

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

ETHANIELDA DE LIMA COELHO

NANOEMULSÕES À BASE DE CURCUMINOIDES E ÁCIDO OLEICO PARA USO TÓPICO NO TRATAMENTO DE LESÕES CUTÂNEAS

FORTALEZA 2018

ETHANIELDA DE LIMA COELHO

NANOEMULSÕES À BASE DE CURCUMINOIDES E ÁCIDO OLEICO PARA USO TÓPICO NO TRATAMENTO DE LESÕES CUTÂNEAS

Tese submetida ao Programa de Pós-Graduação em Química, do Centro de Ciências da Universidade Federal do Ceará como requisito para obtenção do Título de Doutora em Química. Área de concentração: Química.

Orientadora: Prof^a. Dr^a. Nágila Maria

Pontes Silva Ricardo.

Coorientadora: Prof^a. Dr^a. Maria Elenir

Nobre Pinho Ribeiro.

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

C615n Coelho, Ethanielda de Lima.

Nanoemulsões a base de curcuminoides e ácido oleico para uso tópico no tratamento de lesões cutâneas / Ethanielda de Lima Coelho. – 2018.

111 f.: il. color.

Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em Química, Fortaleza, 2018.

Orientação: Prof. Dr. Nágila Maria Pontes Silva Ricardo. Coorientação: Prof. Dr. Maria Elenir Nobre Pinho Ribeiro.

1. Curcuminoides. 2. Ácido oleico. 3. Pluronic F127. 4. Lesões cutâneas. I. Título.

CDD 540

ETHANIELDA DE LIMA COELHO

NANOEMULSÕES À BASE DE CURCUMINOIDES E ÁCIDO OLEICO PARA USO TÓPICO NO TRATAMENTO DE LESÕES CUTÂNEAS

	Tese apresentada ao Programa de Pós
	Graduação em Química da Universidado
	Federal do Ceará, como parte do
	requisitos para obtenção do Título de
	Doutora em Química. Área do
	concentração: Química.
Aprovada em:/	
BANCA EXAI	MINADORA
Prof ^a . Dr ^a . Nágila Maria Universidade Federa	
Prof ^a . Dr ^a . Sandra	de Aguiar Soares
Universidade Federa	0
Prof. Dr. Francisco Cé Universidade Estadua	-
Prof ^a . Dr ^a . Lívia Pa Universidade da Integração Internacional o	
Drof ^a Dr ^a Sômagua do	Nascimento Olivaira

Prof^a. Dr^a. Sâmeque do Nascimento Oliveira Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN)

A Deus.

A minha mãe, Aldeci, aos meus avós, Albertina e Manoel (*in memoriam*) e ao meu esposo Davi.

AGRADECIMENTOS

Agradeço primeiramente a Deus que me fez chegar tão longe, onde nunca achei que fosse capaz. Por ter me guiado quando não tive mais forças e por me amar incondicionalmente.

A toda a minha família, principalmente minha mãe, que sempre me incentivou e sonhou por mim, dizendo sempre: - Eu quero uma filha Doutora!

Ao meu amado esposo que me apóia, ajuda e incentiva sempre. Davi, sem você ao meu lado eu não teria conseguido, obrigada por fazer parte da minha vida, eu te amo muito.

Aos meus amigos e companheiros de laboratório, por quanto me ensinaram e me fizeram sorrir nos calorosos dias de trabalho: Carol Moura, Deyse, Luana, Raquel, Carol Barbosa, Arcelina, Kelly, Flávia, Tathilene, Eduardo, Lilian, Débora, David, Alessandro, Denise, Karen, Thays Nara, Ruth, Camila, Katarina, Jailson e Sarah. Em especial agradeço ao Rafael, Aierta, Celiane e prof. Célio, pelas inúmeras contribuições e amizade.

A professora Nágila, por todo apoio, confiança, amizade e incentivo. Cheguei até aqui porque acreditaste em mim. Sou muito grata professora, muito, muito obrigada!

A professora Elenir, por todo apoio, confiança, amizade e incentivo. Obrigada pela paciência, compreenção e carinho. Muito, muito obrigada!

A professora Sandra pelas contribuições e atenção.

Ao Orlando pelo sempre pronto atendimento e principalmente pelos sorrisos diários e a Célia, pela atenção e paciência.

"Naquela hora, Jesus, exultando no Espírito Santo, disse: "Eu te louvo, Pai, Senhor do céu e da terra, porque escondeste estas coisas dos sábios e cultos e as revelaste aos pequeninos." (Lucas 10: 21-24)

RESUMO

Os curcuminoides têm atraído o interesse dos cientistas porque exibem várias atividades farmacológicas, incluindo antioxidantes, anticancerígenas, anti-inflamatórias, antimutagênicas, anticoagulantes, anti-infecciosas e antibacterianas. Porém, para que estes princípios ativos possam ser utilizados em produtos farmacêuticos é necessário associá-los a excipientes que potencializem sua ação, aumentando sua solubilidade e biodisponibilidade. O objetivo deste estudo é encapsular os curcuminoides em nanoemulsões, contendo ácido oleico como fase oleosa e Pluronic F127 como estabilizante, com o objetivo de utilizar esta formulação no tratamento de lesões cutâneas. Estudos de compatibilidade e estabilidade preliminar foram realizados para verificar a viabilidade da formulação proposta. Os resultados obtidos no estudo de compatibilidade, utilizando as técnicas de FTIR, TG (DTG) e HPLC, são comparáveis e conclusivos quanto a não existência de interação física ou química na mistura (1:1:1) dos princípios ativos e seus excipientes. O estudo de estabilidade caracterizou as nanoemulsões como estáveis, com pH ácido e indicativo de prazo de validade provisório de 12 meses. Através do planejamento factorial realizado, tendo o diâmetro hidrodinâmico (Dh) e potencial zeta como variáveis resposta, as nanoemulsões mais estáveis foram selecionadas, E3, E6 e E9 (contendo aproximadamente 5 % de Pluronic® F127 em cada e 5, 10 e 15 % de ácido oleico, respectivamente.). Seus valores de Dh encontram-se na faixa de 198-265 nm e potencial zeta entre -30, 4 e -34,8 mV. Os dados de índice de polidispersão (0,150-0,226) caracterizaram as nanoemulsões com distribuição do tamanho de partícula moderadamente polidispersa. As nanoemulsões mais estáveis indicaram, nas análises reológicas, que não se comportam como gel, sendo caracterizadas como fluidos não newtonianos e classificadas como plásticos de Bingham. As emulsões E3, E6 e E9 obtiveram Eficiência de Encapsulação (EE) acima de 99 % e no estudo de liberação in vitro apresentaram até 13,7 % de liberação dos curcuminóides em até 24 horas, com perfil de liberação controlada. As nanoemulsões selecionadas apresentaram, no ensaio antioxidante pela captura do radical livre DPPH, valores de IC₅₀ (≈0,3 mg/mL) bem próximos ao padrão utilizado, BHT (0,29 mg/mL), indicando que as nanoemulsões propostas apresentaram resultados satisfatórios e que devem agir nas lesões por pressão como fontes contínuas de antioxidante e antiinflamatório.

Palavras-chave: Curcuminoides. ácido oleico. Pluronic F127. Nanoemulsão. lesões cutâneas.

ABSTRACT

Curcuminoids have attracted the interest of scientists because they exhibit various pharmacological activities, including antioxidants, anticancer, anti-inflammatory, antimutagenic, anticoagulant, anti-infectious and antibacterial. However, for these active ingredients to be used in pharmaceuticals, it is necessary to associate them with excipients that potentiate their action, increasing their solubility and bioavailability. The objective of this study is to encapsulate the curcuminoids in nanoemulsions, containing oleic acid as oily phase and Pluronic[®] F127 as stabilizer, in order to use this formulation in the treatment of Pressure Injury. Compatibility and preliminary stability studies were performed to verify the feasibility of the proposed formulation. The results obtained in the compatibility study, using the techniques of FTIR, TG (DTG) and HPLC, are comparable and conclusive as to absence of physical or chemical interaction in the mixture (1:1:1) of the active principles and their excipients. The stability study characterized the nanoemulsions as stable, with acidic pH and indicative of the expiration date of 12 months. Through the factorial planning performed, having the hydrodynamic diameter (Dh) and zeta potential as response variables, the most stable nanoemulsions were selected, E3, E6 and E9. Their D_h values are in the range of 198-265 nm and zeta potential between -30.4 and -34.8 mV. The polydispersity index data (0.150-0.226) characterized the nanoemulsions with moderately polydisperse particle size distribution. The most stable nanoemulsions indicated in the rheological analyzes that they do not behave as a gel and are characterized as non-Newtonian fluids and classified as Bingham plastics. The Emulsions E3, E6 and E9 obtained Encapsulation Efficiency (EE) above the 99% and in the in vitro release study showed up to 13.7% release of the curcuminoids within 24 hours, with a controlled release profile. The selected nanoemulsions presented values of IC₅₀ (\approx 0.3 mg/mL), in the antioxidant assay by DPPH free radical capture, very close to the standard used, BHT (0.29 mg / mL), indicating that the proposed nanoemulsions presented results satisfactory and should act on pressure lesions as continuous sources of antioxidant and anti-inflammatory.

Keywords: Curcuminoids. oleic acid. Pluronic F127. Nanoemulsion. cutaneous lesions.

LISTA DE ILUSTRAÇÕES

Figura 1 -	As três camadas da pele: epiderme, derme e hipoderme	
Figura 2 -	Emulsão óleo em água (O/A) e água em óleo (A/O)	
Figura 3 -	Mecanismos de instabilidade que podem ocorrer em emulsões	
Figura 4 -	Diagrama esquemático de nanoemulsões fabricadas a partir de	
	óleo, água e surfactante	
Figura 5 -	Três principais curcuminoides	
Figura 6 -	Ácido oleico	
Figura 7 -	Pluronic [®] F127	
Figura 8 -	Classificação do comportamento reológico de diferentes tipos de	
	suspensões	
Figura 9 -	Comparação das variações de concentração de fármacos	
	administrados por diferentes métodos: liberação controlada (A) e	
	terapia convencional (B)	
Figura 10 -	Extração dos curcuminoides	
Figura 11 -	Preparo das nanoemulsões	
Figura 12 -	Determinação do pH das nanoemulsões	
Figura 13 -	Determinação da quantidade de fármaco na nanonanoemulsão	
Figura 14 -	Reômetro AR 2000.	
Figura 15 -	Filtro de centrifugação, com massa molar de corte de 10.000	
	g/mol, Millipore	
Figura 16 -	Sistema de difusão utilizado no experimento de liberação in	
	vitro	
Figura 17 -	Identificação dos hidrogênios e carbonos dos curcuminóides	
Figura 18 -	Espectro de FTIR dos curcuminoides	
Figura 19 -	Cromatograma dos curcuminoides	
Figura 20 -	Interações físicas predominantes entre os curcuminóides e a	
	mistura física de ácido oleico, curcuminóides e Pluronic® F127	
Figura 21 -	Espectro de FTIR do ácido oleico, curcuminoides, F127 e suas	
	misturas (1:1:1)	
Figura 22 -	Curvas de TG/DTG do ácido oleico, curcuminoides, Pluronic®	
	F127 e mistura (1:1:1), em ar sintético	
Figura 23 -	Cromatogramas dos curcuminoides e mistura física do ácido	
	oleico, curcuminoides e Pluronic® F127 na proporção de 1:1:1	

Figura 24 -	Associação molecular (na forma de gota) das nanoemulsões à	
1 iguia 24 -	base de curcuminoides, ácido oleico e Pluronic® F127	61
Figura 25 -	Figura representativa do fator concentração do ácido oleico em	01
Tigura 23 -	função da variável resposta tamanho de partícula	63
Eiguro 26	, .	03
rigura 20 -	Figura representativa do fator concentração da solução de	
	Pluronic® F127 adicionado na nanoemulsão em função da	<i>(</i> 2
E' 07	variável resposta tamanho de partícula	63
Figura 27 -	Figura representativa do fator concentração do ácido oleico	
	presente na nanoemulsão em função da variável resposta	- 4
	potencial zeta	64
Figura 28 -	Figura representativa do fator concentração da solução de	
	Pluronic® F127 adicionado na nanoemulsão em função da	
	variável resposta potencial zeta	65
Figura 29 -	Indicadores de estabilizadade das nanoemulsões	67
Figura 30 -	Desenho representativo das possíveis associações moleculares	
	em uma nanoemulsão	72
Figura 31 -	Espectros mecânicos que mostram o módulo de armazenamento	
	(G') e o módulo de perda (G") em função da frequência em	
	tensão = 0,1 % para as emulsões E3	73
Figura 32 -	Espectros mecânicos que mostram o módulo de armazenamento	
	(G') e o módulo de perda (G") em função da frequência em	
	tensão = 0,1 % para as emulsões E6	74
Figura 33 -	Espectros mecânicos que mostram o módulo de armazenamento	
	(G') e o módulo de perda (G") em função da frequência em	
	tensão = 0,1 % para as emulsões E9	74
Figura 34 -	Espectros mecânicos que mostram o módulo de armazenamento	
	(G') e o módulo de perda (G") em função da frequência em	
	tensão = 0,1 % para o ácido oleico puro	75
Figura 35 -	Curvas de fluxo que representam a dependência da taxa de	
	cisalhamento em função da tensão de cisalhamento para as	
	emulsões E3, E6, E9 e para o ácido oléico (AO) puro	76
Figura 36 -	Padrão de aparência dos filtros de centrifugação após a	. 3
- 10	centrifugação das emulsões E3, E6 e E9	79
Figura 37 -	Continuagução dus cinuiscos Do, Do C Dominion	1)
1 15u1u 57 -	Perfil de liberação dos curcuminóides nas emulsões E3, E6 e	

	E9	81
Figura 38 -	Influência da concentração da fase orgânica na liberação dos	
	curcuminóides presentes nas emulsões E3, E6 e E9	82
Figura 39 -	Linearização do perfil de liberação para emulsão E3	84
Figura 40 -	Linearização do perfil de liberação para emulsão E6	84
Figura 41 -	Linearização do perfil de liberação para emulsão E9	85
Figura 42 -	Curvas de zero e primeira ordem para a emulsão E3	86
Figura 43 -	Curvas de zero e primeira ordem para a emulsão E6	86
Figura 44 -	Curvas de zero e primeira ordem para a emulsão E9	87
Figura 45 -	Função polinomial obtida da inibição da concentração de DPPH	
	(%) em função da concentração de curcuminoides nas	
	nanoemulsões E3, E6 e E9	93
Figura 46 -	Porcentagem de inibição de DPPH para as nanoemulsões E3, E6	
	e E9, na concentração de 1,7 mg/mL de curcuminoides, em	
	função do tempo	95
Figura 47 -	Porcentagem de inibição de DPPH para as nanoemulsões E3, E6	
	e E9, na concentração de 0,85 mg/mL de curcuminoides em	
	função do tempo	96
Figura 48 -	Porcentagem de inibição de DPPH para as nanoemulsões E3, E6	
	e E9, na concentração de 0,42 mg/mL de curcuminoides em	
	função do tempo	96

LISTA DE TABELAS

Tabela 1 -	Lista dos reagentes e marcas utilizados nos procedimentos
	experimentais
Tabela 2 -	Nanoemulsões preparadas contendo 20 mg de curcumina
Tabela 3 -	Dados do espectro de ¹ H NMR dos curcuminoides
Tabela 4 -	Dados espectrais de ¹³ C NMR dos curcuminoides
Tabela 5 -	Atribuições das principais bandas de absorção no infravermelho
	para os curcuminoides
Tabela 6 -	Atribuições das principais bandas de absorção no infravermelho
	para o ácido oleico
Tabela 7 -	Atribuições das principais bandas de absorção no infravermelho
	para os Pluronic [®] F127
Tabela 8 -	Atribuições das principais bandas de absorção no infravermelho
	para a mistura (1:1:1)
Tabela 9 -	Valores de perda de massa dos materiais e mistura (1:1:1) usados
	na formulação proposta
Tabela 10 -	Resultados obtidos a partir dos cromatogramas dos
	curcuminoides e da mistura física (1:1:1)
Tabela 11 -	Valores de diâmetro hidrodinâmico (Dh), índice de
	polidispersividade (IPD) e potencial zeta das nanoemulsões
Tabela 12 -	Faixa de diâmetro de partículas intituladas de nanoemulsões
	relatados na literatura atual
Tabela 13 -	Condições utilizadas no planejamento fatorial para avaliação do
	tamanho de partícula e potencial zeta
Tabela 14 -	Conclusões obtidas através da análise das Figuras 25, 26, 27 e
	28
Tabela 15 -	Tabela 15- Registro fotográfico das nanoemulsões após
	.centrifugação
Tabela 16 -	
	na estufa a 45 °C
Tabela 17 -	Valores de porcentagem em massa de curcuminoides presentes
	nas nanoemulsões durante 45 dias na estufa a 45 °C
Tabela 18 -	Equação linear e dados obtidos das curvas de fluxo
Tabela 19 -	Resultados de eficiência de encapsulação da curcumina em

	outros estudos	80
Tabela 20 -	Valores de R ² , K ₀ e K ₁ para as curvas apresentadas nas Figuras	
	42, 43 e 44	87
Tabela 21 -	Cinética de inibição da concentração de DPPH (%) em função da	
	concentração da nanoemulsão E3 (5% F127/5% A.O.)	89
Tabela 22 -	Cinética inibição da concentração de DPPH (%) em função da	
	concentração da nanoemulsão E6 (5% F127/10% A.O.)	90
Tabela 23 -	Cinética de inibição da concentração de DPPH (%) em função da	
	concentração da nanoemulsão E9 (5% F127/15% A.O.)	90
Tabela 24 -	Cinética de inibição da concentração de DPPH (%) em função da	
	concentração de curcuminóides	91
Tabela 25 -	Cinética de inibição da concentração de DPPH (%) em função da	
	concentração % (m/m) dos excipientes utilizados na formulação	
	das nanoemulsões	91
Tabela 26 -	Valores de IC ₅₀ (mg/L) após 30 minutos de reação para as	
	nanoemulsões E3 (5% F127-5% A.O), E6 (5% F127-10% A.O)	
	e E9 (5% F127-15% A.O) e curcuminoides na concentração	
	aproximada usada nas nanoemulsões (1,7 mg/mL)	94

SUMÁRIO

1.	INTRODUÇÃO	16
2.	FUNDAMENTAÇÃO TEÓRICA	18
2.	A pele	18
2.1.1	Lesão por pressão	18
2.1.2	Radiodermite	20
2.1.3	Queimaduras	20
2.2	Emulsões	21
2.2.1	Nanoemulsões	22
2.3	Considerações sobre os componentes da formulação	24
2.3.1	Curcuminoides	24
2.3.2	Ácido oleico	25
2.3.3	Pluronic® F127	25
2.4	Terapia tópica	26
2.5	Reologia	26
2.5.1	Fluidos Newtonianos e não-Newtonianos	26
2.6	Liberação in vitro	28
2.7	O estado da arte	30
3.	OBJETIVOS	32
3.1	Objetivos gerais	32
3.2	Objetivos específicos	32
4.	PROCEDIMENTO EXPERIMENTAL	33
4.1	Materiais	33
4.2	Extração dos curcuminoides	33
4.3	Caracterização dos curcuminoides	34
4.3.1.	Ressonância Magnética Nuclear de ¹ H (RMN ¹ H) e de ¹³ C	

	(RMN ¹³ C)	34
4.3.2	Espectroscopia de absorção na região do infravermelho com Transformada de Fourier (FTIR)	35
4.3.3	Cromatografia Líquida de Alta Eficiência (CLAE)	35
4.4	Estudo de compatibilidade	35
4.4.1	Preparo da mistura física (1:1:1)	35
4.4.2	Análise termogravimétrica (TG)	35
4.5	Preparo das nanoemulsões	35
4.6	Caracterização das nanoemulsões	37
4.6.1	Planejamento fatorial	37
4.6.2	Tamanho de partícula, índice de polidispersividade e potencial	
	zeta	37
4.7	Estudo de estabilidade preliminar	38
4.7.1	Resistência física	38
4.7.2	pH	38
4.7.3	Determinação da quantidade de fármaco na nanoemulsão	39
4.8	Reologia	39
4.9	Eficiência de Encapsulação	40
5.1	Liberação in vitro	41
5.2	Ensaio antioxidante pela captura do radical livre DPPH	41
5.	RESULTADOS E DISCUSSÃO	43
5.1	Caracterização dos curcuminoides	43
5.1.1	Ressonância Magnética Nuclear de ¹ H (RMN ¹ H) e ¹³ C	
	(RMN ¹³ C)	43
5.1.2	Espectroscopia de absorção na região do infravermelho com	
	Transformada de Fourier (FTIR)	45

5.1.3	Cromatografia Líquida de Alta Eficiência (CLAE)	47
5.2	Estudo de compatibilidade	48
5.2.1	Espectroscopia de absorção na região do infravermelho com	
	Transformada de Fourier (FTIR)	49
5.2.2	Análise termogravimétrica (TG/DTG)	52
5.2.3	Cromatografia Líquida de Alta Eficiência (CLAE)	55
5.3	Estabilidade das nanoemulsões	57
5.3.1	Tamanho de partícula	57
5.3.2	Potencial zeta	59
5.3.3	Índice de polidispersividade (IPD)	61
5.4	Planejamento experimental	62
5.4.1	Variável resposta: Tamanho de partícula	62
5.4.2	Variável resposta: potencial zeta	64
5.4.3	Seleção das nanoemulsões mais estáveis	64
5.5	Estudo de estabilidade preliminar	68
5.5.1	Resistência física	68
5.5.2	pH	70
5.5.3	Quantificação do fármaco na nanoemulsão	71
5.6	Reologia	72
5.7	Eficiência de encapsulação	78
5.8	Liberação in vitro	80
5.8.1	Determinação do perfil de liberação in vitro dos curcuminóides	80
5.8.2	Análise do mecanismo de liberação in vitro dos curcuminóides	83
5.8.3	Sistemas similares de Liberação in vitro	87
5.9	Ensaio antioxidante pela captura do radical livre DPPH	88
6.	CONCLUSÃO	97

7.	PRODUÇÃO BIBLIOGRÁFICA	98
	REFERÊNCIAS	100