

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE QUÍMICA ORGÂNICA E INORGÂNICA PÓS-GRADUAÇÃO EM QUÍMICA

ESTUDO DA REATIVIDADE DOS ÍONS COMPLEXOS *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ onde L= SULFITO, IMIDAZOL, 1-METILIMIDAZOL E TIOURÉIA.

Manuela Chaves Loureiro Cândido

Fortaleza, Janeiro de 2011

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE QUÍMICA ORGÂNICA E INORGÂNICA PÓS-GRADUAÇÃO EM QUÍMICA

ESTUDO DA REATIVIDADE DOS ÍONS COMPLEXOS *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ onde L= SULFITO, IMIDAZOL, 1-METILIMIDAZOL E TIOURÉIA.

Manuela Chaves Loureiro Cândido

Orientador: Dr. Luiz Gonzaga de França Lopes

Dissertação de Mestrado submetida à Pós-graduação em Química da Universidade Federal do Ceará como um dos requisitos para obtenção do título de Mestre em Química.

Fortaleza, Janeiro de 2011

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca de Ciências e Tecnologia

C223e	Cândido, Manuela Chaves Loureiro.
	Estudo da reatividade dos íons complexos cis- $[Ru(bpy)_2L(NO)]_{n+}$ onde L=sulfito, imidazol, 1-
	metilimidazol e tiouréia / Manuela Chaves Loureiro Cândido. – 2011.
	160 f. : il. color., enc. ; 30 cm.
	Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Departamento de
	Química Orgânica e Inorgânica, Programa de Pós-Graduação em Química, Fortaleza, 2011.
	Área de Concentração: Química Inorgânica.
	Orientação: Prof. Dr. Luiz Gonzaga de França Lopes.
	Área de Concentração: Química Inorgânica. Orientação: Prof. Dr. Luiz Gonzaga de França Lopes.
	1. Óxido nítrico. 2. Íons complexos. I. Título.

CDD 546

"Ose eu pudesse deixar algum presente a você, deixaria aceso o sentimento de amor à vida dos seres humanos. A consciência de aprender tudo o que nos foi ensinado pelo tempo a fora. Cembraria os erros cometidos para que não mais se repetissem e a capacidade de escolher novos rumos. Deixaria a você, se pudesse, o respeito àquilo que é indispensável: além do pão, o trabalho. Além do trabalho, a ação. E quando tudo mais faltasse, um segredo: o de buscar no interior de si mesmo a resposta e a força para encontrar uma saída."

Mahatma Gandhi

Dedico este trabalho à minha família e amigos que sempre acreditaram em mim.

Dedico especialmente ao meu querido Pai, na certeza de que onde estiver, faz-se presente em cada conquista minha. Meu maior incentivador nesta caminhada...

Agradeço...

A Deus por me dar saúde, disposição e força nos momentos difíceis.

A todos aqueles que amo.

A minha mãe, Neimar, a grande responsável por minha educação e a pessoa que mais me incentivou a estudar. Um grande exemplo de coragem e força.

Ao meu pai, Cândido, pelo apoio em muitos momentos e por demonstrar orgulho em ser meu pai, às vezes, apenas com o olhar.

Aos meus familiares. Em especial, minhas tias Neyris e Eny pela presença e apoio durante toda minha vida e por terem sido indispensáveis na formação do meu caráter. Ao Iran (paião) por sempre agir como um verdadeiro pai. Laylla, Régia, Neide, Angelita e todos os outros primos.

Joana, Júnior e Samuel, meus irmãos e eternos amores.

Nayara e Ceiça pela amizade sincera e verdadeira de muitos anos.

A todos do laboratório de Bioinorgânica que contribuíram de maneira direta ou indireta para realização deste trabalho. Em especial, quero agradecer ao meu grande amigo Ordelei pelas discussões valiosas e de contribuição indiscutível para minha formação como química.

Aos meus colegas de trabalho, principalmente Serginho, Éder, Aldenor, Tércio, Thiago, Willame, Dieric, Marquinhos, Amanda, Nayara, Denise, Carlos pela maravilhosa convivência.

A todos os professores do grupo Aldisio Filho, Izaura, Idalina, Elisane, Jackson, Karine e Eduardo pelas disciplinas ministradas e conhecimento transmitido durante minha permanência no grupo.

À Dani, Cris, Gil e Dayane por serem mais que colegas de trabalho, mostrando-se verdadeiras amigas nos momentos em que mais precisei. Obrigada por tornar toda carga mais leve, amigas!

Agradeço também por todos os colegas e amigos da graduação e pósgraduação, mesmo aqueles que apenas encontramos nas disciplinas. Agradeço especialmente minhas companheiras desde a época da graduação Paty e Karina.

A todos da cidade de Ribeirão Preto pelo acolhimento maravilhoso, em especial ao grupo de Fisíca e Química da Faculdade de Ciências Farmacêuticas da USP de Ribeirão. Agradeço especialmente a Zumira por toda contribuição ao trabalho, sempre disponível para realizar os testes biológicos. Não podendo também deixar de agradecer a Tauanna, Taty, Érika e Zumira (as biluzetes) pela amizade, apoio, confiança e maravilhosos momentos de descontração que tornaram minhas viagens à Ribeirão mais prazerosas.

Ao professor Roberto Santana da Silva deixo o meu sincero agradecimento pela contribuição incalculável ao trabalho, a minha formação profissional e pessoal. Obrigada Chefe por ser sempre tão gentil e preocupado, mostrando verdadeiro interesse e disponibilidade em me ajudar. Obrigada pelas oportunidades, pela paciência em me ouvir e tempo gasto em nossas discussões.

Agradeço infinitamente ao meu orientador, Professor Luiz Gonzaga de França Lopes por ser sempre um exemplo a ser seguido com sua calma e serenidade e por toda a confiança, apoio e liberdade a mim concedida para realização deste trabalho. Agradeço por nunca tentar impor suas opiniões, sempre respeitando minha conduta e apoiando minhas decisões. Espero professor ter correspondido às suas expectativas.

Agradeço também aos órgãos de fomento CNPq, CAPES e FUNCAP sem os quais seria impossível a realização deste trabalho.

(Resumo

Neste trabalho foram realizados estudos de reatividade química, eletroquímica e fotoquímica dos complexos *cis*-[Ru(bpy)₂(L)(NO)](PF₆)_n, onde L= imidazol, 1-metilimidazol, tiouréia e sulfito. Foram escolhidos, portanto, dois ligantes auxiliares com características σ doadoras e dois com características π receptoras e os resultados obtidos indicaram que a natureza e força destes ligantes influenciam diretamente na retrodoação existente entre o centro metálico e o óxido nítrico coordenado.

Os espectros de infravermelho apresentaram freqüência característica de óxido nítrico coordenado na forma NO⁺, sendo que houve variação dos valores conforme a variação do ligante auxiliar. Os resultados indicam que a interação existente (*retrodoação*) entre o Ru e o NO é mais forte para o complexo que apresenta o ligante sulfito na esfera de coordenação, por apresentar um menor valor de freqüência de estiramento quando comparado aos demais complexos. Os dados experimentais corroboram com os valores do parâmetro de Lever encontrados para os ligantes, que indicam a contribuição dos mesmos para a densidade eletrônica do metal.

Os ciclovoltamogramas, realizados em meio aquoso, indicam que a redução da espécie NO⁺ a NO⁰ é facilitada quanto maior for a doação de densidade eletrônica do ligante "L" para o centro metálico. E a voltametria de pulso diferencial indica a possibilidade da formação do aquo-complexo a partir de uma reação química após a redução de óxido nítrico.

Os estudos fotoquímicos mostraram que a liberação de óxido nítrico a partir do estímulo luminoso de soluções dos complexos é consistente, sendo possível inclusive a determinação da espécie formada como produto da fotólise e posteriores cálculos de rendimento quântico da formação das mesmas.

A quantificação da liberação de óxido nítrico foi realizada de maneira indireta, utilizando a técnica de voltametria de onda quadrada, que se mostrou eficiente para o objetivo. E foi utilizado também um eletrodo seletivo para a molécula de NO⁰ livre, confirmando que a irradiação das soluções realmente leva a liberação do óxido nítrico coordenado na sua forma ativa em meio biológico.

Abstract

We carried out studies of chemical reactivity, electrochemistry and photochemistry of complexes cis-[Ru(bpy)₂(L)(NO)](PF₆)_n, where L = imidazole, 1-methylimidazole, thiourea and sulfite. Were chosen, therefore, two ligands being σ donors and two with ligands that act as π -recipient and the results indicated that the nature and strength of these ligands directly influence the strength of the back donation between the metal center and coordinated nitric oxide.

The infrared spectra showed a characteristic frequency of nitric oxide coordinated as NO⁺, and there was variation in the observed value of frequency of NO stretching, dependant of the auxiliary ligand. The results indicate that the backbonding between Ru and NO⁺ is stronger in the complex featuring the sulfite ligand in the coordination sphere, that complex having a minimum value to that specific stretching frequency, when compared to the other complexes. The experimental data corroborate with the Lever parameter values for the ligands, indicating the contribution of them to the electron density of the metal.

The cyclic voltammetry performed in aqueous media indicate that the reduction of NO^+ species to NO^0 is facilitated with the increase of electron density donation from auxiliary ligands to the metallic center. And the differential pulse voltammetry indicates the possibility of the formation of aqueous-complex from a chemical reaction, after coordinated NO^+ reduction.

This work have shown that the photochemical release of nitric oxide from the light stimulation of complex solutions is consistent, even being possible to determine the species formed as a product of the photolysis and subsequent calculations of quantum yield of NO⁰ realese.

Quantification of nitric oxide release was performed indirectly, using the technique of square wave voltammetry, which was efficient for the purpose. It was also used a selective electrode for free NO^0 molecule, confirming that irradiation of NO^+ compounds solutions actually cause the release of coordinated nitric oxide (NO^+) to its active form in biological environment.

SUMÁRIO

Índice de Esquemas

Índice	de Figuras
Índice	de Tabelas
Lista d Resum Abstra	e Abreviaturas no ct
1.	Introdução
	1.1 Importância Biológica do Óxido Nítrico
	1.2 Óxido Nítrico e o Câncer
	1.3 Propriedades Químicas do Óxido Nítrico 9
	1.4 Compostos de Coordenação como agentes liberadores de óxido nítrico 14
2.	Justificativas e Objetivos 19
3.	Materiais e Métodos 20
	3.1 Reagentes e Solventes 20
	3.2 Síntese dos Complexos de Rutênio 21
	3.2.1 Síntese do complexo <i>cis</i> -[Ru(bpy) ₂ (Cl) ₂] 21
	3.2.2 Síntese do complexo <i>cis</i> -[Ru(bpy) ₂ (SO ₃)(NO)](PF ₆) 21
	3.2.3 Síntese do complexo <i>cis</i> -[Ru(bpy) ₂ (L)(NO)](PF ₆) ₃ onde L= imidazol e 1-metilimidazol 22
	3.2.4 Síntese do complexo <i>cis</i> -[Ru(bpy) ₂ (TU)(NO)](PF ₆)22
	3.3 Técnicas experimentais utilizadas e tratamentos de dados 23

	3.3.1 Irradiação das soluções
	3.3.2 Determinação da quantidade de óxido nítrico liberado fotoquimicamente
	3.3.3 Rendimento Quântico
	3.3.4 Espectroscopia vibracional na região do infravermelho
	3.3.5 Voltametria Cíclica e Pulso Diferencial
4.	Resultados e Discussão
	4.1 Efeito dos ligantes auxiliares imidazol, 1-metilimidazol, sulfito e tiouréia
	4.2 Espectroscopia na região do UV-visivel
	4.2.1 Estudo de estabilidade dos compostos
	4.2.2 Acompanhamento da liberação fotoquímica de óxido nítrico
	4.2.3 Rendimento quântico
	4.3 Eletrodo seletivo de NO
	4.4 Voltametria Cíclica e Pulso Diferencial
	4.5 Determinação eletroanalitica da liberação fotoquímica de óxido nítrico utilizando Voltametria de Onda Quadrada
	4.5.1 Estudo dos parâmetros operacionais
	4.5.2 Obtenção da curva analítica para os complexos
	4.5.3 Cálculo da liberação fotoquímica de óxido nítrico
_	Consideraçãos Finais

6.1 Voltametria cíclica do íon complexo [Ru(N	H ₃) ₆] ³⁺
6.2 Testes biológicos utilizando o íc $[Ru(bpy)_2(SO_3)(NO)]^+$ na avaliação de sua cito	on complexo <i>ci</i> s- otoxicidade
6.2.1 Veículos de fármacos: lipossoma ultr	aflexível
6.2.2 Ensaios Farmacotécnicos	
6.2.2.1 Preparação dos lipossomas	
6.2.2.2 Determinação do tamanho, índice potencial de superfície (ETA) da formação lipo	e de polidispersão e ossomal
6.2.2.3 Cultura e tratamento das células	B16/F10
6.2.3 Caracterização do sistema lipossoma	al
6.2.4 Ensaios de viabilidade celular	
6.2.5 Efeito do lipossoma "vazio" e do cor em lipossoma	nplexo encapsulado
Referências	

7.

Índice de Esquemas

Esquema 1.	Biossíntese do Óxido Nítrico	4
Esquema 2.	Formação do dímero N_2O_2	11
Esquema 3.	Cálculo da constante de equililíbrio da interconversão nitrosil-nitro	41
Esquema 4.	Redução espontânea, após a fotólise, da espécie Ru ^{III} para Ru ^{II}	49
Esquema 5.	Possíveis reações do NO em solução aquosa	61
Esquema 6.	Formação do HONO₂ e sua decomposição	61
Esquema 7.	Possíveis processos redox ao qual o óxido nítrico está suscetível	70
Esquema 8.	Redução catalítica e processo eletroquímico que a espécie Ru ^{II} -NO ⁻	
	poderá sofrer	83

Índice de Figuras

Figura 1.	Fotografias dos cientistas ganhadores do Prêmio Nobel de medicina em 1998, Robert Furchgott, Louis Ignarro e Ferid Murad2
Figura 2.	Estruturas de Lewis para a molécula de NO com seus respectivos valores de carga formal
Figura 3.	Diagrama de orbital molecular para a molécula de óxido nítrico (NO ⁰) 10
Figura 4.	Diagramas de orbitais moleculares das espécies NO ⁺ e NO ⁰ 12
Figura 5.	Fórmula estrutural dos complexos <i>cis</i> -[Ru(bpy) ₂ L(NO)] ⁿ⁺ onde L= sulfito, imidazol, metil-imidazol e tiouréia19
Figura 6.	Ilustração dos parâmetros de um voltamograma cíclico completo 32
Figura 7.	Diagrama de orbital molecular do NO ⁺ 33
Figura 8.	Representação da ligação linear entre o metal e a molécula de óxido nítrico 34
Figura 9.	Representação esquemática dos orbitais envolvidos nas interações entreo centro metálicio, o ligante auxiliar e o óxido nítrico38
Figura 10.	Espectros Vibracionais na Região do Infravermelho para os complexos <i>cis</i> -[Ru(bpy) ₂ L(NO)] ⁿ⁺ onde L= (preto) Imidazol, (vermelho) 1- metilimidazol, (verde) Sulfito e (azul) Tiouréia 36

Figura 11.	Mecanismo simplificado do ataque nucleofílico ao óxido nítrico
Figura 12.	Estudo da estabilidade do íon complexo <i>cis</i> -[Ru(bpy) ₂ (imN)(NO)] ³⁺ em solução tampão (0,1 mol L ⁻¹) pH= 2,03 e 4,16, através do monitoramento dos espectros de UV-visível (preto) 0 minutos, (vermelho) 30 minutos, (verde) 90 minutos, (azul marinho) 120 minutos, (azul claro) 150minutos
Figura 13.	Estudo da estabilidade do íon complexo <i>cis</i> -[Ru(bpy) ₂ (metimN)(NO)] ³⁺ em solução tampão (0,1 mol L ⁻¹) pH= 2,03 e 4,16, através do monitoramento dos espectros de UV-visível (preto) 0 minutos, (vermelho) 30 minutos, (verde) 90 minutos, (azul marinho) 120 minutos, (azul claro) 150minutos
Figura 14.	Estudo da estabilidade do íon complexo <i>cis</i> -[Ru(bpy) ₂ (TU)(NO)] ³⁺ em solução tampão (0,1 mol L ⁻¹) pH= 2,03 e 4,16, através do monitoramento dos espectros de UV-visível (preto) 0 minutos, (vermelho) 30 minutos, (verde) 90 minutos, (azul marinho) 150 minutos
Figura 15.	Estudo da estabilidade do (on complexo <i>cis</i> -[Ru(bpy) ₂ (SO ₃)(NO)] ⁺ em solução tampão (0,1 mol L ⁻¹) pH= 6,19 e 7,4, através do monitoramento dos espectros de UV-visível (preto) 0 minutos, (vermelho) 30 minutos, (verde) 90 minutos, (azul marinho) 120 minutos, (azul claro) 150minutos
Figura 16.	Sugestão do percurso para a liberação fotoquímica do óxido nítrico
Figura 17.	Espectros dos íons complexos (preto) <i>cis</i> -[Ru(bpy) ₂ (imN)(NO)] ³⁺ antes da irradiação, (vermelho) <i>cis</i> -[Ru(bpy) ₂ (imN)(NO)] ³⁺ após 30 minutos de irradiação, (verde) <i>cis</i> -[Ru(bpy) ₂ (imN)(H ₂ O)] ²⁺ obtido do imN-NO reduzido com Zn, (azul marinho) <i>cis</i> -[Ru(bpy) ₂ (imN)(NO) ₂] ²⁺ antes da irradiação, (azul claro) <i>cis</i> -[Ru(bpy) ₂ (imN)(NO) ₂] ²⁺ após 30 minutos de irradiação
Figura 18.	Espectros dos íons complexos (preto) cis -[Ru(bpy) ₂ (MetimN)(NO)] ³⁺ antes da irradiação, (vermelho) cis -[Ru(bpy) ₂ (MetimN)(NO)] ³⁺ após 30 minutos de irradiação, (verde) cis -[Ru(bpy) ₂ (MetimN)(H ₂ O)] ²⁺ obtido do MetimN-NO reduzido com Zn, (azul marinho) cis -[Ru(bpy) ₂ (MetimN)(NO) ₂] ²⁺ antes da irradiação, (azul claro) cis -[Ru(bpy) ₂ (MetimN)(NO) ₂] ²⁺ após 30 minutos de irradiação
Figura 19.	Espectros dos íons complexos (preto) cis -[Ru(bpy) ₂ (TU)(NO)] ³⁺ antes da irradiação, (vermelho) cis -[Ru(bpy) ₂ (TU)(NO)] ³⁺ após 30 minutos de irradiação, (verde) cis -[Ru(bpy) ₂ (TU)(H ₂ O)] ²⁺ obtido do TU-NO reduzido com Zn, (azul marinho) cis -[Ru(bpy) ₂ (TU)(NO) ₂] ²⁺ antes da irradiação, (azul claro) cis -[Ru(bpy) ₂ (TU)(NO) ₂] ²⁺ após 30 minutos de irradiação_
Figura 20.	Espectros dos íons complexos Espectros dos íons complexos (preto) <i>cis</i> - [Ru(bpy) ₂ (SO ₃)(NO)] ⁺ antes da irradiação, (azul) <i>cis</i> - [Ru(bpy) ₂ (SO ₃)(NO)] ⁺ após 30 minutos de irradiação, (rosa) <i>cis</i> - [Ru(bpy) ₂ (SO ₃)(H ₂ O)] obtido do SO ₃ -NO reduzido com Zn
Figura 21.	Variação no espectro de absorção do íon complexo <i>cis</i> - $[Ru(bpy)_2(imN)(NO)]^{3+}$ (6x10-5 mol L ⁻¹) em tampão pH= 2,03 no período de (preto) 0, (vermelho) 5 minutos, (verde) 10 minutos, (azul marinho) 15 minutos, (azul claro) 20 minutos, (rosa) 25 minutos, (amarelo) 30 minutos (λ =377nm)

Figura 22. Variação no espectro de absorção do íon complexo *cis*-[Ru(bpy)₂(metimN)(NO)]³⁺ (6x10-5 mol L⁻¹) em tampão pH= 2,03 no período de (preto) 0, (vermelho) 5 minutos, (verde) 10 minutos, (azul marinho) 15 minutos, (azul claro) 20 minutos, (rosa) 25 minutos, (amarelo) 30 minutos (λ =377nm)

Figura 23.	Variação no espectro de absorção do íon complexo <i>cis</i> - [Ru(bpy) ₂ (SO ₃)(NO)] ⁺ (6x10-5 mol L ⁻¹) em tampão pH= 7,40 no período de (preto) 0, (vermelho) 5 minutos, (verde) 10 minutos, (azul marinho) 15 minutos, (azul claro) 20 minutos, (rosa) 25 minutos 55 (λ =377nm)
Figura 24.	Variação no espectro de absorção do íon complexo <i>cis</i> - [Ru(bpy) ₂ (imN)(NO ₂)] ⁺ (6x10-5 mol L ⁻¹) em tampão pH= 7,40 no período de (preto) 0, (vermelho) 5 minutos, (verde) 10 minutos, (azul marinho) 15 minutos, (azul claro) 20 minutos, (rosa) 25 minutos, (amareo) 30 minutos (λ =447nm)55
Figura 25.	Variação no espectro de absorção do íon complexo <i>cis</i> - [Ru(bpy) ₂ (metimN)(NO ₂)] ⁺ (6x10-5 mol L ⁻¹) em tampão pH= 7,40 (preto) 0, (vermelho) 2 minutos, (verde) 4 minutos, (azul marinho) 6 minutos, (azul claro) 8 minutos, (rosa) 10 minutos, (amarelo) 12 minutos, (verde musgo) 14 minutos (λ =447nm)56
Figura 26.	Variação no espectro de absorção do íon complexo <i>cis</i> - [Ru(bpy) ₂ (TU)(NO)] ³⁺ (6x10-5 mol L ⁻¹) em tampão pH= 4,16 no período de (preto) 0, (vermelho) 5 minutos, (verde) 10 minutos, (azul marinho) 15 minutos, (azul claro) 20 minutos, (rosa) 25 minutos, (amarelo) 30 minutos (λ =377nm)57
Figura 27.	Variação no espectro de absorção do íon complexo <i>cis</i> - [Ru(bpy) ₂ (TU)(NO ₂)] ⁺ (6x10-5 mol L ⁻¹) em tampão pH= 7,40 no período de (preto) 0, (vernmelho) 5 minutos, (verde) 10 minutos, (azul marinho) 15 minutos, (azul claro) 20 minutos, (rosa) 25 minutos, (amarelo) 30 minutos (λ =447nm)57
Figura 28.	Rendimento Quântico de formação do íon complexo <i>cis</i> - [Ru(bpy) ₂ (imN)(H ₂ O)] ²⁺ em função do tempo de fotólise 58
Figura 29.	Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo <i>cis</i> - [Ru(bpy) ₂ (metimN)(NO)] ³⁺ (solução tampão pH= 2,03) utilizando eletrodo seletivo para NO ⁰ livre62
Figura 30.	Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo <i>cis</i> -[Ru(bpy) ₂ (SO ₃)(NO)] ⁺ (solução tampão pH= 7,40) utilizando eletrodo seletivo para NO ⁰ livre63
Figura 31.	Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo <i>cis</i> - [Ru(bpy) ₂ (imN)(NO)] ³⁺ (solução tampão pH= 2,03) utilizando eletrodo seletivo para NO ⁰ livre64
Figura 32.	Cronoamperograma referente ao acompanhamento da liberação 65 fotoquímica de óxido nítrico para o íon complexo <i>cis</i> - $[Ru(bpy)_2(metimN)(NO_2)]^{+}$ (solução tampão pH= 7,40) utilizando eletrodo seletivo para NO ⁰ livre

Figura 33.	Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo <i>cis</i> -[Ru(bpy) ₂ (imN)(NO ₂)] ⁺ (solução tampão pH= 7,40) utilizando eletrodo seletivo para NO ⁰ livre	65
Figura 34.	Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo <i>cis</i> -[Ru(bpy) ₂ (TU)(NO)] ³⁺ (solução tampão pH= 4,19) utilizando eletrodo seletivo para NO ⁰ livre	66
Figura 35.	Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo <i>cis</i> -[Ru(bpy) ₂ (TU)(NO ₂)] ⁺ (solução tampão pH= 7,40) utilizando eletrodo seletivo para NO ⁰ livre	66
Figura 36.	Voltamogramas cíclicos (preto) 1 ciclo e (vermelho) 2 ciclos de varredura para o íon complexo <i>cis</i> - $[Ru(bpy)_2(imN)(NO)]^{3+}$ em KCI 0,10 mol L ⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,50 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 1,00 e -1,00 V. T=25°C. V= 0,10 V/s	68
Figura 37.	Voltamogramas cíclicos (preto) 1 ciclo e (vermelho) 2 ciclos de varredura para o íon complexo <i>cis</i> -[Ru(bpy) ₂ (metimN)(NO)] ³⁺ em KCl 0,10 mol L ⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,50 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 1,00 e -1,00 V. T=25°C. V= 0,10 V/s	69
Figura 38.	Voltamogramas cíclicos (preto) 1 ciclo e (vermelho) 2 ciclos de varredura para o íon complexo <i>cis</i> -[Ru(bpy) ₂ (TU)(NO)] ³⁺ em KCl 0,10 mol L ⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,50 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 1,00 e -1,00 V. T=25°C. V= 0,10 V/s	69
Figura 39.	Voltamogramas cíclicos (preto) 1 ciclo e (vermelho) 2 ciclos de varredura para o íon complexo <i>cis</i> -[Ru(bpy) ₂ (TU)(NO)] ³⁺ em KCl 0,10 mol L^{-1} e tampão pH= 7,40. Potencial inicial de varredura 0,50 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 1,00 e -1,00 V. T=25°C. V= 0,10 V/s	70
Figura 40.	Voltamogramas cíclicos em diferentes velocidades de varredura (preto) 0,05 V/s, (vermelho) 0,10 V/s, (verde) 0,20 V/s, (azul marinho) 0,30 V/s, (azul claro) 0,40 V/s para o íon complexo <i>cis</i> -[Ru(bpy) ₂ (imN)(NO)] ³⁺ em KCl 0,10 mol L ⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,40 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 0,60 e -0,10 V. T=25°C	72
Figura 41.	Voltamogramas cíclicos em diferentes velocidades de varredura (preto) 0,05 V/s, (vermelho) 0,10 V/s, (verde) 0,20 V/s, (azul marinho) 0,30 V/s, (azul claro) 0,40 V/s para o íon complexo <i>cis</i> -[Ru(bpy) ₂ (metimN)(NO)] ³⁺ em KCI 0,10 mol L ⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,40 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 0,60 e -0,10 V. T=25°C	72
Figura 42.	Voltamogramas cíclicos em diferentes velocidades de varredura (preto) 0,05 V/s, (vermelho) 0,10 V/s, (verde) 0,20 V/s, (azul marinho) 0,30 V/s, (azul claro) 0,40 V/s para o íon complexo <i>cis</i> -[Ru(bpy) ₂ (TU)(NO)] ³⁺ em KCl 0,10 mol L ⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,40 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 0,60 e -0,10 V.	
	T=25°C	73

Figura 43.	Voltamogramas cíclicos em diferentes velocidades de varredura (preto) 0,05 V/s, (vermelho) 0,10 V/s, (verde) 0,20 V/s, (azul marinho) 0,30 V/s, (azul claro) 0,40 V/s para o íon complexo <i>cis</i> -[Ru(bpy) ₂ (SO ₃)(NO)] ⁺ em KCl 0,10 mol L ⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,10 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 0,40 e -0,50 V. T=25°C
Figura 44.	Variação de lpc em função de V ^{1/2} , em meio aquoso, para o complexo <i>cis</i> -[Ru(bpy) ₂ (imN)(NO)] ³⁺
Figura 45.	Variação de lpc em função de V ^{1/2} , em meio aquoso, para o complexo <i>cis</i> -[Ru(bpy) ₂ (metimN)(NO)] ³⁺
Figura 46.	Variação de lpc em função de V ^{1/2} , em meio aquoso, para o complexo <i>cis</i> -[Ru(bpy) ₂ (TU)(NO)] ³⁺
Figura 47.	Variação de lpc em função de V ^{1/2} , em meio aquoso, para o complexo <i>cis</i> -[Ru(bpy)₂(SO₃)(NO)] [*]
Figura 48.	Variação de log(lpc) em função de log(V), em meio aquoso, para o complexo <i>cis</i> -[Ru(bpy) ₂ (imN)(NO)] ³⁺
Figura 49.	Variação de log(lpc) em função de log(V), em meio aquoso, para o complexo <i>cis</i> -[Ru(bpy)₂(metimN)(NO)] ³⁺
Figura 50.	Variação de log(lpc) em função de log(V), em meio aquoso, para o complexo <i>cis</i> -[Ru(bpy) ₂ (TU)(NO)] ³⁺
Figura 51.	Variação de log(lpc) em função de log(V), em meio aquoso, para o complexo <i>cis</i> -[Ru(bpy)₂(SO₃)(NO)]⁺
Figura 52.	Influência da posição do ligante L na densidade eletrônica sob o ligante nitrosil. a) posição <i>trans</i> e b) posição <i>cis</i>
Figura 53.	Voltamogramas de Pulso Diferencial para os complexos <i>cis</i> - $[Ru(bpy)_2(L)(NO)]^{n+}$. (azul claro) Varredura de potencial de 1,00V até - 0,20V, sem eletrólise. Varredura de potencial de -0,20V a 1,00Vm, eletrólise da solução em -0,60V durante (preto) 0, (vermelho) 10, (verde) 20 e (azul marinho) 30s
Figura 54.	Voltamogramas de Onda Quadrada para as freqüências de (preto)10, (vermelho)20, (verde)30, (azul marinho)40, (azul claro)50, (rosa)60, (amarelo)70, (verde musgo)80 e (cinza)90 Hz para os íons complexos <i>cis</i> -[Ru(bpy) ₂ L(NO)] ⁿ⁺ sendo L= imidazol e 1-metilimidazol, em tampão trifluoroacetato + hidróxido de sódio pH=2,03, tiouréia, em tampão ácido acético + acetato de sódio pH=4,16 e sulfito, em tampão H ₂ PO ₄ ⁻ e HPO ₄ ²⁻ de pH = 7,4. Concentração do eletrólito: 0,1mol L ⁻
Figura 55.	Influência do aumento de freqüência na resposta de corrente voltamétrica para os íons complexos <i>cis</i> -[Ru(bpy) ₂ (L)(NO)] ⁿ⁺ , sendo L= imidazol e 1-metilimidazol, em tampão trifluoroacetato + hidróxido de sódio pH=2,03, tiouréia, em tampão ácido acético + acetato de sódio pH=4,16 e sulfito, em tampão H ₂ PO ₄ ⁻ e HPO ₄ ²⁻ de pH = 7,4. Concentração do eletrólito: 0,1mol L ⁻¹

- **Figura 56.** Voltamogramas de Onda Quadrada para as amplitudes de (preto)10, (vermelho)20, (verde)30, (azul marinho)40, (azul claro)50, (rosa)60, e (amarelo)70 mV para os íons complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ sendo L= imidazol e 1-metilimidazol, em tampão trifluoroacetato + hidróxido de sódio pH=2,03, tiouréia, em tampão ácido acético + acetato de sódio pH=4,16 e sulfito, em tampão H₂PO₄⁻ e HPO₄²⁻ de pH = 7,4. Concentração do eletrólito: 0,1mol L⁻¹
- **Figura 57.** Influência do aumento de amplitude na resposta de corrente voltamétrica para os íons complexos *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺, sendo L= imidazol e 1-metilimidazol, em tampão trifluoroacetato + hidróxido de sódio pH=2,03, tiouréia, em tampão ácido acético + acetato de sódio pH=4,16 e sulfito, em tampão H₂PO₄⁻ e HPO₄²⁻ de pH = 7,4. Concentração do eletrólito: 0,1mol L⁻¹

Figura 58. Voltamogramas de Onda Quadrada para incrementos de varredura (ΔE_s) de (preto)1, (vernelho)2, (verde)3, (azul marinho)4, (azul claro)5, (rosa)6, (amarelo)7, (verde musgo)8 e (cinza)9 e (vinho)10mV para os íons complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺, sendo L= imidazol e 1-metilimidazol, em tampão trifluoroacetato + hidróxido de sódio pH=2,03, tiouréia, em tampão ácido acético + acetato de sódio pH=4,16 e sulfito, em tampão H₂PO₄⁻ e HPO₄²⁻ de pH = 7,4. Concentração do eletrólito: 0,1mol L⁻

- **Figura 59.** Influência do aumento de incremento de varredura (ΔE_s) na resposta de corrente voltamétrica para os íons complexos *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺, sendo L= imidazol e 1-metilimidazol, em tampão trifluoroacetato + hidróxido de sódio pH=2,03, tiouréia, em tampão ácido acético + acetato de sódio pH=4,16 e sulfito, em tampão H₂PO₄⁻ e HPO₄²⁻ de pH = 7,4. Concentração do eletrólito: 0,1mol L⁻¹
- **Figura 60.** Voltamogramas de Onda Quadrada para adições sucessivas de solução estoque dos íons complexos *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺, em tampão adequado para cada ligante "L", no intervalo das concentrações (preto) 6,67 x 10⁻⁵, (vermelho) 1,09 x 10⁻⁴, (verde) 1,48 x 10⁻⁴, (azul marinho) 1,98 x 10⁻⁴, (azul claro) 2,04 x 10⁻⁴ e (rosa) 2,79 x 10⁻⁴ mol L⁻¹. Concentração do eletrólito: 0,1 mol L⁻¹
- **Figura 61.** Curva analítica traçada a partir dos voltamogramas de onda quadrada para o íon complexo *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺, em adequado para cada ligante "L", no intervalo das concentrações 6,67 x 10⁻⁵ a 2,79 x 10⁻⁴ mol L⁻¹. Os experimentos foram realizados em quintuplicada e os valores de corrente correspondem a média dos valores experimentais
- **Figura 62.** Voltamogramas de Onda Quadrada referentes ao monitoramento da irradiação dos íons complexos *cis*-[Ru(bpy)₂(L)(NO)]n³⁺, durante (preto) 0, (vermelho) 5, (verde) 10 e (azul marinho) 20 minutos de irradiação em 355nm no tampão adequado para cada ligante "L". Concentração do eletrólito: 0,1 mol.L⁻¹
- **Figura 63.** Voltamogramas cíclicos em diferentes velocidades de varredura (preto) 0,05 V/s, (vermelho) 0,10 V/s, (verde) 0,20 V/s, (azul marinho) 0,30 V/s, (azul claro) 0,20 V/s para o íon complexo *cis*-[Ru(bpy)₂(imN)(NO)]³⁺ em KCl 0,10 mol L⁻¹. Potencial inicial de varredura 0,40 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 0,50 e -0,50 V. T=25°C______

Figura 64. Lipossoma ultra flexível_____

92

88

89

96

97

100

103

107

Figura 65.	Aparato	para	obtenç	ão de	sistema I	ipossomais	
------------	---------	------	--------	-------	-----------	------------	--

Figura 66. Viabilidade celular de B16/F10 obtidos por ensaios de MTT após tratamento 24h com *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ em solução tampão pH =7,4, Células B16/F10 foram plaqueadas em Wells de 96 (2x10⁴ células/well) por 3 horas com concentração do íon complexo *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ de 10^{-7} a 10^{-3} M. p <0,05 vs respectivos controles

112

113

114

- **Figura 67.** Viabilidade celular de B16/F10 obtidos por ensaios de MTT após 48h tratamento com *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ em solução tampão pH =7,4, Células B16/F10 foram plaqueadas em Wells de 96 (2x10⁴ células/well) por 3 horas com concentração do complexo *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ de 10^{-7} a 10^{-3} M. p <0,05 vs respectivos controles
- Figura 68. Porcentagem de viabilidade celular após incubação com a formulação lipossomal "vazia". Os experimentos foram realizados no escuro, ou seja, sem irradiação luminosa com as células de melanoma B16/F10
- **Figura 69.** Viabilidade celular de B16/F10 obtidos por ensaios de MTT após tratamento com *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ encapsulado em lipossoma, Células B16/F10 foram plaqueadas em Wells de 96 (2x10⁴ células/well) por 3 horas com concentração do íon complexo *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ de 10^{-7} a 10^{-3} M. p <0,05 vs respectivos controles_

115

Índice de Tabelas

Tabela 1.	Procedência dos reagentes utilizados durante a síntese e a						
	caracterização do complexo	20					
Tabela 2.	Valores de rendimentos quânticos e de fração de luz absorvida para o actinômetro ferrioxalato de potássio	29					
Tabela 3.	Influência dos ligantes auxiliares no enfraquecimento da ligação N-O	36					
Tabela 4.	Constante e pH de equilíbrio da interconversão nitrosil-nitro	40					
Tabela 5.	Rendimento quântico de formação do aquo-complexo para os compostos Complexos <i>ci</i> s-[Ru(bpy) ₂ L(X)] ⁿ⁺						
Tabela 6.	Parâmetros de reversibilidade do processo referente ao par redox NO ^{+/0} do íon complexo <i>cis</i> -[Ru(bpy) ₂ (L(NO)] ³⁺ , onde L= imidazol, metilimidazol, sulfito e tiouréia	74					

Tabela 7.	Valores de Potencial de Meia-Onda (E1/2) dos complexos cis-								
	[Ru(bpy)₂(L)(NO)] ⁿ⁺ e Energia do Parâmetro de Lever (E _L) dos ligantes imidazol, 1-metilimidazol, tiouréia e sulfito								
Tabela 8.	Resultado da Otimização de Parâmetros9								
Tabela 9.	Equações calculadas a partir da obtenção das curvas de calibração para os íons complexos <i>cis</i> -[Ru(bpy) ₂ L(NO)] ⁿ⁺ , sendo L= imidazol, 1- metilimidazol, tiouréia e sulfito								
Tabela 10.	Resultados do Cálculo da Liberação Fotoquímica de Óxido Nítrico para os complexos cis -[Ru(bpy)] (NO)] ⁿ⁺ , sendo L = imidazol, 1-metilimidazol,								
	tiouréia e sulfito, utilizando a técnica de Voltametria de Onda Quadrada	99							

I Ν Т R 0 D U Ç Ã 0

"A vida não dá nem empresta, não se comove e nem se apieda. Tudo quanto ela faz é retribuir e transferir aquilo que nós lhe oferecemos."

Albert Einstein

Sntrodução

1.1. Importância Biológica do Óxido Nítrico

A molécula de óxido nítrico pode ser naturalmente obtida por descargas elétricas que provocam a reação entre o nitrogênio e o oxigênio, e pela ação de microorganismos do solo ao agirem sobre a matéria orgânica. Sendo que sua maior produção advém da combustão de derivados do petróleo, onde, à altas temperaturas, ocorre a reação entre o oxigênio e o nitrogênio atmosférico produzindo NO, motivo pelo qual, durante anos, levou a se pensar no óxido nítrico apenas como sendo causador de problemas respiratórios e poluição ambiental¹.

Contudo, a partir de 1987, com a descoberta da atuação do óxido nítrico, no corpo humano, como o fator relaxante derivado do endotélio (EDRF, do inglês *endothelium-derived relaxing factor*)², surgiu um interesse em estudar os mecanismos biológicos que o NO participasse, resultando na publicação de inúmeros artigos anualmente ³⁻¹¹.

A molécula de NO é o menor mensageiro biológico existente e não depende de transportadores específicos, nem de canais de passagem intracelular para desempenhar seu papel. No meio celular, mesmo em concentrações menores que 5 μmol L⁻¹, o NO interage com o íon metálico de ferro(II), presente na enzima guanilato ciclase, ativando-a. Esta enzima produz um segundo mensageiro biológico, a guanosina monofosfato cíclica, que é responsável por desencadear uma série de processos fisiológicos, inclusive o relaxamento da musculatura lisa das artérias⁶.

O impacto das descobertas rendeu ao óxido nítrico o título de molécula do ano pela revista Science, em 1992 e o posterior reconhecimento dos pesquisadores Robert Furchgott, Louis Ignarro e Ferid Murad (Figura 1) em 1998, com o Prêmio Nobel de fisiologia e medicina por suas descobertas relativas à atuação da mesma como molécula sinalizadora no sistema cardiovascular ².

Figura 1. Fotografias dos cientistas ganhadores do Prêmio Nobel de medicina em 1998, Robert Furchgott, Louis Ignarro e Ferid Murad.

Os estudos daí em diante realizados mostraram que o NO está envolvido em diversos processos fisiológicos de suma importância para o funcionamento do organismo, incluindo funções como: neurotransmissor^{7,}⁸, atuando na memória e aprendizado, imuno-regulação ⁹, estando presente na inflamação e nos mecanismos de autoimunidade; manutenção inicial da vida ¹⁰, através do controle da circulação plancentária e regulagem das contrações do parto, vasodilatação¹¹, além do envolvimento nos mecanismos de morte celular (apoptose e necrose) ¹²⁻¹⁷ entre outros. Contudo, as funções até hoje descobertas são complexas e antagônicas, tendo efeito benéfico ou potencialmente tóxico de acordo com a concentração ou depuração tecidual ¹⁸.

O NO é um radical livre, extremamente reativo, podendo difundir-se rapidamente pelas membranas celulares. Sua biossíntese é realizada por um grupo de enzimas chamadas de óxido nítrico sintetase¹⁴. Simplificadamente, esta enzima produz NO e o aminoácido L- citrulina a partir do aminoácido L- arginina e de oxigênio molecular (O₂). Este processo envolve a transferência de 5 elétrons e conversão do aminoácido L-arginina em NO, como representado no Esquema 1.

Esquema 1. Biossíntese do Óxido Nítrico.

A observação de que o NO está presente em todas as células do corpo humano, assim como é parte de mecanismo de plantas e microorganismos, impulsionou vários grupos de pesquisas em todo o mundo ¹⁹⁻²² no sentido de descrever melhor suas propriedades químicas e biológicas. Dentre estes estudos merece destaque as atividade antitumoral exercida pelo NO^{13, 23}. Aparentemente o conhecimento e controle da atividade biológica do NO em células tumorais poderá culminar com uma nova terapia anticancerígena, a qual seria geral para todos os tipos de cânceres.

1.2. Óxido Nítrico e o Câncer

O câncer é uma das doenças que mais causam temor na sociedade, por ter se tornado um estigma de mortalidade e dor. O comportamento das células cancerígenas pode ser explicado por mutações genéticas ou secreção anormal de hormônios ou enzimas. Por meio de sucessivas divisões, as células acabam formando um agrupamento de estruturas celulares irregulares que recebe o nome de tumor, sendo que este quando maligno sofre um processo de vascularização, chamada de angiogênese, que promove um crescimento acelerado e maior probabilidade de invadir outras partes do organismo. O câncer, portanto, abrange um grupo de centenas de tipos da doença que, embora sejam diferentes entre si, têm a capacidade comum de formar colônias de células que invadem e destroem tecidos e órgãos à sua volta²⁴.

Embora nos últimos anos as técnicas para o tratamento desta doença, como a cirurgia, quimioterapia, radioterapia e hormonioterapia, tenham sofrido um desenvolvimento substancial, permitindo o aumento do tempo de vida dos pacientes, estes ainda são acometidos de efeitos colaterais, como alopecia (queda de cabelo), alterações gastrointestinais (náuseas, vômitos e diarréia) e adinamia (prostração física), tornando o tratamento muito difícil aos doentes²⁵.

Existem muitos conflitos na utilização do óxido nítrico no tratamento do câncer, pois estudos comprovam que o NO pode ser pró ou antitumoral²⁶. Acredita-se que a diferença entre tais hipóteses está na concentração de NO no local do tumor. A droga doadora de NO, S-nitro-N-acetyl-penicilamina (SNAP), foi utilizada para ilustrar a capacidade do NO apresentar efeitos anti e pró-angiogênicos. Em doses baixas (0,1 a 0,3mM) a angiogênese aumentou cerca de 46%. Em concentrações mais elevadas, os efeitos pró-angiogênicos começam a diminuir e em uma concentração de 4mM foi observado o máximo de inibição da angiogênese (80%). Além disso, proteínas presentes no tumor, e seus reguladores e ativadores também foram inibidas em altas concentrações do doador de NO¹³.

Isto demonstra claramente a relação entre a dose e o efeito do óxido nítrico no câncer, no que diz respeito à angiogênese^{27, 28}. Assim, o NO pode ter efeitos profundos sobre o fluxo sanguíneo tumoral. O tumor vascular é frequentemente descrito como imaturo, devido o crescimento descontínuo de suas células endoteliais, sem direção pré-determinada do fluxo, em comparação com a natureza altamente estruturada da vasculatura normal^{13, 29}.

Koberlik e colaboradores³⁰ estudaram a influência de inibidores de NO sintase [N^w-nitro-L-arginina (L-NNA) e o éster metílico de N^w-nitro-Larginina (L-NAME)] no grau de destruição das células tumorais após o tratamento de PDT em camundongos cujos tumores são caracterizados pela elevada produção de NO (RIF e SCCVII) ou pela baixa produção de NO (EMT6 e FsaR). Os resultados mostraram que esses dois grupos tumorais respondem diferentemente ao tratamento de modulação de NO. Os tumores caracterizados pela alta produção de NO, foram mais eficientemente destruídos pela PDT quando os inibidores foram adicionados ao meio reacional. O fluxo sanguíneo regular nesses tumores aparentemente é mantido pela constante vasodilatação exercida pelo NO já que a utilização dos inibidores L-NNA e L-NAME causam forte impacto na destruição do tumor. Deve-se ressaltar que o óxido nítrico tem um importante papel na restituição do fluxo sanguíneo, inibido devido aos processos inflamatórios desencadeados pela terapia fotodinâmica, desde que os vasos afetados não tenham sido completamente danificados. Por outro lado, o grau de destruição dos tumores que apresentam baixa produção de NO (EMT6 e FsaR) não foi afetado significativamente na presença de inibidores de óxido nítrico indicando que a perfusão sanguínea destes tumores é independente do NO³¹.

Portanto, o NO pode facilitar ou inibir a progressão do tumor, dependendo do genótipo tumoral e/ou do seu nível de produção pelos tumores¹². A facilidade em promover a progressão tumoral está associada à característica vasodilatadora do NO, que permite o fluxo sanguíneo nas células tumorais, assim como a sua capacidade de produzir angiogênese (induzir a formação de novos vasos). Sob altas concentrações (micromolar) o NO é citotóxico, podendo inibir a progressão tumoral em razão da inibição da citocromo c oxidase e conseqüentemente do processo respiratório, resultando no aumento de elétrons oriundos da cadeia respiratória e no favorecimento da superprodução de radicais superóxidos. Estes radicais, que também podem ser gerados durante a PDT, atuam diretamente na destruição celular, através da indução de stress oxidativo sobre o tecido endotelial, ou indiretamente, através da interação entre o radical superóxido e o óxido nítrico, gerando então o íon peroxinitrito (ONOO⁻), um potente oxidante e agente nitrosante capaz de reagir com proteínas, DNA, lipídeos e uma variedade de outras moléculas^{30, 32}. Assim, níveis basais adequados de NO são necessários para manter a perfusão microvascular tanto no tumor quanto no tecido normal³³ e elevados níveis de NO podem aumentar a citotoxicidade também em ambos.

Atualmente sabe-se que a combinação da maior especificidade que se pode conseguir com a utilização de drogas fotoquimioterápicas (utilizadas na PDT)^{34, 35} e os resultados satisfatórios na destruição de células cancerígenas utilizando como tratamento a modulação da concentração de NO^{20, 36} na região do tumor pode ser extremamente útil na descoberta de novos tratamentos alternativos aos mais diversos tipos de cânceres que acometem a população mundial. Levando-se em consideração a diversidade de trabalhos que englobam a terapia fotodinâmica³⁷ e a utilização dos doadores de NO, onde a literatura já reporta dados como local de atuação¹⁴, mecanismos¹⁸ e drogas recentemente testadas^{17, 38, 39}, é possível o desenvolvimento de quimioterápicos que apresentem elevada especificidade de ação sobre as células tumorais, resultando tanto na intensificação da atividade antineoplásica da droga quanto na redução dos efeitos prejudiciais às demais células do organismo⁴⁰.

1.3. Propriedades Químicas do Óxido Nítrico

O NO é um gás (P.E. = -151,7°C) incolor e termodinamicamente instável com respeito a formação de N₂ e O₂.⁴¹

É habitualmente encontrado no ar atmosférico em pequenas quantidades e é altamente tóxico devido à presença de radical livre (Figura 2) que o torna um agente químico muito reativo.

Figura 2. Estruturas de Lewis para a molécula de NO com seus respectivos valores de carga formal.⁴²

Analisando as estruturas de Lewis para a molécula de NO percebese que o elétron encontra-se deslocalizado, porém, devido uma maior eletronegatividade do oxigênio relativamente ao nitrogênio, têm-se uma maior contribuição da estrutura (I) para o híbrido de ressonância da molécula, pois nesta estrutura tem-se uma maior densidade eletrônica sob o oxigênio. A princípio, a molécula de NO pode ligar-se ao metal (M) tanto pelo átomo de nitrogênio (M—NO) como pelo átomo de oxigênio (M—ON), originando as formas nitrosil ou isonitrosil, respectivamente. A forma nitrosil é a mais comum, sendo que a forma isonitrosil deve ocorrer com metais mais eletropositivos, como Li e Na. A combinação dos orbitais atômicos do nitrogênio e oxigênio, para formar o NO, fornece o conjunto de orbitais moleculares mostrados na Figura 3.

Figura 3. Diagrama de orbital molecular para a molécula de óxido nítrico (NO⁰).¹

O número total de elétrons de valência do NO é 11, possuindo os orbitais σ ligante (1 σ e 2 σ^*) de menor energia juntamente com os orbitais ligantes π e σ (1 π , 3 σ) preenchidos, sendo que o último elétron deve ocupar um orbital π antiligante (2 π^*), conferindo a este características paramagnéticas. A ordem de reação líquida é de 2,5 e o comprimento da ligação é 1,15 A, valor intermediário entre uma ligação dupla (1,18 A) e tripla (1,06 A).⁴³

Embora cada molécula de NO possua 1 elétron desemparelhado, a combinação entre duas moléculas para a formação do dímero N₂O₂ (representado no esquema 2) só ocorre em estado sólido à baixas temperaturas.

2NO

Esquema 2. Formação do dímero N₂O₂.

A energia envolvida neste processo corresponde a ΔH = -2,6 kcal mol⁻¹. À pressão de 1 atm e 300°C, o termo –T Δ S é + 4,3 kcal mol⁻¹ e a energia livre de Gibbs (Δ G) é + 1,7 kcal mol⁻¹, para baixas temperaturas a energia livre de Gibbs passa a ser negativa, tornando o processo espontâneo.⁴⁴

A reação do óxido nítrico com alguns metais de transição tende a ser rápida e a ligação estável fazendo destes compostos possíveis doadores ou capturadores de NO. Trata-se de uma interação do tipo ácido - base de Lewis, onde há doação de densidade eletrônica dos orbitais do tipo σ do NO para o metal. Em alguns casos, dependendo da nuvem eletrônica do metal pode haver uma doação de densidade eletrônica dos orbitais d π do metal para o os orbitais π^* do ligante nitrosil, que possui simetria e energia adequada para tal interação. A ligação descrita é chamada de retrodoação ou backbonding.⁴⁵

A efetiva interação do centro metálico com o ligante nitrosil é caracterizada por espectroscopia na região do infravermelho através da banda de estiramento do NO (vNO). A energia necessária para vibrar a ligação N-O é dependente do tipo de interação do ligante com o metal, quanto maior for a retrodoação, menor será a energia. Da mesma forma que para a freqüência de estiramento, a natureza dos ligantes da esfera

de coordenação, a configuração eletrônica e carga do complexo influenciam nos potenciais de oxidação e redução do NO.

O óxido nítrico pode sofrer sucessivas reduções originando diferentes espécies, entretanto o par redox exaustivamente estudado nestes sistemas é NO^{+/0} por tratar-se de um processo reversível com transferência de apenas 1 elétron e também porque a espécie NO⁰ ser a espécie ativa biologicamente. Quanto mais efetiva for a retrodoação, mais baixo (ou mais negativo) será o potencial de redução da espécie NO⁺ a NO⁰.

Além da espécie NO⁺ (íon nitrosônio), que é formada pela retirada do elétron desemparelhado no orbital π^* , o óxido nítrico também pode formar a espécie NO⁻ (ânion nitróxido), que é formado pela adição de 1 elétron ao orbital π^* . Os diagramas de orbitais moleculares das espécies em questão estão representados na Figura 4.¹

Figura 4. Diagramas de orbitais moleculares das espécies NO⁺ e NO^{0.1}

A oxidação do óxido nítrico deveria levar a formação da espécie NO^+ , contudo pode ocorrer a formação de outras espécies reativas de nitrogênio (ERONs), como representado pelas seqüências de reações 1 - 5. O oxigênio molecular possui 2 elétrons desemparelhados e reage com NO^0 produzindo NO_2 (Equações 1 e 2). Este pode reagir com outra molécula de NO e formar N_2O_3 (Equação 3). Essa espécie é termodinamicamente instável e é convertida pela água em nitrito (Equação 4).⁴⁶⁻⁴⁸

	NO ⁰	+	O ₂	\rightarrow	ONOO"			(1)
NO	+	ONO	0	\rightarrow	ONOONO	\rightarrow	2NO ₂	(2)
2NC) ₂ +	2NO	D	\rightarrow	2N ₂ O ₃			(3)
2N ₂	O ₃ +	2H ₂ C)	\rightarrow	4NO ₂ ⁻	+	4H⁺	(4)
4NO ⁰ +	O ₂	+ 2	H ₂ O	\rightarrow	4NO2 ⁻	+	4H⁺	(5)

De acordo com a literatura, dados experimentais mostraram que a reação global (Equação 5) representada acima é de terceira ordem, mesmo em concentrações micromolares de NO e sua degradação em meio aquoso e aeróbico não é linearmente dependente da sua concentração. ⁴⁶⁻⁴⁸

Um aspecto intrigante dessa reação é que sua constante de velocidade (k) depende pouco do solvente, do pH e da temperatura. Assim, em ambiente fisiológico, conforme o NO é produzido e difundido
no meio intracelular, sua concentração diminui e conseqüentemente há uma queda na formação de ERONs, aumentando o tempo necessário para que ele seja degradado. Isto corrobora para que o NO exerça suas funções e minimize a interferência fornecida pela reação com o oxigênio. Por outro lado, quando ocorre uma superprodução de NO, a reação com o oxigênio é acelerada exponencialmente, acarretando maior formação de ERONs.

Portanto, a modulação de compostos estáveis que possam ser doadores de óxido nítrico para tratamentos clínicos vem sendo alvo de estudos mais aprofundados. Sendo uma das possibilidades que possuem grande aceite na comunidade científica envolve o uso de compostos de coordenação como agentes liberadores de NO.^{19, 49-51}

1.4 Compostos de coordenação como agentes liberadores de óxido nítrico

A prática de utilizar compostos de coordenação para fins terapêuticos mostra-se promissora, entre vários exemplos, existem complexos de platina que são utilizados no tratamento do câncer, além de compostos de prata utilizados como agentes antimicrobianos e medicamentos a base de compostos de ouro aplcados no tratamento da artrite reumatóide.^{11, 52}

Atualmente existe no mercado o nitroprussiato de sódio (Na₂[Fe(CN)₅(NO)].2H₂O, comercialmente chamado de Nipride[@], utilizado

em emergências cardíacas como vasodilatador no controle da pressão arterial⁵³. Essa droga atua com a liberação de óxido nítrico na corrente sanguinea, contudo para que isso seja possível há a liberação de uma molécula de CN⁻ (tóxico ao organismo) antes mesmo de liberar o NO, sendo necessária a administração conjunta de outro medicamento que aniquile o efeito do cianeto no organismo.^{54, 55} Tal inconveniente, juntamente com o fato da liberação do óxido nítrico ser muito rápida (acarretando uma queda brusca de pressão arterial), encorajam estudos para o desenvolvimento de drogas menos tóxicas e que o NO esteja coordenado de maneira mais estável, o que levaria a uma liberação mais lenta na corrente sanguinea.

A utilização de rutênio como centro metálico de compostos com aplicação clínica vem sendo estudada⁵⁶ devido a formação de complexos estáveis e por acreditar-se que o mecanismo de proteção contra a toxicidade desse metal pelo organismo ser semelhante ao do ferro. Quando há excesso de ferro no organismo, este aumenta a produção de proteínas capazes de capturar este metal, como a transferrina e a albumina. Alguns estudos já foram feitos sobre a biodistribuição do rutênio utilizando ratos como cobaias. Foi observado que o complexo [Ru^{II}(edta)NO]^{- 57},administrado intravenosamente, teve sua concentração máxima de metal alcançada no fígado, rins e plasma sanguíneo na primeira hora após a injeção, enquanto que na urina a concentração máxima demorou duas horas para ser atingida. Após oito horas, não foram mais encontrados traços do metal nos órgãos, na urina e no plasma

sanguíneo. Este estudo também mostrou que não foram observadas mortes para doses entre 0,3 e 9,0x10⁻⁵ mol kg⁻¹.

Unindo as propriedades do óxido nítrico com a estabilidade do rutênio muitos grupos de pesquisa trabalham com a modulação de nitrosilo complexos de rutênio visando aplicação como vasodilatador, tratamento alternativo para o câncer, entre outros.⁵⁸⁻⁶⁰

Buscando conhecer estas propriedades, muitos cientistas desenvolveram e estudaram uma série de compostos nitrosilo de rutênio, tais como complexos do tipo [Ru(L)Cl_n(NO)], onde L são ligantes fosfínicos⁴⁹, e complexos do tipo *trans*-[Ru(NH₃)₄L(NO)](BF₄)₃, onde L é imidazol, L-histidina, piridina e nicotinamida⁵⁰ foram amplamente investigados.

Com o intuito de minimizar reações paralelas à liberação de NO, foram realizados estudos utilizando ligantes macrocíclicos deixando os compostos ainda mais estáveis (*trans*-[RuCl(cyclam)(NO)]²⁺, onde cyclam é 1, 4, 8, 11-tetraazaciclotetradecano.²¹

Existem maneiras diferentes de estimular a saída do óxido nítrico da esfera de coordenação, dentre elas pode-se citar a redução química, eletroquímica e a por meio de estímulo luminoso. A redução química e a eletroquímica são exemplos de como conseguir liberação de óxido nítrico a partir de um estímulo específico, pois, em muitos complexos, o ligante nitrosil perde a sua afinidade pelo metal ao ser reduzido a NO⁰.

Outra forma é a estimulação fotoquímica dos compostos. A literatura⁶¹ descreve estudos espectroscópicos e fotoquímicos do complexo

cis-[RuCl(bpy)₂(NO)](PF₆)²⁺. Esse trabalho mostrou a liberação de NO em meio aquoso quando irradiado com laser em 355 nm (ϕ NO = 0,98 mol einstein⁻¹). Outro estudo⁵⁸ relata a síntese e as propriedades químicas e fotoquímicas da espécie *trans*- [RuCl([15]aneN4)NO]²⁺ em tampão fisiológico (pH = 7,4). Este complexo, quando irradiado com laser em 355 nm, produz NO e a espécie *trans*- [RuCl([15]aneN4)H₂O]+. O rendimento quântico encontrado para a liberação do NO foi 0,61 mol einstein⁻¹.

Tanto o processo de redução química quanto o fotoquímico fazem de compostos nitrosilos de rutênio substâncias *sui generis* para o desenvolvimento de novas metalo-drogas. O baixo efeito citotóxico de complexos com este íon metálico responde pela promissora possibilidade do desenvolvimento de nova classe de metalo-drogas.

"Assim como a cera, naturalmente dura e rígida, torna-se, com um pouco de calor, tão moldável que pode levá-la a tomar a forma que se desejar também se pode, com um pouco de cortesia e amabilidade, conquistar os obstinados o os hostis."

Schopnhauer

2. Justificativas e Objetivos

Visando a modulação de nitrosilo-compostos capazes de liberar óxido nítrico em meio biológico e sabendo das características dos complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ (L= sulfito, imidazol, metil-imidazol e tiouréia), que já possuem sua síntese e caracterização discutidos na literatura ^{22, 62, 63}, foram realizados estudos de reatividade química e fotoquímica objetivando-se avaliar a influência dos ligantes auxiliares (L) na liberação do NO dos complexos representados na Figura 5.

Objetivos Específicos

Sabendo das características distintas apresentadas pelos ligantes auxiliares, já que os ligantes imidazol e 1-metilimidazol são ligantes π receptores e os ligantes tiouréia e sulfito são σ doadores, foram realizados diversos experimentos objetivando encontrar uma relação entre tais características e a influência delas sobre a liberação do óxido nítrico pelos nitrosilos complexos.

- Cálculo do rendimento quântico para reação de fotoliberação do NO utilizando método espectofotométrico;
- Desenvolvimento de metodologia para quantificação de óxido nítrico liberado fotoquimicamente utilizando Voltametria de Onda Quadrada;
- Análise qualitativa da fotorreação por Eletrodo Seletivo de NO;
- Comportamento eletroquímico em meio aquoso.
- Ensaios de Citoxicidade.

Cândido, M.C.L.

Dissertação de Mestrado

"É preciso que eu suporte duas ou três larvas se quiser conhecer as borboletas"

Antoine de Baint-Exupéry

3. Materiais e Métodos

3.1. Reagentes e solventes

A Tabela 1 resume a procedência dos reagentes e solventes utilizados para procedimentos experimentais.

 Tabela 1. Procedência dos reagentes utilizados durante a síntese e a caracterização do complexo.

Reagentes	Procedência		
1-metil-imidazol	Aldrich		
2,2'-bipiridina	Aldrich		
Ácido trifluoroacético	Merck		
Cloreto de Lítio	Aldrich		
Dimetilformamida (DMF)	Synth		
Etanol	Synth		
Éter dietílico	Vetec		
Hexamina de Rutênio (III)	Aldrich		
Imidazol	Aldrich		
Metanol	Merk		
NH ₄ PF ₆	Aldrich		
Sulfito de sódio	Fluka		
Tiouréia	Carlo Erba		
Tricloreto de rutênio hidratado	Aldrich		

3.2. Síntese dos complexos de rutênio

3.2.1. Síntese do complexo *cis*-[Ru(bpy)₂Cl₂] ^{64, 65}

3,12 g (11,9 mmol) de RuCl₃.3H₂O, 3,75 g (24 mmol) do ligante 2,2'bipiridina e 3,36 g (79 mmol) de LiCl foram misturados em 20 mL de dimetilformamida (DMF). A mistura foi deixada sob refluxo e agitação magnética por 8 horas. Após este tempo, deixou-se o sistema reacional resfriar a temperatura ambiente, sendo adicionado 100 mL de acetona gelada. Após 12 horas de repouso na geladeira, o precipitado foi filtrado e lavado com 25 mL de água gelada e 100 mL de éter dietílico gelado. O sólido foi estocado sob vácuo para secagem.

3.2.2. Síntese do complexo *cis*-[Ru(bpy)₂SO₃NO](PF₆)²²

0,20 g (0,41 mmol) de *cis*-[Ru(bpy)₂Cl₂] e 0,62 g (0,49 mmol) de sulfito de sódio foram dissolvidos em 20 mL de uma solução (1:1 etanol/água), deixando em refluxo por 1 hora. Em seguida adicionou-se 0,33 g (0,49 mmol) de NaNO₂, ficando sob agitação e em refluxo por 2 horas. Após este tempo evaporou-se o solvente até próximo a secura, ocorrendo a precipitação pela adição de acetona gelada. O sólido foi filtrado e estocado sob vácuo.

0,15 g (0,27 mmol) de *cis*-[Ru(bpy)₂SO₃NO₂]⁻ foram dissolvidos em 15 mL de metanol sob fluxo de argônio e agitação. Em seguida adicionou-se 2 mL de uma solução aquosa de CF₃COOH 70 %, deixando reagir por 1 hora. Após este tempo coletou-se o precipitado pela adição de uma solução aquosa saturada com NH₄PF₆. O sólido foi filtrado e estocado sob vácuo.

3.2.3. Síntese do complexo *cis*-[Ru(bpy)₂(L)NO](PF₆)₃, onde L= imidazol e 1-metilimidazol. ^{22, 62}

0,20 g (0,41 mmol) de *cis*-[Ru(bpy)₂Cl₂] e 0,33 g (0,49 mmol) de imidazol foram dissolvidos em 20 mL de uma solução(1:1 etanol/água), deixando em refluxo por 1 hora. Em seguida adicionou-se 0,33 g (0,49 mmol) de NaNO₂, ficando sob agitação e em refluxo por 2 horas. Após este tempo evaporou-se o solvente até reduzido o volume a metade e coletou-se o precipitado pela adição de uma solução saturada com NH₄PF₆. O sólido foi filtrado e estocado sob vácuo.

0,15 g (0,22 mmol) de *cis*-[Ru(bpy)₂ImN(NO₂)](PF₆) foram dissolvidos em 15 mL de metanol sob fluxo de argônio e agitação. Em seguida adicionou-se 2 mL de uma solução aquosa de CF₃COOH 70%, deixando reagir por 1 hora. Após este tempo coletou-se o precipitado pela adição de uma solução aquosa saturada com NH₄PF₆. O sólido foi filtrado e estocado sob vácuo.

3.2.4. Síntese do complexo *cis*-[Ru(bpy)₂(TU)NO](PF₆)₃⁶³

0,20 g (0,408 mmol) do complexo *cis*-[Ru(bpy)₂Cl₂] e 0,34 g (0,450 mmol) do ligante Tiouréia foram dissolvidos em 20 ml de uma solução (1:1 etanol/água), deixando-a em refluxo por 3 horas. Após este tempo evaporou-se o solvente até reduzir o volume à metade e coletou-se o precipitado pela adição de uma solução saturada com NH_4PF_6 . O sólido foi filtrado e estocado sob vácuo.

0,10 g (0,125 mmol) do complexo *cis*-[Ru(bpy)₂(TU)(H₂O)](PF₆)₂ foram dissolvidos em 20 mL de acetona. Deixou-se a solução sob borbulhamento continuo de NO (g), formado a partir da reação entre o ácido sulfúrico

concentrado (H₂SO₄) e o nitrito de sódio (NaNO₂) de acordo com as equações 6 e 7, por 3 horas. ⁶³

$H^{+}(aq) + NO_{2}^{-}(aq) \rightarrow HNO_{2}(aq)$	(6)
$HNO_2(aq) + H^+(aq) \rightarrow NO^+(aq) + H_2O(I)$	(7)

O gás gerado de acordo com a sequência de reações mostradas acima é conduzido através de dois frascos lavadores de gases, o primeiro contendo uma solução de hidróxido de sódio (NaOH) 3 mol L⁻¹, para neutralização de eventuais traços ácidos, e o segundo contendo água destilada, antes de ser borbulhado na solução contendo o aquo-complexo.

Após este tempo, evaporou-se o solvente para redução do volume da solução, coletando-se o precipitado pela adição de NH₄PF₆ e etanol. O sólido foi filtrado e estocado sob vácuo.

3.3. Técnicas experimentais utilizadas e tratamento de dados

3.3.1. Irradiação das soluções

A irradiação das soluções contendo os complexos foi realizada para determinar qualitativamente e quantitativamente a liberação de óxido nítrico da esfera de coordenação, bem como para o cálculo do rendimento quântico de formação da espécie após a saída do NO. Para os experimentos de quantificação, realizados no laboratório de Bioinorgânica da Universidade Federal do Ceará, foi utilizado o Reator Fotoquímico Unt 001 para irradiar as soluções (355nm) dos compostos e acompanhar a fotólise por Voltametria de Onda Quadrada.

Em colaboração com o Prof. Dr. Roberto Santana, no Laboratório de Física e Química da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, os experimentos qualitativos utilizando o Eletrodo Seletivo de NO inNO-T (Innovative Instruments), foram realizados utilizando laser de diodo Colibri (Quantum Tech),nos comprimentos de 377 e 419nm, assim como também para o cálculo de rendimento quântico por Espectroscopia Eletrônica na região do UV-vis.

3.3.2. Determinação da quantidade de óxido nítrico liberado fotoquimicamente

O cálculo da concentração liberada de Óxido Nítrico foi realizado utilizando o sistema eletroquímico Epsilon da Bioanalytical System Inc. Empregou-se para tanto uma cela convencional de três eletrodos: platina, carbono vítreo (1cm² de área) e prata/cloreto de prata(KCI saturado) como eletrodos auxiliar, trabalho e referência respectivamente.

Otimização dos Parâmetros

A técnica utilizada foi a Voltametria de Onda Quadrada^{66,667,68} devido sua alta sensibilidade e rapidez na obtenção do voltamograma. Uma rotina analítica foi seguida para o desenvolvimento de um método capaz de quantificar a liberação de óxido nítrico sem a necessidade da utilização de um eletrodo seletivo.

Para tanto foram realizados primeiramente experimentos de otimização dos parâmetros⁶⁹ da onda quadrada para que a sensibilidade da técnica fosse a melhor possível. Esses parâmetros são: a freqüência (10 - 90 Hz), a amplitude

(10 - 70 mV) e o incremento (1 - 10 mV) da onda, mantendo-se durante o ajuste dois dos três parâmetros constantes enquanto apenas um era variado.

Para encontrar as melhores condições de trabalho na voltametria de onda quadrada foi necessário observar a relação linear entre corrente e cada um dos parâmetros individualmente, e selecionado o valor do parâmetro que obtêm maior corrente de pico máxima dentro da linearidade.

Curva Analítica⁷⁰

Após a otimização foi necessária a construção de curvas de calibração correspondentes a cada complexo e pH utilizado. Para a construção de cada curva analítica os experimentos foram feitos em quintuplicada onde foram preparadas soluções padrões e, em seguida, foram feitos os registros dos voltamogramas. As concentrações foram relacionadas com os valores de corrente de pico máximo obtendo-se uma relação linear e a partir das retas foi possível obter uma curva analítica considerando os erros experimentais.

Para a construção da curva analítica utilizou-se os cinco valores de corrente de pico máximo para cada ponto (ou seja, cada concentração) sendo calculado a média e o desvio padrão. Em seguida, foi proposta uma nova relação entre a média de cada ponto e seu correspondente valor de concentração, não se esquecendo de levar em consideração o desvio padrão.

A equação encontrada leva em consideração os desvios da idealidade e foi representada utilizando os valores de desvio padrão dos coeficientes angular e linear para representar a margem de erro dos experimentos⁷⁰.

Concentração Liberada de Óxido Nítrico

Com a equação que relaciona corrente máxima de pico e concentração do complexo é possível calcular a quantidade de óxido nítrico liberada fazendo sucessivas medidas de voltametria de onda quadrada a partir da irradiação de uma solução do complexo.

Uma solução do complexo, contendo o óxido nítrico na esfera de coordenação, é irradiada e a quantidade de NO liberada é monitorada com sucessivas medidas através da voltametria de onda quadrada (de forma indireta). O processo analisado nos voltamogramas é aquele referente ao par redox NO^{+/0} coordenado. Após a obtenção dos voltamogramas, são utilizados os valores de corrente máxima de pico para se determinar, com o auxilio da curva de calibração, os valores de concentração do complexo com o NO coordenado. Como a relação estequiométrica entre o NO liberado e o complexo é de 1:1, então pela diferença entre os valores de concentração antes e após a irradiação determina-se a quantidade de óxido nítrico liberada.

3.3.3. Rendimento Quântico

As medidas espectroscópicas para o cálculo de rendimento quântico foram realizadas em um Espectrofotômetro de UV-visível-NIR Hitachi modelo U-3501. As amostras foram analisadas em solução, utilizando célula de quartzo retangular de caminho óptico de 1 cm. As amostras foram irradiadas até a estabilização dos valores de absorbância.

Medida da Intensidade de Luz Incidente (I0)70

No cálculo de rendimento quântico é necessário calcular a intensidade de luz que irá irradiar a amostra e, portanto foi realizada uma actinometria com ferrioxalato de potássio⁷¹.

Em um a sala escura pipetou-se 3 mL da solução de ferrioxalato de potássio 0,0016 mol L⁻¹ em uma cela de quartzo de 1cm de caminho óptico. A solução da cela foi fotolizada por 3 minutos com luz de comprimento de onda 350 nm. Transferiu-se 2mL de solução fotolizada para um balão volumétrico de 10 mL, adicionando a este 3mL de solução de (acetato de sódio + ácido sulfúrico) e 1 mL de 1,10-fenantrolina, sendo o volume completado com água Milli-Q. A solução permaneceu em repouso, na ausência da luz, por uma hora para total complexação dos íons ferro (II) pela orto-fenantrolina. Preparou-se um branco sob as mesmas condições, exceto quanto a exposição à luz. Após o período de 1 hora fez-se a leitura da absorbância da solução fotolizada e do branco em 510 nm (onde absorve o complexo Fe^{II}-orto-fenantrolina)⁷³.

O ferrioxalato de potássio é utilizado na faixa de comprimento de onda de 254-500 nm. Quando a solução de $K_3Fe(C_2O_4)_3$ é fotolisada, os íons Fe^{3+} são reduzidos a Fe^{2+} segundo as reações representadas pelas equações 8 a 10.

$$[Fe^{3+}(C_2O_4)_3]^{3-} \rightarrow [Fe^{2+}(C_2O_4)_2]^{2-} + C_2O_4^{-}$$
(8)
$$[Fe^{3+}(C_2O_4)_3]^{3-} + C_2O_4^{-} \rightarrow [Fe^{3+}(C_2O_4)_3]^{2-} + (C_2O_4)^{2-}$$
(9)
$$[Fe^{3+}(C_2O_4)_3]^{2-} \rightarrow [Fe^{2+}(C_2O_4)_2]^{2-} + 2CO_2$$
(10)

O produto $Fe(C_2O_4)_2$ não absorve luz incidente. Os íons Fe^{2+} são determinados espectrofotometricamente como um complexo formado com a orto-fenantrolina. O rendimento quântico de formação dos íons Fe^{2+} (ϕ_{Fe}^{2+}) é tabelado de acordo com o comprimento de onda de irradiação usado. A formação do complexo foi acompanhada em λ =510 nm e a intensidade de luz incidente foi calculada como representado no nas equações 11 e 12:

$$I_{0} = \frac{n_{b}Fe^{2+}}{\phi_{b}t(1-10^{-ccl})} \qquad n_{b}Fe^{2+} = \frac{6,023 \times 10^{20}V_{1}V_{3}\log(I_{0}/I)}{V_{2}Ic}$$
(11)
(12)

O número de íons Fe²⁺, (η_b Fe²⁺), formado durante a fotólise pode ser calculado pela equação (b) ⁷⁴.

Onde:

 I_0 = intensidade da luz incidente;

φ_b= rendimento quântico do actinômetro irradiado (Tabela 2);

t= tempo de irradiação (segundos);

1-10^{-εcl}= fração da luz incidente absorvida pela amostra (Tabela 2);

ε= absortividade molar do complexo de Fe²⁺-1,10-fenantrolina, determinado experimentalmente pela inclinação da curva de calibração;

c= concentração da amostra (mol/L).;

I= caminho óptico da cela espectrofotométrica (cm⁻¹);

V₁= volume da solução do actinômetro irradiado;

V₂= volume da alíquota tomada para diluição (mL);

V₃= volume final ao qual a alíquota V₂ é diluída (mL);

Log(I₀ / I) = absorbância da solução em 510 nm.

λ _{IRR.} (nm)	1-10 ^{-εcl}	фь
254	1,000	1,25
297	1,000	1,24
302	1,000	1,24
313	1,000	1,24
334	1,000	1,23
366	1,000	1,21

Tabela 2. Valores de rendimentos quânticos e de fração de luz absorvida para o actinômetro ferrioxalato de potássio⁷².

^{*}Valores para solução de [K₃Fe(C₂O₄)₃] 0,15 mol L⁻¹

Cálculo do Rendimento Quântico (ϕ_{NO}) da fotólise

O rendimento quântico representa a eficiência de uma reação fotoquímica e experimentalmente é definido pela expressão simplificada abaixo:

$$\phi = \frac{A}{B}$$

Onde:

A= número de (moléculas) que sofre determinado processo;

B=número de einstein (fótons) de radiação absorvidos.

Os complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ sendo L= imidazol, metil-imidazol, tiouréia e sulfito quando irradiados, em meio tamponado, sofrem fotoredução liberando óxido nítrico e formando uma espécie livre de óxido nítrico da esfera de coordenação como representado:

cis-[Ru(bpy)₂L(NO)]ⁿ⁺ (aq) + X \xrightarrow{hv} cis-[Ru(bpy)₂L(X)]ⁿ⁺ (aq) + NO⁰_(aq)

Onde:

X pode ser uma molécula de solvente.

Considerando que o número de mols do complexo que sofreu fotoredução é equivalente ao número de mols de íons do *cis*-[Ru(bpy)₂L(X)]ⁿ⁺ formado e do NO liberado, pode-se calcular o rendimento quântico de NO para cada intervalo de tempo usando a equação representada na equação 13⁷¹:

$$\phi = \frac{\Delta A \cdot V}{I_0 \cdot l \cdot \Delta \varepsilon \cdot t \cdot f} \quad (13)$$

Onde:

 ΔA = variação da absorbância no λ de análise no intervalo de tempo medido;

V=volume da cela (em litros);

I=caminho óptico da cela em cm;

 $\Delta \epsilon = \epsilon$ (da espécie fotolisada) - ϵ (da espécie antes da fotólise) no λ de análise;

 I_0 =intensidade de luz incidente (einstein/seg.);

t= tempo de fotólise (segundos);

f= fração da luz absorvida pela amostra entre t=0 e t=n que é calculada em função da média das absorbâncias no λ_{IRR} : f=1-antilog-[(A₀+A_n)/2]⁷⁵.

3.3.4. Espectroscopia Vibracional na Região do Infravermelho

Os espectros na região do infravermelho foram obtidos com Espectrofotômetro FTIR Nicolet modelo Protege 460. As amostras foram feitas no estado sólido utilizando pastilha de brometo de potássio (KBr).

3.3.5. Voltametria Cíclica e Pulso Diferencial

Medidas de voltametria cíclica e de pulso diferencial foram realizadas utilizando um potenciostato/galvanostato AUTOLAB®, modelo PGSTAT 30.

Os voltamogramas cíclicos e de pulso diferencial foram obtidos em água, à temperatura ambiente (T » 30 °C). Utilizou-se como eletrólito de suporte KCI 0,1 mol L⁻¹. Os eletrodos de trabalho, auxiliar e referência foram carbono vítreo, platina e Ag/AgCI (KCI saturado) respectivamente. Para corrigir os potenciais, utilizou-se [Ru(NH₃)₆]³⁺ como padrão interno⁷⁶.

Para um processo reversível, os potenciais e as correntes de picos anódico e catódico (Epa, Epc, Ipa, Ipc), o potencial de meia onda de um processo redox ($E^{1/2}$) e o potencial e a corrente de inversão de varredura (Esp, Isp) foram obtidos conforme a Figura 6.

Figura 6. Ilustração dos parâmetros de um voltamograma cíclico completo.

Quando o sistema não exibiu linha de base catódica definida na redução (ou anódica na oxidação), utilizou-se o método empírico de que determina a razão Ipa/Ipc como ilustrado na equação 14⁷⁷.

$$\frac{I_{pa}}{I_{pc}} = \frac{I_{pa(0)}}{I_{pc}} + 0,485 \times \left(\frac{I_{sp(0)}}{I_{pc}}\right) + 0,086$$
(14)

	R
	Е
	S
	U
	L
	Т
	А
	D
	0
	S
	Е
	D
	I
	S
	С
	U
	S
	S
ue se olha."	Ã
	0

"Olhar diferente de tudo consiste em ver o diferente em tudo o que se olha.

Henrique de Shivas

4. Resultados e Discussão

4.1. Efeito dos ligantes auxiliares Imidazol, 1-metilimidazol, sulfito e tiouréia

Para os complexos do tipo cis-[Ru(bpy)₂L(NO)]ⁿ⁺, onde L = imidazol, 1metilimidazol, sulfito e tiouréia, a variação da freqüência de estiramento do NO depende da influência destes ligantes auxiliares na interação entre o rutênio e o óxido nítrico.

Sabe-se que para os complexos estudados o óxido nítrico está coordenado na forma NO⁺ e, portanto, possui orbitais π^* (Figura 7) completamente vazios e de simetria e energia apropriados para receber densidade eletrônica através de retrodoação de elétrons 4dπ do metal (back-

Na forma NO⁺, o óxido nítrico coordena-se de maneira linear sendo, na verdade, um híbrido das estruturas mostradas na Figura 8, e a ligação π entre o metal e o NO enfraquece a ligação entre os átomos de oxigênio e nitrogênio, refletindo-se nas freqüências de estiramento apresentadas mais adiante na Tabela 3.

Figura 8. Representação da ligação linear entre o metal e a molécula de óxido nítrico.43

Para os complexos do tipo *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ os orbitais envolvidos na ligação entre o centro metálico, ligante auxiliar e o óxido nítrico podem ser representados esquematicamente como na Figura 9. Considerando o eixo de coordenadas cartesianas, o ligante nitrosil sofreria influência do ligante L pelos orbitais de caráter π localizados preferencialmente no íon metálico Ru(II), ou seja d_{xy} e d_{xz}, haja visto estar este ligante a 90º do NO⁺.

Esta influência é claramente refletida quando se analisa a energia vibracional v_{NO} dos complexos discutidos neste trabalho (Figura 10). Para os complexos em questão, essa diminuição da ordem de ligação pode ser observada pelo deslocamento do estiramento NO para regiões de menor energia, ocasionado pelo enfraquecimento da ligação N-O (Tabela 3).

Figura 10. Espectros Vibracionais na Região do Infravermelho para os complexos *cis*- $[Ru(bpy)_2L(NO)]^{n+}$ onde L= (—) Imidazol, (—) 1-metilimidazol, (—) Sulfito e (—) Tiouréia.

Complexos	V _{NO}	E _L (V <i>vs</i> NHE)
<i>ci</i> s-[Ru(bpy) ₂ (L)(NO)] ⁿ⁺ , onde L:		
1-metilimidazol	1944	0,08
Imidazol	1941	0,12
Tiouréia	1931	-0,13
Sulfito	1914	-0,18

Tabela 3. li	nfluência dos	ligantes	auxiliares	no enfrad	uecimento	da liga	cão N-O.	78,79

A partir dos dados tabelados e sabendo que a característica do ligante auxiliar está diretamente relacionada à força de interação entre o metal e o NO, observa-se o enfraquecimento da ligação entre o átomo de oxigênio e nitrogênio (de cima para baixo na tabela). Além disso, pode ser feita uma correlação entre a freqüência de estiramento (v_{NO}) e o parâmetro de Lever (E_L), o composto contendo o ligante com maior E_L é aquele que apresenta a v_{NO} em maior energia, ou seja, o centro metálico com menor densidade eletrônica torna o NO mais deficiente de elétrons e, consequentemente, torna-o com maior caráter de NO⁺.

Para os complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ onde L= tiouréia e sulfito, ambos σ doadores, o que possui freqüência de estiramento menor é o complexo que possui o ligante sulfito, haja vista que o mesmo possui três átomos de oxigênio diretamente ligados ao átomo de enxofre que se coordena ao centro metálico, fato que ocasiona uma transferência maior de densidade eletrônica para o metal. Conseqüentemente, o átomo de rutênio possuindo mais densidade eletrônica faz uma *backbonding* mais efetiva com o óxido nítrico, enfraquecendo a ligação N-O.

Para os complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ onde L= imidazol, 1metilimidazol, além da interação σ , os mesmos recebem densidade eletrônica através da retrodoação. Tal fato faz com que a retrodoação para o NO seja menos efetiva o que ocasionará um aumento da ordem de ligação da molécula de óxido nítrico e, então, fortalecimento da ligação entre os átomos de nitrogênio e oxigênio. A pequena diferença observada entre as vNO para os dois complexos deve-se a característica de grupo doador da metila ligada ao imidazol.

4.2 Espectroscopia na Região do UV-visível

4.2.1 Estudo de Estabilidade dos Compostos

Complexos nitrosilos de rutênio, do tipo $[Ru^{II}L_5(NO^+)]^{n+}$, são passíveis de sofrerem ataque nucleofílico, face o caráter eletrofílico do ligante nitrosil. Geralmente, e dependente do pH, a formação do complexo $[RuL_5(NO_2)]^{(n-1)+}$ é observada dependente do caráter retro-doador do íon metálico Ru(II), em um complexo específico, para o ligante nitrosil como representado abaixo.⁸⁰⁻⁸³

cis-
$$[Ru(bpy)_2(L)-NO]^{n+} + 2OH^{-} \implies cis$$
- $[Ru(bpy)_2(L)-NO_2]^{n+} + H_2O$

Esta reação ocorre em pH específico para cada composto, pois depende da vulnerabilidade do ligante NO⁺ ao ataque do OH⁻. Uma proposição mecanística do ataque nucleofílico sofrido pelo óxido nítrico coordenado pode ser representado na Figura 11.

Figura 11. Mecanismo simplificado do ataque nucleofílico ao óxido nítrico.⁴⁴

A estabilidade, em meio aquoso, observada para os complexos cis-[Ru(bpy)₂LNO]ⁿ⁺ (L = sulfito, imidazol, 1-metilimidazol e tiouréia) está diretamente relacionada ao efeito do ligante "L" na esfera de coordenação do íon metálico. A alteração na densidade eletrônica do íon metálico concorre com a força de retro-doação do Ru(II) para o ligante nitrosilo.

A literatura reporta ^{22, 62, 63} os valores de pH e constantes de equilíbrio para a reação da interconversão nitrosil-nitrito para os compostos estudados, como apresentados na Tabela 4, a partir destes valores foram escolhidas soluções tampão para o estudo de estabilidade e, posteriormente, estabelecer as condições ideais para a realização dos experimentos em solução.

Complexos <i>cis</i> -[Ru(bpy) ₂ L(NO)] ⁿ⁺ ,	рН	keq
sendo L:		
Imidazol	5,54	1,42 _x 10 ¹⁶
Tiouréia	6,45	1,26 _x 10 ¹⁵
Sulfito	10,35	1,74 _x 10 ⁷

Tabela 4. Constante e pH de equilíbrio da interconversão nitrosil-nitro.

Os valores para o complexo contendo metil-imidazol como ligante auxiliar não foram encontrados, porém devido à semelhança com o composto imidazol, foram feitos testes de estabilidade nas mesmas condições, e os resultados foram semelhantes para ambos.

Os valores tabelados corroboram com a teoria envolvida para constantes de equilíbrio e seus valores de pH correspondentes ^{22, 62, 63}.

Observa-se que quanto menor o valor da constante de equilíbrio, maior é o valor de pH que remete a interconversão nitrosil-nitro como pode ser observado no Esquema 3. *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺_(aq) + 2OH⁻ → *cis*-[Ru(bpy)₂L(NO₂)]^{m+}_(aq) + H₂O K= [*cis*-[Ru(bpy)₂L(NO₂)]^{m+}] / [*cis*-[Ru(bpy)₂L(NO)]ⁿ⁺] × [OH⁻]² Para [*cis*-[Ru(bpy)₂L(NO₂)]^{m+}] = [*cis*-[Ru(bpy)₂L(NO)]ⁿ⁺] K= 1 / [OH⁻]²

Esquema 3. Cálculo da constante de equililíbrio da interconversão nitrosil-nitro.

De acordo com os dados tabelados o composto cis-[Ru(bpy)₂(SO₃)(NO)]⁺ sofre ataque nucleofílico em pH mais elevado (10,35). Isto porque o ligante sulfito na esfera de coordenação proporciona ao centro metálico mais densidade eletrônica do que os demais compostos, assim é possível uma *backbonding* mais forte entre o rutênio e o óxido nítrico, diminuindo o caráter NO⁺ do ligante.

Com a diminuição da capacidade de doação da densidade eletrônica no composto *cis*-[Ru(bpy)₂(TU)(NO)]³⁺ o pH diminui para 6,45. Enquanto que para os compostos contendo os ligantes auxiliares imidazol e 1-metilimidazol a influência exercida é o caráter π -receptor dos ligantes que aumentam o caráter NO⁺ do ligante nitrosil o que diminui ainda mais os valores de pH para os dois complexos.

Portanto, a interação da nuvem de densidade eletrônica do fragmento NO é determinante no equilíbrio de interconversão nitrosil-nitro.

Com base nos valores de pH da Tabela 4 foram preparadas soluções tampão de pH= 2,03 e 4,16 para o estudos de estabilidade dos compostos contendo os ligantes auxiliares imidazol e 1-metilimidazol, pH= 2,03 e 4,16 para o composto contendo o ligante tiouréia e, finalmente, pH= 6,19 e 7,4 para os

compostos contendo sulfito na esfera de coordenação. As soluções foram mantidas sob proteção de luz e em temperatura ambiente durante as medidas, o monitoramento foi feito durante 150 minutos.

O (on complexo *cis*-[Ru(bpy)₂(imN)(NO)]³⁺ mostrou-se estável em pH 2,03 (Figura 12-A), já que durante o tempo de análise não houveram mudanças aparentes nos espectros de UV-visível. Fato oposto foi observado na solução de pH 4,16 representada na Figura 12-B, neste caso a menor capacidade π receptora do ligante NO₂, em relação o ligante NO⁺, é representada pela banda em 431 nm devido а interconversão da espécie cis-[Ru(bpy)₂(imN)(NO)]³⁺ na espécie *cis*-[Ru(bpy)₂(imN)(NO₂)]⁺.

Figura 12. Estudo da estabilidade do íon complexo *cis*- $[Ru(bpy)_2(imN)(NO)]^{3+}$ em solução tampão (0,1 mol L⁻¹) pH= 2,03 e 4,16, através do monitoramento dos espectros de UV-visível (—) 0 minutos, (—) 30 minutos, (—) 90 minutos, (—) 120 minutos, (—) 150 minutos.

Essa mudança ocasiona uma desestabilização na esfera de coordenação provocando o deslocamento da banda de transferência de carga metal-ligante TCML ($\pi^*(bpy) \leftarrow d\pi(Ru^{II})$) para maiores comprimentos de onda como é possível observar na Figura 12-B.

O mesmo se repete para o composto *cis*-[Ru(bpy)₂(metimN)(NO)]³⁺ na esfera de coordenação. Em pH 2,03 (Figura 13-A) não há mudança aparente nos espectros ao longo do tempo, enquanto que em pH= 4,16 (Figura 13-B) a interconversão nitrosil-nitro é evidenciada pela diminuição da energia necessária para que a transição ($\pi^*(bpy) \leftarrow d\pi(Ru^{II})$) ocorra, deslocando igualmente a banda para maiores comprimentos de onda.

Figura 13. Estudo da estabilidade do (on complexo *cis*-[Ru(bpy)₂(metimN)(NO)]³⁺ em solução tampão (0,1 mol L⁻¹) pH= 2,03 e 4,16, através do monitoramento dos espectros de UV-visível (-) 0 minutos, (-) 30 minutos, (-) 90 minutos, (-) 120 minutos, (-) 150minutos.

O complexo contendo o ligante tiouréia manteve-se estável nos dois pH's estudados, como pode ser observado no monitoramento de seus espectros de UV-visível (Figuras 14 A e B), sendo que foi escolhido para o trabalho o pH mais elevado (4,16). Da mesma forma o complexo *cis*-[Ru(bpy)₂(SO₃)(NO)]³⁺ apresentou estabilidade (Figuras 15 A e B) em pH 6,19 e 7,4, porém o pH escolhido para os posteriores estudos foi o de 7,4 por se tratar do pH fisiológico.

Figura 14. Estudo da estabilidade do íon complexo *cis*-[Ru(bpy)₂(TU)(NO)]³⁺ em solução tampão (0,1 mol L⁻¹) pH= 2,03 e 4,16, através do monitoramento dos espectros de UV-visível (-) 0 minutos, (-) 30 minutos, (-) 90 minutos, (-) 150 minutos.

Figura 15. Estudo da estabilidade do íon complexo *cis*- $[Ru(bpy)_2(SO_3)(NO)]^+$ em solução tampão (0,1 mol L⁻¹) pH= 6,19 e 7,4, através do monitoramento dos espectros de UV-visível (--) 0 minutos, (--) 30 minutos, (--) 90 minutos, (--) 120 minutos, (--) 150 minutos.

4.2.2 Acompanhamento da Liberação Fotoquímica de Óxido Nítrico

Para os complexos estudados, uma vez que a molécula de óxido nítrico está coordenada ao metal, esta apenas sairá da esfera de coordenação se sofrer algum tipo de redução que torne a ligação instável.

Estudos apontam complexos similares onde a liberação de NO, em meio biológico, é precedida por uma redução biológica ou fotoquímica.^{19, 38, 84} A literatura reporta que complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ sendo L= imidazol e sulfito tiveram seu mecanismo de liberação de óxido nítrico estudado⁸⁵ utilizando os aminoácidos cisteína, glutationa, metionina e histidina como redutores biológicos. Para o composto contendo a tiouréia como ligante auxiliar também foi feito um estudo preliminar de reatividade com o aminoácido cisteína

Contudo a reatividade fotoquímica destes compostos não foi estudada. No intuito de compreender a reação de fotoliberação de óxido nítrico, soluções dos complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ sendo L= imidazol, 1-metilimidazol, tiouréia e sulfito foram irradiadas, durante determinado tempo, e o acompanhamento das conseqüências desta irradiação foi através da espectroscopia de UV-visível.

O comprimento de onda utilizado na irradiação dos compostos dependeu da energia necessária para que a redução ocorresse.

Os nitrosilo-complexos utilizados não apresentaram variação espectral em λ superior a 377nm. Para os complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ sendo L= imidazol e metil-imidazol, os estudos foram realizados em pH= 2,03, onde os complexos na forma Ru^{II}-NO⁺ são estáveis e em pH= 7,4, onde a forma Ru^{II}-
NO_2^- é predominante, haja visto a literatura reportar ⁸⁶ que a liberação é possível nas duas formas. Para o complexo contendo a tiouréia, como ligante auxiliar, os estudos foram realizados em pH = 4,16 e 7,4 pelos mesmos motivos. Já para o complexo contendo o ligante sulfito, o estudo foi realizado apenas em pH 7,4, pois neste pH a forma NO⁺ é estável. É válido ressaltar que nos estudos realizados com os complexos contendo o ligante nitrito observouse variação espectral quando as soluções foram irradiadas em λ = 447 nm, efeito decorrente da interação mais fraca entre o referido ligante e o centro metálico.

Embora o mecanismo fotoquímico careça ainda de outros estudos complementares, o trabalho realizado nos leva a crer em similaridade de caminho foto-reacional.

Estudos com compostos similares ^{19, 38, 87} indicam que o processo ocorre devido à transferência de energia do centro metálico para o ligante nitrosil, gerando a espécie (B) representada na Figura 16, oxidando o rutênio e reduzindo o NO⁺ a NO⁰. Em seguida ocorreria a labilização da molécula de NO⁰ e posterior substituição por uma molécula de solvente (no caso dos experimentos aqui realizados seria uma molécula de água) já que a ligação Ru^{III}-NO⁰ não seria suficientemente forte.

Figura 16. Sugestão do percurso para a liberação fotoquímica do óxido nítrico.

Entretanto a espécie Ru^{III}-H₂O nem sempre é observada como produto da fotólise. Em alguns casos ^{19, 38} é comum a detecção da espécie Ru^{II}-H₂O, onde o retorno a espécie Ru^{II} parece proceder de uma redução espontânea da espécie transiente Ru^{III}, como representado no Esquema 4.

$$\{\operatorname{Ru}^{III}-\operatorname{H}_2O\}^6$$
 + 1e⁻ $\xrightarrow{h_V}$ $\{\operatorname{Ru}^{II}-(\operatorname{H}_2O)\}^6$

Esquema 4. Redução espontânea, após a fotólise, da espécie Ru^{III} para Ru^{II}.

A Figura 17 mostra os espectros para os compostos cis-[Ru(bpy)₂(imN)(X)]ⁿ⁺, onde X = NO⁺ e NO₂⁻, antes e após 30 minutos de irradiação em λ_{irr} = 377 e 447 nm, respectivamente. É possível observar que em ambos os casos há o surgimento de uma banda em 488 nm após 30 minutos de irradiação da solução, indicando a formação de uma espécie diferente da inicial em solução, tal espécie seria resultante do processo de fotólise.

Considerando as atribuições feitas em outros trabalhos, ^{19, 38} foi realizado o registro do espectro (Figura 17) do complexo *cis*- $[Ru^{II}(bpy)_2(imN)(H_2O)]^{2+}$ obtido pela redução química do complexo *cis*- $[Ru^{II}(bpy)_2(imN)(NO)]^{3+}$ com pastilhas de amálgama de Zinco.

Figura 17. Espectros dos íons complexos (—) cis-[Ru(bpy)₂(imN)(NO)]³⁺ antes da irradiação, (—) cis-[Ru(bpy)₂(imN)(NO)]³⁺ após 30 minutos de irradiação, (—) cis-[Ru(bpy)₂(imN)(H₂O)]²⁺ obtido do imN-NO reduzido com Zn, (—) cis-[Ru(bpy)₂(imN)(NO)₂]²⁺ antes da irradiação, (—) cis-[Ru(bpy)₂(imN)(NO)₂]²⁺ após 30 minutos de irradiação.

Ao comparar-se os espectros dos compostos (—) *cis*- $[Ru^{II}(bpy)_2(imN)(NO)]^{3+}$ e (—) *cis*- $[Ru^{II}(bpy)_2(imN)(NO_2)]^+$ após 30 minutos de fotólise com o espectro do complexo (—) *cis*- $[Ru^{II}(bpy)_2(imN)(H_2O)]^{2+}$ supõese que a irradiação ocasiona a liberação de óxido nítrico e formação da espécie Ru^{II} -H₂O em ambos os casos.

O mesmo procedimento foi realizado para os complexos contendo os ligantes 1-metilimidazol e tiouréia. A Figura 18 apresenta o registro espectral dos compostos *cis*-[Ru^{II}(bpy)₂(metimN)(NO)]³⁺ e *cis*-[Ru^{II}(bpy)₂(metimN)(NO₂)]⁺ antes e após 30 minutos de iradiação, além do espectro da espécie *cis*-

[Ru^{II}(bpy)₂(metimN)(H₂O)]²⁺ obtida de forma análoga ao complexo contendo o ligante imidazol. É possível observar que também há mudança do espectro após a irradiação, e a espécie formada após a irradiação assemelha-se novamente ao aquo-complexo.

Figura 18. Espectros dos íons complexos (—) *cis*-[Ru(bpy)₂(MetimN)(NO)]³⁺ antes da irradiação, (—) *cis*-[Ru(bpy)₂(MetimN)(NO)]³⁺ após 30 minutos de irradiação, (—) *cis*-[Ru(bpy)₂(MetimN)(H₂O)]²⁺ obtido do MetimN-NO reduzido com Zn, (—) *cis*-[Ru(bpy)₂(MetimN)(NO)₂]²⁺ antes da irradiação, (—) *cis*-[Ru(bpy)₂(MetimN)(NO)₂]²⁺ após 30 minutos de irradiação.

Entretanto, o composto contendo o ligante tiouréia (Figura 19) na esfera de coordenação possui comportamento distinto, já que após 30 minutos de irradiação os espectros das espécies (—), (—) não se assemelham ao espectro do aquo-complexo (—) *cis*- $[Ru^{II}(bpy)_2(TU)(H_2O)]^{2+}$, fato que

corrobora com estudos anteriores ⁶³, neste caso a liberação de óxido nítrico gera a formação de uma espécie dimérica.

Figura 19. Espectros dos íons complexos (—) *cis*-[Ru(bpy)₂(TU)(NO)]³⁺ antes da irradiação, (—) *cis*-[Ru(bpy)₂(TU)(NO)]³⁺ após 30 minutos de irradiação, (—) *cis*-[Ru(bpy)₂(TU)(H₂O)]²⁺ obtido do TU-NO reduzido com Zn, (—) *cis*-[Ru(bpy)₂(TU)(NO)₂]²⁺ antes da irradiação, (—) *cis*-[Ru(bpy)₂(TU)(NO)₂]²⁺ após 30 minutos de irradiação.

Já para o complexo *cis*-[Ru^{II}(bpy)₂(SO₃)(NO)]⁺ o acompanhamento da variação espectral foi realizado em pH= 7,4 onde a espécie NO⁺, portanto não houve necessidade do monitoramento da espécie *cis*-[Ru^{II}(bpy)₂(SO₃)(NO₂)], pois esta espécie seria estável em pH básico.

A Figura 20 indica que o espectro da espécie após 30 minutos de irradiação é muito semelhante ao da espécie *cis*-[Ru^{II}(bpy)₂(SO₃)(H₂O)] assim como apresentado para os compostos contendo os ligantes imidazol e 1-metilimidazol.

Figura 20. Espectros dos íons complexos Espectros dos íons complexos (—) *cis*- $[Ru(bpy)_2(SO_3)(NO)]^+$ antes da irradiação, (—) *cis*- $[Ru(bpy)_2(SO_3)(NO)]^+$ após 30 minutos de irradiação, (—) *cis*- $[Ru(bpy)_2(SO_3)(H_2O)]$ obtido do SO₃-NO reduzido com Zn

4.2.3. Rendimento Quântico

O estímulo luminoso as quais as soluções foram submetidas fora suficiente para promover a liberação de óxido nítrico, e após a confirmação da espécie formada como produto da fotólise foi possível calcular o rendimento quântico de formação do aquo-complexo utilizando o método espectrofotométrico.

As Figuras 21 – 25 apresentam o acompanhamento da irradiação dos íons complexos contendo os fragmentos imN-NO, metimN-NO, SO₃-NO, imN-NO₂ e metimN-NO₂ respectivamente.

Figura 21. Variação no espectro de absorção do íon complexo *cis*- $[Ru(bpy)_2(imN)(NO)]^{3+}$ (6x10-5 mol L⁻¹) em tampão pH= 2,03 no período de (—) 0, (—) 5 minutos, (—) 10 minutos, (—) 15 minutos, (—) 20 minutos, (—) 25 minutos, (—) 30 minutos (λ =377nm).

Figura 22. Variação no espectro de absorção do íon complexo *cis*-[Ru(bpy)₂(metimN)(NO)]³⁺ (6x10-5 mol L⁻¹) em tampão pH= 2,03 no período de (—) 0, (—) 5 minutos, (—) 10 minutos, (—) 15 minutos, (—) 20 minutos, (—) 25 minutos, (—) 30 minutos (λ =377nm).

Figura 23. Variação no espectro de absorção do íon complexo *cis*- $[Ru(bpy)_2(SO_3)(NO)]^+$ (6x10-5 mol L⁻¹) em tampão pH= 7,40 no período de (—) 0, (—) 5 minutos, (—) 10 minutos, (—) 15 minutos, (—) 20 minutos, (—) 25 minutos (λ =377nm).

Figura 24. Variação no espectro de absorção do íon complexo *cis*- $[Ru(bpy)_2(imN)(NO_2)]^+$ (6x10-5 mol L⁻¹) em tampão pH= 7,40 no período de (—) 0, (—) 5 minutos, (—) 10 minutos, (—) 15 minutos, (—) 20 minutos, (—) 25 minutos, (—) 30 minutos (λ =447nm).

Figura 25. Variação no espectro de absorção do íon complexo *cis*- $[\operatorname{Ru}(\operatorname{bpy})_2(\operatorname{metimN})(\operatorname{NO}_2)]^+$ (6x10-5 mol L⁻¹) em tampão pH= 7,40 (—) 0, (—) 2 minutos, (—) 4 minutos, (—) 6 minutos, (—) 8 minutos, (—) 10 minutos, (—) 12 minutos, (—) 14 minutos (λ =447nm).

Como previsto, do acompanhamento das espécies contendo os fragmentos TU-NO e TU-NO₂ (Figura 26 e 27 respectivamente) não foi possível calcular o rendimento quântico da espécie após a irradiação, já que as tentativas de isolamento do dímero formado mostraram-se sem sucesso.

 $\begin{array}{c} C \ o \ m \ p \ rim \ en \ to \ d \ e \ O \ n \ d \ a \ (n \ m \) \\ \textbf{Figura 26.} Variação no espectro de absorção do íon complexo$ *cis* $-[Ru(bpy)_2(TU)(NO)]^{3+} (6x10-5 \ mol \ L^{-1}) \ em \ tampão \ pH= 4,16 \ no \ período \ de \ (\ --- \) 0, \ (\ --- \) 5 \\ minutos, \ (\ --- \) 10 \ minutos, \ (\ --- \) 15 \ minutos, \ (\ --- \) 20 \ minutos, \ (\ --- \) 25 \ minutos, \ (\ --- \) 30 \\ minutos \ (\lambda=377nm). \end{array}$

Figura 27. Variação no espectro de absorção do íon complexo *cis*- $[\operatorname{Ru}(\operatorname{bpy})_2(\operatorname{TU})(\operatorname{NO}_2)]^+$ (6x10-5 mol L⁻¹) em tampão pH= 7,40 no período de (—) 0, (—) 5 minutos, (—) 10 minutos, (—) 15 minutos, (—) 20 minutos, (—) 25 minutos, (—) 30 minutos (λ =447nm).

Dos espectros apresentados é válido ressaltar que a formação do aquocomplexo é mais rápida para os compostos contendo os fragmentos imN-NO₂ e metimN-NO₂.

Com os dados obtidos do monitoramento espectral foi possível traçar uma relação entre o rendimento quântico por tempo de fotólise (Figura 28) e assim chegar a um valor que representasse o rendimento quântico após todo o tempo de fotólise como apresentado na Tabela 5.

Figura 28. Rendimento Quântico de formação do íon complexo *cis*- $[Ru(bpy)_2(imN)(H_2O)]^{2+}$ em função do tempo de fotólise.

Complexos	Rendimento Quântico	λ _{irradiação}	$\lambda_{acompanhamento}$
<i>cis</i> -[Ru(bpy) ₂ L(X)] ⁿ⁺ , sendo	(φ) formação do		
L e X:	Ru ^{II} -H ₂ O		
Sulfito-NO	0,00182	377	488
Imidazol-NO	0,00315	377	488
Imidazol-NO ₂	0,00252	447	487
Metil-Imidazol-NO	0,00689	377	488
Metil-Imidazol-NO ₂	0,00336	447	488
Piridina-NO2 ³⁸	0,00700	355	416
4-picolina-NO238	0,00900	355	418
Pirazina-NO238	0,03700	355	408
4-picolina-NO ₂ ³⁸ Pirazina-NO ₂ ³⁸	0,00900 0,03700	355 355	418 408

Tabela 5. Rendimento quântico de formação do aquo-complexo para os compostos Complexos *cis*-[Ru(bpy)₂L(X)]ⁿ⁺.

Os valores encontrados para os compostos estudados neste trabalho podem ser comparados aos complexos³⁸ *cis*-[Ru(bpy)₂(L)(NO₂)]⁺, onde L= piridina, 4-picolina e pirazina (Tabela 5). É possível observar a formação do aquo-complexo para todas as espécies, entretanto o complexo em que a eficiência de liberação mostra-se mais satisfatória e mais próximo aos valores encontrados na literatura é para o complexo contendo o fragmento metimN-NO seguido do metimN-NO₂. Os demais complexos também apresentam significativa fotoliberação de óxido nítrico.

4.3 Eletrodo Seletivo de Óxido Nítrico

Apesar dos resultados apresentados e estudos anteriores corroborarem com a idéia de formação do aquo-complexo a partir da liberação fotoquímica de óxido nítrico, a comprovação de sua liberação na forma NO⁰ tem como metodologia mais empregada a cronoamperometria utilizando um eletrodo seletivo de óxido nítrico.⁸⁷

Em casos onde a liberação ocorre rapidamente, entre segundos a poucos minutos, este procedimento é adequado tanto para análise qualitativa como quantitativa, bastando que seja construída uma curva de calibração no intervalo de concentração correto.

Entretanto, quando a liberação de óxido nítrico se faz de maneira mais lenta os resultados possuem caráter apenas qualitativo. Este é o caso dos compostos estudados neste trabalho.

As Figuras 29 – 35 apresentam os cronoamperogramas para os compostos contendo os fragmentos metimN-NO, SO₃-NO, imN-NO, metimN-NO₂, imN-NO₂, TU-NO, TU-NO₂ e. Em todos os casos foi comprovado que a irradiação é responsável pela liberação do NO⁰ já que o eletrodo foi imerso em solução e assim mantido sem que houvesse alteração na corrente (μ A) registrada até aproximadamente 100s onde a solução começou a ser irradiada, só a partir deste momento o equipamento registrou alteração de corrente.

Analisando os gráficos é possível observar que a corrente oscila durante o tempo de irradiação como se a espécie formada fosse rapidamente consumida. É provável que isto realmente ocorra já que a espécie é altamente reativa (radical livre) com meia vida de 5 a 10s *in vitro* ⁸⁸ e reage com o oxigênio dando origem a diversas espécies reativas de nitrogênio, como numa reação em cadeia, representado no Esquema 5⁴⁶⁻⁴⁸:

Esquema 5. Possíveis reações do NO em solução aquosa.⁸

Além disso, a partir do ânion superóxido e do peroxinitrito pode ser formado o ácido peroxinitroso em pH neutro. Tal ácido por sua vez pode ser decomposto gerando outras espécies (Esquema 6).⁴⁶⁻⁴⁸

Esquema 6. Formação do HONO₂ e sua decomposição.

O valor de corrente detectado para Figura 29 corresponde ao complexo contendo o fragmento metimN-NO e aponta para uma maior liberação se comparada com os demais, já que o valor de corrente observado ultrapassa 0,100 μ A enquanto que os demais variam entre 0,060 – 0,085 μ A, além disso o tempo de irradiação em que a corrente permanece elevada é bem superior as demais. Este fato está de acordo com os valores de rendimentos quânticos calculados que apontam a molécula *cis*-[Ru(bpy)₂(metimN)(NO)]³⁺ como sendo a mais eficiente para a fotoliberação de óxido nítrico.

Contudo, por ser a espécie que mais gera NO⁰ livre em solução, também mostra ser a mais suscetível a formação das espécies reativas de nitrogênio possuindo uma maior oscilação de corrente.

Figura 29. Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo *cis*-[Ru(bpy)₂(metimN)(NO)]³⁺ (solução tampão pH= 2,03) utilizando eletrodo seletivo para NO⁰ livre.

O contrário é observado na Figura 30, onde é possível observar que o íon complexo *cis*-[Ru(bpy)₂(SO₃)(NO)]⁺ libera o óxido nítrico de maneira mais lenta e em menor quantidade.

Figura 30. Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo *cis*-[Ru(bpy)₂(SO₃)(NO)]⁺ (solução tampão pH= 7,40) utilizando eletrodo seletivo para NO⁰ livre.

O composto contendo o fragmento imN-NO (Figura 31) apesar de apresentar valores de corrente máxima (μA) semelhantes aos encontrados para o complexo contendo o fragmento metimN-NO, libera menor quantidade de óxido nítrico já que a corrente começa a decair após 250s de irradiação enquanto que o outro ultrapassa os 500s.

Figura 31. Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo *cis*- $[Ru(bpy)_2(imN)(NO)]^{3+}$ (solução tampão pH= 2,03) utilizando eletrodo seletivo para NO⁰ livre.

Os cronoamperogramas apresentados nas Figuras 32 – 35 parecem atingir valores de corrente próximos indicando que, em certo momento, a quantidade de NO⁰ livre em solução é semelhante, contudo as soluções dos íons complexos contendo os fragmentos metimN-NO₂ (Figura 32) e imN-NO₂ (Figura 33) parecem liberar mais rapidamente o óxido nítrico coordenado (sinal de corrente significativo até 200s de irradiação), enquanto que para as soluções dos íons complexos contendo os fragmentos TU-NO (Figura 34) e TU-NO₂ (Figura 35) a liberação inicia-se após 100s de irradiação e a corrente permanece elevada e constante por mais tempo.

Figura 32. Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo *cis*- $[Ru(bpy)_2(metimN)(NO_2)]^+$ (solução tampão pH= 7,40) utilizando eletrodo seletivo para NO⁰ livre.

Figura 33. Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo *cis*- $[Ru(bpy)_2(imN)(NO_2)]^+$ (solução tampão pH= 7,40) utilizando eletrodo seletivo para NO⁰ livre.

Figura 34. Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo *cis*- $[Ru(bpy)_2(TU)(NO)]^{3+}$ (solução tampão pH= 4,19) utilizando eletrodo seletivo para NO⁰ livre.

Figura 35. Cronoamperograma referente ao acompanhamento da liberação fotoquímica de óxido nítrico para o íon complexo *cis*- $[Ru(bpy)_2(TU)(NO_2)]^+$ (solução tampão pH= 7,40) utilizando eletrodo seletivo para NO⁰ livre.

4.4 Voltametria Cíclica e Voltametria de Pulso Diferencial

A avaliação da reversibilidade dos processos referentes ao ligante nitrosil (NO^{+/0}; NO^{0/-}), em nosso trabalho, foi realizada utilizando voltametria cíclica, sendo esta também utilizada na investigação da existência de processo químico seguido do processo eletroquímico, cuja confirmação foi dada pela técnica de voltametria de pulso diferencial.

O estudo foi realizado utilizando como eletrólito suporte KCI 0,10 mol L⁻¹ em tampão pH= 7,40 para o íon complexo cis-[Ru(bpy)₂(SO₃)(NO)]⁺ e KCI 0,10 mol L⁻¹ em tampão pH= 2,03 para os demais compostos. O registro dos voltamogramas foi realizado nas mesmas condições tanto para as soluções contendo os íons complexos bem como para o eletrólito suporte, após os experimentos foi feito um tratamento matemático para subtrair a corrente capacitiva do branco a fim de obterem-se gráficos mais definidos.

No intuito de visualizar todos os processos envolvidos, os voltamogramas cíclicos foram feitos na janela de potencial de 1,00 a -1,00V (E vs Ag/AgCl, KCl saturado), em seguida a janela de potencial foi reduzida a região do processo referente ao par redox NO^{+/0}.

Nas figuras 36-39 é possível observar os voltamogramas cíclicos para os ions complexos cis-[Ru(bpy)₂(L)(NO)]ⁿ⁺, onde L= imidazol, 1-metilimidazol, tiouréia e sulfito respectivamente. Nestes casos a varredura teve inicio em potencial de cela aberta de 0,50 V (E vs Ag/AgCl, KCl saturado), no sentido positivo, até 1,00 V seguindo-se corrente catódica até -1,00 V e retornando ao potencial inicial(0,50 V). A velocidade de varredura utilizada em tais experimentos foi de 0,10 V/s e os processos foram monitorados para um e dois ciclos de varredura.

Figura 36. Voltamogramas cíclicos (—) 1 ciclo e (—) 2 ciclos de varredura para o íon complexo *cis*-[Ru(bpy)₂(imN)(NO)]³⁺ em KCl 0,10 mol L⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,50 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 1,00 e -1,00 V. T=25°C. V= 0,10 V/s.

Figura 37. Voltamogramas cíclicos (—) 1 ciclo e (—) 2 ciclos de varredura para o íon complexo *cis*-[Ru(bpy)₂(metimN)(NO)]³⁺ em KCl 0,10 mol L⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,50 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 1,00 e -1,00 V. T=25°C. V= 0,10 V/s.

Figura 38. Voltamogramas cíclicos (—) 1 ciclo e (—) 2 ciclos de varredura para o íon complexo *cis*-[Ru(bpy)₂(TU)(NO)]³⁺ em KCI 0,10 mol L⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,50 V (E VS Ag/AgCI, KCI saturado), potenciais de inversão 1,00 e -1,00 V. T=25°C. V= 0,10 V/s.

Figura 39. Voltamogramas cíclicos (—) 1 ciclo e (—) 2 ciclos de varredura para o íon complexo *cis*-[Ru(bpy)₂(TU)(NO)]³⁺ em KCI 0,10 mol L⁻¹ e tampão pH= 7,40. Potencial inicial de varredura 0,50 V (E VS Ag/AgCl, KCI saturado), potenciais de inversão 1,00 e -1,00 V. T=25°C. V= 0,10 V/s.

Como esperado⁸⁹ todos os complexos nitrosilos estudados apresentaram comportamento eletroquímico semelhante e as curvas referentes aos processos apresentados nos voltamogramas são descritos no Esquema 7.

Esquema 7. Possíveis processos redox ao qual o óxido nítrico está suceptível.

A atribuição dos processos apresentados nos voltamogramas foi realizada 89-92 considerando atribuições da literatura para compostos semelhantes. O processo referente ao par redox NO^{+/0} é representado pelas ondas 1a e 1c. A onda 2c é atribuída à redução do NO^0 coordenado a NO^- também coordenado, enquanto que a onda 3c é referente à redução catalítica do NO⁻ a NH₃ (ambos coordenados), sendo que todas essas etapas envolvem a transferência de elétrons.

Nas figuras 36 - 39 é possível observar uma onda anódica 4a em potencial próximo a 1.00 V guando a varredura ocorre em dois ciclos, indicando que a espécie eletroativa representada por este processo não existia inicialmente em solução e que o mesmo é dependente de sucessivas reduções sofridas pelo NO coordenado.

Para estudar a reversibilidade do processo eletroquímico NO^{+/0} foram feitos vários voltamogramas cíclicos em diferentes velocidades para todos os compostos. As figuras 40 - 43 ilustram os ciclovoltamogramas onde a janela de potencial foi reduzida ao processo de interesse para que não houvesse perda de sinal significativa, devido outras possíveis reações acopladas como as representadas no Esquema 7.

Figura 40. Voltamogramas cíclicos em diferentes velocidades de varredura (—) 0,05 V/s, (—) 0,10 V/s, (—) 0,20 V/s, (—) 0,30 V/s, (—) 0,40 V/s para o íon complexo *cis*-[Ru(bpy)₂(imN)(NO)]³⁺ em KCI 0,10 mol L⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,40 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 0,60 e -0,10 V. T=25°C.

Dissertação de Mestrado

E(V vs. Ag/AgCI, KCI saturado)

Figura 42. Voltamogramas cíclicos em diferentes velocidades de varredura (-----) 0,05 $[Ru(bpy)_2(TU)(NO)]^{3+}$ em KCI 0,10 mol L⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,40 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 0,60 e -0,10 V. T=25°C.

V/s, (—) 0,10 V/s, (—) 0,20 V/s, (—) 0,30 V/s, (—) 0,40 V/s para o íon complexo *cis*- $[Ru(bpy)_2(SO_3)(NO)]^+$ em KCI 0,10 mol L⁻¹ e tampão pH= 2,03. Potencial inicial de varredura 0,10 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 0,40 e -0,50 V. T=25°C.

De acordo com os critérios da literatura⁹³, esse processo eletroquímico pode ser considerado reversível, sendo que a razão da corrente de pico Ipa/Ipc é muito próxima à unidade (Tabela 6).

Tabela 6. Parâmetros de reversibilidade do processo referente ao par redox NO^{+/0} do íon complexo *cis*-[Ru(bpy)₂(L(NO)]³⁺, onde L= imidazol, metilimidazol, sulfito e tiouréia.

Complexos:	IMIC	DAZOL	METILI	MIDAZOL	TIC	DURÉIA	SUL	.FITO
V (mV/s)	I _{pa} /I _{pc}	∆Ep (V)						
50	0,974	0,082	0,984	0,089	0,995	0,082	1,085	0,250
100	1,001	0,095	1,030	0,095	1,054	0,092	1,106	0,269
200	1,019	0,107	1,033	0,104	1,106	0,104	1,220	0,292
300	1,016	0,116	1,032	0,120	1,120	0,110	1,176	0,351
400	1,010	0,116	1,027	0,122	1,130	0,116	1,164	0,394

A variação no valor da diferença de potencial (Tabela 6) quando variada a velocidade de varredura ocorre devido a provável queda ôhmica existente, tal fato foi comprovado fazendo-se a varredura em diferentes velocidades para o íon complexo [Ru(NH₃)₆]³⁺, nas mesmas condições experimentais, onde foi observado variação destes valores (Apêndice 1).

Outro parâmetro a se considerar na reversibilidade de um processo é a relação linear entre a corrente catódica de pico máximo e a raiz quadrada da velocidade de varredura ($v^{1/2}$) (Figuras 44-47).

Figura 44. Variação de lpc em função de V^{1/2}, em meio aquoso, para o complexo *cis*-[Ru(bpy)₂(imN)(NO)]³⁺.

Figura 45. Variação de Ipc em função de V^{1/2}, em meio aquoso, para o complexo

Figura 46. Variação de lpc em função de V^{1/2}, em meio aquoso, para o complexo *cis*-[Ru(bpy)₂(TU)(NO)]³⁺.

Figura 47. Variação de lpc em função de $V^{1/2}$, em meio aquoso, para o complexo *cis*-[Ru(bpy)₂(SO₃)(NO)]⁺.

A linearidade desta relação também nos indica que o transporte de massa para a superfície do eletrodo ocorre por gradiente de concentração de acordo com a Equação 15 (Equação de Randles-Sevcik) que representa a relação linear entre a corrente de pico e a raiz quadrada do coeficiente de difusão e com a raiz quadrada da velocidade.

Há ainda, em alguns trabalhos⁹⁴⁻⁹⁶, outra relação que confirma a reversibilidade do processo é apresentada pela relação linear entre o logaritmo da velocidade de varredura pelo logaritmo da corrente de pico catódica, Figuras 48-51.

Figura 48. Variação de log(lpc) em função de log(V), em meio aquoso, para o complexo *cis*-[Ru(bpy)₂(imN)(NO)]³⁺.

Figura 49. Variação de log(lpc) em função de log(V), em meio aquoso, para o complexo *cis*-[Ru(bpy)₂(metimN)(NO)]³⁺.

Figura 50. Variação de log(lpc) em função de log(V), em meio aquoso, para o complexo *cis*-[Ru(bpy)₂(TU)(NO)]³⁺.

Figura 51. Variação de log(lpc) em função de log(V), em meio aquoso, para o complexo *cis*-[Ru(bpy)₂(SO₃)(NO)]⁺.

Dos voltamogramas cíclicos representados nas figuras 40 - 43 também é possível extrair os valores de $E_{1/2}$ referentes ao par redox NO^{+/0} de cada complexo e correlacioná-los com os valores do parâmetro de Lever descritos na literatura (Tabela 7)^{78,79}

Tabela 7.Valores de Potencial de Meia-Onda $(E_{1/2})$ dos complexos *cis*-
[Ru(bpy)_2(L)(NO)]^n*e Energia do Parâmetro de Lever (E_L) dos ligantes imidazol, 1-metilimidazol,
tiouréia e sulfito.Complexos $E_{1/2}$ (V vs Ag/AgCl, KCl saturado) E_L (V vs NHE)*cis*-[Ru(bpy)_2(L)(NO)]^n+, onde L:0,10 V/s0,240,08

Imidazol	0,23	0,12
Tiouréia	0,076	-0,13
Sulfito	-0,092	-0,18

A comparação destes valores teóricos (E_L) e experimentais (E_{1/2}) é pertinente já que é de suma importância comparar os efeitos exercidos pelos ligantes auxiliares sobre o centro metálico e, conseqüentemente, sobre o óxido nítrico coordenado. Levando em consideração a natureza π receptora (imidazol e 1-metilimidazil) e σ doadora (tiouréia e sulfito) dos ligantes é possível explicar a diferença entre os valores de E_{1/2}, EL e vNO. Pelos dados apresentados na Tabela 7 é possível afirmar que o composto que possui óxido nítrico com maior caráter NO⁺ é àquele contendo o ligante 1-metilimidazol, já que o {Ru-NO}3+ é mais facilmente reduzido a {Ru-NO}²⁺ (E_{1/2} mais elevado).

Outro fato que corrobora com essa atribuição são os valores de E_{L} observados, já que a energia do parâmetro de Lever é a medida da capacidade doadora de densidade eletrônica dos ligantes para o metal. Quanto maior seu valor, indiretamente, menor a retrodoação para o ligante NO, em conseqüência da deficiência eletrônica do rutênio quando comparado aos compostos contendo os outros ligantes auxiliares.

Contudo, a influência exercida sobre a *backbonding* para o NO também depende dos orbitais envolvidos na interação. Os compostos apresentados neste trabalho possuem conformação *cis* e, conseqüentemente, o centro metálico sofre menos influência da doação de densidade dos seus ligantes já que, neste caso, a doação se dá em orbital distinto daquele que participa

efetivamente da retrodoação. Poder-se-ia prever que para compostos contendo os mesmos ligantes, mas com conformação *trans*, sofreriam muito mais influência. É possível visualizar com mais clareza a interação entre os orbitais d do metal observando o Figura 52.

Figura 52. Influência da posição do ligante L na densidade eletrônica sob o ligante nitrosil. a) posição *trans* e b) posição *cis*.

A técnica de voltametria de pulso diferencial, por ser mais sensível, foi utilizada para confirmar a dependência do processo 4c. A Figura 53 mostra os voltamogramas para os compostos *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺ onde inicialmente foi realizada a varredura do potencial positivo 1,00V até o potencial negativo -0,20V, podendo-se observar a inexistência de qualquer processo entre 0,40 e 1,00V.

Em seguida a mesma solução foi submetida a varredura inversa, ou seja, saindo de -0,20V a 1,00V, e o acompanhamento foi realizado eletrolisando a solução em -0,60V durante 0, 10, 20 e 30s, sendo possível observar o aumento de dois processos entre a região de 0,40 e 1,00V.

Figura 53. Voltamogramas de Pulso Diferencial para os complexos *cis*- $[Ru(bpy)_2(L)(NO)]^{n+}$. (—) Varredura de potencial de 1,00V até -0,20V, sem eletrólise. Varredura de potencial de -0,20V a 1,00Vm, eletrólise da solução em -0,60V durante (—) 0, (—) 10, (—) 20 e (—) 30s.

O processo em torno de 0,7 V pode ser atribuído ao par redox $Ru^{II/III}$ oriundo da formação do complexo *cis*- $[Ru(bpy)_2(L)(NH_3)]^{n+}$ devido a redução catalítica sofrida pelo composto *cis*- $[Ru(bpy)_2(L)(NO)]^{n+}$. Já o processo observado em 0,6 V pode tratar-se de uma reação química ocorrida após a redução do NO^0 a NO^- coordenado, já que é possível a saída deste ligante da
esfera de coordenação para a formação do complexo *cis*-[Ru(bpy)₂(L)(H₂O)]ⁿ⁺ (Esquema 8).

Esquema 8. Redução catalítica e processo eletroquímico que a espécie Ru^{II}-NO⁻ poderá sofrer.

4.5 Determinação Eletroanalítica da Liberação Fotoquímica de Óxido Nítrico utilizando Voltametria de Onda Quadrada

4.5.1 Estudo dos Parâmetros Operacionais da Voltametria de Onda Quadrada (VQO)

A sensibilidade da técnica de VOQ depende do valor dos parâmetros de freqüência, amplitude e incremento de varredura para cada sistema estudado e, portanto, é necessário um estudo preliminar dos parâmetros operacionais que compõem a técnica⁹⁷⁻¹⁰³.

Influência da Frequência de Pulso

A corrente de pico é diretamente proporcional a raiz quadrada da freqüência de aplicação de pulso (Equação 16).

$$I_p = K_r f^{1/2}$$
 (16)

Onde: I_p = corrente de pico; k_r = constante cinética; $f^{1/2}$ = raiz quadrada da freqüência.

A Figura 54 apresenta os voltamogramas para os íons complexos *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺ em função da freqüência aplicada. Em todos os casos foi possível observar ruído nos voltamogramas quando o valor de freqüência aplicada aumenta este fato aliado à diminuição da intensidade da corrente de pico máximo limitou a variação da freqüência a valores ainda maiores.

As correntes de pico máximo tiveram dependência linear até uma freqüência de 40 Hz para o complexo com o ligante auxiliar imidazol, 60 Hz para o ligante metil-imidazol, e frequência de 30 Hz para os complexos com os

ligantes sulfito e tiouréia (representado na Figura 55). Para valores maiores de freqüência a corrente de pico reduziu sensivelmente como representada na

Figura 54. Voltamogramas de Onda Quadrada para as freqüências de (—)10, (—)20, (—)30, (—)40, (—)50, (—)60, (—)70, (—)80 e (—)90 Hz para os íons complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ sendo L= imidazol e 1-metilimidazol, em tampão trifluoroacetato + hidróxido de sódio pH=2,03, tiouréia, em tampão ácido acético + acetato de sódio pH=4,16 e sulfito, em tampão H₂PO₄⁻⁻ e HPO₄²⁻ de pH = 7,4. Concentração do eletrólito: 0,1mol L⁻¹.

Figura 55. Influência do aumento de freqüência na resposta de corrente voltamétrica para os íons complexos *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺, sendo L= imidazol e 1-metilimidazol, em tampão trifluoroacetato + hidróxido de sódio pH=2,03, tiouréia, em tampão ácido acético + acetato de sódio pH=4,16 e sulfito, em tampão $H_2PO_4^-$ e HPO_4^{-2-} de pH = 7,4. Concentração do eletrólito: 0,1mol L⁻¹.

Dissertação de Mestrado

Influência da Amplitude de Pulso

A amplitude é outro parâmetro importante para uma boa resposta voltamétrica e, dependendo do valor de amplitude aplicado, o sinal de onda pode sofrer um alargamento do pico comprometendo a sensibilidade da medida.

A Figura 56 apresenta os voltamogramas para os íons complexos *cis*- $[Ru(bpy)_2(L)(NO)]^{n+}$ em função da amplitude aplicada, mostrando que há uma dependência linear entre a corrente de pico com a amplitude.

Para todos os complexos as correntes de pico mantiveram uma dependência linear em toda a janela de amplitude estudada (Figura 57), sendo o valor escolhido de 50 mV como o que representa maior resolução e sensibilidade para os picos voltamétricos, para os complexos contendo os ligantes auxiliares imidazol, 1-metilimidazol, sulfito e tiouréia.

Figura 56. Voltamogramas de Onda Quadrada para as amplitudes de (—)10, (—)20, (—)30, (—)40, (—)50, (—)60, e (—)70 mV para os íons complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺ sendo L= imidazol e 1-metilimidazol, em tampão trifluoroacetato + hidróxido de sódio pH=2,03, tiouréia, em tampão ácido acético + acetato de sódio pH=4,16 e sulfito, em tampão H₂PO₄⁻ e HPO₄²⁻ de pH = 7,4. Concentração do eletrólito: 0,1mol L⁻¹.

Figura 57. Influência do aumento de amplitude na resposta de corrente voltamétrica para os íons complexos *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺, sendo L= imidazol e 1-metilimidazol, em tampão trifluoroacetato + hidróxido de sódio pH=2,03, tiouréia, em tampão ácido acético + acetato de sódio pH=4,16 e sulfito, em tampão $H_2PO_4^-$ e HPO_4^{-2-} de pH = 7,4. Concentração do eletrólito: 0,1mol L⁻¹.

Influência do Incremento de Varredura

O incremento de varredura também determina a eficiência da resposta analítica utilizando a voltametria de onda quadrada. A velocidade da voltametria de onda quadrada está diretamente relacionada à freqüência e ao incremento de varredura. Este parâmetro influencia na definição do pico voltamétrico e para valores baixos deste podem resultar em diminuição da sensibilidade da técnica, porém altos valores podem proporcionar alargamento do pico e conseqüente diminuição na resolução do mesmo.

A Figura 58 ilustra os voltamogramas para o sistema em estudo variando-se o incremento de varredura (ΔE_s), para os íons complexos *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺. Os voltamogramas apresentados para os complexos mostraram pequena variação dos valores de pico de corrente máxima, assim como não houve alargamento considerável do pico nem deslocamento do potencial que representasse adsorção significante.

Apesar da relação entre a corrente de pico máximo e o incremento de varredura (ΔE_s) mostrar-se linear para o íon complexo contendo o ligante imidazol, os voltamogramas apresentaram ruído para valores de incremento maiores, provavelmente este fato deve-se ao aumento da velocidade de varredura. Então, como a variação de corrente de pico foi mínima, optou-se por trabalhar no maior valor de incremento que não houvesse problema de ruído no voltamograma, portanto o valor escolhido foi de 4 mV, como representado na Figura 59.

A relação entre a corrente de pico máximo e o incremento de varredura (ΔE_s) para os complexos contendo os ligantes metil-imidazol e tiouréia mostrou-se inversa, ou seja, a medida em que se aumentou o valor de incremento a sensibilidade da técnica diminuiu, sendo adotado o valor de incremento 1 mV como representada nas Figuras 58 e 59. Tal fato deve ocorrer devido a uma limitação cinética no processo de redução da espécie NO⁺ a NO⁰, ou seja, a redução necessita de uma varredura mais lenta para ocorrer.

Para o complexo contendo o ligante sulfito, o valor de incremento de varredura adotado foi 5 mV, haja visto que para valores mais altos ou mais baixos houve alargamento do pico ou perda de sensibilidade a medida em que a velocidade de varredura foi variada (Figuras 58 e 59).

Figura 58. Voltamogramas de Onda Quadrada para incrementos de varredura (ΔE_s) de (-)1, (-)2, (-)3, (-)4, (-)5, (-)6, (-)7, (-)8 e (-)9 e (-)10mV para os íons complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺, sendo L= imidazol e 1-metilimidazol, em tampão trifluoroacetato + hidróxido de sódio pH=2,03, tiouréia, em tampão ácido acético + acetato de sódio pH=4,16 e sulfito, em tampão H₂PO₄⁻ e HPO₄²⁻ de pH = 7,4. Concentração do eletrólito: 0,1mol L⁻¹.

Figura 59. Influência do aumento de incremento de varredura (ΔE_s) na resposta de corrente voltamétrica para os íons complexos *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺, sendo L= imidazol e 1-metilimidazol, em tampão trifluoroacetato + hidróxido de sódio pH=2,03, tiouréia, em tampão ácido acético + acetato de sódio pH=4,16 e sulfito, em tampão H₂PO₄⁻ e HPO₄²⁻ de pH = 7,4. Concentração do eletrólito: 0,1mol L⁻¹.

A partir do estudo dos parâmetros operacionais foram obtidas as melhores condições para determinar a quantidade de óxido nítrico liberado fotoquimicamente. A Tabela 8 apresenta os valores otimizados para os complexos em estudo.

f (Hz)	a (mV)	$\Delta E_s (mV)$	Faixa e Sentido de	
			Varredura	
40	50	4	125 a 325 mV	
60	70	1	125 a 325 mV	
30	50	1	200 a -100 mV	
30	50	10	100 a -300 mV	
	f (Hz) 40 60 30 30	f (Hz) a (mV) 40 50 60 70 30 50 30 50	f (Hz) a (mV) ΔE _s (mV) 40 50 4 60 70 1 30 50 1 30 50 10	

Tabela 8. Resultado da Otimização de Parâmetros.

Todas as análises foram realizadas em meio aquoso e sem borbulhamento de qualquer gás inerte, haja vista que estudos preliminares apontaram invariância nos voltamogramas quando as soluções foram submetidas a borbulhamento de argônio.

A faixa de potencial aplicado limitou-se a região correspondente ao par redox NO^{+/0} para que não houvesse diminuição da sensibilidade da técnica devido à formação de outras espécies no meio.

4.5.2 Obtenção da Curva Analítica para os Complexos

Posterior a etapa de otimização dos parâmetros, foram realizados experimentos cujo objetivo principal foi obter uma equação que relacionasse, de maneira linear, valores de corrente e concentração.

A Figura 60 ilustra os voltamogramas registrados após sucessivas adições de uma solução estoque, para os complexos contendo os ligantes auxiliares imidazol, 1-metilimidazol, tiouréia e sulfito. Todos os gráficos apresentaram picos bem definidos mostrando ótima sensibilidade da técnica.

A partir das correntes de pico identificadas foi feito um tratamento estatístico e traçada uma curva analítica média com desvio padrão para cinco determinações obtidas. A relação entre a corrente de pico máxima e concentração do complexo é representada na Figura 61 para os complexos. Os resultados obtidos das curvas analíticas estão reunidos na Tabela 9.

Tabela 9. Equações calculadas a partir da obtenção das curvas de calibração para os íons complexos *cis*- $[Ru(bpy)_2L(NO)]^{n+}$, sendo L= imidazol, 1-metilimidazol, tiouréia e sulfito.

	Equação da Reta	Coeficiente de
	Y= a (⁺ . δa) + b(⁺ . δb)x	Correlação (R)
Imidazol	$I_p = 1,18051_x 10^{-6} (^+_{-} 5,46028_x 10^{-7}) + 0,03468 (^+_{-} 0,00351) []_{NOcomplexado}$	0,99514
pH=2,03		
1-Metil	$I_p = 1,86259_x 10^{-6} (^+_2,11284_x 10^{-7}) + 0,04047 (^+_0,00168) []_{NOcomplexado}$	0,99659
imidazol		
pH=2,03		
Tiouréia	$I_p = 3,80148_x 10^{-7} ({}^+ 2,53876_x 10^{-8}) + 0,03396 ({}^+ 1,3225_x 10^{-4})[]_{NOcomplexado}$	0,99996
pH=4,16		
Sulfito	$I_{p}=6,71721_{x}10^{-8} (^{+}_{-}8,0059_{x}10^{-8}) + 0,03051 (^{+}_{-}4,23133_{x}10^{-4}) []_{NOcomplexado}$	0,99962
pH=7,4		

Figura 60. Voltamogramas de Onda Quadrada para adições sucessivas de solução estoque dos íons complexos *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺, em tampão adequado para cada ligante "L", no intervalo das concentrações (—) 6,67 x 10⁻⁵, (—) 1,09 x 10⁻⁴, (—) 1,48 x 10⁻⁴, (—) 1,98 x 10⁻⁴, (—) 2,04 x 10⁻⁴ e (—) 2,79 x 10⁻⁴ mol L⁻¹. Concentração do eletrólito: 0,1 mol L⁻¹.

Dissertação de Mestrado

Figura 61. Curva analítica traçada a partir dos voltamogramas de onda quadrada para o íon complexo *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺, em adequado para cada ligante "L", no intervalo das concentrações 6,67 x 10^{-5} a 2,79 x 10^{-4} mol L⁻¹. Os experimentos foram realizados em quintuplicada e os valores de corrente correspondem a média dos valores experimentais.

4.5.3 Cálculo da Liberação Fotoquímica de Óxido Nítrico

Os voltamogramas apresentados na Figura 62 para os íons complexos *cis*-[Ru(bpy)₂(L)(NO)]ⁿ⁺, sendo L= imidazol, 1-metilimidazol, tiouréia e sulfito, mostram o decaimento do processo referente ao NO^{+/0} coordenado ao centro metálico, previsto a medida em que a irradiação se processa.

Com os valores de corrente de pico máximo e o auxílio da curva analítica que representa cada um dos sistemas foi possível calcular a quantidade de óxido nítrico coordenado ao complexo após 10 minutos de irradiação e, indiretamente, calcular a quantidade liberada do mesmo. Os resultados obtidos destes cálculos estão representados na Tabela 10. Observase uma diferença entre a quantidade de óxido nítrico liberado dos compostos, tal fato deve-se a influência que os ligantes auxiliares exercem sobre a interação rutênio e óxido nítrico, como já discutido anteriormente. Além deste fator, observa-se que quanto mais baixa é a concentração de complexo na solução, mais rapidamente a liberação se processa. **Tabela 10.** Resultados do Cálculo da Liberação Fotoquímica de Óxido Nítrico para os complexos *cis*-[Ru(bpy)₂L(NO)]ⁿ⁺, sendo L = imidazol, 1-metilimidazol, tiouréia e sulfito, utilizando a técnica de Voltametria de Onda Quadrada.

Complexos	[]NO complexado(mol L ⁻¹)	[]NO liberado(mol L ⁻¹)	% NO liberado
<i>cis</i> -[Ru(bpy) ₂ L(NO)] ⁿ⁺ , sendo L:	t=0 de irradiação	t= 10min de irradiação	
Imidazol pH=2,03	1,99359 _x 10 ⁻⁴	1,32124 _x 10 ⁻⁴	66,3
Metil-imidazol pH=2,03	1,72393 _x 10 ⁻⁴	1,50074 _x 10 ⁻⁴	87,1
Tiouréia pH=4,16	2,4510 _x 10 ⁻⁴	1,82021 _x 10 ⁻⁴	74,3
Sulfito pH=7,4	2,36971 _x 10 ⁻⁴	1,15992 _x 10⁻⁴	49,0

Figura 62. Voltamogramas de Onda Quadrada referentes ao monitoramento da irradiação dos íons complexos *cis*-[Ru(bpy)₂(L)(NO)]n³⁺, durante (—) 0, (—) 5, (—) 10 e (—) 20 minutos de irradiação em 355nm no tampão adequado para cada ligante "L". Concentração do eletrólito: 0,1 mol.L⁻¹.

Dissertação de Mestrado

"Às vezes, já é no fim da estrada que você cruza com seu verdadeiro caminho. Ali, crie coragem, dê uma guinada, tome rumo e recomece..."

5. Ponsiderações Finais

Durante o desenvolvimento do trabalho foi possível confirmar as suspeitas de que o caráter e a força do ligante auxiliar "L", para os complexos com a mesma base estrutural *cis*-[Ru(bpy)₂(L)(NO)](PF₆)_n, influenciaram diretamente na backbonding entre o centro metálico e o óxido nítrico. Sendo este o fator responsável pelos diferentes resultados observados na reatividade química, fotoquímica e eletroquímica dos compostos.

O complexo *cis*-[Ru(bpy)₂(SO₃)(NO)](PF₆) apresenta menor energia vibracional (v_{NO}) e menor potencial de meia onda ($E_{1/2}$) referente ao par redox NO^{+/0}, fruto de maior retro-doação Ru(II) para o ligante nitrosil, conseqüência de maior densidade eletrônica sobre o íon metálico. Em princípio, pode-se dizer que o sulfito é um ligante σ -doador melhor do que aqueles outros descritos neste trabalho. Levando-se em conta o efeito de aditividade do ligante "L" sobre o centro metálico, é observado para os complexos em questão que quanto menor o valor do parâmetro de Lever (E_L), maior a contribuição para a densidade eletrônica do íon metálico. Ainda que desconsiderando a discussão envolvendo aspectos estruturais dos complexos, a analogia acima nos parece fortuita.

A técnica de voltametria de onda quadrada mostrou ser uma alternativa confiável para a quantificação do óxido nítrico liberado fotoquimicamente para complexos que o fazem de maneira mais lenta, como os compostos aqui apresentados. Os resultados observados corroboram com os valores de rendimento quântico e testes quantitativos utilizando eletrodo seletivo de NO realizados, também apresentados neste trabalho. Mostrando que o complexo contendo o ligante auxiliar 1-metilimidazol (σ doador) libera o óxido nítrico da esfera de coordenação mais rapidamente quando comparado aos outros.

A discussão de todos os resultados apresentados neste trabalho é o passo que antecede o estudo da atuação biológica destes compostos, assim é possível não prever, mas explicar os fatos decorrentes da liberação de NO em meio biológico.

Devido a estabilidade em pH fisiológico, o complexo cis-[Ru(bpy)₂(SO₃)(NO)](PF₆) foi utilizado em testes para avaliar sua citotoxicidade frente a células cancerígenas. Tal composto mostrou desempenho considerável ao propósito, sobretudo quando encapsulado em lipossomas para que a penetração na célula fosse mais efetiva (Apêndice 2).

"Oada amigo novo que ganhamos na vida, nos aperfeiçoa e enriquece não pelo que nos dá, mas pelo quanto descobrimos de nós mesmos. Ober amigo não é coisa de um dia... são gestos, palavras, sentimentos que se solidificam no tempo e não se apagam jamais."

6. Apéndices

6.1. Voltametria Cíclica do íon complexo [Ru(NH₃)₆]³⁺

A literatura reporta⁷⁶ o íon complexo $[Ru(NH_3)_6]^{3+}$ como tendo um único processo nesta faixa de varredura, sendo este totalmente reversível (Figura 63). Porém os parâmetros de reversibilidade (Tabela 11) indicam que, nas condições em que os experimentos deste trabalho foram realizados, ou seja, mesmo equipamento, eletrodos e eletrólito suporte, há uma variação no valor de Δ Ep, provavelmente atribuída a uma queda ôhmica.

Figura 63. Voltamogramas cíclicos em diferentes velocidades de varredura (—) 0,05 V/s, (—) 0,10 V/s, (—) 0,20 V/s, (—) 0,30 V/s, (—) 0,20 V/s para o íon complexo *cis*-[Ru(bpy)₂(imN)(NO)]³⁺ em KCI 0,10 mol L⁻¹. Potencial inicial de varredura 0,40 V (E VS Ag/AgCl, KCl saturado), potenciais de inversão 0,50 e -0,50 V. T=25°C.

Dissertação de Mestrado

Tabela 11. Parâmetros de reversibilidade do processo referente ao par $Ru^{III/II}$ para o íoncomplexo $[Ru(NH_3)_6]^{3+}$.

V (mV/s)	I _{pa} /I _{pc}	∆Ep (V)
50	1,03	0,0732
100	1,06	0,0855
200	1,11	0,0915
300	1,11	0,1007
400	1,11	0,1128

6.2 Testes Biológicos utilizando o íon complexo cis-[Ru(bpy)2(SO3)(NO)]⁺ na avaliação de sua citotoxicidade

6.2.1 Veículos de fármacos: lipossoma ultraflexível

A pele normal é impermeável a muitos tipos de substâncias. Sua fina espessura contribui para 80% da sua resistência a permeação ¹⁰⁴.

Tendo em vista as propriedades naturais da pele (epiderme e stratum córneo), para se ter sucesso na administração tópica de diferentes fármacos, é necessário que penetrem na pele, atravessando os corneocitos e espaços das vias intracelulares. Os parâmetros de difusibilidade e solubilidades dos fármacos em relação à epiderme são importantes para sua penetração na pele ¹⁰⁵. Além disso, existe a redução de níveis sistêmicos de fármaco no local de ação em virtude da necessidade da utilização de altas concentrações de fármacos ¹⁰⁶.

Sendo assim, algumas estratégias podem ser utilizadas na tentativa de melhorar as características de absorção de um fármaco na pele, como, por exemplo: modificações químicas na estrutura do fármaco ¹⁰⁷; modificações estruturais na forma farmacêutica ^{108,109}; uso de agentes solubilizantes¹¹⁰; aplicação de iontoforese ^{111,112,113}; e uso de alteradores da permeabilidade cutânea, chamados de promotores de absorção cutânea ¹¹⁴.

Além da importância dos promotores de absorção cutânea nas formulações de uso tópico, no caso de tratamento tumoral, a seletividade é um fator muito importante ¹¹⁵. Neste caso, a seletividade pode ser melhorada através do uso de formulações lipossomais.

A maioria dos fotossensibilizadores que exibem uma boa afinidade com os tecidos tumorais são fármacos associados a sistemas lipídicos de liberação, como os lipossomas, que reduzem significativamente o espalhamento do fármaco no corpo e aumentam sua concentração nos tecidos tumorais ^{116.}

As formulações lipossomais são extensivamente utilizadas para inúmeros fármacos anti-tumorais hidrofílicos e lipofílicos ¹¹⁷, pois melhoram a eficiência e a seletividade tumoral destes fotossensibilizadores, após sua incorporação na bicamada lipídica. Os lipossomos têm vantagens sobre outros sistemas de liberação de fármacos, já que são biodegradáveis, não-tóxicos e não-imunogênicos.

Em casos de utilização de lipossomas em tratamentos da pele, as vesículas lípidicas necessitam atravessar pequenos poros da camada stratum córneo com diâmetros inferiores a 50 nm ¹¹⁸. Uma das possibilidades é a utilização de lipossomas utraflexíveis (Figura-6). Tais sistemas possuem a capacidade de penetrar na pele intacta ¹¹⁹.

Figura 64. Lipossoma ultra flexível ¹¹⁹.

Ativadores de borda aumentam a elasticidade das bicamadas nos lipossomas devido a uma redistribuição de lipídios anfifílicos ¹⁰⁵. Um ativador de borda frequentemente utilizado são surfactantes de cadeia simples que desestabilizam a bicamada lipídica do lipossomo, aumentando assim sua deformabilidade pela diminuição da tensão superficial ¹⁰⁶. Exemplos de ativadores de bordas incluem os surfactantes: colato de sódio, deoxicolato de sódio, Tween 80 e Span 80¹⁰⁵.

As vesículas ultraflexíveis possuem penetração na pele intacta via transdermal, por gradiente osmótico e forças de hidratação ¹²⁰.

6.2.2 Ensaios Farmacotécnicos

6.2.2.1 Preparação dos lipossomas de DOPC pelo método de injeção etanólica

Os lipossomos foram preparados pelo método de injeção etanólica conforme descrito por Kremer e colaboradores ¹²¹. Preparou-se lipossomos unilamelares de Dioleoilfosfatidilcolina (DOPC) através uma solução contendo 360 μ L etanol, 0,01g do fosfolipídio DOPC e 30 μ L do tensoativo Tween 20 (DE LIMA et. al. 2008). Esta solução foi colocada em uma seringa de 400 μ L, a qual foi, posteriormente, conectada a uma jaqueta de vidro termostatizada contendo 5 mL de uma solução tampão fosfato pH = 7,4.

A injeção etanólica é feita por uma bomba peristáltica (World Precision Instruments (WPI modelo SP 100i) de adição controlada (Figura 65). As injeções foram realizadas a 40,0 °C sob agitação magnética, na ausência de luz e a uma velocidade de 1,0 μ L.s⁻¹ (360 μ L.h⁻¹ na bomba).

Figura 65. Aparato para obtenção de sistema lipossomais.

A solução tampão permaneceu contida em um recipiente cilíndrico de 2,0 cm de diâmetro e a injeção foi realizada à aproximadamente 2,5 cm abaixo da superfície líquida.

Para preparação do lipossoma complexo *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ um volume adequado do fármaco (complexos dissolvidos em etanol, a fim de se obter uma concentração final 10,0 μ M), foi adicionado à solução etanólica com fosfolipídio e surfactante.

6.2.2.2 Determinação do tamanho, índice de polidispersão e potencial de superfície (Zeta) da formulação lipossomal

A determinação do tamanho de partículas e polidispersividade das vesículas lipossomais foi realizada no laboratório da Dr^a.Maria Vitória Badra Bentley, na faculdade de Ciências Farmacêuticas, através da técnica de medidas de espalhamento dinâmico utilizando-se o equipamento Zetaisizer Nano System ZS(Malvern-UK). As amostras foram colocadas em uma cela de quartzo de um cm de caminho óptico e as medidas foram feitas à temperatura ambiente (25 °C). O equipamento possui um laser de He-Ne de 4.0 mW operando num comprimento de onda de 633 nm e realiza as medições não invasivas por "backscatter optics" (NIBS). As medidas foram feitas em um ângulo de detecção de 173° e a posição da medição na cubeta foi automaticamente determinada pelo software do equipamento. O equipamento realiza em média 12 determinações para cada análise. A carga de superfície (potencial Zeta) foi determinada pela mobilidade eletroforética da formulação utilizando o mesmo sistema descrito acima.

6.2.2.3 Cultura e tratamento de células da linhagem neoplásica de melanoma B16/F10

Células de Melanoma Murino B16-F10 foram obtidas do Banco de Células do Rio de Janeiro. A linhagem celular foi cultivada em meio DMEN com 10% definido suplemento de soro fetal bovino e 100 UI /ml de penicilina G, 100 mg / ml de estreptomicina e 1 lg / ml anfotericina, a 37 °C, em ambiente contendo 5% de CO_2 .

Para os tratamentos, as células foram semeadas por 24 horas em placas (NUNC MICROWELLTM PLATES) de 96 poços para estudo de viabilidade celular pelo ensaio de MTT. Foi plaqueado $2x10^4$ células por poço, em meio DMEM com 3% definido suplemento de soro fetal bovino sem fenol. Concentrações ($10^{-7} - 10^{-3}$ M) do complexo contendo o ligante sulfito foi incubados por 3 horas (confluência 75-90%) Após este período, os poços foram lavados e colocou-se meio DMEM e então a viabilidade celular foi avaliada após 24 e 48 h após tratamento.

6.2.3 Caracterização do sistema lipossomal por meio do tamanho de partículas, polidispersividade, potencial.

Carreadores lipossômicos têm sido aceitos clinicamente no tratamento do câncer, visto que eles alteram a farmacocinética e biodistribuição dos fármacos antineoplásicos. Neste trabalho foi manipulado lipossomas deformáveis, que também são chamados de lipossomas flexíveis. São como lipossomas convencionais, mas suas membranas são constituídas de um fosfolipídeo (DOPC) e de um tensoativo de cadeia simples com alto raio de

curvatura (tween 20) capaz de diminuir a interação entre as cadeias carbônicas, aumentar a fluidez, e dar flexibilidade da membrana lamelar. Os lipossomas foram realizados como descrito no item 6.2.2.1 e a caracterização do sistema lipossomal por meio do tamanho de partículas, polidispersividade, potencial zeta foram feitas para os lipossomas "vazios" e para as preparações lipossomais do complexo cis-[Ru(bpy)₂(SO₃)NO)]⁺. Como podem ser observados (Tabela 12) os lipossomas vazios e contendo complexo cis- $[Ru(bpy)_2(SO_3)NO)]^+$ apresentaram tamanhos 98 e 122 nm, dentro da faixa esperada para este tipo de vesículas, o índice polidispersividade (Pdl) encontrado, 0,178 e 0,184 e potencial zeta (ζ) encontrado -5,550 e -15,000 mV, respectivamente. A obtenção de lipossomas com diâmetro compreendido entre 50 e 150 nm é um meio termo entre a eficiência de encapsulação (aumenta de acordo com o aumento do diâmetro), a estabilidade do lipossoma (diminui com o aumento do diâmetro acima da faixa ótima de 80-200 nm) (LASIC, 1993; SCARPA et. al. 1998) e a distribuição homogênea das vesículas são importantes fatores para a garantia da estabilidade dessa forma farmacêutica (KULKAMP et. al., 2009).

Tabela 12. Tamanho de partículas (nm), índice polidispersividade (PdI) e potencial zeta (ζ) das formulações.

Lipossoma	Diâmetro (nm)	Pdl	ζ (mV)
Vazio	98	0,178	-5,550
<i>cis</i> -[Ru(bpy) ₂ (SO ₃)NO)] ⁺	122	0,184	-15,000

Os valores apresentados correspondem a média ± desvio padrão (n = 5).

6.2.4 Ensaios de viabilidade celular

Os ensaios de viabilidade celular (MTT) para o íon complexo *cis*- $[Ru(bpy)_2(SO_3)NO)]^+$ foram obtidos na ausência estímulo luminoso. Estes ensaios foram feitos em linhagens de células de melanoma B16/F10. A citotoxicidade foi avaliada utilizando-se concentrações de 10^{-7} - 10^{-3} M após o tratamento com MTT por 24h (Figura 66) e 48h (Figura 67).

Figura 66. Viabilidade celular de B16/F10 obtidos por ensaios de MTT após tratamento 24h com *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ em solução tampão pH =7,4, Células B16/F10 foram plaqueadas em Wells de 96 (2x10⁴ células/well) por 3 horas com concentração do íon complexo *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ de 10⁻⁷ a 10⁻³M. p <0,05 vs respectivos controles.

Figura 67. Viabilidade celular de B16/F10 obtidos por ensaios de MTT após 48h tratamento com *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ em solução tampão pH =7,4, Células B16/F10 foram plaqueadas em Wells de 96 (2x10⁴ células/well) por 3 horas com concentração do complexo *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ de 10⁻⁷ a 10⁻³M. p <0,05 vs respectivos controles.

6.2.5 Efeito do lipossoma "vazio" e do complexo encapsulado em lipossoma

Os ensaios de citotoxicidade celular mostraram que concentrações da ordem de 10⁻³ M propiciam morte significativa de células, determinada pela diminuição da viabilidade celular (Figuras 66 e 67). No entanto, é possível conseguir a diminuição da viabilidade celular em concentrações mais baixas de complexo, através do encapsulamento do mesmo em lipossomas ultra-flexíveis, sistema de liberação que provavelmente aumentaria a concentração do complexo que pudesse se difundir pela membrana celular.

Para determinar se a formulação lipossomal não apresentaria citotoxicidade, as células foram incubadas por 3 horas com lipossoma vazio, ou seja, preparada sem o complexo. Os resultados são apresentados na Figura 68, e mostram que as vesículas lipossomais são completamente inertes, do

ponto de vista de toxicidade em células de melanoma B16F10. Foram testados concentrações de 25, 50, 75 e 100% de lipossoma "vazio" por poço.

Figura 68. Porcentagem de viabilidade celular após incubação com a formulação lipossomal "vazia". Os experimentos foram realizados no escuro, ou seja, sem irradiação luminosa com as células de melanoma B16F10.

Desta forma a citotoxicidade do complexo *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ encapsulado em lipossoma foi avaliado (Figura 69). Claramente observa-se diminuição da viabilidade celular em função do uso das mesmas concentrações do complexo, porém encapsulado em lipossoma. Aparentemente a barreira da membrana celular é susceptível a este tipo de sistema de liberação de droga, constituindo-se num procedimento adequado para se estabelecer uma relação adequada dose-resposta de complexo nitrosilo como agente anticancerígeno.

Figura 69. Viabilidade celular de B16/F10 obtidos por ensaios de MTT após tratamento com *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ encapsulado em lipossoma, Células B16/F10 foram plaqueadas em Wells de 96 (2x10⁴ células/well) por 3 horas com concentração do íon complexo *cis*-[Ru(bpy)₂(SO₃)NO)]⁺ de 10⁻⁷ a 10⁻³M. p <0,05 vs respectivos controles.

7. Referencias Bibliográficas

1 J. A. McCleverty, *Chemical Reviews.* **2004**, *104*, 403.

2 L. J. B. Ignarro, *Nitric Oxide: Biology and Phatology*. Editor, San Diego, California, USA, **2000**.

3 C. Mannari, A.A.E. Bertelli, G. Stiaccini, L. Giovannini, *Medical Hypotheses* **2010**, *75*, 636.

4 A. L. M.A. Fard, A. Dehpour, *Nitric Oxide* **2010**, *23*, 332.

5 D. Attwekk, A.M. Buchan, S. Charpak, M. Lauritzen, B.A. MacVicar, E. A. Newman, *Nature* **2010**, *468*, 232.

6 C. N. Lunardi, J. A. Vercesi, R. S. da Silva, L. M. Bendhack, *Vascular Pharmacology* **2007**, *47*, 139.

7 L. Sulz, G. Astorga, B. Bellette, R. Iturriaga, A. Mackay-Sim, J. Bacigalupo, *Nitric Oxide* **2009**, *20*, 238-252.

8 L. Zhou, D. Zhu, *Nitric Oxide* **2009**, *20*, 223-230.

J. Rosamarinho-Salgado, I. M. Araújo, A. R. Álvaro, A. F. Mendes, L. Ferreira, E. Grouzmann, A. Mota, E. P. Duarte, C. Cavadas, *J. Neurochem.* **2009**, *109*, 911.

10 D. A. Wink, M. B. Grishan, J. B. Mitchell, P. C. Ford, *Ditect and indirect effects of nitric oxide in chemical reactions relevant to biology. Nitric oxide, Part A: source and detection of NO; NO synthase. Methods in Enzimology.* Editor, Academic Press, California, **1996**.

11 M. R. Miller, I. L. Megson, *British Journal of Pharmacology* **2007**, *151*, 305.
12 B. Bonavida, S. Baritaki, S. Huerta-Yepez, M. I. Vega, D. Chatterjee, K. Yeung, *Nitric Oxide* **2008**, *19*, 152.

13 J. A. Coulter, H. O. McCarthy, J. Xiang, W. Roedl, E. Wagner, T. Robson, D. G. Hirst, *Nitric Oxide* **2008**, *19*, 192.

14 B. Fitzpatrick, M. Mehibel, R. L. Cowen, I. I. Stratford, *Nitric Oxide* **2008**, *19*, 217.

15 A. Janczyk, A. W.-Glubisz, A. C. M. Elas, Z. Matuszak, G. Stochel, K. Urbanska, *Nitric Oxide* **2004**, *10*, 42.

16 S. Y. Olson, H. J. Garbán, *Nitric Oxide* **2008**, *19*, 170.

17 Andreas Weigert, B. Brüne, *Nitric Oxide* **2008**, *19*, 95-102.

18 L. A. Ridnour, D. D. Thomas, C. Switzer, W. Flores-Santana, J. S. Isenberg, S. Ambs, D. D. Roberts, D. A. Wink, *Nitric Oxide* **2008**, *19*, 73.

M. J. Rose, P. K. Masharak, *Coordination Chemistry Reviews* 2008, *252*, 2093.

20 S. A. Cicillini, A. C. L. Prazias, A. C. Tedesco, O. A. Serra, R. S. d. Silva, *Polyhedron* **2009**, 135.

21 D. R. Lang, J. A. Davis, L. G. F. Lopes, A. A. Ferro, L. C. G. Vasconcellos, D. W. Franco, E. Tfoni, A. Wieraszko, M. J. Clarke, *Inorganic Chemistry* **2000**, *39*, 2294.

22 F. O. N. Silva, S. X. B. Araújo, A. K. M. Holanda, E. Meyer, F. A. M. Sales, I. C. N. Diógenes, I. M. M. de Carvalho, L.G.F. Lopes, *European Journal Inorganic Chemistry* **2006**, 2020.

23 S. Y. Olson, H. J. Garbán, *Nitric Oxide* **2008**, *19*, 170-176.

24 <u>www.accancer.org.br/definção</u>, ultimo acesso nov. 2010.

25 E. S. Carvalho, **2008**.

26 P. K. Lala, C. Chakvaborty, *Lancet Oncol.* **2001**, *2*, 149.

K. Lim, B. B. Ancril, D. F. Kashatus, C. M. Counter, *Nature* 2008, 452,
646.

A. Carreau, C. Kieda, C. Grillon, *Experimental Cell Research* 2011, *317*,
29.

29 P. Sonveaux, B. F. Jordan, B. Gallez, O. Feron, *Europe Journal of Cancer* **2009**, *45*, 1352.

M. P. Korbelik, C.S., Shibuya, H., Cecic, I., Stratford, M.R.L., Chaplin,
D.J., *Br. J. Cancer* 2000, *82*, 1835-1843.

31 M. P. Koberlik, H. Shibuya, J. Cecic, M. R. L. Straford, D. J. Chaplin, *Journal Cancer* **2000**, *8*2, 1835.

I. M. Salgado, L.V.; Ribeiro, J.N.; Magalhães, J.R.; Tamashiro, W.M.S.C.,
 Physiol. Mol. Biol. Plants 2002, *8*, 185-191.

33 S. M. S. Sagar, G., Hodson, D.I., Whitton, A.C., *Cancer Treatment Reviews* **1995**, *21*, 159-181.

34 C. A. Robertson, D. Evans, H. Abrahamse, *Journal of Photochemistry* and Photobiology B Biology **2009**, *96*, 1.

35 X. Scherneider-Yin, A. Kumanaviciene, M. Roth, M. Roos, A. Fedier, E. J. Minder, H. Walt, *Photodiagnosis and photodinamic Therapy* **2009**, 1.

36 Q. Li, J. R. L. Jr, *Nitric Oxide* **2009**, 1.

Z. N. da Rocha, R. G. de Lima, F. Doro, E. Tfoni, R. S. d. Silva, *Inorganic Chemistry Communications* **2008**, *11*, 737.

38 R. G. de Lima, M. G. Sauaia, D. Bonaventura, A. C. Tedesco, R. F. V. Lopez, L. M. Bendharck, R. S. da Silva, *Inorganic Chimia Acta* **2005**, *358*, 2643.

39 C. N. Lunardi, R. S. da Silva, L. M. Bendharck, *Brazilian Journal of Medical and Biological Research* **2009**, *42*, 87.

40 K. J. Reeves, M. W. R. Reed, N. J. Brown, *Journal of Photochemistry* and Photobiology B Biology **2010**, *101*, 224.

41 M. R. Bennett, *Prog. Neurobiol.* **1997**, *52*, 159.

42 P. W. Atkins, L. Jones, Principios da Química, **2006**.

43 D. F. Shriver, P. W. Atkins, *Química Inorgânica*, Bookman, Porto Alegre **2008**.

44 J. S. Beckman, *The physiological and Pathological Chemistry of Nitric Oxide*. Editor, American Press, California, **1996**.

45 G. L. Miessler, D. A. Tarr, *Inorganic Chemistry*. Editor, Prendice Hall, **2003**.

R. P. Patel, J. McAndrew, H. Sellak, C. R. White, H. Jo, B. A. Freeman,
V. M. Darley-Usmar, *Biochimica et Biophysica Acta* 1999, *1411*, 385.

47 P. C. Dedon, S. R. Tannenbaum, *Archives of Biochemistry* 2004, *423*,12.

48 R. Roncone, M. Barbieri, E. Monzani, L. Casella, *Coordination Chemistry Reviews* **2006**, *250*, 1286.

49 E. Tfoni, K. Q. Ferreira, F. G. Doro, R. S. da Silva, G. Metzker, P. G. Z. Benini, D. W. Franco, *Coordination Chemistry Reviews* **2005**, *254*, 355.

50 E. Tfoni, F. G. Doro, A. J. Gomes, R. S. da Silva, G. Metzker, P. G. Z. Benini, D. W. Franco, *Coordination Chemistry Reviews* **2010**, *254*, 355.

M. Madhani, A. K. Patra, T. W. Miller, A.A. Eroy-Reveles, A. J. Hobbs, J.
M. Fukuto, P. K. Mascharack, *Journal Medical Chemistry* 2006, *49*, 7325.

52 S. Y. Low, Molecular Aspects of medicine **2005**, 26, 97.

53 D. Bonaventura, C. N. Lunardi, G. J. Rodrigues, M. A. Neto, L. M. Bendharck, *Nitric Oxide* **2008**, *14*, 287.

54 W. Lin, H. Xue, S. Liu, Y. He, J. Fu, Z. Zhou, *Mutation Research* **1998**, *413*, 121.

55 S. B. Lee, H. C. Koh, O. N. Kim, K. W. Sung, S. Y. Kim, *Neuroscience Letters* **1996**, *203*, 53.

56 G. Saua, S. Pacor, A. Bergamo, M. Cocchieto, G. Mestroni, E. Alessia, *Chemico-Biological Interactions* **1995**, *95*, 109.

57 P. G. Zanicheli, A. M. Miotto, H. F. G. Estrela, F. R. Soares, D. M. Grassi-Kassisse, R. C. Sapadori-Parise, J. A. Olabe, A. R. M. S. de Brito, D. W. Franco, *Journal of Inorganic Biochemistry* **2004**, *98*, 1921.

58 F. S. Oliveira, K. Q. Ferreira, D. Bonaventura, L. M. Bendharck, A. C. Tedesco, S. P. Machado, E. Tfoni, R. S. d. Silva, *Journal of Inorganic Biochemistry* **2007**, *101*, 313.

59 C. Z. Ferezin, Fabiana S. Oliveira, R. S. d. Silva, A. R. Simioni, A. C. Tedesco, L. M. Bendhack, *Nitric Oxide* **2005**, *13*, 170.

60 Z. N. da Rocha, M. S. P. Marchesi, J. C. Molin, C. N. Lunardi, K. M. Miranda, L. M. Bendhack, P. C. Ford, R. S. d. Silva, *Dalton Trans.* **2008**, 4282.

61 D. Bonaventura, R. G. de Lima, J. A. Vercesi, R. S. da Silva, L. M. Bendhack, *Vascular Pharmacology* **2007**, *1*, 215.

T. A. Portela, Monografia de conclusão do curso, UFC, Fortaleza,2007.

A. M. de Oliveira, Dissertação de mestrado, UFC, Fortaleza, **2009**.

64 B. P. Sullivan, D. J. Salmon, T. J. Meyer, *Inorganic Chemistry* **1978**, *17*, 3334.

65 B. Durham, S. R. Wilson, D. J. Hodgson, T. J. Meyer, *Journal American Chemical Society* **1980**, *102*, 600.

56 J.J. O'Dea, J. G. Osteryoung, *Analitical Chemistry* **1997**, *69*, 650.

D. de Souza, L. Codogno, A.R. Malagutti, R.A. Toledo, V.A. Pedrosa, R.T.S. Oliveira, L.H. Mazo, L.A. Avaca, S. A. S. Machado, *Quimica Nova* **2004**, *27*, 790.

D. de Souza, S.A.S. Machado, L. A. Avaca, *Quimica Nova* **2003**, *26*, 81.

69 R. R. Portela, UFC, Fortaleza, **2008**.

J. C. Miller, I. N. Miller, *Estatistica aplicada à Química*. Editor, Londres,1988.

71 C. E. Wayne, R. P. Wayne, *Photochemistry*. Editor, Oxford University Press Inc., New York, **1999**.

J. F. Rabek, *Experimental Methods in Photochemistry and Photophysics*. Editor, John Wiley & Sons, New York, **1982**.

A. K. M. Holanda, Tese de Doutorado, UFC, Fortaleza, **2006**.

J. N. C. Demas, Journal Physics Chemistry **1971**, 75, 991.

75 R. E. Hintze, University of California, Santa Barbara, **1974**.

T. Matsubara, P. C. Ford, Inorganic Chemistry **1976**, 15, 1107.

77 R.S. Nicholson, I. Shain, *Analitical Chemistry* **1965**, *37*, 178.

78 A. B. P. Lever, *Inorganic Chemistry* **1989**, *29*, 1271.

79 S. X. B. Araújo, Dissertação de Mestrado, Fortaleza, **2007**.

80 Z. Assefa, D. M. Stanbury, *Journal American Chemistry Society* **1997**, *119*, 521.

31 J. B. Godwin, T. J. Meyer, *Inorganic Chemistry* **1971**, *24*, 2150.

82 F. R. Keene, D. J. Salmon, R. J. Meyer, *Journal American Chemistry* Society **1977**, *19*, 4821.

83 T. Togano, Inorganica Chimia Acta 2000, 135, 185.

P. C. Ford, Accounts of Chemical Research 2008, 41, 190.

F. O. N. Silva, Tese de Doutorado, **2007**.

Z. N. d. Rocha, R. G. d. Lima, F. G. Doro, E. Tfouni, R. S. d. Silva, *Inorganic Chemistry Communications* **2008**, *11*, 737.

M. G. Sauaia, R. G. de Lima, A. C. Tedesco, R. S. da Silva, *Journal American Chemical Society* **2003**, *125*, 14718.

R. L. Barreto, C. R. D. Correia, M. N. Muscará, *Quimica Nova* 2005, *28*, 1046.

M. G. Sauaia, R. S. d. Silva, *Transition Metal Chemistry* **2003**, *28*, 254.

90 W. R. Murphy, K. J. Tekeuchi, T. J. Meyer, *Journal American Chemical* Society **1982**, *104*, 5817.

91 W. R. Murphy, K. Takeuchi, M. H. Barley, T. J. Meyer, *Journal American Chemical Society* **1985**, *25*, 1041.

92 M. S. Thompson, T. J. Meyer, *Journal American Chemical Society* **1981**, *103*, 5577.

83 R. S. Nicholson, I. Shain, *Analitical Chemistry* **1965**, 37, 178.

94 F. L. Bloom, W. Wagemans, M. Kemerink, B. Koopmans, *Physical Review Letters* **2007**, *99*.

95 R. V. Rao, M. H. Shridhar, S. Ganesh, K. C. Prashanth, *Chemical Physics Letters* **2001**, *341*, 306.

96 V. Saxena, K. S. V. Santhanam, *Current Applied Physics* **2003**, *3*, 227.

87 R. Bilewicz, R.A. Osteryoung, J. Osteryoung, *Analitical Chemistry* 1986, 58, 2762.

98 S.P. Kounaves, J.J. O'Dea, P. Chandresekhar, J. Osteryoung, *Analitical Chemistry* **1986**, *58*, 3199.

99 P. L. Neto, A. N. Correia, R. R. Portela, M. S. Julião, G. F. Linhares-Junior, J. E. S. Lima, *Talanta* **2010**, *80*, 1730.

100 J. A. Turner, J. H. Christie, M. Vukovic, R. A. Osteryoung, *Analitical Chemistry* **1977**, *49*, 1904.

101 J. G. Osteryoung, M. M. Schreiner, *Critical Reviews in Analytical Chemistry* **1988**, *19*, S1.

102 L. Ramaley, M. S. Krause, Analytical Chemistry 1969, 41.

103 J. H. Christie, J. A. Turner, R. A. Osteryoung, *Analitical Chemistry* **1977**, *49*, 1988.

104 G. Cevc; A. Schatzlein, H. Richardsen, *Biochimica & Biophysica Acta* **2002**, 1564, 21.

105 Y. Hiruta, Y. Hattori, K. Kawano, Y. Obata, Y. Maitani, *Journal of the Controlled Release* **2006**, 113, 146.

106 P.L. Honeywell-Nguyen, J.A. Bouwstra, *Nature Reviews Drug Discovery* **2005**, 2, 67.

107 F. P. Bonina, L. Montenegro, G.Trapani, M. Franco, G. Liso, *International Journal of Pharmaceutics* **1995**, 124, 45.

108 C. Laugel, P. Chaminade, A. Baillet, M. Seiller, D. Ferrier, *Journal of Controlled Release* **1996**, 38, 59.

109 R. Lopez, Journal of Controlled Release 2003a, 88, 65.

110 R. F. L. Vianna, M. V. L. B. Bentley, G. Ribeiro, F. S. Carvalho, A. F. Neto, D. C. R. de Oliveira, J. H. Collett, *International Journal of Pharmaceutics* **1998**, 167, 205.

111 R. F. V. Lopez, M. V. L. B. Bentley, M. B. Delgado-Charro, R. H. Guy, *Pharmaceutical Research* **2001**, 18, 311.

112 R. F. V. Lopez, M. V. L. B. Bentley, M. B. Delgado-Charro,; D. Salomon, H.Van der Bergh, N. Lange, R. H. Guy, *Photochemistry and Photobiology* **2003a**, 77, 304,.

113 H. Herai,; M. V. L. B. Bentley, R. F. V. Lopez, *Proceedings of the International Symposium of controlled Release of Bioactive Materiais* **2004**, 31, 324.

114 R. F. V. Lopez, N. Lange, R. H. Guy, M. V. L. B. Bentley, *Advanced Drug Delivery Reviews* **2004**, 56, 77.

115 J.C. Mazière, P. Morlière,; R. Santus, *Journal of Photochemistry and Photobiology B: Biology* **1991**, 8, 351.

116 E. Reddi, C. Zhou, R. Biolo, E. Menegaldo, *British Journal of Cancer* **1990**, 61, 407.

117 T. M. Allen, W. W. CHENG, J. I. HARE, K. M. LAGINHA, Anticancer Agents Medicinal Chemistry **2006**, 6, 513.

118 G. Cevc, Advanced Drug Delivery Reviews **2004**, 56, 657.

119 G. Cevc, U. Vierl, Journal of Controlled Release 2010, 141, 277.

120 G. Cevc, G. Blume, *Biochimica et Biophysica Acta* **1992**, 1104, 226.

121 J. M. H. Kremer, M. W. J. Van der Esker, C.Pathmanoharan, P. H. Wiersema, *Biochemistry* **1977**, 16, 3932.

122 R. G. de Lima, A. C. Tedesco, R. S. da Silva, M. J. Lawrence, *Nitric Oxide-Biology Chemistry* **2008**, 19. S67.

123 D. D. Lasic, Trends in Biotechnology 1998, 16, 307.

- 124 M. V. Scarpa, A. G. Oliveira, J. A. Cardilho, B. J. Wanczinski, A. S. Arnóbio , A. A. S. Júnior, *Revista Brasileira de Medicina* **1998**, 238.
- 125 I. C. Kulkamp, K. Paese, A. R. Pohlmann, S. S. Guterres, *Química Nova* **2009**, 32, 2078.