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RESUMO 

 

Os objetivos deste estudo foram: (1) avaliar os efeitos da cilostamida e das metades 

foliculares sobre o bloqueio da retomada da meiose de oócitos in vitro no complexo cumulus 

oócito bovinos (COC) , (2) investigar a reversibilidade do efeito da cilostamida na retomada 

da meiose, e (3) quantificar os níveis de AMPc em COCs, oócitos desnudos (OD) e células do 

cumulus (CC) após o cultivo de COCs na presença de cilostamida e metades foliculares. Para 

este fim, os oócitos de bovino foram submetidos a um período de pré-maturação de 12 h em 

meio contendo 10 µM cilostamida, metades foliculares ou combinação de ambos e, em 

seguida, submetidos a maturação in vitro. Para avaliar a reversibilidade do efeito da 

cilostamida, no final deste período de cultura, COC foram lavados e colocados em meio de 

maturação, sem cilostamida por 12, 14, 16, 18, 20, 22 e 24 horas. Para avaliar os níveis de 

AMPc, COCs submetidos a pré-maturação por 6 h foram utilizados para a quantificação do 

nível de AMPc. Após 12 horas de cultivo, grupos de COCs foram fixados para avaliar a 

configuração da cromatina e progressão da meiose. Os resultados mostraram que COCs 

cultivados em presença de cilostamida e metades foliculares apresentaram percentuais 

significativamente maiores de oócitos em vesícula germinativa (94%), depois de um período 

de 12 h de pré-maturação, do que COCs cultivados em outros tratamentos. Após o bloqueio, 

75% dos oócitos atingiram metáfase II após 16 horas de maturação, enfatizando que o 

tratamento não é tóxico para os oócitos. Além disso, os oócitos cultivados em meio contendo 

cilostamida e metades foliculares tinham níveis significativamente mais elevados de AMPc 

quando comparado com outros tratamentos. Concluiu-se que a cilostamida e metades 

foliculares interagem e promovem a manutenção de oócitos no estágio de vesícula 

germinativa, aumentando os níveis de AMPc em COCs cultivados. 

 

Palavras-chave: maturação oócitária, bloqueio da meiose, cilostamida, metades foliculares.  
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ABSTRACT  

 

The aims of this study were (1) to evaluate the effects of cilostamide and follicular 

hemisections on the blockage of in vitro oocyte meiotic resumption in bovine cumulus oocyte 

complexs (COCs), (2) to investigate the reversibility of cilostamide effect on meiotic 

resumption, and (3) to quantify the levels of cAMP in COCs, denuded oocytes (DO) and 

cumulus cells (CC) after culturing COCs in presence of cilostamide and follicular 

hemisections. To this end, bovine oocytes were subjected to a pre-maturation period of 12 h in 

medium containing 10 µM cilostamide, follicular hemisections or combination of both and, 

then, submitted to in vitro maturation. To evaluate the reversibility of cilostamide effect, at 

the end of this culture period, COCs were washed and placed in maturation medium without 

cilostamide for 12, 14, 16, 18, 20, 22 and 24 hours. To investigate the levels of cAMPc, COCs 

subject to pre-maturation for 6 h were used to measure the levels of cAMP. After 12 hours of 

culture, groups COCs were fixed to assess chromatin configuration and meiotic progression. 

The results showed that COCs cultured in presence of cilostamide and follicular hemisections 

had significantly higher percentages of oocytes at germinal vesicle stage (94%), after a period 

of 12 h of pre-maturation, than COCs cultured in other treatments. After blocking treatment, 

75% of oocytes reached metaphase II after 16 h of maturation, emphasizing that the treatment 

is not toxic to oocytes. Moreover, oocytes cultured in medium containing cilostamide and 

follicular hemisctions had significantly higher levels of cAMP when compared to other 

treatments. It is concluded that cilostamide and follicular hemisections interact and promotes 

the maintenance of oocytes at germinal vesicle stage by increasing the levels cAMP in 

cultured COCs.  

 

Keywords: oocyte maturation, meiosis block, cilostamide, follicular hemisections. 
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1 INTRODUÇÃO 

Em bovinos, o período peri-ovulatório é liderado pelo pico pré-ovulatório de LH, 

o qual estimula a retomada da meiose oocitária e culmina com a ovulação, in vivo. In vitro, a 

maturação meiótica ocorre logo após a retirada do oócito de folículos antrais, geralmente 

antes da divergência folicular, entre 3 e 8 mm (FAIR et al., 1995), o que diminui o período de 

obtenção da competência oocitária. A competência oocitária representa a capacidade do 

oócito completar a maturação, submeter-se a fertilização bem sucedida e alcançar o estágio de 

blastocisto (ASSIDI et al., 2008). Considerando que baixas taxas de capacitação oocitária são 

obtidas in vitro, diversos estudos têm sido realizados para a obtenção de mecanismos que 

atuem no bloqueio da retomada espontânea da meiose com o objetivo de proporcionar mais 

tempo para os oócitos desenvolverem competência meiótica completa, resultando em oócitos 

de melhor qualidade. A detenção prolongada de oócitos na prófase I da meiose e subseqüente 

retomada da meiose está correlacionado com os níveis intra-oocitários do mensageiro 

secundário 3 '5'-monofosfato adenosina cíclico (AMPc) (KAWAMURA et al., 2011). Dessa 

maneira, o uso de substâncias que mantenham altas concentrações de AMPc no interior do 

oócito, como a cilostamida (BILODEAU-GOESEELS, 2012; ALBUZ et al., 2010; SHU et 

al., 2008) tem contribuído para o bloqueio da retomada da meiose in vitro. A cilostamida é 

um bloqueador específico da enzima fosfodiesterase 3 que está presente no oócito. Os efeitos 

de cilostamida no desenvolvimento in vitro tem sido estudado em humanos (SHU et al., 2008; 

VANHOUTTE et al., 2008; VANHOUTTE et al., 2009), bovinos (LUCIANO et al., 2011; 

ALBUZ et al., 2010), ovinos (ROSE et al., 2013) e camundongos (NOGUEIRA et al., 2003; 

VANHOUTTE et al., 2008; ALBUZ et al., 2010; JEE et al., 2009). 

Outro método que tem sido bastante estudado é o cocultivo de COCs com 

metades foliculares. Estudos realizados com a utilização de metades foliculares indicam que 

essas células produzem fatores que inibem a progressão da meiose oocitária. Em bovinos, o 

cultivo com metades foliculares manteve uma percentagem de 60% de oócitos em bloqueio 

meiótico após 24 horas de cultivo (RICHARD & SIRARD, 1996). Esse modelo utilizado para 

estudar o reinício da meiose oocitária é bem estabelecido (GIOMETTI et al., 2005; 

BARRETA et al., 2008; SIQUEIRA et al., 2012b), pois as células da teca e da granulosa 

fisiologicamente mantém os oócitos em prófase I até o pico de LH (AYALON et al., 1972). 

Esse fato pode ser evidenciado pela manutenção de oócitos em VG quando co-cultivados com 
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metades foliculares ou em meio condicionado por estas células (SIRARD E FIRST, 1988; 

RICHARD E SIRARD, 1996; GIOMETTI et al., 2005; BARRETA et al., 2008).  

Para um melhor entendimento da importância deste trabalho, segue uma breve 

revisão de literatura onde serão abordados aspectos relacionados à oogênese, foliculogênese, 

recrutamento, seleção e dominância, maturação oocitária, importância das células foliculares 

para a maturação oocitária e bloqueio da maturação oocitária. 
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2 REVISÃO DE LITERATURA 

 

2.1 OOGÊNESE 

 

A oogênese pode ser definida como um processo celular, molecular e fisiológico 

que envolve a formação, o crescimento e a maturação do oócito que tem início na vida intra-

uterina e termina após a fertilização. Na maioria dos mamíferos, a oogênese começa com a 

formação das células germinativas primordiais (CGPs), cuja origem é extragonadal, do 

endoderma primitivo, sendo oriundas da porção caudal da linha primitiva e do saco vitelínico 

adjacente (WASSARMAN e ALBERTINI et al., 1994). Em vacas este evento pode ser 

observado no 35° dia de gestação (ERICKSON et al., 1966). As células germinativas 

primordiais passam por sucessivas mitoses e migram através de movimentos amebóides do 

saco vitelínico para as gônadas em desenvolvimento (SOTO-SUAZO e ZORN et al., 2005). 

Após perderem suas características de motilidade e sofrerem extensiva proliferação celular e 

redistribuição das organelas citoplasmáticas, as células germinativas primordiais se 

transformam em oogônias (SADEU et al., 2006). As oogônias formadas são envolvidas por 

um cordão de células somáticas provenientes do mesonéfron e a partir de então sofrem 

sucessivas mitoses, em seguida entrarão na primeira divisão meiótica (estágio de prófase I) e 

passarão a ser denominadas oócitos primários (SUH et al., 2002). Os oócitos começam a 

primeira divisão meiótica, passando pelos estágios da prófase I (leptóteno, zigóteno, 

paquíteno e diplóteno) da primeira divisão meiótica (Van den HURK e ZHAO, 2005). No 

estágio de diplóteno ou vesícula germinativa da prófase I, ocorre a primeira interrupção da 

divisão meiótica e formação dos oócitos primários, que permanecem neste estágio até a 

puberdade (SUH et al., 2002). Na puberdade, em razão da liberação pré-ovulatória de LH, a 

meiose é retomada e o núcleo oocitário entra em diacinese (ADASHI, 1994). Em seguida, 

ocorre o rompimento da vesícula germinativa, progressão para metáfase I, anáfase I, telófase 

I, expulsão do primeiro corpúsculo polar e formação do oócito secundário, iniciando a 

segunda divisão meiótica, em que o núcleo do oócito evolui até o estágio de metáfase II, 

quando ocorre a segunda interrupção da meiose (GORDON et al.,1994). O oócito permanece 

assim até ser fecundado pelo espermatozóide, quando então completa a meiose e expulsa o 

segundo corpúsculo polar, formando o oócito haplóide fecundado (MOORE e PERSAUD, 

1994). 
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2.2 FOLICULOGÊNESE 

 

A foliculogênese é o processo de formação, crescimento e maturação folicular, 

que inicia com a formação dos folículos primordiais e culmina com a ovulação ou morte 

folicular por atresia (VAN DEN HURK; ZHAO, 2005). O folículo é a unidade fundamental 

do ovário dos mamíferos, apresentando duas funções importantes: assegurar a nutrição, o 

crescimento e a maturação do oócito de forma a permitir a ovulação, bem como produzir 

hormônios como o estrógeno e peptídeos importantes para o seu completo desenvolvimento 

(CORTVRINDT e SMITZ, 2001; ADASHI, 1994). Eles são constituídos por diferentes tipos 

celulares (oócito, células da granulosa e da teca) dos quais suas interações são essenciais para 

a foliculogênese (BONNET et al., 2008). Durante o seu desenvolvimento, o folículo ovariano 

sofre constantes modificações em sua morfologia, tendo como principais características o 

crescimento do oócito, a proliferação e a diferenciação das células da granulosa e da teca, bem 

como o aparecimento da cavidade antral (BRISTOL-GOULD; WOODRUFF, 2006). Diante 

dessas mudanças morfológicas pode se verificar que a população folicular nos ovários é 

bastante heterogênea variando entre as espécies (SAUMANDE, 1991). Dessa forma, é 

possível classificar os folículos ovarianos de acordo com o estágio de desenvolvimento em 

pré-antrais ou não cavitários (primordiais, primários e secundários), que possuem um oócito 

circundado por uma ou mais camadas de células somáticas. Já os folículos antrais ou 

cavitários são caracterizados pela presença de uma área preenchida por fluido folicular, 

denominada antro, em que, a partir de então, passam a ser classificados como antrais: 

terciários e pré-ovulatórios. Na fase antral, a maioria dos folículos sofrem atresia, enquanto 

alguns deles continuam o crescimento e atingem o estágio pré-ovulatório sob um estímulo 

cíclico de gonadotrofinas, que ocorre após a puberdade (McGEE e HSUEH, 2000). 

2.2.1 Folículos pré-antrais 

Após a colonização dos ovários pelas células germinativas primordiais e posterior 

diferenciação em oogônias e oócitos, uma camada de células somáticas planas, conhecidas 

também como células da pré-granulosa, circundam os oócitos formando assim os folículos 

primordiais (JUENGEL et al., 2002). Estes folículos constituem o pool de reserva folicular, 

compreendendo cerca de 95% de toda população folicular presente nos ovários dos mamíferos 

(FIGUEIREDO et al., 2008). Durante a vida reprodutiva das fêmeas, cada folículo primordial 

tem três possíveis destinos: (I) manter-se quiescente ou em repouso durante todo o período 

reprodutivo; (II) ser ativado e fazer parte do pool de folículos em crescimento, podendo sofrer 
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atresia ou ovulação em uma fase posterior do desenvolvimento, ou ainda (III) sair da 

quiescência e sofrer atresia diretamente (McGEE & HSUEH, 2000; BROEKMANS et al., 

2007).  

O processo pelo qual o folículo primordial sai do pool de reserva e inicia a fase de 

crescimento é denominada de ativação folicular, caracterizado por diversas mudanças 

morfológicas que incluem o aumento do diâmetro oocitário, a proliferação das células da 

granulosa, bem como a mudança de formato destas células de pavimentosas para cúbicas 

(RUSSE, 1983; EDSON et al., 2009). O controle da ativação de folículos primordiais envolve 

uma comunicação bidirecional entre o oócito e suas células somáticas circundantes (EPPIG, 

2001). Este evento é marcado por um período de crescimento acentuado do oócito, com 

intensa atividade metabólica. Nesta fase de crescimento, inicia-se o surgimento de uma rede 

de junções gap, que correspondem a canais intercelulares que permitem a passagem de 

nutrientes, íons inorgânicos, mensageiros secundários e pequenos metabólitos de uma célula 

para outra. Estes canais são compostos por conexinas, sendo a conexina 43 a mais abundante 

no ovário uma vez que esta é expressa nas células da granulosa desde o início da 

foliculogênese (ACKERT et al., 2001). Em contrapartida, a membrana plasmática do oócito 

apresenta projeções que penetram entre as células da granulosa adjacentes e algumas 

microvilosidades aparecem na superfície oocitária (LUCCI et al., 2001). O crescimento do 

oócito depende do suporte de fatores de crescimento e nutrientes secretados pelas células da 

granulosa. Ao mesmo tempo, os oócitos não são simplesmente receptores passivos, em vez 

disso, eles têm um papel essencial no controle da proliferação e diferenciação das células da 

granulosa durante o desenvolvimento dos folículos (SAGA, 2008). Além disso, à medida que 

os folículos iniciam o crescimento, as proteínas que irão formar a zona pelúcida começam a 

ser sintetizadas (LEE, 2000).  

Os folículos são denominados de primários quando o oócito passa a ser 

circundado por uma camada completa de células da granulosa de formato cúbico 

(GOUGEON; BUSSO, 2000). Em fetos de bovinos, o aparecimento de folículos primários, 

ocorre aos 140 dias de gestação (RUSSE, 1983). Durante o crescimento destes folículos, as 

células da granulosa se proliferam e há um aumento do oócito em tamanho e conteúdo 

protéico (PICTON; BRIGGS; GOSDEN, 1998).  

 Já os folículos secundários são caracterizados pela presença de duas ou mais 

camadas de células da granulosa de formato cúbico ao redor do oócito primário. A presença 
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destes folículos pode ser observada em fetos bovinos aos 210 dias de gestação, 

respectivamente (RUSSE, 1983). Nesta fase, o núcleo do oócito começa a assumir uma 

posição excêntrica e as organelas começam a se mover para a periferia. A zona pelúcida é 

claramente identificada e o oócito entra em fase de crescimento intensivo aumentando seu 

volume como resultado do acúmulo de água, íons, carboidratos, proteínas e lipídeos (FAIR et 

al., 1997). Em seguida, as células da teca, recrutadas a partir do estroma intersticial, formam 

uma camada em torno das células da granulosa (PETERS, 1979). Essa progressão parece ser 

controlada por hormônios, peptídeos e fatores de crescimento intraovarianos (FORTUNE, 

2003; VAN DEN HURK; ZHAO, 2005). 

 

2.2.2 Folículos Antrais  

Com o crescimento dos folículos secundários e organização das células da 

granulosa em várias camadas, ocorre à formação de uma cavidade repleta de líquido 

denominada antro (DRIANCOURT, 2001). O fluido folicular que preenche esta cavidade 

contém água, eletrólitos, proteínas séricas e alta concentração de hormônios esteróides 

secretados pelas células da granulosa (BARNETT et al., 2006), sendo a produção deste fluido 

intensificada pelo aumento da vascularização folicular e permeabilidade dos vasos 

sanguíneos, os quais estão fortemente relacionados com o aumento do folículo antral (Van 

den HURK e ZHAO, 2005). Dentre as várias substâncias presentes no fluido folicular, 

destacam-se as gonadotrofinas, hormônios esteroides, enzimas, lipoproteínas, bem como 

fatores de crescimento intraovarianos (WU; TIAN, 2007). Após a formação do antro, os 

folículos terciários avançados passam a ser dependentes de gonadotrofinas e ainda possuem 

um oócito primário.  

 

Figura 1. Caracterização morfológica da foliculogênese (adaptado de EDSON et al., 2009) 

Primordial Primário Secundário 
Antral Pré-ovulatório Ovulação Células 

Germinativas 



23 

 

 

2.3.  Recrutamento, seleção e dominância 

Os folículos ovarianos passam por fases distintas de crescimento que acontecem 

em ondas. Esses períodos são denominados recrutamento, seleção, dominância e atresia 

folicular. DRIANCOURT (2001) define como recrutamento, ou emergência, o crescimento de 

um grupo de folículos dependentes de gonadotrofinas. Eles são recrutados, quando têm o seu 

diâmetro em torno de 2-3 mm, sempre após um rápido aumento das concentrações de FSH. A 

concentração máxima de FSH se dá quando o maior folículo da onda possui diâmetro 

próximo de 5 mm. Em seguida, essas concentrações de FSH caem para níveis basais (BEG et 

al., 2002). O desenvolvimento folicular de bovinos é primeiramente coordenado por 

gonadotrofinas hipofisárias. O hormônio folículo estimulante (FSH) possui um papel chave na 

regulação da emergência das ondas foliculares e manutenção do crescimento dos folículos 

durante o período inicial do desenvolvimento. Em cada onda folicular, o período inicial é 

caracterizado por uma fase de desenvolvimento comum, onde os folículos crescem em 

diâmetro em resposta ao aumento dos níveis séricos de FSH (ADAMS et al., 1992). 

Após o recrutamento, ocorre a fase de seleção ou divergência. Nesse momento, um folículo 

continua a crescer, tornando-se dominante, enquanto os demais atingem um platô e depois 

reduzem suas taxas de crescimento, tornando-se subordinados. Em espécies monovulatórias, o 

período de seleção folicular resulta na diminuição do número de folículos em crescimento até 

o completo estabelecimento da dominância, onde geralmente é observado o crescimento de 

somente um folículo. Esta diminuição do número de folículos em crescimento se deve por um 

aumento na capacidade secretória de estradiol pelos folículos em desenvolvimento e com isso 

uma regulação na secreção de FSH (PRICE E WEBB, 1988; MIHM et al., 2000). O aumento 

das concentrações séricas de estradiol diminuem a expressão e a estabilidade do gene que 

codifica a subunidade beta do FSH (ROCHE, 1996), ocasionando assim uma diminuição dos 

níveis plasmáticos desse hormônio. A divergência folicular é caracterizada por uma diferença 

na taxa de crescimento entre o futuro folículo dominante e seus subordinados e ocorre 

concomitante com a diminuição dos níveis plasmáticos de FSH (GINTHER et al., 1996). O 

dominante será anovulatório se ocorrer durante a fase em que o corpo lúteo encontra-se ativo 

secretando altos níveis de progesterona e ovulatório se ocorrer no momento em que os níveis 

de progesterona estiverem baixos devido a luteólise (GINTHER et al., 1996). Esse fenômeno 

se dá em bovinos quando o maior folículo apresenta em média 8,5 mm (BEG et al., 2002). O 

diâmetro máximo dos folículos subordinados varia de 6,2 a 7,1 mm (BORGES et al., 2001). 

A aquisição de receptores para LH nas células da granulosa é o fator diferencial do folículo 
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que se tornará dominante em relação aos demais folículos em crescimento (BAO et al., 1997). 

Outra característica do folículo dominante é a sua alta capacidade de produzir estradiol. No 

dia cinco do ciclo estral, é muito maior a concentração de estradiol no folículo dominante em 

relação aos seus subordinados e acredita-se que isso reflita diretamente com o término do 

aumento na concentração de FSH e na manutenção de níveis basais desse hormônio 

(FORTUNE et al., 2001). O folículo dominante é o maior responsável pela queda dos níveis 

de FSH e consegue crescer mesmo sob baixos níveis desse hormônio. Estradiol intrafolicular, 

fator de crescimento semelhante à insulina (IGF-1) e ativinas parecem estar envolvidos na 

capacidade do folículo dominante de responder às alterações nas gonadotrofinas (BEG et al., 

2002). Quando as concentrações de FSH declinam, os folículos demonstram mudanças em 

suas características tais como: redução da sua atividade estrogênica, redução nos níveis de 

inibinas de alto peso molecular e aumento de proteínas ligadoras de IGF (IGFBPs) 

culminando com a apoptose das células da granulosa. Somente o folículo dominante é capaz 

de manter a proliferação celular, acumular fluidos foliculares e aumentar sua capacidade 

esteroidogênica nesse ambiente de queda do FSH circulante (MIHM & BLEACH, 2003).  

Após o período de divergência, o folículo dominante passa por um processo de 

diferenciação, principalmente na camada das células da granulosa. Esse processo é 

caracterizado por um aumento na capacidade mitótica e esteroidogênica do folículo 

dominante. Este fato se deve por um aumento na expressão de genes, nas células da 

granulosa, que codificam receptores para gonadotrofinas (FSHr e LHr) (EVANS & 

FORTUNE, 1997), enzimas esteroidogênicas chave (aromatase e 3βHSD) (EVANS E 

FORTUNE, 1997; IRVING-RODGERS et al., 2003) e genes relacionados com o 

remodelamento da matriz extracelular (SerpinE2) (BÉDARD et al., 2003), proliferação 

celular (ciclina D2; Sicinski et al., 1996) e proteção contra apoptose (XIAP, GADD45b, etc; 

LI et al., 1998; SHEIKH et al., 2000; DE SMAELE et al., 2001).  

A vaca apresenta de duas a três ondas por ciclo estral e raramente pode apresentar 

uma ou quatro ondas (GINTHER et al., 1989). Para o padrão de duas ondas, a primeira onda 

começa, em média, no dia zero (dia da ovulação) e a segunda onda começa no dia dez 

(GINTHER et al., 1989). De cinco a dez folículos são recrutados por onda de crescimento 

folicular (DRIANCOURT, 2001). Entretanto, um folículo, para crescer, antes de ser 

selecionado, necessita de FSH. Após essa fase, pulsos de LH são necessários. Os níveis de 

FSH então caem para níveis basais, durante a seleção folicular. Com uma freqüência 

adequada de pulsos de LH o folículo dominante continua a crescer até que a quantidade de 
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estradiol seja capaz de induzir a onda ovulatória de LH e, em conseqüência, a ovulação 

(WILTBANK et al., 2002). Estudos indicam que folículos menores que 8 mm possuem 

RNAm para receptores de FSH nas células da granulosa murais e RNAm para receptores de 

LH somente nas células da teca (XU et al., 1995). Assim, fica claro que a regulação da 

maturação in vivo difere da regulação da maturação in vitro, uma vez que folículos pré-

ovulatórios (>8mm), com receptores de LH nas células da granulosa respondem não só ao 

pico de LH, mas também a secreção pulsátil deste, que antecede o pico ovulatório. 

Após o completo estabelecimento da dominância folicular, os folículos crescem 

rapidamente e em poucos dias atingem o diâmetro médio de 10-15 mm nas vacas e, em 

seguida, ocorre à ovulação do complexo cumulus-oócito em resposta ao pico de LH, 

propiciando a manutenção da fertilidade das fêmeas mamíferas (DRUMMOND, 2006). O 

folículo pré-ovulatório, na maioria das espécies domésticas, possui um oócito secundário, o 

qual completará sua meiose após a fusão com o espermatozóide e expulsão do segundo 

corpúsculo polar (DE LOS REYES et al., 2005). 

 

2.4 MATURAÇÃO OOCITÁRIA 

 

A maturação oocitária é a etapa determinante para o sucesso da técnica de 

produção in vitro de embriões (PIV), tendo por objetivo formar uma célula haploide, apta a 

ser fecundada, e que tenha capacidade para suportar os primeiros estágios de desenvolvimento 

embrionário, até a ativação do seu genoma. A maturação oocitária envolve duas etapas 

principais: a maturação nuclear, que se inicia com o rompimento de vesícula germinativa 

(RVG) e termina apenas quando a meiose é finalizada, marcada pela segregação dos 

cromossomos e extrusão dos dois corpúsculos polares, e a maturação citoplasmática, que 

envolve modificações citoesqueléticas e moleculares no oócito (TOSTI, 2006). Apesar de 

independentes, a maturação nuclear e citoplasmática interagem e, in vivo, ocorrem 

simultaneamente em determinados momentos, garantindo a plena capacitação do oócito 

(FERREIRA et al, 2008; YAMADA e ISAJI, 2011). Oócitos adquirem competência meiótica 

durante o estágio de vesícula germinativa (VG) através de uma série de modificações que 

incluem a síntese protéica, transcrição de RNAm e a reorganização de organelas que 

conferem ao oócito capacidade para suportar os eventos posteriores ao pico pré-ovulatório de 

LH, tais como: retomada da meiose, fecundação e embriogênese (BERTAGNOLLI et al., 

2004). A não aquisição da competência oocitária nesta fase reflete principalmente no final do 
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processo, diminuindo a taxa de produção de blastocistos. Em bovinos, a competência oocitária 

é adquirida durante o crescimento folicular e é diretamente relacionada ao tamanho do oócito 

e diâmetro folicular, assim à medida que oócitos possuem em torno de 110-120μm, inclusos 

em folículos a partir de 2-3 mm de diâmetro, são considerados competentes para retomada da 

meiose (PAVLOK et al., 1992; FAIR et al., 1995; OTOI et al., 1997). Ao final da fase de 

vesícula germinativa, a atividade transcricional é drasticamente diminuída e o oócito já é 

capaz de reiniciar a meiose e atingir a MII. In vivo, o reinício da divisão meiótica ocorre em 

resposta ao pico ovulatório de LH somente em oócitos inclusos em folículos pré-ovulatórios 

completamente diferenciados. No entanto, in vitro, esse processo é desencadeado 

independentemente de hormônios, simplesmente pela remoção do oócito competente do 

ambiente folicular (PINCUS e ENZMANN, 1935). O reinício da meiose, tanto in vivo como 

in vitro, inicia pela dissolução da membrana nuclear e condensação da cromatina no processo 

denominado de rompimento da vesícula germinativa (RVG), progredindo sucessivamente 

para os estágios de MI, AI, TI e MII, na qual ocorre o segundo bloqueio da meiose (SIRARD 

et al., 1989). Durante a retomada da meiose, a cromatina condensa-se evitando a síntese de 

RNA e, provavelmente, reduzindo o acúmulo de várias moléculas essenciais para o 

desenvolvimento do embrião (BILODEAU-GOESSELS, 2012). A competência meiótica, ou 

seja, a habilidade do oócito para reiniciar a maturação nuclear é obtida no final da fase de 

desenvolvimento. Em bovinos, os oócitos atingem a completa competência meiótica com 110 

μm em folículos com diâmetro de 2-3 mm (FAIR et al., 1995). O armazenamento de 

determinados RNAs e proteínas é realizado durante o crescimento oocitário e é necessário 

para conferir a competência ao oócito (SIRARD & COENEN, 1994a; BREVINI-GANDOLFI 

& GANDOLFI, 2001). Ao final desta fase, a atividade de transcrição é drasticamente 

diminuída e o oócito já é capaz de reiniciar a meiose e atingir a metáfase II. Oócitos 

incompetentes são deficientes em RNAm para o fator promotor da fase M intracelular (MPF). 

Os oócitos reiniciam a primeira divisão meiótica depois do estímulo hormonal in vivo. 

Provavelmente, esse é um sinal comum para ativar o MPF e a MAP quinase (MAPK - 

“mitogen-activate protein”) para a maturação dos oócitos nos mamíferos (DEKEL, 1996). 

2.4.1 Maturação nuclear in vitro 

A maturação nuclear refere-se à progressão da meiose a partir do estágio 

dictióteno (diplóteno da prófase da primeira meiose - prófase I) até a fase de metáfase II 

(MINGOTI et al., 1995). O reinício da meiose, tanto in vivo como in vitro, inicia pela 

dissolução da membrana nuclear e condensação da cromatina no processo denominado de 
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rompimento da vesícula germinativa (RVG), progredindo sucessivamente para os estágios de 

MI, AI, TI e MII, na qual ocorre o segundo bloqueio da meiose (SIRARD et al., 1989). In 

vitro, esse processo é desencadeado independentemente de hormônios, simplesmente pela 

remoção do oócito competente do ambiente folicular (PINCUS E ENZMANN, 1935). O 

tempo requerido para a maturação nuclear varia entre as espécies. Em bovinos, o RVG ocorre 

de 7 – 12 horas, a MI de 12-15 horas, a AI e a TI de 15-18 horas e a MII 18-22 horas após o 

pico pré-ovulatório de LH ou remoção do oócito do ambiente folicular (SIRARD et al., 1989; 

WU et al., 1997). Nessa espécie, o reinício da meiose é regulado através de uma complexa 

cascata de eventos de fosforilação e desfosforilação.  

O fator promotor da maturação (MPF) é uma proteína de 79KD responsável pelo 

início da maturação nuclear do oócito e sua ativação precede ou ocorre concomitantemente 

com o rompimento da vesícula germinativa (WU et al., 1997; LIU & YANG, 1999). O MPF é 

um heterodímero composto de uma subunidade catalítica, p34cdc2 kinase (34KD), e uma 

subunidade reguladora representada pela ciclina B1 (45KD) (GAUTIER et al., 1990; 

BILODEAU-GOESEELS, 2011b). A ativação do MPF ocorre pela desfosforilação da unidade 

catalítica pela fosfatase cdc25 em treonina 14 e tirosina 15 (KUMAGAI E DUNPHY, 1992) e 

sua atividade é avaliada pela histona H1 quinase, pela qual MPF possui forte afinidade. 

Durante o RVG, os níveis de MPF estão baixos, tendo um aumento gradual até atingir níveis 

máximos no estágio de MI. Após essa fase, o MPF apresenta uma diminuição significativa 

coincidindo com AI e TI, e um novo aumento é observado em MII, que é mantido por várias 

horas no oócito, diminuindo gradativamente depois de 30 horas de maturação ou 

imediatamente após a fecundação e ativação (WU et al., 1997; LIU E YANG, 1999). No 

entanto, os mecanismos e os fatores implicados na manutenção e inativação do MPF por 

intervalos prolongados em oócitos, bem como aqueles que conduzem à ativação do MPF e o 

recomeço da meiose, quer in vivo, em resposta ao aumento de gonadotrofina ou 

espontaneamente in vitro, não são totalmente compreendidos em oócitos bovinos e de outras 

espécies (TRIPATHI et al., 2010). 

Outro importante fator envolvido na maturação do oócito é a proteína quinase 

ativada por mitógenos (MAPK). Em oócitos de mamíferos estão presentes duas isoformas da 

MAPK conhecidas como quinase regulada extracelular-1 (ERK)-1 (p44) e ERK2 (p42), sendo 

a última mais abundantemente expressa em oócitos bovinos (TROUNSON et al., 2001). 

Nessa mesma espécie, a MAPK é ativada na RVG, em consequência da fosforilação de uma 

tirosina e uma treonina específicas durante a maturação do oócito (KOSAKO et al., 1994) e 

tem sua atividade máxima em MI permanecendo elevada até a formação dos pronúcleos 
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(FISSORE et al., 1996), sem diminuir em MII. Durante a maturação do oócito, a atividade da 

MAPK é essencial para a manutenção do MPF, formação dos fusos meióticos e manutenção 

do bloqueio meiótico na fase de MII (COLLEDGE et al., 1994; HASHIMOTO et al., 1994). 

Um estudo recente demonstrou que a PGE2 sintetizado por células do cumulus está envolvido 

na ativação de MAPK, organização normal do fuso e a capacidade de desenvolvimento do 

oócito (NUTTINCK et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

Figura 2. Caracterização da maturação nuclear. 

 

2.4.2 Maturação citoplasmática in vitro 

 

Além da maturação nuclear, o processo de obtenção de competência oocitária 

envolve outra etapa muito importante que é a maturação citoplasmática que se caracteriza 

pelo remodelamento do citoplasma. Nessa etapa, ocorrem modificações citoesqueléticas e 

moleculares (TOSTI, 2006), aumento da reserva lipídica, redução do compartimento de Golgi, 

rearranjo das mitocôndrias (DIELEMAN et al., 2002), redistribuição das organelas e 

migração de grânulos corticais no interior do oolema (BÉZARD, 1997; DIELEMAN et al., 

2002). Apesar de independentes, a maturação nuclear e citoplasmática interage e, in vivo, 

ocorrem simultaneamente em determinados momentos, garantindo a plena capacitação do 

oócito (FERREIRA et al., 2008; YAMADA E ISAJI, 2011). Alguns trabalhos têm relatado 

que os oócitos com uma maturação nuclear normal, em tempo regular, mas que possuem uma 

assincronia entre a maturação citoplasmática e a nuclear, não serão fecundados ou não irão ter 

um bom desenvolvimento embrionário (BLONDIN & SIRARD, 1995; BEVERS et al., 1997). 
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A primeira evidência de maturação citoplasmática ocorre quando o oócito 

interrompe a síntese de RNA e proteínas, por modificações na maquinaria transcricional e 

traducional (SIRARD et al., 2006). A atividade transcricional é refletida pela ultraestrutura do 

nucléolo, componente fibrilo-granular, que no período de crescimento oocitário exibe sua 

maior atividade. Quando o oócito atinge o diâmetro de 110 µm, a função do nucléolo é 

inativada, refletindo uma mudança ultraestrutural, que é a marginalização dos centros 

fibrilares. Nesse momento, o nucléolo se torna inativo, sendo ultraestruturalmente observado 

como uma esfera com fibrilas empacotadas (FAIR et al., 1996). No decorrer do 

remodelamento do citoplasma, a maioria das organelas migram para o centro da célula. As 

mitocôndrias e o complexo de Golgi passam a se distribuir mais centralmente na superfície do 

ooplasma e o complexo de Golgi diminui o seu desenvolvimento simultaneamente com o 

agrupamento do retículo endoplasmático liso (HYTTEL et al., 1989). O desenvolvimento 

contínuo da reserva lipídica, provavelmente constitui uma reserva energética para o oócito 

suportar o desenvolvimento após a fecundação até o estágio de blastocisto (DIELEMAN et 

al., 2002). Os grânulos corticais que durante o estágio de VG, apresentam-se distribuídos no 

citoplasma (HOSOE E SHIOYA, 1997), ao final do período de maturação, quando os oócitos 

atingem o estágio de MII, passam a se distribuir por toda a superfície interna, próximos à 

membrana plasmática (THIBAULT et al., 1987; WESSEL et al., 2001) sendo importante na 

prevenção da polispermia, evento conhecido como reação cortical (HOSOE E SHIOYA, 

1997). Além disso, ocorre expansão das células do cumulus, característica importante na 

promoção de componentes indispensáveis para o desenvolvimento da competência (KRUIP et 

al., 1983). 
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Figura 3. Reorganização das organelas citoplasmáticas durante a maturação citoplasmática 

(adaptado de FERREIRA et al., 2009) 

 

2.5. IMPORTÂNCIA DAS CÉLULAS FOLICULARES PARA A MATURAÇÃO 

OOCITÁRIA 

 

 

O folículo ovariano fornece um ambiente inibitório que controla a maturação do 

oócito e os principais fatores são fornecidos por células do cumulus, granulosa mural e da teca 

(RICHARD & SIRARD, 1996; BILODEAU-GOESEELS, 2011a). O co-cultivo de oócitos e 

metades foliculares (RICHARD & SIRARD, 1996) tem sido um bom modelo experimental 

para estudar a interação entre células foliculares e maturação, possibilitando a comunicação 

entre oócitos, células do cumulus, células da granulosa e teca. As metades foliculares, quando 

dissecadas e cultivadas em condições adequadas, em meios suplementados com 

gonadotrofinas, mantém a atividade esteroidogênica (KOMAR et al., 2001). A interação entre 

oócito, células da granulosa e células da teca, através da liberação de fatores autócrinos e 

parácrinos, determinam o controle do desenvolvimento folicular e da maturação oocitária 

(EPPIG, 2001). Estes fatos evidenciam que, no folículo, são produzidos fatores inibitórios que 

impedem a maturação nuclear e, que com o surgimento do LH ovulatório a maquinaria celular 

do folículo é alterada, cessando a produção de inibidores e estimulado a síntese de fatores 

promotores da meiose (DOWNS, 2010). A retomada da meiose também é influenciada pelas 

células foliculares. Esse evento pode ser evidenciado pelo fato dessas células produzirem 

fatores inibitórios, na qual oócitos são mantidos em VG quando co-cultivados com metades 

foliculares ou em meio condicionado (SIRARD & FIRST, 1988; RICHARD & SIRARD, 

1996; GIOMETTI et al., 2005; BARRETA et al., 2008). Esta ação inibitória tem sido 

atribuída a várias fontes, incluindo células da granulosa (TSAFRIRI & CHANNING, 1975; 

SATO et al., 1982; FOOTE & THIBAULT, 1969), componente (s) da parede folicular 

(LEIBFRIED & FIRST, 1980), e fator lábil (s) da parede folicular (SIRARD & COENEN, 

1993). Além disso, KOTSUJI et al., 1994 mostrou que as células da teca influenciam a 

atividade de células da granulosa no bloqueio meiótico. As células do cumulus têm maior 

expressão de proteínas envolvidas na comunicação celular, a geração de metabólitos 

precursores e energia (PEDDINT et al., 2010). As células foliculares da teca e da granulosa 

produzem grandes quantidades de esteróides e diversas proteínas, incluindo os fatores de 

crescimento. Fatores parácrinos secretados pelas células da granulosa e da teca regulam 

muitos aspectos importantes do desenvolvimento do oócito. Com isso, uma série de estudos 
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foram realizados para examinar os efeitos dos componentes estruturais individuais de oócitos 

de folículos ovarianos na maturação in vitro. Células da granulosa bovina mantém oócitos em 

bloqueio meiótico, com o efeito supressor amplificado pela adição de fluido folicular para o 

meio de cultura (SIRARD & BILODEAU, 1990; SIRARD et al., 1992). As células da teca 

tem uma ação de inibição mais profundo sobre a retomada da meiose de oócitos bovinos do 

que as células da granulosa (RICHARD & SIRARD, 1996), esta ação foi reversível e 

independente do contato direto entre as células da teca e complexos cumulus-oócito (COC) 

(RICHARD & SIRARD, 1996; RICHARD & SIRARD, 1998). Em suínos, fatores secretados 

pelas células do cumulus melhoram as taxas de extrusão do corpúsculo polar, sobrevivência 

de oócitos desnudos e a taxa de desenvolvimento de blastocistos. 

 

 

2.6. BLOQUEIO DA RETOMADA DA MEIOSE EM OÓCITOS DE FOLÍCULOS 

ANTRAIS 

 

A inibição da retomada da meiose tem sido sugerida como uma estratégia para que os 

oócitos adquiram um tempo adicional para acúmulo de moléculas necessárias  para aquisição 

de competência e desenvolvimento do embrião (LONERGAN et al., 2000; BILODEAU-

GOESSELS, 2012). Assim, esse tempo adicional possibilitaria uma melhor sincronização 

entre os processos de maturação nuclear e citoplasmática (LE BEAUX et al, 2003). A 

inibição da meiose pode ser induzida pelo o uso de inibidores fisiológicos, tais como a 

presença de metades foliculares e liquido folicular, ou métodos farmacológicos, como o uso 

de substâncias que atuam em etapas distintas da via que mantém o Fator Promotor da Meiose 

(MPF) ativo. Outra abordagem para o bloqueio da MIV com o objetivo de melhorar a 

capacidade de desenvolvimento é o cultivo em duas etapas, onde, ao invés de usar inibidores 

farmacológicos durante a etapa inicial, um meio que não promove a maturação nuclear seria 

usado (OLIVEIRA E SILVA et al., 2011). 

O AMPc (monofosfato de adenosina cíclico) tem uma função inibitória na maturação 

nuclear de oócitos de muitas espécies. Em bovinos, altos níveis de AMPc no oócito causa 

um atraso no reinício da meiose, mas não impede a progressão à MII, evento esse 

correlacionado com a proteína quinase-A (PK-A), a qual é dependente de AMPc (HOMA, 

1988; SIRARD, 1990; SIRARD E FIRST, 1988). O AMPc tem sua concentração aumentada 

em função do estímulo de LH no folículo. Entretanto, níveis altos de AMPc dentro do oócito 
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impedem o reinício da meiose em diversas espécies (THOMAS et al., 2002). Uma hipótese 

para explicar isso, propõem que AMPc é compartimentalizado dentro do folículo ovariano, 

sendo diferentemente regulado dentro do oócito e nas células somáticas (células da teca, 

granulosa e cumulus), devido a diferentes localizações de fosfodiesterases (PDE) 

(TSAFRIRI et al., 1996). Os níveis de AMPc presentes nas células do cumulus e no oócito 

são dependentes da síntese por adenilatociclase e da degradação por PDE. Em bovinos, a 

PDE tipo 3 (PDE3) é a principal enzima envolvida na degradação do AMPc no oócito, e a 

PDE8 está principalmente envolvida com essa degradação nas células do cumulus 

(SASSEVILLE et al., 2009), que também influenciam os níveis de AMPc no interior do 

oócito, via comunicação intercelular pelas junções tipo gap. O cultivo in vitro de complexos 

cumulus-oócito (CCO) bovinos na presença de um inibidor da PDE3 atrasa o reinício da 

meiose, pela diminuição da degradação e consequente aumento de AMPc (BILODEAU-

GOESEELS, 2003). Entretanto, CCOs de camundongo cultivados na presença de um 

inibidor de PDE3 apresentam o reinício da meiose totalmente bloqueada (ROMERO E 

SMITZ, 2010).  

Dentre os métodos farmacológicos, pode-se citar o uso de substâncias que mantenham 

altas concentrações de AMPc no interior do oócito, como a cilostamida (BILODEAU-

GOESEELS, 2012; ALBUZ et al., 2010; SHU et al., 2008). A inibição da PDE3, 

especificamente no oócito, pode ser realizada in vitro com a utilização de cilostamida 

(TSAFRIRI et al., 1996). O uso de cilostamida em oócitos de camundongos (NOGUEIRA et 

al., 2003) reteve 99% em estágio de VG e ainda no mesmo modelo animal, Vanhoutte et al., 

(2007) mostrou que mais de 80% de oócitos cultivados na presença de cilostamida nas 

concentrações de 1 e 10 μM mantiveram-se em estágio de VG. Em humanos, a retenção 

meiótica utilizando-se a cilostamida, (inibidor da PDE-3) em combinação com o forskolin, 

influenciou positivamente a qualidade do oócito observada pelo efeito sinérgico na prevenção 

da perda das junções gap e na retomada da meiose (SHU et al., 2008). 

Dentre os métodos fisiológicos, a utilização das células foliculares e hemi-secções da 

parede do folículo tenta mimetizar o ambiente folicular durante a maturação in vitro 

(RICHARD & SIRARD, 1996). Em grandes animais, foi observado que a parede folicular 

promove a inibição meiótica quando os oócitos são cultivados com metades foliculares, com 

ou sem contato físico (TSAFRIRI & CHANNING, 1975; LEIBFRIED & FIRST, 1980; 

SIRARD & COENEN, 1993). O fator de inibição produzido pelas células da teca é solúvel no 

meio e age através das células do cumulus (RICHARD & SIRARD, 1996). As células da 
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granulosa também inibem a maturação nuclear de oócitos bovinos, quando na presença de 

líquido folicular (GONCALVES et al., 2008). Além disso, oócitos bovinos cultivados em 

meio condicionado com células foliculares também apresentam inibição da maturação 

meiótica. A utilização de células foliculares e até mesmo de hemi-secções de folículos no 

meio de maturação, tenta reconstituir in vitro o ambiente folicular com intuito de entender 

como os mecanismos de retomada da meiose, já que os eventos de maturação espontânea e 

luteinização das células da granulosa ocorrem com a retirada do oócito do ambiente folicular.  

A figura 4 mostra que durante o estágio de vesícula germinativa, GPR3 é ativada 

no oócito por um ligante não identificado e ativa Gs que estimula adenilatociclase (AC) a 

sintetizar AMPc. AMP cíclico, por sua vez, ativa a proteína quinase A (PKA) que ativa a 

quinase WEE1B para fosforilar CDK1, mantendo o fator promotor da meiose (MPF) inativo. 

PKA também inativa a fosfatase CDC25B. Durante o reinício da meiose (quebra da vesícula 

germinativa) é finalizada a transferência de GMPc a partir de células foliculares e 

fosfodiesterase 3A torna-se ativa. Com o declínio dos níveis de AMPc, PKA é inativada e a 

fosfatase CDC25B torna-se ativa, desfosforila CDK1 e o MPF é ativado (BILODEAU-

GOESEELS, 2012).   

 

 

 

 

 

 

 

 

 

 

 

Figura 4. Vias de sinalização envolvidas no controle da maturação (adaptado de BILODEAU-

GOESEELS, 2012).  
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3 PROBLEMA E HIPÓTESES 

 

Conforme mostrado na revisão de literatura, a busca por um modelo de bloqueio da 

retomada espontânea da meiose que seja eficiente é alvo de diversas pesquisas, e a utilização 

de cilostamida e metades foliculares representa alternativas promissoras. Diante disso, 

levantou-se a seguinte problemática: (1) Será que a associação de cilostamida e metades 

foliculares bloqueia a retomada da meiose em 12 horas? (2) Será que a associação de 

cilostamida e metades foliculares é tóxico ao desenvolvimento oocitário? (3) Será que a 

presença de cilostamida e metades foliculares mantém o nível de AMPc no CCO, OD e CC? 

Diante disto, foram formuladas as seguintes hipóteses: (1) Cilostamida e metades foliculares 

bloqueiam a retomada da meiose por 12 horas; (2) A associação de cilostamida e metades 

foliculares não é tóxico ao desenvolvimento folicular; (3) A presença de cilostamida e  

metades foliculares mantem elevado o nível de AMPc no CCO, OD e CC.  
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4 JUSTIFICATIVA 

Atualmente o Brasil possui o maior rebanho bovino comercial do mundo, com 

aproximadamente 200 milhões de animais, e é o líder mundial na produção de embriões. 

Apesar de anualmente serem produzido mais de 200 mil embriões no Brasil, essa técnica 

ainda apresenta limitações devido a baixa eficiência na obtenção de oócitos competentes que 

estejam aptos a alcancanrem o estágio de blastocisto (STROUD, 2012). Diversos estudos tem 

mostrado que apesar de 90% dos oócitos alcancarem o estágio de MII após submeterem-se a 

maturação in vitro, apenas 40% desenvolve-se ao estágio de blastocisto. Desta forma, é de 

grande importância o desenvolvimento de protocolos que aumentem a eficiência da maturação 

oocitária e aquisição da competência in vitro, sendo a introdução de um período de pré-

maturação uma alternativa a ser considerada. A utilização de cilostamida e de metades 

foliculares durante este período de pré-maturação in vitro pode promover bloqueio da 

retomada da meiose em oócitos derivados de folículos antrais bovinos de 3,0 - 8,0 mm, 

abrindo novas perspectivas para a avaliação de diversas substâncias que favoreça a aquisição 

da competência oocitária in vitro. Durante o período de bloqueio, ocorre uma série de 

mudancas morfológicas e bioquímicas, como: elevação dos níveis de AMPc no complexo 

cumulus oócito, aumento da comunicação entre o oócito e as células do cumulus. Estes 

eventos podem estar associados com um maior tempo para síntese e armazenamento de 

RNAm, o que proporcionaria uma melhor sincronização entre maturação nuclear e 

citoplasmática e favoreceria a obtenção de oócitos com maior qualidade oocitária e 

consequentemente, uma maior taxa de formação de blastocistos. Devido ao interesse crescente 

em se obter uma exploração maior do potencial genético de fêmeas, a PIV de embriões vem 

sendo aplicada para o aumento na produção do número de embriões destinados à transferência 

comercial. Esta técnica é capaz de superar problemas como os de infertilidade adquirida de 

vacas com alto valor econômico (GALLI et al., 2003) e proporcionar aumento de ganho 

genético através da multiplicação de bovinos com grande potencial genômico 

(VISHWANATH, 2003). Além disso, o presente trabalho fornece base para novas pesquisas 

que tem como objetivo aumentar o número de oócitos que alcancem o estágio de blastocisto, 

aumentanto assim a eficiência da técnica de produção in vitro de embriões no Brasil. 
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5 OBJETIVOS 

 

5.1 OBJETIVOS GERAIS 

 

- Avaliar os efeitos da cilostamida e metades foliculares no bloqueio da retomada da meiose 

por 12 horas. 

 

5.2 OBJETIVOS ESPECÍFICOS 

 

- Definir um modelo de bloqueio da retomada da meiose por 12 horas em CCOs de folículos 

antrais (3,0 -8,0 mm). 

 

- Realizar o co-cultivo, por 12 horas, da parede de folículos antrais grandes (3,0 – 6,0mm) 

com CCOs de folículos antrais (3,0 – 8,0 mm) e avaliar o bloqueio da retomada da meiose. 

 

- Avaliar a reversibilidade do tratamento na retomada da meiose  em oócitos bovinos. 

 

- Quantificar o nível de AMPc no CCO, OD e CC em bovinos. 
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6 ARTIGO I 
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Abstract 

The aims of this study were (1) to evaluate the effects of cilostamide and follicular 

hemisections on the blockage of in vitro oocyte meiotic resumption in bovine cumulus oocyte 

complexs (COCs), (2) to investigate the reversibility of cilostamide effect on meiotic 

resumption, and (3) to quantify the levels of cAMP in COCs, denuded oocytes (DO) and 

cumulus cells (CC) after culturing COCs in presence of cilostamide and follicular 

hemisections. To this end, bovine oocytes were subjected to a pre-maturation period of 12 h in 

medium containing 10 µM cilostamide, follicular hemisections or combination of both and, 

then, submitted to in vitro maturation. To evaluate the reversibility of cilostamide efect, at the 

end of this culture period, COCs were washed and placed in maturation medium without 
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cilostamide for 12, 14, 16, 18, 20, 22 and 24 hours. To investigate the levels of cAMPc, COCs 

subject to pre-maturation for 6 h were used to measure the levels of cAMP. After 12 hours of 

culture, groups COCs were fixed to assess chromatin configuration and meiotic progression. 

The results showed that COCs cultured in presence of cilostamide and follicular hemisections 

had significantly higher percentages of oocytes at germinal vesicle stage (94%), after a period 

of 12 h of pre-maturation, than COCs cultured in other treatments. After blocking treatment, 

75% of oocytes reached metaphase II after 16 h of maturation, emphasizing that the treatment 

is not toxic to oocytes. Moreover, oocytes cultured in medium containing cilostamide and 

follicular hemisctions had significantly higher levels of cAMP when compared to other 

treatments. It is concluded that cilostamide and follicular hemisections interact and promotes 

the maintenance of oocytes at germinal vesicle stage by increasing the levels cAMP in 

cultured COCs.  

Key-words: oocyte, bovine, cilostamide, maturation, cAMP 

Introduction: 

In most mammalian species, the follicle-enclosed oocyte is arrested at the diplotene 

stage of the first meiotic prophase. In cattle, oocytes develop competence to undergo germinal 

vesicle break down (GVBD) when the follicle reaches 2-3 mm in diameter (ARLOTTO et al., 

1996; LEQUARRE et al., 2005). The oocytes undergo meiotic resumption after the 

preovulatory LH surge in vivo or, spontaneously, after oocyte removal from the follicular 

environment in vitro (SIRARD et al., 1989; WU et al., 1997). Only competent oocytes are 

able to reassume and complete meiosis in vitro, and this competence is progressively acquired 

during their growth phase (CROZET et al., 1998). The process of oocyte maturation is a 

complex orchestration of molecular, cytoplasmic, and nuclear events that must occur in a 

synchronized manner (VANHOUTTE et al., 2008). RNA, protein and nutrition stockpiles are 
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accumulated in the oocyte before ovulation and expected to support embryo development 

through several cleavages prior to major embryo genome activation (TELFORD et al., 1990).  

Inhibition or delay of spontaneous nuclear maturation in vitro would allow more time 

for some of the oocytes to accumulate more of the molecules that are important for early 

development and therefore, would potentially improve the efficiency of in vitro embryo 

production (BILODEAU-GOESSELS, 2012). Spontaneous resumption of meiosis is mainly 

due to a decrease in the concentration of intraoocyte cAMP, which has a major role in 

controlling mammalian oocyte maturation (THOMAS et al., 2002; LUCIANO et al., 2004). 

The temporary blockage of oocyte meiotic resumption in vitro can be performed by 

modulating intra-oocyte cyclic adenosine monophosphate (cAMP) content with different 

agents, such as cAMP analogues or phosphodiesterase (PDE) inhibitors (LUCIANO et al., 

2004; LOODE et al., 2013; LUCIANO et al., 2011; VANHOUTTE et al., 2008; GUIXUE et 

al., 2001; GRUPEN and ARMSTRONG, 2006). Inhibition of the oocyte-specific 

phosphodiesterase 3 (PDE3), a enzyme that degrades cAMP, keeps intra-oocyte cAMP levels 

elevated and maintains the oocyte arrested at the GV stage. Inhibition of  PDE3  in oocytes 

has been performed in vitro using cilostamide (TSAFRIRI et al., 1996) in different species 

(human: SHU et al., 2008; VANHOUTTE et al., 2008; VANHOUTTE et al., 2009, bovine: 

LUCIANO et al., 2011; ALBUZ et al., 2010, ovine: ROSE et al., 2013 and murine: 

NOGUEIRA et al., 2013; VANHOUTTE et al., 2008; ALBUZ et al., 2010; JEE et al., 2009) 

and its efficiency depends  on species, time of COC incubation and the combination with 

other agents. In vitro studies have also shown that co-culturing COCs and follicular 

hemisections inhibits meiotic oocyte resumption, at least temporarily (Richard and Sirard 

1996), indicating that follicular cells produce factors that inhibit meiotic progression. 

Follicular walls, which include granulosa and theca cells, produce large amounts of steroids 

and various proteins, including growth factors. Paracrine factors secreted by granulosa and 
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theca cells regulate many important aspects during oocyte development. Therefore, SIRARD 

and BILODEAU (1990) demonstrated that ovine granulosa cells maintained bovine oocytes 

in meiotic arrest. However, it is not known if there is a synergistic effect between follicular 

hemisections and cilostamide on the blockage of oocyte meiosis in bovine species. 

The aim of this study was to evaluate the effects of follicular hemisections and 

cilostamide on resumption of meiosis in bovine oocytes, as well as on the levels of cAMP in 

cumulus oocyte complex (COC), cumulus-cells (CC) and desnuded oocyte (DO). 

 

Materials and Methods: 

All chemicals used were purchased from Sigma Chemicals Company, St. Louis, 

MO, USA, unless otherwise indicated in the text. 

Experiment I: Influence of follicular hemisections and cilostamide on meiotic resumption  

Cow ovaries were obtained from a local abattoir and transported to the laboratory 

in saline solution (0,9% NaCl; 30°C) containing 100 IU/ml penicillin and 50 µg/ml 

streptomycin sulfate. Cumulus oocyte complexes (COCs) from follicles (3 to 8 mm in 

diameter) were aspirated with a vacuum pump. The COCs were recovered and selected 

according to Leibfried and First (1980), under a stereomicroscope. Grade 1 and 2 COCs were 

randomly distributed into 200 µl of maturation medium and cultured in an incubator at 39°C 

in a saturated humidity atmosphere containing 5% CO2 and 95% air.  

To obtain follicular hemisections, follicles were isolated from the ovaries and 

dissected free of stromal tissue (RICHARD & SIRARD, 1996) and transparent follicles 

measuring 3–6 mm in diameter were selected. The follicles were sectioned into equal halves 

with a scalpel and the oocytes were removed and discarded. Then, the follicular hemisections 
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were washed in TCM 199 containing 0.4% BSA and culture for 2 h before incubation with 

COCs.  

The maturation control medium used was TCM 199 containing Earle’s salts and 

L-glutamine (GibcoLabs, Grand Island, NY, USA) supplemented with 25 mM HEPES, 0.2 

mM pyruvic acid, 2.2 mg/ml sodium bicarbonate, 5.0 µg/ml LH (Bioniche, Belleville, ON, 

Canada), 0.5 µg/ml FSH (Bioniche, Belleville, ON, Canada), 0.4% bovine serum albumin 

(BSA), 100 IU/ml penicillin and 50 µg/ml streptomycin sulphate (TCM 199*). To evaluate 

the effects of follicular heimisections and cilostamide on meiosis resumption, COCs (n=194) 

were subject to pre-IVM in the following treatments: (I) TCM-199*; (II) TCM-199* 

supplemented with 10µM cilostamide; (III) TCM-199* in presence of follicular hemisections 

and (IV) TCM-199* supplemented with 10µM cilostamide in presence of follicular 

hemisections, for 12 hours. After culture, to evaluate chromatin configuration and meiotic 

progression, the cumulus cells were removed by vortexing and the oocytes were fixed in 4% 

paraformaldehyde for 15 min and transferred to 0.5% Triton X-100. Changes in chromatin 

configuration were assessed by 10 μg/ml bisbenzimide (Hoechst 33342) and analyzed under 

an epifluorescent inverted microscope (Leica, DMI4000B). Oocytes were classified according 

to the nuclear maturation stage as germinal vesicle (GV), GVBD, metaphase I (MI), anaphase 

I (AI), telophase I (TI), and metaphase II (MII). 

Statistical analysis software (SAS; SAS Institute, Inc., Cary, NC, USA) was used 

to conduct analysis and each COC was considered as an experimental unit. The percentages of 

GVBD in the different treatments were evaluated using a statistical model for categorical data 

(PROC CATMOD), and the differences between groups were compared by means of 

contrasts. The differences were considered significant when p < 0.05. Data are presented as 

mean ± SEM. All in vitro experiments were performed in triplicate. 
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Experiment II: Assessment of reversibility of meiotic inhibition treatment 

This experiment was conducted to evaluate whether induced blockage of meiosis 

resumption is reversible. To this end, ovaries from cows were collected in a local abattoir and 

COCs (n = 540) were cultured in IVM medium (TCM-199*) supplemented with 10 μM 

cilostamide and follicular hemisections for 12 hours. At the end of this culture period, COCs 

were washed and placed in maturation medium (TCM-199*) without cilostamide for 12, 14, 

16, 18, 20, 22 and 24 hours. Assessment of chromatin configuration and meiotic progression 

was performed. At the end of culture period, the percentages of MII at different times were 

analyzed by frequency by Chi-square,and the results are expressed in percentages. The 

differences were considered significant when p < 0.05. Data are presented as mean ± SEM.  

 

Experiment III: Influence of follicular hemisections and cilostamide on cAMP levels 

Ovaries from cows were collected in a local abattoir and COCs (n=240) and 

subject to pre-IVM for 6 and 12 hours in the following treatments: (I) TCM-199*, (II) TCM-

199* supplemented with 10µM cilostamide, (III) TCM-199* in presence of follicular 

hemisections and (IV) TCM-199* supplemented with 10µM cilostamide in presence of 

follicular hemisections. After 6 hours, groups of 50 – 60 COCs were used to measure the 

levels of cAMP. After 12 hours of culture, groups COCs were fixed to assess chromatin 

configuration and meiotic progression. To evaluate the levels of cAMP, COCs were 

dissociated by vortexing in TCM 199 containing Earle’s salts and L-glutamine (GibcoLabs, 

Grand Island, NY, USA containing 1 mM 3-isobutyl-1-methylxanthine (IBMX) (Sigma) to 

obtain both the cumulus cells and the associated oocytes. IBMX, a non-selective 

phosphodiesterase (PDE) inhibitor, was used to inhibit endogenous PDE activities during 

preparation of the assay. After three washes in phosphate-buffered saline, samples were 
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solubilized in 200 µl of 0,1 M HCl on ice for 10 min, then snapped frozen in liquid nitrogen, 

and stored at -80° C until assay. For enzyme immunoassay (EIA) measurement of cAMP 

levels, samples were acetylated and levels of cAMP in the reconstituted samples were 

quantified using a cAMP EIA kit (Cayman Chemicals, Ann Arbor, MI, USA) according to the 

manufacturer’s instructions.  

The results of the measurement of cAMP levels were analyzed by analysis of 

variance (ANOVA) and multi-comparison between hours was performed by least square 

means. Data were tested for normal distribution using the Shapiro–Wilk test and normalized 

when necessary. The differences were considered significant when p < 0.05. Data are 

presented as mean ± SEM. All in vitro experiments were performed in triplicate. 

Results: 

Experiment I: Influence of follicular hemisections and cilostamide on meiotic resumption  

After 12 hours of culturing COCs in presence of cilostamide, follicular hemisections or both, 

a significant increase of GV oocytes was observed when compared to control group. 

Additionally,  significantly higher percentages of oocytes in GV from COCs cultured in 

presence of both cilostamide and follicular hemisections was observed when compared to 

COCs cultured in presence of either cilostamide or follicular hemisections (fig. 1), 

emphasizing a synergistic effect of these compounds.  

Experiment II: Assessment of reversibility of meiotic inhibition treatment 

Following blockage of meiotic resumption, 75.5% of the oocytes reached the MII stage after 

16 h of IVM (Fig. 2, P < 0.05). This percentage was not significantly different from those 

observed after 18 (78,1%), 20 (85,2%), 22 (85,7%) and 24 (94,7 %) h of IVM.. 

Experiment III: Influence of follicular hemisections and cilostamide on cAMP levels 
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COCs cultured in presence of 10 µM cilostamide and follicular hemisections had 

significantly higher levels of cAMP when compared to COCs cultured in other treatments. 

Furthermore, COCs cultured in medium with either cilostamide or follicular hemisections had 

levels of cAMP similar to control group (fig. 3A, P < 0.05). Concerning the cumulus cells, a 

significant increase in levels of cAMP in COCs cultured in medium with both cilostamide and 

follicular hemisections were observed when compared to other treatments. Furthermore, 

COCs cultured in medium with either cilostamide or follicular hemisections had levels of 

cAMP similar to control group (fig. 3B) (P < 0.05). No significant differences in the level of 

cAMP from denuded oocytes cultured in the different treatments were observed (fig. 3C) (P < 

0.05). 

Discussion: 

This study shows for the first time a synergistic effect of cilostamide and folicular 

hemisections in the maintenance of the GV stage in bovine oocytes cultured in vitro for 12 

hours. Previous studies have suggested that inhibition or delay of spontaneous nuclear 

maturation in vitro would allow more time for some of the oocytes to accumulate more of the 

molecules that are important for early development and therefore, which would potentially 

improve the efficiency of in vitro embryo production (BILODEAU-GOESSELS, 2012). In 

our study, the synergistic action of cilostamide and follicular hemisections kept 94.44% of 

oocytes in GV during pre-IVM culturing. The co-culture of oocytes and follicular 

hemisections efficiently inhibits oocyte meiotic resumption, probably because during the 

culture period, cells from 3 to 8 mm follicles produce inhibitory factors (SIQUEIRA et al., 

2012) that associated with cilostamide acts as a specific inhibitors of the oocyte-specific PDE 

(CONTI et al., 2002; SASSEVILLE et al., 2009) holding meiosis block. Cilostamide acts as a 

specific inhibitor of the oocyte-specific PDE3, an enzyme-degrading cAMP (RICHARD et 

al., 2001; SASSEVILLE et al., 2009). PDE3 inhibitors have been examined in experimental 
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IVM systems, using a biphasic IVM approach (NOGUEIRA et al., 2003a,b; NOGUEIRA et 

al., 2006; SHU et al., 2008; VANHOUTTE et al., 2009a, b). In mouse, 1 µM cilostamide kept 

90% of oocytes in GV (VANHOUTTE et al., 2008), but in bovine species, treatment of COCs 

with 50 µM cilostamide maintained 20% at of oocytes at  GV stage after 16 hours of culturing 

(THOMAS et al., 2002). In our study, treatment with 10 µM cilostamide retained about 36% 

of oocytes in GV, which is similar to results described by Mayes and Sirard (2002), in which 

30.4% of oocytes were retained at the GV stage. The somatic components of the follicle also 

have been implicated in the maintenance of meiotic arrest in bovine oocytes (DE LOOS et al., 

1994; RICHARD and SIRARD, 1996). Maturing oocytes interact with surrounding somatic 

cells, which produce various paracrine factors that regulate oocyte development (VAN DER 

HURK and ZHAO, 2005). RICHARD and SIRARD (1996a) showed that COCs co-cultured 

for 24 hours with follicular hemisections had 57% of oocytes in VG. This results is similar to 

those described in our study, i.e., 49% of oocytes were in GV stage after 12 hours of culture. 

Some studies have proposed that the inhibitory factor(s) are originated from granulosa cells 

(SIRARD and BILODEAU, 1990a; SIRARD and BILODEAU, 1990b). However, other 

experiments described that isolated theca cells also secrete inhibitory factors capable of 

maintaining cumulus-oocyte complexes (COCs) in meiotic arrest (RICHARD and SIRARD, 

1996a; RICHARD and SIRARD, 1996b). 

Our results showed that blocking meiotic progression of oocytes  with cilostamide 

and follicular hemisections is a reversibly process, since after block with cilostamide and 

follicular hemisections, high percentages of oocytes (up to to 91%) cultured in maturation 

medium for 16 hours reached MII, indicating that treatment is not toxic to oocyte. In addition, 

other studies had already demonstrated a reversible effect of this inhibitor in mouse (Nogueira 

et al., 2005), human (Shu et al., 2008) and Pig (Dieci et al., 2013). 
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 In this study, the cAMP levels remained elevated in COCs and cumulus cells 

treated with cilostamide and follicular hemisections for 12 hours. Several mechanisms control 

intraoocyte cAMP level. cAMP is synthesized in the oocyte by constitutively active G 

protein-coupled receptor type 3 (GPR3) (MEHLMANN et al., 2002), and it is supplied to the 

oocyte by neighboring cumulus cells through the gap jucntions (ANDERSON and 

ALBERTINI, 1976; WEBB et al., 2002). Intraoocyte cAMP content is also sustained by 

somatic cells that supply cGMP to the oocyte (TORNELL et al., 1991), which inhibits the 

oocyte-specific PDE3 activity. High levels of oocyte cAMP are known to maintain the oocyte 

in meiotic arrest (TSAFRIRI et al., 1996) by activating protein kinase A, which in turn 

suppresses the activity of maturation-promoting factor (for review, see (DOWNS, 2010). 

Besides these well-characterized mechanisms of action by cAMP, the present results may 

suggest that cAMP could be involved in the control of the activity of factors that modulate 

transcription and large-scale chromatin remodeling during the final phase of oocyte growth 

and before the resumption of meiosis (LUCIANO et al., 2011).  

In conclusion, 10 μM cilostamide and follicular hemisections interacts and are effective to 

prevent oocyte meiotic resumption and to maintain a high levels of cAMP in in bovine CCOs 

cultured for 12 hours.  
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Figure legends 

Figure 1. Percentage of oocytes at the germinal vesicle stage (G.V) after 12 h of culture in 

TCM-199 alone or supplemented with 10µM cilostamide, or follicular hemisections, and in 

TCM-199 supplemented with 10µM cilostamide in presence of follicular hemisections. 

Different lower case letters (a / b / c) represent significant differences among treatments (p < 

0.05). 

Figure 2. Percentages of oocytes that had meiotic arrested by culturing in TCM-199 

supplemented with 10µM cilostamide in presence of follicular hemisections and that reached 

MII stage after 12, 14, 16, 18, 20, 22 and 24 hours of in vitro maturation. Different lower case 

letters (A / B) represent significant differences between time (p < 0.05). 

 Fig. 3. Levels of cAMP in bovine oocytes culture for 6 hours in TCM-199; TCM-199 

supplemented with 10µM cilostamide; TCM-199* in presence of follicular hemisections and 

TCM-199* supplemented with 10µM cilostamide in presence of follicular hemisections. (A) 

oocyte cumulus complex (CCO); (B) cumulus cell (CC); (C) desnuded oocytes (OD). Distinct 

upper case letters (A/B) represent significant differences between treatments (P < 0.05). 
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7. CONCLUSÕES GERAIS 

 - A associação de cilostamida e metades foliculares bloqueia a retomada da meiose em 

oócitos de folículos antrais bovinos por 12 horas. 

 - O bloqueio da retomada da meiose induzido pela associação de cilostamida e 

metades foliculares é reversível, possibilitando a obtenção de taxas significativas de oócitos 

em MII após 12 horas de bloqueio, seguido por 16 horas de maturação in vitro. 

 - O nível de AMPc é significativamente elevado nos CCOs cultivados em meio 

contendo cilostamida e metades foliculares por 6 horas. 
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8. PERSPECTIVAS 

O bloqueio da meiose oocitária durante o período de pré-maturação abre novas 

perspectivas para a avaliação de diversas substâncias que podem contribuir para o aumento da 

taxa de oócitos competentes após a maturação in vitro e que estão aptos a assegurar o 

desenvolvimento embrionário inicial. O efeito sinérgico promovido pela cilostamida e 

metades foliculares certamento contribuirá para a realização de futuros estudos visando 

aumentar a eficiência da MIV. Além disso, a quantificação dos níveis de AMPc no CCO, CC 

e oócito é importante para a elucidação do papel das diversas substâncias que atuam na 

regulação da meiose oocitária.  
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