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ABSTRACT

Cooperative communications have shown to be an alternative to combat the impairments of

signal propagation in wireless communications, such as path loss and shadowing, creating a

virtual array of antennas for the source. In this work, we start with a two-hop MIMO system

using a a single relay. By adding a space-time filtering step at the receiver, we propose a rank-

one tensor factorization model for the resulting signal. Exploiting this model, two semi-blind

receivers for joint symbol and channel estimation are derived: i) an iterative receiver based on

the trilinear alternating least squares (Tri-ALS) algorithm and ii) a closed-form receiver based

on the truncated higher order SVD (T-HOSVD). For this system, we also propose a space-time

coding tensor having a PARAFAC decomposition structure, which gives more flexibility to

system design, while allowing an orthogonal coding. In the second part of this work, we present

an extension of the rank-one factorization approach to a multi-relaying scenario anda closed-

form semi-blind receiver based on coupled SVDs (C-SVD) is derived. The C-SVD receiver

efficiently combines all the available cooperative links to enhance channel and symbol estimation

performance, while enjoying a parallel implementation.

Keywords: MIMO Systems, Cooperative Communications, Semi-Blind Receivers, Rank-One

Tensors.



RESUMO

Comunicações cooperativas têm mostrado ser uma alternativa para combater os efeitos de

propagação do sinal em comunicações sem-fio, como, por exemplo, a perda por percurso e

sombreamento, criando um array virtual de antenas para a fonte transmissora. Neste trabalho,

toma-se como ponto de partida um modelo de sistema MIMO de dois saltos com um único relay.

Adicionando um estágio de filtragem no receptor, é proposta uma fatoração de posto unitário para

o sinal resultante. A partir deste modelo, dois receptores semi-cegos para estimação conjunta de

símbolo e canal são propostos: i) um receptor iterativo baseado no algoritmo trilinear de mínimos

quadrados alternados (Tri-ALS) e ii) um receptor de solução fechada baseado na SVD de ordem

superior truncada (T-HOSVD). Para este sistema, é também proposto um tensor de codificação

espacial-temporal com uma estrutura PARAFAC, o que permite maior flexibilidade de design

do sistema, além de uma codificação ortogonal. Na segunda parte deste trabalho, é apresentada

uma extensão da fatoração de posto unitário para o cenário multi-relay e um receptor semi-cego

de solução fechada baseado em SVDs acopladas (C-SVD) é desenvolvido. O receptor C-SVD

combina de modo eficiente todos os links cooperativos disponíveis, melhorando o desempenho

da estimação de símbolos e de canal, além de oferecer uma implementação paralelizável.

Palavras-chave: Sistemas MIMO, Comunicações Cooperativas, Receptores Semi-Cegos, Ten-

sores de Posto Unitário.
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1 INTRODUCTION

The use of multiple antennas at the transmitter side and receiver side brought new

gains to wireless communications to exploit and new challenges compared with single antenna

wireless systems. Among these gains, we highlight spatial diversity and spatial multiplexing

gains. The spatial diversity gain comes from the use of multiple antennas to combat the fading

in wireless communications. The spatial multiplexing gain comes from the transmission of

multiple data streams in rich scattering environments, increasing the system spectral efficiency

[1, 2, 3]. However, consider the case of a MIMO wireless system where the source has no line of

sight with the destination or, the links between them are too poor. In this scenario, the use of

relay stations has shown to be an alternative to combat fading and to increase the capacity and

coverage of wireless system [4, 5, 6]. The benefits of relay-assisted wireless communications

strongly rely on the accuracy of the CSI for all the links involved in the communication process.

Moreover, the use of precoding techniques at the source and/or destination [7, 8] often requires

the instantaneous CSI knowledge of all links. An example of a cooperative communication

scenario is that of a multi-user system, where each user can be viewed as a relay station that

assists the source.

Even thought, those users may have a single antenna only, the system exploits the

spatial diversity as a MIMO system, due to the virtual antennas provided by the relay nodes.

Some works in this application can be viewed in [9, 10, 11, 12]. In [9], the authors investigate a

multi-user cooperative system with relay coding to enhance the performance of 4G systems. In

[10] and [11], a multi-user cooperative system with AF protocol at the relay is studied. In[10],

the authors focus on the problem in which scenario the relay must cooperate, and in [11], the

authors proposed a multi-user detection for uplink DS-CDMA in a multi-relaying scenario

taking advantage of the multidimensional nature of the signal, using tensor decompositions

for parameter estimation. In [12], the authors investigate the problem of power allocation

for a multi-user multi-relaying system with DF protocol in cognitive radio networks using

bandwith-power product to reach a optimal spectrum-sharing. In the context of 5G systems,

we can cite the recent work [13] where the authors proposed a non-orthogonal multiple access

for downlink, where the system is divided in K time slots with K − 1 users and each user

performs a SIC approach to estimate their own data. Since such approach at each receiver

demands processing time, in order to turn this operation less complex the authors proposed

a modified version of the SIC method. In the past decade, the use of multilinear algebra or
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tensor algebra for wireless communications has been growing up, at most after the work of

Sidiropoulos [14]. The main interest has been on the use of tensor decompositions to model

the received signal as well as to derive receiver algorithms exploiting multiple forms of signal

diversity. The two most common tensor decompositions are PARAFAC (Parallel Factor) [15] and

Tucker [16] decompositions. Alternative tensor decompositions have been developped recently

([17, 18, 19, 20]). The PARAFAC decomposition is the most popular one, and not only for its

conceptual simplicity but also for its uniqueness property [21]. The Tucker decomposition, is

note unique in general. However, when the core tensor it is known, the factors are unique under

some scalar ambiguity [17]. In the context of MIMO wireless communication, in [19, 20, 22]

semi-blind receivers have been proposed to jointly estimate the channel and the symbols using

tensors modeling.

In the cooperative scenario, some works that propose receivers based on the use of

tensor modelling can be found in [23, 24, 18, 17]. The work [23] develops a tensor-based channel

estimation algorithm for two-way MIMO relaying systems using training sequences. In [24], a

supervised joint channel estimation algorithm is proposed for one-way three-hop communication

systems with two relay layers. In [18], the authors proposed a semi-blind receiver for two-hop

MIMO relaying systems using a Nested PARAFAC model. The authors in [17] developed first a

generalization of the work [18], so called Nested Tucker decomposition, by using full tensors

as space-time coding (random exponential structure), at the source and the relay. They also

proposed two semi-blind receivers. The first one is an iterative solution based on the ALS (Alter-

nating Least Squares), while the second is a closed-form solution based on LSKP (Least Squares

Kronecker Product) factorization. The ALS receiver exploits the dimensions of the received

signal to estimate symbol and channel matrices. However, this algorithm requires extensive

matrix products and matrix inversions for each iteration. On the other hand, the Kronecker

factorization receiver is suboptimal since it divides the relay-destination channel and symbol

estimations into two steps (2LSKP), and the estimation for source-relay channel depends on the

accuracy of the previous estimation.

1.1 Relay Channels

Relay channels were introduced by Meulen in 1971 [25], the author investigates the

three-terminal system where a user (terminal 1) is assisted by another user (terminal 2) to send
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Figure 1 – Three terminal system example
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the data to destination (terminal 3), such cooperation divides the transmission into two phases, in

the first, the terminal 1 sends the data to terminal 2 by a source-relay channel and to terminal 3

by a direct link, source-destination channel. Then, in the second phase, the terminal 2 sends to

terminal 3 its own data plus the data from terminal 1 in the first phase. The system is illustrated

in Figure 1, where the red line represents the transmission in the first phase and the blue in the

second phase.

1.1.1 Cooperative Communications

In Figure 2 a three-terminal MIMO system is illustrated. This configuration combines

the gains of MIMO systems and cooperative communications which can be summarized as

• Spatial Diversity

As discussed in MIMO wireless advantages, the spatial diversity is related the use of

multiple antennas for transmitting and receiving signals. In the case of cooperative

communications, this can be achieved by single antenna users, since the relay node can

be viewed as a virtual antenna for the source. Such case can be related into multi-user

environment where each user (mobile) has a restriction on the number of antennas due

to hardware, and in the end, the system takes advantage of the spatial diversity of MIMO

systems [6].
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Figure 2 – Three terminal MIMO system example
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• Spatial Multiplexing

Considering the system in figure 2 the multiplexing gain is related to the gain of using

multiple antennas for transmitting independent data streams (as discussed previously). The

difference is that in this cooperative communication, the independent data streams are sent

through the relay channels, leading to the next advantage.

• Coverage Area

As seen in Figure 2, the link between terminal 1 and terminal 2 and the link between

terminal 2 and terminal 3 are shorter than the link between the terminal 1 and terminal

3, i.e. the path loss is smaller in the relay links than in the direct link, resulting in a less

power for terminal 1 to reach terminal 3.

In terms of medium access, the relays usually are characterized as

• Full-Duplex

In the full-duplex configuration, the relay can transmit and receive the signals at the

same time.This approach presents a low latency in the system, although cross interference

between the transmitted and received signals are introduced and must be accounted for.

Some works dealing with full-duplex relays can be found in [26, 27].
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• Half-Duplex

In this configuration, the relay receives and transmits at different time slots. However, the

latency of the system is increased, which in the case of a two-hop one relay system, the

transmission rate has a drop of 50%. This configuration is the most common for relays,

and appears in several works [17, 18, 28, 29].

In literature, there are many relay processing protocols that can be found in [4, 30, 31].

Basically, the protocols are divided into fixed relaying schemes and selective relaying schemes

[4]. In a simple way, for the fixed relaying schemes the protocol used at the relay node is

independent of the quality of the channel. The selective relaying schemes take into account the

SNR of the received signal at the relay node. If the SNR exceeds a predefined threshold, the relay

can apply the protocol. Else, the relay can remain idle. Next, we present some fixed relaying

schemes protocols.

• Fixed Amplifying and Forward (AF)

Also known as a non-regenerative protocol, the relay receives the signal from the source

and scales it. This protocol is attractive for systems that consider constant channels, due

to simplicity and latency time. The use of the AF protocol makes more sense in the

cases where the relay is closer to the destination than the source to compensate the fading.

Otherwise, the relay has to use more power which also amplifies the noise in the received

signal [6].

• Fixed Decode and Forward (DF)

Also known as a regenerative protocol, the DF consists of decoding the signal at the

relay, then possibly applying some coding before forwarding to the destination. This

scheme, compared with AF protocol, increases the latency of the system since some signal

processing technique must be applied to decode the signal. For such protocol, it is useful

that the relay is closer to the source than to the destination to have a better probability to

decode the signal correctly than if the relay is closer to the destination [4, 6].

1.2 Contributions

The main contributions of this thesis can be summarized as

1. Minimization of the Frobenius norm of a matrix by the Kronecker product of N matrices.
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This process is a generalization of the Kronecker product approximation introduced by Van

Loan in [32] that minimizes the Frobenius norm of a matrix by the Kronecker product of

two matrices, rearranging the structure to a rank-one matrix. The proposed generalization

rearranges the matrix structure into a tensor which can be approximated by the outer

products of N vectors, where those vectors are the vectorization of the original matrices

involved in the Kronecker product.

2. Orthogonal effective codes designed by the exact Khatri-Rao factorization of a DFT matrix.

We show that a DFT of size K×K can be factorized into the Khatri-Rao product of N

matrices, with the constraint that k1k2 · · ·kN = K, where kn is the number of rows of the

n-th matrix factor.

3. Two semi-blind receivers for two-hop MIMO cooperative systems are proposed by exploit-

ing a rank-one tensor approximation. The first receiver is iterative (based on ALS), while

the second is a closed-form solution (based on the HOSVD).

4. A coupled SVD-based semi-blind (C-SVD) for a multi-relaying MIMO system which

provides closed-form estimates of the channels and symbols by coupling multiple SVDs.

1.3 Thesis organization

• Chapter 2 - Tensor Prerequisites

In this chapter, tensor arrays with some definitions and operations are introduced. The

useful tensor decompositions for this thesis is presented. Also, an important topic is

discussed, the generalization of the Kronecker approximation by Van Loan [32] which is

the core part of the signal processing applied in the latest chapters and the DFT factorization

by a Khatri-Rao product.

• Chapter 3 - Two-Hop MIMO Relaying

A two-hop MIMO relay system is presented, which is modelled using the decompositions

introduced in Chapter 2, resulting into two semi-blind receivers. The first one is iterative

while the second is based on a closed-form solution. Both receivers exploit the rank-one

tensor formulation of the received signal after a space-time combining.

• Chapter 4 - Multi-Relaying MIMO System

A multi-relaying MIMO system is presented, taking advantage of the two-hop system

modelled in Chapter 3 and using the generalized Kronecker approximation of Chapter 2.

A closed-form solution to channel and symbol estimation is derived by coupling multiple
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rank-one tensors (one for each cooperative link) using the SVD.

• Chapter 5 - Conclusions

In this chapter, we draw the final comments and conclusions of this work, and highlight

topics for future work.

1.4 Scientific production

Two papers have been produced as a result of this thesis. The first to a national

congress of telecommunications and signal processing (SBrT 2017). The second paper has been

submitted to the Journal of Communications and Information Systems, and we are waiting for

the response.

1. Bruno Sokal, André L. F. de Almeida and Martin Haardt "Rank-One Tensor Modeling

Approach to Joint Channel and Symbol Estimation in Two-Hop MIMO Relaying Systems

published in the XXXV Simpósio Brasileiro de Telecomunicações, São Pedro, Brazil,

2017 ;

2. Bruno Sokal, André L. F. de Almeida and Martin Haardt "Semi-Blind Coupled Receiver

to Joint Symbol and Channel Estimation Using Rank-One Tensor Factorizations for MIMO

Multi-Relaying System Journal of Communication and Information Systems, 2017;
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2 TENSOR PREREQUISITES

In this chapter, we start with the basis of tensor algebra, some properties and notations.

In a second part, some useful decompositions that we make use in this thesis are presented.

Finally, the generalized Kronecker approximation and the DFT factorization by a Khatri-Rao

product are discussed.

2.1 Tensors

A tensor is an array with order greater than two (scalars have order zero, vectors

order one, matrices order two), or simply a multidimensional array.

A tensor X ∈ CI1×I2×···×IN is a multidimensional array with order N, with elements X(i1,i2,··· ,in),

where in = {1 · · · IN}. In the following, some definitions are presented. For a better understanding

consider a third-order tensor X ∈ CI×J×K .

Figure 3 – Illustration of a third-order tensor X

XI

K

J

Source: Created by the Author

Definition 1. Fibers

Fibers are vectors formed by fixing the indices of all dimensions with the exception of one.

For third-order tensors, there are three types of fibers: Column fibers, denoted by x. jk, where

the indices for the J and K dimensions are fixed and the indices of the I dimension is varying,

forming a vector of size I×1; Row fibers are denoted by xi.k, in this case the fixed dimensions

are I and K, and the dimension J is varying, resulting in a vector of size J×1. At last, Tube fibers

are denoted by xi j. creating a vector of size K×1 by fixing the indices of the I and J dimensions,

and varying the indices along the K dimension. Figure 4 illustrates this representation.
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Figure 4 – (a) Column fibers; (b) Row fibers; (c) Tube fibers

  (a)   (b)   (c)

Source: Created by the Author

Figure 5 – (a) Frontal slices; (b) Lateral slices; (c) Horizontal slices

(a) (b) (c)

Source: Created by the Author

Definition 2. Slices

Slices are formed by fixing one index and varying the others. For a third-order tensor X ∈

CI×J×K , slices are matrices and there are three different ways to slice it. Frontal slices are de-

noted by X..k and are formed by varying the first and second modes and fixing the index along the

third mode resulting in K matrices of size I×J. Lateral slices are denoted by X. j., in this case the

index of the J dimension is fixed while the indices of the first and third modes are varying, at total

resulting in J matrices of size I×K. The last one for third-order tensors are the Horizontal slices,

denoted by Xi.., where now the index of the first mode is fixed and the indices of the second and

third modes are now varying, yielding I matrices of size J×K. Figure 5 shows this representation.

Definition 3. n-mode unfolding

One way to matricizes a tensor is to compute the n-mode unfolding. Consider the tensor

X ∈ CI×J×K , the n-mode unfolding of X is denoted by X(n) and this operation separates the

n-th mode fibers and put them along the rows, resulting in the flat n-mode unfolding X(n), or

in the columns forming the tall n-mode unfolding, which is the transposition of the flat one.
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Since X it is a third-order tensor, there are three possible ways to matricize it. Let us denote

X(1) ∈CI×JK , X(2) ∈CJ×IK and X(3) ∈CK×IJ as the flat 1-mode, 2-mode and 3-mode unfolding

of X . The elements of the n-mode unfolding X(1)(i,α)
,X(2)( j,β )

and X(3)(k,γ) are mapped from X

as

α = j+(k−1)J, (2.1)

β = i+(k−1)I, (2.2)

γ = k+( j−1)K, (2.3)

with i = {1 · · · I}, j = {1 · · ·J}, k = {1 · · ·K}, α = {1 · · ·JK}, β = {1 · · · IK} and γ = {1 · · · IJ}.

This mapping is known as the little-endian convention, defined in [33]. For the general case

of a N-th order tensor Y ∈ CI1×···×IN , the element of the flat n-mode unfolding Y(n)(in,l)
∈

CIn×I1···In−1In+1···IN is mapped from Y as

l = i1 +(i2−1)I1 +(i3−1)I1I2 + · · ·+(iN−1)I1 · · · In−1In+1 · · · IN−1, (2.4)

where in = {1 · · · In} and l = {1 · · · I1 · · · I(n−1)I(n+1) · · · IN}.

Definition 4. Generalized n-mode unfolding

Instead of separating one mode from the others, as in the n-mode unfolding, the generalized

n-mode unfolding matricizes the tensor by combining multiple modes as rows and columns of the

resulting unfolding matrix. Defining j = {i1, · · · , in} and k = {in+1, · · · , iN} with in = {1 · · · In},

the n-mode generalized unfolding maps the elements of Y(i1,··· ,iN) into a matrix Y[ j,k] as

j = i1 +(i2−1)I1 +(i3−1)I1I2 + · · ·+(in−1)I1I2 · · · In−1 (2.5)

k = in+1 +(in+2−1)In+1 + · · ·+(iN−1)In+1In+2 · · · IN−1 (2.6)

Definition 5. n-mode product

Given the third-order tensor X ∈ CI×J×K and a matrix A ∈ CR×I , the n-mode product linearly

combines the 1-mode fibers with the columns of the matrix A resulting a tensor Y R×J×K . The

n-mode product is denoted as

Y = X ×1 A. (2.7)

This combination can be also expressed in terms of the n-mode unfolding , i.e.

Y(1) = AX(1). (2.8)
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The n-mode product has the following property:

Y = X ×1 A×1 B×1 C (2.9)

= X ×1 CBA⇐⇒ (2.10)

Y(1) = CBAX(1). (2.11)

Definition 6. Contraction

This operation combines two tensors that have a common mode [34]. For example, given two

third-order tensors X I×J×K and Y J×L×M, where J is a common mode, the contraction between

them is defined as

G = X •1
2 Y , (2.12)

where G I×K×L×M is a fourth-order tensor. The upper index in the operator "•" refers that the

contracted mode is, in this case, involves the first mode of the tensor at the right side and the

lower index indicates the mode that will be contracted in the left side tensor. In element-wise,

the tensor G can be written as

G(i,k,l,m) =
J

∑
j=1

X(i, j,k)Y( j,l,m) (2.13)

Definition 7. Concatenation

Consider the third-order tensor X I×J×K and the following matrices A(i) of size I× J, with

i = {1 · · ·R}. We can form a tensor G I×J×(K+R) as

G = X t3 A(1)t3 A(1)t3 · · ·t3 A(R). (2.14)

This operation concatenates all the matrices along the third dimension K. In this case, the frontal

slices of tensor G are given by:

G..1:K = X..1:K (2.15)

G..K+1 = A(1) (2.16)

G..K+r = A(r) (2.17)

G..K+R = A(R). (2.18)
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Consider now a fourth-order tensor Y ∈ CI×J×K×L and R third-order tensors X (r) ∈ CI×K×L,

we can concatenate all those R tensors into the second mode of the tensor Y , forming the

fourth-order tensor T ∈ CI×(J+R)×K×L as:

T = Y t2 X (1)t2 · · ·t2 X (R) (2.19)

The third-order tensors formed by fixing the second mode of T are given as:

T.1:J .. = Y (2.20)

T.J+1.. = X (1) (2.21)

T.J+r.. = X (r) (2.22)

T.J+R.. = X (R) (2.23)

Definition 8. Rank-one tensor

A N-th order tensor Y I1×···×IN is said to have a rank-one if we can write Y as the outer product

of N vectors,

Y = a(1) ◦ · · · ◦a(N), (2.24)

where a(i) is a vector of size Ii×1, and i = {1 · · ·N}.

Definition 9. Tensor rank

The typical rank of the tensor X is given by the smallest number of rank-one tensors yield X

as linear combination. If X has rank R, we have

X =
R

∑
r=1

ar ◦br ◦ cr (2.25)

Definition 10. vec(·) operator

Given a matrix A ∈ CI×J

A =


| ... |

a1 · · · aR

| ... |


I×R

, (2.26)

the vectorization of A consists of stacking the columns of A as:

vec(A) =


a1
...

aR


IR×1

. (2.27)
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The unvec(·) operator is the inverse operator of the vec(·).

Definition 11. Kronecker Product

Given a matrix A of size I× J and a matrix B of size R×S, the Kronecker product C = A⊗B is

defined as

C =


a11B a12B · · · a1JB

a21B a22B · · · a2JB
...

... . . . ...

aI1B aI2B · · · aIJB


RI×SJ

(2.28)

Note that the matrix C can be viewed as a block matrix with R blocks in the rows, S blocks in

the columns and each block is a matrix of size I× J. Let us define some useful properties of this

product. For matrices A, B, C and D of compatible dimensions, we have:

(A⊗B)T = AT⊗BT (2.29)

(A⊗B)∗ = A∗⊗B∗ (2.30)

(A⊗B)† = A†⊗B† (2.31)

(A⊗B)(C⊗D) = AC⊗BD (2.32)

vec(ABC) = (CT⊗A)vec(B) (2.33)

vec(a(N) ◦ · · · ◦a(1)) = a(1)⊗·· ·⊗a(N) (2.34)

Definition 12. Khatri-Rao Product

This product is also known as the column-wise Kronecker product. Given the matrices X∈CM×N ,

Y ∈ CL×N , the Khatri-Rao, defined as Z = X�Y, is given by

Z =
[

x1⊗y1 x2⊗y2 · · · xN⊗xN

]
LM×N

(2.35)

where xn and yn are the n-th column of the matrices X and Y,respectively. For matrices A, B, C

and D of compatible dimensions, we have:

(A⊗B)(C�D) = AC�BD (2.36)

vec(ADn(B)C) = (CT �A)bT
n , (2.37)

where Dn(B) is a diagonal matrix formed by the n-th row of the matrix B, and bn is the n-th row

vector of B.
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2.2 Tensor Decompositions

We now present a few tensor decompositions that will be useful in the next chapters,

namely the PARAFAC, Tucker and Nested Tucker decompositions. During the past decade,

others decompositions were developed with applications in communication systems, such as:

CONFAC [19], PARATUCK [20]. More recently, some generalized tensor decompositions have

been developed such as the Tensor Train (TT) decomposition [35], Nested PARAFAC [18] and

Nested Tucker [17].

2.2.1 PARAFAC Decomposition

Figure 6 – Illustration of a third-order PARAFAC decomposition as the sum of the outer products
of three vectors.

X
+  +  +...

=

a1 a2 aR

b1 b2 bR

c1 cRc2

I

J

K

Source: Created by the Author

The Parallel Factors (PARAFAC) decomposition, also known as Canonical Decom-

position (CANDECOMP) [36] and Canonical Polyadic (CP) [37], is the most popular tensor

decomposition. It factorizes a N-th order tensor into a sum of the outer product of N vectors. In

order to simplify, Figure 6 shows a PARAFAC decomposition of a third-order tensor X I×J×K ,

with the factors matrices being as
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A =


| | · · · |

a1 a2 · · · aR

| | · · · |


I×R

B =


| | · · · |

b1 b2 · · · bR

| | · · · |


J×R

C =


| | · · · |

c1 c2 · · · cR

| | · · · |


K×R

.

So we can write X using a shorthand notation as

X =
R

∑
r=1

ar ◦br ◦ cr (2.38)

= [[A,B,C]].

2.2.1.1 PARAFAC Slices

For a third-order PARAFAC tensor, its matrix slices can be represented as a function

of its factor matrices. The frontal, horizontal and lateral slices can be respectively written as

X..k = ADk(C)BT (2.39)

Xi.. = CDi(A)BT (2.40)

X. j. = AD j(B)CT (2.41)

2.2.1.2 n-mode unfolding

Considering now a N-th order tensor X I1×···×IN of rank R and factor matrices A(i)

of size Ii×R, with i = {1 · · ·N}. The tensor X can be expressed in terms of the n-mode product

notation as

X = IR×1 A(1)×2 A(2)×3 · · ·×N A(N), (2.42)

where IR is the superdiagonal N-th order tensor of size R×·· ·×R with the entries equal to one,

if all indices are the same, and zero else. From Equation (2.42), the flat n-mode unfolding of X

can be written as:

X(n) = A(n)(A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1))T (2.43)

In the PARAFAC decomposition, the Kronecker operator "⊗" is replaced by the

Khatri-Rao operator "�" due the core tensor IR being an identity tensor.
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2.2.1.3 Uniqueness

One of the properties that makes PARAFAC such a popular tensor decomposition

is uniqueness. Differing from matrix decompositions, such as SVD, where the pair of singular

matrices is unique under the imposition of orthogonality, the uniqueness of the PARAFAC

decomposition can be achieved by a far simpler condition. Uniqueness means that in Equation

(2.38) the columns of the factor matrices can be arbitrarily permuted and scaled, so that

X = [[AΠ∆A,BΠ∆B,CΠ∆C]], (2.44)

where Π is some permutation matrix and ∆A,∆B,∆C are diagonal matrices containing the

scaling factors, with ∆A∆B∆C = IR, where IR is the identity matrix of size R×R.

For third-order tensors, in 1977, Kruskal [21] derived a sufficient condition for

uniqueness. This condition relies on the so-called k-rank. If a matrix have a k-rank equal to l, it

means that every set of l columns of this matrix is linearly independent. Denoting as kA, kB and

kC as the k-rank of A,B,C the PARAFAC decomposition is unique if

kA + kB + kC ≥ 2R+2. (2.45)

In [38], Sidiropoulos and Bro generalized the Kruskal’s condition to an N-th order tensor.

Consider the N-th order tensor X I1×···×IN as

X = IR×1 A(1)×2 A(2)×3 · · ·×N A(N), (2.46)

where A(n) is a matrix of size In×R, with n = {1 · · ·N}, and R is the tensor rank. The general-

ization of the Kruskal’s condition is given by

N

∑
n=1

kA(n) ≥ 2R+(N−1). (2.47)

2.2.1.4 ALS Algorithm

Consider the third-order tensor X of Equation (2.38). Suppose we want to approxi-

mate it by a third-order tensor X̂ = [[A,B,C]], such that

min
X̂
||X −X̂ ||F . (2.48)
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Algoritmo 1: ALS

1: Initialize randomly B̂0 and Ĉ0; it = 0;
2: it = it + 1;
3: Compute an estimate of Â

Âit = X(1)(Ĉit−1 � B̂it−1)
†

4: Compute an estimate of B̂
B̂it = X(2)(Ĉit−1 � Âit−1)

†

5: Compute an estimate of Ĉ
Ĉit = X(3)(B̂it−1 � Âit−1)

†

6: Return to step 2 until convergence.
7: Return Â, B̂ and Ĉ.

One solution is to compute the Alternating Least Squares (ALS) algorithm. Since the tensor X

is a third-order PARAFAC tensor, its n-mode unfolding can be written as

X(1) = A(C�B)T ∈ CI×JK, (2.49)

X(2) = B(C�A)T ∈ CJ×IK, (2.50)

X(3) = C(B�A)T ∈ CK×IJ. (2.51)

The ALS algorithm is an iterative method that solves a Least Squares (LS) problem for each

mode of X , by minimizing the following cost functions

Â =argmin
A
||X(1)−A(Ĉ� B̂)T|| (2.52)

B̂ =argmin
B
||X(2)−B(Ĉ� Â)T|| (2.53)

Ĉ =argmin
C
||X(3)−C(B̂� Â)T||. (2.54)

First, the ALS algorithm solves for Â using the random initializations of B̂ and Ĉ, next, it solves

for B using the previously estimated matrix Â and the matrix Ĉ initialized at the beginning,

finally, solves the cost function for Ĉ using the matrices Â and B̂ computed before, finishing the

first iteration. The algorithm continues until the error between two iterations becomes smaller

than a predefined threshold or reach the total number of iterations. The random initialization is

not optimal and the ALS can be stuck in a local minimum. The authors in [39, 40, 41] proposed

some alternatives for initializing the ALS algorithm. The standard ALS algorithm is summarized

in Algorithm 1. One usual convergence criterion for the ALS algorithm is

||Âit(Ĉit � B̂it)
T− Âit−1(Ĉit−1 � B̂it−1)

T||2F ≤ ε. (2.55)

In this thesis we consider ε = 10−6.
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2.2.2 Tucker Decomposition

Figure 7 – Illustration of a Tucker decomposition.
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The Tucker decomposition was introduced by Tucker in 1963 [16]. It decomposes

the tensor into a core tensor and factor matrices. The PARAFAC decomposition can be viewed

as special case of Tucker decomposition, where the core tensor IR is a diagonal tensor. Figure 7

illustrates the Tucker decomposition of a third-order tensor X I×J×K into a core tensor G P×Q×R

and the factor matrices A ∈ CI×P, B ∈ CJ×Q and C ∈ CK×R. The tensor X can be written in

n-mode product and scalar forms as

X = G ×1 A×2 B×3 C (2.56)

X(i, j,k) =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

G(p,q,r)A(i,p)B( j,q)C(k,r) (2.57)

2.2.2.1 Uniqueness

In general, the Tucker decomposition is not unique since the core tensor can be

transformed by a non-singular matrix and still fit, i.e.

X = G ×1 U1×1 AU−1
1 ×2 U2×2 BU−1

2 ×3 U3×3 CU−1
3 , (2.58)

= G ×1 AU−1
1 U1×2 BU−1

2 U2×3 CU−1
3 U3, (2.59)

= G ×1 A×2 B×3 C. (2.60)

In [17], the authors showed that if the core tensor is known, the factor matrices are

unique under some scaling factors.

Proof. Consider a N-th order tensor X I1×···×IN with the core tensor G R1×···×RN and the factor

matrices A(i) of size Ii×Ri, where i = {1 · · ·N}, and U(i) of size Ri×Ri are some non singular
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matrices. Computing the 1-mode unfolding of X we have

X(1) = A(1)G(1)(A(N)⊗·· ·⊗A(2))T (2.61)

Applying Property 2.33 yields

vec(X(1)) = (A(N)⊗·· ·⊗A(1))vec(G(1)) (2.62)

Replacing A(i) by A(i)U(i) we have

vec(X(1)) = (A(N)U(N)⊗·· ·⊗A(1)U(1))vec(G(1))

= (A(N)⊗·· ·⊗A(1))(U(N)⊗·· ·⊗U(1))(G(1)) (2.63)

The equations (2.62) and (2.63) are equal only if the term U(N)⊗·· ·⊗U(1) is a identity matrix

meaning that U(i) = αiI(i) and
N
∏
i=1

αi = 1, with I(i) is the identity matrix of size Ri×Ri.

2.2.2.2 Special Tucker Decompositions

Figure 8 – Illustration of a Tucker-(2,3) decomposition.
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In [42] the authors introduced the concept of Tucker-(N1,N), where N denotes the

order of the tensor with N−N1 factors matrices equal to the identity matrix. Two decompositions

that are used later in this thesis are the Tucker-(2,3) and Tucker-(1,3).

For the Tucker-(2,3) decomposition, a tensor X ∈ CI×J×K is decomposed into a

core tensor G ∈ CP×Q×K and two factor matrices A ∈ CI×P and B ∈ CJ×Q. Figure 8 illustrates
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the decomposition. The tensor X can be expressed as

X = G ×1 A×2 B×3 IK (2.64)

X(i, j,k) =
P

∑
p=1

Q

∑
q=1

Gp,q,kA(i,p)B( j,q) (2.65)

X..k = AG..kBT (2.66)

where IK is the identity matrix of size K×K and X..k is the k-th frontal slice of X .

Figure 9 – Illustration of a Tucker-(1,3) decomposition.
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The Tucker-(1,3) is the case where the tensor X ∈ CI×J×K is decomposed into a

core tensor G ∈ CP×J×K and a factor matrix A ∈ CI×P. Figure 9 shows the decomposition. In

this case, the tensor X is given by

X = G ×1 A×2 IJ×3 IK (2.67)

X(i, j,k) =
P

∑
p=1

A(i,p)G(p, j,k) (2.68)

X..k = AG..k (2.69)

2.2.2.3 Higher-Order Singular Value Decomposition (HOSVD) Algorithm

Tucker decomposition is also known as High-Order Singular Value Decomposition

[43]. As explained in the uniqueness section, the Tucker decomposition it’s not unique, meaning

that we can only provide a basis for the true factors. In the case, the HOSVD algorithm computes

a basis for each factor matrix by via SVD for each n-mode unfolding of the tensor, selecting

the left singular matrix (if it’s the flat n-mode unfolding) and truncating into the specific size.

Computing the SVD of Equation (2.61) we have

X(1) = UΣVH = A(1)G(1)(A(N)⊗·· ·⊗A(2))T (2.70)
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since U is an orthogonal matrix that spans the subspace of A(1) of size I1×R1, and truncating U

to the R1 columns, will exist a non-singular matrix T, of size R1×R1, such that

A = UT. (2.71)

However, for a rank-one matrix the uniqueness condition is under some scale factor [44]. The

HOSVD algorithm is described in Algorithm 2.

Algoritmo 2: HOSVD
1: Compute the SVD for 1-mode of X

X(1) = U(1)Σ(1)VH
(1)

Â = U(1) Truncated to the first P columns
2: Compute the SVD for 2-mode of X

X(2) = U(2)Σ(2)VH
(2)

B̂ = U(2) Truncated to the first Q columns
3: Compute the SVD for 3-mode of X

X(3) = U(3)Σ(3)VH
(3)

Ĉ = U(3) Truncated to the first R columns
4: Compute the core tensor G as

G = X ×1 ÂH×2 B̂H×3 ĈH

5: Return G , Â, B̂ and Ĉ.

2.2.3 Nested Tucker Decomposition

Figure 10 – 3-D Illustration of a N-th order Nested Tucker decomposition.

A(1) C C CA(2) A(3) A(N-1)X = (1) (2) (N-2)

Source: Created by the Author

Nested Tucker decomposition was introduced in [17]. This decomposition is a

general case of the Nested PARAFAC decompositions in [18], where the core tensors are full

tensors. This decomposition can be viewed as a special case of the TT decomposition developed

by Oseledets in 2011 [35]. The difference is that in the TT decomposition, a N-th order tensor

is decomposed into N third-order core tensors with two matrices in the edges, and the Nested

Tucker decomposition is a train of Tuckers-(2,3) and Tuckers-(1,3) in a contraction (or a train
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of Tuckers-(1,3) and Tuckers-(2,3)), where those decompositions share a factor matrix. In this

thesis, we make use of Nested Tucker decompositions of orders four and five, also referred to as

NTD(4) and NTD(5), respectively, to model multi-relaying MIMO systems, as shown in Chapter

4.

Consider the N-th order tensor X I1×···×IN illustrated in Figure 10, the core tensors

C (n) are of size R2n−1×R2n× In+1 with exception of the last core C (N−2) that is of size R2n−1×

R2n× IN , and the matrices at the edge A(1) and A(N−1) are of size I1×R1 and IN−1×R2N−4,

while the matrices between the cores A(n+1) are of size R2n×R2n+1. This will be clear next

section where the simple cases are introduced. The tensor X can be written as

X(i1,i2,··· ,iN) =
R1

∑
r1=1

R2

∑
r2=1
· · ·

RN−1

∑
rN−1=1

A(1)
(i1,r1)

C
(1)
(r1,r2,i2)

· · ·C (N−2)
(rN−2,rN−1,iN)

A(N−1)
(iN−1,r2N−4)

(2.72)

2.2.3.1 Fourth-Order Nested Tucker Decompositions (NTD(4))

Figure 11 – 3-D illustration of a 4-th order Nested Tucker tensor.

 X   =    B  C     U 

R2

  DWI1
R4

I3

R1

I2

R1
R2

R3

R3

I4

R4

Source: Created by the Author

Also called as NTD(4), it decomposes a fourth-order tensor X as a contraction

between a Tucker-(2,3) and Tucker-(1,3) decompositions. The Nested Tucker decomposition of a

fourth-order tensor X ∈CI1×I2×I3×I4 , illustrated in Figure 11, with factor matrices as B∈CI1×R1 ,

U ∈ CR2×R3 , D ∈ CI3×R4 and core tensors C ∈ CR1×R2×I2 , W ∈ CR3×R4×I4 , is written as

X(i1,i2,i3,i4) =
R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1

R4

∑
r4=1

B(i1,r1)C(r1,r2,i2)U(r2,r3)W(r3,r4,i4)D(i3,r4) (2.73)

Defining the following Tucker-(2,3) and Tucker-(1,3) decompositions:

T (1) = C ×1 B×2 UT ∈ CI1×R3×I2 (2.74)

T (2) = W ×2 D ∈ CR3×I3×I4 (2.75)

T (3) = C ×1 B ∈ CI1×R2×I2 (2.76)

T (4) = W ×1 U×2 D ∈ CR2×I3×I4. (2.77)
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The tensor X can be viewed as a contraction involving T (1) and T (2) with the common mode

as R3, i.e. a contraction between a Tucker-(2,3) and Tucker-(1,3) tensors. We have:

X = [(C ×1 B×2 UT)•1
2 W ]×3 D (2.78)

= (C ×1 B×2 UT)•1
2 (W ×2 D) (2.79)

= T (1) •1
2 T (2) (2.80)

Alternatively, the tensor X can be viewed as a contraction between tensors T (3) and T (4) with

the common mode as R2, i.e. a contraction between Tucker-(1,3) and Tucker-(2,3) tensors, i.e.

X = [(C ×1 B)•1
2 (W ×1 U)]×3 D (2.81)

= (C ×1 B)•1
2 (W ×1 U×2 D) (2.82)

= T (3) •1
2 T (4). (2.83)

In any case, the (i2i4)-th slice of X is expressed as

X.i2.i4 = BC..i2UW..i4DT ∈ CI1×I3 . (2.84)

2.2.3.2 Fifth-Order Nested Tucker Decomposition (NTD(5))

Figure 12 – 3-D illustration of a 5-th order Nested Tucker tensor.

R2

 C (2)
I1

R4

R4

R1

I2

R1
R2

R3
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I3

R 5

 C (3)

R 6

I4R5

I5

R6

   C (1)       A(2)=X    A(1)   A(3)    A(4)

Source: Created by the Author

This particular case is introduced to simplify the understanding of the MIMO relaying

system model in Chapter 4. In this case, we can define the following Tucker-(2,3) and Tucker-

(1,3)

T (1) = C (1)×1 A(1)×2 A(2)T ∈ CI1×R3×I2 (2.85)

T (2) = C (2)×2 A(3)T ∈ CR3×R5×I3 (2.86)

T (3) = C (3)×2 A(4) ∈ CR5×I4×I5 (2.87)

In the NTD(5) case, the tensor X can be viewed as a train of one Tucker-(2,3) and two

Tucker-(1,3) as

X = (T (1) •1
2 T (2))•1

3 T (3), (2.88)
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and the (.i2i3.i5)-th slice of X is given by

X.i2i3.i5 = A(1)C(1)
..i2A(2)C(2)

..i3A(3)C(3)
..i5A(4)T ∈ CI1×I4 . (2.89)

2.3 Kronecker Product Approximation

In this section, the Kronecker product approximation is presented. First, we introduce

the Van Loan case [32] and then we describe our proposed generalization.

2.3.1 From Kronecker Approximation to Rank-one Matrix

Consider the following Kronecker product X = B⊗C, where X of size RI×SJ, B

of size I× J and C of size R×S and the minimization problem

φ(B,C) = ||X−B⊗C||F . (2.90)

Van Loan in [32] shows that solving (2.90) is the same as solving for a permuted version of X

and then computing a rank-one SVD, as follows

φ(B,C) = ||X−vec(B)vec(C)T||F (2.91)

A small example can illustrate this rearrangement. Consider as J = R = S = 2 and I = 3. The

matrix X can be divided into blocks due to the Kronecker product, as

X =


P(1,1) P(1,2)

P(2,1) P(2,2)

P(3,1) P(3,2)

 , (2.92)

where each block P is a matrix of size 2×2. The matrix X is constructed as

X =



vec(P(1,1))
T

vec(P(2,1))
T

vec(P(3,1))
T

vec(P(1,2))
T

vec(P(2,2))
T

vec(P(3,2))
T


(2.93)

Note that this rearrangement maps the elements of X into a rank-one matrix X and computing it

SVD as

X = UΣVH, (2.94)
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yields a solution for B and C as

B̂ = unvec(
√

σ1U(:,1)) (2.95)

Ĉ = unvec(
√

σ1V∗(:,1)). (2.96)

Note that the estimated B̂ and Ĉ are affected by arbitrary scalar factors that compensate each

other, i.e.:

B = αB̂ (2.97)

C =
1
α

Ĉ (2.98)

2.3.2 From Kronecker Product Approximation to Rank-one Tensor

In [45], the authors already proposed an extension of the Van Loan’s Kronecker

approximation problem to multiple matrices, by rearranging the cost function into tensor product.

Consider the generalized minimization problem as

min
A(1)···A(N)

||X−A(1)⊗·· ·⊗A(N)||F , (2.99)

where A(i) ∈ Cpi×qi and X ∈ CpN ···p1×qN ···q1 . The authors propose to rearrange the cost function

as

||M −S ×3 u(3)×4 u(4) · · ·×N+1 u(N+1)||F , (2.100)

where M ∈CpN×qN×p1q1×···×pN−1qN−1 , S =A(N) ∈CpN×qN×1 and u3 · · ·uN+1 are vectors formed

by reshaping the factor matrices A(1) · · ·A(N−1). Problem (2.100) can be solved by means of the

HOOI (Higher-Order Orthogonal Iterations) algorithm [43].

Our proposed generalization of the Van Loan’s Kronecker approximation consists of

rearranging the problem into a rank-one tensor where, comparing to [45], the core tensor is a

superdiagonal tensor, i.e. assumes a PARAFAC decomposition. Consider the minimization in

(2.99), we proposed a permutation in X such that the minimization problem becomes

min
a(1)···a(N)

||x−a(1)⊗·· ·⊗a(N)||F , (2.101)

where x is a vectorization of a permuted version of X and a(i) is the vectorization of the A(i)

factor matrix. From Property (2.34), we can rewrite the minimization in (2.102) as

min
a(N)···a(1)

||X −a(N) ◦ · · · ◦a(1)||F . (2.102)
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From Definition 8, the tensor X ∈ CpNqN×···×p1q1 can be considered as a rank-one tensor. Now,

we consider the special case of a Kronecker product involving the Kronecker product of three

matrices: X = A⊗B⊗C. Consider the following cost function:

φ(A,B,C) = ||X−A⊗B⊗C||F , (2.103)

where X ∈ CI1I2I3×R1R2R3 , A ∈ CI3×R3 , B ∈ CI2×R2 and C ∈ CI1×R1 . Minimizing (2.103) is the

same as minimizing the following cost function

φ(a,b,c) = ||x−a⊗b⊗ c||F ⇐⇒ (2.104)

= ||X − c◦b◦a||F

where a = vec(A), b = vec(B), c = vec(C), x = vec(X) is a vector of size I1R1I2R2I3R3× 1,

and X is a rank-one tensor of size I1R1× I2R2× I3R3.

Due to the Kronecker structure, the matrix X can be viewed in three different ways:

First, as a block matrix of size I2I3×R2R3 with each element being a matrix of size I1×R1.

Second, a block matrix of size I3×R3, where each element is a matrix of size I1I2×R1R2 formed

by the block B⊗C, and, finally, the total matrix X. Our goal is to rearrange the elements of X

into a matrix X such that x = a⊗b⊗ c. The matrix X can be viewed as

X =




[P(1)

(1,1)] · · · [P(1)
(1,R2)

]
... . . . ...

[P(1)
(I2,1)

] · · · [P(1)
(I2,R2)

]


P(2)
(1,1)

· · ·


[P(1)

(1,1)] · · · [P(1)
(1,R2)

]
... . . . ...

[P(1)
(I2,1)

] · · · [P(1)
(I2,R2)

]


P(2)
(1,R3)

... . . . ...
[P(1)

(1,1)] · · · [P(1)
(1,R2)

]
... . . . ...

[P(1)
(I2,1)

] · · · [P(1)
(I2,R2)

]


P(2)
(I3,1)

· · ·


[P(1)

(1,1)] · · · [P(1)
(1,R2)

]
... . . . ...

[P(1)
(I2,1)

] · · · [P(1)
(I2,R2)

]


P(2)
(I3,R3)


P(3)
(1,1)

(2.105)

where each block P(1) is a matrix of size I1×R1, each block P(2) is a matrix of size I1I2×R1R2,

and the block P(3) is the total matrix of size I1I2I3×R1R2R3. The sub indices only indicates the

block position in reference to the big block, e.g. the sub indices of P(1)
(1,1) indicates that is the

first block in the bigger block P(2)
(n,m)

, where n = {1 · · · I3} and m = {1 · · ·R3}. After this block

division, we can define a matrix X(n,m) of size I1R1× I2R2 where each column is the vectorization
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of each block P(1) in the bigger block P(2)
(n,m)

, following the row sense.

X(n,m)
= [vec(P(1)

(1,1));vec(P(1)
(I2,1)

); · · · ;vec(P(1)
(I2,R2)

)]
P(2)
(n,m)

.

Defining the matrix X of size I1R1I2R2× I3R3 as the matrix whose column vectors are formed

by vec(X(n,m)
)

X = [vec(X(1,1)
); · · · ;vec(X(I3,1)); · · · ;vec(X(I3,R3))] (2.106)

Equation (2.106) represents our rearrangement, i.e. vec(X) = a⊗b⊗c, and X is the third-order

rank-one tensor of size I1R1× I2R2× I3R3, given by the tensorization of x. This tensor can be

written as

X = c◦b◦a. (2.107)

In this case, we approximate a matrix by the Kronecker product of three matrices

by rearranging it as a third-order rank-one tensor, the matrices can be estimated, for example,

by using the ALS algorithm or the HOSVD algorithm and it will be unique with some scaling

factor.

Next, a simple example of the rank-one tensor approximation of the Kronecker

product of three matrices, X = A⊗B⊗C, with the matrices defined as

A =

 a1 a3

a2 a4

 B =

 b1 b3

b2 b4

 C =

 c1 c3

c2 c4

 . (2.108)

Also, we have the vectors a = vec(A), b = vec(B) and c = vec(C),

a =


a1

a2

a3

a4

 b =


b1

b2

b3

b4

 c =


c1

c2

c3

c4

 . (2.109)

Defining x = a⊗b⊗ c, we have:

x =



a1b1c1

a1b1c2

a1b1c3
...

a4b4c4


64×1

(2.110)

By the proposed block division (2.105), the matrix X is given as
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X =





a1b1c1 a1b1c3

a1b1c2 a1b1c4


P(1)
(1,1)

a1b3c1 a1b3c3

a1b3c2 a1b3c4


P(1)
(1,2)a1b2c1 a1b2c3

a1b2c2 a1b2c4


P(1)
(2,1)

a1b4c1 a1b4c3

a1b4c2 a1b4c4


P(1)
(2,2)


P(2)
(1,1)



a3b1c1 a3b1c3

a3b1c2 a3b1c4


P(1)
(1,1)

a3b3c1 a3b3c3

a3b3c2 a3b3c4


P(1)
(1,2)a3b2c1 a3b2c3

a3b2c2 a3b2c4


P(1)
(2,1)

a3b4c1 a3b4c3

a3b4c2 a3b4c4


P(1)
(2,2)


P(2)
(1,2)

a2b1c1 a2b1c3

a2b1c2 a2b1c4


P(1)
(1,1)

a2b3c1 a2b3c3

a2b3c2 a2b3c4


P(1)
(1,2)a2b2c1 a2b2c3

a2b2c2 a2b2c4


P(1)
(2,1)

a2b4c1 a2b4c3

a2b4c2 a2b4c4


P(1)
(2,2)


P(2)
(2,1)



a4b1c1 a4b1c3

a4b1c2 a4b1c4


P(1)
(1,1)

a4b3c1 a4b3c3

a4b3c2 a4b3c4


P(1)
(1,2)a4b2c1 a4b2c3

a4b2c2 a4b2c4


P(1)
(2,1)

a4b4c1 a4b4c3

a4b4c2 a4b4c4


P(1)
(2,2)


P(2)
(2,2)


P(3)
(1,1)

(2.111)
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As described for the special case of the Kronecker product of three matrices, we start

the vectorization in the blue blocks until the first bigger block (red block, P(2)
(1,1)) is completed, so

we can define the matrix X(1,1) as

D(1,1)
= [vec(P(1)

(1,1));vec(P(1)
(2,1));vec(P(1)

(1,2));vec(P(1)
(2,2))]P(2)

(1,1)
(2.112)

=


a1b1c1 a1b2c1 a1b3c1 a1b4c1

a1b1c2 a1b2c2 a1b3c2 a1b4c1

a1b1c3 a1b2c3 a1b3c3 a1b4c1

a1b1c4 a1b2c4 a1b3c4 a1b4c1

 (2.113)

Note that the vectorization of D(1,1) is equal to the first 16 elements of d in Equation (2.110).

Now, we do the same steps in the row sense, i.e. we vectorize the blue blocks of the P(2)
(2,1) red

block. So, in the end, our reshaped matrix D is given by

D = [vec(D(1,1)
);vec(D(2,1)

);vec(D(1,2)
);vec(D(2,2)

)]16×4. (2.114)

Now, its easy to see that d = a⊗b⊗ c. And finally we define the rank-one tensor D
4×4×4

as in

Equation (2.107).

2.3.3 From Kronecker-Sum Approximation to Rank-R Tensors

This section is an extension of the problem in Equation (2.99) a rank-R problem of

the previous one. Since the Van Loan’s case also was extended to a rank-R problem, for our

proposed generalization the same logic can be applied. This is equivalent to define the following

problem:

min
A(r)⊗B(r)⊗C(r),r=1,··· ,R

||X−
R

∑
r=1

A(r)⊗B(r)⊗C(r)||F (2.115)

Considering the matrices A(r), B(r), C(r) of the same size as in (2.103) and X of the same size as

D. Following the proposed generalization, the minimization in (2.115) can be reformulated as

min
cr◦br◦ar,r=1,··· ,R

||X −
R

∑
r=1

cr ◦br ◦ar||F . (2.116)

The tensor X is an approximation of a rank-R PARAFAC given by

X = IR×1 C×2 B×3 A, (2.117)

where A = [a1;a2; · · · ;aR] with ar = vec(A(r)), B = [b1;b2; · · · ;bR] with br = vec(B(r)) and

C = [c1;c2; · · · ;cR] with cr = vec(C(r)).
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2.4 Khatri-Rao factorization of a DFT matrix

In this section, we show that W = WN �WN−1 � · · · �W1, where W ∈ CK×K is a

DFT matrix and Wn ∈ CKn×K , with
N
∏

n=1
Kn = K.

W =
1√
K



1 1 1 · · · 1

1 ω ω2 · · · ωK−1

1 ω2 ω4 · · · ω2(K−1)

...
...

... . . . ...

1 ωK−1 ω2(K−1) · · · ω(K−1)(K−1),


(2.118)

where ω = e−2π j/K . The idea is to factorize each column of W as the Kronecker product of N

vectors. Note that for the first column the factorization is straightforward since all the columns

is filled with ones, i.e. all the N vectors are vector columns with ones of size Kn×1. For the

(k+1)-th column of W we have the following relation:
1

ωk

...

ωk(K−1)

=


1

ωk

...

ωk(KN−1)



αN

⊗


1

ωk

...

ωk(KN−1−1)



αN−1

⊗·· ·⊗


1

ωk

...

ωk(K1−1)



α1

(2.119)

where αn =
n−1
∏
i=1

Ki with α1 = 1. In this case, we factorize the (k+1)-th column of the matrix W

as the Kronecker product of N vectors, where the n-th vector is of size Kn×1. We can conclude

that the matrix W can be factorized as a Khatri-Rao product, since this product is also known as

the column-wise Kronecker product.

Let us consider an example. Given a DFT matrix W ∈ C8×8, we want to factorize

it as the Khatri-Rao product of three matrices W1 ∈ C2×8, W2 ∈ C2×8 and W3 ∈ C2×8 (K1 =
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K2 = K3 = 2). The matrix W is given by

W =
1√
8



1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 ω8 ω10 ω12 ω14

1 ω3 ω6 ω9 ω12 ω15 ω18 ω21

1 ω4 ω8 ω12 ω16 ω20 ω24 ω28

1 ω5 ω10 ω15 ω20 ω25 ω30 ω35

1 ω6 ω12 ω18 ω24 ω30 ω36 ω42

1 ω7 ω14 ω21 ω28 ω35 ω42 ω49



(2.120)

As explained, the first column of the Wi matrix is filled with ones. According to (2.119), the

second column of W is given by

1

ω

ω2

ω3

ω4

ω5

ω6

ω7



=

 1

ω

K2K1

⊗

 1

ω

K1

⊗

 1

ω

 (2.121)

The matrices W3, W2 and W1 are given as

W3 =
1√
2

 1 1 1 1 1 1 1 1

1 ω4 ω8 ω12 ω16 ω20 ω24 ω28

 (2.122)

W2 =
1√
2

 1 1 1 1 1 1 1 1

1 ω2 ω4 ω6 ω8 ω10 ω12 ω14

 (2.123)

W1 =
1√
2

 1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 ω7

 . (2.124)

At the end, it is easy to see that W = W3 �W2 �W1.

In the previous example, we considered the matrix W ∈ C8×8 and we factorize it as

the Khatri-Rao product of three matrices with size 2×8. The case where a column of a DFT
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matrix it is factorized into the Kronecker product of vectors with two rows, e.g. as in Equation

(2.121), we call as the minimum possible factorization, and it is unique in the sense that all

vectors are the same (only changing the exponent). However, we have another two possibilities.

The first case is to factorize W as the Khatri-Rao product of two matrices W1 ∈ C4×8 and

W2 ∈ C2×8. The second column of W is given by:

1

ω

ω2

ω3

ω4

ω5

ω6

ω7



=

 1

ω

4

⊗


1

ω

ω2

ω3

 . (2.125)

So, in this case we have the two factor matrices are:

W2 =
1√
2

 1 1 1 1 1 1 1 1

1 ω4 ω8 ω12 ω16 ω20 ω24 ω28

 (2.126)

W1 =
1√
4


1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 ω8 ω10 ω12 ω14

1 ω3 ω6 ω9 ω12 ω15 ω18 ω21

 . (2.127)

The last possibility is to factorize W as the Khatri-Rao product of two matrices, W1 ∈ C2×8 and

W2 ∈ C4×8. Again, the second column of W is given by:

1

ω

ω2

ω3

ω4

ω5

ω6

ω7



=


1

ω

ω2

ω3



2

⊗

 1

ω

 . (2.128)
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In this case, the matrices W1 and W2 are given by:

W2 =
1√
4


1 1 1 1 1 1 1 1

1 ω2 ω4 ω6 ω8 ω10 ω12 ω14

1 ω4 ω8 ω12 ω16 ω20 ω24 ω28

1 ω6 ω12 ω18 ω24 ω30 ω36 ω42

 (2.129)

W1 =
1√
2

 1 1 1 1 1 1 1 1

1 ω ω2 ω3 ω4 ω5 ω6 ω7

 . (2.130)

Note that the difference between (2.125) and (2.128) is only a permutation in the order of vector

basis leading into a changing of the exponent αn.

2.5 Summary

In this chapter, some background material on tensor algebra and tensor decomposi-

tions have been provided. This material serves as a basis for the next chapters. As a contribution

of this thesis, we have elucidated the link between the Kronecker factorization of multiple

matrices and a rank-one tensor factorization. This fundamental link will be exploited in the

upcoming chapters, in order to connect a Nested Tucker decomposition to a rank-one PARAFAC

decomposition.
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3 TWO-HOP MIMO RELAYING

In this chapter, we propose two semi-blind receivers for joint channel and symbol

estimation in MIMO relay-based communication systems. These receivers are developed for a

two-hop system, assuming a tensor coding at the source and relay nodes. The central idea of the

proposed approach is on the rank-one tensor modeling of the received signal, which allows the

use of efficient estimation algorithms. The first receiver utilizes an iterative solution based on the

alternating least squares (ALS) algorithm, while the second provides closed-form estimations of

the channel and symbol matrices from a truncated higher-order singular value decomposition

(T-HOSVD). The proposed approach has a lower complexity compared to the receiver developed

in a previous work, while providing remarkable performance.

3.1 System Model

Figure 13 – System model.

Tx

MS

H(SR)

Relay

MR1 MS1

Rx

MD

H(RD)

Source: Created by the Author

Consider a one-way two hop MIMO relaying system, where MS and MD denote

the number of antennas at the source and destination, respectively. We assume that the relay

has MR1 receive antennas (operating during the first hop) and MS1 transmit antennas (operating

during the second hop). Figure 13 provides an illustration of the system model. The source-relay

channel H(SR) ∈ CMR1×MS and the relay-destination H(RD) ∈ CMD×MS1 are assumed to undergo

flat Rayleigh fading and are constant during the whole transmission period. We consider a
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half-duplex relay with AF protocol. At both the source and relay, space-time coding is assumed.

Let S ∈ CN×R denote the symbol matrix containing R data streams with N symbols each. At the

source, these R data streams are jointly spread across MS antennas and P time slots by means of

the tensor space-time coding (TSTC) C ∈ CMS×R×P. A space-time redundancy is then created

since each symbol is repeated P times and loaded into all MS antennas. The signal received at

the relay (in absence of noise) can be written as

X (SR) = C ×1 H(SR)×2 S ∈ CMR1×N×P. (3.1)

In the second hop, the source stays silent while the relay forwards a space-time coded version of

the received signal to the destination. Let W ∈ CMS1×MR1×J denote the space-time coding tensor

used at the relay. The coded signal is given as:

X̄ (SR) = W •1
2 X (SR) ∈ CMS1×J×N×P (3.2)

In a way similar to the first hop, the role of tensor W is to jointly spread the received signal

across MS1 transmit antennas and J time frames, where each time frame comprises P time slots.

At the destination, the noiseless received signal is then given as

X (SRD) = X̄ (SR)×1 H(RD) ∈ CMD×J×N×P (3.3)

Define H̄ (RD) as the space-time coded channel linking the MS1 relay antennas to the MD

destination antennas:

H̄ (RD) = W ×1 H(RD) ∈ CMD×MR1×J (3.4)

Plugging (3.2) into (3.3), and using (3.4), we get:

X (SRD) = (W •1
2 X (SR))×1 H(RD)

= (W ×1 H(RD))•1
2 X (SR)

= H̄ (RD) •1
2 X (SR) ∈ CMD×J×N×P (3.5)
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Comparing (3.5) with (2.80) we conclude that the signal received at the destination follows a

Nested Tucker model, and the following correspondences can be established:

(T (1),T (2))⇐⇒ (H̄ (RD),X (SR)) (3.6)

(B,U,D)⇐⇒ (H(RD),H(SR),S) (3.7)

(I1, I2, I3, I4)⇐⇒ (MD,J,N,P) (3.8)

(R1,R2,R3,R4)⇐⇒ (MS1 ,MR1,MS,R) (3.9)

Slicing the received signal tensor X (SRD) by fixing the second and fourth modes (i.e. p and j)

yields the following

X(SRD)
. j.p. = H(RD)W.. jH(SR1)C..pST ∈ CMD×N (3.10)

Let x jp
.
= vec(X(SRD)

. j.p ). Using Property (2.33), we have:

x jp = (S⊗H(RD))vec(W.. jH(SR)C..p)

= (S⊗H(RD))(CT
..p⊗W.. j)vec(H(SR)) (3.11)

Applying again the same property in (3.11) yields

x jp =
(
vec(H(SR))T⊗S⊗H(RD))vec(CT

..p⊗W.. j). (3.12)

Next, using Equation (3.12) the coding tensor will perform a important role in our modelling.

3.1.1 Coding Tensor Structure

Each coding tensor is considered as a tensor with PARAFAC structure, i.e. the source

and the Relay 1 coding tensor are given by:

C = IF1×1 C1×2 C2×3 C3 ∈ CMS×R×P (3.13)

W = IF2×1 W1×2 W2×3 W3 ∈ CMS1×MR1×J, (3.14)

where C1 ∈CMS×F1 , C2 ∈CR×F1 , C3 ∈CP×F1 , W1 ∈CMS1×F2 , W2 ∈CMR1×F2 , W3 ∈CJ×F2 , are

the factor matrices of the tensors C and W respectively, with F1 and F2 being the tensor rank.

Using the formula of PARAFAC frontal slices and applying the Properties 2.33, 2.32 and 2.37 at

the term vec(CT
..p⊗W.. j), we have:

vec(CT
..p⊗W.. j) = vec(C2Dp(C3)CT

1 ⊗W1D j(W3)WT
2 ) (3.15)

= vec[(C2⊗W1)(Dp(C3)⊗D j(W3))(C1⊗W2)
T] (3.16)

z jp = [(C1⊗W2)� (C2⊗W1)](C3p⊗W3 j)
T (3.17)
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Backing to the signal model, the Equation (3.12) can be written as

x jp = (vec(H(SR))T⊗H(RD)⊗S)z jp (3.18)

Defining X(SRD) as the matrix that contain all the JP vectors collected in Equation (3.18)

X(SRD) = (vec(H(SR))T⊗H(RD)⊗S)Z ∈ CMDN×JP, (3.19)

where Z ∈ CMS1RMR1MS×JP is the matrix formed by the collection of the JP vectors z jp, which

can be written as

Z = (G1 �G2)GT
3 , (3.20)

with G1 =C1⊗W2 ∈CMR1MS×F2F1 , G2 =C2⊗W1 ∈CMS1R×F2F1 and G3 =C3⊗W3 ∈CJP×F2F1 .

Note that this Kronecker structure matrix Z contains the known parameters of the proposed

model, i.e. contain the information of the coding tensors from the source and the relay and for

that, we propose a orthogonal design for Z. Such design is based on the unitary structure of a

DFT matrix where can be factorized by the Khatri-Rao product of N matrices, detailed in Section

2.4.

3.1.2 Noisy model and rank-one tensor formulation

Let V (SR) ∈ CMR1×N×P be the additive noise tensor at the relay. During the second

hop, the tensor V (SR) is filtered by the coding tensor W and the relay-destination channel H(RD)

as

V (1) = (W •1
2 V (SR))×1 H(RD)

= (W ×1 H(RD))•1
2 V (SR)

= H̄ (RD) •1
2 V (SR) ∈ CMD×J×N×P (3.21)

and considering V (2) ∈ CMD×J×N×P as the additive noise at the destination, the global noise is

given by

V (SRD) = V (1)+V (2) (3.22)

Plugging the noise term at the Equation (3.19) yields

X(SRD) = YZ+V(SRD), (3.23)
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where Y ∈ CMS1RMR1MS×JP is the matrix defined as

Y = vec(H(SR))T⊗S⊗H(RD), (3.24)

and V(SRD) ∈ CMDN×JP is the unfolding matrix of the global noise, which is constructed in the

same way as X(SRD).

It is worth drawing a comment on the meaning of matrices Y and Z. The first involves

the Kronecker product of the unknown factors of our system model (i.e. channel matrices and

symbol matrix), which we seek to estimate. The latter represents the equivalent space-time

coding matrix, accounting for the combined source-relay coding operations. In other words,

(3.23) provides an input-output relation. Since the coding tensors C and W are known at the

receiver, a direct approach to estimate the useful signal matrix Y in the presence of noise from

(3.23) is to use a least squares (LS) criterion, i.e.

Ŷ = argmin
Y
‖X(SRD)−YZ‖F , (3.25)

the solution is given by Ŷ = X(SRD)Z†. Note that Ŷ is a linearly transformed version of the

received signal obtained by combining (filtering) the columns of the matrix X containing the

space-time samples of the received signal with a zero forcing filter designed from the effective

space-time coding matrix Z, and in the orthogonal cases, the matrix Z can be viewed as a

matched filter, i.e. the solution of (3.25) is given by Ŷ = X(SRD)ZH. It is important to notice that

the orthogonal design is crucial to our system, since all the useful parameters are in the matrix Y

and the solution of Equation (3.25) will preserve the noise characteristics. Let us have a closer

look at the structure of Ŷ. This matrix can be partitioned as follows

Ŷ =


P(1,1) · · · P(1,RMR1 MS)

...
...

...

P(N,1) · · · P(N,RMR1MS)

 , (3.26)

i.e., due to the Kronecker structure, the matrix Ŷ can be viewed as a concatenation of N

row blocks and RMR1MS column blocks, respectively, where the (i, j)-th block Pi, j is of size

MD×MS1 .

Using the Kronecker approximation described in Section 2.3.2, the rank-one tensor can be given
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Figure 14 – Rank-one decomposition of the filtered signal tensor.

P ≈ s

h(SR)

h(RD)MDM
S1

M  MSR1

NR

Source: Created by the Author

by

P ≈ h(RD) ◦ s◦h(SR) ∈ CMDMS1×NR×MR1MS , (3.27)

with h(SR) ∈ CMSMR1×1, h(RD) ∈ CMDMS1×1, and s ∈ CNR×1 being the vectorized forms of S,

H(RD) and H(SR) respectively.

3.1.3 Uniqueness

The uniqueness for Nested Tucker decompositions has been discussed in Section

2.2.2.1. In the three-hop MIMO relaying model, since the coding tensors are known at the

receiver, the uniqueness of S and H(RD) is guaranteed up to scaling factors. To eliminate this

scaling ambiguity, we assume the knowledge of the entries S(1,1) and H(RD)
(1,1) . Solving the Equation

(3.25) consists of computing the pseudo-inverse of Z which must have full row-rank to ensure

the uniqueness of the parameters. This implies satisfying the following conditions:

P≥ F1 ≥MSR J ≥ F2 ≥MS1MR1 (3.28)

The proof of these conditions is given in Appendix B.

Since our proposed model was based on the proposed in [17], it is worth to comment

the uniqueness conditions of the competitor system. For the ALS Nested Tucker, the authors
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derived the following conditions:

J ≥max
(

MS1
MR1

,
MR1
MS1

)
, P≥max

(
R

MS
, MS

R

)
, (3.29)

N ≥ R, PN ≥MR1 ,JMD ≥MS. (3.30)

For the 2LSKP receiver proposed in [17], the uniqueness conditions are similar to our proposed

system, i.e. the conditions are given by Equation 3.28, with the difference that the parameters

F1 and F2 are only addressed to our proposed model, since these parameters are the related to

the PARAFAC design imposed in our model, where F1 and F2 are the tensor rank of C and

W , respectively. From this conditions, we can conclude that the ALS proposed in [17] has

more degrees of freedom. However, as we will see in Section 3.4, this algorithm has the greater

computational complexity.

3.2 Semi-Blind Receivers

We present two semi-blind receivers for joint channel and symbol estimation, by

capitalizing on the rank-one property of the filtered received signal tensor P .

3.2.1 Tri-ALS receiver

The Trilinear (Tri-)ALS algorithm consists of estimating s, h(RD), and h(SR) in an

alternate way by solving the following three cost functions:

ĥ(RD) =argmin
h(RD)

||P(1)−h(RD)(ĥ(SR) � ŝ)ᵀ|| (3.31)

ŝ =argmin
s
||P(2)− s(ĥ(SR) � ĥ(RD))ᵀ|| (3.32)

ĥ(SR) =argmin
h(SR)

||P(3)−h(SR)(ĥ(RD) � ŝ)ᵀ||, (3.33)

where P(n=1,2,3), are the n-mode unfoldings of the tensor P , constructed according to Equations

(2.39) to (2.41) with the following relationship: (A,B,C)⇐⇒ (h(RD),s,h(SR)).

The solutions of Equations (3.31) to (3.33) are given by

ĥ(RD) =
P(1)(ĥ(SR) � ŝ)∗

||ĥ(SR)||22||ŝ||22
(3.34)

ŝ =
P(2)(ĥ(SR) � ĥ(RD))∗

||ĥ(SR)||22||ĥ(RD)||22
(3.35)

ĥ(SR) =
P(3)(ŝ� ĥ(RD))∗

||ŝ||22||ĥ(RD)||22
(3.36)
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Proof. Considering a full-row rank matrix A ∈ Cm×n full row-rank, its right pseudo-inverse is

given by

A† = AH(AAH)−1 (3.37)

By replacing A by (ĥ(SR) � ŝ)T we have

[(ĥ(SR) � ŝ)T]† = (ĥ(SR) � ŝ)∗[(ĥ(SR) � ŝ)T(ĥ(SR) � ŝ)∗]−1 (3.38)

Noting that the Khatri-Rao product is the column-wise Kronecker product and since ĥ(SR) and ŝ

are only column vectors, we can rewrite Equation (3.38) as

[(ĥ(SR)⊗ ŝ)T]† = (ĥ(SR)⊗ ŝ)∗[(ĥ(SR)⊗ ŝ)T(ĥ(SR)⊗ ŝ)∗]−1. (3.39)

Using Properties (2.31), (2.30) and (2.32) we have

[(ĥ(SR)⊗ ŝ)T]† = (ĥ(SR)⊗ ŝ)∗[(ĥ(SR)⊗ ŝ)T(ĥ(SR)⊗ ŝ)∗]−1

= (ĥ(SR)⊗ ŝ)∗[(ĥ(SR)Tĥ(SR)∗⊗ ŝTŝ∗]−1

=
(ĥ(SR)⊗ ŝ)∗

||ĥ(SR)||22||ŝ||22
(3.40)

The scaling ambiguity is defined as

S = α1Ŝ H(RD) = α2Ĥ(RD) H(SR) = α3Ĥ(SR) (3.41)

with,

α1 =
S(1,1)

Ŝ(1,1)
α2 =

H(RD)
(1,1)

Ĥ(RD)
(1,1)

α3 =
1

α1α2

The Tri-ALS algorithm is summarized in Algorithm 3.

3.2.2 T-HOSVD receiver

The Truncated (T)-HOSVD algorithm is a closed-form solution based on subspace

estimation. It consists of taking the HOSVD on the filtered received signal tensor P , which

corresponds to calculating the SVD of its matrix unfolding. Since P is a rank-one tensor, the

three matrix unfolding can be approximated as rank-one matrices. Therefore, h(RD), s and h(SR)

are obtained from the dominant left singular vectors of the unfoldings P(1) ∈ CMDMS1×NRMR1MS ,
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Algoritmo 3: Tri-ALS

1: Initialize randomly ĥ(RD)
0 and ĥ(SR)

0 ; it = 0;
2: it = it + 1;
3: Compute an estimate of ŝ

ŝit = P(2)(ĥ
(SR)
it−1 � ĥ(RD)

it−1 )
∗/(||ĥ(SR)

it−1||22||ĥ
(RD)
it−1 ||22)

4: Compute an estimate of ĥ(RD)

ĥ(RD)
it = P(1)(ĥ

(SR)
it−1 � ŝit−1)

∗/(||ĥ(SR)
it−1||22||ŝit−1||22)

5: Compute an estimate of ĥ(SR)

ĥ(SR)
it = P(3)(ĥ

(RD)
it−1 � ŝit−1)

∗/(||ĥ(RD)
it−1 ||22||ŝit−1||22)

6: Return to step 2 and repeat until convergence;
7: Apply the “unvec” operator to recover Ŝ, Ĥ(RD), Ĥ(SR).
8: Remove the scaling ambiguities according to (3.41)

Algoritmo 4: T-HOSVD
1: For n = 1,2,3:

Compute the SVD of the matrix unfolding P(n);
P̄(n) = U(n)Σ(n)V(n)H

2: Select the dominant left singular vector from U(n):

ĥ(RD) = β1U(1)
(:,1);

ŝ = β2U(2)
(:,1);

ĥ(SR) = β3U(3)
(:,1)

3: Apply the “unvec” operator to recover Ŝ, Ĥ(RD), Ĥ(SR).
4: Remove the scaling ambiguities according to (3.43)

P(2) ∈ CNR×MDMS1MR1MS , and P(3) ∈ CMR1MS×MDMS1NR.

In case of the HOSVD algorithm, since each n-mode unfolding of P is approxi-

mately a rank-one matrix the scaling factors are given as:

H(RD) = β1Ĥ(RD) S = β2Ŝ H(SR) = β3Ĥ(SR) (3.42)

with,

β1 =
H(RD)

(1,1)

U(1)
(1,1)

β2 =
S(1,1)

U(2)
(1,1)

β3 =
Σ

(3)
(1,1)V

(3)H
(1,1)

S(1,1)H
(RD)
(1,1)

(3.43)

where the matrices U(n), Σ(n) and V(n) are the left singular matrix, singular values matrix and

the right singular matrix of P(n). The T-HOSVD algorithm is described in Algorithm 4.
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Table 1 – Computational Complexity for the algorithms

O(·) Algorithm
Tri-ALS T-HOSVD

Multiplication O(12(NRMDMS1MR1MS))

Kronecker
O(4(NRMR1MS) +
O(4(MDMS1MR1MS) +
O(4(MDMS1NR)

O(4(MDMS1(NRMR1MS)
2

+(MDMS1)
3)+

SVD O(4(NR(MDMS1MR1MS)
2

+(NR)3)+
O(4(MR1MS(NRMDMS1)

2

+(MR1MS)
3)

LS Solution O(4(MDNMS1RMR1MSJP))

3.3 Computational Complexity

Given a matrix A ∈ Cm×n and a matrix B ∈ Cn×p the complexity associated with

the multiplication between A and B (neglecting the additions) is of order O(4(mnp)). The

computation of the Kronecker product A⊗B has a complexity O(4mn2 p) and the SVD of A, has

a complexity O(4(mn2+n3)). For the Tri-ALS algorithm, only matrix by vectors multiplications,

vectors Kronecker products and some normalizations for each iteration (neglected) are computed,

while for the T-HOSVD only three SVD’s are required. to be computed. Table 1 shows the

number of FLOPS of each algorithm.

3.4 Simulation Results

In this section, we evaluate the performance of the proposed receivers in terms

of symbol error rate (SER), normalized mean square error (NMSE) for channel estimation,

computational complexity, and convergence, comparing with the receivers proposed in [17]. We

consider 64-QAM modulation. The results are averaged over 104 Monte Carlo runs, each run

corresponding to an independent realization of the channels, symbols, and noise. The channel

matrices are assumed to have i.i.d. complex Gaussian entries with zero-mean and unitary variance.

The coding tensors C and W are normalized as 1/
√

F1RMS and 1/
√

F2MS1MR1 respectively in

order to ensure the same power at the antennas. Note that, with this normalization for P > RMS,

J > MR1MS1 we have ZZH = γI, where γ can be viewed as the gain obtained by increasing

the total redundancy of the system. Also we assume the same noise variance at the relay and

destination.
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3.4.1 Perfect CSI Channels

In Figure 15 the code gain by varying P and J is illustrated. Note that comparing

the cases P = 4,J = 4 and P = 8,J = 4 with P = 4,J = 4 and P = 4,J = 8 we can noticed that

increasing the value of P is better than increasing J, this was expected since an increase of J also

increases the correlation with the noise (Equation (3.21) ), which does not evolves the source

coding.

3.4.2 Symbol Error Rate

Figure 16 depicts the performance of the Tri-ALS and T-HOSVD receiver in compar-

ison with the two receivers proposed in [17] (namely, ALS Nested Tucker and 2LSKP receivers),

using the proposed DFT structure for the source and relay coding tensors. It can be noticed the

two proposed receivers reach the same performance as those of [17], while being less complex,

as will be shown in the sequel.

3.4.3 Normalized Mean Square Error

The NMSE is given as:

NMSE =
1
L

L

∑
l=1

||H(l)− Ĥ(l)||2F
||H(l)||2F

,

for both H(SR) and H(RD) channels and L is the total number of runs.

Figure 17 and 18 shows the NMSE performance of the estimated channels. We can

note that in all cases, the NMSE curves decrease linearly as a function of the ES/No. In figure

17 the performance of the T-HOSVD receiver is explained by the fact that this receiver computes

independents SVD’s meaning that each parameter can be computed in parallel, which not occurs

for the other receivers, neither the 2LSKP which for the estimation of H(SR) channel needs the

estimation of H(RD) or S. Now, for the estimation of H(RD) channel, all receivers has practically

the same performance, with a small difference between the subspace methods (T-HOSVD and

2LSKP) and the iterative ones (Tri-ALS and ALS Nested Tucker). To conclude, it was expected

that the estimation of H(RD) would have a better performance than the estimation of H(SR) due

the using of coding at the source and at the relay.
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3.4.4 FLOPS

Now, we evaluate the computational complexity of the proposed receivers by mea-

suring the number of floating point operations (FLOPS) required by the different receivers to

accomplish joint channel and symbol estimation. To this end, the lightspeed MATLAB toolbox

[46] was used to count the number of FLOPS. And the relation ES/No was set in 21dB, i.e. for

the iterative algorithms, only three iterations are needed to reach the convergence.

Figure 19 corroborates the benefits of the proposed rank-one tensor based receivers in

terms of computational complexity, when compared to the competing receivers. We can note that

the Tri-ALS receiver becomes much less complex than its competing Nested Tucker based ALS

solution, since the proposed iterative receiver computes three matrix by vector multiplication and

normalization for each iteration and three Kronecker product between vectors while the ALS

Nested Tucker compute extensive matrix by matrix products for each iteration and also computes

inversion and Kronecker between matrices. When it comes to the closed-form receivers, these

results show that the T-HOSVD receiver is more attractive than the 2LSKP receiver as the number

MD of antennas grows. Another advantage of T-HOSVD over 2LKSP is related with parallel

implementation, since the T-HOSVD consists of three independent SVDs, the estimation of the

source-relay, relay-destination and symbol matrices can be carried out in parallel. This is not the

case of 2LSKP, which consists of two consecutive SVD’s steps, where the result of the second

step depends on the output of the first. Figure 20 shows the impact of the proposed DFT-based

design for the source and relay coding tensors on the convergence of ALS-based receivers. To

this end, we compare the proposed Tri-ALS receiver with the Nested Tucker based ALS receiver.

For the latter, we consider the random exponential structure as proposed in [17], and the proposed

DFT coding structure. Note that the proposed one yields a reduction on the number of iterations

to convergence. For high SNR, the number of iterations reduces approximately from 11 to 3.
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Figure 15 – Coding gain of the Zero-Forcing with Perfect CSI knowledge.
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Figure 16 – Symbol error rate performance vs. ES/No.
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Figure 17 – NMSE for Source-Relay channel.

0 5 10 15 20 25 30 35 40 45
−60

−50

−40

−30

−20

−10

0

E
S
/No in dB

N
M

S
E

 H
(S

R
)  in

 d
B

N = 10 R = 4 M
S
 = 2 P = 8 M

R1
= 2 M

S1
= 2 J = 4 M

D
 = 4

 

 
ALS Nested Tucker
Tri−ALS
2LSKP 
T−HOSVD

Figure 18 – NMSE for Relay-Destination channel.
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Figure 19 – Number of FLOPS vs. MD receiver antennas.
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Figure 20 – Number of iterations for ALS’s algorithms to converge.
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3.5 Summary

In this chapter the two semi-blind receivers were presented. As shown in the

simulations-results, the proposed receiver has the same performance as the receivers proposed in

[17]. The Tri-ALS receiver its attractive for high values of ES/No due to the fewer number of

iterations to converge, and the T-HOSVD for the possibility of parallelism. In general, this chapter

has demonstrated a satisfactory performance of the proposed modelling based on rank-one tensor

approach combined with the orthogonal code design, which resulted in a reduced complexity

of the receivers, parallelism (for T-HOSVD receiver), and reduced number of iterations for the

iterative receivers to converge.
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4 MULTI-RELAYING MIMO SYSTEM

Diversity is one of the key features of MIMO cooperative systems, as discussed in

Chapter 1. In order to exploit cooperative diversity, this chapter provides an extension of the rank-

one factorization approach to the multi-relaying MIMO scenario, where multiple cooperative

MIMO links are combined at the receiver. A coupled-SVD (C-SVD) receiver algorithm, based

on a closed-form solution, is developed for joint channel and symbol estimation. In addition to

be closed-form, the steps of the C-SVD receiver can be executed in parallel.

4.1 System Model

Figure 21 – MIMO multi-relaying system.
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The scenario consists of a multi-relaying system where the source is assisted by two

half-duplex relays using the AF protocol. In this system, MS denotes the number of transmit

antennas from the source, M1 denotes the total number of antennas at Relay 1, where the number

of transmit and receive antennas are denoted by MS1 and MR1 respectively, M2 is the total number

of antennas at the Relay 2 with MS2 being the number of transmit antennas and MR2 the number

of receive antennas, and MD is the number of receive antennas at the destination. Figure 21

illustrates the system configuration.

Phase 1

The source transmits the signal to Relay 1 and Relay 2. The symbol matrix S ∈ CN×R contains
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Figure 22 – First phase of the transmission.
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R data streams of N symbols each. These data streams are encoded at the source by means of

a space-time coding tensor C ∈ CMS×R×P. Figure 22 shows the system operation in this phase.

The transmitted signal tensor X (S) ∈ CMS×N×P is given by the following n-mode product:

X (S) = C ×2 S (4.1)

X(S)
..p = C..pST. (4.2)

Each symbol is repeated P times over the MS antennas creating a space-time redundancy.

Considering H(SR1) ∈ CMR1×MS as the channel between the source and the Relay 1, and H(SR2) ∈

CMR2×MS as the channel between the source and Relay 2, the signal received at Relay 1 is the

tensor X (SR1) ∈CMR1×N×P and can be written, in n-mode product and slice notation, respectively,

as

X (SR1) = X (S)×1 H(SR1)+V (SR1) (4.3)

X(SR1)
..p = H(SR1)C..pST +V(SR1)

..p ∈ CMR1×N×P, (4.4)

where V (SR1) ∈ CMR1×N×P is the additive noise at Relay 1. The signal received at Relay 2,

X (SR2) ∈ CMR2×N×P is given by

X (SR2) = X (S)×1 H(SR2)+V (SR2) (4.5)

X(SR2)
..p = H(SR2)C..pST +V(SR2)

..p ∈ CMR2×N×P, (4.6)

with V (SR2) ∈ CMR2×N×P being the additive noise at Relay 2.
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Phase 2

The source and Relay 2 stay in silent while Relay 1 transmits the signal X (SR1), received in

Figure 23 – Second phase of the transmission.
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the previous phase, to Relay 2 and destination. The signal is coded at Relay 1 by means of a

space-time coding tensor W ∈ CMS1×MR1×J and sent through the MS1 antennas, as illustrated in

Figure 23. Similarly to Phase 1, a space-time redundancy is created, since now the NP symbol

periods are repeated J times. Considering H(R1R2) ∈ CMR2×MS1 as the channel between Relay 1

and Relay 2, and H(R1D) ∈ CMD×MS1 the channel between Relay 1 and destination, the signal

received at Relay 2, X (SR1R2) ∈ CMR2×J×N×P is given, in n-mode product and slice notation,

respectively, as

X (SR1R2) = (W •1
2 X (SR1))×1 H(R1R2)+V (SR1R2)

= (W ×1 H(R1R2))•1
2 X (SR1)+V (SR1R2)

= H̄ (R1R2) •1
2 X (SR1)+V (SR1R2) ∈ CMR2×J×N×P (4.7)

X(SR1R2)
. j.p = H(R1R2)W.. jX

(SR1)
..p +V(SR1R2)

. j.p (4.8)

where V (SR1R2) ∈CMR2×J×N×P is the additive noisy tensor at Relay 2 and H̄ (R1R2) ∈CMR2×MR1×J

is the effective channel tensor. The signal received at the destination, X (SR1D) ∈ CMD×J×N×P,

can be written as

X (SR1D) = H̄ (R1D) •1
2 X (SR1)+V (SR1D) (4.9)

X(SR1D)
. j.p = H(R1D)W.. jX

(SR1)
..p +V(SR1D)

. j.p (4.10)
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with V (SR1D) ∈ CMD×J×N×P being the additive noisy tensor at the destination and H̄ (R1D) =

W ×1 H(R1D) ∈ CMD×MR1×J is the effective channel tensor.

Phase 3

Now, the source and Relay 1 stay silent while Relay 2 transmits the signal received in Phase 1

Figure 24 – Third phase of the transmission.
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(X (SR2)) and in Phase 2 (X (SR1R2)) to Relay 1 and the destination. This phase is illustrated in

Figure 24. For this transmission, the Relay 2 concatenates the signal X (SR2) along the second

mode of the tensor X (SR1R2) as

X = X (SR1R2)t2 X (SR2) ∈ CMR2×(J+1)×N×P (4.11)

X .1:J .. = X (SR1R2) ∈ CMR2×J×N×P (4.12)

X .J+1.. = X (SR2) ∈ CMR2×1×N×P. (4.13)

Then, the signal is coded by means of a space-time coding tensor T ∈ CMS2×MR2×K and sent

trough the MS2 antennas. The coding tensor introduces another space-time redundancy to

the system, having now, P(J + 1)K symbol repetitions (channel uses). Consider H(R2R1) ∈

CMR1×MS2 as the channel between the Relay 2 and Relay 1, and H(R2D) ∈ CMD×MS2 as the

channel between Relay 2 and the destination. The signal received at the destination X
(SR1R2D) ∈

CMD×K×(J+1)×N×P is given by:

X
(SR1R2D)

= H̄ (R2D) •1
2 X +V

(SR1R2D)
(4.14)

X(SR1R2D)
.k( j+1).p = H(R2D)T..kX.( j+1).p +V(SR1R2D)

.k( j+1).p (4.15)
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where the V
(SR1R2D) ∈ CMD×K×(J+1)×N×P is the additive noisy tensor at the destination, and

H̄ (R2D) = T ×1 H(R2D) ∈ CMD×MR2×K is the effective channel. The destination extracts the two

signals from X
(SR1R2D)

by separating the first J slices of the second mode, forming the signal

X (SR1R2D) ∈CMD×K×J×N×P and the (J+1)-th slice to form the signal X (SR2D) ∈CMD×K×N×P.

In this phase, Relay 1 only considers the signal X (SR2), i.e. the slice (J + 1)-th of the tensor

X , since the tensor X (SR1R2) was sent in the previous phase. So, the received signal at Relay 1,

X (SR2R1) ∈ CMR1×K×N×P, in Phase 3, is written as:

X (SR2R1) = H̄ (R2R1) •1
2 X (SR2)+V (SR2R1)

X(SR2R1)
.k.p = H(R2R1)T..kX(SR2)

..p +V(SR2R1)
.k.p , (4.16)

where V (SR2R1) ∈ CMR1×K×N×P is the additive noisy tensor at Relay 1 and H̄ (R2R1) = T ×1

H(R2R1) ∈ CMR1×MR2×K is the effective channel tensor.

Phase 4

In the last phase, Relay 1 transmits the signal X (SR2R1) ∈ CMR1×K×N×P to the destination, as

Figure 25 – Fourth phase of the transmission.
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illustrated in Figure 25. The signal is coded by the space-time coding tensorW , introduced in

Phase 2, creating for the signal another redundancy, resulting in PKJ symbol repetitions. The

signal X (SR2R1D) ∈ CMD×J×K×N×P received at the destination can be expressed as

X (SR2R1D) = H R1D •1
2 X (SR2R1)+V (SR2R1D)

X(SR2R1D)
. jk.p = H(R1D)W.. jX

(SR2R1)
.k.p +V(SR2R1D)

. jk.p (4.17)
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The tensor V (SR2R1D) ∈ CMD×J×K×N×P represents the additive noise at the destination, in Phase

4. Considering that the total redundancy in the system is NP(J+K +2JK) symbols, NPJ from

Phase 2, NPJK +NPK from Phase 3 and NPKJ from Phase 4, the rate of the system is given

by NR−1
NP(J+K+2JK) . The factor NR−1 comes from assuming the knowledge of one symbol at the

receiver. However, this factor can be neglected by using a differential modulation.

4.1.1 Destination Signals

At the end of transmission, the destination contains four tensors signals, provided

by the different phases: X (SR1D), X (SR2D), X (SR1R2D) and X (SR2R1D). Our idea is to use

this diversity to jointly estimate symbol and channel matrices. Before the estimation, we first

rearrange all the signals in order to permute their structure to a rank-one approximated tensor.

Since X (SR1D) has the same structure as X (SR2D) and X (SR1R2D) has the same structure as

X (SR2R1D), the rank-one approximation will be described only for X (SR1D) and X (SR1R2D).

4.1.2 Coding Tensor Structure

As in Chapter 3, we assume a PARAFAC structure for each coding tensor. In this

scenario, we have as additional space-time coding tensor from Relay 2,

T = IF3×1 T1×2 T2×3 T3 ∈ CMS2×MR2×K (4.18)

where T1 ∈CMS2×F3 , T2 ∈CMR2×F3 and T3 ∈CK×F3 are the factor matrices of the tensor T . For

the proposed multi-relaying scenario, we have four effective codes. In the X (SR1R2D) processing,

there are two matrices used formed by the space-time coding structure, ZJ and Z(1). The matrix

ZJ is formed by stacking column-wise the J frontal slices vectorized of the tensor W ,

ZJ = [vec(W..1); · · · ;vec(W..J)] ∈ CMS1 MR1×J. (4.19)

The matrix Z(1) is equal to the matrix Z defined in Equation (3.20). Now, for the X (SR2R1D)

processing, we have two matrices formed by the space-time coding tensors. The matrix ZK is

formed by stacking column-wise the K frontal slices of the tensor T . The matrix Z(2) follows

the steps in Equations (3.15) to (3.17) for the term vec(CT
..p⊗T..k). As in Chapter 3, all these

matrices have an orthogonal design, as detailed in Appendix A.
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4.1.3 X (SR1D) Processing

Consider the Equation (4.10), ignoring the noise. By replacing X(SR1) in Equation

(4.4), we have

X(SR1D)
. j.p = H(R1D)W.. jX

(SR1)
..p

= H(R1D)W.. jH(SR1)C..pST. (4.20)

Comparing Equation (4.20) with Equation (3.10), it can be noticed that both equations have the

same structure, only the parameters are changed, meaning that the same processing applied for

Equation (3.10) can be applied to signal X (SR1D) and consequentially to signal X (SR2D). We

can formulate the input-output relation for the signal X (SR1D) as

X(SR1D) = Y(SR1D)Z(1)+V(SR1D) ∈ CMDN×JP, (4.21)

where Y(SR1D) ∈ CMDN×MS1RMR1MS , Z(1) ∈ CMS1 RMR1MS×JP are defined as:

Y(SR1D) = vec(H(SR1))T⊗S⊗H(R1D) (4.22)

Z(1) = (G1 �G2)GT
3 . (4.23)

Equation (4.21) is a generalized unfolding of the received signal tensor X (SR1D) which separates

the unknown parameters from the known parameters, which are the coding tensors. Also,

V(SR1D) ∈ CMDN×JP is a generalized unfolding of the global noise in this transmission. The first

processing at the receiver, since the Z(1) matrix is known, is to use the LS approach.

Ŷ(SR1D) = argmin
Y(SR1D)

‖X(SR1D)−Y(SR1D)Z(1)‖F (4.24)

As discussed in Chapter 3, when Z(1) has an orthogonal design, the solution of Equation

(4.24) is Ŷ(SR1D) = X(SR1D)Z(1)H. Using the generalized Kronecker approximation introduced in

Section 2.3.2 for the matrix Ŷ(SR1D), we can define the approximated third-order rank-one tensor

P(SR1D) ∈ CMDMS1×NR×MR1MS .

P(SR1D) ≈ h(R1D) ◦ s◦h(SR1). (4.25)
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Following the same steps for the signal X (SR2D), a similar pre-processing is done with the

following correspondences:

(X (SR1D))⇐⇒ (X (SR2D))

(X(SR1D),Y(SR1D))⇐⇒ (X(SR2D),Y(SR2D))

(Z(1),V(SR1D))⇐⇒ (Z(2),V(SR2D))

(H(SR1),H(R1D)⇐⇒ (H(SR2),H(R2D)

(P(SR1D))⇐⇒ (P(SR2D)).

The main difference is that Z(2) = (B1 �B2)BT
3 ∈ CMS2RMR2 MS×KP, is the matrix formed by

collecting the KP vectors of the expression vec(CT
..p⊗T..k), with B1 =(C1⊗T2), B2 =(C2⊗T1)

and B3 = (C3⊗T3). The approximated rank-one tensor, obtained from X (SR2D) signal, is given

by

P(SR2D) ≈ h(R2D) ◦ s◦h(SR2) ∈ CMDMS2×NR×MR2MS (4.26)

4.1.4 X (SR1R2D) Processing

Following the slice approach used for the X (SR1D) using Equations (4.4) and (4.8),

ignoring the noise term, we have that:

X(SR1R2D)
.k j.p = H(R2D)T..kX(SR1R2)

. j.p

= H(R2D)T..kH(R1R2)W.. jX(SR1)

= H(R2D)T..kH(R1R2)W.. jH(SR1)C..pST. (4.27)

Note that Equation (4.27) is similar to Equation (2.89), meaning that the signals X (SR1R2D)

and X (SR2R1D) follow a fifth-order Nested Tucker decomposition (NTD(5)). Applying Property

(2.33) three times, and defining xk jp = vec(X(SR1R2D)
.k j.p ) yields

xk jp = (S⊗H(R2D))vec(T..kH(R1R2)W.. jH(SR1)C..p)

= (S⊗H(R2D))(CT
..p⊗T..k)vec(H(R1R2)W.. jH(SR1))

= (S⊗H(R2D))(CT
..p⊗T..k)(H(SR1)T⊗H(R1R2))vec(W.. j) ∈ CMDN×1. (4.28)

Collecting the J frontal slices of W as in Equation (4.19), we have:

X.k.p = (S⊗H(R2D))(CT
..p⊗T..k)

(H(SR1)T⊗H(R1R2))ZJ, (4.29)
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where X.k.p ∈ CMDN×J . Multiplying Equation (4.29) at the right-hand side by ZH
J (since ZJ is an

orthogonal matrix), we can define the matrix X.k.p ∈ CMDN×MS1MR1 as:

X.k.p = (S⊗H(R2D))(CT
..p⊗T..k)(H(SR1)T⊗H(R1R2)). (4.30)

Applying Property (2.33), with xkp = vec(X.k.p), yields:

xkp = (H(SR1)⊗H(R1R2)T⊗S⊗H(R2D))vec(CT
..p⊗T..k) (4.31)

Now the KP left vectors are collected to form the matrix X(SR1R2D) ∈ CMDNMS1MR1×KP. Note

that, collecting the KP vectors of the expression vec(CT
..p⊗T..k) yields the matrix Z(2) .

X(SR1R2D) = Y(SR1R2D)Z(2)+V(SR1R2D), (4.32)

with

Y(SR1R2D) = H(SR1)⊗H(R1R2)T⊗S⊗H(R2D) ∈ CMDNMS1MR1×MS2RMR2MS (4.33)

Z(2) = (B1 �B2)BT
3 ∈ CMS2RMR2MS×KP, (4.34)

and V(SR1R2D) ∈ CMDNMS1 MR1×KP being the generalized unfolding of the noisy tensor V (SR1R2D).

Using the LS criterion, we can formulate

Ŷ(SR1R2D) = argmin
Y(SR1R2D)

‖X(SR1R2D)−Y(SR1R2D)Z(2)‖F . (4.35)

Applying the Kronecker approximation of Section 2.3.2, to the matrix Ŷ(SR1R2D) we can express

the approximated fourth-order rank-one tensor as

P(SR1R2D) ≈ h(R2D) ◦ s◦h(R1R2) ◦h(SR1), (4.36)

with P(SR1R2D) ∈CMDMS2×NR×MS1MR2×MR1MS and h(R1R2)= vec(H(R1R2)T). Similarly to X (SR1R2D),

the signal X (SR2R1D) has the same processing, with the difference that the first stack it is in K-th

mode, so that we have the following correspondences:

(X (SR1R2D))⇐⇒ (X (SR2R1D))

(X(SR1R2D),Y(SR1R2D))⇐⇒ (X(SR2R1D),Y(SR2R1D))

(ZJ,Z(2),)⇐⇒ (ZK,Z(1))

(H(SR1),H(R1R2),H(R2D))⇐⇒ (H(SR2),H(R2R1),H(R1D))

(P(SR1R2D))⇐⇒ (P(SR2R1D)).

At the end, the approximated fourth-order rank-one tensor P(SR2R1D) is given by:

P(SR2R1D) ≈ h(R1D) ◦ s◦h(R2R1) ◦h(SR2) ∈ CMDMS1×NR×MR1MS2×MR2MS . (4.37)
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4.1.5 Uniqueness

Considering the four signals X (SR1), X (SR2), X (SR1R2) and X (SR2R1), for each

signal an LS estimation is performed, and the conditions to ensure the uniqueness are given by

P≥ F1 ≥MSR, (4.38)

J ≥ F2 ≥MR1MS1, (4.39)

K ≥ F3 ≥MR2MS2. (4.40)

The proof of conditions (4.38) to (4.40) are given in Appendix B.

4.2 C-SVD Receiver

After the pre-processing step at the receiver, the four rank-one approximated tensors

are given by

P(SR1D) ≈ h(R1D) ◦ s◦h(SR1) (4.41)

P(SR2D) ≈ h(R2D) ◦ s◦h(SR2) (4.42)

P(SR1R2D) ≈ h(R2D) ◦ s◦h(R1R2) ◦h(SR1) (4.43)

P(SR2R1D) ≈ h(R1D) ◦ s◦h(R2R1) ◦h(SR2). (4.44)

The Coupled-SVD receiver combines all the four rank-one tensor signals to joint

symbol and channel estimation by coupling the n-mode unfolding of those tensors to estimate

the parameters via SVDs of rank-one approximated matrices, and those SVDs can be computed

in parallel as we show next.

For symbol estimation, in Equation (4.41), we have the vector s containing the

symbols. By coupling the tall 2-mode unfolding of each tensor we have
P(SR1D)
(2)

P(SR2D)
(2)

P(SR1R2D)
(2)

P(SR2R1D)
(2)

≈


(h(SR1) �h(R1D))

(h(SR2) �h(R2D))

(h(SR1) �h(R1R2) �h(R2D))

(h(SR2) �h(R2R1) �h(R1D))

sT. (4.45)

Equation (4.45) is an approximation to a rank-one matrix of size MSMD[MR1MS1(1+MR2MS2)+

MR2MS2(1+MR1MS1)]×NR. Computing the SVD of (4.45) as UsΣsVH
s , the first right singular

vector only provide us a basis, i.e. ŝ = α1V∗s(:,1), where α1 is a scalar factor that compensates
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the orthonormal basis from the SVD. Assuming that we have the knowledge of one symbol, for

instance S(1,1), the scalar factor is found as α1 = S(1,1)/V∗s(1,1). At the end, the unvec operator is

applied, i.e., Ŝ = unvec(ŝ).

For channel estimation, the same approach is applied. Once again, since the SVD

only provides a basis for the estimated parameters and to remove the scalar ambiguity, while

keeping the parallelism at the receiver, it is necessary to assume the knowledge of at least one

link of four channels, which, in this work, are considered as H(R1D)
(1,1) , H(R2D)

(1,1) , H(R1R2)
(1,1) and H(R2R1)

(1,1) .

Coupling the 1-mode unfolding of the tensor P(SR1D) and P(SR2R1D), P(SR1D)
(1) and

P(SR2R1D)
(1) , we have a rank-one approximated matrix of size MSNR[MR1(1+MR2MS2)]×MS1MD,

given as  P(SR1D)
(1)

P(SR2R1D)
(1)

≈
 (h(SR1) � s)

(h(SR2) �h(R2R1) � s)

h(R1D)T (4.46)

Consider the SVD of (4.46) as U(R1D)Σ(R1D)V(R1D)H, we have that ĥ(R1D) = α2V(R1D)∗
(:,1) , where

α2 = H(R1D)
(1,1) /V(R1D)∗

(1,1) and Ĥ(R1D) = unvec(ĥ(R1D)).

For ĥ(R2D), the P(SR2D)
(1) and P(SR1R2D)

(1) , 1-mode unfolding of the tensors P(SR2)

and P(SR1R2D) respectively, are coupled to form the rank-one approximated matrix of size

MSNR[MR2(1+MR1MS1)]×MS2MD, P(SR2D)
(1)

P(SR1R2D)
(1)

≈
 (h(SR2) � s)

(h(SR1) �h(R1R2) � s)

h(R2D)T. (4.47)

By computing its SVD as U(R2D)Σ(R2D)V(R2D)H, we have that Ĥ(R2D) = unvec(ĥ(R2D)), where

ĥ(R2D) = α3V(R2D)∗
(:,1) and α3 = H(R2D)

(1,1) /V(R2D)∗
(1,1) .

For the source-Relay 1 channel estimation, the C-SVD receiver couples the 3-mode

unfolding of the tensor P(SR1D) with the 4-mode unfolding of the tensor P(SR1R2D), forming a

rank-one approximated matrix of size NRMDMS1(1+MR2MS2)×MR1MS, given by P(SR1D)
(3)

P(SR1R2D)
(4)

≈
 (s�h(R1D))

(h(R1R2) � s�h(R2D))

h(SR1)T. (4.48)

Computing the SVD of (4.48) as U(SR1)Σ(SR1)V(SR1)H the channel is estimated as ĥ(SR1) =

α4V(SR1)∗
(:,1) . Since, in this case, there is no knowledge of any link of H(SR1), the scalar factor is

given as α4 = U(SR1)
(1,1) Σ

(SR1)
(1,1) /(S(1,1)H

(R1D)
(1,1) ), and Ĥ(SR1) = unvec(ĥ(SR1)).
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Following the same steps for ĥ(SR2), the rank-one approximated matrix of size

NRMDMS2(1+MR1MS1)×MR1MS is formed by coupling the 3-mode unfolding of P(SR2D) with

the 4-mode unfolding of P(SR2R1D), P(SR2D)
(3) and P(SR2R1D)

(4) , respectively, as P(SR2D)
(3)

P(SR2R1D)
(4)

≈
 (s�h(R2D))

(h(R2R1) � s�h(R1D))

h(SR2)T, (4.49)

being U(SR2)Σ(SR2)V(SR2)H the SVD of (4.49), we can estimate the channel as Ĥ(SR2)= unvec(ĥ(SR2)),

where ĥ(SR2) = α5V(SR2)∗
(:,1) and the scalar factor as α5 = U(SR2)

(1,1) Σ
(SR2)
(1,1) /(S(1,1)H

(R2D)
(1,1) ).

For the remaining channels (H(R1R2), H(R2R1)) we have two different approaches.

The first is when the Relay 1 and Relay 2 are transmit with the same number of antennas as they

receive (MR1 = MS1 and MR2 = MS2). In this case, we can consider that H(R1R2) = H(R2R1)T, since

we assume that the channels are constant during all phases. By coupling the 3-mode unfolding

of the tensors P(SR1R2D) and P(SR2R1D), P(SR1R2D)
(3) and P(SR2R1D)

(3) , respectively, we have P(SR1R2D)
(3)

ΠP(SR2R1D)
(3)

≈
 (h(SR1 � s�h(R2D))

Π(h(SR2 � s�h(R1D))

h(R1R2)T, (4.50)

where the matrix Π is a permutation matrix that maps the elements from h(R2R1) to h(R1R2).

The SVD of (4.50) can be given as U(R1R2)Σ(R1R2)V(R1R2)H, and following the same steps

ĥ(R1R2) = α6V(R1R2)∗, where α6 = H(R1R2)
(1,1) /V(R1R2)∗

(1,1) . Noting that h(R1R2) = vec(H(R1R2)T) and

H(R1R2) = H(R2R1)T, we have Ĥ(R1R2) = Ĥ(R2R1)T.

In the case where the Relay 1 and Relay 2 transmit with different number of antennas,

the channel estimation takes a direct approach from the 3-mode unfolding of the respective

tensors, i.e. there is no coupling at the receiver. In the case of H(R1R2), we compute the SVD of

the 3-mode unfolding of tensor P(SR1R2D), given by

U(R1R2)Σ(R1R2)V(R1R2)H = (h(SR1) � s�h(R2D))h(R1R2)T,

and ĥ(R1R2) = β1V(R1R2)∗
(:,1) where β1 =H(R1R2)T

(1,1) /V(R1R2)∗
(1,1) . At the end, applying the unvec operator,

we recover the estimated channel matrix as Ĥ(R1R2) = unvec(ĥ(R1R2))T.

For Ĥ(R2R1), the same approach is used, the SVD of the 3-mode unfolding of the

tensor P(SR2R1D) is computed as

U(R2R1)Σ(R2R1)V(R2R1)H = (h(SR2) � s�h(R1D))h(R2R1)T,

we obtain ĥ(R2R1) = β2V(R2R1)∗
(:,1) , where β2 = H(R2R1)T

(1,1) /V(R2R1)∗
(1,1) . Finally, applying the unvec

operator, we recover the estimated matrix as Ĥ(R2R1) = unvec(ĥ(R2R1))T.
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4.2.1 Similar Systems

Maintaining the number of relays as two, we have three possible systems. The first

is the proposed system, with four phases and four signals that can be coupled in the C-SVD

receiver. The second possibility is the proposed system with three phases and, consequentially,

only three signals to be coupled at the C-SVD receiver, i.e. the C-SVD receiver contains the

signals X (SR1D), X (SR2D) and X (SR1R2D), or X (SR2D), X (SR1D) and X (SR2R1D) if, in Phase

2, the Relay 2 transmits instead of Relay 1. For a third variant, we have three phases but only

two signals coupled at the C-SVD receiver, X (SR1D) and X (SR2D), in this case, the relays do

not transmit to each other, there is only source to relay and relay to destination transmission.

Following this approach, we also compare two other systems, the first is considering three relays,

where the destination contains the signals X (SR1D), X (SR2D) and X (SR3D), and the second is

the system proposed in Chapter 3, where X (SR1D) is the signal received at the destination. Table

2 shows the transmission rate for each system.

The tensors C , W , T and L (only in the case of three relays) are normalized

by the factor 1/
√

F1RMS, 1/
√

F2MR1MS1 , 1/
√

F3MR2MS2 and 1/
√

F4MR3MS3 respectively, to

ensure the antennas have the same power, as in Chapter 3. Noting that, with this normaliza-

tion for P > RMS, J > MR1MS1 and K > MR2MS2 the coding matrices Z(i)Z(i)H = β I, where β

can be viewed as the gain by increasing the code length. Consider that the space-time coding

tensor of Relay 3 is L ∈CMS3×MR3×L with factors L1 ∈CMS3×F4 , L2 ∈CMR3×F4 and L3 ∈CL×F4 .

4.3 Simulation Results

In this section, we evaluate the performance of the C-SVD receiver in terms of

symbol error rate (SER) and normalized mean square error for the channel estimation. We

consider 64-QAM modulation. The results are averaged over 104 Monte Carlo runs and each

run corresponding to an independent realisation of the channels, symbols, and noise. The

channel matrices are assumed to have i.i.d. complex Gaussian entries with zero-mean and unitary

variance, the noise variance is assumed to be equal at the relays and destination. First, we present

the performance of the Zero-Forcing with perfect CSI for all links. In second, we compare the

performance of the proposed system with their variants, mentioned in Section 4.2.1. Finally, we

present the normalized mean square error of the channels of the C-SVD receiver, comparing the
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Table 2 – Proposed system and its variants
Phases Relays Coupled Signals Rate

4 3 PSR1D
(2) , PSR2D

(2) ,

PSR3D
(2)

NR−1
NP(J+K+L)

3 2

PSR1D
(2) , PSR2D

(2) ,

PSR1R2D
(2) or

PSR2R1D
(2)

NR−1
NP(JK+J+K)

3 2 PSR1D
(2) , PSR2D

(2)

NR−1
NP(J+K)

4 2
PSR1D
(2) , PSR2D

(2) ,

PSR1R2D
(2) ,

PSR2R1D
(2)

NR−1
NP(2JK+J+K)

2 1 PSR1D
(2)

NR−1
NPJ

gain related to the number of signal coupled at the receiver.

4.3.1 Symbol Error Rate

The scenario simulated is the following: MS = MR1 = MS1 = MR2 = MS2 = MR3 =

MS3 = 2, R = 4, MD = 4, J = K = L = 4 P = 8, F1 = RMS, F2 = MR1MS1 , F3 = MR2MS2 and, in

the case of three relays, F4 = MR3MS3 . In the symbol rate analyses, we compare the systems at

the maximum rate of each, i.e. R = P/2.

Figure 26 shows the code gain for our proposed system with perfect CSI, note that

increasing the code length P at the source is more relevant than increasing the code length at the

relays (J,K), this is due the fact the increasing J and K also increases the correlation with the

noise at the relays, as in Chapter 3.

In Figure 27 an interesting comparison is the performance of the proposed system

where we have four phases and four signals coupling (green line) with the three phases system

where are only two signals coupling (blue line). Such result for the blue curve can be explained

by the fact that in this system the noise is correlated only by one relay, while in our proposed

system, two of four signals (X (SR1R2D) and X (SR2R1D)) increases even more the correlation with

the noise, due to the relay-relay transmission, in this case, the system with three phases and
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two signals has the advantage of latency. However, our proposed system is the only one that

in the C-SVD receiver all the available links are coupled, resulting in a gain for the channels

relay-destination and the relay-relay channels. The system with three relays (yellow curve),

have the better performance, as expected, since there the system counts with one more resource

and the transmission follows the source-relay relay-destination direction, there is no relay-relay

transmission.

4.3.2 Normalized Mean Square Error

Since the scenario can be considered symmetric for the relays (the code-length and

the number of antennas are equal), in Figure 28 the NMSE of the links passed by different relays

are approximately the same.

The channels of relay-destination have a better performance over relay-relay chan-

nels, which have also a better performance over the source-relay channels, as expected. Such

results can be explained by the fact the for relay-destination channels the signal has already be

encoded by three space-time coding tensors, for relay-relay channels, the signal was encoded by

two tensors, and for source-relay channels, the signal was encoded only at the source. Also, for

the source-relay channels, there is no knowledge of any link, which causes a degradation in the

performance. This also explains, in Figure 29, the approximate performance of H(R1R2) with only

one signal (the case where there is no coupling at the receiver) and H(R1D) with one signal, since

in this case, the signal is modelled from the two-hop system (X (SR1D)), and for both channels

the signal was encoded by two space-time coding tensors. Finally, it can be noticed that there

is no gain by coupling the source-relay channel matrix H(SR1) at the receiver, this is because

for source-relays channels, the signal is encoded only once, however in a scenario where the

relays have a different path loss, the coupling approach could be applied for source-relay channel

estimation.

Globally, the proposed system exploit all the available links enjoying three space-

time coding tensors, which increases the performance for channel estimation. The system with

three phases and three signals at the receiver enjoying of three space-time coding tensors, but for

one link, i.e. for X (SR1R2D) or X (SR2R1D). The system with three phases but only two signals

has the advantage of a reduced latency. However, since there are only two space-time coding

tensors, the gap in the performance of relay-destination channels is considerable. It is worth

noting that all parameters can be estimated in parallel by computing independents SVDs.
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Figure 26 – Perfect CSI performance for different values of P, J and K.

0 5 10 15 20 25

10
−4

10
−3

10
−2

10
−1

10
0

E
S
/No in dB

S
E

R

 

 
P=4 J=4 K=4
P=4 J=8 K=8
P=8 J=4 K=4
P=8 J=8 K=8
P=12 J=4 K=4

Source: Created by the Author

Figure 27 – Performance of the proposed receiver with different number of phases and signals to
couple.

0 5 10 15 20 25 30 35 40 45
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
S
/No in dB

S
E

R

 

 
SVD 4Ph. 4Sig.
SVD 3Ph. 3Sig
SVD 4Ph. 3Sig
SVD 3Ph. 2Sig
SVD 2Ph. 1Sig.

Source: Created by the Author



78

Figure 28 – Normalized mean square error.
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Figure 29 – NMSE of coupling signals.
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4.4 Summary

In this chapter, a MIMO multi-relaying system was presented, combining the rank-

one tensor approximation with the diversity of cooperative communications, resulting in a semi-

blind receiver (C-SVD) capable of estimating the desired parameters via independent SVDs.

Moreover, we compared the proposed system with its variants, corroborating the existence of a

trade-off between diversity gain and latency.
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5 CONCLUSION

In this thesis, we proposed semi-blind receivers for MIMO relay and multi-relaying

cooperative systems.

The two-hop MIMO relay, presented in Chapter 3, was based on the Nested Tucker

system proposed in [17], and the main differences are: In [17], the authors proposed two semi-

blind receivers that have a direct data approach, i.e. using the n-mode unfolding of the received

Nested Tucker signal, an iterative receiver (ALS, with high computational complexity) and a

two steps closed-form based on receiver (2LSKP), which the estimation of the H(SR) channel

depends on the previous estimation of the symbols (S) or the H(RD) channel, were proposed.

However, our proposed system exploits the knowledge of the space-time coding tensors at the

receiver, to form a generalized n-mode unfolding of the Nested Tucker received signal and

then design a filter, which is the effective space-time code of the system. The filtered signal

is modelled as a rank-one approximated PARAFAC tensor, and from this rank-one tensor, two

semi-blind receivers were proposed. The first is a iterative (Tri-ALS) and the second is based on

a closed-form solution (T-HOSVD). As shown in Section 3.4, all the receivers achieve the same

performance for symbol and channel estimation. However, in terms of computational complexity,

our proposed receivers have shown to be more attractive, specially the T-HOSVD receiver which

can estimate the desired parameters in parallel. The remarkable performances of our proposed

system are due to the orthogonal design of the effective space-times code, leading to the next

contribution of our design compared with the desing in [17]. The authors in [17] proposed a

random exponential structure for the space-time coding tensors since they only make use of the

n-mode unfolding of those tensor in the algorithms. However, in our proposed system, we work

with the effective space-time code, which is desirable an orthogonal design for such code since it

will preserve the noise properties. From such orthogonal design, we show that a DFT matrix can

be factorized into the exact Khatri-Rao product of N matrices, with some conditions in the size.

In Chapter 4, a MIMO multi-relaying system is studied by exploiting the rank-one approach

discussed in Chapter 3. The proposed scenario takes advantage of the diversity of the cooperative

system by combining the multiple copies (in the specific case, four copies) of the transmitted

signal from different paths with a coupled receiver (C-SVD). The C-SVD receiver couples the

n-mode unfolding of the approximated rank-one tensors into approximated rank-one matrices,

enjoying of parallel processing by computing independents SVDs. Also, when we compare the

proposed system with its variants, we illustrated a trade-off between latency and performance.
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Overall, the rank-one approximation has shown to be an interesting method, due to

the system simplification and performance, as shown in Chapters 3 and 4. One drawback of

proposed approach is the more restrictive uniqueness conditions for the LS estimator, which

limits the transmission rate.

As perspectives for future works, we can highlight the following:

• A deeper study of the tensor contraction operator including the analysis of its properties

and its generalization to multiple contractions (i.e. involving several tensors).

• Generalization of the proposed algorithms to multi-user cooperative systems. In this case,

we can deduce that the receiver will be based on a rank-R tensor approximation, for R

users.

• Adaptation of the proposed algorithms to massive MIMO systems. In [47] the authors

proposed a hybrid architecture for massive MIMO where the analogue beamformer is de-

composed as the Kronecker product of N vectors, which is basically our proposed rank-one

tensor approximation. However, in [47], the authors does not exploit the multidimensional

nature.
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APPENDIX A – CODING ORTHOGONALITY DESIGN

As previous defined, the factor matrices of the coding tensors are, C1 ∈ CMS×F1 ,

C2 ∈ CR×F1 , C3 ∈ CP×F1 , W1 ∈ CMS1×F2 , W2 ∈ CMR1×F2 , W3 ∈ CJ×F2 , T1 ∈ CMS2×F3 , T2 ∈

CMR2×F3 and T3 ∈ CK×F3 . Given the structure of matrix Z(1), or Z(2), we design the parameter

such that Z(1)Z(1)H = I or Z(2)Z(2)H = I. Taking the example of Z(1) given by equation (3.20),

by applying some permutation, we define the matrix Z(1)
P ∈ CMR1MS1RMS×JP as

Z(1)
P = Z(1)Π

= [(C1⊗W2)� (C2⊗W1)](C3⊗W3)
TΠ

= [(C1 �C2)⊗ (W1 �W2)](C3⊗W3)
T, (A.1)

where Π is some permutation matrix. Note that if Z(1)
P is orthogonal, then Z(1) would be also

orthogonal, since a permutation matrix is orthogonal. Defining as C = C2 �C1 ∈ CMSR×F1 and

W = W2 �W1 ∈ CMS1MR1×F2 , and replacing in equation (A.1), multiplying by its Hermitian at

the right-hand side, yields

Z(1)
P Z(1)H

P = (C⊗W)GT
3 G∗3(C⊗W)H (A.2)

For the term GT
3 G∗3 by choosing C3 and W3 as DFT matrices (assuming that P = F1 and J = F2),

the product its orthogonal.

GT
3 G∗3 =

1
JP

(C3⊗W3)
T(C3⊗W3)

∗

=
1

JP
(CT

3 C∗3⊗WT
3 W∗3)

= IF2F1 , (A.3)

where 1√
JP

is the normalization factor for the DFTs matrices. In the case of P > F1 and J > F2,

we design the matrices C3 and W3 as truncated DFT.

The same approach is done for the left term as

(C⊗W)(C⊗W)H =
1

F2F1
(CCH

)⊗ (WWH
)

= IRMSMR1MS1
(A.4)

Then, since each column of a DFT matrix (C,W) can be factorized into Kronecker between

two or more vectors, the DFT matrix C can be factorized into the Khatri-Rao of two or more
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matrices. For this, suppose that the matrix C is a DFT of size F1×F1 and F1 = RMS as

C =
1√
F1



1 1 1 · · · 1

1 ω ω2 · · · ωF1−1

1 ω2 ω4 · · · ω2(F1−1)

...
...

... · · · ...

1 ωF1−1 ω2(F1−1) · · · ω(F1−1)(F1−1)


(A.5)

We factorize each column of C as c f1 = c f1
2 ⊗ c f1

1 , where c f1 is the vector at the f1 column of C.

For the first columns its straightforward. For the ( f1 +1)-th column we have the following:

c f1 =



1

ω

ω2

...

ω f1(R−1)



(MS)

⊗



1

ω

ω2

...

ω f1(MS−1)


(A.6)

We conclude that, after factorizing all columns of C, the matrix C = C2 �C1. The same approach

is applied to the matrix W. The permutation in (A.1) was performed to change the Khatri-Rao

and Kronecker product position, since we cannot performer a Kronecker factorization in a DFT

matrix, but the Khatri-Rao is possible.
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APPENDIX B – UNIQUENESS CONDITION

As mentioned in Section 4.1.5, the matrices Z(1), Z(2), ZJ and ZK must be full

row-rank. The following Properties will be used to derive the conditions:

• rank(A⊗B) = rank(A)rank(B)

• rank(AB) = rank(A) if B is a full rank matrix.

The rank of Z(1) its equal to the rank of Z(1)
P , and is given by

rank(Z(1)
P ) = rank([C⊗W]GT

3 ). (B.1)

The rank of GT
3 is expressed as

rank(GT
3 ) = rank(CT

3 ⊗WT
3 )

= rank(CT
3 )rank(WT

3 ). (B.2)

Since C3 is of size P×F1 and W3 of size J×F2, for GT
3 ∈CF2F1×JP being a full row-rank matrix

we have rank(C3) = F1 and rank(W3) = F2, following that P≥ F1 and J ≥ F2. Since the matrix

GT
3 is full row-rank, the rank of Z(1)

P is given by

rank(Z(1)
P ) = rank(C⊗W)

= rank(C)rank(W)

= rank([C2 �C1])rank([W2 �W1]). (B.3)

For Z(1)
P being a full row-rank, then C ∈ CRMS×F1 and W ∈ CMS1MR1×F2 also must be a full

row-rank, and we have F1 ≥ RMS and F2 ≥MS1MR1 . At the end, for Z(1) and Z(2) we have the

final conditions in (4.38) to (4.40).


	Folha de rosto
	Folha de aprovação
	Acknowledgements
	Abstract
	Resumo
	List of symbols
	Sumário
	Introduction
	Relay Channels
	Cooperative Communications

	Contributions
	Thesis organization
	Scientific production

	Tensor Prerequisites
	Tensors
	Tensor Decompositions
	PARAFAC Decomposition
	PARAFAC Slices
	n-mode unfolding
	Uniqueness
	ALS Algorithm

	Tucker Decomposition
	Uniqueness
	Special Tucker Decompositions
	Higher-Order Singular Value Decomposition (HOSVD) Algorithm

	Nested Tucker Decomposition
	Fourth-Order Nested Tucker Decompositions (NTD(4))
	Fifth-Order Nested Tucker Decomposition (NTD(5))


	Kronecker Product Approximation
	From Kronecker Approximation to Rank-one Matrix
	From Kronecker Product Approximation to Rank-one Tensor
	From Kronecker-Sum Approximation to Rank-R Tensors

	Khatri-Rao factorization of a DFT matrix
	Summary

	Two-Hop MIMO Relaying
	System Model
	Coding Tensor Structure
	Noisy model and rank-one tensor formulation
	Uniqueness

	Semi-Blind Receivers
	Tri-ALS receiver
	T-HOSVD receiver

	Computational Complexity
	Simulation Results
	Perfect CSI Channels
	Symbol Error Rate
	Normalized Mean Square Error
	FLOPS

	Summary

	Multi-Relaying MIMO System
	System Model
	Destination Signals
	Coding Tensor Structure
	 X(SR1D)  Processing 
	X(SR1R2D) Processing
	Uniqueness

	C-SVD Receiver
	Similar Systems

	Simulation Results
	Symbol Error Rate
	Normalized Mean Square Error

	Summary

	Conclusion
	Bibliography
	APPENDIX
	Coding Orthogonality Design
	Uniqueness Condition

