels in mmWave bands [76], i.e., there is a LOS path and only a few
number of multipaths.

Figure 2.5 – Framework application in the wireless backhauling scenario. Two types of feedback
data for the framework are presented. Tx is the macro-BS and Rx can be one or
more micro-BSs equipped with massive MIMO arrays.
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2.4.2 Application Scenario 2: MU

Consider a multi-UEs scenario where the UEs are spread across Cl spatial regions
or clusters. We define a cluster as the association of the channel matrix with a spatial subspace.
That is, UEs inside a cluster have approximately the same spatial channel. It worth mentioning
that such clustered MU scenario can be exploited by scheduling and linear precoding schemes
[16, 77, 78].

More specifically, let Tx be a massive BS equipped with MT antennas, and let Rx
denote K UEs equipped with MR antennas each. Figure 2.6 shows the systemic view on how
the proposed feedback and reconstruction framework can be applied in the MU scenario. We
assume a poor scattering scenario with P specular multipaths, where P � MT . Also, UEs are
positioned close to one another in a way that UE clusters, which depend on the cluster spreading,
can be formed. The UEs are spatially close to one another in a dense hot-spot area, and, thus, are
grouped in a cluster.

Different from the wireless backhauling scenario, in the MU scenario the feedback
data are spread over UE clusters. Note that each UE can operate in any mode. Thus, in order to
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Figure 2.6 – This figure presents an application scenario in the MU scenario where each UE has
a single (but not limited to) antenna. UEs are assumed to be close to one another
(clustered UEs).
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apply MC, BS folds all the received feedback data as a global matrix. We consider that the BS
can separate each UE perfectly (i.e. no intra-cell interference). For building the global channel
matrix, we follow the channel model described in Equation (2.2) so that

HT = [HT
1,H

T
2, . . .,H

T
ClK]

T ∈ CClKMR×MT .

The global received signal matrix is then given by

Y = [YT
1, Y

T
2, . . ., Y

T
ClK]

T ∈ CClKMR×NT

which concatenates the contributions from all UEs.
We consider that each cluster of UEs is far from the BS as showed in Figure 2.6,

while the scattering cluster is near to the UEs. Thereby, the following model is adopted to
describe the k-th UE channel matrix:

Hk =
1
√
P

P∑
p=1

αpar(θp+ κk)aTt (ϑp), (2.29)
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where κk represents the k-th UE angular deviation from the mean angle θp and is modeled as a
zero-mean Gaussian random variable with variance σ2

a for each UE. The UEs resultant channels
in each cluster are correlated, implying a low-rank global channel matrix [16, 19, 20].

Remark 3 In MU massive MIMO, considering the physical finite scattering channel model of

Equation (2.29), H has a number of degrees of freedom r(MT +MR+ K− r) where r is the rank of

HT , r =min{KMR, ClP, MT }.

Since MT and MRK are larger than P, this model characterizes the small number of
scattering propagation paths, where the scattering appear in groups (called clusters) with similar
delays, AoAs and AoDs yielding an effective limited number of active directions, even if the
number of physical objects is large [12]. Also, for other channel models, well known in the
literature, such as the one ring model for uniform linear arrays (ULAs) [15], the limited number
of scattering is observed, yielding a rank-deficient channel matrix [19].

For ECU, the matrix Q contains just a fraction of the matrix ĤT . The BS can find H
by solving the following problem:

ĤT =argmin
X
‖X‖∗

s.t.: PΩ(X) = PΩ(Q). (2.30)

In the DDU scheme, we exploit the low-rank structure of each compound channel
matrix. In this mode, upon reception of the feedback information, the matrix Q contains just a
fraction of the full matrix Y. The reconstruction of received signal matrix Ŷ at the BS can be
found by solving the relaxed problem:

Ŷ =argmin
X
‖X‖∗

s.t.: ‖PΩ(X−Q)‖2 ≤ ε, (2.31)

where the orthogonal projection PΩ(X−Q) is defined in the same way as in Equation (2.11).
After the reconstruction of Y, the BS can apply the channel estimator to recover H.

2.5 Simulation Results

In this section, we divide our simulations according to the two application examples
discussed in the previous section. The reconstruction error of the full data matrix (DDU) is
evaluated at a given Monte Carlo run, by computing the NMSE defined as ‖Y− Ŷ‖2F/‖Y‖

2
F ,

where Ŷ is an estimate of the full data matrix. The NMSE results represent an average over 100
Monte Carlo runs, and are plotted as a function of the factor m. In this simulation, we assume
the Tx is equipped with a ULA. A very accurate reconstruction is assumed when the NMSE
is around 10−4 [39]. Performance evaluation are based on average NMSE versus SNR plots,
NMSE versus undersampling factor m plots, BER versus SNR plots, and goodput (bit/s/Hz)
versus SNR plots obtained by means of Monte Carlo runs.
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Furthermore, the ECU scheme considers a MMSE channel estimator [79]. The
transmitted symbols are mapped into the binary phase shift keying (BPSK) constellation and
NT = MT . The estimated channel NMSE is calculated as: ‖H− Ĥ‖2F/‖H‖

2
F, in which Ĥ is given

by the MMSE estimator. The simulation results presented in this thesis are restricted to square
dimensions in the target matrix. The reason for assuming square dimensions is because the MC
technique always works well under square matrices in our simulations.

In this thesis, the motivation is to use the MC technique and the algorithms presented
in the literature in the proposed framework (see Figure 2.2). Since the main differences in the
algorithms are the formulation for the objective functions, we briefly describe them under the
optimization variable X and the constrained undersampling to PΩ(X) = PΩ(Q). For the case
which noise is present, the constraint follows PΩ(Q) = PΩ(H)+ PΩ(N).

In singular value thresholding (SVT) algorithm, the idea is to use the singular value
shrinkage operator [80] based on Uzawa’s algorithm [81]. The objective function is written as:

Q̂ = argmin
X

τ1‖X‖∗+
1
2
‖X‖2F, (2.32)

where τ1 is the singular value thresholding. This algorithm is based on SVD with thresholding.
The fixed point continuation (FPC) algorithm described in [82] uses the connections

with CS, under the vectorized version of matrix to solve the Lagrangian version of nuclear norm
with the objective function written as follows:

Q̂ = argmin
X

λ1‖X‖∗+
1
2
‖A(X)− b ‖22, (2.33)

for some λ1 > 0, where A : Rn×n 7→ R1×n2
is the matrix corresponding to the linear map A in a

vector, A(vec{X}) = b is the projection of X onto the set of indices in Ω, where b ∈ R1×2n, and
vec is vectorizing operator.

The grassman rank-one update subspace estimation (Grouse) is an algorithm based
on subspace identification and tracking [83]. It can be seen as a similar algorithm for the spectral
techniques presented in [39] with links for alternated minimization in [84]. Also, it can be
understood as an adaptation of an incremental gradient procedure to update a QR or SVD
decomposition, which the objective function is written as:

Q̂ = argmin
UΞ
‖UΞ − PΩ(Q)‖2, (2.34)

where Ξ are the weights and U is any matrix whose columns spans Q. Thus, given a PΩ(Q), we
try to construct matrices U and ΞΞΞ so that U is unitary and UΞΞΞ ≈Q. The main difference to [39]
is that the Grouse optimizes PΩ(Q) one column-by-column.

Furthermore, the objective function of the non-convex algorithm (NCon) is written
as:

Q̂ = argmin
X
ω1‖X‖p∗, (2.35)

where ‖ · ‖p∗ is a nuclear norm minimization under a penalization p, meaning that p equals zero
for rank and p = 1 for nuclear norm (convex). The ω1 is a cooling parameter. The idea is use a
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fractional value of p. The author shows an iterative solution to find this parameter by a cooling
technique shown in [85]. The cooling algorithm consists of two iterative loops: the first solves
the problem in the unconstrained form for a fixed ω1, and the second reduces the value of ω1.

The fast numerical hard threshold algorithm (FHT) and FST are fast algorithms
based on iterative hard and soft thresholding. They are similar to the proximal algorithms in [86]
targeting low-rank matrices and are characterized by fast converge. In the FHT algorithm, the
objective function is written as:

Ŷ = argmin
X

ω1 rank(X), (2.36)

and for the FST algorithm, the objective function is written as:

Ŷ = argmin
X

ω1‖(X)‖∗. (2.37)

For the unconstrained nuclear norm minimization problem using minimization split
bregman (MSB) algorithm in [82], the objective function is written as:

Ŷ = argmin
X

ω1‖X‖∗+η1/2‖X− PΩ(Q)−Be‖
2
2, (2.38)

where Be are the Bregman relaxation variables and η1 is a regularization parameter in MSB.
We set all these algorithms described above to have a tolerance regarding the singular

values error is equal to 10−5, and let the algorithms to run 500 iterations. Also, we assume that
the rank is known and all algorithms have access to this information. For the SVT [80], parameter
τ1 = 5

√
KMRMT, with stepsize equals 1.2(

m
MT KMR

) . In the Grouse [83], the stepsize is equal 0.1. In

FPC [82], λ1 = 0.01, and MSB [82] the regularization parameter ω1 = η1 = 0.001. In FHT, FST
and NCon [87] the parameter ω1 is initialized with = 0.7max(PΩ(Q)) and updated by cooling
algorithm iteratively. Furthermore, the NCon is chosen for the most simulations due to show a
better performance under the NMSE measure. The main Matlab codes can be found in [88, 89].

Remark 4 With relation to the use of these algorithms, we have adapted some of them to

solve a general complex matrix set. The algorithms SVT, Grouse, FPC and spectral matrix

completion (OptSpace) are originally proposed targeting real-valued matrices. Therefore, to use

the aforementioned algorithms in complex-valued matrices, we split the MC reconstruction into

two parts. At first, we apply MC on the real part, and after we treat the imaginary part as real

one.

2.5.1 Wireless Backhauling Scenario

Consider a system with MT = MR, where Rx is equipped with a ULA. Figure 2.7
describes a street scenario (e.g., wireless backhauling between a macro and a micro-BS). We
consider a street with 10 meters width and 100 meters length. We assume P=5, which means that
the channel matrix rank is equal to 5. The fading amplitude αp in Equation (2.2) is calculated
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using the path loss (PL) model adopted in [76, c.f. Table 1]. More specifically, it can be calculated
as PL= 16π2( Rξ )

pe for a given range distance R, wavelength ξ, and PL exponent n. The end-to-end
distance is R = 100 meters, a carrier frequency of 60 GHz, and PL exponent pe= 2.5, representing
a LOS scenario. The channel is composed by the sum of a LOS path and four non-LOS paths
with one and two reflections according to Figure 2.7.

Figure 2.7 – Wireless backhaul scenario.

Source: Created by the author.

The simulation results are shown firstly considering that the channel matrix is
perfectly known. In the next subsection, we present the simulation results considering the
estimated channel. In Figures 2.8 to 2.11, we evaluate the cases when MT = MR = 32 and
MT = MR = 64 antennas in ECU and DDU modes. Firstly, we evaluate the performance of all
algorithms. In the end, we show the performance for the NCon algorithm. The relation between
NMSE and number of antennas is presented in Figure 2.12. We evaluate the robustness of
proposed MC approach considering the MMSE estimator in Figure 2.13 as a function of the
antennas number. In the end, we provide in Figure 2.14 and Figure 2.15 the curves evaluating
the BER and goodput with the MRT precoder for the case with MT = MR = 32.

2.5.2 ECU Recovery with Perfect Channel Knowledge

First, we consider the ECU under perfect channel knowledge at Rx and investigate the
performance of the channel reconstruction. Figure 2.8 depicts the performance for MT = MR = 32
with ECU under a undersampling of factor m ∈ [0.2; 0.6]. Note that, in this scenario the FHT,
SVT, FPC, OptSpace, and Grouse have low performance in terms of NMSE. The OptSpace for
m = 0.5 yields an NMSE performance around 10−2. As we have described in Remark 4, these
algorithms are not developed to work with complex-valued matrices. The algorithms NCon,
MSB and FST can achieve perfect recovery for m = 0.35, 0.4, and m = 0.5, respectively.

Figure 2.9 shows the ECU performance when m ∈ [0.05; 0.3] and the number of
antennas is increased to MT = MR = 64. As the preliminary simulation results presented in
Figure 2.8, the algorithms FHT, SVT, OptSpace, FPC, and Grouse show poor performance
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Figure 2.8 – Performance of NMSE results with ECU, MT = MR = 32 for all algorithms.
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compared to the FST, NCon, and MSB in most of the results. Note that OptSpace and MSB
begin at m = 0.1 since there was no output result with smaller values. In general, we can see
that the matrix recovery accuracy improves as m increases. However, we can see that NCon
algorithm has better performance than the others.

2.5.3 DDU Recovery with Perfect Channel Knowledge

Here, DDU is evaluated under perfect channel knowledge at the Tx. In the next
section, both ECU and DDU modes will be compared under imperfect channel knowledge. We
investigate the performance of the channel reconstruction with MT = MR = 32 and MT = MR = 64.
In DDU, the simulation results are shown using only the NCon and FST algorithms, since our
preliminarily results show that the other algorithms have poor performance. Figures 2.10 and 2.11
compare the performance for different undersampling factor m. Note that in both figures the
algorithms have shown poor performance when SNR equals 10 dB. However, when the SNR is
increased the NMSE is improved.

Finally, Figure 2.12 presents the NMSE performance while varying number of
antennas using the NCon algorithm. We compare the ECU and DDU modes assuming SNR
equals 30 dB. From Figure 2.12, we can see that the performance is improving while increasing
the number of antennas, where the ECU always has better performance than DDU, since later
mode’s performance is limited by noise. Note that when m = 0.3, only 48 antennas are enough
to achieve perfect reconstruction.
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Figure 2.9 – NMSE results for ECU with MT = MR = 64 for all algorithms.
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Figure 2.10 – Performance of NMSE results with DDU, MT = MR = 32 for m ∈ [0.1; 0.7].
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Figure 2.11 – Performance of NMSE results with DDU, MT = MR = 64 for m ∈ [0.1; 0.7].
(a) NCon
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Figure 2.12 – NMSE performance for different antennas number for m ∈ {0.1, 0.2, 0.3} for
ECU and DDU with SNR equals 30 dB.
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2.5.4 ECU and DDU Recovery with Imperfect Channel Knowledge

In the next simulation results, we consider the MMSE estimator and NCon algorithm.
In Figure 2.13, the NMSE performance is evaluated. Compared to the Figure 2.12, these simula-
tion results have showed a small performance loss for all m. For example, when MT = MR = 48,
the NMSE in Figure 2.13 is equal to 10−4, as compared to 10−4.5 in Figure 2.12, which indicates
a performance loss of 11% for DDU mode. More simulation results are shown in Table 2.2 for
MT = MR ∈ {32, 64}, m ∈ {0.1, . . ., 0.7}, and SNR ∈ {10, 20, 30, 40} dB. In this table, the data
named MMSE means a lower bound since we are assuming conventional feedback i.e., m = 1.

Figure 2.13 – NMSE performance for different antennas number for m ∈ {0.1, 0.2, 0.3} for
ECU and DDU with imperfect channel knowledge.
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In Figure 2.14 and DDU in Figure 2.15, the BER evaluation considering the MRT
is provided for MT = MR = 32 with ECU. Assuming that there is no channel coding at the
transmitter, the channel is constant during a transmission block, and the noise is AWGN, the
block error rate (BLER) can be expressed as a function of the BER of Figure 2.14 (a) following
the formulation in [90, c.f. Chapter 3]:

BLER = 1−(1−BER)s, (2.39)

where s is the number of transmitted symbols. In Figure 2.14 (b), we evaluate the goodput
performance based on the BLER [91, 92] for a different fraction of estimated channel: where
goodput= s(1−BLER). The symbols are mapped in BPSK modulation, assuming s= 100 symbols
per frame.

Figure 2.14 (a) shows the BER performance comparing different undersampling
factors. Note that the full-performance (m = 1) is reached when m = 0.3. Hence, since in
Figure 2.14 (b) the goodput is shown with respect to the BER, m = 0.3 and SNR equal to 14 dB
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Table 2.2 – Performance of NMSE results with ECU and DDU , MT = MR = 32 and 64 for NCon
algorithm.

MT = MR = 32
SNR (dB) m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 MMSE

10 NMSE-ECU 10−0.5 10−1.5 10−2 10−2 10−2 10−2 10−2
10−2

NMSE-DDU 10−0.5 10−1 10−1 10−1 10−1 10−1 10−1

20 NMSE-ECU 10−0.5 10−2 10−3 10−3.5 10−3.5 10−3.5 10−3.5
10−3.5

NMSE-DDU 10−1 10−1.5 10−2 10−2.5 10−3 10−3 10−3

30 NMSE-ECU 10−0.5 10−2 10−3 10−4.5 10−4.5 10−5 10−5
10−5.5

NMSE-DDU 10−1 10−1.5 10−3 10−4 10−4.5 10−4.5 10−5

40 NMSE-ECU 10−0.5 10−2 10−3 10−5.5 10−5.5 10−6 10−6
10−6.5

NMSE-DDU 10−1 10−1.5 10−3 10−5 10−5.5 10−6 10−6

MT = MR = 64
SNR (dB) m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 MMSE

10 NMSE-ECU 10−1 10−2 10−2 10−2 10−2 10−2 10−2
10−2

NMSE-DDU 10−0.5 10−1 10−1 10−1 10−1 10−1 10−1

20 NMSE-ECU 10−1 10−3 10−3 10−4 10−4 10−4 10−4
10−4

NMSE-DDU 10−0.5 10−2 10−2.5 10−2.5 10−3 10−3 10−3.1

30 NMSE-ECU 10−1 10−3.5 10−5 10−5 10−5.5 10−5.5 10−5.5
10−6

NMSE-DDU 10−1 10−3.5 10−4.5 10−4. 10−5 10−5 10−5.5

40 NMSE-ECU 10−1 10−4 10−5 10−6 10−6.5 10−6.5 10−6.5
10−7.5

NMSE-ECU 10−1 10−3.5 10−5 10−6 10−6.5 10−6.5 10−6.5

Source: Created by the author.

are enough for obtain full-performance for the MRT. This means that the MRT is robust against
the reconstruction error. Notice that the low goodput performance for SNR values below 8 dB is
due to the high BLER values. In Figure 2.15, we show the simulation results of DDU. In this
mode, we can see that having m = 0.3 is enough to reach the full-performance, i.e., when m = 1.

Figure 2.14 – Performance MT = MR = 32 with ECU.
(a) BER versus SNR results.
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(b) Goodput versus SNR.
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Figure 2.15 – Performance MT = MR = 32 with DDU.
(a) BER versus SNR results.
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(b) Goodput versus SNR.
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2.5.5 MU Scenario

In this section, we evaluate the performance of the proposed schemes, considering
the Tx as BS equipped with MR = 100 and the Rx as K UEs with the same number MR of
antennas. For instance, assuming Cl = 2, Fig. 2.6 means that we are considering two independent
clusters of multi-UEs. We assume P = 1, and the angular deviation κk of each UE has a variance
σ2

a = 5.

Figure 2.16 – Performance for the channel recovery with ECU for UE with MR = 100.
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In the first simulation, we consider an example in a scenario to future implementa-
tions (for instance, a mmWave communication), in which, the UE and BS have the same number
of antennas. In this case, we generate the correlated channel with K = Cl = 1, yields rank one.
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Figure 2.16 shows the performance of the ECU to MT = MR = 100. Note that ECU converges
with m ≤ 0.1 to perfect recovery, saving more than 90% of feedback information. In this case,
the NCon algorithm has better performance results to m = 0.1.

Figure 2.17 – Performance for the channel recovery with the ECU, K = 5, MR = 10, and Cl = 2
(rank=2).
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Figure 2.17, we consider a scenario with K = 5, MR = 10 and Cl = 2 (rank=2). The
performance results showed that ECU can recover the channel matrix with perfect reconstruction
in m = 0.1, i.e., less of 10% of the feedback when NCon is used. Note that compared to
Figure 2.16, the performance is worse for m = 1 for both algorithms due to rank is equal to 2.
However, the NCon achieves perfect reconstruction. FST can achieve the perfect reconstruction
with m = 0.25.

Figure 2.18, we compare the performances of ECU and DDU. In this case, we limit
the results to FST. Observe that DDU has a reasonable recovery (NMSE=10−3) requiring at least
SNR ≥ 20 dB and m = 0.3. Specifically, it achieves the perfect reconstruction with SNR = 40 dB
and m = 0.35.

In order to evaluate the performance and robustness of the proposed framework
under a practical scenario, we consider a controlled error in the CSI and the MRT precoder [48].
The imperfect CSI is modeled as Ĥ = H+E, where E ≈ N(0, σ2

e ) and σ2
e ∈ {0.1, 0.05, 0.01}.

Firstly, let us show the results for the imperfect CSI in Figure 2.19. Under a lower level of
channel estimation error (σ2

e = 0.01), the performance is the same of the perfect channel. Under
σ2

e ∈ {0.05, 0.1}, the performance losses when BER is equal to 10−2 become 2 dB and 5 dB,
respectively.

In Figure 2.20, we show the BER performance of MRT applying ECU with K = 10,
MR = 1 and Cl = 10 (rank=10). We provide simulation results to m ∈ {0.1, 0.2, 0.3, 1}. The
performance of the algorithm to very accurate reconstruction is achieved with m = 0.3 which is
when the performance of the proposed framework with MRT is the same as that of an accurate
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Figure 2.18 – Performance for the recovery with DDU and ECU using FST, K = 20, MR = 1,
and Cl = 5 (rank=5).
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Figure 2.19 – Performance for the MRT precoding with estimated channel error, 10 UE, MR = 1,
and Cl = 10 (rank=10).
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CSI. When m ∈ {0.1, 0.2} the performance loss compared to the full channel feedback is equal
to 2.5 dB and 17.5 dB for a BER of 10−3, respectively.

Figure 2.20 – Average BER performance for the channel recovery with ECU, K = 10, MR = 1,
and Cl = 10 (rank=10).
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Following the same evaluation of the last scenario, the BLER in Equation (2.39), in
Figure 2.21, we show the goodput based on the BLER for different undersampling factors. The

Figure 2.21 – Comparison for the goodput, 10 UE, MR = 1, and Cl = 10 (rank=10).
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symbols are mapped onto a BPSK constellation, and s = 100 symbols per frame is assumed. At
m = 0.1, the goodput is almost zero due to high BLER. At m = 0.2, we can achieve full goodput
only with SNR=10 dB. Furthermore, when m = 0.3, the performance results are as that of full
feedback channel m = 1.



Chapter 2. Matrix Completion as a Solution for a Feedback Channel Problem in Massive MIMO Systems 56

As we can see in Figure 2.20, m = 0.3 is enough to achieve full performance. Thus,
since Figure 2.20 is related to the goodput of Figure 2.21, we conclude that in this scenario, the
proposed CSI reconstruction method achieves the ideal goodput performance with only m = 0.3,
which is a remarkable result.

Considering the Figure 2.19 and 2.20, we evaluate the proposed framework with
ECU, under imperfect CSI, applying MRT with m ∈ {0.1, 0.2, 0.3, 0.4}. The results are shown
in Figure 2.22 and compared to the perfect CSI (σ2

e = 0). With m = 0.3, the BER performance
is the same as the estimated channel error σ2

e = 0.01. Thereby, even under imperfect CSI, 70%
of feedback data is saved. When σ2

e = 0.05, the estimation error is increased, and thereby, the
performance loss is about 2 dB. For m = 0.4, the loss of performance is around 1 dB. For m = 0.2,
the average BER performance has the same loss as in Figure 2.19 until σ2

e = 0.01. When the
error of estimation is increased to σ2

e = 0.05, the loss of performance is around 3 dB. Thereby,
m = 0.2 is enough to the average BER performance be close to the case on full-feedback as
showed the Figure 2.19.

Figure 2.22 – Average performance for the BER with estimated channel error, K = 10, MR = 1,
and Cl = 10 (rank=10).
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2.6 Summary

This chapter pointed out some fundamentals of MC and an application on massive
MIMO. We proposed the framework to channel feedback and reconstruction in the massive
MIMO systems that are important to the context of this thesis. The chapter contains original
contributions which are the development of two application cases. Then, we have provided
results suggesting that matrix completion can be used in FDD-based massive MIMO systems
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to reduce the amount of feedback information to be sent to the BS into a low rank channel.
Our numerical results have shown that matrix completion algorithms can achieve an accurate
recovery of the downlink channel with a small feedback overhead. Consequently, the proposed
scheme cope with limited-capacity uplink feedback channels. Due to undersampling at the UEs,
energy consumption can be reduced to lower levels compared with the conventional full-rate
sampling case. These benefits are possible thanks to the low-rank structure of the channel matrix,
which happens in a massive MIMO scenario characterized by finite scattering propagation.

In the next chapter, we propose a novel precoding scheme based on knowledge of
the CSI at the BS.
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3 LOW-COMPLEXITY HEURISTICS TO BEAM SELECTION AND RATE ADAP-
TATION

In this chapter, we propose a novel formulation for a precoder design considering a practical
rate assignment based on the MCS of the LTE table, beam selection, and power optimization,

that exploits the geometric sparsity of the MU massive MIMO channel.

3.1 Motivation

In massive MIMO, the systems have potential to achieve high data rates and its
robustness against interference, fading, hardware imperfections and failure [4]. When the number
of antennas grows towards infinity, the effect of additive noise decreases, as well as the required
transmitted energy per bit [5]. However, when the number of BS antennas is moderate, interfer-
ence among MUs appears and has to be effectively handled. Under the MU perspective, these
systems have a huge potential to decrease power consumption and to improve the communi-
cation system performance [9]. Transmit beamforming is one of the techniques that achieves
enhanced performance in MU massive MIMO systems, determining the complex antenna gains
that optimize some performance criterion, e.g., sum rate.

Recent studies have demonstrated that, as the spatial dimension increases, physical
MIMO channels exhibit poor scattering [11, 18, 22, 23]. This particularly is the case in macro-
cell urban environments, where the propagation links between the UE and BS are often blocked
by large buildings or when clusters of multipaths are shared by the same UEs [93, 94, 95].

In this context, it is important to develop transmit beamforming (or precoder) in the
sparse scenarios when the number of BS antennas is large and the interference among MU is
one bottleneck of the system.

3.2 Main Contributions

Assuming knowledge of the beamspace channel, the beamspace precoder consists
of selecting and optimizing the power of the beams steered to the MU in order to maximize
the SINR at the UE. In the analysis, we consider two different channel models. Furthermore,
we propose low-complexity heuristics to beam selection and rate adaptation in sparse massive
MIMO system and the contributions are summarized as follows:

• We propose a precoder design considering a practical rate assignment (based on
the MCS of the LTE table), beam selection, and power optimization that exploits
the geometric sparsity of the MU massive MIMO channel using its beamspace
representation. We show an optimal solution to capacity following the MRT principle
combined with beam selection, called MRT with selection.
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• We design a new heuristic to simplify the beam selection and power optimization
procedure based on Lagrangean relaxation [96].

• We show that, for a sparse channel, performance improvements can be achieved by
selecting the proper beams followed by MRT beamforming on these beams. In the
end, we propose three additional simple heuristics with low-complexity to beam
selection in the beamspace domain. For these heuristics, we solve the problem in two
steps: i) selection of beams based on the MRT, ii) power allocation per UE. The first
heuristic uses MRT as an initial point and removes beams whose removal increases
the SINR. The second heuristic sequentially assigns single beams to UEs using a
sub-optimal solution provided by the Munkres algorithm [97]. The third heuristic
takes the previous heuristic as an initial point, then allocates more beams, provided
that this allocation improves the SINR. We show that adding and/or removing some
beams improves the system performance. Simulation results show that our optimal
solution can achieve a better performance than the ZFBF scheme. Besides, compared
to the linear MRT precoder, the proposed low-complexity heuristics improve the
performance under a scenario with channel sparsity.

3.2.1 Organization

This chapter is organized as follows: In Section 3.3, some preliminaries on transmit
beamforming are presented. Section 3.4 presents the system model and the main assumptions.
Section 3.5 presents the problem formulation and the proposed heuristics. In Section 3.7, simula-
tions results are shown. Finally, Section 3.8 brings some concluding remarks and perspectives.

3.3 Background

Transmit beamforming structures have been analyzed by the authors of [9]. In
particular, they show that optimal beamforming can be seen as a tradeoff between MRT, which is
optimal in the absence of interference, and ZFBF, that cancels the multi-user interference (MUI).
In this latter case, the ZFBF implies a significant computational complexity compared to the
MRT [9].

In [98], classical beamforming is defined as a single steering vector of interest where
the aim is to ensure that of the inner product between beamforming weight vector and the
steering vectors of interest be large, whereas the inner product of the beamforming weight
vector and all other steering vectors is small, i.e., to mitigate interference. It is applied to both
receive beamforming and unicast transmit beamforming for a single receiver. For MU transmit
beamforming in the downlink case, when the transmitter has multiple antennas, multiple transmit
beamforming weight vectors are designed to carry different cochannel unicast transmissions,
each meant to reach the receiver of different UE. These vectors are created to balance the
interference between different transmissions. This concept was introduced in [99], where some
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downlink beamforming techniques have been developed. In [100], convex optimization methods
are introduced to solve the problem.

Along the last years, several works have investigated precoding schemes, as in [95,
101, 102, 103, 104]. In [95], the sparsity property of the MU channel matrix is exploited to obtain
a sparse approximate inverse. However, this scheme still requires many operations to compute a
matrix inverse. A way to lower complexity is proposed in [101], where the authors propose a
beam domain multiple access (BDMA) transmission scheme in which MU are served by different
beams. These beams are the eigenvectors of the channel matrix. The BDMA algorithm exploits
the channel coupling matrices of a stochastic MIMO channel model [105]. When considering
the so-called virtual channel [106], the matrices collecting the eigenvectors are discrete fourier
transform (DFT) matrices. In this case, the beams are fixed and do not depend on the channel.
Although BDMA is near optimal, it does not consider the sparsity of the beam domain channel
and does not allow to schedule more than one UE per transmitting beam. In [102], a low-
complexity transceiver design was proposed, namely semi-random beam pairing (SRBP), for
sparse multipath massive MIMO channels [106]. The idea is to transmit simultaneous data
streams, and in the end, to decouple them using successive interference cancellation (SIC).
However, it is well known that SIC can propagate errors, mainly if the number of streams is
large.

In the search for low complexity solutions, the authors in [103] proposed a precoder
design, based on the maximization of the minimum SINRs perceived by MUs, under an equal
quality of service (QoS) constraint. This max-min formulation leads to a quasi-convex optimiza-
tion problem that can be solved by a low complexity algorithm based on relaxation techniques.
One way to achieve maximum sum rate in a practical scenario is considering to joint optimize
MCSs and transmit beamforming [104, 107]. In these approaches, the rate adaptation consists
in assigning MCSs for MUs (for example, according to the 3rd Generation Partnership Project
(3GPP) LTE table provided in [72], c.f., Chap. 5). In general, this formulation leads to a MILP
problem. In most cases, it is impractical to real systems due to its high computational complexity.

3.4 System Model and Assumptions

In this section, we introduce the system model and some general assumptions for
two different channel models based on beam domain channel representation. Furthermore, we
address the beam selection problem.

3.4.1 General Definitions

Consider a downlink scenario composed of a single massive MIMO BS with MT

transmit antennas and K UEs, each one being equipped with a single antenna. We assume that all
UEs share the same time-frequency resource and that the BS has the knowledge of the channel.
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We model the received signal yk, with k ∈ {1, . . ., K}, at the kth UE as:

yk = hH
k

(
wkxk+

K∑
i,k

wixi

)
+nk, (3.1a)

= hH
k Wx+nk, k ∈ {1, . . ., K}, (3.1b)

where nk represents the additive noise at the receive antenna, which is complex Gaussian with
zero mean and variance σ2

n; hk ∈ C
MT×1 is the multiple-input-single-output (MISO) channel, and

wk ∈ C
MT×1 is the kth UE precoder.

Writing the emitted symbol vector as x =
[
x1 . . . xK

]T
, the precoder matrix W is

given by W =
[
w1 . . . wK

]
∈ CMT×K as in Equation (3.1b). The global received signal taking

into account all UEs is given by:

y =
[
y1 . . . yK

]T
=HHWx+n, (3.2)

where n =
[
n1 . . . nK

]T
∈ CK×1 is the global noise vector, and H =

[
h1 . . . hK

]
∈ CMT×K is

the channel matrix.
Following [21, 106, 108], the so-called virtual channel representation is written as:

hk = ATgk ∈ C
MT×1, (3.3)

where gk ∈ C
MT×1 is the beam domain channel vector of the virtual channel, AT ∈ C

MT×MT , is the
array steering matrix given by

AT =
[
aT (θ0) . . . aT (θMT−1)

]
∈ CMT×MT, (3.4)

which can be set up as a DFT matrix, is given by:

aT (θ) =
1
√
MT

[
1 e−j2πθ . . . e−j2πθ(MT−1)

]T
,

where θ = d sin(φ)
χ is the azimuth spatial frequency, ds is the antenna spacing and ξ is the wave-

length. The angle φ measures the angle between the impinging ray and the normal to the array.
Note that we assume the same array steering matrix AT for all UEs. This assumption reduces the
complexity of the model and it is known that the channel for each UE can be represented using
the same basis when MT is sufficiently large [15, 17, 18, 101].

Following [23, 109] the extension for a rectangular uniform planar array (UPA) using
the same DFT matrix for all UEs can be done. However, a Kronecker product is used to represent
the azimuth and elevation spatial frequencies in two dimensional arrays [23]. Furthermore, the
array structure does not affect the precoder design (based on beam selection). Consequently,
other bases and array structures can be used to represent the channel.

Rewriting Equation (3.1) with Equation (3.3), we obtain:

yk = gH
k AH

T wkxk+gH
k AH

T

K∑
i,k

(wixi)+nk, (3.5)
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so that the received signal for all UEs can be written as follows:

y =GHAH
T Wx+n, (3.6)

where G=
[
g1 . . . gK

]
∈ CMT×K . Considering unit-power uncorrelated symbols (E

{
xxH}

= IK)
the SINRk at the k-th UE can be expressed as:

SINRk =
|hH

k wk |
2

K∑
i,k
|hH

k wi |2+σ
2
n

. (3.7)

3.4.2 Independent and Identically Distributed Beam Domain Channel Model

Considered G generated as:

G = Σ� G̃, with G̃ ≈ CN(0, 1), (3.8)

where � is a Hadamard product. The sparsity of the channel model is described by the matrix
Σ ∈ MT × K whose elements are i.i.d. Bernoulli random distributed of parameter sp. The sparsity
level is the average number of zero elements of Σ and is equals χ = 1− sp. The non-zero entries
of gk can be modeled as Bernoulli random variables as in [21]. Since the distances between
the UE and the BS are larger than the distance between the antennas, the assumption of equal
probability of a non-vanishing path for each UE is reasonable. When the number of antennas
increases to a massive number, the channel composed by a low number of scatterers tends to be
sparse in the beam domain due to the fact that resolvable paths contribute less [22]. Thereby, the
sparse massive channel is well represented using the virtual channel model.

The parameter χ is introduced to describe the sparsity of the channel, and this is
defined as the non-zero probability of entries in the distinct virtual channel matrix. Following
[21], the entries of G are defined as random variables taking values from a complex normal
distribution CN(0, 1), i.e., the entries in the sparse virtual channel matrix under the above i.i.d.
assumption follows the Gaussian-Bernoulli distribution.

3.4.3 Geometric-Stochastic Beam Domain Channel Representation

Following [11, 23], in some scenarios (e.g., in mmWave) the multipath channel
consists of a sparse set of single-bounce components. In this context, the poor scattering effects
can result in the virtual angular domain with a sparse channel matrix representation [12, 18]. The
non-zero coefficients are related to the approximately disjoint subsets of paths and are modeled
as independent complex Gaussian random variables. The number of non-zero entries on gk

defines a fixed number of beams simultaneously used at the BS, and this quantity depends on the
sparsity level. Thereby, G is sparse with level equals χ and most of the power is concentrated in
a few dominants entries.
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Then, gk can be modeled as:

hk =

P∑
p=1

αk, paT (θk, p), (3.9)

gk = AH
T hk, (3.10)

where P is the number of scatterers (c.f. Fig. 3.1); aT (θk, p) represents the steering vector with
θ ∈ [−π, π] and αk, p represents the complex gain of path p, which follows a CN(0, 1) distribution.
Furthermore, following [11], we assume that the smallest elements in gk can be neglected.

3.4.4 Beam Selection

Considering the previous beam channel discussion in the last subsections, let us
define the selection vector as:

sk =
[
s1,k . . . sMT,k

]T
, (3.11)

where st,k ∈ {0, 1} defines the selection of transmit beam t for user k. However, in a more general
case, st,k may actually be considered as a “gain” and be a complex scalar. Then, the beamformer
can be written as:

wk = st,k ·aT (θ)

= st,k ·
1
√
MT

[
1 e−j2π·θMT . . . e−j2π(MT−1)θMT

]T

=

MT−1∑
t=0

st,kaT
(

t
MT −1

)
= AT

Tsk = ATsk.

(3.12)

Hence, the received signal in Equation (3.1) can be rewritten as:

yk = hH
k

(
wkxk+

K∑
i,k

wixi

)
+nk,

= gH
k AH

T

(
ATskxk+

K∑
i,k

ATsixi

)
+nk,

= gH
k

(
skxk+

K∑
i,k

sixi

)
+nk,

= gH
k Sx+nk ∀k,

(3.13)

where S =
[
s1 . . . sK

]
. The complete signal (3.2), can then be rewritten as:

y =GHSx+n, (3.14)

where the beam domain channel matrix can be expressed as G =
[
g1 . . . gK

]
.

To exemplify an application scenario, we could assume a low-number of scatterers,
where P � MT , some overlapped AoDs, and shared scatterers among UEs depending on the
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Figure 3.1 – Illustration of a scenario with a low-number of the scatterers. Note that some
scatterers are shared by different UEs.
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Source: Created by the author.

cluster distribution [21, 110] (see Figure 3.1). Then paths between BS and the UE are highly
correlated. It is a result of a small angular spread of the incoming/outgoing rays at the BS. For
instance, consider two simple cases following the virtual channel model with six uniformly
spaced virtual angles (six transmit antennas), three UEs and three multipath clusters. Remember
that in this model, the path gain of each UE is linked to the DFT matrix, describing the AoDs.
For simplicity, consider one to represent the complex path gains, and zero otherwise. Regarding
the virtual channel model, this scenario has the following structure:

GH =


1 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0

 .
In this interference-free case, there not exist any interference since GH has not

nonzero elements in the same columns. Furthermore, the sparsity level is measured by the ratio of
zero elements of GH over the total number of elements KMT , χ = 1−(4/(3 ·6)= 1−0.222) ≈ 78%.
Consider a second example with:

GH =


1 0 0 0 0 1
0 0 1 1 0 0
1 0 1 0 0 0

 .
Notice that interference exist since GH has more than one nonzero element in a columns 1 and 3.
In this example, the sparsity level is χ = 1−6/(3 ·6) = 1−0.333 ≈ 67%.
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3.5 Problem Formulation

In the classical MIMO formulation, transmit beamforming (or precoding) can be
optimized to maximize some performance utility metric, which is generally a function of the
SINR of the active UEs. [9, 111]. In general, two approaches can be taken: i) to optimize a
performance criterion for given transmit power constraints or ii) to minimize the total transmit
power under given SINR constraints. The first approach assumes the following transmit power
constraint:

tr
(
WHW

)
=

K∑
k=1
‖wk‖

2
2 = Po =

K∑
k=1

Pok.

Considering a per UE power constraint the optimization problem can be expressed
as

max
w1, ...,wK

f (SINR1, . . ., SINRK)

s.t.: ‖wk‖
2
2 = Pok, ∀k ∈ {1, . . ., K},

(3.15)

where f (SINR1, . . ., SINRK) is some suitable function of the SINRs and Pok is the power allo-
cated to the kth UE. A possible performance criterion is the sum rate:

sum rate =
K∑

k=1
log2(1+SINRk). (3.16)

The second optimization problem consists of minimizing the total transmit power
which can be formulated as:

min
w1, ...,wK

K∑
k=1
‖wk‖

2
2

s.t.: SINRk = γk.

(3.17)

The parameters γk are the SINRs that each UE shall be granted at the optimum of Equation (3.17),
using as little transmit power as possible. The γ-parameters can, for example, describe the SINR
required to achieve certain data rates. However, the optimization of UE transmit beamforming is
generally a nondeterministic polynomial-time (NP) hard problem [9, 98, 112].

Classical precoders can be easily expressed in the beam domain such as the MRT,
where the performance (sum rate) is limited due to MUI [113]. This MUI can be avoided thanks
to ZFBF [95, 111, 114], at the cost of some computational complexity (due to the number of
operations required to compute the pseudo-inverse O(K2M2

T )).
Moreover, these beamformers use full (instantaneous) channel knowledge, which

asks for large CSI feedback to the BS [115]. To alleviate this feedback load, it is possible to
transmit only on one beam. Hence, only second order statistics are needed, which are long-term
parameters that vary slowly compared to the complex gain [101, 105]. Using only the beam gain
knowledge from the channel covariance matrix, the authors of [101] propose to select a single
beam using the maximum beam gain. However, this limits the performance (rate) per UE.
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3.6 Proposed Solution

In this section, we propose a precoder design considering a practical rate assignment
(based on MCS, c.f. Table 3.1), beam selection, and power optimization per beam that assumes
the beam domain channel model for massive MIMO (c.f., Equations (3.8) and (3.10)). We design
a new heuristic to simplify the beam selection and power optimization procedure based on
Lagrangean relaxation [96]. Furthermore, we propose three other low-complexity heuristics.

3.6.1 General Definitions

Firstly, because gk is named beam domain channel, we call sk the virtual beamformer
or virtual precoder, since Equation (3.14) and Equation (3.2) have the same form. Based on this,
we rewrite the classical beamforming problem as a “virtual beamforming” problem.

The SINR in Equation (3.7) can be expressed in terms of gk and sk as:

SINRk =
|gH

k sk |2

K∑
i,k
|gH

k si |2+σ2
k

. (3.18)

Note that if SINRk is maximum,
K∑
i,k
|gH

k si |2 is minimum. The useful signal power is gH
k sksHk gk =��gH

k sk
��2, whereas the interference power is

∑
i,k

��gH
k si

��2. Thus, minimizing the MUI boils down
to:

min
∑
i

∑
i,k

|gH
k si |2

s.t.: ‖sk‖22 = Pok.
(3.19)

Starting from Equation (3.19), we can minimize the overall interference (over all
UEs k). Noting that |gksk |2 is a constant, minimizing

∑
k

∑
i,k
|gH

k si |2 is equivalent to minimizing

K∑
k

K∑
i
|gH

k si |2 and the MUI minimization problem can be rewritten as:

min
∑
i

∑
k

|gH
k si |2

s.t.: ‖sk‖22 = Pok, ∀k,
(3.20)

where min
∑
i

∑
k
|gH

k si |2 =min


GHS



2
F.

3.6.2 Optimal Solution via Beam Selection, Power Beam Optimization and Rate Assign-
ment: A MILP Formulation

In this subsection, the aim is to find an optimal solution to the performance achieved
by beam selection using integer linear programming (ILP) and MRT with selection. The problem
is mainly to find a feasible set of beams such that MRT on these beams delivers optimal
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performance. Moreover, we write the problem to maximize the sum rate using a set of discrete
rates, similarly to [104, 116], supported by a set of beam gains. For instance, in the practical
cellular communication systems such as LTE, the rate of each UE takes discrete rate values
determined by specific MCSs assigned to each UE. Corresponding to each MCS and rate, a
minimum received γ level is required. See Table 3.1 for more details.

Table 3.1 – Data rates and minimum received γ requirements of LTE systems [72, 104].
Index υ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data Rate δ 0 0.1523 0.2344 0.3770 0.6010 0.8770 1.1758 1.4766 1.9141 2.4063 2.7305 3.3223 3.9023 4.5234 5.1152 5.5574
SINR Level (dB) γ 0 -9.478 -6.658 -4.0898 -1.798 0.3999 2.424 4.489 6.367 8.456 10.266 12.218 14.122 15.849 17.786 19.809

The rate of the kth UE from the associated γ could be obtained by applying the
Shannon capacity formula: log2(1+ γk). However, these values are continuous and should
be discretized according to some criterion. In the simulations section, we will discuss the
discretization1. Due to this limitation, we assume that the Table 3.1 is a good point to start. Let
us express the rates δ as a set ∆, and γk as the γ achieved by index υ. We assume that the binary

variables s represent the selected beam and q the rate assignment, as follows:

st,k =


1, if the tth beam is assigned to the kth UE,

0, otherwise.

qk,υ =


1, if the UEk is using only the rate δυ,

0, otherwise.

The υ index corresponds to the rate in the set ∆ = {δ1, . . ., δυ} as defined in Table 3.1 ( c.f.,
log2(1+γk) = δυ for all γυ−1 ≤ γk < γυ, and υ ≥ 1).

We consider a constraint on the maximum tolerable level of MUI, termed hereafter
limited multi-user interference (LMUI)2. Thereby, the SINR in Equation (3.7) can be expressed
in terms of the LMUI as:

SINRk =
|gH

k wk |
2

LMUI+σ2
nk
. (3.21)

The SINR considering a minimal γ requirement for each UE can be formulated as follows:

SINRk ≥
∑
υ∈∆

γkqk,υ, (3.22)

where γk represents the minimum SINR. Note that the constraint in Equation (3.22) is non-
convex, even if the binary variables are relaxed to be continuous variables taking values in [0, 1].
Using Equation (3.21), we get an equivalent inequality as an alternative to Equation (3.22), as
follows:

|gH
k wk |

2 ≥
∑
υ∈∆

γkqk,υA, (3.23)

1 There is optimal values for that, but find them is out of scope in this work.
2 This limit is required for supporting a MCS and it is based on control the temperature-interference between

primary and secondary UEs into cognitive radio system in [117].
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where A = LMUI+σ2
nk and wk is the precoder for each k.

Our goal is to maximize the sum rate. Thus, the objective function can be written as:

max
q, s

∑
k

∑
υ

δυqk,υ, (3.24)

where
∑

k
∑
υ δυqk,υ represents the downlink sum rate with discretized rate values.
We must ensure that each UE chooses only one rate [104, 107] as follows:∑

υ∈∆

qk,υ ≤ 1, ∀k. (3.25)

Then, Equation (3.25) is a constraint on the binary variables for the kth UE be served with
only one-rate,

∑
υ∈∆ qk,υ = 1, or the kth UE be not served,

∑
υ∈∆ qk,υ = 0. Therefore, considering

Equations (3.23) to (3.25), the problem for selecting beams and discrete rates for MUs can be
expressed as a binary integer linear programming (BILP) problem, as follows:

max
q, s

∑
k

∑
υ

δυqk,υ (3.26a)

s.t.: |gH
k (wk � sk)|2 ≥

∑
υ∈∆

γk,υqk,υAk, ∀k (3.26b)∑
υ∈∆

qk,υ ≤ 1, ∀k (3.26c)

K∑
i,k

|gH
k (wi � si)|2 ≤ LMUI, ∀k (3.26d)

st,k ∈ {0, 1} ∀k (3.26e)

qk,υ ∈ {0, 1} ∀k. (3.26f)

The formulation consists in selecting discrete rates and beam gains such that the sum rate is
maximized for a given LMUI level. Notice that, in this proposal, the problem is to maximize the
sum rate of all UEs, assuming each achievable rate δυ is chosen from a predefined discrete rate
set ∆.

Furthermore, we assume that the precoder w = g where we aim to maximize the
MRT with selection. Then, Equation (3.26) can be written as:

max
q, s

∑
k

∑
υ

δυqk,υ (3.27a)

s.t.:
∑
υ∈∆

γk,υqk,υAk− |gH
k (gk � sk)|2 ≤ 0, ∀k (3.27b)∑

υ∈∆

qk,υ ≤ 1, ∀k (3.27c)

K∑
i,k

|gH
k (gi � si)|2 ≤ LMUI, ∀k (3.27d)

st,k ∈ {0, 1}, ∀k (3.27e)

qk,υ ∈ {0, 1}, ∀k. (3.27f)
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Note that the problem in Equation (3.27) is not assuming power constraints. As long as, the
beams (gk) do not change with the power, the variables s, q ∈ {0, 1} select the rates and beams,
respectively. Thereby, the problem should be solved in two steps. First, it selects beam gains and
rates and afterwards it optimizes the power. However, the optimal solution on performance is
not achieved because the power optimization is made in a second step and per UEs. Moreover,
optimally solving a BILP problem can incur into high computational complexity [118]. We
discuss the complexity analysis in Section 3.7.3.

Since the difficulty of solving the ILP is restricting a solution to binary values, this
problem could be relaxed in parts. It means that the binary selection in the beams s can be relaxed
to positive continue values s′. Therefore, this problem is expressed as a MILP formulation:

max
q, s′

∑
k

∑
υ

δυqk,υ (3.28a)

s.t.:
∑
υ∈∆

γk,υqk,υAk− |gH
k (gk � s′k)|

2 ≤ 0, ∀k (3.28b)∑
υ∈∆

qk,υ ≤ 1, ∀k (3.28c)

K∑
i,k

|gH
k (gi � s′i)|

2 ≤ LMUI, ∀k (3.28d)

s′t ≤ Po1/2
k , ∀k (3.28e)

qkt ∈ {0, 1}, ∀k. (3.28f)

Note that this formulation consists in a power optimization of beam selection s′ since it can
assume any continue positive value limited to available total transmit power, i.e.,

∑
kt s′t,k

2 ≤ Po.
In general, even with relaxation, the problem is complex to solve because it involves

a joint optimization of discrete and continuous variables. In the next subsection, we present a
heuristic based on Lagrangean relaxation for reducing the complexity of this MILP formulation.

3.6.3 Lagrangean Relaxation via Dual Subgradient Optimization Algorithm

The idea follows the approach of [9] to optimize the MU precoder. The method aims
to solve the MILP formulation (3.28) in the dual variable space [96, 119], where the optimization
problem becomes the unconstrained maximization of a non-differentiable concave function.
Consequently, since the function is non-differentiable, the problem can be solved by using a
standard iterative subgradient algorithm. The MILP maximization in Equation (3.28) is converted
to a dual minimization problem (or the maximization of the negative objective function) by
“relaxing” (or “dualizing”) a specially determined subset of MILP constraints. The relaxation
involves adding these constraints to the MILP objective function Equation (3.28a) weighted
by dual variables (i.e., the Lagrangean multipliers). Then, the so-obtained Lagrangean relaxed
problem is still a maximization problem in the MILP variable space but parameterized by the
dual multipliers. The optimization of this problem generates a value of the dual objective. Since
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Lagrangean relaxed problem is parameterized by the dual multipliers, the value of the dual
function will depend on the appropriate values of the multipliers. Consequently, to solve the dual
problem, we must obtain those dual variables (or multipliers).

Since the dual function is convex, we explore the dual variable space through a
heuristic subgradient optimization method. In this process, from a dual solution, we follow
the direction of the subgradient vector of the dual function. The obtained values for the dual
multipliers are applied to define a new instance of the Lagrangean relaxed problem, that is solved
in the next iteration to obtain a new dual function value.

Thereby, the method is solved by successive iterations, each consisting of a mini-
mization step of the Lagrangean relaxed problem and of a maximization step of the dual problem
via a subgradient optimization. During these steps, the best MILP and dual solutions are stored.
From duality theory, the maximal value of the best dual solution constitutes an upper bound on
the optimal MILP objective function value. Note that the method produces a sub-optimality gap
along the iterations. Finally, the algorithm ends when the sub-optimality gap diminishes under a
threshold, or a maximal number of iterations is reached.

Let us explain the relationship between the Lagrangean relaxed problem and our
problem. The first step to find the dual version of the problem is to build the partial Lagrangean
function L(q, s′, λλλ) by “relaxing” (or “dualizing”) the constraints Equation (3.28b), that is, by
adding these constraints to the MILP objective function Equation (3.28a) weighted by the dual
variables λk (i.e., the Lagrangean multipliers):

L(q, s′, λλλ) = −
∑
k

∑
υ

δυqkυ +
∑
k

λk

(∑
υ∈∆

γkυqkυAk− |gH
k (gk � s′k)|

2

)
. (3.29)

The minimization of the partial Lagrangean function L(q, s′, λλλ) constitutes the so-called La-
grangean relaxed version of the primal Equation (3.30):

W(λλλ) =min L(q, s′, λλλ) (3.30a)

s.t.:
∑
υ∈∆

qkυ ≤ 1, ∀k (3.30b)

K∑
i,k

|gH
k (gi � s′i)|

2 ≤ LMUI, ∀k (3.30c)

s
′

t ≤ Po1/2
k , ∀k (3.30d)

where W(λλλ) is the dual function, whose maximization comes up to the dual problem Equa-
tion (3.31) to solve via the subgradient descent method:

max
λλλ

W(λλλ) (3.31a)

s.t.: λλλ ≥ 0. (3.31b)

The Lagrangean relaxed primal problem Equation (3.30) can be separated into
two independent subproblems, defined on a different groups of decision variables q and s′,
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respectively, since the linking constraint Equation (3.28b) between q and s′ has been relaxed.
The first subproblem Equation (3.32) selects the UE-data rate assignment q, while the second
one Equation (3.33) finds the optimized power beam associated to the UEs, represented by s′.

min
q
−

∑
k

∑
υ

δυqkυ +
∑
k

λk

(∑
υ∈∆

γkυqkυAk

)
(3.32)

s.t.: (3.30b).

min
s′
−

∑
k

λk |gH
k (gk � s′k)|

2 (3.33)

s.t.: (3.30c), (3.30d).

This decouple results in two less complex subproblems than the original MILP problem. The
power beam allocation subproblem Equation (3.33) can be solved by well-known linear pro-
gramming (LP) algorithms in polynomial time. On the other hand, the UE-data rate assignment
subproblem Equation (3.32) can be solved separately for each UE k, yielding to the next trivial
solution Equation (3.35):

wkυ = δυ − λkγkυAk, (3.34)

q?kυ =

{
1, if υ = argmax{υ∈∆|wkυ≥0}wkυ

0, otherwise.
(3.35)

Since, for each UE k, the set of valueswkυ are sorted by construction, this solution can be found
by a standard binary search algorithm performing O(log2(|∆|)) comparisons.

The optimization of both LP subproblems parameterized by the current multipliers
λλλ delivers a value for the dual function W(λλλ) and a solution {q?, s′?} to the Lagrangean relaxed
primal problem. We must note that the UE-data rate assignment q could not be feasible since we
have relaxed the constraints (3.28b). Then, we build a feasible primal solution by keeping s′?

and taking as feasible UE-data rate assignment q f eas the largest UE data rate supported by s′? ,
i.e. meeting the constraints Equation (3.28b), for each UE k. Afterwards, the method explores
the dual solution space by using a subgradient update step to move from the current λλλ to a new
set of values.

Since we know from Equation (3.30) that the dual function is a convex function
subject to the non-negativity constraints, represented by the vector λλλ, a descent step method used
in unconstrained optimization is suitable for the dual exploration. In particular, a subgradient
vector is used as search direction because the dual function is piecewise linear, and then non
differentiable. This subgradient vector, %%%, is calculated as:

%%% = ∇W(λλλ) =
∑
υ∈∆

γkυqkυAk− |gH
k (gk � s′k)|

2. (3.36)

Then, the new λλλ in the dual space in the next iteration l+1 is updated by the subgradient step as:

λλλl+1 =max{λλλl + τ%%%, 0}, (3.37)
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where τ is the fixed step size.
The new dual multipliers λλλl+1 are replaced in the Lagrangean function Equa-

tion (3.29), yielding to new instances of the Lagrangean relaxed subproblems Equations (3.32)
and (3.33) for the (l+1)th iteration. Then, after solving them, a new subgradient optimization
step follows. The method continues by solving in an alternate way Lagrangean relaxed primal
subproblems and dual problems at each iteration until a stopping criterion is met.

In this work, the algorithm is stopped when any of the following conditions is
satisfied first: (1) the optimality gap between the objective function (3.28a) evaluated for q f eas

and the upper bound W diminishes under a threshold thr; (2), at least one Lagrange multiplier
becomes null; or (3), a maximal number of iterations lmax is reached. The upper bound W is
calculated as follows:

W =
K∑

k=1
log2(1+SINRUB

k ), (3.38)

SINRUB
k =min

(
|gH

k (gk � s′k)|
2, γMAX

)
. (3.39)

where s′t = Po1/2
k and γMAX is the largest SINR level allowed in the system (e.g, the value asso-

ciated to the last index υ ∈ ∆ in Table 3.1). Finally, the rationale behind the second stopping
criterion is related to the impact of the λλλ multipliers in the Lagrangean relaxed primal sub-
problems. If λk becomes null, the subproblem (3.32) will assign the largest data rate available
allowed in the the system to the UE k, whereas the subproblem (3.33) will allocate a null
amount of power to UE k. That results is an abrupt transition in the λk evolution: from a smooth
decreasing till reaching zero, we pass suddenly to a huge increment. In other words, the UE
with the smallest impact on the objective function (the closest λk to zero) becomes presumably
the UE with the highest impact. This change modifies drastically the solution s′? delivered by
the subproblem (3.33), and, hence the feasible UE-data rate assignment q f eas built from s′? as
aforementioned. The second stopping criterion prevents such situation.

3.6.4 Low Complexity Heuristics

In some practical systems, it could be impossible to apply the last heuristic because
its computational complexity becomes too high. Motivated by this fact, we propose three low-
complexity heuristics to select the transmit beams. These heuristics are simple and less complex
compared to the previous solutions in Section 3.6. In the following, the heuristics are presented.

3.6.5 Heuristic 1 – Minimum-Interference Greedy Assignment

This heuristic tries to minimize interference (equivalently maximize SINR). Consider

two UEs as an example. For each pair i, k of UEs, we maximize
gH
i si+gH

k sk
gH
i sk+gH

k si
. More specifically,

this heuristic follows the steps:

1. Initialize with sk = gk;
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2. For all pairs i, k of UEs, test all beams t. If removing st,k leads to a higher SINR,
turn this to 0.

The idea is to minimize the interference and, under this perspective, this heuristic marginally
improves the SINR, compared to the simple MRT approach. This heuristic is more formally
described by the pseudo-code presented in Algorithm 1.

Algorithm 1: Minimum-Interference Greedy Assignment
Input :A GH matrix of size K ×MT
Output :An S matrix of size K ×MT

1 Initialize S =G;
2 Define the interference limit gH

i sk+gH
k si;

3 while Exist an UE that violates the interference limit do
4 Remove the beam of the UE;
5 Re-evaluate the limit;
6 end

3.6.6 Heuristic 2 – Munkres-based Assignment

Inspired again by the MRT scheme, we consider in this proposed heuristic that each
UE will get assigned only one beam, which will concentrate the whole power allocated to that
UE, and that each beam will be assigned to at most one UE. Since we are concerned with
the overall performance of the K UEs, we can consider the following alternative optimization
problem

S? = argmax
S

{
1T
MT
(G� S)1K

}
, (3.40a)

s.t.: S1K = 1K, 1T
MT

S ≤ 1T
MT
, S ∈ BMT×K, (3.40b)

which implies that each UE will be assigned a single beam and each beam will be assigned to a
single UE. The above assignment problem corresponds to a maximum matching in a bipartite
graph and can be solved optimally using Munkres algorithm [97]. This heuristic is more formally
described by the pseudo-code presented in Algorithm 2.

In spite of involving the solution of an optimization problem, the Munkres algorithm
solves the assignment problem with O

(
min

(
K3, M3

T
) )

complexity [97]. Notice that, whenever
there are more beams than UEs, the output of this heuristic could be augmented by assigning
additional beams to the UE.

3.6.7 Heuristic 3 – Minimum Interference Greedy Assignment with Munkres Initialization

Based on the previous heuristic, one can consider augmenting the obtained solution
by assigning new beams to the UE whenever it does not compromise the overall performance.
In this case, a slightly modified heuristic could be applied which combines aspects of the two
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Algorithm 2: Munkres-based Assignment
Input :A GH matrix of size K ×MT
Output :An S matrix of size K ×MT

1 Define G′ so that g′i, j = 1/gi, j;
2 S← munkres(G′);

previous heuristics. Denoting by Bi the set of beams assigned to UE i and by Kt the set of
UEs using the beam t, the heuristic is described as follows. We assume in Algorithm 3 that the
unsatisfied UE are those whose minimum SINR requirement is not satisfied. The basic idea

Algorithm 3: Minimum Interference with Munkres Initialization
Input :A GH matrix of size K ×MT
Output :An S matrix of size K ×MT

1 Define G1 so that g′i, j = 1/gi, j;
2 S← munkres(G′);
3 while there is no unsatisfied UE do
4 Select the scheduled UE i and the beam t < Bi with highest ratio

gH
i

∑
t′∈Bi

st′, i+gH
i st, i

max
i′∈Kt

{
0, gH

i′ st, i′
} ;

5 if all UEs are satisfied when assigning beam t to UE i then
6 Allocate beam t to UE i;
7 else
8 Break;
9 end

10 end

behind the above heuristic is to allocate a new beam to the UE such that the gain is maximized
and that the interference (from the worst interferer) is minimized.

After the beam selection/assignment step, a power allocation among UEs is per-
formed along the lines of [9].

3.7 Simulations Results

In this section, we compare the performance of linear precoders as well as the
schemes based on heuristics and the corresponding optimal solution provided by the MILP
formulation described in Section 3.5. The power allocation per UE applied in Heuristics 1, 2, 3,
ZFBF and MRT can be reproduced following the supplementary material in [9].

We assume a system with MT = 64 antennas and scenarios with different sparsity
levels. For all simulations, we ensure that the sparsity level is less than or equal to χ. The
curves are plotted as a function of the SNR= |HH

k wk |
2/σ2

k and the average sum rate is described
by (3.16). Following (3.21), the SINR of the kth UE achieves the best performance when the
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LMUI is equal zero. Therefore, we present the best solutions with the best beam selection in the
interference-free case.

In all simulations, we use 1000 channel realizations. In the simulation results we
assume the two channel models presented in Section 3.4: One is called i.i.d. and other is a
geometric-stochastic channel, both with the same specified sparsity level χ. In the i.i.d. channel
model the elements of g follow a zero-mean circularly symmetric complex Gaussian distribution,
gk ∈ CN(0, IMT ) following (3.8). In the geometric-stochastic channel, each element in G was
generated according to Equation (3.10). In this model, we generate the channel removing the
smallest elements in gk until reaching a required sparsity level χ. We consider L = 20 scatterers
following [120], which are enough to capture the channel characteristics. As for the optimal
solutions, we solve (3.28) (i.e., the MILP problem) and the Lagrangean relaxation (LA) described
in Section 3.6.3 using the CPLEX solver of [121]. For the Lagrangean, we assume τ = 10−6 and
lmax = 1000. Furthermore, we illustrate the performance results letting the proposal selects rates
in reference a extended range of SNRs, more specifically ∆ ∈ [0, 12] bits/symbol per UE. Also,
the heuristics are evaluated under a scenario with imperfect channel knowledge.

Figure 3.2 (a) shows the performance results under the parameters of Table 3.1. Note
that the performances of all schemes are upper limited at 22 bits per symbol, since the data in
table 3.1 restricts the problem to assign at most the rate of 5.5 bits/symbol per UE, (∆ ∈ [0; 5.5]).
Then, in the solutions, the maximum sum rate is K ×5.5 = 22 bits per symbol.

The improved results of our proposal compared to ZFBF comes from a better
management of beam power in the beam domain, whereas in the second step (i.e., the UE
power optimization), the heuristic for ZFBF distributes equally the power among all non-zero
beams of each UE. Besides that, ZFBF “wastes” power in the process of eliminating interference
(ill-conditioning) (see fig. 3.4). However, when the sparsity level is decreased (more non-zero
elements), the ZFBF can increase the performance (better conditioning), as we can see in
Figure 3.5. Different from MILP and Lagrangean relaxation (LA) simulation results, in the
low-complexity heuristics we consider a beam selection followed by UE power optimization
according to [9]. The ZFBF and MRT follow with the same power optimization.

Considering the low-complexity heuristics, MRT and ZFBF, in the low SINR, MRT
and heuristic 2 are good options since MUI is not dominant and the heuristics have low com-
plexity with similar performance. In the medium and high SINR ranges, the performance of
MRT is limited by MUI. In this case, the knowledge about the beams exploited by the proposed
heuristic leads to improvements in the sum rate. The heuristic 1 is based on MRT and hence,
using knowledge about the beams improves the rate. In heuristic 2, the allocation of just one beam
per UE has low performance in the low SINR. However, under high SINRs the performance is
increased since the K beams are interference-free. The result of heuristic 3 is similar to that of
MRT and heuristic 1 for low SINR. However, for medium and high SINR values the performance
has improved compared to the MRT because of the potential addition of extra beams to each UE.

In fig. 3.2 (b) we evaluate the proposal considering the stochastic-geometric channel
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Figure 3.2 – Performance of optimal solution (MILP), Lagrangean relaxation, ZFBF, MRT and
three proposed heuristics with K = 4, MT = 64 and χ = 90%.

(a) Performance using an i.i.d. channel model.

-10 -5 0 5 10 15 20 25

SNR [dB]

0

5

10

15

20

25

A
v
e
ra

g
e
 S

u
m

 R
a
te

 [
b

it
/s

y
m

b
o

l]

ZFBF

MRT

HEUR
1

HEUR
2

HEUR
3

MILP

LA

Upper bound

(b) Performance using geometric-stochastic channel model.
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Source: Created by the author.

model in Section 3.4.3.
Note that the ZFBF has similar performance since it is able to eliminate the MUI in

any scenario. However, MRT losses performance. Hence, the heuristics performance is affected,
since we have more interference beams, reducing the overall performance. One reasonable
explanation for this behavior is that in the stochastic-geometric channel the accuracy of the
model is better than that of the i.i.d. channel model, thus capturing the interference among
beams more effectively. While in the i.i.d. channel model the geometry of interference follows a
Bernoulli distribution.

Note that the Lagrangean relaxation can achieve the maximum performance of the
MILP for almost all SNRs values. The upper bound curve is achieved by (3.38), and the thr
(gap) is adapted for each SNR. For low SNR values, we use higher values for thr. Otherwise,
for high SNR values, we use lower values for thr since the gap between the MILP and upper
bound solution is smaller. Thus, we adapt the threshold values to ensure a small number of
iterations for achieving the MILP solution. Note that the value thr for each channel model can
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be set differently. The average number of iterations is equal to ten and is sufficient to reach a
good convergence. For the i.i.d. channel model, thr = 0.4 is enough to reach a MILP solution for
low SNR values. For the geometric-stochastic channel model, thr = 0.6 for low SNR values, and
for high SNR values, thr = 0.25, are enough to achieve MILP solutions.

In the optimal solution for beam selection, some beams are not used. Therefore, the
“less is more” principle [90, c.f. Figure 3.8 - Chapter 3] that usually plays an important role in
ZFBF takes effect, i.e., fewer beams with more power lead to a better allocation. In Figure 3.3,
we present the optimal average number of selected beams according to the MILP solution and
the average number of total beams with χ = 90%. In general, in this interference-free solution,
when more power can be allocated, the MILP solution reduces the number of beams to be equal
to the number of UE.

Figure 3.3 – Average number of selected beams for K = 4.
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Figure 3.4 illustrates an example of beam selection and power optimization for a
SNR = −10 dB and shows 2 UEs. The reduction of beam number is recognized where some of
them are not used, compared to the MRT, which uses all beams, and to the solution MILP. Note
that in some cases power is allocated where there are no beams for the ZFBF. It happens because
ZFBF needs eliminate all interference beams. Thereby, some part of power is wasted out in the
process.

Figure 3.5 (a) illustrates MILP and the performance of ZFBF with the i.i.d. channel
for χ equal to 90%, 70% and 50% and for K = 4. When the sparsity level has decreased, the ZFBF
performance is increased. The best solution for our proposal is found with χ = 70%. Figure 3.5
(b) considers the geometric-stochastic channel. The best solution is found with χ = 90%. When
the sparsity level is decreased, the performance of the MILP solution is decreased. When the
level of the sparsity of G is decreased, there is more interference, and the performance degrades.
The ZFBF performance is increased with the decreasing of sparsity levels for both channel
models.
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Figure 3.4 – Illustrative example for beams selection and power optimization using MILP, ZFBF
and MRT.

(a) UE - 1.
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(b) UE - 2.
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3.7.1 MCS with Extended Range

In the next simulations, the constraint of Table 3.1 is relaxed. In Figure 3.6 (a), we
evaluate the proposed scheme by relaxing the rates and assuming more discrete values in the
range ∆ ∈ [0, 12] bits/symbols for each UE instead of imposing the small number of discrete
rate values of Table 3.1. The analogous results considering the geometric-stochastic channel
model are shown in Figure 3.6 (b).

Note that the simulation results for the MILP and LA have shown a good performance
and are not limited to 22 bits per symbol. In worth mentioning that we performed the previous
simulation results based on the MCS of the LTE table. In upcoming wireless communication
standards with massive MIMO, higher rates are expected. Thereby, these results show a good
performance of MRT with selection for LTE MCS with extended range.
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Figure 3.5 – Comparative performance of MILP and ZFBF with different sparsity levels for
K = 4 and channel models.

(a) With Table 3.1 values using i.i.d. channel model.
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(b) With Table 3.1 values using geometric-stochastic channel
model.
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Figure 3.6 – Performance of optimal solution (MILP), Lagrangean relaxation, ZFBF and MRT
to K = 4, MT = 64 and χ = 90%.

(a) For an extended range of rate values using i.i.d. channel
model.

-10 -5 0 5 10 15 20 25

SNR [dB]

0

5

10

15

20

25

30

35

40

A
v

e
ra

g
e

 S
u

m
 R

a
te

 [
b

it
/s

y
m

b
o

l]

ZFBF

MRT

MILP

Lagrangean

(b) For an extended range of rate values with geometric-
stochastic channel model.
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3.7.2 Heuristics Robustness

In order to evaluate the performance and robustness of the proposed heuristics under
a practical scenario, we consider a controlled error in the CSI. The imperfect CSI is modeled as
Ĝ =G+E, where E ≈ CN(0, σ2

e ) and σ2
e ∈ {0.1, 0.5}. In Figure 3.7, we present the results for

the average sum rate with the channel χ = 90% and K = 4. As for the MRT, the heuristics are
robust to the error. All heuristics have small performance losses in both channel models.

Figure 3.7 – Performance of three proposed heuristics to K = 4, MT = 64 with χ = 90%.
(a) Imperfect CSI using i.i.d. channel model.
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(b) Imperfect CSI with geometric-stochastic channel model.
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In general, the channel estimator can reach an estimate with precision more than 0.1.
Thus, the proposed heuristics have shown a good robustness to imperfect channel knowledge.
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3.7.3 Complexity Analysis

The computational complexity gives an upper bound on the computational resources
required by an algorithm and is represented by the asymptotic notation O(·). LP problems are
usually solved by Active Set Methods, where the Simplex Method is the standard approach, or by
Interior Point Methods [122]. In our case, CPLEX [121] reports the use of dual version of the
Simplex algorithm to solve all the LP problems presented in this work. Simplex complexity can
be computed as the product of the number of Simplex iterations by the number of elementary
operations at each iteration (that is exactly of O(nrnc), where nc is the number of variables
and nr is the number of constraints in the Standard Form of a LP problem). On the other
hand, the number of Simplex iterations has an exponential crude bound of O

(
nnrc

)
[123], [124],

but in the most of the practical cases this bound is of O(nr +nc) [122]. When nr � nc in the
primal version of a LP, the number of variables and constraints in the Standard Form of the
dual version becomes close to nc, allowing estimating a practical upper bound on the Simplex
Complexity of O

(
n3
c
)
. That is the case of our LP problems since K � MT , and then, nr � nc.

For the case of a MILP problem, like the problem (3.28), the CPLEX solver uses the branch-
and-bound (BnB) algorithm. For an arbitrary number of discrete variables nd , the number of
LP subproblems of O

(
n3
c
)

to be solved is at least (
√

2)nd [118], yielding to a total complexity
estimation of id=ram]O

(
(
√

2)K |∆| · (K |∆|+ KMT )
3
)

where |∆| is the cardinality of a set ∆, for the
problem (3.28) . In the Lagrangean approach, the solution is reached solving l iterations for the
two LP Lagrangean relaxed subproblems (3.32) and (3.33). The first one can be solved by K
binary searches of complexity O(log2(|∆|)), meanwhile the second one is solved by a the Dual
Simplex with a complexity of O

(
n3
c
)
= O

(
K3M3

T
)

as indicate before. Assuming that K � MT in
the massive MIMO case, the complexity of MILP, Lagrangean, precoders and heuristics can be
expressed as in Table 3.2.

Table 3.2 – Complexity evaluation.
Solution Complexity
ψMILP O

(
(
√

2)K |∆ | · (K |∆|+ KMT )
3
)

ψLA O
(
l · (K log2(|∆|)+ K

3M3
T )

)
ψMRT O(KMT )

ψZFBF O
(
K2M2

T
)

ψHEUR1 O(KMT )+O
(
K2MT

)
ψHEUR2 O

(
min

(
K3, M3

T
) )

ψHEUR3 O
(
min

(
K3, M3

T
) )
+O(KMT )

Source: Created by the author.

In the MILP formulation, (
√

2)K |∆| LP subproblems are solved with polynomial
complexity on |∆|, K and MT , while in the Lagrangean approach, l less complex LP subproblems
are solved with sub-linear complexity on |∆| and polynomial on K and MT . Moreover, this
number of l problems does not depend on the size problem (K and |∆|) as the MILP case, but
the method accuracy ε, that is, the absolute optimality gap, since the Lagrangean approach is a
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subgradient method whose worst-case complexity is O
(
1/ε2) iterations [125]. Then, fixing an

arbitrary ε, we can bound the Lagrangean complexity, in contrast to the MILP formulation.
The complexity of heuristic 1 (ψHEUR1) is basically the MRT with the addition of the

beam selection complexity O
(
K2MT

)
. The complexity of heuristic 2 (ψHEUR2) is low because the

algorithm finds one beam per UE. Heuristic 3 combines the complexity of heuristic 2 (ψHEUR2)

and the complexity of beams searching for additional beams. Therefore, heuristics 1 and 3 are
more complex than MRT due to the additional complexity in selecting extra beams. However,
they are less complex than ψZFBF . The heuristic 2 is less complex compared to MRT, however it
is only suitable for high SNR and sparsity levels.

Comparing the optimal solution given by MILP or Lagrangean relaxation, the per-
formance of proposed heuristics have low performance. However, this loss in performance is
explained by significant reduction of complexity.

3.8 Summary

In this chapter, we have formulated a precoder design using two different sparse
beam channel models. We have shown the best solution for MRT with selection and proposed
three simple heuristics to select the beams in a massive-BS MU scenario. The proposed heuristics
have a good performance under high sparsity levels compared to the MRT precoder, and we
show that beam selection improves the system performance with low-complexity.

Furthermore, we have given the optimal solution to select the beams, assign the
data rates and the transmit powers to MUs for a practical system using the LTE table. We have
proposed a less complex heuristic using Lagrangean relaxation and have shown that the proposed
approach achieves the optimal solution.
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4 MINIMIZATION OF PILOT CONTAMINATION EFFECT WITH SPACE-TIME PI-
LOT TRANSMISSION SCHEME

In this chapter, we propose a novel pilot decontamination technique based on space-
time pattern pilot transmission to mitigate the destructive effect of pilot contamination.

4.1 Motivation

The rapid increase in number of UEs demands higher cell densification and higher
data rates. However, densification of the cells can produce severe interference among BSs. A
promising technology to deal with this tendency is the massive MIMO technology.

A well known problem of massive MIMO is the interference created by the pilot
contamination. The pilot contamination appears when all transmissions are synchronous and
neighboring cells share both frequency and pilot signals (also known as a reference signal). The
pilot contamination effect emerges with the dearth of orthogonality between the desired and
interfering pilot sequences that affect the accuracy of channel estimation, which decreases the
system spectral efficiency [49]. When the same pilot sequence is reused in different BSs, the
interfering signals affect the channel estimation. Thereby, the performance of channel estimation
is limited by the interfering signals from other BSs. Also, the pilot contamination occurs when
two UEs are transmitting the same pilot sequence in the uplink to the BS.

Conventional MIMO systems, where the number of UEs is low, can afford to have
much more pilot sequences than active terminals, which makes the risk of pilot “collision” rather
small. Meanwhile, massive MIMO is supposed to have 10 times more active UEs at the same
time/frequency resource than conventional systems. Thus, if it has 10× more UEs, the pilot
contamination might be 10× more severe [10].

4.2 Main Contributions

In this chapter, we propose a pilot transmission method to reduce the negative impact
of pilot contamination in high density massive MIMO systems. In particular, we propose a
space-time pilot transmission technique based on ST-RPS that uses Bernoulli distribution, where
the channel estimation is done using MMSE estimator. Despite the conceptual simplicity of the
proposed scheme, simulation results show that it improves the channel estimation accuracy.

4.2.1 Organization

This chapter is organized as follows. In Section 4.3, some techniques to mitigate the
pilot contamination are presented. Section 4.4 presents the system model. Section 4.5 formulates
the proposed ST-RPS scheme. In Section 4.6, simulation results are shown. Finally, Section 4.7
brings some conclusions, remarks, and future works.
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4.3 Background

Recent works have proposed different schemes to minimize the interference gener-
ated by the pilot contamination. The authors in [126] proposed a precoding scheme assuming
that each BS linearly combines messages aimed to terminals of different cells that reuse the
same pilot sequence. In [127], the authors proposed a pilot reuse scheme based on pilot sequence
hopping, where each UE chooses a new pilot sequence in each transmission slot. By contrast,
the proposed method in [114] relies on multi-cell joint-processing. Also, the authors of [19]
proposed a method based on coordinated pilot allocation between cells during the channel
estimation procedure by exploiting second order channel statistics. In [10], the authors made
an interesting analysis under different pilot reuse, where it is shown that the pilot sequences
should be allocated to a finite number of transmit antennas. In [128], the authors proposed a
channel estimation algorithm that exploits the path diversity in both angle and power domains.
However, the proposed schemes above require cells coordination and are impractical in high
density networks. Nevertheless, there are works based on blind channel estimation, see [129],
which avoid the use of pilot sequences and cells coordination. However, long estimation periods
are necessary to achieve good estimation.

4.4 System Model

We consider a system with L cells, where each cell has a centralized BS. This BS is
composed of a single massive MIMO BS with MT transmit antennas and one UE with a single
antenna in the edge of cell. The number of multiple RF chains is assumed to be less than MT .
Furthermore, we assume that the communication channel is unknown at the UE, and the BSs
are not using any coordination. The received signal at the UE can be written as follows (see
Figure 4.1):

y =
√

ρd
MT

S1h1+

L∑̀
=2

√
ρi
MT

S`h` +n (4.1)

where y ∈ Cτ×1 vector, τ is the length of pilot sequence, h1 ∈ C
MT×1 is the channel between the

BS1 and UE, and h`, ` = 2, · · · , L, are the channels of interfering cells. n represents the noise
vector, which is complex Gaussian with zero mean and variance σ2

n, S ∈ Cτ×MT is an orthogonal
training sequence (SHS = I), ρd and ρi are the transmit powers for desired and interference cells,
respectively. All channels are assumed to be quasi-static, subject to frequency-flat fading, and
the BSs are equipped with a ULA. The channel model is described as:

h` =
1
√
P

P∑
i=1

a(ϑ`i)α`i, (4.2)
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Figure 4.1 – System with L cells and a single UE.
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Source: Created by the author.

where P represents the number of i.i.d. multipaths, α`i ∼ CN(0, σ2
`
) is independent over channel

index ` and path index i. The steering vector a(ϑ`i) is given by:

a(ϑ`i) ,
[
1 e−j2π

ds
ξ cos(ϑ`i) . . . e−j2π

(MT−1)ds
ξ cos(ϑ`i)

]T
, (4.3)

where ds is the antenna spacing at the BS, ξ is the signal wavelength and ϑ`i ∈ [−π/2, π/2] is a
random AoD.

4.5 Proposed Solution: ST-RPS

The channel estimation performance is limited by the interfering signals from other
BSs due to the dearth of orthogonality between the desired and interfering pilot sequences. When
the same pilot sequence is reused in all BSs, the interfering signals affect the desired channel
estimation (c.f.,

∑L
`=2 S`h` in Equation (4.1)).

In this context, we propose to minimize the effect of interference on channel esti-
mation by the ST-RPS scheme. For that, the transmission of pilot sequences has to be slightly
modified. We define a factor, i.e., a percentage 1− pr, pr ∈ [0; 1], that represents the number
of symbols that are transmitted during the training period τ. For instance, pr = 0 means that all
sequences are transmitted, and pr = 1 means that no sequence is transmitted. To further clarify
the idea, the proposal is illustrated in the block diagram in Figure 4.2 (a). Furthermore, we
assume that the statistical covariance of the channel, pattern selection, and pilot sequence are
known at the UE and we assume equal power allocation per transmitted symbol. The transmitted
signals (symbols) during the training period are represented in Figure 4.2 (b) and written as
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follows:

S = [sT1 . . . s
T
τ]

T, (4.4)

X` = Φ` � S, (4.5)

where si is the ∈ 1×MT is the pilot sequence vector associated with the i-th symbol period,
i = 1, · · · , τ and Φ` ∈ Aτ×MT belongs to the Bernoulli distribution, being A = {0, 1}, and Φ(A) has
the probability density function (p.d.f.) P(0) = pr and P(1) = 1− pr.

Figure 4.2 – Example of transmission frame structure of a communication system.
(a) Block diagram of the system model.
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Source: Created by the author.

Note that the matrix Φ` models the random space-time pattern to transmit the pilot
symbols at the BS. The scheme ensures that a fixed percentage of symbols are selected for each
BS. Note that, for a given time slot, there is a probability that no pilot symbol is transmitted on
any antenna (this would mean a “black column” in Figure 4.2 (b)). However, this probability
depends on the fixed percentage of antennas and training period, i.e., prτ. For massive MIMO,
where the MT is usually large, this probability is small and asymptotically equal to zero.
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The received signal can be expressed as:

y =
√

ρd
MT (1− pr)

X1h1+

L∑̀
=2

√
ρi

MT (1− pr)
X`h` +n] (4.6)

where y ∈ Cτ×1, X1 = Φ1 � S and X` = Φ` � S are the modified training sequences. The factor
1

(1−pr) in Equation (4.6) is the weighting to ensure proper normalization of the emitted power.
We evaluated this proposal based on the MMSE channel estimator as in [79]. The

estimator is based on the following cost function:

J(We) =min
We

E{‖h1−Wey‖22}, (4.7)

where the We matrix contains the weights of the MMSE estimator, and the expectation (E) is
taken over the channel realizations. Rewriting the cost function given in Equation (4.7):

J = E{(h1−Wey) (h1−Wey)H}

J = E
{
h1hH

1
}
−E

{
h1yHWH

e
}
−E

{
WeyhH

1
}
+E

{
WeyyHWH

e
}
.

(4.8)

Deriving with respect to We and equaling to zero [130]:

∂J

∂We
= −E{h1yH}+WeE{yyH},

We = E{h1yH}R−1
yy ,

(4.9)

where Ryy =
∑L
`=1 X`R`XH

`
+σnI, and E{yhH

1 } = R1XH
1 , the estimated channel is ĥ1 =Wey.

Considering a full transmission (pr=0, where X` = X1 = S, XH
`

X` = SHS = I, ∀`),
the MMSE estimator is written as follows:

We =R1SH

(
L∑̀
=1

SR`SH +σnI

)−1

(4.10a)

=R1
(
σnI+SHS

∑L
`=1 R`

)−1 SH (4.10b)

=R1
(
σnI+

∑L
`=1 R`

)−1 SH (4.10c)

where R` =
σ2
`√
P

∑P
i E{a(θ`i)a(θ`i)H} =σ2

`
E{a(θ`)a(θ`)H} is the covariance matrix. Equation (4.10a)

and Equation (4.10c) are equivalent, thanks to the matrix inversion identity:

(I+AB)−1A = A(BA+ I)−1. (4.11)

The covariance can be decomposed into the following expression:

R` = U`Λ`UH
` (4.12)

where U` ∈ CMT×P is the signal eigenvector matrix and Λ` ∈ RP×P is an eigenvalue matrix with
P < MT . Then, the ST-RPS decreases the pilot contamination effect by considering valid the
assumption as follows:
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Lemma 1 (Orthogonality condition based on covariance matrices by [19])

UH
` U1 ≈ 0, ∀i , 1, MT →∞. (4.13)

It indicates that the interference will fall in the null space of covariance matrix when the number

of antennas goes to infinity.

Rewriting the MMSE solution of Equation (4.10c) and using Equation (4.12), the
estimated channel can be written as:

ĥ1 =Wey

ĥ1 = R1
(∑L
`=1 R` +σnI

)−1 SHy.
(4.14)

In the asymptotic regime the covariance can be eigen-decomposed as:∑L
`=2 R` = VΛVH (4.15)

where V is the eigenvector matrix such as VHV = I and span {V} is included in the orthogonal
complement of span {U1}. Then,

ĥ1 ≈
(
U1Λ1UH

1 (VΛVH +U1Λ1UH
1 +σnI)−1SH

)
y. (4.16)

Following [19], the asymptotic orthogonality between U1 and V, the Lemma 1, and
considering

|UH
1 h` |
|UH

1 h1 |
→ 0, ∀` , 1, when MT →∞, the estimated channel is:

ĥ1 ≈ U1Λ1 (σnI+Λ1)
−1 UH

1

(
L∑̀
=1

SHSh` +SHn

)
ĥ1 ≈ U1Λ1 (σnI+Λ1)

−1 (
UH

1 SHSh1+UH
1
∑L
`=2 h` +SHn

)
ĥ1 ≈ U1Λ1 (σnI+Λ1)

−1 (
UH

1 h1+UH
1
∑L
`=2 h` +SHn

)
ĥ1 ≈ U1Λ1 (σnI+Λ1)

−1 (
UH

1 h1+SHn
)
.

(4.17)

This result is identical to channel estimation with interference-free [19].

4.5.1 Interference Reduction with ST-RPS

Consider a scenario without coordination among the BSs. Then, U1 is orthogonal to
h` for MT →∞, i.e. non-overlapping between desired and interference1.

Consider that the ST-RPSs scheme is applied at the BSs, i.e., X` ,X1, ∀` > 1, where
each Φ` belongs to independent Bernoulli distributions, P(Φ1, Φ`) = P(Φ1)P(Φ`), we have the
following definition:
1 The authors in [19] proposed a protocol for coordination of BSs in an effort to try to satisfy the non-overlapping

AoA constraint.
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Definition 1 (No collision) Assuming that there exists a random space-time pattern such as

Φ`ΦH
i =


0, ` , i,

J, ` = i,

the pilot contamination vanishes.

Notice that in this case without pilot sequence collision, first, the pattern requires coordination
among BSs, where one BS needs to inform the used seed for generating the pattern. Second,
since the factor reduces the number of pilot sequences, the performance of the channel estimation
is decreased. For example, when the BSs have the same antennas number and training period,
the number of pilot sequences will be halved to avoid the collision.

Consider that P < MT and BSs without coordination. Following the same procedure
to find Equation (4.17), the pilot contamination (measurement of the interference) can be written
as:

Mpc =






We

L∑̀
=2

X`h`






2

2

,

=







R1XH
1

(
L∑̀
=2

X`R`XH
` +X1R1XH

1 +σnI

)−1 L∑
l=2

X`h`








2

2

,

=






R1 (σnI+DR1)
−1 XH

1

L∑
l=2

X`h`






2

2

,

=






U1Λ1UH
1

(
σnI+DU1Λ1UH

1
)−1 XH

1

L∑
l=2

X`h`






2

2

,

=






U1Λ1
(
UH

1 DU1Λ1+σnI
)−1 UH

1 D1

L∑̀
=2

h`






2

2

,

(4.18)

where D = XH
1 (

∑L
`=2 X`R`XH

`
+X1), ∀`, and D1 = XH

1
∑L
`=2 X` .

Thus, we establish the following conjecture:

Conjecture 1 Let X1 = Φ1 � S and X` = Φ` � S the matrices that replace S with probability

pr , 0 at the BSs, and a degenerated Rl ∈ l = 1, . . ., L, which D1` has the function to orthogonalise

such as the large number of antennas in Lemma 1, hence the pilot contamination is mitigated

with a limited number of antennas, i.e., Mpc→ 0 due to:

|UH
1 D1h` |
|UH

1 h1 |
→ 0, ∀l > 1. (4.19)

Knowing that the nullity is complement of the rank, when the matrix is degenerate the null space
will be large [40]. Thereby, the interference signal spans the null space of R1 with much less
antennas using the ST-RPS scheme, as we can see in Figure 4.4.
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The interference elimination effect was shown before in [19, 128] for the BS equipped
with ULA. Thereby, U1 becomes orthogonal for U` as was proven in [19] for Lemma 1. The
MMSE estimator can fully eliminate the pilot contamination when MT →∞ under specific
“non-overlap” conditions on the distributions of multipaths AoAs. However, using ST-RPS the
interference will vanish with much less antennas. Thus, the “orthogonalization” effect with
MT →∞ appears in the same way when ST-RPS is applied for a finite number of antennas.

The knowledge of the pattern selection is an additional information for the MMSE
estimator at the UE, more specifically the seed for each BS to generate of sequences. Without
this information, the proposed scheme can not achieve good performance. Notice that the MMSE
estimator knows all covariance matrices since the UE is on the border of the cell, it can harvest
and store these matrices along time. The achieved improvements depend on the covariance
matrix. This rank has to be small to enable ST-RPS to work well. Thus, this proposed scheme
is appropriate for scenarios which have only a few multipaths, i.e., P � MT as in the massive
MIMO case [12].

4.6 Simulation Results

In this section, we provide some preliminary simulation results to confirm the
ST-RPS has good performance in terms of minimizing the pilot contamination effect. The
performance is shown considering the MMSE estimators with the pilot sequence length τ = MT .
We consider the number of multipaths equals P = 20 following [120]. We consider two ULAs
(L=2) with the distance between the antennas spacing equal to ξ/2 and ρi = 1. In all simulations,
we use 3000 channel realizations. The NMSE is defined as ‖h1− ĥ1‖

2
2/‖h1‖

2
2 .

We present the NMSE assuming low noise levels σ2
n ∈ {0.01, 0.001}, MT = 64,

and pr = 0.1 in Figure 4.3. The curve interference-free is considered a lower bound of the
performance. As we expected, the ST-RPS improves the performance under a scenario with
noise. The estimated channel is improved while decreasing the pilot contamination effect as we
will show in the next simulation results. Note that for pr = 0 the improvement is low when the
noise is decreased.

Figure 4.4 shows the reduction of pilot contamination effect following Equation (4.18),
normalized by ρd , versus signal-to-interference ratio (SIR) for MT ∈ {32, 64}. Moreover, pr = 0
means that we sent all sequence pilots (full) or without selection, pr = {0.1, 0.2} means that
10%, 20% of the matrix with probability contain entries with zeros, respectively.

Figure 4.5 shows the performance of the proposed scheme with MMSE estimator,
for pr = {0, 0.25}. Note that, when there are more antennas and pr = 0, the effect of Lemma 1

and Equation (4.17) is confirmed with the reduction of the NMSE. However, notice that for the
ST-RPS with pr = 0.25, i.e., 25% of Φ1 and Φ2, the reduction in the NMSE is larger than pr = 0.
At MT = 32, a slight performance improvement is obtained. At MT = 64, the estimated channel is
almost-perfect. For MT = 96, 128, 256 the performance improvement continues. Thus, the results
corroborate with a Conjecture 1.
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Figure 4.3 – Comparison assuming low noise variance σ2
n.
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Figure 4.4 – Performance results for MT ∈ {32, 64}.
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Figure 4.5 – Performance with different number MT .

0 5 10 15 20

SIR

10 -10

10 -5

10 0

N
M

S
E

M
T

=32

M
T

=32

M
T

=64

M
T

=64

M
T

=96

M
T

=96

M
T

=128

M
T

=128

M
T

=256

M
T

=256

p
r
=0

p
r
=0.25

Source: Created by the author.

The Conjecture 1 is also supported by the results in Figure 4.6, where we evaluate
the NMSE versus the number of antennas with ST-RPS performance (MT ∈ [32, 256]). Note that
MT = 40 is enough to have almost-perfect channel estimation. Otherwise, to achieve the same
performance pr = 0 needs more than MT = 256.

Figure 4.6 – Pilot contamination effect for different MT .
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4.7 Conclusions and Future Works

In this chapter, we have proposed a new training sequence scheme based on ST-RPS
method, which avoids coordination between cells. Using computer simulations, it is shown that
the interference by pilot contamination between two cells is mitigated and vanished when the
number of antennas is increased. The main finding with the ST-RPS is that we can improve the
channel estimation, and achieve pilot decontamination with a reduced number of antennas, e.g.,
40 for our simulation scenario. For future works, we are planning to investigate the proposed
scheme: 1) with more than two cells, 2) uplink case, 3) validate the results mathematically.
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5 CONCLUSION

In this thesis, we provided solutions for three problems at the 5G system. The original
contributions of this work encompasses three proposed schemes:

• the quantized feedback capitalized by MC technique;

• the beam selection precoder under a beam domain channel representation;

• the ST-RPS to mitigate the pilot contamination.

Also, different scenarios were evaluated, single and multi-cell, millimeter wave,
micro-cell backhaul, and a clustered MU one.

The first part of Chapter 2 brought a review into MC technique. It gave the necessary
understanding and concepts to apply the MC for the feedback channel problem in FDD. Then, we
exploited the low-rank structure in the channel matrix and proposed the general framework which
uses completion technique. The proposed framework was evaluated in two application scenarios:
wireless backhauling communications and MU. The results showed an accurate CSI estimation
with minimal feedback overhead. Thereby, a high energy efficiency and low complexity at the
Rx came out. These benefits are possible thanks to the low-rank structure of the channel matrix,
which happens in a massive MIMO scenario characterized by finite scattering propagation.
Furthermore, a important key points was raised for the extension to the tensor completion.

In Chapter 3, we exploited the MU massive MIMO channel to design precoder. From
the CSI at the BS, our formulation exploits the geometric sparsity of the channel considering
a practical rate assignment based on the MCS of the LTE table, beam selection, and power
optimization. We used the MRT principle combined with beam selection to reduce the complexity
of precoder design. An optimal solution to capacity following the MRT principle was shown, and
heuristics based on Lagrangean relaxation and greedy assignment were developed. Simulation
results showed that our optimal solution could achieve a better performance than the ZFBF
scheme. Besides, compared to the linear MRT precoder, the proposed low-complexity heuristics
improved the performance under a scenario with channel sparsity.

Note that the reconstructed CSI by the MC framework can be directly used for any
precoder design based on full-CSI. Also, the reconstructed CSI can be decomposed in the sparse
channel representation at the BS in order to design any precoder used in Chapter 3.

Finally, we proposed a scheme named ST-RPS to minimize the pilot contamination
problem in the multi-cell scenario in Chapter 4. The scheme was based on the space-time pattern
pilot transmission. The simplicity came from the Bernoulli distribution to decide transmission
without coordination among cells. Some simulation results have shown that the ST-RPS scheme
leads to a good channel estimation accuracy due the reduced pilot contamination.
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5.1 Perspectives

This work has several perspectives, which are discussed as follows:

• In the proposed CSI feedback and reconstruction framework, an extension of the
ECU mode is possible by using statistical CSI feedback. In this case, the Rx can
estimate and feed the channel covariance matrix back to the BS, which, by its turn,
can recover the covariance matrix by using structured MC.

• The extension of the matrix completion framework to tensor completion would
be an interesting topic when considering frequency-selective channels for instance.
Using MIMO-orthogonal frequency division multiplexing (OFDM), a low-rank
channel tensor should be sampled and reconstructed, where the third-dimension
is represented by the frequency (subcarriers) dimension. Tensor completion is a
generalization of matrix completion of higher order arrays [46]. The motivation
for a tensor modeling in signal processing is associated with simultaneous benefits
from multiple forms of diversity (space, time, frequency, and/or code) to perform
MU signal separation/equalization and channel estimation under model uniqueness
conditions and requirements more relaxed than the matrix-based approaches [131,
132]. For example, using the ECU mode, a given undersampled channel tensor can
be recovered only with a subset of entries.

• It would worth comparing MC and CS techniques to solve the channel estimation
problem. Both MC and CS exploit the sparse structure of the channel in different
ways. While MC assumes low-rank property of the channel matrix, CS does not
need such an assumption. On the other hand, CS techniques require the knowledge
of the sparsifying basis to represent the (sparse) channel, which is not needed with
MC techniques. A future work could compare both approaches in the context of this
thesis.

• Another interesting point is to compare the latency of the proposed the DDU feedback
mode, which assumes an FDD system, with that of a TDD system, to provide
instantaneous CSI to the BS.

• Regarding the beam selection and rate adaptation approach, the investigation of other
heuristics which are more adapted to low-SNRs values is a topic for future work. To
this end, the starting point consists of selecting the beams by taking into account
predefined LMUI values.

• In the proposed ST-RPS scheme, we intend to evaluate its performance in a scenario
with more than two cells with several UEs. In particular, when considering several
UEs, the proposed ST-RPS scheme should instead be applied at the UE side and



Chapter 5. Conclusion 97

the channel estimation is done at the BS. In this case, orthogonality among pilot
sequences of in-cell UEs may not hold and co-channel will affect channel estimation
at the BS. Hence, a performance evaluation in this scenario is an interesting topic.

• Finally, the development of a mathematical proof of the conjecture presented in
Chapter 4 is essential to explain the behavior of the proposed ST-RPS scheme.
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