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ABSTRACT

Massive MIMO has the potential of greatly increasing the system spectral efficiency by employ-
ing many individually steerable antenna elements at the base station (BS). This potential can
only be achieved if the BS has sufficient channel state information (CSI) knowledge. The way of
acquiring it depends on the duplexing mode employed by the communication system. Currently,
frequency division duplexing (FDD) is the most used in the wireless communication system.
However, the amount of overhead necessary to estimate the channel scales with the number
of antennas which poses a big challenge in implementing massive MIMO systems with FDD
protocol. To enable both operating together, this thesis tackles the channel estimation problem by
proposing methods that exploit a compressed version of the massive MIMO channel. There are
mainly two approaches used to achieve such a compression: sparsity and second order statistics.
To derive sparsity-based techniques, this thesis uses a compressive sensing (CS) framework
to extract a sparse-representation of the channel. This is investigated initially in a flat channel
and afterwards in a frequency-selective one. In the former, we show that the Cramer-Rao lower
bound (CRLB) for the problem is a function of pilot sequences that lead to a Grassmannian
matrix. In the frequency-selective case, a novel estimator which combines CS and tensor analysis
is derived. This new method uses the measurements obtained of the pilot subcarriers to esti-
mate a sparse tensor channel representation. Assuming a Tucker3 model, the proposed solution
maps the estimated sparse tensor to a full one which describes the spatial-frequency channel
response. Furthermore, this thesis investigates the problem of updating the sparse basis that
arises when the user is moving. In this study, an algorithm is proposed to track the arrival and
departure directions using very few pilots. Besides the sparsity-based techniques, this thesis
investigates the channel estimation performance using a statistical approach. In such a case, a
new hybrid beamforming (HB) architecture is proposed to spatially multiplex the pilot sequences
and to reduce the overhead. More specifically, the new solution creates a set of beams that is
jointly calculated with the channel estimator and the pilot power allocation using the minimum
mean square error (MMSE) criterion. We show that this provides enhanced performance for the
estimation process in low signal-noise ratio (SNR) scenarios.

Keywords: Massive MIMO, channel estimation, sparsity, compressive sensing, tensor analysis,
hybrid beamforming.



RESUMO

Pesquisas em sistemas MIMO massivo (do inglês multiple-input multiple-output) ganharam
muita atenção da comunidade científica devido ao seu potencial em aumentar a eficiência espec-
tral do sistema comunicações sem-fio utilizando centenas de elementos de antenas na estação
de base (EB). Porém, tal potencial só poderá é obtido se a EB possuir suficiente informação do
estado de canal. A maneira de adquiri-lo depende de como os recursos de comunicação tempo-
frequência são empregados. Atualmente, a solução mais utilizada em sistemas de comunicação
sem fio é a multiplexação por divisão na frequência (FDD) dos pilotos. Porém, o grande desafio
em implementar esse tipo solução é porque a quantidade de tons pilotos exigidos para estimar o
canal aumenta com o número de antenas. Isso resulta na perda do eficiência espectral prometido
pelo sistema massivo. Esta tese apresenta métodos de estimação de canal que demandam uma
quantidade de tons pilotos reduzida, mas mantendo alta precisão na estimação do canal. Esta
redução de tons pilotos é obtida porque os estimadores propostos exploram a estrutura do canal
para obter uma redução das dimensões do canal. Nesta tese, existem essencialmente duas abor-
dagens utilizadas para alcançar tal redução de dimensionalidade: uma é através da esparsidade
e a outra através das estatísticas de segunda ordem. Para derivar as soluções que exploram a
esparsidade do canal, o estimador de canal é obtido usando a teoria de “compressive sensing”
(CS) para extrair a representação esparsa do canal. A teoria é aplicada inicialmente ao problem
de estimação de canais seletivos e não-seletivos em frequência. No primeiro caso, é mostrado que
limitante de Cramer-Rao (CRLB) é definido como uma função das sequências pilotos que geram
uma matriz Grassmaniana. No segundo caso, CS e a análise tensorial são combinado para derivar
um novo algoritmo de estimatição baseado em decomposição tensorial esparsa para canais
com seletividade em frequência. Usando o modelo Tucker3, a solução proposta mapeia o tensor
esparso para um tensor cheio o qual descreve a resposta do canal no espaço e na frequência. Além
disso, a tese investiga a otimização da base de representação esparsa propondo um método para
estimar e corrigir as variações dos ângulos de chegada e de partida, causados pela mobilidade
do usuário. Além das técnicas baseadas em esparsidade, esta tese investida aquelas que usam o
conhecimento estatístico do canal. Neste caso, uma nova arquitetura de beamforming híbrido é
proposta para realizar multiplexação das sequências pilotos. A nova solução consite em criar um
conjunto de feixes, que são calculados conjuntamente com o estimator de canal e alocação de
potência para os pilotos, usand o critério de minimização erro quadrático médio. É mostrado que
esta solução reduz a sequencia pilot e mostra bom desempenho e cenários de baixa relação sinal
ruído (SNR).
Palavras-chave: MIMO massivo, estimação de canal, compressive sensing ,análise tensorial,
beamforming híbrido.
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1 INTRODUCTION TO MASSIVE MIMO

Mobile networks are currently facing rapid traffic growth from both smartphones and
tablets. Sequential improvements in service quality set the new challenge of increasing wireless
network capacity about a thousand times within the next decade [1, 2], but no current wireless
access technique can provide a significant improvement in capacity. One of the main candidates
to deal with this traffic demand is using the massive MIMO systems. The underlying idea is to
scale up the number of antennas at the base station (BS) by at least two orders of magnitude.
With such large arrays, the author in [1] shows that the effects of small fading and additive noise
are reduced. In a multiuser scenario, massive MIMO opens the possibility to steer many spatial
streams to dozens of UE in the same cell, at the same frequency, and at the same time.

Massive MIMO will play a key technological role to create new spectral and energy-
efficient networks [3]. This technology has a great potential to meet the requirements of a
next-generation wireless system. In [4], the energy efficiency of massive MIMO and small cells
(SC) has been studied. The authors proved that massive MIMO has better energy efficiency when
the number of SC is low, while the latter offers better performance when the number of cells is
high. However, a globally optimal trade-off between massive MIMO and SC efficiency are hard
to achieve due to dynamic network behaviour. A viable solution could be found by converging
massive MIMO, SC, device-to-device (D2D) communications into a single cloud-controlled
heterogeneous network (HetNet), as shown in Fig. 1.1.

To achieve the promised benefits of massive MIMO, some questions must be answered
regarding practical aspects and scenarios. An important issue is channel state information (CSI)
knowledge because the BS uses it to design transmit beamformers and then provide high spatial
multiplexing gains to the system. The CSI estimation is performed thanks to the use of pilot
sequences that are used by the receiver as input of channel estimator. This process has impact
on the channel spectral efficiency because some communication resources are used to transmit
pilots instead of transmitting data. The number of resources used for the CSI acquisition process
depends on the type of pilots: uplink (UL) or downlink (DL). In the first type, the UE sends the
sequences using the UL channel. The amount of resources used for channel estimation increases
proportionally with the number antennas at the UE. In the second type, the BS sends the pilots
using the DL channel. In such a case, the amount of communication resources allocated for
pilots increases proportionally with the number of antennas at the BS. This vanishes the spectral
efficiency and creates big issues for systems that employ DL pilots challenges.
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Figura 1.1 – The architecture of a heterogeneous network.

Source provided by the author.

1.1 Channel Estimation Using Reciprocity

One of the big advantages of TDD systems lays on the possibility of estimating the
downlink channel based on the assumption of reciprocity. This means that the UL channel matrix
within the channel coherence time is a transposed version of the DL one. In this case, the UE
sends out the pilots and the BS estimates the UL channel. Then, the BS is able to steer narrow
beams towards the UE with a transposed version of the estimated UL channel matrix. The overall
process has to be performed within the duration of the channel coherence time, which may not
hold in scenarios with moderate or high mobility. This is still true even though, in reality, each UE
has RF mixers, filters, and analog-digital converter (ADC)s that make up the equivalent channel
model and can potentially break the assumptions on uplink/downlink channel reciprocity [5]. It is
important to highlight to the reader that this issue is not uniquely related to massive MIMO, but
it has also been studied over the past few years in the context of traditional MIMO systems [5].
However, with massive MIMO systems, a lack of understanding about hardware impairments
and a lack of proper modelling persists, and it is still not clear whether they challenge reciprocity
or how to mitigate any associated negative effects to keep transmissions reliable. For example,
mutual coupling among the BS antennas may not be neglected and may limit massive MIMO
performance [6].

1.2 Problem Definition: Channel Estimation Without Reciprocity

Even though channel reciprocity is a key aspect to acquire the channel at the BS, there
are systems where such property does not hold. For instance, many current wireless systems
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Figura 1.2 – The FDD system is composed of two channels: uplink and downlink. The UE
estimates the channel by using the pilot sequence sent in the downlink channel, then
reports channel estimation in the feedback channel (uplink channel).

Pilot transmission

Channel report

Downlink channel

Uplink channel

Source provided by the author.

operate in FDD. In this case, the BS needs to spend communication resources on the DL channel
to transmit pilots and needs the UL one to acquire the channel. The CSI is estimated by the UE
and then reported to the BS via feedback control channel.

The benefits of using conventional DL channel estimation techniques in traditional
MIMO systems that assume small or moderate antenna arrays are well known. However, the
amount of time-frequency resources used by the pilot sequence grows with the number of
transmit antennas. In the absence of a specific strategy to reduce the sequence length and keep
a reliable CSI acquisition, the gains in terms of spectral efficiency of massive MIMO systems
tend to disappear [3]. To tackle the DL channel estimation problem, effective pilot transmission
methodologies that accurately estimates the CSI with minimal signalling overhead play a crucial
role in the success of massive MIMO for FDD systems.

Although traditional MIMO channel estimation techniques require the length of the
pilot sequence to be on the same order as the number of BS antennas, optimality is related
to the channel covariance matrix [7]. Specifically, by considering the link between BS and
UE, the training sequence for each antenna element should be orthogonal. The optimal length
corresponds to the number of antennas at the transmitter in i.i.d./Rayleigh channels. However,
under spatially correlated channels, and from the assumption that the BS knows the channel
correlation matrix perfectly, the authors in [7] and [8] affirm that the optimal training sequence
length is equal to the number of dominant eigenvalues. For massive MIMO, it is likely true
that the number of eigenvalues is smaller than the number of antennas which means this can be
exploited to potentially reduce the pilot overhead.

Another challenge to make massive MIMO systems a reality is related to the feedback
channel. Recall that the channel estimation in an FDD-based massive MIMO system is performed
by the UE, which is responsible for reporting CSI to the BS. However, due to the huge number
of channel coefficients, the amount of information that goes through channel feedback can easily
take a large portion of the available bandwidth. The feedback overhead increases linearly as the
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number of antennas increases. Because of this issue, channel feedback has gained much attention
in the massive MIMO research community. Current strategies to tackle the feedback overhead
problem try to compress the channel matrix so that the UE sends fewer information to the BS
and it can still reconstruct the channel. For instance, non-coherent trellis-coded quantization has
been proposed by authors in [9] and the techniques has high compression rates, but at the cost of
moderate computation complexity using Viterbi algorithm.

Another perspective are solutions that use sparsity-aware channel estimation techniques.
In this case, the UE estimates a sparse channel representation and feeds the non-zero entries
back to the BS. Another example of using sparsity is to identify the most representative “channel
directions” (transmission angles), which can be fed back to the BS using a few bits [10, 11].

Statistical approaches are also interesting to reduce the system overhead. Using the
spatial covariance matrix, the UE and BS can use this information to obtain a reduced version of
the massive MIMO channel matrix [12]. This approach will be explained in more detail in this
thesis.

This thesis focuses on deriving channel estimators that support applications where the
reciprocity does not hold. In this context, the techniques developed in this work relies on two
approaches: sparsity and statistics. Such strategies are applied mainly for the pilot and feedback
overhead problems. Figure 1.2 summarizes how the system works with DL and UL channels.

1.3 Sparsity and Statistical Approaches to Deal With Overhead

The pilot overhead demanded by channel estimators depends on the number of parameters
to infer. In the massive MIMO case, the channel matrix is naturally large which implies the need
for many pilots. To reduce the overhead, channel estimators must exploit other representations
that lead to a compressed version of the channel.

Usually, the channel matrix is represented with respect to the antenna domain, but
such a large matrix is likely to be low-rank. The number of scatters in most environments is
usually much less than the number of antennas and generates fewer dominant paths. In this case,
the channel can be represented in a compressed version by using a given basis whose choice
determines the rate of compression. The optimum basis varies according to the environment
characteristics, however, this information is not available in advance for most applications. In
such a case, the system imposes a fixed basis up to an error in the estimation process. The
approaches considered in this thesis use two frameworks to achieve channel compression: i)
compressive sensing (CS) [13, 14] and ii) statistical channel representation [15].

The CS theory is very attractive in problems where the signal of interest has a sparse
representation [13, 16]. This subject has been under intensive study and several works have
exploited this concept in different areas, such as sampling theory [17], ultrawideband channel
estimation [18, 19] and radar [20], just to mention a few. The use of this theory holds for
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signals which are sparse in the canonical coordinate basis or sparse with respect to some other
orthonormal basis. In the context of this thesis, the massive MIMO channel matrix itself is not
sparse, but it admits a sparse decomposition.

Second order statistics can also be exploited to obtain channel compression. Environ-
ments with only a few scatters lead to a low-rank spatial channel covariance matrix. This means
that to accurately represent the instantaneous channel, the estimator only needs a subspace defi-
ned by the eigenvectors. Knowing this subspace, the BS smartly designs the pilot sequences [21]
and also their length.

In this thesis, each chapter covers a specific aspect of the estimation process between BS
and UE, as detailed below

• Chapter 2 (Compressive Sensing for Estimating Narrowband Channels): In this chapter,
we present the fundamental concepts of CS and use them to derive a channel estimator
that exploits the flat channel sparsity. Two CS-based estimators are derived, one using a
greedy algorithm, called OMP, and one using the ADMM.

• Chapter 3 (Tensor Compressive Sensing for Estimating Frequency Selective Channels): In
this chapter, we investigate channel estimation applied to frequency-selective channels.
Such a case involves estimating a collection of matrices, each one corresponding to a given
a channel frequency response. To do this, we combine the CS and tensor analysis [22, 23]
to jointly estimate the space-frequency channel.

• Chapter 4 (Sparse Channel Estimation for mm-wave Massive MIMO Systems): In this
chapter, two problems are investigated: i) one is to optimize the sparse representation of
the channel leading to a better channel compression; ii) the other one consist of tracking
the angle variations due to the UE mobility.

• Chapter 5 (Statistical Hybrid Beamforming for massive MIMO Channel Estimation): In
this chapter, we tackle the problem of estimating the channel using the spatial channel
covariance matrix. To exploit such an information, a beamforming technique and a channel
estimator are jointly designed to acquire the channel.

Fig. 1.3 summarizes in a block diagram how the thesis is organized.

1.4 List of Contributions

The contributions of this thesis are:

• The development of a Cramer-Rao lower bound (CRLB) for estimating sparse flat MIMO
channels. The lowest bound can only be achieved by using pilot sequences that define
Grasmanian matrices.
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Figura 1.3 – Diagram of the thesis organization.
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• A low-complexity channel estimator that jointly estimates a space-frequency massive
MIMO channel. This estimator is obtained from the combination between CS and tensor
frameworks. To the best of author’s knowledge, there is no estimator in the literature that
exploits jointly sparse representation of the channel and still achieves a low-complexity
estimator.

• A novel method that includes a new pilot placement on the time-frequency frame to
estimate milimeter (mm)-wave channels and deal with the user mobility issues in indoor
scenarios. The contribution of the method lays on the case where the UE has multiple
antennas and the system uses an OFDM modulation .

• A new HB architecture is designed jointly with the channel estimator using the MMSE
criterion. The optimum beams for transmitting pilot sequences are derived.
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How to Read This Thesis

This thesis has four chapters that cover different aspects of channel estimation. Every
chapter is meant to be self-contained so that the reader can read them independently without
loosing significant information.
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2 COMPRESSIVE SENSING FOR ESTIMATING NARROWBAND CHANNELS

Abstract:

In this chapter, the problem of estimating single-user massive MIMO channels using DL

pilots is investigated. In this context, the number of DL pilots tends to increase as the number

of antennas scales up. Assuming the channel is flat, the estimator exploits the inherent channel

structure which reduces the number of estiamted parameters . This occurs because the channel

has a sparse representation in the spatial domain. To derive a sparsity-based estimator, the CS

framework is applied. With this approach, we derive three methods: one uses a greedy algorithm,

the second uses Lasso criterion, and the third implements the Lasso criterion but in a distributed

fashion. The motivation to use a distributed solution comes from the increased computational

complexity demanded by the two first methods. The results show that it is possible to reduce

the pilot sequence and achieve precise channel estimation by exploiting the channel sparsity.

Moreover, the Lasso criterion outperforms the greedy algorithm mainly for low SNR, and its

distributed version has a negligible loss Normalized Mean Square Error (NMSE) with respect

to the centralized solution. The conclusions and open questions are presented in the end of this

chapter.

2.1 Introduction

The promised benefits of massive MIMO systems are strongly dependent on the quality of
the CSI available at the receiver and/or transmitter. Conventional channel estimation approaches
rely on training sequences [1, 24, 25] and most of them use a least square (LS) approach to
estimate the channel. However, this technique requires that the length of the training sequences
must be at least equal to the number of transmit antennas which demands precious communication
resources and energy.

To circumvent the pilot overhead problem, a channel estimator can be derived based on
the channel sparsity. The MIMO channel is a summation of multipath that leads to a channel
matrix response that is not sparse. The canonical representation then does not provide a conve-
nient representation for the estimator because the receiver needs to estimate all the entries of
the channel matrix. On the other hand, the channel is composed by a set of paths from different
scatteres in the environment. This essentially dictates the channel richness. In massive MIMO, it
is very unlike that the number of scatters is equal to the number of antennas. Thus, one way to the
achieve sparse representation consists of using the inherent channel structure. Once this structure
is included in terms of the signal model, the estimator using CS framework is derived. The CS
theory provides uniqueness conditions that enable the receiver to design a channel estimator that
requires fewer measurements of a vector that has a sparse representation [13, 16]. This topic has
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found many different applications such as image processing, radar, sub-Nyquist sampling, just to
mention a few [14, 17, 20].

In the channel estimation problem, CS finds many attractive scenarios for its application
as for example ultrawideband systems, underwater communication scenarios, mm-wave channels,
just to mention a few ones [26–28]. The cited examples have channels that admit a sparse
representation on the delay domain, i.e. the power delay profile has very few representative taps.
This feature is exploited by the channel estimator to reduce the length of the pilot sequences.
In [29], the case of interest is the multi-user scenario where the number of antennas at the BS
grows large and the number of UE as well. To achieve channel estimation without vanishing the
communication resources, the estimator relies on the channel sparsity to reduce the necessary
overhead to estimate such a large channel. This strategy overcomes other techniques that use a
LS criterion.

Even though the authors in [29] provide a great contribution in proposing a sparse channel
estimator, the solution only has application in crowd environments. The technique relies on the
fact that both BS antennas and the number of UEs grow largely, this situation is envisaged as a
possible application in 5G [30]. However, there is room for working with single-user scenario. In
this case, the BS serves only one user per resource, which means that the multiplexing capabilities
of the large array are not enjoyed by the UEs, but rather the array gain. Single-user solutions still
find many applications on currently wireless standard systems as for instance, to overcome some
coverage limitation issues. Furthermore, the development of receivers with multiples antennas is
also considered. They can become very popular with the use of mm-waves because the higher
the frequency is, the more the antenna array can be packed [31].

One bottleneck that arises when assuming multiple antennas at the UE is the hardware
complexity and the amount of signals to process. Each antenna element at the UE collects a signal
which is then sampled and processed in baseband. However, the more antennas are employed, the
more processing capabilities to treat the signal are required. In the channel estimation problem,
CS helps by reducing the pilot sequence length, and consequently reduces the number of samples
to be processed. However, we can further reduce the hardware complexity by using a distributed
processing in the baseband part [32]. Specifically, we employ a set of channel estimators that
handle small portions of the training sequence. Each estimate is informed in a central node that
combines the estimates and report back to each estimator. Such an architecture of an estimator
has not been considered yet.

This chapter shows a pilot-assisted technique based on CS theory for channel estimation.
To obtain an approximate sparse representation, we consider that angles of departure and arrival
are modelled by the Fourier basis. We provide three strategies:

• The first estimator uses a greedy solution called OMP, where the algorithm searches for
the most representative directions defined by the Fourier basis. After finding them, the
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algorithm calculates the channel projections onto the directions.

• The second solution is derived from the Lasso problem [14, 33]. This formulation tries to
find the sparsest solution taking into account the power of the noise.

• The third solution introduces a distributed implementation of the Lasso solution. This
becomes an attractive solution for those receivers with limited processing capacity.

All the three methods are compared with the CRLB. From this development, we verified that the
set of pilot sequences that leads to a Grassmanian real matrix are necessarily the optimum ones.
To the best of author’s knowledge, this results have not been addressed yet in the literature.

2.2 Compressive Sensing Background

In recent years, CS has become very popular in many areas such as mathematics, compu-
ter science and electrical engineering just to mention a few. The key idea of CS is to recover a
sparse signal from very few linear measurements. The theory shows that it is possible to recover
N parameters with M < N measurements if the estimator uses a suitable basis that leads to a
sparse representation of the data. Thus, the theory offers a framework for simultaneous sensing
and compression of finite-dimensional vectors. A lot of results and theorems can be found in the
literature, and from this broad literature, we present in this section only the most fundamental
concepts and just those that will be used in this thesis [13, 14, 16, 34].

2.2.1 Undetermined Linear Systems

Consider the matrix Ψ ∈ CM×N with M < N that defines a undetermined linear system
Ψx = y. This configures a system with less equations than variables, and it has either no solution
or infinite solutions. The first case happens when the vector y is not in the span of the matrix Ψ.
The second case happens otherwise. To avoid the situation where we have no solution, let us
assume that Ψ is full rank.

In many areas, it is common to face problems that lead to undetermined linear systems.
For instance, we refer to the problem in [14]. The authors investigate the reconstruction of
a waveform assuming fewer measurements than the minimum to meet the Nyquist criterion.
Even though this classical condition is not achieved, the signal is completely recovered by
exploiting the knowledge of signal basis representation. Using this information the authors obtain
a compressed representation of the signal and which makes it possible to recover the signal even
at sub-Nyquist rates.

2.2.2 General Problem

Let us formally introduce the concept of a sparse vector [13, 16].
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Definition 1 Let θ ∈ CN , if there exist K < N nonzero entries, then it is a K-sparse vector.

In practice, the vector to be estimated is not always sparse. If this happens, then the estimator
has to use a basis that leads the signal of interest into a sparse representation. Thus, consider a
given signal x ∈ CN as the signal of interest and let Φ ∈ CN×N be an orthonormal basis such
that θ = ΦHx is a K-sparse vector. The matrix Φ compresses x if the codebook Φ sparsifies x.
An example where this concept can be applied refers to the communication channel models. In
practice, the channels are composed by scatters that define the channel impulse response. If it
has only few scatters, then the channel is likely to be sparse. A model that we hardly can rely on
sparsity is the estimation of i.i.d channels. In this situation, the problem is unstructured and does
not admit a sparse representation in the spatial domain.

The acquisition of x is a process that is modeled as a linear transformation, where a
measurement matrix Ψ is applied over x. The signal observed then is represented as y = Ψx
CM . The number of elements M in y refers to the number of measurements that are taken from
the vector x. The acquired signal can be written as y = Ψx = ΨΦθ [13, 16, 35].

The goal of the CS formulation is to find the sparsest solution θ such that it attains
y = ΨΦθ. Thus, the optimization problem can be stated as

arg min
θ
‖θ‖0

s.t. y = ΨΦθ, (2.1)

where ‖.‖0 stands for the l0-norm. This norm is of interest to this problem because it returns the
number of non-zero entries of θ. However, the problem (2.1) is non-convex and also NP-hard
due to the ‖.‖0. Therefore, to have a tractable problem, it is modified by changing the l0-norm to
another one that achieves convexity. The ‖.‖p operator is non-convex for the range 0 < p < 1,
as can be seen in Figure 2.1. Therefore, a reasonable heuristic for relaxing (2.1) consists of
approximating ‖.‖0 to ‖.‖1 representation. Thus, the new problem is

arg min
θ
‖θ‖1

s.t. y = ΨΦθ. (2.2)

The l1-minimization approach is now a convex problem and can be solved by using linear pro-
gramming if it is real, or second order cone programming if it is complex [13]. The assumptions
usually considered when relaxing this problem are:

1. The equality y = ΨΦθ is too strict. Take the example of communication systems, where
the presence of noise introduces a perturbation in the parameter estimation process. To
solve this problem, a better approach would be one that allows for some deviation ε, as for
instance the expression ‖y−ΨΦθ‖2 < ε.
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Figura 2.1 – Plot of a function ‖θ‖p ∀p ∈ [0, 1], where θ ∈ R.
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Source: Provided by the author.

2. The sparsity measure is very sensitive to small entries in θ. A good approach consists in
defining a threshold to eliminate such values.

2.2.3 Uniqueness Conditions for the Compressive Sensing Problem

A key property to understand the conditions of uniqueness is the spark of the matrix
Υ = ΨΦ. This property provides a way of describing the null-space of Υ using the l0-norm.
This concept is enunciated with the following definition.

Definition 2 The operator spark{Υ} is the smallest number of columns from Υ that are linearly

dependent.

Note that there is a resemblance between the definition of rank and spark. From linear
algebra, the rank is defined as the largest number of columns in Υ that are linearly independent.
If we replace the words “largest” with “smallest” and “independent” with “dependent” then we
have the spark definition. A natural problem that arises with the calculation of the spark is the
computational complexity. To determine the smallest set of linearly dependent columns, we need
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to perform an exhaustive search over all the possible subsets formed by the columns of Υ. This
is more complex than rank calculation [35].

Apart from the complexity issue, the spark is a powerful definition to reveal the uni-
queness of θ. The vectors in the null-space of Υ, i.e. Υθ = 0, must combine linearly at least
spark{Υ} dependent columns of Υ. Using the spark definition, the uniqueness condition is
ensured by the following theorem:

Theorem 1 If a set of equations is represented as a linear system in the form Υθ = y, its

sparsest solution obeys ‖θ‖0 < spark{Υ}/2.

To understand Theorem 1, consider two vectors θ1 and θ2 as null-space elements of Υ and the
difference θ1 − θ2 must also be in the null-space. Using the definition of spark, we get

‖θ1‖0 + ‖θ2‖0 ≥ ‖θ1 − θ2‖0 ≥ spark{Υ}. (2.3)

This inequality shows that the number of non-zero entries of θ1 − θ2 cannot exceed the sum
of the non-zero entries of each vector θ1 and θ2, which follows from the triangle inequality.
From this observation, and assuming ‖θ1‖0 < spark{Υ}/2, it is possible to conclude that
‖θ2‖0 > spark{Υ}/2.

Because spark{Υ} is very difficult to evaluate, its use in uniqueness analysis is very
complicated. An alternative is to exploit the mutual coherence concept which is presented in the
following definition.

Definition 3 The mutual-coherence of a given matrix Υ is the largest absolute inner product

between all the different columns of Υ. Denoting the ith column of Υ as [Υ]i, the mathematical

formulation is given by

µ (Υ) = max
1≤i,j≤N,i6=j

| [Υ]Hi [Υ]j |
‖[Υ]i‖2

∥∥∥[Υ]j
∥∥∥

2

. (2.4)

Note that for the orthogonal matrix, the mutual coherence is zero. For the case of interest,
M < N , µ (Υ) is positive, and the smaller is µ (Υ), the closer the estimator performance is to
the case where orthogonal matrices are used.

Mutual coherence is far easier to compute than the spark. It is then interesting to establish
a relationship between spark and mutual coherence. Following, it can be stated [35]

spark{Υ} ≥ 1 + 1
µ (Υ) . (2.5)

Using this result and Theorem 1, it is possible to obtain another upper-bound for the uniqueness
[35]:
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Theorem 2 The sparsest solution of a linear system Υθ = y obeys the relationship

‖θ‖0 <
1
2

(
1 + 1

µ (Υ)

)
. (2.6)

Theorems 1 and 2 are similar, but they carry different assumptions. The first one, which relates
spark and uniqueness, is more powerful than the second one, which uses the mutual coherence
to guarantee uniqueness. The mutual coherence is lower bounded by 1√

M
, thus ‖θ‖0 in Theorem

2 cannot be larger than
√
M/2. However, the spark can be as larger as M . This gives a bound of

M/2.

2.3 Narrowband Structured Channel Model

Consider a MIMO system with NT antennas at the transmitter and NR antennas at the
receiver. Assume that the receiver does not have any knowledge about the communication
channel. Thus, the receiver needs to estimate the channel using, e.g. a known training sequence
sent by the transmitter. The received training signal is denoted by

Y = SH + Z. (2.7)

The matrix S ∈ CT×NT contains the training sequences sent by each one of the NT transmit
antennas, where T denotes the length of the training sequence, H ∈ CNT×NR is the channel
matrix and Z is the additive white Gaussian noise matrix whose entries have variance N0/2, and
the matrix Y ∈ CT×NR defines the received signal.

It is a common practice in the literature to use i.i.d entries for modelling the MIMO
channel. However, this assumption leads us to overestimate the spatial degrees of freedom. This
is especially true for massive MIMO channels where the number of transmit/receive antennas
may be significantly higher than the degrees of freedom provided by the channel [36]. Thus, the
i.i.d. case is not considered hereafter but instead a structured channel model.

In [36], a stochastic MIMO channel model, inspired by the Kronecker model and virtual
channel model, was proposed. Combining the advantages of both models, the so-called Wei-
chselberger’s model shows enhanced capabilities to model the spatial structure of the channel.
However, the price for achieving a more accurate channel representation is the knowledge of the
transmit and receive one-side correlation matrices. Such matrices are defined as

RR = E
{
HHH

}
= UrΛrUr

H,

RT = E
{
HHH

}T
= UtΛtUt

H,

(2.8)

where, the matrices Ur (resp. Ut) and Λr (resp. Λt) are the receive (resp. transmit) eigenvector
and eingenvalue matrices.
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In [36], Weichselberger proposes the following channel decomposition model

H = Ut (Ω�G) Ur
H (2.9)

where Ω is a positive and real-valued matrix, being equal to the square-root of the power coupling
between transmit and receive eigenmodes, G has i.i.d entries that accounts for the channel fading,
and � denotes the Hadamard product. A full-rank matrix Ω means a scattering-rich environment
with maximum diversity. In this situation, model (2.9) is equivalent to the Kronecker model.
In [36, 37], the authors show that if the number of antennas goes to infinity, the discrete Fourier
transmform (DFT) matrix is asymptotically equal to the matrix of eigenvectors.

2.4 Compressive Sensing to Massive MIMO Channel Estimation

Channel estimation using a LS criterion applies the pseudoinverse of S over the received
signal. However, such an operation is only possible if T ≥ NT. This imposes a practical issue that
decreases the spectral efficiency, once NT is very large. The desirable situation is that T ≤ NT,
but this leads to a system with less equations than variables, and, consequently infinite solutions.
On the other hand, using compressed sensing, the receiver can estimate such a large channel
with T ≤ NT. First, it is necessary to find an appropriate codebook (also known as “dictionary”)
Φ to obtain a sparse representation of H.

Consider Eq. (2.7) and the property vec {ABC} =
(
CT ⊗A

)
vec {B}, the received

signal Y as

vec {Y} = vec {SH}+ vec {Z}

=
(
ITNR
⊗ S

)
h + vec {Z} , (2.10)

where h .= vec {H} ∈ CNTNR .Substituting (2.9) into (2.10), we derive the expression

vec {Y} =
(
ITNR
⊗ S

)
(U∗r ⊗Ut) vec {(Ω�G)}+ vec {Z} . (2.11)

Then, we define

y .= vec {Y} ∈ CTNR , (2.12)

z .= vec {Z} ∈ CTNR , (2.13)

Ψ .=
(
ITNR
⊗ S

)
∈ CTNR×NTNR , (2.14)

Φ .= (U∗r ⊗Ut) ∈ CNTNR×NTNR , (2.15)

θ
.= vec {(Ω�G)} ∈ CNTNR×NTNR , (2.16)

which allows one to compactly rewrite (2.10) as

y = ΨΦθ + z. (2.17)
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Note that in this model, the measurement matrix Ψ depends on the set of pilot sequences
contained in S. Their length and the number of antennas at the receiver correspond to the total
number of measurements that the receiver has access. This number can be reduced if the channel
vector h admits a sparse representation. This is because we can use CS theory to reduce the
length T of the pilot sequences.

The channel sparsity is achieved using the dictionary Φ to model h. This representation
is obtained from the transmit-receive spatial bases Ut and Ur respectively. These matrices model
statically the paths that compose the channel. The coupling matrix Ω defines the power associated
with the scatters and how the paths of the transmit and receive sides connect among themselves.
If we consider a full matrix Ω, it means that all the scatters communicate with each other and the
model reduces to Kronecker channel model [36]. However, it is known from the literature [36]
that the consideration creates clusters that do not exist, i.e. it overestimates the richness of the
channel [38]. Therefore, it is correct to assume that Ω is sparse.

The sparsity of the model depends on the basis adopted to represent the channel. For
the same channel vec {H}, there are more than one sparse representation and they may lead to
different sparse representations. The compression provided by the eigenvectors in the model (2.9)
can only be achieved if the receiver knows such bases. These orthonormal matrices are obtained
from the covariance matrices of the transmit and receive side which means that the receiver needs
to acquire such an information. The acquisition demands an extra overhead before the estimation
of the instantaneous channel, but Ut and Ur are long-term information and remain constant
over many time instants. In the case, if we have large arrays at both, transmitter and receiver,
these matrices tend to be the DFT. The advantage of this result is that the covariance matrix
acquisition can be avoided. Thus, it is possible to derive a sparsity-based channel estimation
technique assuming the DFT approximation to reduce the pilot sequence.

2.5 Cramer-Rao Bound Discussion For Estimating Sparse Channels

The CRLB provides a benchmark to analyse how good is the accuracy of a given channel
estimator. If it attains the CRLB in linear estimation problems, the solution is equivalent to the
minimum variance and unbiased (MVU) estimator [15]. This type of estimator applied to the
problem in (2.17) must be capable of extracting the sparse channel θ. The accuracy of such an
estimator is compared with the benchmark provided by the CRLB, which makes it possible to
obtain insights with respect of the estimator accuracy.

In (2.17), the vectorized representation of the received signal contains a white noise z.
Each sample of noise follows the complex multivariate Gaussian distribution and the samples
are idealistically uncorrelated. In practice, correlated noise is present because of interference
sources. However, this case is not taken into account in this thesis.

Assuming that the received signal is modeled linearly as in (2.17), we wish to determine



Capítulo 2. COMPRESSIVE SENSING FOR ESTIMATING NARROWBAND CHANNELS 33

an estimator θ̂, so that it applies a linear transformation onto the received samples, i.e. θ̂ = g (y),
where g(.) is some function. To determine good estimators, it is important to firstly establish a
statistical model for the measurements, so that it describes the randomness due to the presence
of noise. The characterization of y by the probability density function (PDF) p(y; θ) and
parametrizing the PDF with the unknown parameter θ become a fundamental prerequisite to
obtain the CRLB. With this model, a class of PDFs is generated, where each of them differs
according to the values of θ.

Assuming the PDF of the noise, Eq. (2.17) are considered, and that the sparsity ‖θ‖0 = K

is known a priori, the PDF of the received signal can be expressed as

p(y; θK ,θ
∗
K) = 1

(2πσ2)TNR/2
exp (y−ΨΦKθK)H (y−ΨΦKθK)

2σ2 , (2.18)

where σ2 is the noise variance, θK is a vector that contains only the K non-zero entries of θ,
and ΦK is the range space of Φ. For convenience, we decide to express the PDF as a function of
θ and θ∗ as if they were different variables. This type of assumption was already used in other
works as for instance in [39].

The multivariate CRLB gives a bound for any unbiased estimator θ̂ in function of the
Fisher information matrix

CCRLB − I(θK ,θ∗K)−1 ≥ 0K×K , (2.19)

where the Fisher information matrix is given by

I(θK ,θ∗K) = −E
{
∂ ln p(y; θK ,θ

∗
K)

∂θHK∂θTK

}
. (2.20)

To calculate this matrix, the first derivative with respect to θH of the function ln p(y; θK ,θ
∗
K) is

obtained

∂ ln p(y; θk,θ
∗
k)

∂θHk
= 1

2σ2

M∑
m=1

(
y[m]− [Ψ]Hm [Φ]k

)
ΦH [Ψ]m .

Then, the second derivative is obtained

∂2 ln p(y; θk,θ
∗
k)

∂θHk ∂θTk
= − 1

2σ2 ΦHΨΨHΦ.

From the second derivative, the Fisher information matrix is given by

I(θK ,θ∗K) = 1
2σ2 ΦHΨΨHΦ. (2.21)

Note that the fisher information matrix defined in (2.21) is composed by the inner product of
Υ = ΨΦ. This means that the off-diagonal elements can be described as

[Υ]Hi [Υ]j = [Φ]Hi ΨΨH [Φ]j . (2.22)
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From Definition 3, it is possible to conclude that the matrix I(θK ,θ∗K) gives also information
about the mutual coherence, which is the highest value among all the off-diagonal entries.
Besides this, the pilot design also plays an important role in the estimation process. Note that,
if the system was able to employ orthogonal pilots, the Fisher information matrix would be
diagonal. However, because of overhead issues, the length of the training sequences is shorter
than the total number of antennas, which makes it impossible to achieve orthogonality in this
case. One way to reduce the loss of performance compared with the orthogonal case consists of
designing pilot sequences that have good properties of cross-correlation. It can be measured from
the off-diagonal entries of the matrix ΨΨH , where the maximum value among all the entries
must be minimized. To achieve such a condition, the mutual-coherence of the pilot sequences
must achieve their minimum value.

From CS, if Ψ is a full-rank matrix, its mutual coherence is bounded as shown in [35].
Applying this result to the problem, the minimum value is given by

µ (Ψ) ≥
√

NTNR − TNR

TNR (NTNR − 1)

≥
√

NT − T
T (NT − 1) . (2.23)

The equality is only achieved for a family of matrices called Grassmannian [35]. For these
matrices, the angles between each pair of columns is the same, and is also the smallest possible.
This type of matrix is extremely attractive to produce pilot sequences. However, the problem
is to obtain such a Grassmannian matrices. They are usually very difficult to be obtained, but
heuristics can be used to achieve approximations as shown in [35].

2.6 Channel Estimators and Receiver Structures

The use of downlink pilots in massive MIMO tends to limit the system spectral efficiency.
Classical estimators as LS estimators achieve the minimum error upon the use of orthogonal
sequences. However, to achieve this orthogonality the length of such sequences is at least equal
to the number of antennas. This indeed demands a lot of communication resources in massive
MIMO and consequently reduces the promised spectral efficiency gains. There is a need for
techniques that achieve good accuracy, but demanding fewer pilots.

In this section, it is proposed three estimators that lead to three different architectures
of receivers. One solution is developed based on the greedy algorithm, called OMP; the second
is obtained using the Lasso formulation and ADMM method to derive a primal-dual solution;
and the third is developed also from the Lasso formulation, but it is implemented in a distributed
fashion.
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2.6.1 Greedy Channel Estimation Method

Let us consider in a first moment a scenario without noise so that we can study the
problem. Suppose that the matrix Υ has spark{Υ} > 2, and the solution for the problem

θ = arg min ‖θ‖0 s.t. y = Υθ, (2.24)

is ‖θ‖0 = 1. This means that the vector of measurements y has one scalar that multiplies one
of the columns of the matrix Υ, and this solution is known to be unique [13]. It is possible to
identify this column by applying NTNR tests, one for each column of Υ. The nth test can be
performed by minimizing the error

e(n) = ‖ [Υ]n ωn − y‖2
2. (2.25)

This leads to the solution

ω′n = [Υ]Hn y
‖ [Υ]n ‖2

2
. (2.26)

Substituting the equation (2.26) into (2.25) the error expression becomes

e(n) = ‖ [Υ]n
[Υ]Hn y
‖ [Υ]n ‖2

2
− y‖2

2

= ‖y‖2
2 +

(
[Υ]Hn y
‖ [Υ]n ‖2

2

)2

‖ [Υ]n ‖
2
2 −

(
[Υ]Hn y
‖ [Υ]n ‖2

2

)∗
[Υ]Hn y−

(
[Υ]Hn y
‖ [Υ]n ‖2

2

)
yH [Υ]n

= ‖y‖2
2 +

(
[Υ]Hn y

)2

‖ [Υ]n ‖2
2
−
(

[Υ]Hn y
‖ [Υ]n ‖2

2

)∗
[Υ]Hn y−

(
[Υ]Hn y
‖ [Υ]n ‖2

2

)
yH [Υ]n

= ‖y‖2
2 −

(
[Υ]Hn y
‖ [Υ]n ‖2

2

)∗
[Υ]Hn y (2.27)

If e(n) = 0 in (2.27), the non-zero entry of θ was found. Thus, the test to identify the entry of
interest is

‖y‖2
2 −

(
[Υ]Hn y
‖ [Υ]n ‖2

2

)∗
[Υ]Hn y = 0(

[Υ]Hn y
‖ [Υ]n ‖2

2

)∗
[Υ]Hn y = ‖y‖2

2

| [Υ]Hn y|2 = ‖y‖2
2‖ [Υ]n ‖

2
2. (2.28)

The expression (2.28) shows that if y and [Υ]n are parallel, n is the non-zero entry of θ. The
search procedure in this case takes a number of operations on the order of O (TNTNR) flops.

Consider now spark{Υ} > 2K0 and ‖θ‖0 = K0. The vector y is a linear combination
of at most K0 columns of Υ. Using the same solution, the optimum approach is to test all the(
NTNR
K0

)
possible combination of columns from Υ. The number of operations in this situation is

O
(
NT

K0NR
K0TK2

0

)
flops, which seems prohibitive in any telecommunication setting.
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Figura 2.2 – Centralized channel estimation solution using greedy algorithm.

ADC

ADC

Source: Provided by the author.

A greedy algorithm avoids such combinatorial solution and evaluates a series of locally
optimal single-term updates. From these local problems, the algorithm constructs iteratively a
sparse vector θK by using the rule in (2.28). The columns corresponding to the non-zero entries
of θ reduces maximally the residual error in approximating y. Using the column of Υ obtained
from each iteration, the residual error is evaluated and if it falls below a predefined threshold, the
algorithm stops. The pseudocode is shown the Table 1.

The implementation of the algorithm consists of collecting the training signal after
the analog-digital conversion, followed by an operation that performs the vectorization of the
samples. This vector is the input to the algorithm described in Table 1.

Although the OMP algorithm saves computational processing by avoiding exhaustive
search through all

(
NTNR
K0

)
possible combination of columns from Υ, the search procedure of

finding the strongest components can also lead to a lot operations. The number of multiplications
is O

(
NT

K0NR
K0TK2

0

)
and because we have a massive array the implementation of such an

algorithm can be prohibitive on devices with limited processing capabilities. The block diagram
of the receiver is shown in Fig. ??

2.6.2 Distributed Linear Regression for Sparse Channels Using ADMM

Let us consider the problem of l1 regression known as Lasso [35] which is stated as

min
θ

(1/2)‖ΨΦθ − y‖2
2 + β ‖θ‖1 , (2.29)

where β > 0 is a parameter that controls the importance of sparse solutions. The Lasso formula-
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Algorithm 1 Pseudocode of the OMP algorithm.
Require: The dictionary and the measurement matrices that are combined as Υ = ΨΦ and the

received signal y containing the measurements
Ensure: Find the sparsest solution of θ that solves the problem θ = arg min ‖θ‖0 s.t. y = Υθ

Start the algorithm with

• the initial solution is θ0 = 0

• the residual vector r = y ;

• the initial support S0 = Support{θ0} = 0

while ‖r‖2 > ε or k ≤ K0 do
nk = arg maxn ‖ [Υ]Hn y‖2

Sk = Sk−1 ∪ {nk}
θk = (ΥSk)† y
rk = y−ΥSkθk

end while

tion can be rewritten into the ADMM framework that is given by

min
θ

(1/2)‖ΨΦθ − y‖2
2 + β ‖q‖1 ,

s.t. θ − q = 0. (2.30)

It is possible to recast the problem using the augmented Lagrangian function

Lρ(θ,q, λ) = (1/2)‖ΨΦθ − y‖2
2 + β ‖θ‖1 + λT (θ − q) + (ρ/2)‖θ − q‖2, (2.31)

where ρ > 0 is a penalty parameter. The insertion of the third term is to bring robustness to
the solution. The ADMM is a variation of the dual ascent algorithm [40]. In this method, the
algorithm implementation exploits the dual decomposition in (2.31) by alternating between the
primal and dual formulations. The dual solution is obtained using the gradient ascent, however
when the term with a penalty is added, (ρ/2)‖θ− q‖2, the convergence of the algorithm extends
under far more general conditions than without using the penalty [41].

The ADMM expressions per iteration are

θk+1 .= arg min
θ
Lρ(θ,qk,λk)

qk+1 .= arg min
q
Lρ(θk+1,q,λk)

λk+1 .= λk + θk+1 − qk+1.

Deriving the expressions, we can say that

θk+1 .=
(
ΦHΨHΨΦ + ρI

)−1 (
ΦHΨHy + ρ

(
qk − λk

))
qk+1 .= Sβ/ρ

(
λk + θk+1

)
λk+1 .= λk + θk+1 − qk+1.
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Figura 2.3 – Alternated channel estimation using ADMM solution.
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ADC

Source: Provided by the author

The Lasso formulation has the advantage of considering the noise using the term ‖ΨΦθ − y‖2
2

which provides increased robustness in scenarios with limited SNR. The algorithm is summarized
in the Table 2. The receiver architecture is illustrated in Fig. ??.

The estimation of θ can be done in a distributed way by splitting the measurement vector
y into smaller ones. In this way, smaller ADMM blocks can perform their own estimate of θ, as
shown in Fig. ??. In this way, the baseband processing architecture can be designed to distribute
the computation of all the measurements. In other words, part of the received measurements
are allocated to different ADMM. The advantage of this solution is the possibility to use less
powerful processors while distributing the computational load across different processors. Each
algorithm has its own estimation of θ and this estimate is reported to a fusion center that combines
multiple estimates to update the global θ.

To split the measurements, we consider that

y =


y1

y2
...

yI

 , Ψ =


Ψ1

Ψ2
...

ΨI

 .

Each subvector yi ∀i ∈ {1, . . . , I} has TNR
I

elements. This means that each ADMM block
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Algorithm 2 Primal-dual Lasso solution.
Require: Proper hardware architecture for parallel computation. Moreover, the dictionary and

the measurement matrices.
Ensure: Find the sparsest solution of θ that returns the minimum value Lρ(θ,q, λ) =

(1/2)‖ΨΦθ − y‖2
2 + β ‖θ‖1 + λT (θ − q) + (ρ/2)‖θ − q‖2,

Start the algorithm with

• initialize randomly q1 ∈ CNTNR

• initialize randomly λ1 ∈ RNTNR

while ‖ΨΦθ − y‖2 > ε do
θk+1 .=

(
ΦHΨHΨΦ + ρI

)−1 (
ΦHΨHy + ρ

(
qk − λk

))
qk+1 = S1/ρ

(
qk + θk+1

)
λk+1 .= λk + θk+1 − qk+1

compute ‖ΨΦθ − y‖2
end while

uses matrices Ψi ∀i ∈ {1, . . . , I}, that are non-overlapping submatrices of Ψ. Each one of the
subvectors yi are allocated to the corresponding ADMM block i. Assuming this distributed
architecture, we exploit the l2 norm property

‖ΨΦθ − y‖2 = ‖Ψ1Φθ − y1‖2 + ‖Ψ2Φθ − y2‖2 + . . .+ ‖ΨIΦθ − yI‖2, (2.32)

to rewrite the Lasso problem as

min
θ

(1/2)
I∑
i=1
‖ΨiΦθi − yi‖2

2 + β ‖q‖1 ,

s.t. θi − q = 0, ∀i ∈ {1, . . . , I}. (2.33)

Using ADMM, we can define the expression as

θk+1
i

.= arg min
θi

(
(1/2)‖ΨiΦθi − yi‖2 + ρ/2‖θi − qk + λk

i ‖2
)

qk+1 .= Sβ/ρI

(
1
I

I∑
i=1

θk+1
i − 1

I

I∑
i=1

λi

)

λk+1
i

.= λk
i + θk+1

i − qk+1. (2.34)

Each θi update can be solved with the analytic expression

θk+1
i =

(
ΦHΨH

i ΨiΦ + ρI
)−1 (

ΦHΨH
i yi + ρ

(
qk − λk

i

))
. (2.35)

or, alternatively,
θk+1
i =

(
ΥH
i Υi + ρI

)−1 (
ΥH
i yi + ρ

(
qk − λk

i

))
. (2.36)

Table. 3 summarizes the method presenting the pseudocode for the distributed channel estimation
solution.
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Algorithm 3 Pseudocode of the distributed Lasso problem using ADMM formulation.
Require: The receiver has a properly architecture in terms of hardware implementation. Updates

are processed in a distributed fashion. Moreover, the dictionary and the measurement matrices
are assumed to be known penalty ρ

Ensure: Find the sparsest solution of θ that returns the minimum value Lρ(θ,q, λ) =
(1/2)‖ΨΦθ − y‖2

2 + β ‖θ‖1 + λT (θ − q) + (ρ/2)‖θ − q‖2,
Start the algorithm with

• initializing q1 ∈ CNTNR

• initializing λ1
i ∈ RNTNR

while ‖1
I

∑I
i=1 θk+1

i − 1
I

∑I
i=1 θki ‖2 > ε do

θk+1
i

.=
(
ΦHΨH

i ΨiΦ + ρI
)−1 (

ΦHΨH
i yi + ρ

(
qk − λk

i

))
qk+1 .= Sβ/ρI

(
1
I

∑I
i=1 θk+1

i + 1
I

∑I
i=1 λi

)
λk+1
i

.= λk
i + θk+1

i − qk+1

compute ‖1
I

∑I
i=1 θk+1

i − 1
I

∑I
i=1 θki ‖2

end while

Figura 2.4 – Distributed channel estimation solution using ADMM in each module.
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Center

Provided by the author.

The distributed processing can be implemented using different architectures. One possi-
bility consists of splitting the measurements and allocating them into processors so that each
one performs individually and report the estimation to the fusion center that combines all the
estimates. The method also can be applied to distributed hardware architecture. More specifically,
a set of modules with one or multiple antennas could be used to operate separately. Each module
exchanges information with the fusion center until each ADMM achieves the convergence.
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Figura 2.5 – Channel estimation performance of distributed ADMM, centralized ADMM and
OMP for a 128× 2 MIMO using system T = 40.
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2.7 Numerical Results

This section provides some simulation results to compare the performance of three
sparsity-based channel estimators. The number of antennas at the BS is NT = 128 and the
number of antennas at the UE is NR = 2. The channel is generated using a Fourier basis to
compose the model (2.9) and the coupling matrix Ω is generated randomly with 0s and 1s while
G is obtained from a complex Gaussian distribution.

Fig. ?? shows a comparison between the three methods and the CRLB. In this plot, the
BS transmits random pilot sequences, obtained from a Bernoulli distribution, with length T = 40
and the channel sparsity is K = 10. The ADMM methods, which are obtained from Lasso
formulation achieve a better performance because they take into account the noise power which
provides enhanced performance over the OMP algorithm. The plots also show that the channel
estimation error becomes closer to the CRLB as the SNR increases. This means that the methods
are successful in finding sparse channel coefficients, corresponding the nonzero entries of G,
because the CRLB assumes perfect knowledge of the sparse matrix indexes corresponding to the
non-zero entries.

Fig. ?? compares the channel estimation performance of the three methods with respect
to the length of the training sequences considering SNR = 35dB. As the length of the sequences
increases, the methods get closer to CRLB up to a gap between them and the CRLB. It is impor-
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Figura 2.6 – Channel estimation performance for a 128× 2 MIMO system considering SNR =
35dB.
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tant to note that the channel estimation error does not improve even increasing the overhead. If
such a saturation happens, the BS must increase the power to improve the estimator performance.

Figures ?? and ?? show that the BS can adjust the power and the pilot length to control
the estimation accuracy. With this feature, the system can either prioritize reducing the overhead
or saving power transmission.

One drawback of Lasso-based techniques is the choice of β. Figure ?? shows that the
parameter depends on the SNR. The increase of β means that the estimator is prioritizing sparser
solutions.

2.8 Conclusion

Sparsity-based channel estimators provide accurate estimates demanding fewer pilots
than the classical LS solution. The methods proposed in this chapter collect DL training sequences
and extract the channel sparse representation. This is the key factor that enables the estimator to
reduce the pilot overhead.

Comparing the performance among the three methods, the greedy solution implemented
through the OMP algorithm achieves CRLB only for high SNR. This is because the optimization
problem in such a case does not take into account the additive noise in the received signal. The
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Figura 2.7 – Channel estimation performance of D-ADMM in a 128× 2 MIMO system. In this
plot, we vary the parameter β.
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solutions derived from the lasso formulation consider the presence of noise which results in a
better performance.

The distributed solution shows negligible loss of performance compared with its cen-
tralized version. This provides the possibility of implementing distributed architectures at the
receiver and still achieving the same centralized channel estimation performance.

Another interesting result regards to the optimum pilot sequence. The discussions with
respect to the CRLB and the results indicate that the Grassmanian achieves the CRLB. Thus,
Grasmanian pilots are promising for achieving high channel estimation quality.

Although the techniques proposed in this chapter show good performance in certain
conditions, most of the current systems have frequency-selective channels. The solutions develo-
ped in this chapter do not cope with such scenarios. In the next chapter, we continue to use the
CS estimator, but we keep our interest in the use of CS-based techniques for massive MIMO
channel estimation, but shift the focus to frequency-selective channels. This opens the possibility
of exploiting the multidimensionality of the channel model by means of a tensor CS approach.
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3 TENSOR COMPRESSIVE SENSING FOR ESTIMATING FREQUENCY SELEC-
TIVE CHANNELS

Abstract

In this chapter, the study on sparse channel estimation techniques is extended to frequency-

selective channels. The dependency of the channel on the frequency is generally modeled

by means of a set of channel matrices, one for each frequency bin. Assuming, for instance,

multicarrier modulation, pilots symbols are spread across different subcarriers. This procedure

can consume a lot of communication resources without properly exploiting the channel structure.

The solution proposed in this chapter combines tensor analysis and the CS framework to exploit

a joint sparsity resulting from a 3D sparse representation of the frequency-selective massive

MIMO channel. A new tensor-OMP algorithm to exploit the tensor sparse representation is

proposed, which exploits the tensor factorization to solve a greedy problem in an alternate

fashion. This drastically reduces the complexity compared with the traditional OMP solution.

Our results corroborate the reduction on the number of pilots in time and frequency. The proposed

algorithm not only estimates the channel coefficients associated with the pilot subcarriers, but

also interpolates across frequency to estimate the channel coefficients associated with the

remaining subcarriers.

3.1 Introduction

As discussed in Chapter ??, massive MIMO has the potential of increasing the spectral
efficiency of current wireless communication systems by employing hundreds of antennas at
the BS. However, the promised gains in spectral efficiency are achieved up to CSI knowledge
and its acquisition demands a lot of pilots if the BS uses the traditional techniques of channel
estimation. To circumvent it, we developed in the last chapter, sparsity-based techniques that use
a basis to achieve a sparse channel representation.

The choice of a basis is fundamental for the good performance of sparsity-based channel
estimators. Imposing a basis means that the estimator represents the channel response by a struc-
tured model. In general, most papers in the massive MIMO literature consider an independent
identically distributed (i.i.d) channel. However, the spatial structure of the channel which is
related to the scatterers distribution have a direct impact on the channel capacity and should be
taken into account in more realistic propagation environments [42].

The use of spatially structured models is very important in scenarios where the environ-
ment has a poor scattering of multipath propagation, which motivates the use of low-rank channel
models. These models can be exploited by sparsity-based estimators as shown in [43–46]. The
authors of [43] present a CS-based study for sparse channel estimation and its impact on the de-
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sign of efficient pilot assisted techniques. For instance, the works [45,46] capitalize on structured
channel models to obtain the angles of arrival and departure to reconstruct the CSI. Examples of
structured MIMO channels are the Kronecker model [47], the Weichselberger’s model [36] or the
virtual channel representation [48]. They spatially describe the paths without considering their
delays. Thus, those models are only applied to narrowband channels. Most of modern wireless
communication systems perform their transmissions over frequency-selective channels. In such a
case, the channel frequency response is not flat over the bandwidth which means that the models
used by sparse channel estimators need to consider the frequency selectiveness. This means to
use sparse models that describe angle and delay domains. For the MIMO case, the narrowband
channel is modelled as a matrix because only the spatial domains are taken into account. For the
frequency-selective channel, a three-dimensional representation can be used.

A useful tool to model multidimensional channels is the tensor analysis. This is a multili-
near algebra tool that can be applied to problems involving multidimensional modelling. For
instance, [49] adopted this tool to extend the Kronecker model to the wideband case. Following
that work, in [50], a tensor-based wideband channel model built up from the Weichselberger’s
model [36] was proposed and validated experimentally. Recently, [51] introduced a CSI tensor
expression and a full correlation model for wideband MIMO channels by means of a general
coupling-based framework built from the relationship between spatial and frequency channel
dimensions. Beyond the importance of channel modelling, as stated previously, tensor models
such as the Parallel Factors (PARAFAC) model and the Tucker model [52] have interesting
properties that make possible to exploit sparse representations. Among these multilinear models,
the Tucker model has a special interest in this work. It provides us with a trilinear sparse channel
representation that can be exploited by a CS estimator to reduce the pilot overhead.

In this chapter, we propose a sparsity-based channel estimation for wideband channels
by exploiting the Tucker3 model to obtain the tensor sparse representation of the channel. Using
this representation, it is possible to map the entries of a tensor into a vector. However, such a
mapping uses the Kronecker basis representation to obtain the sparse vector. This basis has very
large columns and rows which create an issue with limited processing receivers. A new greedy
algorithm exploiting the Tucker3 model is proposed, where the solution uses the unfolding
representations of the model to drastically simplify the search of the sparse tensor strongest
entries.

Besides the computational complexity aspects, the solution uses the pilot placement of a
time-frequency system. Including a space-frequency channel model in the estimator, it is possible
to reduce the length of the pilot sequences and the number of subcarriers used for transmitting
them. The method uses the measurements from the subcarriers and obtains the the sparse tensor.
Using such a representation and the basis, the estimator can jointly estimate and interpolate the
channel frequency response.
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3.2 Tensor Prerequisites

Before proceeding with the tensor characterization of the frequency selective MIMO
channel, it is convenient to provide some basic concepts and definitions of tensor algebra, which
will be used in later sections.

Tensors are natural extensions of vectors and matrices to a multidimensional space (i.e.
with more than two dimensions). A possible definition of a tensor A is given as follows.

Definition 4 A tensor A ∈ RI1×I2×...×IN is a N -th order array whose typical element ai1,i2,...,iN
is accessed via N indices, in ∈ {I1, I2, . . . IN}.

According to Definition 4, a zero-order tensor is a scalar, a first-order tensor is a vector,
a second-order tensor is a matrix and a third-order tensor is a “cube”. A tensor with more than
three dimensions is generally referred to as a higher-order tensor [53]. A tensor of order N can
also be interpreted as the result of a multilinear projection by means of a tensor (Kronecker)
product of N vector spaces.

When manipulating tensors, conventional operations such as sums and products can be
efficiently applied by rearranging the tensor into equivalent matrices. This process is usually
referred to as “matricization” or “unfolding” [52, 53].

3.2.1 n-Mode product

To define a multiplication between a tensor and a matrix in the tensor space, it is necessary
to specify which mode (dimension) of the tensor is affected by that operation.

Definition 5 The n-mode product of a tensor X ∈ CJ1 × J2 ... × JN and a matrix A ∈ CIn × Jn

is symbolized by Y = X ×n A, where Y ∈CJ1 × J2 ... × Jn−1 × In × Jn+1 ...× JN , each element

being defined as [53]:

yj1,j2,...,jn−1,in,jn+1,...,jN =
Jn∑
jn=1

xj1,j2,...,jn−1,jn,jn+1,...,jNain,jn . (3.1)

The n-mode product can be applied successively along several modes. This operation
enjoys the commutative property, i.e.

(X ×n A) ×m B = (X ×m B) ×n A (m 6= n). (3.2)

In the case m = n, we have

(X ×n A) ×n B = X ×n BA. (3.3)
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It is possible to perform multiplication in all modes of the tensor using a set of matrices A(n) ∈
CIn × Jn , as follows:

X ×
{

N⋃
i=1

A(i)
}

= X ×1 A(1) ×2 A(2) . . .×N A(N). (3.4)

The tensor transformation in Eq. (3.4) can alternatively be represented as a function of
its n-mode matrix unfolding, i.e.:[

X ×
{

N⋃
i=1

A(i)
}]

n

= A(n)X(n)[A(N) ⊗ . . .A(n+1) ⊗ . . .⊗A(1)]T , (3.5)

where X(n) ∈ CJn ×J1···Jn−1Jn+1···JN is the n-mode matrix unfolding of X ∈ CJ1 × J2 ... × JN .

To illustrate the above concepts, consider the case N = 3 (third-order tensor), which
will be relevant to the context of this work. In this case, (3.4) can be rewritten in scalar form as
follows

yijk =
P∑
p=1

Q∑
q=1

R∑
r=1

xpqrai,pbj,qck,r, (3.6)

where yijk is an element of the fourth-order tensor Y ∈ CI×J×K , gpqr is an element of the
third-order tensor X ∈ CP×Q×R, and ai,p, bj,q, and ck,r are typical elements of the factor matri-
ces A ∈ CI×P , B ∈ CJ×Q, and C ∈ CK×R, respectively. Using the n-mode product (tensor)
representation, Eq. (3.4) translates directly to

Y = X ×1 A×2 B×3 C. (3.7)

The matrices A, B, C, perform, respectively, 1-mode, 2-mode, and 3-mode products across
the input tensor X , yielding the output tensor Y . Such an operation can also be interpreted as
a third-dimensional filtering (e.g. compression or decompression) that maps X into Y and is
represented Fig. 3.1.

Another useful way of representing the tensor transformation (3.7) consists of rewriting
as three different (but equivalent) unfolded forms. According to Eq. (3.5), we have

Y(1) = AX(1) [B⊗C]T (3.8)

Y(2) = BX(2) [C⊗A]T (3.9)

Y(3) = CX(3) [A⊗B]T . (3.10)

Another way of representing the above equations is to use their vector form

y(1) = (B⊗C⊗A) x(1) (3.11)

y(2) = (C⊗A⊗B) x(2), (3.12)

y(3) = (A⊗B⊗C) x(3), (3.13)

where x(i)
.= vec{X(i)}, and y(i)

.= vec{Y(i)} ∀i ∈ {1, 2, 3}.
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Figura 3.1 – n-Mode product representation for a third order tensor model.

Source: Provided by the author.

Equation (3.7) is known in the tensor literature as the third-order Tucker decomposition
[53]. In this chapter, the tensor formalism is used to model a frequency-selective MIMO channel
by means of a sparse multidimensional representation. More specifically, the factor matrices
A, B, and C, in (3.7) will play the role of the fixed bases while the core tensor X will reveal
the sparse structure of the channel in the joint angle-delay domain. Later, this structure will be
exploited for channel estimation to derive a tensor-based sparse channel estimator.

3.2.2 Kronecker compressed sensing

Kronecker CS refers to problems where we have to exploit sparsity in multidimensional
signals [54]. In this type of problem, the measurements are concatenated into a big vector which
produces a particular Kronecker structure to the measurement and the basis matrices. More
specifically, the basis and the measurement matrices are defined as Φ = Φ1 ⊗Φ2 ⊗ . . .⊗ΦD

and Ψ = Ψ1 ⊗Ψ2 ⊗ . . . ⊗ΨD, respectively. A given matrix Ψi and Φi corresponds to the
measurement and the basis with respect the dimension i.

The Kronecker structure leads to a tensor representation of the signal. Equation (3.11),
for instance, reveals that if a vector y1 holds a relationship with x1 by a linear transformation
defined as a Kronecker matrix, then y1 has a tensor representation defined by (3.7). This is true
because y1 is the result of a vectorization over Y(1). This matrix is, in turn, a representation of
a third-order tensor that has matrices A, B and C performing 1-mode, 2-mode, and 3-mode
products, respectively, across a core tensor. This relationship is clear by comparing (3.11) and
(3.7). Thus, y1 = ΨΦx1 can be represented using the tensor formalism, where the vector y1 is
rearranged as a tensor Y and, in turn, it admits a sparse representation X as shown in

Y = X ×1 Ψ1Φ1 . . .×D ΨDΦD, (3.14)

where the Mi ×Ni measurement matrix Ψi, Mi < Ni, compresses the tensor X along its i-th
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Figura 3.2 – Third-order tucker decomposition of a sparse tensor.

Soruce: Provided by the author.

dimension, ∀ i = {1, 2, . . . , D}. The tensor representation for (3.14) is a D-order Tucker model.
Figure 3.2 illustrates a third-order Tucker decomposition with a sparse core tensor.

As an extension to the traditional (vector) CS problem, in the case of multidimensional
signals, the mutual coherence is considered per dimension. For a given dimension i, we can
define Υi = ΨiΦi and the corresponding mutual coherence µ(Υi). The equivalent mutual
coherence can be obtained from the relationship [54]

µ (Υ1, . . . ,ΥD) =
D∏
i=1

µ(Υi). (3.15)

From (3.15), we can note that if multiple measurements are employed over different
modes, the mutual coherence of the equivalent vector problem tends to decrease. This is because
the individual terms of the product in (3.15) are defined between 0 and 1. The multiplication
of many terms within such an interval decreases the overall mutual coherence µ (Υ1, . . . ,ΥD).
Consequently, less measurements are necessary to recover the sparse tensor.

The tensor formalism provides a powerful tool to solve Kronecker CS problems. Using
the Tucker decomposition, it is possible to develop algorithms that exploit the tensor structure
of the underlying sparse problem. Since all dimensions of the data are jointly exploited, a
better compression rate can be achieved in comparison with traditional sparse reconstruction
algorithms.

In the next section, a frequency-selective MIMO channel model is developed by using
the tensor formalism. Then, a new sparse channel estimator exploiting the Tucker decomposition
is proposed.
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3.3 Tensor-Based Channel Model

Consider a MIMO system with I and J antennas at the transmitter and receiver, respecti-
vely. The channel between them is frequency selective and modeled as a low-rank channel. The
rank is defined by the number of clusters as shown in [48]. The channel matrix associated with
the f -th frequency is given by:

G(f) =
Np∑
n=1

βnaR(θR,n)aHT (θT,n)e−2πτnf , (3.16)

where, G(f) ∈ CI×J , Np represents the number of paths, βn denotes a random variable with
complex Gaussian distribution, θR,n and θT,n denote the angle of arrival (AoA) and angle of
departure (AoD), respectively, τn ∈ [0, τmax] is the delay related to the n-th path. The J × 1
vector aT (θT,n) and the I × 1 vector aR(θR,n) are the array steering vectors for the transmitter
and receiver, respectively.

The model in (3.16) imposes a nonlinear dependence on the number of parameters. Howe-
ver, it can be approximated using the virtual channel representation proposed in [48]. Adopting a
uniform sampling in each dimension, the angle-delay grid has a resolution (∆θR,∆θT ,∆τ) =
(1/I, 1/J, 1/W ), yields [43]

G(f) ≈
I∑
i=1

J∑
j=1

M∑
m=1
Hv(i, j,m)

aR
(
i− 1
I

)
aHT

(
j − 1
J

)
×

e−2π
m−1
W

f , (3.17)

with

Hv(i, j,m) ≈
∑

n ∈ SR,i∩ST,j∩Sτ,m∩Sv,d
βn

×fI(i/I − θR,n)f ∗J (j/J − θT,n)

×sinc(m−Wτn), (3.18)

where Hv(i, j,m) denotes the (i, j,m)-th element of the tensor Hv ∈ CI×J×M . Note that the
region H = {(θT,n, θR,n, τn) ∈ R3 ∀ n ∈ {1, . . . , Np}} is sampled into discrete values (i, j,m).
Therefore, each tensor element describes an angle-delay bin ∆θR × ∆θT × ∆τ . The
variable W defines the one-sided bandwidth of the transmitted signal, T is the symbol duration,
fα(γ) = 1

α

∑α−1
i=0 e

−j2πiγ is the Dirichlet kernel and sinc(x) = e−jπx sin(πx)/(π2x) is the sinc
kernel [43]. The sets over which the summation in (3.18) is defined are given by

SR,i = {n : θR,n ∈ (i/I −∆θR/2, i/I + ∆θR/2]}

ST,j = {n : θT,n ∈ (j/J −∆θT/2, j/J + ∆θT/2]}

Sτ,m = {n : τn ∈ (m/W −∆τ/2,m/W + τ/2]}.
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Comparing (3.17) and (3.6) and using the n-mode formulation presented in Section 3.2
(see Eq. (3.4)), the transfer function G(f) can be recast as a tensor, which is decomposable as

G ≈ Hv ×1 AR ×2 AT ×3 Wdelay, (3.19)

where gijl = [G(lW )]ij is its element, and

AR =
[
aR (0) aR

(1
I

)
. . . aR

(
I − 1
I

)]
,

AT =
[
aT (0) aT

( 1
J

)
. . . aT

(
J − 1
J

)]
.

From (3.18) and (3.19), we can note that the first expression shows the sampling of the multipath
environment in the angle-delay domain, while the latter one provides a low-rank approximation
of the channel tensor G. Note that due to the fixed sampling of the angle-delay-Doppler grid, the
virtual channel representation is completely characterized by the virtual channel index unlike the
Weichselberger’s model. Therefore, the number of parameters to be estimated in this model is
much less than that of the virtual channel model [43, 48].

3.3.1 Channel Compression Discussion

The upper-bound on the degree of freedom (DoF) of the fourth-order virtual channel
tensorHv is given by

P = IJM, (3.20)

which corresponds the maximum number of resolvable bins of the virtual channel tensor. Most
of the actual propagation channels are not characterized by a “full” tensor Hv and the virtual
channel is likely to be sparse [44–46]. In this case, the channel capacity is not dictated by P , but
instead by the number of coefficients p = |(i, j, l) : |hv

i,j,m| > ε|, where |.| means the cardinality.

Some works have already analyzed the structure ofHv, such as [43]. Therein, the authors
propose the use of a cluster-based sparse representation of physical wireless channels. Along the
same lines, we can say that the smaller ∆θR, ∆θI , and ∆τ are, the more resolution the virtual
channel tensorHv has. Consequently, multipath channels tend to have far fewer than P dominant
virtual channel coefficients, which means thatHv is sparse. For convenience, in the following
we provide the definition of a sparse channel given in [43].

Definition 6 Let Hp = {(i, j, l) : |hv
i,j,m| > ε}, ∀ ε > 0, be the set of dominant virtual channel

coefficients of channelH. A channel is said to be effectively sparse if its DoF p is smaller than

P (defined in Eq. (3.20)), where p = |Hp| is the cardinality of Hp. Furthermore, we say that the

channel is exactly sparse if the same holds for ε = 0.

Let us now recast the P coefficients ofHv in a decreasing magnitude order |ho(1)|, |ho(2)|,
. . ., |ho(P )|, where the p-th term is given by

|ho(p)| < Cp−1/s, (3.21)
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with C > 0 and s ≤ 1. Channels that follow (3.21) are called s-compressible.

3.4 Proposed Channel Estimator

Let us consider a BS employing J transmit antennas and a UE using I receive antennas,
with I << J . The BS antennas transmit independent pilot sequences, which are repeated across
L subcarriers using multicarrier modulation, where

xn = [x0,n x2,n . . . xJ−1,n]T ∈ CJ×1, (3.22)

where xj,n is the pilot symbol transmitted by the jth antenna during the nth discrete-time instant.
After multicarrier demodulation at the UE, each data block is converted back to the frequency
domain yielding

yl,n = [y0,l,n y2,l,n . . . yI−1,l,n]T ∈ CI×1, (3.23)

where yi,l,n is the signal associated with the ith receive antenna, lth subcarrier, and nth discrete-
time instant. The input-output relation in the frequency domain is given as

yl,n = Gl,nxn + zl,n (3.24)

where Gl,n is the I × J time-frequency “slice” of the channel tensor whose definition is given by
(3.19), and zl,n is the zero mean Gaussian noise vector with variance N0/2, associated with the
(l, n) time-frequency resource. In the following developments, consider only the useful signal
part of the model (3.24)(i.e. without the noise term), for the sake of simplicity. Stacking {yl,n}, l
∈ {0, 1 . . . L− 1}, yields

yn =


ỹ0,n

ỹ1,n

. . .

ỹL−1,n

 =


G0,n

G1,n

. . .

GL−1,n

xn ∈ CIL×1, (3.25)

where ỹn is the equivalent received signal vector without noise. After collecting the samples of
the received signal vector along the frequency domain, the data is concatenated along the time
domain, yielding the following data matrix:

Ỹ = [ỹ0, . . . ỹN−1]

= [(G0x0) , . . . (GN−1xN−1)] ∈ CIL×N , (3.26)

where
Gn =

[
(G0,n)T (G1,n)T . . . (GL−1,n)T

]T
∈ CIL×J ,

and n = 0, 1, . . . , N − 1. The matrix Ỹ represents a set of training symbols collected after N
discrete time instants in L subcarriers. The total number of communication resources used is
NL.
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Assume that during the whole observation window of N symbol periods, the channel
remains constant. This implies that G0 = G1 = G2 = . . . = GN = G and means that the
matrix Ỹ can be expressed as

Ỹ = GX =


G0,0

G1,0

. . .

GL−1,0

X ∈ CIL×N , (3.27)

which can be interpreted as the 2-mode product between the received signal tensor and the pilot
symbol matrix, as follows

Ỹ ≈ G ×2 X. (3.28)

Note that the tensor G is a concatenation of L spatial-frequency channel responses. They
are allocated for pilot transmission whereas another set of subcarriers carry data. Because the
receiver has no knowledge of the channel yet, it needs to estimate the CSI collecting the training
signal from the subcarriers allocated for pilot transmission. After estimating the channel, the
receiver performs an interpolation to obtain the complete channel response. Thus, the optimal
strategy in the frequency selective channel consists of exploiting the pilot placement to obtain
the whole channel frequency response.

Using the tensor formalism, the pilot placement is implemented as a 3-mode product.
The matrix in the third dimension is a L×D matrix F over the complete tensor channel G̃ ∈
CI×J×D . This tensor represents the spatial frequency channel response with respect to all the D
subcarriers . Formally, this is represented as

G = G̃ ×3 F.

Thus, the training signal is
Ỹ = G̃ ×2 X×3 F. (3.29)

Note that the tensor G̃ is compressed across two dimensions: the spatial and the frequency. This
is because of the lack of measurements imposed in both dimensions. In the spatial domain,
the length of the training sequence is N << J ; and in the frequency domain, the number of
subcarriers is L << D.

It is possible to perform a compression in the first dimension as well. Recently, we have
seen a type of beamforming called HB [12, 46]. Different from the full digital beamforming,
the number of RF chains is less than the number of antennas. In this context, the number of
measurements in the spatial domain reduces. In this context, the M × I matrix Q represents
the HB matrix that is applied over the first (spatial) dimension of the tensor G̃. We express the
received pilot signal after receive beamforming as

Ỹc ≈ G ×1 Q×2 X×3 F.
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By adding the noise term, we get:

Yc ≈ G ×1 Q×2 XT
0 ×3 F + Z̃, (3.30)

where Z = Z̃ ×1 Q and Z̃ ∈ CI×N×L is the noise tensor. Substituting (3.19) into (3.30), we get:

Yc ≈ Hv ×1 (QAR)×2 (X0AT)×3 (FWdelay) + Z. (3.31)

This decomposition expresses the received signal tensor as a third-order tensor decomposed in
terms of the virtual channel tensor Hv jointly capturing the sparse angle-delay (or the space-
frequency) profile of the channel. By analogy with (3.7), the received signal is a third-order
(Tucker3) tensor, and the correspondence is:[

X ,A,B,C,
]
←→[

Hv, (QAR), (XT
0 AT), (FWdelay)

]
. (3.32)

3.4.1 Channel estimation via sparse vector representation

Based on the formulation presented in this section, one solution for estimatingHv consist
of vectorizing the tensor Y and then applying a CS estimator. For instance, it is possible to apply
the well-known OMP alogrithm to extract the vectorized version of theHv.

From tensor Y , it is possible to achieve three different vector representations. This is
because there are three different dimensions that can be used as a reference to stack the entries
of Y . We unfold the tensor (3.31) along the 2-mode, which can be done according to Eq. (3.9),
with the analogies (3.32) in mind. It follows that

Y(2) = [(FWdelay)⊗ (QAR)]Hv
(2)(AT

T X0) + Z(2).

Now, by applying the vec(·) operator on both sides of (3.33) yields:

y(2) =
[
(XT

0 AT)⊗ (FWdelay)⊗ (QAR)]hv
(2) + z(2), (3.33)

where hv
(2) = vec{Hv

(2)}, yc;(2) = vec{Yc;(2)}, z(2) = vec{Z}. Due to the Kronecker product
structure of the vectorized channel model (3.33), the sparse channel vector hv

(2) can be estimated
by applying the Kronecker compressed sensing framework of [54]. In this case, (3.33) can be
rewritten as

y(2) = ΨΦhv
(2) + z(2), (3.34)

where

Ψ .= XT
0 ⊗ F⊗Q,∈ CNLM×JDI , (3.35)

Φ .= AT ⊗Wdelay ⊗AR ∈ CJDI×JLI . (3.36)

The above formulation corresponds to a CS reconstruction model introduced in Section 3.2.2.
Note that, in this model, the measurement matrix Ψ is constructed by the known pilot sequence
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matrix X0 using the knowledge of the frequency bins allocated to these pilots. The required
number of measurements depends on two parameters: the first is the pilot sequence length, which
is assumed to be much shorter than the number of transmit antennas, i.e. N < J . The second
is the number of frequency bins allocated to the pilots. The dictionary matrix is given by the
compound (Kronecker) basis, herein assumed to be generated by DFT matrices.

To evaluate uniqueness of the sparse representation (3.34), we apply (3.15) to the corres-
ponding basis and measurement matrices defined in (3.35) and (3.36), respectively. Uniqueness
is achieved if

||g(2)||0 ≤ 1 + 1
µ(ΦΨ)

≤ 1 + 1
µ(XT

0 AT )µ(FWdelay)µ(QAR) .

Since (3.37) is a product of three mutual coherence measures, the global coherence can achieve
lower values whenever the channel admits a sparse multidimensional structure, as it is the case in
this work. For instance, when XT

0 , F, and Q are designed in such way that their columns are taken
randomly from orthonormal matrices of compatible dimensions, the fundamental result of [35]
implies 1/

√
N ≤ µ(XT

0 AT ) ≤ 1, 1/
√
L ≤ µ(FWdelay) ≤ 1, and 1/

√
A ≤ µ(QAR) ≤ 1.

The problem (3.34) can be solved by means of linear programming [55] or using second
order cone programs [56]. Note, however, that working on the vectorized model (3.34) may
result in a higher computational complexity due to the higher dimensionality of the equivalent
channel vector hv

(2). If the channel tensor is frequency-selective, its sparse vector representation
is of length IJD. In the massive MIMO case, where the dimension J is large the complexity of
the equivalent (vectorized) channel estimation algorithm may be an issue, since the size of global
dictionary scales exponentially with the number of channel dimensions. In the next section,
we present an alternative lower-complexity solution that capitalizes on the tensor-based model
developed in the previous sections by solving smaller (per dimension) sparse recovery problems.

3.4.2 Kronecker-Basis Channel Estimation Using Tensor Unfolding

Although the conventional OMP algorithm (or a variant of it) has been widely used in
the literature, it was designed for recovering sparse vectors (i.e. 1D signals). For recovering
a higher-order tensor, which is the case of interest, the use of OMP algorithm directly to a
vectorized form of the tensor can potentially yield serious problems in terms of memory usage
and processing. The high number and complexity of the operations involved, including inversion
of very big matrices calls for a more efficient way to circumvent these shortcomings. One way is
to avoid the channel vectorization step and explicitly operate on each dimension of the channel
tensor by exploiting its multidimesional structure.

Kronecker-OMP algorithm uses the tensor modes Υ1 = QAR, Υ2 = XAT, and Υ3 =
FWdelay by exploiting the three unfolding forms of tensor Y defined in (3.31). The relationship
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between the channelHv and Y is established by the algorithm using the unfolding definitions in
(3.8), (3.9) and (3.9). From that, we obtain

Y(1) = Υ1Hv
(1) [Υ2 ⊗Υ3]T , (3.37)

Y(2) = Υ2Hv
(2) [Υ3 ⊗Υ1]T , (3.38)

Y(3) = Υ3Hv
(3) [Υ1 ⊗Υ2]T . (3.39)

Without losing the generality, let us take the mode-3 representation and vectorize the matrix Y(3)

as shown in
y(3) = (Υ1 ⊗Υ2 ⊗Υ3) hv

(3), (3.40)

where hv

(3) is the vectorized version obtained from the matrix Hv
(3). The problem (3.40) is an

undetermined linear system which means that the number of equations is less than the number
of variables (NML < IJD). In such a case, we cannot use the LS solution to obtain hv

(3),
but we can formulate it as a new problem taking into account the fact that Hv

(3) is sparse.
This helps us because some of the variables are zero and, consequently, some columns of
Υ = (Υ1 ⊗Υ2 ⊗Υ3) can be removed from the formulation.

To find the strongest entries ofHv [22],the greedy algorithm computes the optimization
problem defined at the kth iteration

[i(k)
1 , i

(k)
2 , i

(k)
3 ] = arg max

i
(k)
1 ,i

(k)
2 ,i

(k)
3

||R(k−1) ×1 ΥH
1 (i1)×2 ΥH

2 (i2)

×3ΥH
3 (i3)||2F , (3.41)

whereR(k−1) is a residual tensor at the (k− 1)th iteration, Υ1(i1), Υ2(i2), and Υ3(i3) are the i1,
i2 and i3 columns of Υ1, Υ2 and Υ3, respectively. The residual tensor is updated by removing
the components obtained in (3.41) from the original tensor Y . The algorithm performs this task
by means of one of its unfolding representations. To keep the consistence in our analysis let us
choose the mode-3 as we did before. The (i(k)

1 , i
(k)
2 , i

(k)
3 )th sparse entry is calculated as

ĥv
i
(k)
1 ,i

(k)
2 ,i

(k)
3

=
(
ΥH

1 (i1) �ΥH
2 (i2) �ΥH

3 (i3)
)

r(k)
(3), (3.42)

where � is the Katri-Rao product [22] and ĥv
i
(k)
1 ,i

(k)
2 ,i

(k)
3

is a scalar. Using (3.42) the algorithm tests

all the possible combinations of (i(k)
1 , i

(k)
2 , i

(k)
3 ) and chooses the strongest one at kth iteration. An

estimate of the sparse tensor using the components obtained until iteration k is expressed as

ĥ(k)
(3) =

(
Υ(k)

1 �Υ(k)
2 �Υ(k)

3

)†
y(3), (3.43)

where Υ(k)
1 , Υ(k)

2 , and Υ(k)
3 are the subset of k columns from their original Υ1, Υ2, and Υ3; and

ĥ(k) is the estimated sparse channel after k iterations. Note that the pseudoinverse is valid if
k ≤MNL. Otherwise, the system becomes undetermined as in (3.40).
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Tabela 1 – Summary of the Kronecker-OMP algorithm.

Require: Received signal tensor Y and
{Υi}, i = 1, 2, 3, 4
I = {}

Step 1 Set the residual tensorR = Z
Step 2 At the k-th iteration, solve Eq. (3.41) by looking for the possible

combinations of [i(k)
1 , i

(k)
2 , i

(k)
3 ] using (3.42)

Step 3 Calculate Ŷ by solving Eq. (3.43)
Step 4 Update the residual tensor using Eq. (3.44)
Step 5 If ||R||2F < ε, then stop.

Otherwise, repeat step 2 for k = k + 1.

Using ĥ(k)
(3) , the k components are removed from y(3) as shown in

r(k)
(3) = y−

(
Υ(k)

1 �Υ(k)
2 �Υ(k)

3

)
ĥ(k)

(3), (3.44)

This process is repeated until ||R||2F < ε is satisfied, where ε defines a given threshold. Table ??
shows a summary of the algorithm.

3.5 Proposed Tensor-OMP

The algorithm described in ?? improves the memory usage of the classical OMP, but the
method still faces problems when the sparse tensor grows large. Even using the Kronecker-OMP,
the solution of (3.41) still involves an exhaustive search. For instance, in massive MIMO, the
dimension connected with the number of antennas tends to be very large which creates many
possible entries in Hv and, consequently, more processing capacity is needed in the receiver.
However, the mobile unit has limited processing capacity which poses difficulties to exploit the
tensor modelling in the downlink channel scenario. In what follows, we propose an algorithm to
enjoy the Tucker3 decomposition and meet limited-processing receiver requirements.

To understand the proposed method, let us consider again only the portion of the signal
that represents the pilots and recall the 1-mode representation of the tensor Y which is

Y(1) = Υ1Hv
1 [Υ2 ⊗Υ3]T

.= Υ1H̃v
1, (3.45)

In (3.45), the matrix H̃v
1 can be viewed as a collection of sparse vectors that are represented by

the same Φ1 and Ψ1, and they define Υ1 = Ψ1Φ1. Thus, Y(1) is a collection of measurements
obtained in the 1-mode and the algorithm is interested to know which component is the strongest
one of that dimension. To obtain it, we need to solve the problem

i′1 = arg max
i1

JL∑
j=1
| [Υ1(i1)]H Y(1)(j)|2, (3.46)
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where Υ1(i1) and Y(1)(j) are the i1th and jth columns of Υ1 and Y(1), respectively.

The solution of (3.46) is used to discard other components that are not described by i′1 in
the first mode. To do such an operation, we apply the vector Υ∗1(i′1) over the 1-mode dimension.
This gives a 2-mode unfolding that is expressed as

Ỹ(3) = Υ2Hv
2 (Υ3 ⊗Υ1)T (I⊗Υ∗1(i′1))

.= Υ2Hv
2

(
Υ3 ⊗ [Υ1(i′1)]H Υ1

)T
.= Υ2H̃v

2. (3.47)

The resulting vector [Υ∗1(i′1)]H Υ1 fixes the 1-mode in i1 and cuts off any other 3D component
for which i1 6= i′1 resulting in (I − 1)L less components. After this, the algorithm uses the same
metric as in (3.46), and the problem can be expressed in 2-mode as

i′2 = arg max
i2

L∑
j=1
| [Υ2(i2)]H Ỹ(2)(j)|2. (3.48)

Using i′1 and i′2, we can remove any 3D components for which i1 6= i′1 and i2 6= i′2. Thus,
the third unfolding is expressed as

ỹ(3) = Υ3Hv
3 (Υ1 ⊗Υ2)T (Υ∗1(i′1)⊗Υ∗2(i′2))

.= Υ3Hv
3

(
[Υ1(i′1)]H Υ1 ⊗ [Υ2(i′2)]H Υ2

)T
.= Υ3h̃v

3. (3.49)

Finally, the 3-mode reduces to finding the strongest component for the vector case. Note that,
doing local decisions after estimating separately i′1, i′2, and i′3, we avoid the exhaustive search per-
formed by OMP and Kronecker-OMP. This dramatically reduces the computational complexity
of the algorithm. The summary of the algorithm is stated in Table (??).

3.6 Numerical Results

This section shows the performance of the proposed tensor-OMP algorithm. The number
of antennas at the BS is NT = 128, the number of antennas at the UE is NR = 2, the system has
a total number of subcarriers is D = 68 and the spacing among them is 15kHz. The channel is
implemented by assuming Np = 9 multipaths and the power delay profile is the one shown in
Fig. 3.3. The channel is implemented using Eq. (3.16).

The trilinear basis Φ defined in (3.36) follows a 3D-Fourier one. The measurement
matrix X0 is randomly drawn from a Bernoulli distribution; the matrix Q is assumed to be an
identity; and the matrix F defines a pilot placement with subcarriers regularly spaced, this means
that the measurement matrix is obtained from subset of an identity one ID×D.

In Fig. 3.4, the pilots are placed at every two subcarriers, thus the total number of pilot
subcarriers is L = 34. It can observed, the method accurately estimates the frequency response
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Tabela 2 – Summary of the modified Kronecker-OMP algorithm.

Require: Received signal tensor Y and
{Υi}, i = 1, 2, 3, 4
I = {}

Step 1 Set the residual tensorR = Z
Step 2 Solve

i′1 = arg maxi1
∑JL
j=1 | [Υ1(i1)]H Y(1)(j)|2,

i′2 = arg maxi2
∑L
j=1 | [Υ2(i2)]H Ỹ(2)(j)|2,

i′3 = arg maxi3 | [Υ2(i3)]H ỹ(3)|2,
where
Y(1) = Υ1Hv

1 (Υ2 ⊗Υ3)T

Ỹ(2) = Υ2Hv
2

(
Υ3 ⊗ [Υ1(i′1)]H Υ1

)T
ỹ(3) = Υ3Hv

3

(
[Υ1(i′1)]H Υ1 ⊗ [Υ2(i′2)]H Υ2

)T
Step 3 Calculate Ŷ by solving Eq. (3.43)
Step 4 Update the residual tensor using Eq. (3.44)
Step 5 If ||R||2F < ε, then stop.

Otherwise, repeat step 2 for k = k + 1.

Figura 3.3 – Power delay profile considered to create a wideband channel.
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of the channel. However, as the number of pilot subcarriers is reduced, the estimator tends to
lose performance as shown in Fig. 3.5. In such a simulation, the pilots are placed at every 6
subcarriers, which correspond to L = 11 pilot subcarriers. The estimator has less measurements
which lead to reducing the accuracy of the estimates.

The advantage of the proposed method is the flexibility of exploiting the time-frequency
frame by compensating the lack of pilot subcarrier with larger sequences and vice-versa. This
is possible thanks to the estimator that takes into account the joint sparsity of the channel. The
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Figura 3.4 – Channel estimation result with a pilot placement configuration that uses 34 regularly
spaced pilot subcarriers which carry sequences with N = 40.
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Figura 3.5 – Channel estimation result with a pilot placement configuration that uses 10 regularly
spaced pilot subcarriers which carry sequences with N = 40.
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Figura 3.6 – Channel estimator performance varying the number of subcarriers.
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Figura 3.7 – Channel estimator performance by varying the transmit power for some pilot place-
ment configurations.
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tensor model enables the receiver to exploit multiple dimensions and then inferring the sparse
tensor entries. The relationship between the multidimensional massive MIMO channel and its
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sparse representation is achieved due to the 3D Fourier basis. Using mode-1, mode-2, mode-3
unfolding forms, the algorithm obtains an estimate of the channel frequency response. Figure 3.6
shows the performance for various configurations of N and L.

Fig. 3.7 shows the estimator performance for some pilot placement configurations which
are defined by (N,L). The configuration (N = 20, L = 34) is the densest among the three
curves, thus the receiver has more measurements to processing which provides better accuracy in
the estimation. The more power is used, the less is the error. However, the variation of estimation
error with respect the total power show that there are little benefits in increasing power when the
system has denser pilot schemes. On the hand, using fewer pilot measurements, the estimation
error with respect the power tends to increase. In this case, there are benefits of inserting more
power for the pilots. Thus, there is a trade-off between overhead and power that the BS can
adjust according to the scenario. The BS can use denser pilot placements yet without vanishing
its communication resources with overhead.

It is important to highlight that the computational complexity becomes cumbersome
using the Kronecker-OMP described in Table ??. The simulations crash because of the memory
available on the machine. The steps 2 and 3 complexity limit the implementation of such a
method in devices with low computational complexity requirements.

Even though the estimator uses the 3D Fourier basis, other representations can also be
used. Once many channel estimations are performed, the UE can use them to adapt the trilinear
basis Φ. This potentially increases the channel sparsity and consequently enables to reduce the
number of pilots.

3.7 Conclusion

The tensor-OMP solution capitalizes on sparse multidimensional decomposition model
to estimate the channel. Using this formalism, the tensor-OMP algorithm can exploit the joint
sparsity between angle and delay domains. The plots show that the method provides reliable
channel estimation and that the power spending for pilot transmission can be reduced and
compensated with a correct choice of the pilot placement.

An important aspect that is not covered in this chapter is the optimization of the basis.
The Fourier basis assumes regularly spaced discrete directions and delays. This causes a power
leakage that reduces the sparsity in the tensor core [57]. One way of improving the sparsity is to
develop a method that updates the basis, i.e. solutions that can obtain the angles and delays of
the channel. In the next chapter, we deal with the problem of accurately estimating the departure
and arrival angles in the case of indoor mm-wave channels. This scenario has become a hot topic
over the last years because of its applications in wireless communication of the next generation.
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4 SPARSE CHANNEL ESTIMATION FOR MILLIMETER-WAVE MASSIVE MIMO
SYSTEMS

Abstract

In this chapter, we investigate the channel estimation problem for applications in mm-

wave communications. The pilot overhead is still the main issue to be handled. However, herein

there are two aspects taken into account: i) the mismatching between the sparse basis and the

multipath structure; ii) the losses due to user mobility. To correct the mismatching between the

sparse basis the multipath, the proposed method splits the estimation into two steps: first, the

algorithm performs a coarse estimation; then, a refinement process to align the basis with the

direction of arrival and departure is proposed. To correct the losses due to the user mobility, the

access node insert short sequences within the frame transmission to enable the user to correct

the estimated directions. It is shown in the results that the proposed sparse channel estimation

method provides quasi-optimum performance in terms of throughput.

4.1 Introduction

The ever growing demand for higher data rates motivates researches in wireless com-
munication to develop new solutions to increase the spectral efficiency. One of the approaches
considered recently goes on the direction of using the unlicensed spectrum region of mm-wave
channels. Some standards have been proposed to operate around 60 GHz such as ECMA-37,
IEEE 802.15.3c and IEEE 802.11.ad [58], especially in future indoor communications. In this
band, there is a large chunk of available frequencies that can be used to drastically increase
system throughput capacity. However, there are limitations that need to be solved to achieve the
promised gain. One issue to be addressed is the limited cover area of the AN. The pathloss in
this band drastically limits the cell size. However, the recent literature in mm-wave communicati-
ons envisages a potential combination between massive MIMO and mm-wave transmission to
increase the cell size [10, 59].

Massive MIMO is considered as a key enabler of mm-wave future systems. With hun-
dreds of antennas at the AN, it is possible to create very narrow beams that can deal with the
severe signal attenuation. Moreover, at this frequency, it is possible to shrink the array size
into very small areas. However, the channel characterization differs from that used in cellular
communication systems [31].

In regard to the channel model, the electromagnetic wave in millimeter range has similar
behavior to the light, making ray-tracing model a very attractive solution to channel modeling.
Besides this, other effects can be observed such as the reduced diffraction and the substantial
losses presented at each reflection. This means that just a few rays compose the channel between
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the AN and UE. The poor scattering environment leads to a sparse representation in the angle
domain. This can be used to reduce the number of cell specific pilots [60] in the communication
system and to increase the spectral efficiency. The inherent channel sparsity is exploited in this
chapter by means of CS technique to achieve a reduction in the pilot overhead.

Different from Chapter ?? and 3, where the bases are fixed to DFT matrices, herein we
are interested in optimizing them. Otherwise stated, in previous chapters, the basis mismatch is
neglected, although this is a real issue because it causes a power leakage that affects the limits
the sparsity degree of the channel to be estimated. Another aspect that calls for a constant update
of the direction of arrival (DoA) and the direction of departure (DoD), it is the user mobility.
Because the channel between the AN and UE varies the set of beams must be corrected so that
the AN can continually serve the UE.

The problem of correcting the basis representation and channel tracking is addressed
in [57]. Therein, the authors consider a DL channel estimation, the system is operating on the 60
GHz band, and the AN has a large number of antennas. The solution proposed in this chapter
extends that work to multiple-antenna UEs and also for OFDM transmission.

The proposed technique consists of placing two types of pilot sequences. The first one is
longer and used by the UE to perform a two phase sparse channel estimation solution while the
second sequence is very short and comes in the middle of the transmission frame to be used in
the tracking procedure. The estimation process uses the longer sequences and works to acquire
the channel from “scratch”. The process is split into two steps: the first one coarsely estimates
the angles and the second one refines the estimated angles. The shorter sequences are used to
estimate the angle variations based on latest information of the channel. After acquiring the angle
variations, the UE reports them to the AN, which can perform the antenna beam control [61].

The evaluation of the channel estimation and compressive beamtracking are based on
the downlink system throughput considering a single-user scenario. Our evaluations consider
different precoding schemes and receiver algorithms. Basically, three precoders are implemented:
a wideband precoder (WP), a phase-constrained wideband precoder (PCWP) and a frequency
dependent precoder (FP). The first one is a vector of weights which is equal for all subcarriers.
The second one also assumes the same beamforming weights for all subcarriers, but consider
finite-resolution phase-shifters, where the phase adjustment of the beamformer is discrete and
chosen from a codebook of four elements. The third one is designed from the singular value
decomposition (SVD) of the channel matrix for each subcarrier, resulting in as many SVDs as
the number of used subcarriers.

4.2 Milimeter Wave Channel Characterization and Motivation

The mm-wave band holds to the frequencies between 30-300 GHz, which means a
wavelength in the range of 1-10 mm. The use of such frequencies is expected to increase in the
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next generation of wireless technologies. This is because the number of applications and users
using the licensed frequencies are growing fast, and the spectrum shortage is becoming an issue.
A promising way to avoid such an issue consists of utilizing the mm-wave band that typically
has not been used by consumer applications.

To propose a new technology that meets that ever growing data rate demands, we need to
understand the channel characterization in the mm-wave band. An important difference between
mm-wave and other systems that operate at lower frequencies is that the radio waves experience
greater attenuation in higher frequencies. The coverage is thus affected by strong pathloss, a
higher penetration loss and strong diffraction loss. These effects confine the applications that
use this band of frequencies to very short communication ranges, such as a single room. The
advantage of this feature is the cell isolation that the channel itself naturally provides, this allows
systems with higher frequency re-use factor [62, 63].

Another interesting aspect is the possibility of housing multiple antennas into a very
small area. Since the antenna size is related to the wavelength of the frequency carrier, the
separation among the antenna radiators and their size become smaller as the wavelength becomes
short. With this possibility, many applications envisaged in the next generation of wireless
communication assume massive MIMO transmitters to circumvent the coverage limitations. The
large number of antennas indeed provides enhanced array directive which makes possible the
transmitted signal reaches farther distances.

Every channel model in wireless communication has a trade-off between accuracy and
simplicity. The model must capture the aspects that are important without being complex, so
that the model is easy to implement. Aspects such as frequency, bandwidth and propagation
environments play an important role the on channel characterization. There are two types of
channel model: stochastic and deterministic. Stochastic models aim to reproduce the statistical
behavior of the channel. Deterministic models are more site-specific, which means that they are
better suited for those cases to a specific environment.

There are many types of deterministic models, but we only focus on the use of a ray-
tracing model. In this model, each multipath is represented as a geometric-ray. This model is a
very interesting tool to represent the quasi-optical nature of the eletromagnectic-wave [31]. The
time-domain massive MIMO channel matrix is

H(τ) = Hray−tracing(τ) + ρHfading(τ), (4.1)

where, Hray−tracing(τ) is the non-fading component generated by the ray-tracing model including
the line-of-sight (LOS) ray and reflected rays, Hfading(τ) is the normalized fading component
generated by the sum of multiple random rays coming from a number of predefined point scatters
in random directions while ρ is a pre-defined parameter which assigns the power ratio between
Hraytracing(τ) and Hfading(τ). A more detail description about the channel model can be found
in [64].
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It is important to highlight that, although the channel model from [64] has been used
in simulations in the 60 GHz band, there are two specific points not implemented yet on the
simulator. First, according to the experimental measurements discussed in [62, 63] for each
reflected path there are several other closely spaced rays in the time-angular domain due to the
fine irregular structure. Second, the power loss due to the polarization mismatch between the
antennas and the channel can be as high as 10dB-20dB [62, 63]. These two considerations are
envisaged for future investigations.

4.3 System Model

Consider an indoor environment with an AN deployed with Nt antennas and a UE with
Nr antennas. At each link end a rectangular array of multiple antennas is considered. We assume
that the AN and the UE are perfectly synchronized and operate according to an FDD protocol.
This means that a cell search procedure was performed resulting in a frequency and symbol
synchronization to a cell [60]. Given that the communication between the AN and the UE is
synchronized and assuming an OFDM modulation, the AN needs to acquire the channel to
design a beamforming and then serving the UE. The way to acquire this information is to place
some pilots in the OFDM symbols so that the UE can use these specific symbols to estimate the
channel. The received signal is the input of channel estimator that estimates the channel.

To propose the channel estimator, we first describe the received signal model associated
with the k-th discrete time instant and l-th subcarrier at the UE as

yr(k, l) =
Np∑
n=1

βnvR(θR,n, φR,n)vHT (θT,n, φT,n)

s(k, l)e−2πτnl∆f + z(k, l), (4.2)

where k ∈ Stime and l ∈ Ssubcarrier, and their cardinality are K and L respectively. These sets
define the frequency and time indices chosen for the transmission of the pilot symbols. The
variable Np denotes the number of paths, βn is a complex factor with Gaussian distribution along
the n-th ray, φR,n and θR,n are respectively the azimuth and the inclination of the incoming rays
relative to x − y plane. φT,n and θT,n denote, respectively, the azimuth and inclination of the
rays at the transmitter. The parameter τn ∈ [0, τmax] defines the delay related to the n-th path,
Ts is the OFDM symbol period and ∆f is frequency distance between two adjacent subcarriers.
The Nt × 1 vector vT (θT,n) and the Nr × 1 vector vR(θR,n) are the array steering vectors for
the transmitter and receiver, respectively. The vector s(k, l) contains the pilot symbols used at
the k-th time instant and l-th subcarrier. Finally, the term z(k, l) represents the additive noise
whose entries are independent and follow a zero mean complex-valued Gaussian distribution
with variance σ2 [27].

A given element of the steering vectors describe the phase response to a planar wave in
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the azimuth θ and elevation φ. The ith element of the steering vector v is given by

[v]i = e(ωxxi+ωyyi), (4.3)

where ωx = 2πd
λ

cos (θ) cos (φ), and ωy = 2πd
λ

cos (θ) sin (φ), with xi and yi defining the spatial
position of the i-th antenna element on the plane x − y. In this chapter, we call ωx and ωy as
spatial frequencies and their units are radians/mm.

4.4 Channel Estimation

The channel estimation process starts with the receiver probing the channel in a set
of pre-defined pairs spatial frequencies, (ωpR,x, ω

p
R,y) ∈ D, ∀ p ∈ {1, 2, . . . , P}. The set D has

cardinality |D| = P and the index p identifies the p-th pair of the set D. Each pair defines one
direction, where the receiver measures the associated energy. For the pth spatial frequency pair,
there are KL measurements taken on the time-frequency grid given by:

rp(k, l) = wH
p yr(k, l), p = 1, . . . , P, (4.4)

where rp(k, l) is the received signal measured on the p-th direction, k-th time instant and l-th
subcarrier and wp ∈ W is the combining vector associated with the p-th direction, |W| = P . By
inserting (4.2) into (4.4), we can rewrite rp(k, l) as:

rp(k, l) = sT (k, l)V∗TFpb(l) + z̃p(k, l), (4.5)

where VT = [vT (θT,1, φT,1), . . . , vT (θT,Np , φT,Np)], Fp is a diagonal matrix whose n-th di-
agonal element is given by [Fp]n,n = wH

p vR(θR,n, φR,n), i.e. they account for the correlation

between spatial filter and the incoming rays, b(l) =
[
β1e
−2πτ1l∆f , . . . , βNpe

−2πτNp l∆f
]T
, and

z̃p(k, l) = wH
p z(k, l). Defining the K × 1 vector xp(l) = [rp(0, l), . . . , rp(K − 1, l)]T concate-

nating K time-domain measurements leads to

xp(l) = STl V∗TFpb(l) + z̃p(l), (4.6)

where Sl = [s(0, l), s(1, l), . . . , s(K − 1, l)] is the Nt × K pilot matrix, and z̃p(l) =
[z̃p(0, l), . . . , z̃p(K − 1, l)]T .

The estimation accuracy of b(l) depends on the number of measurements acquired by
the receiver. Such a number is very important to be analyzed because in massive MIMO the
number of downlink pilots tends be prohibitive. To avoid the loss in spectral efficiency due to the
overhead, it is important to exploit additional information on the channel structure that enables
us to develop channel estimators capable of estimating with less overhead.

The authors in [31] show in their measurements that mm-wave channels are sparse in
the angular domain. This is because the propagation mechanisms of reflection and diffraction
produce severe attenuation on the signal. This reduces not only the coverage area, but also affects
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the channel richness. Therefore, it is reasonable to consider that the number of multipaths Np is
much smaller than the number of transmit antennas. Under this assumption, the receiver aims to
estimate only those Np entries of b(l) instead of the NrNT >> Np entries of the full massive
MIMO channel matrix. This approach reduces the number of parameters to be estimated which
means that the transmitter can use less pilot symbols (i.e. shorter pilot sequences). This is a very
attractive solution for massive MIMO because it potentially reduces the system overhead.

To have a better intuition on how to exploit the sparsity, consider a hypothetical case
where the receiver knows the arrival angles of the incoming paths and designs a receive beam-
forming vector wp pointing towards the direction of the strongest path. Beside this, consider
also that the spatial frequencies seen by the transmitter are integer multiples of 2π/Nt, i.e. ωT,x,
ωT,y ∈ {0, 2π

Nt
, . . . , (Nt−1)2π

Nt
}. This assumption implies that VT is a 2-D DFT and a sparse

basis for the channel. Using this information, the BS can exploit such a sparse representation
and recover Fpb(l) from (4.6) with high probability [27].

Even though the example gives us an insight on how to exploit the channel structure, the
above assumptions are not realistic. Some of them do not hold in reality. For instance the use of
the DFT matrix to obtain the sparsity is true only if the paths were regularly spaced. In reality,
the use such a basis may cause power leakage because the spatial frequencies come from the
continuum space representation, and it is unlike they are integer multiples of 2π

Nt
. Despite these

observations, we could ignore them and apply compressive sensing algorithms by assuming that
the spatial frequencies are integer multiples of 2π

Nt
. However, the power leakage among the spatial

frequencies limits the CS performance, because it reduces the sparsity level.

4.4.1 Compressive Estimation

In this section, the algorithm to estimate spatial frequencies is stated. The proposed
solution is obtained by exploiting the sparse structure of the channel. The approach used in this
solution has mainly two stages: first, there is a uniform quantization of the spatial frequencies
on each side of the transmission link, creating a 2-D spatial frequency grid for the transmitter
and other for the receiver, where ωR,x, ωR,y, ωT,x, ωT,y ∈ [0, 2π]. The algorithm searches for the
best combination (ωR,x, ωR,y, ωT,x, ωT,y) which characterizes the first procedure that is called as
coarse estimation. After this, there is a refinement step that adjusts the coarse estimates of the
spatial frequencies.

The coarse estimation gives a preliminary information of where (ωR,x, ωR,y, ωT,x, ωT,y)
sits in the 4D space representation whereas the refinement procedure seeks to find the optimal
point (ωR,x, ωR,y, ωT,x, ωT,y) that precisely describes the rays. The procedure is performed
sequentially: i) coarse estimation and ii) the refinement. The method is applied per subcarrier,
and the outcomes of each estimation process are combined so that the receiver can identify the
dominant directions. The Fig. ?? shows the block diagram of the proposed scheme.
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Figura 4.1 – Proposed channel estimation to identify strongest multipaths using multiple subcar-
riers.
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4.4.2 Coarse Estimation

In reality, the receiver does not know neither the directions of the paths nor the number
of paths. Additionally, the real spatial frequencies that synthesize the beamforming vector wp

and the array response matrix VT in Eqs. (4.4) and (4.6) respectively, are also not known
at the receiver. Therefore, as a starting point, the estimator creates a set of discrete spatial
frequencies for both sides of the link and for each x, y axis, i.e. ωR,x, ωR,y, ωT,x, ωT,y ∈
{0, 2π

P
, . . . , (P−1)2π

P
}, where P > max(NT , NR) [65]. The receiver collects the received

signal and process the signal to find the most relevant directions. The search for the strongest
rays is performed according to the expression

wo = arg max
p

∑
l

∑
k

|wH
p yr(k, l)|2, wp ∈ W . (4.7)

The vector wp is generated according to the discrete spatial frequencies ω(p)
R,x and ω(p)

R,y as shown
below

[wp]i = 1√
Nr

e(ω
(p)
R,xxi+ω

(p)
R,yyi), i = {1, . . . , NR}, (4.8)

where xi and yi are the coordinates of the ith antenna element at the receive array.

Based on wo from (4.7), the incoming signal along the strongest path during K consecu-
tive time instants is given by:

ybeam(l) = [wH
o yr(0, l), . . . , wH

o yr(K − 1, l)]T

= STl V∗D,T F̃ob̃(l) + z̃o(l), (4.9)

where VD,T is a Nt × P matrix with each column describing the array response for a possible
combination of ω(p)

T,x and ω(p)
T,y, b̃(l) = [β̃1e

−2πτ1l∆f , . . . , β̃P e
−2πτP l∆f ]T , and β̃1, . . . , β̃P are
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independent random variables following a zero-mean unitary-variance Gaussian distribution.
The matrix F̃o is a P × P diagonal matrix, with the mth diagonal element [F̃o]m,m = wH

o wm,
m = 1, . . . , P . We call attention to the difference between Eqs. (4.6) and (4.9). The first one is
based on the exact number of multipaths, therefore the dimensions of vector b(l) and matrix Fp

are functions of Np. The second one is based on the number P of predefined directions taken
from the 2-D continuum of spatial frequencies ωR,x and ωR,y.

The traditional LS estimation method imposes a minimum number of pilots K = O(Nt)
to be used. However, such a condition in a massive MIMO system results in huge overhead to the
system. It is known that a channel estimator based on CS circumvents this problem by exploiting
the sparse channel structure. The estimator enables more reduction of the pilot sequence length
as sparser as the channel is. From (4.9), more specifically in the matrix F̃o, the sparsity of the
channel is controlled by the inner product between wo and the other incoming rays. In mm-wave,
there is the possibility of packing more antennas at the receiver, which creates the possibility of
improving the spatial resolution. This induces sparsity in the vector F̃ob̃(l). If the receiver had a
single omnidirectional antenna, as in [65], F̃o would be the identity matrix and bfilt(l) = b̃(l).
This means that CS estimation performance would depend on the “natural” channel sparsity. In
the solution proposed in this work, the receiver uses its multiple antennas to spatially filter other
paths. This increases the degree of channel sparsity which makes CS estimation more attractive.

4.4.3 Combining Estimates from Multiples Subcarriers

The coarse estimation is performed per subcarrier as shown in Fig. ??. More specifically,
the receiver combines the estimates b̂filt(l) ∀l ∈ Ssubcarrier to assign the best direction. The
estimator then concatenates these estimates b̂filt(l) from every subcarrier into a matrix Bfilt. This
matrix is the input of a function f : CP×L → CP×L that generates the vector

bf = f(Bfilt). (4.10)

In this thesis, three functions are considered. The first one is

f(Bfilt) = 1/L
L∑
l=1

b̂filt(l), (4.11)

where, the estimation of bfilt(l) is obtained from average estimates of each pilot subcarrier. The
second function is:

f(bfilt) = 1/L
L∑
l=1
|b̂filt(l)|2 (4.12)

which takes into account the pointwise absolute value operation and add up all the estimates.
The third function is

f(Bfilt) = max
τ

1/L
L∑
l=1

b̂filt(l)e2πl∆fτ . (4.13)

Eq. (4.11) is the simplest way to combine the estimates. However, it does not consider
the phase shift caused by the delay. Thus, summing up complex values may is more suited to
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cause destructive interference due to this fixed phase. This means that (4.11) is mainly used for
low delay spread scenarios, where the phase rotation due to channel path delays is negligible.
The second function presented in Eq. (4.12) overcomes the phase incoherence problem by taking
into account the the average power of b̂filt(l) in L subcarriers. This method exploits the fact that
the Fourier transform does not change the power of the paths. This makes possible identify the
most relevant paths. A cumbersome situation for this approach would be in a low SNR scenario.
To handle this scenario, the channel delay must be taken into account. This situation is covered
in (4.13).

After combining the estimates from different subcarriers, we choose largest value bf
which is defined as

i∗ = max
i

[bf ]i. (4.14)

The value i∗ is associated with the i∗th direction at the transmitter (i.e. the i∗-th column of VT

), corresponding to the strongest path. Table 3 summarizes the coarse estimation step of the
proposed algorithm.

Tabela 3 – Coarse estimation

Step 1 Quantize the spatial frequencies components:
ωR,x, ωR,y, ωT,x, ωT,y ∈ {0, 2π

Rsamp
, . . . , (Rsamp−1)2π

Rsamp
},

where, Rsamp > Nt.
Step 2 Find ω̂R,x and ω̂R,y which give the strongest direction.

[w]i = 1√
Nt
e(ωR,xxi+ωR,yyi),

J = maxw{
∑L
l=1

∑K
k=1 |wHy(k, l)|2}

Step 3 Calculate the beam signal coming from the direction (ω̂R,x, ω̂R,y)
[w]i = 1√

Nr
e(ω̂R,xxi+ω̂R,yyi),

ybeam(l) = [wHy(0, l), wHy(1, l), . . . , wHy(K − 1, l)]
ybeam(l) = STl VT F̃ob̃(l) + z(l)

Step 4 Use OMP, described in Table 1, to estimate bfilt(l) = F̃ob̃(l)
b̂filt(l) = |bfilt(l)|1 + |ybeam(l)− STl VTbfilt(l)|2 < σ2

Step 5 Repeat steps 3 and 4 for l ∈ Psubcarrier
Bfilt = [b̂filt(1), . . . , b̂filt(L)]

Step 6 Use the function f : CP×L → CP×L to combine the b̂filt(l)
∀ l ∈ Psubcarrier.
bf = f(b̂filt(l))

Step 7 Choose the index of bf whose absolute value is the largest.
i∗ = arg maxi[bf ]i
i∗th column of VT is the strongest direction of the transmitter.

4.4.4 Refinement of the Estimates

After the coarse estimation step, an optimization is performed for adjusting the co-
arse estimate of the directions ωcoarseR,x and ωcoarseR,y . The achieved adjustment is based on the
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maximization of the received signal energy. The refinement problem can be stated as:

[ωref
R,x(l), ωref

R,y(l)] = arg max
(ωR,x,ωR,y) ∈ R2

J(ωR,x, ωR,y, l)

where

J(ωR,x, ωR,y, l) .=
K∑
k=1
|wH(ωR,x, ωR,y)y(k, l)|2, (4.15)

and w(ωR,x, ωR,y) is the steering vector associated with the pair (ωR,x, ωR,y), and each element
[w(ωR,x, ωR,y)]i follows the same formulation as in (4.8). The final estimates are given by

averaging over the L subcarriers, i.e. ωref
R,x = (1/L)

L∑
l=1

ωref
R,x(l), and ωref

R,y = (1/L)
L∑
l=1

ωref
R,y(l).

In practice, the adjustment of the spatial frequencies ωR,x and ωR,y is done through small
steps ∆. This can be done using the so-called “search region” algorithm, which basically consists
of evaluating, in a given iteration, the cost function (4.15) for a set of ∆-spaced points around
the one selected in the previous iteration. The method seeks for the largest value of this cost
function among the candidate points and selects the one leading to the maximum value. The
algorithm stops according to the desired granularity. Differently from the coarse estimation step,
the refinement step does not take into account the whole set of discrete directions initially defined
by the Fourier matrix. It takes one predefined direction, (ωcoarse

R,x , ωcoarse
R,y ), and searches for the best

pair (ωR,x, ωR,y) ∈ R2 that optimizes (4.15).

Since ωref
R,x and ωref

R,y have already been obtained, this information is then used to refine
the transmit spatial frequencies, which is based on the maximization of the following function:

[ωref
T,x(l), ωref

T,y(l)] = arg max
ωT,x,ωT,y

|vH(ωT,x, ωT,y)S∗l ybeam(l)|2, (4.16)

where (ωT,x, ωT,y) ∈ R2, v(ωT,x, ωT,y) follows the same formulation as in (4.8), except by the
index p and the number of antennas, denoted by NT instead of NR. As for the receive spatial
frequencies, the final estimates of ωref

T,x and ωref
T,y are obtained also by averaging over the L

subcarriers.

In principle, the refinement of receive and transmit spatial frequencies could be performed
jointly by updating the spatial frequencies at the transmitter and receiver in an iterative (ping-
pong) process. However, such an approach would imply a higher computational complexity. In
this work, we consider a low complexity approach, where this refinement is done separately, i.e.
in a decoupled fashion, at each link end. According to our results, good performance can be
obtained with this approach for LOS scenarios. Table 4 summarizes the procedure used in the
refinement of the transmit spatial frequencies. A similar procedure is used in the refinement of the
receive spatial frequencies, except that step 2 is not used and step 4 performs the maximization
defined in (4.7) as shown in Table 5.
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Tabela 4 – Refinement of the transmitter spatial frequencies

Step 1 From the coarse estimation, use the spatial frequencies at the transmitter,
ωcoarseT,x and ωcoarseT,y , as initial values:
ψ0,x = ωcoarseT,x and ψ0,y = ωcoarseT,y

step size: ∆
granularity adjustment constant : ε
[w]i(ωrefinedR,x , ωR,y) = 1√

Nr
e(ωR,xxi+ωR,yyi), i = {1, . . . , Nt}

Step 2 Calculate the beam signal coming from the direction (ωrefinedR,x , ωrefinedR,y )
ybeam(l) = [wH(ωrefinedR,x , ωR,y)y(0, l), . . . , wH(ωrefinedR,x , ωR,y)y(K − 1, l)]T

Step 3 Update ψt,x and ψt,y
ψ+∆,x = ψt,x + ∆
ψ−∆,x = ψt,x −∆
ψ+∆,y = ψt,y + ∆
ψ−∆,y = ψt,y −∆

Step 4 Assign the new spatial frequency
[ψx, ψy] = arg max(ψx,ψy) |vH(ψx, ψy)S∗l ybeam(l)|2, where,
[v]i(ψx, ψy) = 1√

Nt
e(ψxxi+ψyyi), i = {1, . . . , Nt}

ψx ∈ {ψ+∆,x, ψ−∆,x}
ψy ∈ {ψ+∆,y, ψ−∆,y}
[ψt,x, ψt,y] = arg max(ψx,ψy) J(ψx, ψy)

Step 5 If [ψt,x, ψt,y] = [ψt−1,x, ψt−1,y]
do ∆ = ∆− ε and go back to step 2.
Otherwise, go forward.

Step 6 If the number of iterations t < To, set t = t+ 1 and go back to Step 3, otherwise
ωrefinedR,x = ψt,x
ωrefinedR,y = ψt,y

4.4.5 Channel Tracking

The beams produced by the large array are quite narrow which increases the directivity
and, consequently, the transmitted signal can reach farther distances. However, because of
its narrowness, if the user slightly moves to any direction the power delivered decreases fast.
Therefore, the AN must have a solution to correct the beam to keep serving the UE. To estimate
the new direction, one possible solution is to repeat the process we developed based on CS.
However, this is not interesting because the algorithm estimates the channel without exploiting
any initial information of the channel. In the channel tracking problem, the AN already knows
the last estimate of the beam and can use this information to devise a solution that demands less
pilots.

The advantage of channel tracking is that the AN can maintain the block of pilots to
estimate the channel with a large period, and between them send very small blocks containing very
few pilots responsible for tracking the channel variation between the two blocks of estimation.
This enables to increase the period between two large blocks which reduces the overhead.

The key to support the reduction of pilots for channel tracking is related to the partial
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Tabela 5 – Refinement of the receiver spatial frequencies

Step 1 From the coarse estimation, use the spatial frequencies at the receiver,
ωcoarseR,x and ωcoarseR,y ,
as initial values:
ψ0,x = ωcoarseR,x and ψ0,y = ωcoarseR,y

step size: ∆
granularity adjustment constant : ε

Step 2 Update ψt,x and ψt,y
ψ+∆,x = ψt,x + ∆
ψ−∆,x = ψt,x −∆
ψ+∆,y = ψt,y + ∆
ψ−∆,y = ψt,y −∆

Step 3 Assign the new spatial frequencies
[w]i(ψx, ψy) = 1√

Nr
e(ψxxi+ψyyi), i = {1, . . . , Nt}

J(ψx, ψy, l) = {∑K
k=1 |w(ψx, ψy)Hy(k, l)|2}

where,
ψx ∈ {ψ+∆,x, ψ−∆,x}
ψy ∈ {ψ+∆,y, ψ−∆,y}
[ψt,x, ψt,y] = arg max(ψx,ψy) J(ψx, ψy)

Step 4 If [ψt,x, ψt,y] = [ψt−1,x, ψt−1,y]
do ∆ = ∆− ε and go back to step 2.
Otherwise, go forward.

Step 5 If the number of iterations t < To, set t = t+ 1 and go back to Step 2, otherwise
ωrefinedR,x = ψt,x
ωrefinedR,y = ψt,y

knowledge of channel. The receiver uses the last beam direction used to communicate with
the AN as an input of the channel tracking algorithm. The estimator collects the measurements
obtained from small blocks of pilots an the UE corrects beam directions on both sides of the link
and reports them to the AN.

The solution applied to channel tracking is similar to the one considered on the refinement
process. The tracking algorithm basically corrects the spatial frequencies of the receiver and
the transmitter based on the criteria stated on (4.15) and (4.16), respectively. This means that
the same algorithms employed for the refinement of the transmit and receive directions can
be used for the tracking. The only difference is the input of each algorithm, instead of being
the coarsely estimated spatial frequencies, the tracking is done by initializing the refinement
algorithm with the spatial frequencies estimated at the last channel estimation. Fig. 4.2 shows
alternation between channel estimation and tracking on the time-frequency grid.

4.5 Performance evaluation methodology

After the channel beam direction estimation or beam direction adjustment (tracking),
the UE reports the estimates through the feedback channel to the AN. The latter assigns the
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Figura 4.2 – Pilot distribution on the time-frequency grid.
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beamforming weights and transmits data to the UE. At the receiver side, a maximum ratio
combiner (MRC) is used [66].

The proposed algorithms are evaluated using Shannon’s formula

Cn = log2(1 + SNR(n)). (4.17)

where SNR(n) is the signal noise ratio The system throughput is determined as follows

C =
Nsubcarrier∑

n=1

Cn
Tsymbol

. (4.18)

where, Tsymbol is the OFDM period symbol.

In this work, three beamforming algorithms are used, namely:

• Eigenbeamforming: derived from the right singular vector of the frequency-dependent
channel matrix (i.e. each subcarrier has different beamforming weights). Perfect knowledge
of the full instantaneous channel matrix is assumed;

• Steering vector: designed from the only knowledge of the estimated spatial frequencies,
i.e.

[v(ωT,x, ωT,y)]i = e(ωT,xxi+ωT,yyi); (4.19)

• Round-phase: The design of the steering vector is constrained to four different predefined
phases only. Specifically, the phases associated with each entry of the steering vector are
rounded to the closest phase among the four ones.
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Tabela 6 – Simualtion Default Parameter

Carrier Frequency 60 GHz
Multiplexing Scheme OFDM
Subcarrier Bandwidth 360 kHz
Number of Subcarriers 512
System Bandwidth 0.18 GHz
Number of pilots Subcarriers 32
FFT size 1024
Payload period 1.389 µs
Cyclic prefix 347.22 ns
OFDM symbol period 3.1252 µs
Fading Power Ratio ρ = 11.2 dB
Function f It is defined in Eq. 4.12
Maximum Tx Power per AN 2 mW
Thermal Noise Level −174 dBm/Hz
Noise Figure 6 dB
Number of Tx Antennas 64
Number of Rx Antennas 16
Distance Between the Antennas λ/2
UE speed 1 m/s

4.6 Results

This section presents the results of the channel estimation and channel tracking algorithms
described in this chapter. The simulations are performed according to the parameters of the Table
6 and channel coefficients are generated according to the ray-tracing model used in [64]. The
performance is evaluated in terms of the system throughput considering the transmission of a
single data stream.

4.6.1 Channel Estimation

Figure 4.3 shows a LOS scenario which has three ANs and one UE in a corridor and,
initially, the AN need to determine the beamforming to serve the UE. As a benchmark, we
use the classical eigenbeamforming solution which is defined as the eigenvector of the channel
matrix associated to the strongest eigenvalue. We show that the steering-vector and round-phase
solutions can provide very similar performance to the benchmark one in indoor mm-wave
communication systems. The beams are constructed based on the channel angular information
which is acquired using quite low overhead by applying the proposed algorithms.

Figure 4.4 shows the system throughput for the three beamforming schemes. Note that
the difference between the eigenbeamforming and steering vector is almost negligible. This is
because the LOS component retains great part of the received power and other rays have low
contribution. This condition is very attractive because the channel has a very sparse representation
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which enables us to exploit this sparsity to reduce the system overhead by using the proposed
technique.

Another interesting aspect lays on the beamforming implementation. Although the
eigenbeamforming achieves the optimum throughput, the BS needs to calculate one per subcarrier
which leads to a more complex transceiver architecture. This is an important hardware drawback
that added with other implementation issues associated to mm-wave communication systems
[46, 67] make eigenbeamforming an unattractive solution from the implementation perspective.
Figure 4.4 shows yet that we can further simplify the steering vector and use one that uses
finite discrete alphabet. The simulations shows that the round-phase solutions achieve similar
performance compared to eigenbeamforming one which provides a promising solution because
the AN has the possibility of employing phase-shifter with finite resolutions. Although this is a
very attractive solution, more investigations to cover other aspects that are out of the scope of
this thesis are still needed.

The algorithm performance is evaluated in terms of pilot overhead by comparing Figures
4.4 and 4.5. The first plot shows the system throughput (bps) resulting from an estimation that
uses 20 OFDM symbols with a time interval of 0.1s between two large blocks to estimate the
LOS component. The total number of resources used to carry pilots in such a case is 0.0039% of
the total communication resources. In the second figure, the AN uses only 5 OFDM symbols
to estimate the same channel with the same time interval between two blocks. This leads to a
number of resources equal to 9.74× 10−4% of the total communication resource available.

Although Fig. 4.5 shows that the channel estimation algorithm provides quite low
overhead, there is a trade-off between overhead, distance to cover, and transmitted power as can
be noted by comparing Figures 4.6 and 4.7. They show the system performance when the AN
reduces its transmitted power. In the first figure, the system acquires reliable information of the
channel estimates until the UE reaches 10 meters away from the AN, whereas in the second
figure, the UE loses performance around 5 meters away from the AN. Therefore, the AN has the
possibility of adjusting the power and the overhead to meet coverage requirements.

4.6.2 Channel Estimation Using Multiple ANs

Although coverage limitations can be circumvented by adjusting power and overhead as
discussed lately, this solution has its limitations. Communication systems must follow power
policy settings which means that increasing power above values determined by the policies is not
an option. Beside this, increasing the number of pilots to cover large areas can results in large
overhead. In such a situation, the UE needs to use multiple ANs.

Figure 4.8 shows the channel estimation exploiting the handover between AN 1 and
AN 2. In this solution, the UE constantly receives pilot sequences associated to each AN and
uses them to evaluate which link has a better SNR. After this, the UE reports the angles to the
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intended AN and that designs the steering vector to serve the user. The curves also show that
the power must be above a given threshold, otherwise the angle estimation is not accurate and,
consequently, the UE cannot decide correctly which AN has the strongest ray. As shown in
chapter 2, CS techniques tend to have poor accuracy in low SNR environments.

Because handover gain can be exploited, the ANs can provide high throughput to the UE
without overloading the system with large pilot sequences. On the other hand, we can use more
pilots to increase the distances between the ANs. In this case, consider that the system wants
to perform a handover between AN 1 and AN 3. The number of pilots increases because the
distance between those is larger than between AN 1 and AN 2. This strategy can be particularly
useful if the AN 2 has a malfunction and the handover can only be performed by ANs 1 and 3.

4.6.3 Combining Pilot Frequency Subcarriers

The channel estimation performances presented on the last figures consider only the
combiner defined in Eq. (4.12). Figure 4.10 shows the channel estimation performance using all
the three possible choices for f that are defined in Eq.(4.11) (fixed delay), Eq. (4.12) (average
power) and in Eq. (4.13) (optimum). The function defined in (4.11) has the worst performance,
mainly after 10 meters, whereas in this points the multipath delay becomes more important.
The function defined in (4.12) and (4.13) keep the channel estimation close to the ideal perfor-
mance. This is a very interesting result because the function defined in (4.12) does not need any
knowledge of the delay.

4.6.4 Channel Estimation in NLOS Scenario

Figure 4.11 shows the UE moving from the corridor to the room which means that there
is a transition between a LOS channel to a NLOS one. The evaluation of this scenario is shown in
Fig. 4.12 by means of the system throughput. Note that, there are two regions on the picture: the
first one is before the time instant 1.3s and the other one is after this time instant. The former has
a better throughput than the last, but it shows many throughput variation due the constructive and
destructive interference between the rays caused by the environment geometry. Note that there is
a natural loss of performance from region 1 to 2. This is explained by the number of reflections
that each ray had before arriving at the receiver when it goes into room. With a number of
reflection higher in the NLOS scenario than in a LOS one, the system throughput decreases. A
possible solution to improve it is the deployment of a new AN inside the room. This would make
possible the handover practice.

Although there is a lot of SNR variation, the channel estimation has the same performance
for three different values of overhead as shown on Fig. 4.12. This means that the we can still rely
on the sparsity assumption even though the channel is not LOS anymore. However, the use of
very short pilot sequences to estimate the channel from “scratch” does not give robustness against
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in NLOS. The number of multipaths that are summed up constructively and destructively creates
a very high angle variation in receiver side which reduces the channel sparsity representation.
Because of it, we need to user more pilots. To avoid it the UE has track the angle variations as
shown in the next section.

4.6.5 Channel Tracking

Figure 4.13 shows the performance only of the beam tracking algorithm, i.e there are
only small blocks. In the beginning of the transmission (t = 0), we consider perfect knowledge
of channel. The beam tracking algorithm is ran at the NLOS scenario shown on Fig. 4.11. At
the first part (before 1.3 s), the proposed algorithm provides a system throughput similar to
the benchmark one. The performance is the same as in channel estimation case, but the main
advantage of tracking is the low algorithm complexity and the low overhead demanded. This last
is because the method estimates the channel using information estimated in a moment before.
On the other hand, this method does not deal with the death and born of rays [57] which may
lead to a situation where the UE is served.

Although the proposed beam tracking approach can not handle with the death of rays,
the green curve shows an increasing of the throughput. A possible explanation is that the local
optimum point has become weak and the algorithm starts to look for a maximum and by chance
the algorithm found one. However, it is not possible to guarantee that.

Since the beam correction is not capable to handle with the death of rays, the combination
between channel estimation and beam tracking becomes suitable. From the point of view of
beam correction, channel estimation algorithm can re-estimate the channel making possible the
tracking algorithm to adjust the beam direction. From the point of view of channel estimation,
beam tracking makes possible to set a higher time interval between blocks of estimation. This is
shown on Fig. 4.14 where two configurations are tested. One (with red circles) has large blocks
with 50 OFDM symbols at every 0.1s and smaller blocks with 20 symbols for tracking at every
0.02s. The other configuration ( with green circles) has large blocks with 50 OFDM symbols at
every 0.2s and smaller blocks with 20 symbols for tracking at 0.01s. Because the high channel
variation in the transition from the LOS to NLOS scenario, the configuration with smaller blocks
at every 0.02s lost the tracking, but the system could recover it after a large block.

4.7 Conclusion

Using the proposed method, the AN is possible to accurately acquire the angular infor-
mation of the channel and use it to adjust a beam to serve the UE. We evaluate this technique in
different situations and analysed the trade-off among overhead, power and coverage limitations.
This solution enables the AN and UE to save power by increasing the overhead, or to reduce
the overhead by increasing the power, or to adjust the AN coverage whenever is possible. The
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method can be used in practical situations of handover between ANs, since it provides accurate
estimation of the arrival and departure directions of multiple LOS components from different
ANs.

An important aspect investigated in this chapter is the hardware limitations. The simulati-
ons show that eigenbeamforming (frequency dependent) and the steering vector (Non-frequency
dependent) has similar performances in this scenario. This is because the mm-wave channel
has low angular spread and consequently it remains almost flat even though the channel has a
2GHz bandwidth. Another aspect considered is the phase-shifter resolution. The round-phase
beamforming has lower resolution in its phase-shifters, the loss in terms of throughput is small
compared with the continuous steering vector phase.

Regarding to the channel tracking solution, we can conclude that it is complementary
solution of the channel estimation. It gives the benefit of farther reduce the overhead because it
avoids to send larger blocks to re-estimate the channel.

4.8 Figures

Figura 4.3 – UE is going trough the corridor.

Source: Provided by the author.
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Figura 4.4 – System throughput considering three different type of beamforming: SVD per
subcarrier, steering vector and round-phase vector. The time interval between two
consecutive large blocks is 0.1 s amd the number of OFDM symbols is 20.
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Figura 4.5 – System throughput considering three different type of beamforming: SVD per
subcarrier, steering vector and round-phase vector.
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Figura 4.6 – System throughput considering three different type of beamforming: SVD per
subcarrier, steering vector and round-phase vector.
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Figura 4.7 – System throughput considering three different type of beamforming: SVD per
subcarrier, steering vector and round-phase vector.
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Figura 4.8 – Channel estimation considering handover between AN 1 and AN 2 deployed in the
corridor.
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Figura 4.9 – Channel estimation considering handover between AN 1 and AN 3 deployed in the
corridor.
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Figura 4.10 – System throughput for power fading ratio ρ = 0 and for three functions f ’s. Fixed
delay is defined in Eq.(4.11), incoherent in frequency is defined in Eq. (4.12) and
optimum is defined in Eq. (4.13).
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Figura 4.11 – UE is going into the room.

Source: Provided by the author.

Figura 4.12 – System throughput considering three different amount of pilots: 20, 50 and 200
OFDM symbols.
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Figura 4.13 – System throughput at NLOS considering two different amount of pilots: 20, 30
OFDM symbols.
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Figura 4.14 – Channel estimation and channel tracking evaluation.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5
·109

Time [s]

T
h
ro
u
g
h
p
u
t
(b
p
s)

Steering Vector

largeBlock=50,TimeInterval=0.1s/smallBlock=10,TimeInterval=0.02s

largeBlock=50,TimeInterval=0.2s/smallBlock=10,TimeInterval=0.01s
SVD per subcarrier

Source: Provided by the author.



87

5 STATISTICAL HYBRID BEAMFORMING FOR MASSIVE MIMO CHANNEL ES-
TIMATION

Abstract

In this chapter, we address the channel estimation problem in massive MIMO systems by

adopting a hybrid (analog-digital) beamforming architecture that exploits second-order statistics.

Differently from the strategies presented on previous chapters, the channel is represented in terms

of its low-dimensional subspace extracted from the spatial covariance matrix. The proposed

technique consists of spatially multiplexing the pilots using a beamforming scheme. In the

first moment, we consider a downlink transmission in time-frequency coherent channel blocks,

containing both the pilots and data. Considering FDD and taking the pilot overhead into account,

we show that hybrid beamforming provides better spectral efficiency performance than full digital

beamforming in cases with many antenna elements. We also optimize the number of used radio

chains for hybrid beamforming in FDD and show it is possible to achieve comparable spectral

efficiency as with full digital beamforming in TDD. In the second moment, we focus on designing

the optimum HB and the channel estimator according to the MMSE criterion. In this problem,

we derive a new HB beamforming architecture and provide conditions to determine the optimum

number of RF chains and pilot power allocation according to that criterion.

5.1 Introduction

In mobile communication systems, the channel acquisition depends on the duplexing
mode, which can be either FDD or TDD. In FDD, the BS sends downlink pilots and each
UE estimates the CSI. This information is then fed back to the BS so that one can design a
beamforming solution. However, both channel acquisition and report demand more overhead as
the number of BS antenna elements becomes large. In TDD, the UEs send uplink pilots and the
BS estimates the uplink channel. Assuming channel reciprocity, the downlink CSI is obtained
from a hermitian version of the uplink channel. In this case, the overhead increases proportionally
to the number of total UE antennas [68]. This is the main reason most massive MIMO related
works assume operation under TDD. However, cellular networks in large parts of the world
operate in paired spectrum and this naturally creates a demand for solutions under FDD that
enjoy the enhanced spectral efficiency provided by massive MIMO.

Beamforming techniques are effective solutions to improve SNR and consequently the
system spectral efficiency. Full digital beamforming is the natural solution adopted in massive
MIMO systems because it can achieve the maximum degree of freedom for signal processing.
In [69], the authors propose a two-stage digital beamforming by concatenating two digital
beamformers, where the first depends on the channel statistics and the second is designed from
the instantaneous knowledge of the channel. Although such a structure reduces the overhead,
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scaling up a complete digital solution as a function of the number of antennas becomes prohibitive.
Its implementation requires separate RF chains consisting of mixers, power amplifiers and a
digital to analog converter (DAC) per antenna element. This architecture results in high power
consumption, cooling demands, and cost, mainly due to the high number of DACs [70–72].

Another solution is to use the so-called hybrid analog-digital beamforming. In this hybrid
structure, the array has a power amplifier per antenna element, but the signals are steered by a
large-scale phase shifter network and a much smaller set of baseband processing chains [73].
This structure brings the possibility to upgrade the BS by keeping the current baseband hardware
and exchanging the existing fixed-pattern antenna array with a large-scale phased array. Most of
the HB literature targets mm-wave frequencies. In [74], HB is designed based on perfect CSI for
supporting point-to-point MIMO. The analog part is composed by the steering vectors of the
most relevant multipaths and the digital part is obtained from the SVD of the equivalent baseband
channel. In [46], the analog part is designed based on the angle of arrival (AoA) obtained
perfectly by uplink measurements and the digital part is obtained from the maximization of the
system rate. However, mm-wave channels have very poor scattering characteristics, whereas
in current (< 6 GHz) cellular systems, the channels have typically many relevant paths due
to the low reflection attenuation. In [72], cellular frequencies are considered and the analog
beamforming is designed as the phase-only version of a frequency-flat channel. However, in
cellular communication systems the channels are frequency-selective, the analog and digital
parts have to be designed accordingly.

In this chapter, we propose a HB design that can operate in flat and frequency-selective
channels. We use the spatial covariance matrix to design the wideband analog beamforming and
the instantaneous channel to design the narrowband digital beamforming. Assuming a single-user
scenario, we first study the optimization of the number of RF chains based on an SNR criterion.
Then, we extend our analysis for a multilayer transmission and investigate the optimum channel
estimator from a MMSE criterion. We also solve a convex problem to obtain the power allocation
across the RF chains, which is then used to beamform the downlink pilots in FDD. Taking into
account the overall overhead, we show that by optimizing the power allocation over the RF
chains, the spectral efficiency of HB in FDD is similar to that achieved with digital beamforming
in TDD.

5.2 FDD System Model

Consider a BS withN antenna elements transmitting an OFDM signal to a single-antenna
UE using a FDD transmission. The channel is block-fading and defined by a coherence time of
K OFDM symbols and coherence bandwidth of L subcarriers. This means that the channel is
approximately constant in each block and changes only block-to-block1 as shown in Fig. 5.1.
1 For simplicity, only blocks in time dimension are shown.
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The communication resources inside every time-frequency block are allocated either for
pilot or data transmission. The training sequences occupy Kτ OFDM symbols and the remaining
K−Kτ symbols are allocated to data transmission. The pilots are used by the the UE to estimate
the channel. The estimates are reported from the UE to the BS using Kf symbols in the UL
channel.

Given this framework, it is possible to define the received signal associated with the jth
channel in the ith coherence block as

yi[j] = hTi xi[j] + zi[j], KτL+ 1 ≤ j ≤ KL, (5.1)

where yi[j] is the received signal, hi ∈ CN is the channel vector, xi[j] is the transmitted signal,
and zi[j] ∼ CN (0, σ2) is the additive white Gaussian noise.

In the first Kτ +Kf OFDM symbols of the ith block, the BS does not have knowledge
of hi since the channel estimate has not been acquired yet. Thus, in the data transmission phase,
we assume that the BS continues using the beamforming vector wi−1 designed in the previous
block. The beamforming vector wi is designed upon reception of hi, the channel estimate vector
from the feedback. Therefore, the beamformed signal during the data transmission phase is

xi[j] =

wi−1si[j] , KτL+ 1 ≤ j ≤ L(Kf +Kτ )

wisi[j] , L(Kf +Kτ ) + 1 ≤ j ≤ LK,
(5.2)

where ‖wi‖2 = p and si[j] is the unit-power data symbol.

Based on (5.2), the spectral efficiency for the ith block is

CFDD
i =(Ts − Tcp)

TsK
[Kf log2(1 + Γi(wi−1))

+ (K −Kf −Kτ ) log2(1 + Γi(wi))], (5.3)

where Ts is the OFDM symbol duration, Tcp is the cyclic prefix length, and Γi(wi) = |hTi wi|2/σ2

is the received SNR of the signal beamformed by wi. Note that the length Kτ of the training
phase reduces linearly the spectral efficiency. Moreover, we expect that Γi(wi−1) < Γi(wi), due
to the channel aging. Hence, the spectral efficiency decreases logarithmically with the length Kf

of the feedback.

5.3 Hybrid Beamforming Design

In the first part of this chapter, the focus is to design a HB using the knowledge of the
spatial channel covariance matrix. The HB is defined by the architecture implemented in the BS.
It is considered that there is a phase-shifter network that connects N antennas with M RF chains.
The concatenation of the analog and digital beamformers defines the overall beamforming which
can be expressed as

wi = WRFfi, (5.4)
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Figura 5.1 – Simplified representation of time-frequency blocks in FDD.
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where WRF ∈ CN×M is the wideband analog part with |[WRF]n,m| = 1 and fi ∈ CM is the
block-specific digital part. Note that each element of fi rotates and amplifies the beam defined by
the corresponding column of WRF.

5.3.1 Analog Beamforming

Let R = E
{
hihHi

}
be the spatial channel covariance matrix, where the expectation

operator E {.} is over both time and frequency. Considering the SVD of R = UΛUH , the first
M? ≤M eigenvectors UM corresponding to the strongest eigenvalues of Λ are used to design
the analog beamforming matrix. The choice of M? will be discussed later, where it will be
shown that the spectral efficiency is improved by properly adjusting this parameter. Because the
phase-shifter network only controls the signal amplitude, the analog beamforming is represented
as

WRF = ŨM? . (5.5)

where ŨM? is defined by the phase-only version of UM? . Note that the WRF, representing
the (analog) phase-shifter network, does not depend on the channel frequency response. In
other words, WRF represents the wideband beamforming part, shared by the whole range of
frequencies.

In FDD, the estimation of R can be performed by the UE using a beam sweeping inside
each time-frequency coherence block. The covariance matrix of the received signal is computed
by averaging out samples over such blocks. The spatial covariance matrix is then obtained
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using a LS estimator. Because the second order statistics do not vary fast, this estimation can be
performed with low time periodicity, thus not demanding substantial overhead. The practical
effect is that analog beamforming matrix does not need to be updated at every time block.

5.3.2 Number of RF Chains

Considering the channel decomposition hi = UΛ1/2vi for vi ∈ CN and using the HB
definition in (5.4), the SNR can be expressed as

Γi(wi) = |wH
i hi|/σ2

= |fHi WH
RFUΛ1/2vi|2/σ2

≈ |
M?∑
m=1

λ1/2
m fm,ivm,i|2/σ2, (5.6)

where fm,i and vm,i are the mth entries of fi and vi, respectively, and the approximation is
because WRF ≈ UM . The eigenvectors tend asymptotically to have constant modulus because
they tend to a DFT matrix [36] as the number of antennas increases. Using such a result and
defining ‖WRFfi‖2

2 = p, it is possible to write ‖fi‖2
2 ≈ p/N . The terms of the summation in (5.6)

are weighted by the eigenvalues, and the BS chooses the M? strongest eigenvalues. If M? < M ,
the BS sets fm,i = 0 ∀mM? < m ≤M . Note that in (5.6), vm,i defines the dependency on the
small-scale fading. However, this information is not known a priori, it is acquired by the BS
after the UE estimates and reports vi back through feedback channel.

The dimension of vi is defined by the BS. Using the eigevalues of R, the BS establishes
the relationship between the number of RF chains and the number of relevant eigenmodes using
the proposed heuristic convex optimization

max
d

M∑
m=1

λ1/2
m dm

s.t ‖d‖2
2 ≤ p/N, (5.7)

where d∈RN selects the eigenmodes to be used in the transmission. The parameterM? is defined
from the solution d? as M? = ‖d?‖0. Although the BS must spend extra overhead to acquire
R, the estimation happens after long periods. Clearly, M? and WRF depend on R meaning that
the periodicity to solve (5.7) is similar to estimating R. Note that the eigenvalues can be used to
define the environment richness and M? determines the equivalent channel dimension. Since
the system spectral efficiency is affected by the overhead that is proportional to the equivalent
channel dimension, the proposed method provides a way to adapt the system spectral efficiency
by exploiting the environment richness obtained from the second order statistics.
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5.3.3 Digital Beamforming

Due to the analog beamforming, the effective channel in the ith block, as evidenced in
the baseband is

gi = WT
RFhi. (5.8)

Since gi ∈ CM? and M? � N , far fewer pilots are required for estimating gi instead of
hi. Specifically, only M? orthogonal pilot sequences are used, as defined by the matrix S =
[s1, . . . , sKτL] ∈ CM?×KτL, and they are beamformed by WT

RF. The received training sequence
yi = [yi[1], . . . , yi[KτL]]T at the UE is then given by

yi = STDWT
RFhi + zi, (5.9)

where ‖sTj DWT
RF‖2 = p and zi = [zi[1], . . . , zi[KτL]]T . Note that D = diag[d1, . . . , dM? ]

is weighting the beams according to the solution found in (5.7). The MMSE estimator ĝi =
E {gi|yi} is calculated as [75]

ĝi = R̃S̃∗
(
σ2Iτ + S̃T R̃S̃∗

)−1
yi, (5.10)

where R̃ = WT
RFRWRF and S̃ = DS. The estimated effective channel is then quantized and

fed back to the BS, which can calculates the digital part of the beamforming, defined in (5.4),
according to the maximum ratio transmission (MRT) criterion as fi = ĝ∗i .

5.3.4 CSI Acquisition Overhead

The system overhead comprises the total number of OFDM symbols allocated to pilot
transmission and feedback, which are Kτ and Kf respectively, as shown in Fig. 5.1. The feedback
load increases proportionally to the dimension of ĝi, and is given by

Kf =
 bM?

log2 (Norder)Lf

, (5.11)

where b refers to the number of bits employed to quantize one channel vector entry, Norder is the
modulation order used to transmit data on the feedback channel, Lf is the number of subcarriers
that composes the feedback channel. As established in (5.2), the BS spends Kf time instants
using wi−1. Also, as discussed after (5.3), it is of interest to keep Kf as low as possible to
minimize the downlink spectral efficiency loss due to channel aging.

With HB, the BS has the flexibility to control the system overhead by adapting the use
of the RF chains according to the UE’s requirements and channel conditions. This is important
for cell-edge UEs with poor SNR for channel estimation. Note that for multi-antenna UEs,
supporting multi-layer transmission, would require more RF chains.
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Figura 5.2 – Simplified representation of the time-frequency frame in TDD.
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5.4 Spectral Efficiency in TDD

In TDD, unlike FDD, the coherence block is split into uplink and downlink parts that
share the same bandwidth and occupy complementary time intervals, as shown in Fig. 5.2.
Channel estimation is performed by the BS from the uplink training sequences sent by the UE.
The overall overhead scales linearly as the number of antennas at the UE [76].

Similar to (5.3), the downlink spectral efficiency is defined in a TDD system as

CTDD
i = (Ts − Tcp)(K −KUL)

TsK
log2(1 + Γi(wi)) (5.12)

whereKUL is the number of OFDM symbols in the uplink transmission, containing both pilot and
potentially uplink data [68]. In TDD, the downlink spectral efficiency is essentially determined
by the uplink-downlink ratio. Assuming full digital beamforming according to the MRT criterion,
i.e., wi = ĥ∗i , the entire propagation channel needs to be estimated, e.g., by considering the
MMSE estimator [75]

ĥi = hi + C1/2n, (5.13)

where C = R
(
IN + pKτL

σ2 R
)−1

is the error covariance matrix and n ∼ CN (0, IN) is the
estimation error.

5.5 Comparison Between FDD and TDD Schemes

In the simulations, TDD and FDD spectral efficiencies are compared using the COST
2100 channel model extension for massive MIMO proposed by the EU project MAMMOET
in [77]. A 10 MHz bandwidth channel operating at 2.6 GHz is considered in this comparison.
Consider also K = 14 OFDM symbols and L = 12 subcarriers with subcarrier spacing Bc =
78.12 KHz. The feedback overhead Kf is calculated assuming b = 4, Norder = 4, and Lf = 12.
For this setup, we generated 500 consecutive coherent blocks, 10 in the frequency-domain and 50
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Figura 5.3 – Spectral efficiency distribution comparison between full digital in TDD and HB
with EP in FDD for various numbers of RF chains

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Spectral Efficiency (bps/Hz)

C
D
F

128 antennas

M = 1
M = 2
M = 4
M = 8
M = 32
M=128
TDD

Source: Provided by the author.

in the time-domain. In our comparisons between FDD and TDD, the total transmit power is set
20 dBm for both BS and UE. The plots refer to EP for equal power and PA to power allocation
according to (5.7).

In Fig. 5.3, FDD and TDD spectral efficiencies are obtained according to equations
(5.3) and (5.12), respectively, for N = 128 antennas. The comparison shows a HB scheme with
M = {1, 2, 4, 8, 32, 128} RF chains transmitting in FDD and a digital beamforming transmitting
in TDD. We assume the most favorable uplink-downlink ratio in TDD; namely, that KUL = 1,
essentially providing an upper bound on the achievable spectral efficiency. In FDD, as the number
of RF chains increases up to M = 8, the spectral efficiency increases since the BS is choosing
more eigenmodes and the overhead is not so significant. However, the gains of the large-array
are “vanished” by using more RF chains as can be seen for M = 32. Comparing both duplexing
schemes, it can be concluded that the “gap” between them can be reduced, when the number of
RF chains is chosen so that the BS can efficiently exploit the channel modes without increasing
substantially the overhead.

In Fig. 5.4, we evaluate the gains due to the optimization in (5.7) for M = {8, 32}. With
M = 32, only the eight first eigenvectors are activated, meaning that the BS can approximately
maximize the SNR using much less RF chains than the value used as input. For M = 8, the
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Figura 5.4 – This plot compares M = {8, 32} RF chains with equal power (EP) and power
allocation (PA) accordingly with (5.7).
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result is essentially the same as for equal power. In such a case, the large-array provides high
SNR gains enforcing equal power allocation among the RF chains. Applying the optimization in
(5.7), the number of RF chains converges to the same value in both cases, M = {8, 32}. They
have quite similar curves showing that M? = 8 is a good choice for this scenario.

The plots give an insight that the BS can use the statistical representation to reduce the
dimension of the channel and so the pilot overhead. However, the analysis presented until this
moment does not show the relationship between the channel error and the RF chains. As we show
in the next section, where a multiple-antenna UE is considered, several RF chains are connected
to the analog beamforming filter. Moreover, the angular spread also plays an important role in
the determination of the number of RF chains to be used in the transmission.

5.6 System Model with Multiple-Antenna UE

Consider a BS and a single UE employing N and M � N antennas, respectively. Let
us assume an OFDM transmission. The frequency response is represented by a set of block-
fading channels H(k) ∈ RM×N ∀k k = {1, 2, . . . , K}. Each one has a coherence time and
bandwidth of T OFDM symbols and F subcarriers, respectively. Within a block, there are TF
resource elements and they are split either into pilot or data transmission. We define I and D as
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the number of resources for pilot and data, respectively. It is important to highlight that, each
resource element of a given block k is represented by the same channel matrix H(k) ∈ RM×N

with a spatial correlation matrix given by E
{
H(k)HH(k)

}
= R, ∀k.

We assume a MIMO point-to-point system where the BS transmits multiple streams to a
single UE using a HB solution. As discussed before, there are two stages to calculate the HB.
The first one is the phase-shifter network defined by the matrix A ∈ CN×L whose entries have
constant modulus; the second stage is the digital part defined by the matrix D(k) ∈ CL×J . The
phase-shifters do not depend on the frequency index k, and D(k) precodes the data streams into
J layers associated with the frequency k.

The mathematical definition of HB is commonly represented as W(k) = AD(k) [78].
However, the constant modulus limitation in A causes a performance loss compared with that
achieved by digital beamforming (DB). When the number of streams increases, the gap between
the HB and DB performances tends to grow as higher as the angular spread. One way of
compensating for this loss is increasing the number of RF chains [79]. However, such a solution
employs more DACs. This component consumes considerable amount of power as shown in [80]
and the system can reach prohibited power consumption levels, if a high number of RF chains are
used. Therefore, it is important to devise HB solutions that can operate using the same number
of RF chains as the number of layers, i.e. when L = J .

Here, we propose to exploit the factorization D(k) = BC(k), where the rows of B
combine the columns of A to enable adjustments on the amplitude signal. The matrix C(k) is
used to precode data or pilot in every coherence block. Figure 5.5 shows the commonly used HB
and the proposed one architecture.

The received signal model writes

Y(k) = H(k)W(k)S(k) + Z(k),

= H(k)ABC(k)S(k) + Z(k), (5.14)

where S(k) ∈ CJ×D collects J independent signals in D time-frequency elements, Y(k) =
[y1(k), . . . ,yD(k)] ∈ CM×D, and Z(k) = [z1(k), . . . , zD(k)] ∈ CM×D whose covariance matrix
across the time-frequency elements is defined as Rz = E

{
ZH(k)Z(k)

}
∈ CD×D.

The curves in Section 5.5 show that HB can be used to compress the full massive MIMO
channel into a baseband one. This reduces the overall overhead and, consequently, increases the
system spectral efficiency. In the next section, we derive the optimum design for the proposed
HB, the MMSE estimator, the optimum number of RF chains, and the pilot power allocation that
lead to MMSE bound.
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Figura 5.5 – Comparison between the standard HB and proposed HB representations.

(a) Commonly used HB architecture. (b) Proposed HB architecture.

Source: Provided by the author.

5.7 Joint Design of MMSE estimator and Beamforming

Consider a set of Jp pilot sequences where their length is defined by the variable I . We
concatenate them into a matrix P(k) ∈ CJp×I , meaning that each row of the matrix corresponds
to one sequence with length I . The BS then multiplexes the sequences using a HB filter defined
by W(k). This means that the transmitter separates the pilots into J = Jp number of layers.

Let us assume that the BS has no knowledge of the CSI, but it knows the second order
statistics of the channel. As we did in the single-antenna UE case, the BS can use this information
to smartly design a HB to transmit the pilots. The difference is that the solution proposed hereafter
deals with the constant modulus limitation of the analog beamforming. This limitation negatively
affects the sum-rate as we will show in our results.

The knowledge of the spatial covariance matrix brings the possibility of designing a
statistical HB to transmit the pilots. This is because the matrix R describes statistically a group
of time-frequency coherent blocks, i.e. the statistics remain almost constant over many frequency
channel blocks. Using this fact, we can then simplify the baseband matrix C(k) to be independent
of index k, i.e. C(k) = C. With this assumption, we can now derive the set of beams using A,
B and C, and assuming that R is constant over the transmit bandwidth.

The BS creates the set of beams by multiplying A and B. Both matrices are parts of the
effective channel defined as

He(k) , H(k)AB, (5.15)

where He(k) ∈ CM×Jp . Assuming that the number of sequences Jp < N , the UE does not
estimate the full dimension channel H(k), but instead a reduced version of it.

It is important to highlight that using multiplexed pilots offers spectral efficiency gains
over the well beam sweeping pilot scheme. The latter uses a sequence of OFDM symbols to
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Figura 5.6 – System model block diagram.

Source: Provided by the author.

transmit one pilot sequence towards to a given direction. Thus, the total number of OFDM
symbols to transmit all the Jp sequence is JpI [60, 81], while the number of OFDM symbols
using the multiplexed pilots corresponds to I . Such a gain comes to the cost of knowing the
spatial covariance matrix in advance, which implies the implementation of a protocol to estimate
R. Nevertheless, beam sweeping only needs one RF chain, meaning that this solution needs a
much simpler transmitter architecture.

The set of beams is obtained by designing A, B and C. To optimize the number of
pilot sequences and, consequently, reduce massive MIMO channel from H(k) to He(k), it is
very import to design an estimator that uses fewer pilots and still obtains a very accurate CSI
estimation. This is possible by designing the estimator G ∈ CI×Jp according to the MMSE
criterion. The estimated effective channel can be expressed as

Ĥe(k) = Y(k)G. (5.16)

Note that the received signal depends on the beamforming design, i.e. it depends on A, B,
C, and Jp. In the next section, we use the MMSE criterion to assign the beamforming matrices
and the number of sequences to minimize the channel estimator error. Fig. 5.6 represents the
block diagram of the system model showing all the variables we must determine.

5.7.1 Channel Estimation

Let us define the error matrix associated with the estimator G as

∆(k) , Y(k)G−He(k), (5.17)

where ∆(k) ∈ CM×Jp . The channel estimation error covariance matrix is then given by

E
{
∆(k)H∆(k)

}
= (GHPHCH − I)Re(CPG− I)

+ GHRzG, (5.18)

where Re = BHAHRAB. Using Eq. (5.18) and assuming the knowledge of the spatial covari-
ance matrix, the solution for the MMSE estimator is given by

GMMSE = (PHCHReCP + Rz)−1PHCHRe. (5.19)
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The procedure to obtain the estimator is shown in the Appendix ??. Notice that the pilot matrix P
now appears without the frequency index k. This is a choice in our system model, which implies
using the same set of pilots over multiple the time-frequency blocks. With this assumption, we
can conveniently remove the dependence of our channel estimator on the index k. In practice,
this means that our estimator GMMSE is a wideband filter that remains constant until covariance
matrix be updated.

Substituting (5.19) into (5.18), the error covariance matrix becomes

E
{
∆H(k)∆(k)

}
= Re −ReCPQPHCHRe, (5.20)

where
Q , (PHCBHAHRABCP + Rz)−1. (5.21)

The MMSE problem to calculate A and B is formulated as

min
A,B

trace{E
{
∆H(k)∆(k)

}
}

s.t trace{ABCCHBHAH} ≤ P, (5.22)

where P is the power allocated to a given subcarrier. It is important to highlight that the solution
of (5.22) is conditioned to a given pilot sequence P. Before discussing this solution, we enunciate
our assumption about the design of the pilot sequences. The matrix P depends on the statistics
of the noise as we enunciate in the next lemma.

Lemma 1 If the noise covariance matrix Rz is the identity, any orthogonal sequence leads to

the MMSE bound. However, if the noise is correlated over the time, the optimum Jp × I pilot

sequence matrix is given by P = UH
z , where Rz = UzΛzUH

z .

In some scenarios, the UE is strongly affected by interference sources coming from neighbour
cells which generates a correlated noise, i.e. Rz cannot be described by an identity matrix.
When this happens, Lemma 1 shows that the BS must exploit the eigen-decomposition of Rz to
determine the set of pilots. This shows that the matrix P works as a filter to whiten the incoming
interference the UE.

In practice, the UE needs to measure the second order statistics of the noise and report it
back to the BS. This means that a closed-loop system must be employed so that the feedback
channel provides such an information to the BS. In a open-loop system, the BS does not have Rz

and the pilot sequences do not deal optimally with the interference. From Lemma 1, we can still
conclude that the open-loop and closed-loop schemes have the same performance if and only if
Rz is the identity. In such a case, any orthonormal P is optimal because it does not change the
second order statistics of a white process. Hereafter, we assume a scenario without interference,
but a closed-loop channel estimation scheme will be an object of a future investigation.

Assuming the pilots are designed based on Lemma (1), the wideband beamforming
matrix AB can be determined by
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Figura 5.7 – Implementation of the optimum beams to minimize the MSE of the channel estima-
tor.
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Theorem 3 The optimum wideband hybrid beamforming is achieved if AB = ΓJp , where ΓJp

corresponds to the first Jp eigenvectors of R.

Fig. 5.7 illustrates Theorem 3 by showing a set of beams created from the HB design. Note that
the Theorem 3 only states the optimum beams, but it does not impose any specific structure A
and B. They actually admit more than one solution as long as they satisfy Theorem 3. Another
important aspect is that, the solution employed to implement A and B are transparent to UE, i.e.
from the perspective of estimator, the only requirement that must be met is AB = ΓJp .

Essentially, when the BS implements AB = ΓJp , this means that the beams are aligned
with the eigenmodes of channel covariance matrix. Therefore, the effective covariance matrix
can be represented as Re = ΛJp , where ΛJp is a Jp × Jp diagonal matrix containing the Jp first
eigenvalues. The diagonalization of Re means that the BS creates Jp parallel channels to transmit
Jp pilot sequences. Using this result, we can obtain an expression for the Using the result of
Theorem 3, MSE in corollary.

Corollary 1 Assuming that the BS implements AB = ΓJp , the MSE expression of the proposed

estimator is given by

MSE = N −
Jp−1∑
i=0

λ2
i c

2
i

λic2
i + σ2 . (5.23)

The proof can be found in Appendix 7.1. Clearly, the MSE depends on the number of pilots
employed in the channel estimation process. In the next section, we discuss how to obtain the
optimum Jp.

5.7.2 Pilot Power Loading

The minimization of Eq. (5.23) depends on the BS choice for ci ∀i ∈ {1, . . . , Jp}, which
are the diagonal elements of the matrix C. The variable c2

i can be interpreted as the power
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allocated to the pilot beamormed by the eigenmode i. Therefore, the BS needs to choose the
optimum pilot power allocation that minimizes the MSE.

As a second theorem, we enunciate the power allocation condition to minimize the MSE.

Theorem 4 Given that the BS uses AB = ΓJp , the optimal pilot power allocation for the

minimization of the MSE is determined by the water-filling solution.

The derivation is found in Appendix 7.2. Given the choice of beams based on Theorem 3, the
BS uses the traditional water-filling algorithm to assign the pilot power allocation. Other than
this, the Theorem 4 also provides us a method to decide how many sequences we can employ
on the estimation phase. For instance, if we have low SNR the algorithm tends to set zero on
those eigen directions with low eigenvalues. This decision is taken based on the ratio between
σ2/λj and prevents the BS of sending pilots into components where the estimation will be likely
poor. Beside this, it becomes a mechanism to assign the number of pilot sequences Jp based on a
given ratio σ2/λj . Using this mechanism, the number of pilot sequences are adapted according
the SNR and the eigenvalues.

The parameter Jp has impact mainly in two aspects: (i) the overhead and (ii) HB imple-
mentation. About the overhead, the Jp dictates the dimension of the effective channel He(k)
which determines the overhead demanded to report this information. About the implementation
aspect, Jp determines the number of beams that must be implemented by the product AB. With
respect the latter, there are different solutions to implement the beams and each of them imposes
different architectures to the HB. Each of the solutions holds are relationship between Jp and
number of RF chains L as will be shown ahead.

Fig. 5.8 summarizes the HB design. Initially, the BS uses R to calculate Γ and Λ. Using
the power loading solution, the BS defines Jp and, automatically, chooses which eigenvectors to
be employed for beamforming the pilot schemes. The block, called “implementation method”,
has a set of methods to calculate A and B and each of them is chosen based on a criterion defined
by the BS. The calculations of those matrices will be discussed in the next section, where we
show the limitations and advantage of each method.

5.8 Hybrid Beamforming Design

Theorem 3 stats the optimum beams to be used by the BS for transmitting the pilot
sequences. However, the design of A and B is an open problem. In this section, we describe two
solutions: (i) one is a baseline method proposed and discussed in the literature [79] and (ii) the
second one is proposed in this paper. Although [79] proposed a good HB solution, therein the
authors consider data transmission. In our method, pilot transmisison is assumed. Moreover, the
authors in [79] worked with a flat channel, but thanks to our statistical description we could also
extend this method to a frequency selective one.
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Figura 5.8 – The block diagram describes the design of the HB for pilot transmission.

Eigenmode
Selection

Power
 Loading

Beam
Implementation

Implementation
Method

Source: Provided by the author.

5.8.1 Paired Phase-shifter

The first solution uses the fact that any vector is obtained from a combination of two
other vectors with constant modulus entries. Using this result, it is possible to combine two
columns of A using two rows of B to implement one eigenvector. The equation to be solved is
given by [79]:

A(n, l)B(l, j) + A(n, l + 1)B(l + 1, j) = Γ(n, j). (5.24)

Using the procedure described in [79], the solution for B is as follows

B(l, j) = γmax(j) + γmin(j)
2 , (5.25)

B(l + 1, j) = γmax(j)− γmin(j)
2 , (5.26)

where γmax(j) = maxn{|Γ(n, j)|} and γmin(j) = minn{|Γ(n, j)|}. The solution for the phase
shifters are then given by [79]

φn,l = ∠Γ(n, j) + cos−1
(
|Γ(n,j)|+γmax(j)γmin(j)
|Γ(n,j)|(γmax(j)+γmin(j))

)
, (5.27)

φn,l+1 = ∠Γ(n, j) + cos−1
(
|Γ(n,j)|−γmax(j)γmin(j)
|Γ(n,j)|(γmax(j)−γmin(j))

)
, (5.28)

where φn,l = ∠A(n, l) and φn,l+1 = ∠A(n, l + 1). In this technique, each eigenvector is
implemented by combining two RF chains. Therefore, the total number of RF chains to transmit
the L layers is scaled by two, i.e. L = 2Jp. This means the BS can eliminate the hardware
limitations of the analog beamforming at the cost of twice more RF chains.

5.8.2 LS criterion

Another way of determining A and B consists of minimizing the euclidean norm between
AB and ΓL. To obtain a solution for A and B, we propose to formulate the problem as shown:

min
A,B
‖ΓL −AB‖F s.t. A ∈ A. (5.29)



Capítulo 5. STATISTICAL HYBRID BEAMFORMING FOR MASSIVE MIMO CHANNEL ESTIMATION 103

Figura 5.9 – The figure shows an example using 4 RF chains to create 2 beams.
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Source: Provided by the author.

An attractive solution to this problem is given by the alternating least-square with projection
(ALSP) algorithm proposed earlier in [82] as a in the context of blind separation of co-channel
signals. Herein, we choose this algorithm as a solution to the HB problem at hand. More
specifically, the solution of problem (5.29) yields the analong and digital wideband beamforming
matrices, under the constraint that the analog part satisfies a constant modulus restriction.

The algorithm starts by assuming an initial guess Â to obtain B̂ in the LS sense, yielding

B̂ = Â†ΓL. (5.30)

Given B̂, we then conditionally update Â in the LS sense, which gives

Ã = ΓLB̂†. (5.31)

Since the solution found for Â in the equation above is unstructured and does not meet the finite
resolution requirement for the phase shifters, we project the elements of Â onto the admissible
set A, i.e.

Â = projA
[
Ã
]

(5.32)

The overall algorithm is summarized in Table 4.

Note that, in the proposed solution, the number of RF chains scales with the rank of the
covariance matrix, i.e. L = Jp. Thus, this technique requires half of the number of RF chains
needed in the paired phase shifter solution. As an example, Fig. ?? shows a BS using 4 RF chains
to create 4 beams by applying the ALSP algorithm. The results show that this solution offers a
better performance than the solution discussed previously, since the proposed one enables us to
spatially multiplex more pilots per unit of time.
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Figura 5.10 – The figure shows an example using 4 RF chains to create 4 beams.
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The next subsection discusses more about implementation aspects and how they can be
considered int the framework of Eq. (5.29).

5.8.3 Dealing with Implementation Issues Using The ALSP Framework

Hybrid beamforming performance is limited by the phase-shifter network limitations. In
the framework stated by the problem (5.29), the set A contain matrices with constant amplitude
entries and continuous phases. However, such an assumption leads to very cost phase-shifters
in practice, since the need for an accurate phase control demands expensive components. The
use of phase-shifters with infinite precision is not always practical in massive MIMO because
they proportionally increase to the number of antennas. Given this limitation, low-resolution
phase-shifters are very attractive in terms of implementation aspects. They offer simplicity
and cost reduction compared with the HB using high resolution phase-shifters or/and digital
beamforming.

Another important aspect is the number of phase-shifters which varies according to the
HB architecture. This is determined by the number of connections that every RF chain has
with the antenna array. The most common approach is the full connected phase-shifter network,
where all the antenna elements have connections to all the RF chains. However, this leads to a
large RF circuit that is susceptible to losses. To solve this issue, a sub-connected network can
be implemented instead. In this case, the RF chains are connected only to a subset of antenna
elements. This indeed reduces the number of phase-shifters, but also reduces also the degree of
processing which leads also to loss performance comparing to other beamforming schemes such
as digital beamforming or HB with full connected phase-shifter network.

The above issues can be incorporated into the ALSP framework by defining a set A that
contains Q points. Each point stands for a possible analog beamforming solution A obtained
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Algorithm 4 ALSP
Require: A ∈ A
Ensure: minA,B ‖Γ−AB‖2

F

Start the algorithm with a random choice of Â
while ‖Âi − Âi−1‖2

F ≥ ε do
B̂i+1 = A†iΓ
Âi+1 = ΓB†
Âi+1 = proj

[
Âi+1

]
end while

using a set of phase-shifter with X values of resolution. The phase-shifter network also obeys a
given configuration of connection between the RF chain and the set of antennas which defines
the architecture of the analog part.

5.8.4 Convergence Aspects For Wideband Beamforming

Before discussing convergence results, we review some important definitions that are
part of the framework applied on our convergence analysis. As we know, an algorithm is an
iterative process that generates a sequence of points {Vk}∞k=1, where Vk ∈ V . The points are
generated using a mapping function T : V → V that maps a point from a space V to the same
space V , i.e. Vk = T (Vk−1). For the mapping function T , there is a fixed point V? such that
V? = T (V?). The set of all possible fixed points is defined as C.

Given the definition of the mapping function, we now state the definition of the descent
function. A function f is descent for T if it satisfies the conditions

1. f : V → R is non-negative and continuous,

2. f(Vk+1) < f(Vk) for Vk+1 = T (Vk) and Vk+1 6∈ C,

3. f(Vk+1) ≤ f(Vk) for Vk+1 = T (Vk) and Vk+1 ∈ C.

Using this framework in the context of the problem under investigation, we define the set
V , the mapping function T , and the descent function f with respect to the algorithm stated in the
Table 4. Therefore, the ALSP algorithm is the mapping function T , the pair Vk = (Ak,Bk) is
an element of the set V = A× CL×Jp , and the objective function is given by f(A,B; Γ). For
the sake of simplicity, we skip the sub-index Jp in ΓJp .

To prove that f(A,B; Γ) is a descent function, it has to meet the three conditions. For
the first condition, it is natural to say that f(A,B; C) is non-negative and continuous in A and
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B. To prove the second and third conditions note that [82]

f(Ak,Bk; Γ) = ‖Γ−AkBk‖2
F

= min
B
‖Γ−AkB‖2

F

≤ ‖Γ−AkBk−1‖2
F (5.33)

= min
A∈A
‖Γ−ABk−1‖2

F

≤ ‖Γ−Ak−1Bk−1‖2
F (5.34)

= f(Ak−1,Bk−1; Γ) (5.35)

The inequality (5.33) is strict unless Bk = Bk−1 and the inequality (5.34) is also strict if Ak =
Ak−1.This means that the objective function decreases unless (Ak−1,Bk−1) = T (Ak−1,Bk−1).
This shows that the function is decreasing until the algorithm reaches the fixed-point which
essentially comprises the conditions two and three.

The algorithm convergence is guaranteed by analyzing the set A that defines the matrix
A. Let us assume that A is a finite set. This means that the phase-shifters are finite and that they
have a set of possible phases. The total number of As is given by the cardinality of A, which we
define as |A| = Q, and each element of A is associated uniquely to a given Bk. This association
is always true when each LS formulation leads to an unique solution which happens if and only
if the matrices A and B are not rank deficient. The solutions obtained from each LS problem
creates a pair (Ak,Bk) and there are a total of Q different pairs. Let us consider that after Q+ 1
iterations, the algorithm generated a sequence {(Ak,Bk)}Q+1

k=1 . We can affirm that there are at
least two points in this sequence that must be the same. Taking into account this fact, let us
assume that the indices of such points are j and j + l, which means that

f (Aj,Bj) = f(Aj+l,Bj+l). (5.36)

If l = 1 then (Aj,Bj) is a fixed-point because T (Aj,Bj) = (Aj+1,Bj+1) = (Aj,Bj). Now,
let us assume l > 1, i.e. (Aj,Bj) is not a fixed point. Hence,

f (Aj,Bj) > f(Aj+l,Bj+l). (5.37)

However, (5.36) and (5.37) are contradictory because we have the same pair, which means that
(Aj,Bj) must be a fixed point. Hence, a fixed point is obtained with finite number of iterations.

5.9 Numerical Results and Discussions

In our simulations, we use the channel model COST 2100 extended for massive MIMO,
and proposed by the EU project MAMMOET in [77]. In the simulations, Two types of scenario
are considered, which correspond to high and low angular spreads. The channel is generated at
2.6 GHz with 10 MHz bandwidth.
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5.9.1 Performance of the MMSE Estimator and Its Implications

Figure (5.11) shows the MSE curve of the estimator defined in Eq. (5.19) using the
ALSP algorithm to implement the optimum beams. After finding the matrices A and B from this
algorithm, the BS uses the eigenvalues of the covariance matrix R to assign the power associated
with each beam. The BS tests equal and waterfilling power allocations and they are shown in
Figures 5.11a and 5.11b, respectively.

Figure 5.11b shows that the MSE tends to decrease as the number of beams increases.
This behaviour comes from the fact that the estimator collects more components of the channel
covariance matrix which results in a more accurate estimation according to Eq. (5.23). However,
there is a region with very high values of MSE where the estimation fails. This happens because
the individual SNR of each beam becomes very small and no power is allocated.

Notice that there is a point where the channel estimator does not improve. In this case,
the number of beams employed in the pilot transmission has reached the rank of the covariance
matrix. This means that the estimator collects energy from all possible eigenmodes that represent
the channel.

As expected, the equal power solution shown in Fig. 5.11a achieves the same performance
as the case with power allocation when the system is operating under high SNR conditions.
Different from the optimum solution, the method does not take into account the eigenvalues
of the spatial covariance matrix, which results in a suboptimal performance in terms of MSE.
To compensate this, the BS needs to increase the transmitted power to guarantee high channel
estimation quality. The current Long Term Evolution (LTE) standard uses a power boost solution
to guarantee the estimation quality [60]. But the proposed technique, saves transmitted power by
exploiting the array gain of the massive MIMO system and also the knowledge of the covariance
matrix.

5.9.2 Beam Implementation

The use of beams plays an important role on the proposed channel estimation technique.
As discussed before, there is more than one method of designing the HB. The ones considered in
the simulations are i) the W(k) = ABC(k) and ii) W(k) = AD(k). In model (i), two methods
are considered to design A and B, namely the paired phase-shifter and the ALSP algorithm. In
model (ii), A is designed as the phase-only version of ΓJp and D(k) is a diagonal matrix that
contains the weights of the beams, where they are obtained from the power allocation algorithm.
We compare the three solutions in terms of the sum rate (bps/Hz), which is calculated by using
the singular vectors of Ĥe to design C(k) and D(k).

Figure 5.12 shows results for two scenarios: low and high angular spread. The implemen-
tation using W(k) = ABC(k) outperforms W(k) = AD(k) because the wideband filter AB
achieves a better approximation of the eigenvectors than using only the phase-only version of
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the eigenvector matrix to design A. Moreover, the first model combines multiple phase-shifters
to adjust the signal amplitude which reduces the performance loss of the HB.

Comparing the performances of ALSP and paired phase-shifter in Fig. 5.12, the curves
show that the first achieves better performance than the latter (shown in Section 5.8.1). This is
because ALSP produces more beams with the same number of RF chains used in the paired
method, and consequently spatially multiplexing more pilots. Using more beams, the channel
estimator uses more eigenmodes in the channel estimation process which naturally reduces the
MSE, as can be seen in Eq. (5.23). The estimation of more modes enables to capture more energy
from the channel which leads to a better sum-rate performance.

The performance in scenarios with high and low angular spreads are compared in terms
of the sum-rate (bps/Hz) in Fig. 5.12. The gain of the proposed solution is clearly in scenarios
with a high angular spread, as shown in 5.12a. On the other hand, the three methods achieve
similar performances in a low angular spread.

5.10 Conclusion

In this chapter, we developed strategies to desgin the HB exploiting the knowledge of the
spatial covariance matrix of the channel. We showed that the spectral efficiency of a large-array
HB system in FDD can be significantly increased by adapting the number of RF chains.

In the second part of this chapter, we generalized the channel model by adding multiple
antennas at the UE. Exploiting again the second order statistics of the channel, it is possible to
use the subspace of the channel covariance matrix to design a set of beams that optimally assists
channel estimation. The waterfilling solution gives us the optimum pilot power allocation, which
in turn defines the number of pilot sequences to be used for the channel estimation. The HB and
the channel estimator are jointly derived from the MMSE criterion which produces improved
estimation performance in low SNR scenarios.

From the analysis developed in this chapter, the proposed method using the ALSP
algorithm shows a better performance compared with that using the paired phase-shifter solution
and the phase-only version of the eigenvectors. The gains are more pronounced in high-angular
spread channels.
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Figura 5.11 – Plot of the MSE superficie with respect the number of beams and the power per
subcarrier for a scenario with high angular spread.
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Figura 5.12 – System sum-rate using HB solutions. Fig. (a) and Fig. (b) show the performance
in high-angular and low-angular spread scenarios, respectively.
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(b) Low-angular spread scenario
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6 CONCLUSIONS

In this thesis, we developed channel estimation techniques that do not depend on the
channel reciprocity and afforded pilot overhead reduction in massive MIMO systems. This was
possible because the proposed estimators exploit a structured environment to obtain a compressed
representation of the massive MIMO channel. The summary of our main conclusions are:

• Chapter 2 : CS gave us a powerful framework to derive new sparsity-based estimators for
massive MIMO channel. The proposed technique based on lasso-ADMM achieved better
performance in terms of estimation error than the well-known OMP algorithm. This is
because the optimization problem solved by latter does not take into account any source
of noise. On the other hand, lasso formulation has the parameter β that controls channel
estimator output between the sparsest solution and the one that minimizes the least-square
error. The comparison between the techniques showed that both tend to achieve the CRLB
in a high SNR scenario. Moreover, we also obtained that the CRLB depends on the
Grassmmanian pilot sequence matrix.

• Chapter 3 : The proposed tensor-based CS formalism provided accurate estimation of
frequency-selective channels. The approach capitalizes on a sparse multidimensional
decomposition model, for which the channel was formulated by means of a tensor algebra
formalism. This modeling approach yields the formulation of a tensor-based CS channel
estimator that exploits the three channel dimensions (space(transmitter), space(receiver)
and frequency) by solving the problem per dimension of the channel tensor. The proposed
tensor-OMP algorithm has a lower complexity than its vectorized version, which makes
possible the use of such an estimator in receivers with limited processing capabilities.

• Chapter 4 : Using CS framework, we proposed solution for mm-wave indoor systems
that provides high accuracy on estimating the sparse channel in this type of scenario. We
showed that the method has enhanced capabilities of dealing with the user mobility in
indoor scenarios. More specifically, the UE can track with accuracy the channel variations
and report the new angular information to the AN. We also show that simpler beamforming
tehcniques can achieve near optimum performance because the environment propagation
characteristics provided such a condition.

• Chapter 5: Using the spatial covariance matrix, it is possible to design a set of transmitter
beams for transmitting pilots to reduce the system overhead. Our results showed that the
proposed scheme drastically enhances the spectral efficiency of FDD systems, which are
mainly affected by the overhead issue. After this, we investigated the optimum beam and
channel estimator design to achieve the MMSE bound. From that analysis,we concluded
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that eigenvectors must be used for transmitting pilots and the eigenvalue must be used to
determine the number of sequences to be spatially multiplexed. The results showed that our
HB and estimator provide enhanced sum-rate performance in scenarios with high-angular
spread.

In terms of future perspectives, we can list:

1. extension of CS methods for estimating the spatial covariance matrix;

2. devise new HB transceivers with multiuser functionality;

3. investigate the hardware implications of HB transceivers in the system spectral efficiency
performance;

The first topic refers to the problem of estimating the spatial covariance matrix. To the
best of author’s knowledge, there is no work in massive MIMO literature that deals with this
issue. The challenge that arises here is similar to the one we treated in this thesis, which is the
overhead. Either using uplink or downlink, the number of pilots increases because of the large
covariance matrix dimensions. To solve it, the idea is to use the CS framework to derive new
sparsity-based covariance matrix estimators. This will give us solutions that will require fewer
pilots. We believe sparsity is an interesting approach because it gives us a relationship between
the channel measurements and the angular information described by the spatial covariance
matrix.

The second topic goes on the investigation of HB transceivers for multiuser MIMO.
There are works in the literature that propose solutions using HB transmitters in that scenario,
but they are very few. There a lot of open questions yet which gives us the opportunity to propose
new multiuser transmitters and receivers based on HB architecture. For instance, we can cite the
multiuser detection schemes, that are mainly derived based on full digital receivers. To the best
of author’s knowledge, HB has not been considered yet in multiuser detection algorithms which
means that there are opportunities to propose new solutions.

The third topic investigates the implementation aspects of a HB. The hardware implicati-
ons have not been covered by this thesis, but they must be considered in order to guarantee good
performance and also ensure the promised benefits of massive MIMO systems. For instance, we
cite the ADC and DAC resolutions that were assumed infinite in this work. In practice, we have
instead a set of finite resolution converters which lead to undesirable non-linear effects over the
signal. However, by modelling such an effect, we can then propose new schemes that provide
robustness against this degradation. Moreover, we cite the high number of phase-shifters that
come by using a full connected analog beamforming. To tackle it, one idea consists of using
distributed hardware solutions to reduce the number of phase-shifters. That is, the transceiver
uses small modules that implement a HB with fewer antennas. When the modules are connected,
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we can create a massive array with a distributed architecture. In such a case, the number of
phase-shifters is smaller because the analog network does not connect every antenna element to
each RF chain. This novel architecture would open the possibility of developing new distributed
channel estimators, detection and beamforming solutions that could be derived using the ADMM
framework.

This thesis gives its contribution mainly on the channel estimation aspects. However, as
the reader may have noticed, there are other problems to be investigated in massive MIMO area.
As a future perspective of this work, we intend to deeply investigate the three aforementioned
topics, since they are a natural continuation of this work.
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7 APPENDIX - MMSE ESTIMATOR

Consider the minimization problem

min
G

E
{
‖Y(k)G−He(k)‖2

F

}
. (7.1)

This problem can be rewritten in function of the channel error matrix. Using the definition in
Eq. (5.17), we define the cost function as

f(G) , E
{
‖∆(k)‖2

F

}
= E

{
trace{∆(k)H∆(k)}

}
= trace{(GHPHCH − I)Re(CPG− I)}

+trace{GHRzG}.

To solve the problem in (7.1), we calculate the derivative of the cost function f(G)

∂f(G)
∂GH

= PHCHRe(CPG− I) + RzG. (7.2)

Consider ∂f(G)
∂GH = 0, thus

0 = PHCHRe(CPG− I) + RzG

0 =
(
PHCHReCP + Rz

)
G−PHCHRe

GMMSE =
(
PHCHReCP + Rz

)−1
PHCHRe. (7.3)

7.1 Minimization of the MSE

Using the expression of the MMSE estimator, we can obtain the spatial covariance matrix
of the estimated effective channel given by

RĤe
= ReCP

(
PHCHReCP + Rz

)−1
PHCHRe. (7.4)

Using this result, we express the cost function as

MSE(Re) = trace{Re −

ReCP
(
PHCHReCP + Rz

)−1
PHCHRe}

Using the Eq. (7.3), we can obtain a closed-form to the minimum MSE expression. Our interest
is mainly on the second term of Eq. (7.5). In this way, we define

MSE1(Re) = trace{Re} (7.5)

MSE2(Re) = trace{ReCP
(
PHCHReCP + Rz

)−1
PHCHRe} (7.6)
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We can rewrite MSE2(Re) as

MSE2(Re) = trace{ReC
(
CHReC + PHRzP

)−1
CHRe} (7.7)

Consider that we design the pilot sequence so that PHRzP = Λz. Thus,

MSE2(Re) = trace{ReC
(
CHReC + Λz

)−1
CHRe}. (7.8)

Assuming that the BS knows the channel covariance matrix R, we design A and B as

Γ = AB. (7.9)

Using this design the equivalent spatial covariance matrix is given by

Re = ΛJp , (7.10)

where ΛJp is a Jp × Jp diagonal matrix created from the Jp first eigenvalues of the channel
covariance matrix R. Assuming the design in (7.9), the Eq. (7.8) is rewritten as

MSE?2 = trace{ΛJpC
(
CHΛJpC + Λz

)−1
CHΛJp}

= trace{
(
CHΛJpC + Λz

)−1
CHΛ2

JpC}.

Assuming that C is a Jp × Jp diagonal matrix, the expression is can be reduced tp

MSE?2 =
Jp−1∑
i=0

λ2
i c

2
i

λic2
i + σ2 . (7.11)

The minimum MSE is

MSE? = MSE?1 + MSE?2

= N −
Jp−1∑
i=0

λ2
i c

2
i

λic2
i + σ2 (7.12)

7.2 Power Allocation for Pilot Sequences

Consider the minimization problem

min
c

N −
Jp−1∑
i=0

λ2
i pi

λipi + σ2

s.t.
Jp−1∑
i=0

pi = β

pi ≥ 0, ∀i ∈ {0, . . . , Jp − 1} (7.13)

The Lagrangian function is defined as

L(γ, µ, α) = N −
Jp−1∑
i=0

λ2
i pi

λipi + σ2 + µ

Jp−1∑
i=0

pi − β

− Jp−1∑
i=0

αipi, (7.14)
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where γ =
[
γ0, . . . , γJp−1

]T
. The derivative over pi is given by

∂L(γ, µ)
∂γi

= λ2
i (λipi + σ2)− λ2

i piλi

(λipi + σ2)2 + µ− αi,

= λ2
iσ

2

(λipi + σ2)2 + µ− αi (7.15)

To assign the optimal point, consider ∂L(γ,µ)
∂γi

= 0. Thus

λ2
iσ

2

(λipi + σ2)2 + µ− αi = 0

λ2
iσ

2

(λipi + σ2)2 = αi − µ

λipi + σ2 =
√

σ2

αi − µ

pi =

√√√√ λ2
iσ

2

λ2
i (αi − µ) −

σ2

λi

pi =

√√√√ σ2

(αi − µ) −
σ2

λi

(7.16)

Because of the orthogonality condition from Karush Kuhn Tucker (KKT) conditions,
we know that for any i γi and αi cannot both be nonzero. If γi 6= 0 then αi = 0, and we get the
equation Thus,

pi =

K −
σ2

λi
if 0 < µ ≤ 1

0, otherwise,
(7.17)

where K =
√

σ2

µ
is a constant. To calculate this parameter, we use the total power constraint.

Thus,

Jp−1∑
i=0

K −
Jp−1∑
i=0

σ2

λi
= β

K = 1
Jp

Jp−1∑
i=0

σ2

λi
+ β

 . (7.18)

The Lagrangian multiplier is

µ = − σ2

1
J2
p

(∑Jp−1
i=0

σ2

λi
+ β

)2 . (7.19)
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7.3 Minimum MSE Employing The Optimum Pilot Power Allocation

To calculate the minimum MSE, we firstly substitute (7.17) into the total power constraint
stated in minimization problem (7.13). Thus

MSE? = N −
Jp−1∑
i=0

λ2
i p
?
i

λip?i + σ2

= N −
Jp−1∑
i=0

λ2
i

(
K − σ2

λi

)
λi
(
K − σ2

λi

)
+ σ2

= N −
Jp−1∑
i=0

λ2
i

(
K − σ2

λi

)
λiK

= N −
Jp−1∑
i=0

λiK − σ2

K

= N −
Jp−1∑
i=0

λi −
Jp−1∑
i=0

σ2

K

= N −
Jp−1∑
i=0

λi −
Jp−1∑
i=0

Jpσ
2(∑Jp−1

i=0
σ2

λi
+ β

)
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