
UNIVERSIDADE FEDERAL DO CEARÁ
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Resumo

Grafeno é um cristal bidimensional cujo espectro eletrônico a baixas energias (E < 1
eV) apresenta dispersão linear e ausência de gap que, juntamente com a natureza quiral
dos portadores de carga, são responsáveis por uma variedade de propriedades incomuns.
Como resultado da sua natureza singular, um grande esforço tem sido feito para entender
todas as suas propriedades fundamentais e tentar gerar uma nova tecnologia baseada nesse
material.

Nesta tese, nós realizamos um estudo teórico de dois tipos de sistemas: nanofitas de
grafeno e tricamadas grafeno (TCG). No que diz respeito ao primeiro sistema, um modelo
de ligação forte (tight-binding) é utilizado para estudar as bandas de energia de grafeno e
fitas de grafeno sujeitas a uma tensão de cisalhamento. A fita é constitúıda por linhas de
átomos de carbono cujas bordas estão orientadas nas direções conhecidas como “armchair”
ou “zigzag”. Uma tensão de cisalhamento simples é aplicada na direção x de forma que as
distâncias interatômicas na direção y são mantidas inalteradas. Esta modificação na rede
cristalina origina bandas de energia que diferem em vários aspectos do sistema original
sem qualquer deformação. As mudanças no espectro dependem do deslocamento entre
linhas adjacentes da fita, bem como do parâmetro de “hopping” modificado. Mostra-se
também que este cisalhamento simples modifica as propriedades eletrônicas de ambos os
sistemas, fitas de grafeno e grafeno, abrindo e fechando gaps de energia para diferentes
deslocamentos do sistema. A densidade de estados modificada também é mostrada. Por
fim, o modelo cont́ınuo é utilizado a fim de investigar o espectro electrônico de três ca-
madas de grafeno acopladas (tricamada de grafeno), na presença de um campo magnético
externo. Nesse contexto, obtemos expressões anaĺıticas para os ńıveis de Landau para
ambos os tipos de empilhamento: Bernal (ABA) e romboédrico (ABC), verificando-se
uma forte dependência dos ńıveis de energia com o tipo de empilhamento. Embora o
espectro de Landau para tricamadas ABA seja uma sobreposição dos espectros de uma
monocamada e de uma bicamada, tricamadas com empilhamento ABC apresentam uma
dispersão do tipo B3/2 com o campo magnético. Foi mostrado que uma assimetria entre as
camadas, que pode ser introduzida por um potencial externo, pode influenciar fortemente
as propriedades do sistema. Além disso, as energias de ressonância ćıclotron, assim como
forças de oscilador correspondentes, e o espectro de absorção para tricamadas de grafeno
so calculadas para ambos os tipos de empilhamento. Verificou-se que um potencial de
porta aplicado através das camadas leva a (1) uma redução das energias de transição, (2)
um levantamento da degenerescência do ńıvel de Landau n = 0, e (3) a quebra de simetria
entre elétrons e buracos.



Abstract

Graphene is a truly two-dimensional crystal with a gapless linear electronic spectrum
at low energies (E < 1 eV) which, along with the chiral nature of its charge carriers, is
responsible for a variety of unusual properties. As a result of its uniqueness, a great effort
has been made in order to understand all its fundamental properties and try to generate
a new technology of them.

In this thesis we theoretically study two types of graphene-related systems: graphene
nanoribbons and trilayer graphene (TLG). Concerning the former, a tight-binding model
is used to study the energy band of graphene and graphene ribbon under simple shear
strain. The ribbon consists of lines of carbon atoms in an armchair or zigzag orientation
where a simple shear strain is applied in the x-direction keeping the atomic distances in
the y-direction unchanged. Such modification in the lattice gives an energy band that
differs in several aspects from the one without any shear and with pure shear. The
changes in the spectrum depend on the line displacement of the ribbon, and also on the
modified hopping parameter. It is also shown that this simple shear strain tunes the
electronic properties of both graphene and graphene ribbon, opening and closing energy
gaps for different displacements of the system. The modified density of states is also
shown. On the latter subject, the continuum model is used in order to investigate the
electronic spectrum of three coupled graphene layers (graphene trilayers) in the presence
of an external magnetic field. We obtain analytical expressions for the Landau level (LL)
spectrum for both the ABA and ABC types of stacking, which exhibit very different
dependence on the magnetic field. While the LL spectrum of ABA TLG is found to
be a superposition of a monolayer-like and bilayer-like spectra, the ABC TLG present
a nearly B3/2 field dependence. We show that layer asymmetry and an external gate
voltage can strongly influence the properties of the system. In addition, the cyclotron
resonance energies, the corresponding oscillator strengths, and the cyclotron absorption
spectrum for trilayer graphene are calculated for both ABA and ABC stacking. A gate
potential across the stacked layers leads to (1) a reduction of the transition energies, (2) a
lifting of the degeneracy of the zero Landau level, and (3) the removal of the electron-hole
symmetry.



Abstract

Grafeen is een twee dimensionaal kristal met een lineair spectrum zonder bandkloof.
Dit spectrum zorgt samen met de chirale eigenschappen van de ladingsdragers voor zeer
merkwaardige elektronische fenomenen. Hierdoor wordt dit unieke materiaal zeer intensief
onderzocht om alle fundamentele eigenschappen ervan te doorgronden en om te proberen
nieuwe technologien erop te baseren.

In deze thesis werd er theoretisch onderzoek gedaan naar twee type van grafeen gere-
lateerde systemen: grafeen nanoribbons en trilaag grafeen (TLG). Gebruikmakend van
het “tight-binding” formalisme wordt de energie banden structuur onderzocht van grafeen
en een grafeen nanoribbon onder uitrekking. (‘shear strain’). De nanoribbon bestaat uit
rijen van koolstofatomen met een “armchair” of “zigzag” orintatie die uitgerekt worden
in de x-richting zodat in de y-richting de interatomaire afstand bewaard blijft. Zulke aan-
passing zorgt voor een energie band die op vele vlakken verschillend is van deze zonder
uitrekking of met isotrope uitrekking. De veranderingen in het spectrum hangen af van
de verplaatsing van de rijen in de nanostrook, maar ook van de veranderende “hopping
parameter”. We tonen ook aan dat deze eenvoudige uitrekking de elektronische eigen-
schappen van zowel de nanostrook als het grafeen aanpast om een bandkloof te openen of
te sluiten als gevolg van verschillende uitrekkingen in het systeem. Hiernaast wordt ook
de toestandsdichtheid van deze systemen berekend. Bij trilaag grafeen wordt het con-
tinum model gebruikt om het elektronisch spectrum te onderzoeken van drie gekoppelde
lagen grafeen in een magnetisch veld. We verkrijgen analytische uitdrukkingen voor het
spectrum van de Landau niveaus (LL) voor zowel de ABA als ABC types van stapeling.
Deze niveaus hangen op een zeer verschillende manier af van het magnetisch veld. Terwijl
het LL spectrum van ABA TLG een superpositie blijkt te zijn van dat van een monolaa-
gachtig en een bilaagachtig system, vertoont ABC TLG een bijna B3/2 afhankelijkheid.
We tonen aan dat de asymmetrie in de lagen en een externe potentiaal de eigenschappen
van deze systemen sterk benvloedt. Daarenboven worden ook de cyclotron resonantie en-
ergien de bijbehorende oscillator sterktes en het cyclotron absorptie spectrum voor beide
stapelwijzen van trilaag grafeen berekend. Een potentiaal over de opeen gestapelde la-
gen zorgt voor: (1) een verlaging van de transitietemperatuur, (2) dat de ontaarding van
het nulde Landau niveau wordt opgeheven en (3) dan de elektron-holte symmetrie wordt
doorbroken.
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1 Introduction

Whenever scientists come across a new material a whole range of possibilities opens

up. First, they want to find out all its fundamental properties in order to, finally, answer

the questions: what is this material good for? Is it capable of generating a new technology

or improve a current one? In this context, carbon materials have been the big stars in

the scientific scenario for the last few decades.

Carbon is a chemical element responsible for the existence of a great variety of mate-

rials. Among those we can mention all organic compounds, which form the basis of life,

and also many crystalline solids. But how is carbon able to form such different materials,

with so many structural forms and different properties? The usual answer is that carbon’s

orbitals allow for many types of hybridization or, more simply, the carbon atom is able

to bond with other atoms in many different ways. Roughly speaking, hybridization is a

superposition of atomic orbitals, or a linear combination of atomic wave functions having

the same principal quantum number.

1.1 Hybridization of Carbon Atoms

In the carbon atom (C : 1s22s22p2) 1 two out of its six electrons occupy the 1s orbital,

forming the inner or core shell. These electrons are strongly bound to the atom and

do not take part in the chemical bonds. The four remaining electrons, called valence

electrons, are set in 2s and 2p states. Then in its ground state the carbon atom has

only two half-filled orbitals, what make us think that it will be able to form at most two

bonds. Recalling that energy is released when bonds are formed, it becomes energetically

favorable to maximize the number of bonds carbon can form. Since 2p orbitals are just

1This way of representing the orbitals or atomic states is known as spectroscopic notation. The first
number is the principal quantum number n, the letter that follows it indicates the azimuthal quantum
number l, with s, p, d, f , g, h corresponding to l = 0, 1, 2, 3, 4, 5. This notation arose from observations
of spectra of atoms prior to the advent of quantum mechanics; the letters s, p, d and f are the first letters
of the adjectives sharp, principal, diffuse, and fundamental, respectively; letters corresponding to higher
values of l follow in alphabetical order [1].
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≈ 4.18 eV higher in energy and this amount of energy is small compared with the binding

energy of the chemical bonds [2], it turns out that, in the presence of other atoms, is

energetically favorable to form an excited state by promoting one of its 2s electron to the

empty 2p state, resulting in four half-filled orbitals 2s 2px 2py 2pz that can participate in

covalent bonds.

In order to have some qualitative idea of how these states look like, let us recall that,

within central potential approximation, the wave function of a many electrons atom can

be still written as ψnlm(r) = Rnl(r)Y
m
l (θ, ϕ), where Rnl(r) is the radial part that depends

on the exact form of the central potential Vc(r), and Y m
l (θ, ϕ) stands for the spherical

harmonics. In carbon atoms we just have to deal with s and p orbitals, which correspond

to l = 0, 1. When l = 0 the only possible value of the magnetic quantum number is

m = 0, consequently, for a fixed r, we have a real and constant wave function that will be

represented by |ns〉 = Rn0(r)Y
0
0 = 1√

4π
Rn0(r). The case with l = 1 allows m = −1, 0, 1,

producing the following states [3]:

|npz〉 = Rn0(r)Y
0
1 (θ, ϕ) =

√

3

4π
Rn1(r) cos θ, (1.1)

|np±1〉 = Rn1(r)Y
±1
1 (θ, ϕ) = ∓

√

3

8π
Rn1(r) sin θe

±iϕ. (1.2)

In order to have the real px(y) orbitals we make a linear combinations of the states with

m = ±1 such as

|npx〉 =
−1√
2
(|np1〉 − |np−1〉) =

√

3

4π
Rn1(r) sin θ cosϕ, (1.3)

|npy〉 =
i√
2
(|np1〉+ |np−1〉) =

√

3

4π
Rn1(r) sin θ sinϕ. (1.4)

The angular dependence of the s, px orbitals are displayed in Fig. 1, where, for a fixed

r, we plotted the absolute value of the wave functions along each direction of θ and ϕ.

The blue spheres on the left correspond to the s orbital, while px consists of two spheres

tangential at the origin to yz plane. The colors represent the sign of the wave function,

blue (red) stands for positive (negative) values. The py and pz orbitals have the same

shape as px, but are rotated in such way to be along the y and z directions, respectively.

Besides the promotion of one 2s electron into the 2pz state, when surrounded by other

atoms, the 2s and 2p states mix in order to increase the overlap with the surrounding

atoms orbitals, making the bonds stronger. This mixing is called hybridization, and the

mix of the 2s state with n = 1, 2, 3 2p states is called spn hybridization[1, 4, 5]. We are
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now going to discuss briefly about the three types of hybridization of the carbon atom:

sp, sp2, sp3. 2

1.1.1 sp Hybridization

In sp hybridization, one of the three |2pj〉 orbitals and the |2s〉 orbital are combined

to form two hybrids |spr〉 and |spl〉 states, such as

|spr〉 = c1|2s〉+ c2|2px〉, (1.5)

|spl〉 = c3|2s〉+ c4|2px〉. (1.6)

The orthonormality condition states that 〈spr|spl〉 = 0 and 〈spr|spr〉 = 〈spl|spl〉 = 1. In

addition, it is required the two hybrid orbitals to have the same geometric form, meaning

that apart from their spacial orientation, they should be the same. Since the form depends

only on the relative amount of |2s〉 and |2px〉 orbitals in the linear superposition, and s

states are spherical symmetric, it is necessary that c1 = c3. These conditions lead to the

following pair of hybrid states:

|spr〉 =
1√
2
(|2s〉+ |2px〉) , (1.7)

|spl〉 =
1√
2
(|2s〉 − |2px〉) . (1.8)

Figure 1: Schematic view of how the orbital s and px combine in order to form the hybrid
states spr and spl.

A schematic view of these orbitals are shown in Fig. 1. The |spr〉 is extended in the

positive x-direction, while |spl〉 is elongated in the negative direction. Thus, when the

2In materials such as bulckyballs and carbon nanotubes, carbon atoms assume a spδ hybridization,
with 2 < δ < 3. This happens due the curved geometry of these materials’ surface. A detailed discussion
of this type of hybridization can be found in [6].
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neighbor atoms are along the x-direction their wave function have a larger overlap with

the hybrid orbitals than it would have with the pure |2px〉 orbital.

An example of material where the carbon atom has sp hybridization is the acetylene

molecule C2H2. In this molecule all atoms are aligned, the hybrid orbitals of each carbon

participate of σ bonds with one hydrogen and the other carbon atom. The pure orbitals

py and pz form the called π bonds that are weak compared to σ bonds.

1.1.2 sp2 Hybridization

In sp2 hybridization, two 2p orbitals and the 2s orbital are superposed to originate

three sp2 hybrid states.

|sp2a〉 = c1|2s〉+ c2|2px〉+ c3|2py〉, (1.9)

|sp2b〉 = c4|2s〉+ c5|2px〉+ c6|2py〉, (1.10)

|sp2c〉 = c7|2s〉+ c8|2px〉+ c9|2px〉. (1.11)

Again we require the wave functions to be equivalent, what means that they can transform

into each other under rotations about the z axis. Then, we have c1 = c4 = c7. Besides,

we can choose the axes in order to |sp2a〉 be symmetric about the xz plane. Consequently,

we choose c3 = 0. Finally, we impose the orthonormality condition that, together with

the previous requirements, leads to the following hybrid orbitals:

|sp2a〉 =
1√
3
|2s〉+

√

2

3
|2px〉, (1.12)

|sp2b〉 =
1√
3
|2s〉 − 1√

6
|2px〉+

1√
2
|2py〉, (1.13)

|sp2c〉 =
1√
3
|2s〉 − 1√

6
|2px〉 −

1√
2
|2py〉. (1.14)

In order to check an important property of these orbitals let us recall that the operator

Rz(α) = e−iαLz/~3 performs a rotation through an angle α about the z-axis, and that

Lz =
~

i
∂
∂ϕ
. Then, it can be easily shown that:

e−iαLz/~|2s〉 =|2s〉, (1.15)

e−iαLz/~|2px〉 =cosα|2px〉+ sinα|2py〉, (1.16)

e−iαLz/~|2py〉 =− sinα|2px〉+ cosα|2py〉. (1.17)

3The function Rz(α) is defined by e−iαLz/~ =
∑

n
1

n! (−iαLz/~)
n
[3].
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The expressions for the hybrid orbitals together with the rotation operator effect on the

pure s and p states lead to:

e−i(2π/3)Lz/~|sp2a〉 = |sp2b〉, (1.18)

e−i(2π/3)Lz/~|sp2b〉 = |sp2c〉. (1.19)

The above expressions reveal a well-known property of the sp2 hybridization: the hybrid

orbitals are rotated by 120◦ in relation to each other which makes the chemical bonds

formed by them to acquire a trigonal symmetry in the xy-plane (See Fig. 2). As examples

of materials where the carbon atom has this kind of hybridization we can mention the

ethylene molecule C2H4 and graphite.

Figure 2: A top view of the hybrid sp2 orbitals in xy−plane. The lines along which the
orbitals are pointing make angles of 120◦ with each other.

1.1.3 sp3 Hybridization

The sp3 happens when all three 2p and the s orbitals are superposed to form four

hybrid orbitals:

|sp3a〉 =c1|2s〉+ c2|2px〉+ c3|2py〉+ c4|2pz〉, (1.20)

|sp3b〉 =c5|2s〉+ c6|2px〉+ c7|2py〉+ c8|2pz〉, (1.21)

|sp3c〉 =c9|2s〉+ c10|2px〉+ c11|2px〉+ c12|2pz〉, (1.22)

|sp3d〉 =c13|2s〉+ c14|2px〉+ c15|2px〉+ c16|2pz〉. (1.23)

One more time we require the orbitals to have the same form, so c1 = c5 = c9 = c13. We

can also choose the direction of the first orbital to be, for instance, (1, 1, 1), which can be

achieved by setting c1 = c2 = c3 = c4 = 1/2. The other constants are found by applying
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the orthonormality condition. After some algebra we obtain

|sp3a〉 =
1

2
|2s〉+ 1

2
|2px〉+

1

2
|2py〉+

1

2
|2pz〉, (1.24)

|sp3b〉 =
1

2
|2s〉 − 1

2
|2px〉 −

1

2
|2py〉+

1

2
|2pz〉, (1.25)

|sp3c〉 =
1

2
|2s〉 − 1

2
|2px〉+

1

2
|2px〉 −

1

2
|2pz〉, (1.26)

|sp3d〉 =
1

2
|2s〉+ 1

2
|2px〉 −

1

2
|2px〉 −

1

2
|2pz〉. (1.27)

The orbitals sp3b , sp
3
c and sp3d point along the directions (−1,−1, 1), (−1, 1,−1) and

(1,−1,−1), respectively, which means that the axes of the four sp3 orbitals are arranged

like lines joining the center of a regular tetrahedron to its four corners. The angle between

any two orbitals is 109◦288.

This type of hybridization is responsible for the structural form of the diamond, and

is also found in the methane molecule CH4.

1.2 Carbon Materials

Among all the carbon materials found in nature, diamond and graphite are certainly

the most popular ones, both of them with well-known and established properties [7]. The

first one, object of desire of many ladies, is hard and transparent to the visible spectrum,

besides being a good insulator. The latter, on the contrary, is soft, opaque and conductor.

Over the past three decades a great interest in carbon materials has resurfaced with the

discover of new materials. In 1985 H. W. Kroto et al., while peforming mass-spectroscopy

analysis of carbon vapor, observed a series of even-numbered clusters with 38-120 atoms,

being the C60 the most stable molecule [8].This new class of carbon allotropes were called

fullerenes. Unlike diamond and graphite, the fullerenes are not a single material, but

a family of molecular structures in form of spheroids. In order to close into a spheroid

the carbon atoms are arranged in groups of twelve pentagons and a variable number of

hexagons. In the case of the C60 twenty hexagons in addition to the necessary twelve

pentagons give it the form of a soccer ball. In 1996 Robert F. Curl Jr., Sir Harold W.

Kroto and Richard E. Smalley shared the Nobel prize of chemistry for their discovery of

fullerenes [9].

In 1991, shortly after the discovery of fullerenes, the first report on multi-wall carbon

nanotubes (MWCNTs), a new type of carbon structure consisting of needle-like tubes,

came out [10]. Following the trend, in 1993, the first observation of single-wall carbon



1.2 Carbon Materials 25

Figure 3: The structural form of three allotropes of carbon:(A) diamond, (B) graphite,
(C) fullerene C60.

nanotubes (SWCNTs) were reported [11, 12]. The structure of these nanotubes can be

pictured as one or few layers of graphite, depending on whether we deal with SWCNTs

or MWCNTs, rolled up into a cylinder whose diameters range from 0, 7 nm to 1, 6 nm (4

nm to 30 nm) for SWCNTs (MWCNTs).

Formally, each nanotube is entirely determined by the chiral vector ~Ch = n~a1+m~a2 =

(n,m), where n and m are integer numbers with 0 ≤| m |≤ n, while a1 and a2 define

the unit cell of the graphite sheet (see Fig. 4). An equivalent way of characterizing the

nanotube is to define its diameter d =| ~Ch | /π and chiral angle

θ = arccos

(

~Ch · ~a1
| ~Ch || ~a1 |

)

= arccos

(

(2n+m)

2
√
n2 +m2 + nm

)

(1.28)

that together determine the chiral vector.

Based on the parameters just described, the nanotubes are classified in three groups:

armchair, when m = n and θ = π/6; zigzag, when m = 0 and θ = 0; and chiral, when

0 <| m |< n and 0 < θ < π/6. Although the three types of nanotubes have similar shapes

and are all consisting of carbon, it turns out that the way the graphite layer is rolled up

plays a fundamental role in the electronic properties of this material. It was observed that

armchair CNTs are metallic, while zigzag and chiral CNTs are metallic when n−m = 3l

(l is an integer). In the case n−m 6= 3l, CNTs are semiconductors with an energy gap of

the order of ∼ 0.5 eV, being the energy gap inversely proportional to the diameter d [13].

More recently, in 2004, a new sort of material arose with the first fabrication of truly

two-dimensional crystals. While working on graphite thin films, researchers at Manchester

University succeeded in isolating films consisting of just few layers of graphite and even

one atom thick single layer, named graphene. Amazingly, these structures proved to be

high quality and stable even under ambient conditions [14, 15, 16], refuting previous
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Figure 4: The three types of nanotubes:(A) armchair, (B) zigzag, (C) chiral. (D)
Schematic view of an unrolled nanotube, showing the translational and chiral vectors.

theoretical studies that stated such two-dimensional crystals to be thermodynamically

unstable [17, 18]. Ever since this first report, graphene has received a lot of attention

from the science community, and it has been proving to have very peculiar and interesting

properties that could possibly generate new graphene-based electronic devices. As a

consequence of this boom in graphene related research, Andre Geim and Konstantin

Novoselov were awarded a nobel prize in physics for groundbreaking experiments regarding

the two-dimensional material graphene [19].

Graphene itself is a two-dimensional crystal made exclusively of carbon atoms ar-

ranged in a honeycomb lattice. Each atom is in sp2 hybridization and is bound to other

three, by means of strong σ bonds, forming a trigonal plane structure as discussed before.

The pure half-filled pz orbitals left out of the hybridization are perpendicular to the plane

of atoms and make weak delocalized π bonds with the neighbors atoms. In order to try to

explain why the π bonds are called delocalized let us think what would be the situation

if the bonds were in fact well-localized. In that case, each hexagon would have three

alternate double bonds and we would expect that the pair of atoms joined by them would

be more tightly bond and consequently, closer to each other. However, all the atoms are

apart by the same distance, 0.142 nm. The theoretical explanation for this fact says that

the pz orbital of a given carbon atom is not superposed to an specific neighbor pz orbital,

on the contrary, it is constantly changing the direction of the superposition around the

three neighbors, making delocalized π bonds. Then, it is as if the unpaired electrons in

the pz orbitals could hop from atom to atom as the π bonds are formed. These π electrons

are the main responsible for the transport properties of graphene [5, 20].
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1.3 Graphene Fabrication Techniques

A significant part of the academic research on graphene uses samples obtained by

micro-mechanical cleavage, which was the technique used to obtain the first graphene

samples [14]. That is an extremely simple and inexpensive technique that basically con-

sists in using a scotch tape to peel off graphene layers from a bulk crystal of HOPG (highly

ordered pyrolytic graphite), and then rub the sample onto a 300 nm thick silicon oxide

(SiO2) substrate. The substrate area is covered with different numbers of layers and a

key part of the process is to identify the area where there is a single layer of graphene.

Figure 5: Thin films of graphite. (A) Picture of a ≈ 3 nm thick multi-layer graphene.
(B) Atomic force microscope (AFM) image of this flake near its edge. The dark brown
area is the SiO2 surface and the orange part corresponds to 3 nm height above the SiO2

surface.(C) AFM image of single-layer graphene. (D) Scan electronic microscope (SEM)
image of an experimental device prepared from few-layer graphene. (E) Schematic view
of the device in (D) [14].

Graphite films less than 50 nm thick are transparent under the optical microscope

(OM). Nonetheless, due to an addition on the optical path, films with different thicknesses

have unique interference patterns on the SiO2 substrate, producing different colorings.

The color for 300 nm SiO2 wafer is violet-blue and the extra thickness d due graphite

films shifts the color to blue. Then, the role of the OM is define the region where the

monolayer is most likely located, while the further task of identifying the single-layer is

carried out using the atomic force microscope (AFM), since films with thickness d < 1.5

nm are no longer visible even by way of interference shift [21].
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Although this mechanical exfoliation is a rather simple technique, which makes the

academic research on graphene possible in many research groups, this kind of fabrica-

tion is unfeasible for large scale production of graphene-based devices. Consequently,

more sophisticated techniques are needed, such as: chemical vapor deposition (CVD) and

epitaxial growth by thermal decomposition of Silicon carbide SiC.

Figure 6: (Left panel) a Synthesis of patterned graphene films on thin nickel layers.
b Removing Ni using FeCl3 (or acids) and transfer of graphene films using a PDMS
stamp. (Right panel) a A centimetre-scale graphene film grown on a Ni(300 nm)/SiO2(300
nm)/Si substrate. b A floating graphene film after etching the nickel layers in 1M FeCl3
aqueous solution. After the removal of the nickel layers, the floating graphene film can
be transferred by direct contact with substrates. c Various shapes of graphene films can
be synthesized on top of patterned nickel layers. d,e The dry-transfer method based on a
PDMS stamp is useful in transferring the patterned graphene films. After attaching the
PDMS substrate to the graphene (d), the underlying nickel layer is etched and removed
using FeCl3 solution (e). f Graphene films on the PDMS substrates are transparent and
flexible. g,h ThePDMSstamp makes conformal contact with a silicon dioxide substrate.
Peeling back the stamp (g) leaves the film on a SiO2 substrate (h) [26].

By means of chemical vapor deposition it is possible to make large area graphene

samples (order of cm2) that can be seen with naked eye. This technique has been applied

to produce layers that can be used as stretchable transparent electrodes for touch screens.

The growth is made on the top of metal substrates such as Nickel Ni [25, 26, 27] and

Cooper Cu [28, 27]. The left panel in Fig. 6 illustrates all the steps of the process: from

the growth of the graphene sample on the top of etched Ni crystal (a) to the separation

of the Ni/graphene and the deposition of the graphene layer onto a polydimethylsiloxane

(PDMS) soft substrate (b). The left panel in Fig. 6 shows pictures of the actual process.
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When one is interested in nanostructured graphene, epitaxial growth (EG) on SiC

is probably the most suitable fabrication technique. One can highlight three features

that make it a promising method: first, it is compatible with the large-scale electronics

processing methods, since the graphene structure is oriented grown with respect to the

SiC large gap semiconductor substrate; second, the high temperatures involved in the

fabrication process ensure contamination-free and defect-free samples with well-defined

interfaces; in addition, the growth on structured SiC surfaces permits the production of

graphene nanostructures without post-growth lithograthy process, resulting in atomically

smooth edges structures that are fundamental in controlling electronic properties of the

material. [22, 24].

The EG technique itself consists of the high-vacuum thermal decomposition of SiC.

The silicon carbide is annealed at temperatures above 1500 K, at this stage the Silicon

atoms sublimate leaving the graphene layers. The quality, smoothness and width of the

graphene layers can be better controlled by processing the sample in inert gas atmosphere

instead of high vacuum. Doing this one can increase the temperature without necessarily

increasing the sublimation rate, once the gas pressure helps to control the sublimation

rate [23]. Another possibility is to enclose the sample in a furnace with a leak that can

control the pressure of the sublimated Si gas (see Fig. 7(B)) [24]. It is worth to mention

that the electronic and structural quality of the samples strongly depends on which face

of the SiC the growth is made. The samples grown on the C-terminated face usually

have larger areas and higher mobilities than those grown on Si-terminated face.

1.4 What makes graphene interesting?

Although many theoretical studies on graphene have been done over the last 60 years

[29, 30, 31], the experimental realization of this material is still a fresh event that keep

attracting people’s interests. Besides belonging to a new and unexpected group of materi-

als, the two-dimensional crystals, graphene has a variety of odd properties that attracted

a lot of attention from the academic community.

A single graphene sheet exhibit exceptional electronic quality. The first Measurements

performed in this material revelled high mobilities µ, achieving values as high as 15, 000

cm2/Vs at room temperature [14, 16, 33, 34]. In addition, it was observed that µ values

were nearly independent of the temperature. This fact gave an indication that the value

of µ, for instance, at 300 K was still limited by scattering process by impurities [32]. In
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Figure 7: (A) SiC wafer in ultra high vacuum: sublimed silicon is not confined, causing
rapid, out of equilibrium graphene growth. (B) The confinement sublimation method:
sublimed Si gas is confined in a graphite enclosure so that growth occurs in near ther-
modynamic equilibrium. Growth rate is controlled by the enclosure aperture (leak), and
the background gas pressure. (C) Photograph of the induction furnace. (D) Under these
conditions few layer graphite (FLG, from 1 to 10 layers) grows on the Si-terminated face,
and multilayer epitaxial graphene (MEG, from 1 to 100 layers) grows on the C-terminated
face.[24]

fact, more recent experiments succeed to obtain mobilities higher than 200, 000 cm2/Vs

[35] at room temperature, which exceed the µ values known for any other semiconductor

[36].

From a fundamental point of view, maybe the most striking feature of graphene is

that its charge carriers are governed by the Dirac equation, the same equation that rules

the spin 1/2 particles in quantum electrodynamics [37]. As a consequence, it is usually

stated that electrons in graphene behave like zero-mass relativistic particles that travel

with an effective speed of light vF = 106 m/s (see chapter 2), exhibiting a gapless conical

spectrum at low energies (E < 1 eV). Some effects arising from this fact are: ambipolar

electric field effect (AEFE), minimum conductivity, anomalous quantum Hall effect and

Klein tunnelling.

By AEFE we can understand that the charge carriers can be continuously changed

from holes to electrons by just changing the electric field direction. Fig. 8 shows a

measurement of this effect in graphene. The conductivity increases linearly with the gate

voltage Vg, changing its sign around Vg = 0. This behavior suggests that, by means of

adding or subtracting electrons from the substrate, a positive (negative) gate voltages

induce electrons (holes) concentration on graphene.
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Figure 8: Ambipolar electric field effect in graphene [33].

It is well-known that the quantum Hall effect (QHE) describes the Hall conductivity

σxy quantization. Differently from the classical version, where σxy depends linearly on the

magnetic field, in the QH regime, σxy exhibits plateaus at integer multiples of e2/h [38].

Unlike an ordinary 2DEG, in graphene it was found that the plateaus are shifted by half

of the expected values, presenting σxy = ±4e2/h(n + 1/2) quantization [33, 34], where

factor 4 appears due the valley and spin degeneracy and n is the Landau level (LL) index.

This behavior is explained as a consequence of an unique LL spectrum En = ±vF
√
2e~Bn

that allows a zero energy level which is shared for both electrons and holes. Figure 9(a)

shows the behavior of the Hall conductivity σxy and the longitudinal resistivity ρxx as a

function of the density of carries for a graphene sample under a 14 T magnetic field for

a temperature of 4 K. Another experimental indication of the high electronic quality of

graphene was the room temperature QHE observation [39] (see Fig. 9(b)). Usually the

QH regime requires very low temperatures, lower than the boiling point of liquid helium.

Some factors that allowed this observation in graphene are the high density of carriers

(up to 1013 cm−2) which populates the lowest LL even at very high magnetic fields, and

the high mobility of the sample.

Another peculiar characteristic of the charge carriers in graphene emerges when one

try to confine then by means of electrostatic potentials. Electrons in graphene can not

be trapped by such structures, they can tunnel any electrostatic barrier with a 100%

probability [40]. Figure 10 illustrates how the the tunnelling happens: when the incoming

electron in the red branch hits the barrier it always finds a hole state available at the
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(a) (b)

Figure 9: (a) Hall conductivity and longitudinal resistivity as a function of the density
of carriers in graphene at B = 14 T and temperature of 4 K [33]. (b) Room-temperature
QHE in graphene [39].

same branch through which it can propagate 4. This effect is usually mentioned as Klein

paradox or Klein tunnelling in graphene, in analogy to the so called Klein paradox in

quantum electrodynamics, where particles start to penetrate a potential barrier when its

height exceeds 2mc2. From this point on the transmission is approximately independent

of the height of the barrier and approaches to 1 for very high barriers.

Figure 10: (a) Schematic view of graphene low energy bands. The blue filling indicates
occupied states. The three diagrams illustrates the position of the Fermi energy through
the barrier potential showed in (b) [40].

4For an interesting way of understanding this effect read [41]
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Owing to the features just reported and many others not included here, there is a

great spirit in generating technology by exploring the new physics of graphene. Some

possibilities were already explored, such as using graphene as a gas sensor [42]. Schedin

et al reported that graphene can be used to detect even a single molecule by means of

measurable changes in its electric resistivity. Since graphene is an excellent conductor,

another possible application is create graphene transistors, which eliminates the need

for metallic junctions, making possible to miniaturize even more the current electronic

devices. On the other hand, the problem of switching off the current still remains (Klein

tunnelling). Because of that, now the aim is try to combine graphene and semiconductor

materials in order to take advantage of the exceptional electronic quality of graphene and

still be able to control the on/off current [43, 44]. Large graphene samples fabricated by

CVD technique were also used to replace indium tin oxides electrodes in flexible touch

screen panel devices [26, 27].

1.5 Outline

Along the subsequent chapter, we will develop the mathematical framework that helps

to explain the basic electronic properties of graphene. More precisely, we will present the

tight-binding model applied to graphene and perform the continuum limit approximation

in order to obtain an effective Hamiltonian valid for a low density of carriers, which

allows the analogy with quantum electrodynamics. The formation of the Landau levels

as a result of an applied external magnetic field is also analyzed.

In chapter 3, we turn our attention to graphene nanoribbons, a system where the

edge details strongly influence its electronic properties. In this context, we use the tight-

binding model to study the effect of a simple shear strain on the electronic spectrum of

zigzag and armchair ribbons.

In chapter 4, the stacking of two and three layers of graphene are introduced and their

free electron spectra are presented. The effect of the gate voltage on the gap opening, as

well as the role played by the stacking order of the trilayer graphene in the spectrum, is

analyzed.

Chapter 5 and 6 are devoted to the study of the Landau Levels on differently stacked

trilayer graphene and their transitions. In the former, starting from the 6×6 Hamiltonian

we obtain analytical expressions for the energy levels of ABA and ABC trilayers in external

magnetic field. While, in the latter, we obtain the spinor wavefunctions and calculate,
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within the dipole approximation, the oscillator strengths of the allowed transitions, as

well as the cyclotron resonance spectrum.

Finally, in chapter 7 we summarize the main results.
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2 Graphene’s basic electronic

properties

This chapter is devoted to deriving the basic electronic properties of graphene. It

starts by developing the tight-binding model for graphene, followed by the continuum

model approximation that leads to a low-energy effective Hamiltonian. Finally, the for-

mation of Landau levels as a result of an applied homogeneous magnetic field is described.

2.1 Tight-binding Approximation

Let us start describing the crystalline structure of the considered material. Graphene

is made of carbon atoms arranged in a two-dimensional honeycomb lattice. This kind of

arrangement does not constitute a Bravais lattice, however it can be considered as two

superposed triangular sublattices A and B, or yet a single triangular lattice with a base

of two atoms in the unit cell [29]. The primitive vectors are given by:

Figure 11: The crystalline structure of graphene with two sublattices A and B. a1 and
a2 are the primitive vectors that span the lattice, while Ri (with i = 1, 2, 3) localize the
nearest neighbors.[45]

~a1 =
3a

2
x̂+

√
3a

2
ŷ, ~a2 =

3a

2
x̂−

√
3a

2
ŷ, (2.1)
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where a ≈ 1, 42 Å is the C − C distance, x̂ and ŷ are the unit vectors along x and

y-directions, respectively. The vectors defining the reciprocal lattice are the followings:

~b1 =
2π

3a
x̂+

2
√
3π

3a
ŷ, ~b2 =

2π

3a
x̂− 2

√
3π

3a
ŷ. (2.2)

Now that we have defined graphene from the crystallographic point of view, let us

focus on the tight-binding approximation itself. The tight-binding model is one of the

most simple microscopic description of electrons in a crystal. The basic idea behind this

model is to assume that the electron is tightly bound to the atom, such that its wave

function is peaked at the atomic site. As consequence, the wave function of the crystal

can be expanded in terms of the wave functions of isolated atoms. Here we are going to

consider that the range of the atomic wave function is of the order of the lattice spacing

a, which means that the electron can just hop between the nearest neighbors (NN). In

addition, we are going to leave out the σ−orbitals and consider just the π−orbitals, since

the π bands are the most important for determining the solid state properties of graphene

when one is interested in low-energy excitations [5].

In second quantization language, tight-biding Hamiltonian that describes electrons in

graphene 1, including only the hopping between the NN 2, can be written as:

H = −
∑

i,j

γ0(a
†
ibj + b

†
jai), (2.3)

where γ0 ≈ 2, 8 eV [45] is the NN hopping parameter. The operators a†
i and ai create and

annihilate electrons on the site i of the sublattice A , respectively, whereas b†
j and bj act

likewise on the j-sites of sublattice B.

By considering an infinite ideal lattice, it is possible to perform a Fourier transforma-

tion of the creation and annihilation operators. In order to do so, let us write

ai =
1√
N

∑

k

ei
~k·~riak, a

†
i =

1√
N

∑

k

e−i~k·~ria
†
k (2.4)

bj =
1√
N

∑

k′

ei
~k
′ ·~rjbk

′ , b
†
j =

1√
N

∑

k′

e−i~k
′ ·~rjb

†
k
′ . (2.5)

1Although the treatment of this problem in first quantization language is more intuitive, we have
chosen the second quantization because of the cleanness and simplicity of its notation. The reader
interested in the former treatment can find it on the second chapter of reference [5].

2The term that accounts for on-site energy was omitted, since A and B atoms are both carbon atoms
with the same on-site energy and its presence in Hamiltonian would simply cause a shift in the spectrum.
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Substituting (2.4) e (2.5) into (2.3), the Hamiltonian takes the form of

H = −
∑

i,j

γ0
N





∑

k,k′

e−i~k·~riei
~k
′ ·~rja

†
kbk′ +

∑

k,k′

e−i~k
′ ·~rjei

~k·~rib
†
k′
ak



 , (2.6)

which can be rewritten as:

H = −γ0
N

∑

i,j

∑

k,k′

[e−i(~k−~k
′

)·~riei
~k
′ ·(~rj−~ri)a

†
kbk

′ + e−i(~k
′−~k)·~rie−i~k

′ ·(~rj−~ri)b
†
k
′ak]. (2.7)

Since each atom has three nearest neighbors (NN), if we put the origin of the system on

a site i and make j vary over the NN, localized by ~R1 = (−a, 0), ~R2 =
(

a/2, a
√
3/2
)

,

~R3 =
(

a/2,−a
√
3/2
)

, we obtain:

H = −γ0
N

∑

i

∑

k,k′

[e−i(~k−~k
′

)·~ria
†
kbk′ (e

−ik
′

xa + eik
′

xa/2eik
′

y

√
3a/2 + eik

′

xa/2e−ik
′

y

√
3a/2)

+e−i(~k
′−~k)·~rib

†
k
′ak(e

ik
′

xa + e−ik
′

xa/2e−ik
′

y

√
3a/2 + e−ik

′

xa/2eik
′

y

√
3a/2)] (2.8)

H = −γ0
∑

k

[g(~k)a†
kbk + g∗(~k)b†

kak], (2.9)

where

g(~k) = eikxa + 2 cos(ky
√
3a/2)e−ikxa/2 (2.10)

is the structure factor of the crystal. Note that the above Hamiltonian can be written as

H =
∑

k

〈Ψk|Hk|Ψk〉 (2.11)

where |Ψk〉 = (ak bk)
T and Hk represent the electronic state and the Hamiltonian for a

given ~k, respectively. The Hk is

Hk =

(

0 −γ0g(~k)
−γ0g∗(~k) 0

)

. (2.12)

The eigenvalues of Hk can be easily obtained as

E±k = ± γ0|g(~k)| = ± γ0

√

3 + f(~k), (2.13)

with f(~k) = 4 cos(3kxa/2) cos(
√
3kya/2) + 2 cos(

√
3kya).

Figure 12 exhibits the electronic band structure found in Eq. (2.13). The structure
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Figure 12: (a) The π bands of graphene obtained by the tight-biding approximation. (b)
The contour plot of the conduction band on first Brillouin zone (white dotted line).

is composed of two parts: the valence (Ev ≤ 0) and conduction (Ec ≥ 0) bands 3. These

bands touch at six points in the reciprocal space, the so called Dirac points. In order

to find their coordinates we have to find the points where E(kx, ky) = 0, which means

g(kx, ky) = 0. This requirement is fulfilled when

Re[g(kx, ky)] = cos kxa+ 2 cos ky
√
3a/2 cos kxa/2 = 0, (2.14)

and

Im[g(kx, ky)] = sin kxa− 2 cos ky
√
3a/2 sin kxa/2 = 0, (2.15)

which lead to

~k1 =
(

0, −4π
3
√
3a

)

, ~k3 =
(

−2π
3a
, 2π
3
√
3a

)

, ~k5 =
(

2π
3a
, 2π
3
√
3a

)

,

~k2 =
(

−2π
3a
, −2π
3
√
3a

)

, ~k4 =
(

0, 4π
3
√
3a

)

, ~k6 =
(

2π
3a
, −2π
3
√
3a

)

.

(2.16)

Coincidentally, these points are located at the crystallographic points K and K ′ in

the corner of the first Brillouin zone. Then, the points ~k1, ~k3 and ~k5 (~k2, ~k4 and ~k6) are

equivalents, since they are associated to the K (K ′) points that are connected by the

3It is worth to mention that the electronic dispersion in Fig. 12 has electron-hole symmetry, which
means that Ec = −Ev. This symmetry just occurs because we have neglected the electronic hopping
between the next-near neighbors atoms.
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reciprocal lattice vector ~G.

2.2 Continuum Model

The Dirac points are of particular importance for the investigation of the electronic

properties of graphene, since the Fermi energy lies on the Dirac points4[46] and, for low-

energy excitations, the only electrons involved in the physical process are the ones around

the Fermi level. Because of that it can be useful obtain an approximate Hamiltonian

for wave vectors around the K and K ′ points. When such approximation is made we

lose microscopic information of the system, and then, it is said that we move from a

discrete to a continuum model. In order to do that, let us expand the nonzero terms of

the Hamiltonian in (2.12) in Taylor’s series around these points an retain just the first

order terms in kx and ky. For the sake of simplicity, we perform the expansion of g(kx, ky)

around ~k1 and obtain:

g(δ~k) ≈ g(~k1) +
∂g

∂kx

∣

∣

∣

~k= ~k1
(kx − k1x) +

∂g

∂ky

∣

∣

∣

~k= ~k1
(ky − k1y) +O(δk2), (2.17)

where δ~k = ~k − ~k1. After evaluating g(~k) and its derivatives at ~k1 we obtain:

g(δ~k) ≈ 3a

2
eiπ/2(kx − iky). (2.18)

The phase eiπ/2 appearing on the right side of the Eq. (2.18) can be included in the

eigenstate without no physical change, since its norm is one5. Then, the Hamiltonian

describing the states around the ~k1 (K) point is

HK =

(

0 ~vF (kx − iky)

~vF (kx + iky) 0

)

, (2.19)

with ~vF = 3aγ0/2. This Hamiltonian has exactly the same form of the two-dimensional

Dirac Hamiltonian that describes relativistic electrons with a zero mass, but in this case,

the light velocity c is replaced by the Fermi velocity vF ≈ 1 × 106 m/s [46]. That is the

reason why it is commonly said that electrons in graphene behave like massless relativistic

4Recalling that each carbon atom contributes with an unpaired π electron and that each energy state
accommodates two electrons (spin up and down), the band should be completely filled up to the top
(bottom) of the valence (conduction) band.

5If the same approximation had been made around the other K points we would have got the same
Hamiltonian, however the eigenstates would have different phase factors: ei7π/6 in k5, and ei11π/6 in k3.
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fermions. The equation (2.19) can be rewritten in a succinct way as

HK = vFσ · p, (2.20)

where σ = (σx, σy, σz) are the Pauli matrices. In the original Dirac approach, the Pauli

matrices are related to the spin degree of freedom. Nevertheless, in this case the spin

was not taken into account, and the σ operator appears as a consequence of the crystallo-

graphic structure of graphene. Because of that σ is called sublattice pseudospin and the

eigenstate |ΨK〉 = (ψA, ψB) is called a pseudospinor, where ψA (ψB) gives the probability

of finding the electron on the A (B) sublattice. Diagonalizing the above Hamiltonian we

find a spectrum E = ±~vFk
6 that is linear in k and the corresponding eigenstates

|Ψ±
K〉 =

1√
2

(

1

±eiθ

)

, (2.21)

with θ = arctan (ky/kx).

If we go through the same approximation around the ~K ′ (~k4) point, we will find that

HK ′ = vFσ
∗ · p, (2.22)

|Ψ±
K

′〉 =
1√
2

(

1

±e−iθ

)

. (2.23)

The Hamiltonian around the pair of Dirac points are related to each other through the

time-reversal symmetry, which states that Hk = H∗
−k, and, consequently, they exhibit the

same energy spectrum.

The equation describing the low-energy electronic excitations in graphene is then given

by the contribution of the two nonequivalent ~K and ~K ′ points as follows:

(

vFσ · p 0

0 vFσ
∗ · p

)

|Ψ〉 = E|Ψ〉, (2.24)

with E = ±~vFk and |Ψ〉 = (ψK , ψ
′

K) = (ψA, ψB, ψ
′

A, ψ
′

B)
T . In the absence of off-diagonal

terms that scatter the electron from K to K
′

and vice-versa, the states corresponding to

these points are said to be valley degenerated, and because of that, from now on, we will

work only with HK .

Figure 13 exhibits a direct experimental measurement of graphene’s valence band

6This is a striking difference between graphene and the usual 2D electron gas (2DEG), where E =
~
2k2/2m. In the usual 2DEG the Fermi velocity vF = ~k/m =

√

2E/m of the carriers increase as we
increase the energy, while in graphene the Fermi velocity does not depend on the energy.
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by means of Angle-resolved photoemission spectroscopy (ARPES) [47], which shows the

linear spectrum and the appearence of two Dirac cones, confirming that the continuum

model is in fact a good approximation for energies lower than 1 eV.

Figure 13: Direct measurement of graphene’s valence band by means of Angle-resolved
photoemission spectroscopy (ARPES)[47].

2.3 Graphene in Homogeneous Magnetic Field

When we are describing free electrons in the presence of an external magnetic field,

the canonical momentum gives place to the kinetic momentum in the Hamiltonian7, and

we have p → p + eA, where e is the absolute value of the electric charge and A is the

vector potential. Then, the Hamiltonian for graphene is written as

H = vFσ · (p+ eA). (2.25)

Let us treat the case for an uniform magnetic field B = Bẑ generated by the Landau

gauge A = Bxŷ. The eigenvalue problem we have to solve is

−i~vF





0 ∂
∂x

− i
(

∂
∂y

+ ieB
~
x
)

∂
∂x

+ i
(

∂
∂y

+ ieB
~
x
)

0



Ψ = EΨ, (2.26)

with Ψ = (ψA(x, y) ψB(x, y))
T . Since the y coordinate does not appear in the Hamil-

tonian, [H,py] = 0 which means the eigenstates of the Hamiltonian should be also

7For a better understanding of the difference between kinetic momentum and canonical momentum
read appendix III of [48].
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eigenstates of py with eigenvalue given by ~ky. Consequently, we can write ψC(x, y) =

eikyyϕC(x), with C = A, B. Then the Eq. (2.26) takes the form

(

d

dx̄
+ lBky + x̄

)

= i
EℓB
~vF

ϕA (2.27)

(

d

dx̄
− lBky − x̄

)

= i
EℓB
~vF

ϕB, (2.28)

where we have defined ℓB =
√

~

eB
, and x̄ = x/ℓB. If we decouple the above equations for

the ϕB component, we end up with the following second-order differential equation

(

d2

dx̄2
− (x+ ℓBky)

2 +
ℓ2BE

2

~2v2F
+ 1

)

ϕB = 0. (2.29)

This well-known equation just have physical solutions that converge for all x̄ values when

ℓ2BE
2

~2v2F
+ 1 = 2n + 1, (2.30)

with n being a non-negative integer. Then, we obtain a discrete spectrum given by the

Landau levels (LL)

En = ±~vF
ℓB

√
2n, (2.31)

and wave functions

Ψn(x, y) = Ane
ikyye−(x̄+lBky)2/2

[

∓i
√
2nHn−1(x̄+ lBky)

Hn(x̄+ lBky)

]

, (2.32)

where

An =











(

1√
π

)1/2

, n = 0
(

1√
π2n+1n!

)1/2

, n > 0
(2.33)

and Hn stand for the Hermite polynomials.

Note that if we had solved the Eqs. (2.27) and (2.28) for the ϕA component, we would

have found that En = ±~vF
ℓB

√

2(n+ 1). There are two aspects that are worth highlighting.

First, the LL in graphene are unequally spaced and follow a
√
B dependence, which is

a peculiar behavior, since the LLs of ordinary 2DEG have a set of equally spaced levels

En = ~
eB
m
(n+1/2) with a linear B-dependence. Another new feature found is the presence

of E = 0 LL, which is supported just by the ϕB component of the wave function8, leading

to the half-degeneracy of the 0 level [33, 34].

8If we were solving the problem around the K
′

point, we would find that when E = 0 just the ϕA

component survive. Because of that, it is usually said that the 0 level is valley-polarized.
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The odd behavior of the LL in graphene was experimentally verified by means of

infrared spectroscopy [49, 50, 51, 52]. Roughly speaking, this technique consists of shining

light on a graphene sample and observing for which energy of the incoming light a given

transition occurs. After repeating this procedure for several values of magnetic field, the

plot of the transition energy ∆E = Em − En versus the magnetic field can be plotted in

order to give the B-dependence of the levels (See Fig. 14).

(a) (b)

Figure 14: (a) Infrared absorption spectra of holes in graphene at three different magnetic
fields. The two LL resonances are denoted by T1 and T2. The inset shows a schematic
LL ladder with allowed transitions indicated by arrows. (b) Resonance energies versus√
B [50].
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3 Graphene and graphene ribbons

under simple shear strain

The fact that graphene is a zero gap material, together with its linear energy spectrum,

leads to the absence of confinement by electric potentials. In order for gating to be used as

an effective way to manipulate the conductance, one needs a way to control the energy gap.

In particular, it was shown that in bilayer graphene it is possible to create a gap at the

K-point by using chemical doping or by the application of an electric field perpendicular

to the bilayer, i.e., by applying a gate potential[54, 53, 55, 56]. A similar approach does

not work for a single graphene layer. The electronic properties of these graphene layers

or ribbons depend strongly on its geometry or size[57, 58, 59, 60, 61, 62, 63, 64, 65, 66].

Attempts to tune the electronics properties of these ribbons are focused on the study

of chemical edge modification[58], application of uniaxial strain[61], and boron-doped

graphene ribbons[67], where a substitutional boron atom is introduced at some specific

sites of the graphene lattice. The introduction of a line of impurities can also open a gap

in a graphene ribbon[68].

3.1 Model

In the present chapter we show how simple shear strain can tune the electronic prop-

erties of graphene and also graphene ribbons. We found that a specific simple shear strain

applied to the system is able to induce a variety of different energy spectra depending

on the strength of the lattice displacement and the ribbon geometry. Simple shear is an

isochoric plane deformation where the elementary unit cell is deformed in one direction

and constant in another. It can be defined by the shear mapping

[

x′i

y′i

]

=

[

1 f(δ/a)

0 1

][

xi

yi

]

, (3.1)
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where xi and yi are the coordinates of the i-th atom line. The determinant of the matrix

transformation is equal to one, then the volume of the system is preserved. This simple

shear does not generate any effective magnetic field since the stress tensor depends only

on y pointing in the x-direction, i.e., u = g(y)x̂.

The system is defined as a honeycomb lattice of carbon atoms with two sublattices

A and B under a simple shear strain. The graphene sheet is infinite in the x direction

and has N carbon lines in the y direction. The simple shear is a plane deformation

(isochoric) in which there are a set of line elements with a given reference orientation that

do not change length and orientation during the deformation. Here, the simple shear is

introduced in the x-direction where the new distances between atoms for the armchair

and zigzag configurations are shown in Fig.15. The atoms at the top are shifted from

their regular site to the right by the displacement parameter δ, the middle atoms are

unchanged, while the atoms at the bottom are displaced by δ to the left. For the ribbon

case, the distances are given by

1
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A
B
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c

(b)
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d

d d

d

d1

d3

d3

d2

d2

d1

y

(c)

Figure 15: The lattice of ribbons with zigzag (a) and armchair (b) edges along the x-
direaction. The numbers on the sides show how we number the atomic lines. (c) The
distortion of zigzag (left) and armchair (right) graphene. Delta (δ) is the displacement in
the x-direction. The full circles indicate sublattice A and the open circles are the sites of
sublattice B

di =
√

a2 + δ2 +∆iδ, (3.2)

where i = 1, 2, 3, a is the lattice parameter, and ∆i depends on the ribbon configuration

and is given in Table I.

The microscopic model is based on the tight-binding Hamiltonian

H = −
∑

i,j

tija
†
ibj + h.c., (3.3)

where for simplicity, we have taken the hopping term the same at the ribbon edges,
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but it depends on the distance between the electrons in sublattice A interacting with its

neighbors in sublattice B and vice-versa. It is defined as tij = tm = te−3.37(dm/a−1)[69], with

m = 1, 2, 3. The operator a†i (ai) creates (annihilates) an electron on site i in sublattice A

and the operators b†i (bi) act on the sublattice B.

For a graphene sheet, the system is periodic in both x and y-direction allowing us to

use a Fourier transformation like

ci =
1√
N

∑

qx,qy,n,m

cqx,qy,n,m, (3.4)

with

cqx,qy,n,m = c0e
iqxlxneiqylym, (3.5)

where c stands for both operators a and b, n and m labels the lines and columns of the

atoms in the graphene sheet. After straightforward algebra we obtain the equations below

ω(qx, qy, δ)aqx,qy,n,m = t2bqx,qy,n,m−1+

t1bqx,qy,n+1,m+1+ (3.6)

t3bqx,qy,n−1,m+1

ω(qx, qy, δ)bqx,qy,n,m−1 = t2aqx,qy,n,m+

t1aqx,qy,n−1,m−2+ (3.7)

t3aqx,qy,n+1,m−2,

from which we arrive at the dispersion relation for the non distorted graphene sheet

(

ω(q)

t

)2

= 1 + 4 cos

(√
3

2
qxa

)

cos

(

1

2
qya

)

+ 4 cos2

(√
3

2
qxa

)

. (3.8)

Next we apply shear in the x-direction. This results in two different dispersion relations

depending on the choice of the configuration (see Fig. 15). For the armchair we have the
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following dispersion relation

ω(q, δ)2 = t21 + t22 + t23+

2t1t2 cos

(√
3

2
qya−

3

2
qxa+ δqx

)

+ 2t2t3 cos

(√
3

2
qya+

3

2
qxa + δqx

)

(3.9)

+ 2t1t3 cos
(√

3qya+ 2δqx

)

,

and for the zigzag configuration we have

ω(q, δ)2 = t21 + t22 + t23+

2t1t2 cos

(

2δqx −
√
3

2
qxa−

3

2
qya

)

+ 2t2t3 cos

(

2δqx +

√
3

2
qxa−

3

2
qya

)

(3.10)

+ 2t1t3 cos
(√

3qxa
)

.

When considering a ribbon the periodicity is only in the x-direction, and the operators

depend on the one-dimensional (1D) wave vector q = qx parallel to the ribbon edge. The

hamiltonian is now written in the wavevector/energy space through its Fourier transform.

H = −
∑

qnn′

τnn′(q, δ)a†qnbqn′ + h.c. (3.11)

The structure factor τnn′(q, δ) carries the dependence on the wavevector qx and includes

the effect of shear δ. In order to find the band structure of the system we apply the

standard equation of motion i~da/dt = [a,H ] to the operators a†n and an in line n.

Taking ~ = 1 and assuming that the modes behave like exp[−iω(qx)t] we arrive at the set
of coupled equations

ω(qx, δ)aqx,n =
∑

n′

τn,n′(qx, δ)bqx,n′, (3.12)

ω(qx), δ)bqx,n =
∑

n′

τ ∗n′,n(qx, δ)aqx,n′. (3.13)

The matrix elements τn,n′(qx, δ) are given by
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Table 1: Value of the matrix elements in the hopping matrix

Parameter Zig-zag Armchair

∆1 −a
√
3 −a

∆2 0 −δ
∆3 a

√
3 a

α 0 t2e
−iqxa

β t2e
−iqxδ t1e

iqx(a/2−δ)

γ t1e
−iqx(a

√
3/2−δ) + t3e

iqx(a
√
3/2+δ) t3e

iqx(a/2+δ)

τn,n′(qx, δ) = αδn,n′ + βδn′,n+1 + γδn′,n−1 (3.14)

for the armchair configuration and

τn,n′(qx, δ) = βδn′,n+1 + γδn′,n−1, (3.15)

for the zigzag ribbon. The above set of equations can be written in matrix form

ω(qx, δ)

[

aqxn

bqxn

]

=

[

0 T (qx, δ)

T (qx, δ)
∗ 0

][

aqxn

bqxn

]

. (3.16)

The energy levels are now the solutions of

det

[

ω(qx, δ)IN T (qx, δ)

T (qx, δ)
∗ ω(qx, δ)IN

]

= 0, (3.17)

with IN the unit matrix and T the hopping matrix:

T =





















α β 0 0 0 . . .

β α γ 0 0 . . .

0 γ α β 0 . . .

0 0 β α γ . . .
...

...
...

...
...

. . .





















, (3.18)

where the parameters α, β, and γ are given in Table I.

3.2 Results

Before analyzing the results for the ribbon, it is worth investigating the effect of this

simple shear on the energy band of a graphene sheet. For comparison we show in Figure

16 a contour plot of the energy band for the graphene sheet that has a zigzag configuration
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Figure 16: (Color online) The contour plot for a graphene sheet energy dispersion relation.
The energy scale is from blue (zero energy) to red (E/t = 3)
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Figure 17: The density of states for a graphene sheet.

in the x-direction in the absence of any shear. There are six points where the gap between

the conduction and the valence band is zero. For the armchair configuration in the x-

direction the energy band is rotated by 90◦ from the one shown in Fig. 16. We also plot

the energy histogram for the graphene sheet in Fig. 17. That gives us the density of

states (DOS) per unit cell which is linear close to the Dirac points.

For a small applied shear, i.e., small distortion of the lattice (δ = 0.1a), the top

panels in Figure 18 show a distortion in the contour plot of the energy band for both

armchair (left) and zigzag (right) configurations. The shear shifts the Dirac cones from

their original position and the energy minima of the bands are getting closer in pairs.

When looking to the DOS shown in Fig. 19, the top panels correspond to the the energy
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Figure 18: (Color online) Contour plot of the dispersion relation for a graphene sheet
with shear applied in the x-direction. The left(right) panels are the spectrum for the
armchair(zigzag) configuration. From the top to the bottom, δ = 0.1a, 0.25a, 0.5a. The
energy increases from blue to red, ranging from E/t = 0 to E/t = 3.01(E/t = 4.5).
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Figure 19: The density of states for a graphene sheet under shear. The left(right) panels
are the spectrum for the armchair(zigzag) configuration. From the top to the bottom,
δ = 0.1a, 0.25a, 0.5a.

bands as in Fig. 18. The DOS has now much more structure than the one with no shear.

As one increases the shear strength (δ = 0.25a) we still find six minima in the energy for

the armchair configuration but only four in the zigzag case. For the later case, they are

no longer Dirac cones and now a gap opens in the dispersion relation. When considering

the maximum distortion, δ = 0.5a, instead of six minima points we have only four. The

new structure created by the shear gives a complete different dispersion relation, as if we

have a different material for each configuration.

From Figure 19 we notice that as δ increases the DOS has no resemblance to the

one for the non stretched graphene. For the zigzag orientation the DOS shows clearly

that the gap increases with δ. There are no states with energy less than E/t ≈ 1.7.

These forbidden energies increases as δ/a increases. For such a simple strain there are no

indications that the dispersion relation is linear around the minimum of the conduction

band.

It is interesting to see the effect of the shear intensity against qx for a specific value

of qy. This plot is shown in Figure 20. For qy = 0, the graphs show a reciprocal energy

for both configurations which satisfy E(qx) = E(−qx). As the shear increases the energy

oscillates from a maximum to a minimum in both configurations, unless for qx = 0. In

particular for the zigzag configuration, the right panel in the figure, there is a value of δ

where the number of maximum points form a continuum. The graphs are not periodic,



3.2 Results 52

0.0

0.1

0.2

0.3

0.4

0.5

a

-20 -10 0 10 20
0.0

0.1

0.2

0.3

0.4

0.5

a

qxa/
-20 -10 0 10 20

qxa/

Figure 20: Contour plot of the graphene dispersion relation with shear applied in the x-
direction. The left(right) panels are the spectrum for the armchair(zigzag) configuration.
From the top to the bottom, qy = 0.0, 0.7. The energy increases from blue to red, ranging
from E/t = 0 to E/t = 3.01 in the left graphs and to E/t = 4.5 in the right graphs
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as qx increases new structures appear in the figures forming bands with maximum and

minimum energy. For qy = 0.7 the reciprocity is lost, i.e. E(qx) 6= E(−qx). But there are

still bands of maximum and minimum energy as in the qy = 0 case. From the spectrum,

it is clear that the shear strength tunes the size of the energy gap.
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Figure 21: The location of the energy minima in the Brillouin zone against δ/a. Solid
(Dashed) curves for the minima in the armchair (zigzag) configuration.
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Figure 22: The value of the conduction energy minimum as a function of δ/a

We choose two minima in the top graphs of figure 20 to follow as the shear line

displacement increases. In Fig. 21, we show how these two minima get close to each

other for the armchair and zigzag configuration. The initial location of the minima are

qx = 0.0, qy = −0.78 and qx = 0.68, qy = −0.4 for the armchair and qx = 0.4, qy = −0.65

qx = 0.8, qy = 0.0 for the zigzag. In the armchair case the two minima joint at the

value of δ/a ≈ 0.34 and δ/a ≈ 0.16 for the zigzag case. In both cases these are the
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Figure 23: Dispersion relation for graphene ribbons for armchair (a) − (c) and zigzag
(d)− (f) edges with N = 9, 10, and 11 atomic lines.

values where the gap in the energy band starts as can be seen in Fig. 22. The figure

shows that the lowest energy value starts to grow quadratically. For the armchair case

we are able to fit the curve with E/t = −1.1666 + 4.7338δ/a− 3.8655(δ/a)2 and E/t =

−1.0077 + 5.68δ/a+ 3.5658(δ/a)2 for the zigzag

In order to study the effect of this shear in ribbons Fig. 23 shows, for the armchair and

zigzag configuration, the dispersion relation for ribbons with 9, 10, and 11 atomic lines.

Depending on the number of lines, the ribbon can present three (two) kinds of energy

bands for the armchair[64] (zigzag) configuration where the main difference is related to

the type of ribbon edge.

It is worth mention here that the way we define the number of atoms lines is different

for example than in Ref. [57], there N is the number of dimer lines or zigzag lines, that

is a group of two lines, one with A atoms and another with B atoms, what means that

when the N is odd they have an even number of lines of atoms. Here we define N as

the number of single atoms lines (see Fig. 15), then when we say that our ribbon has

N = 9 means that both edges have the same type of atoms (A or B), this make the ribbon

zigzag in the bottom edge, for instance, but creates a flat top edge that is responsible for

a dispersionless E = 0 mode.
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As we start distorting the zigzag ribbon with 10 atomic lines the spectrum starts to

change in such a way that the crossing modes disappear completely and the zero energy

gap around qx = ±1/
√
3 is becoming more localized. Increasing δ even further there is a

pronounced gap in the electronic structure and the modes behave like sinusoidal waves,

see Fig. 24. For N = 11, the effect of the distortion is to remove any crossover between

the modes in the dispersion relation. As δ increases all the modes but the zero one gets

more and more energetic in modulus, this is shown in Fig. 25.
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Figure 24: Dispersion relation for zigzag graphene ribbons with 10 atomic lines, with
shear (a) δ = 0, (b) δ = 0.1a, (c) δ = 0.2a and (d) δ = 0.3a.

Next, we analyze the effect of shear on an armchair ribbon. For this geometry the

ribbon is metallic when we have 3i − 1 atomic lines, where i = 1, 2, 3, . . . , and semicon-

ductor otherwise. Each of these arrangements results in a different energy band. Figs.

23(a)-(c) show the usual behavior of dispersion relation for a normal armchair ribbon, i.e,

the top of the valence band and the bottom of the conduction band are located at qx = 0.

Applying shear to the ribbon with 10 lines, Fig. 26 shows the lower energy modes that

starts to get detached from the others lowering its energy. As δ increases the gap vanishes

and the system becomes metallic. When applying the same shear to the ribbon with 11

lines, the shear decreases the energy of the lower mode, and the zero gap is extended

beyond a single value of qx.

From the results shown here it is clear that shear affects the dispersion relationship for
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Figure 25: The same as in Fig. 24, but now for N = 11.

the ribbons in a very unusual way. That can be seen explicitly in Figs. 28 and 29 where

the behavior of the energy levels for zigzag and armchair ribbons are shown as function

of δ/a . For a zigzag ribbon with ten atomic lines, we choose to study the specific value

of the wave vector qxa/π = 1/
√
3 where there is no energy gap between the conduction

and valence bands. For this value of the wave vector there is one level with zero energy

and four others are degenerate at E/t = 1 when no stress is applied. As the net is

distorted a gap starts to appear, and the other levels spread. As the stress is increased

the modes start to grow almost linearly. When we do the same analysis for the armchair

configuration, a gap is closed for N = 10 and N = 9, and there is a very small opening of

energy gap for δ/a ≈ 0.25 (see inset of Fig. 29).

In summary, we have shown here that a simple tight-binding model is able to extract

very interesting features of graphene and graphene ribbon when a simple shear is applied

to the system. This simple shear does not generate an effective magnetic field, and the

main feature is the fact that controlling the net displacement one can modify the gap in

the energy spectrum of graphene and graphene ribbons. This is expected to be a very

effective mechanism for tuning the electronic properties of these systems.
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Figure 26: Dispersion relation for an armchair ribbon with ten lines or carbon atoms,
with shear (a) δ = 0, (b) δ = 0.1a, (c) δ = 0.2a and (d) δ = 0.3a.
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Figure 27: The same as in Fig. 26, but now for N = 11.
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Figure 28: The energy at qx = 1/
√
3 for a graphene sheet with 10 atomic lines and zigzag

edges as function of the strength of the stress.
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Figure 29: The energy behavior of a graphene sheet in the armchair configuration for
qx = 0. The number of atomic lines increases from 9 to 11 from the top to the bottom.
The inset in the bottom panel displays the first mode around E/t = 0, showing the
oppening of a small gap for values of δ/a around 0.25
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4 Graphene stacks

The advances in the experimental fabrication of high quality graphene samples and

the study of their many unusual properties raised a great curiosity about thin films of

graphite. How does the spectrum change when two or three graphene layers are stacked?

And still, how many layers do one need to stack in order for the properties of the bulk

graphite start to appear? Many works have been done trying to answer these questions

[70, 71, 72, 73], and along the rest of this chapter we will discuss some of the properties

of bilayers and trilayers of graphene.

4.1 Bilayer graphene

The bilayer graphene (BLG) consists of two stacked single layers separated by a

distance of ≈ 3.35 Å. The layers are positioned in such way that the B2 atoms from

the top layer are exactly on the top of the A1 atoms from the bottom layer, while the A2

atoms lie on the middle of the hexagons from the bottom layer. Figure 15 shows how the

top view of this structure should look like.

The tight-binding model for graphite can be adapted for every finite number of stacked

layers, with the simplest case being the BLG [77]. The Hamiltonian describing the bilayer

system is given in Eq. (4.1). The first line of Eq. (4.1) is the Hamiltonian of two

independent single layers, where a
†
i,m (ai,m) creates (annihilates) electrons on the i sites

of sublattice A of layer m, whereas b†
j,m (bj,m) act likewise on the j sites of sublattice B.

The terms containing γ1 represent the direct coupling between the dimer sites A1 and B2,

the γ3 terms describe the hopping between non-dimer sites B1 and A2, and the γ4 terms
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Figure 30: Top view of the crystalline structure of bilayer graphene. The bottom (red)
and top (black) layers are connected by the hopping parameters γ1 (coupling the dimer
sites A1 and B2), γ3 (coupling non-dimer sites B1 and A2), and γ4 (coupling dimer and
non-dimer sites A1 and A2 or B1 and B2).

couples the dimer sites A1 and B2 with the non-dimer sites A2 and B1, respectively.

H =− γ0
∑

i,j

2
∑

m=1

(a†
i,mbj,m + b

†
j,mai,m)

− γ1
∑

i,j

(a†
i,1bj,2 + b

†
j,2ai,1)

− γ3
∑

i,j

(a†
i,2bj,1 + b

†
j,1ai,2)

− γ4
∑

i,j

(a†
i,1aj,2 + a

†
j,2ai,1 + b

†
i,1bj,2 + b

†
j,2bi,1)

+
∑

i,j

2
∑

m=1

(EAm
a
†
i,mai,m + EBm

b
†
j,mbj,m). (4.1)

The last term of the Hamiltonian represent the on-site energy of the sublattices A and

B in both layers. Differently from the single layer graphene, we can divide the atoms in

two subgroups with different distributions of neighbors atoms around them: dimer and

non-dimer atoms. The dimer atoms are those which are connected by γ1 parameter. The
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Figure 31: Energy bands of bilayer graphene plotted along the ky direction. The inset
shows the behavior of the energies in the vicinity of the Dirac point [76].

on-site energies are described by:

EA1
=U1 +∆, (4.2)

EB1
=U1, (4.3)

EB2
=U2 +∆, (4.4)

EA2
=U2, (4.5)

where U1 and U2 describe interlayer asymmetry, and ∆ is the energy difference between

dimer and non-dimer sites. Table 2 shows the experimental values of the tight-binding

parameters for graphite, bilayer and trilayer graphene. The values with ∗ were not exper-

imentally determined by the cited experiment.

If we go through the same steps as before for single layer graphene, we obtain

Hk =















EA1
−γ0g(~k) −γ1 −γ4g∗(~k)

−γ0g∗(~k) EB1
−γ4g∗(~k) −γ3g(~k)

−γ1 −γ4g(~k) EB2
−γ0g∗(~k)

−γ4g(~k) −γ3g∗(~k) −γ0g(~k) EA2















. (4.6)

The eigenenergies of the above Hamiltonian are plotted in Fig. 31 along the ky direction.

In order to obtain the Hamiltonian around the K point, let us substitute the first-order
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expansion of g(~k) given in Eq. (2.18) into Eq. (4.6) and find

HK =















U1 +∆ vπ† γ1 v4π

vπ U1 v4π v3π
†

γ1 v4π
† U2 +∆ vπ

v4π
† v3π vπ† U2















, (4.7)

where v = 3aγ0
2~

, v3 =
3aγ3
2~

, v4 =
3aγ4
2~

, π = px + ipy, π
† = px − ipy, and the corresponding

eigenfunction is ΨK = (ψA1
, ψB1

, ψB2
, ψA2

)T . This full Hamiltonian can not be analytically

diagonalized, nevertheless Fig. 32(a) shows the contour plot of the first conductance band

obtained by numerical diagonalization of the full Hamiltonian in Eq. (4.7). The energy

values range from 0 (blue) to 10 meV (red). On the right panel of Fig. 32, the conductance

band is plotted taking into account just the parameter γ1. We can see from this result

that the inclusion of γ3 and γ4 breaks the cylindrical symmetry of the bands, leading to

distortion of the bands at low energies called trigonal warping. Actually a more detailed

study reveals that the γ3 terms are responsible for this effect, whereas the γ4 and ∆ terms

introduce an electron-hole asymmetry [77, 76].

By ignoring the γ4 terms and the on-site energies, analytical solutions of the bilayer

bands can be found as [77]:

E2
α =

γ21
2
+

(

v2 +
v23
2

)

p2+(−1)α

[

(γ21 − v23p
2)

2

4
+ v2p2

(

γ21 + v23p
2
)

− 2γ1v3v
2p3 cos (3φ)

]1/2

,

(4.8)

where α = 1(2) for the lower (upper) bands and φ = arctan (py/px). Notice that for a

given momentum p, the maximum energies are found for φ = 0, 2π/3, 4π/3 as can be seen

in Fig. 32(a). When one makes γ3 = 0 we recover cylindrically symmetric bands

E2
α =

γ21
2

[

1 + (−1)α

√

4v2p2

γ21
+ 1

]

+ v2p2. (4.9)

Although the trigonal warping is an important effect at very low energies, as the

energy exceeds few meV (≈ 10 meV) this distortion on the bands are negligible. Since

the current experimental techniques do not have access to this range of energy, from now

on we are going to ignore γ3 and γ4 terms and work with the minimal coupling γ1 term.

As single layer graphene, BLG has also shown very unique properties. Presenting a

parabolic gapless spectrum at low energies, BLG can be easily converted into a semicon-



4.1 Bilayer graphene 63

-0.010 -0.005 0.000 0.005 0.010
-0.010

-0.005

0.000

0.005

0.010

 

 
k y
(n
m

-1
)

k
x
(nm-1)

(a)

-0.010 -0.005 0.000 0.005 0.010
-0.010

-0.005

0.000

0.005

0.010

 

 

k y
(n
m

-1
)

k
x
(nm-1)

(b)

Figure 32: (a) Contour plot of the first conductance band of bilayer graphene for the
full-parameters model. (b) The same plot as in (a) for γ3 = γ4 = ∆ = 0. The energy
values range from 0 (blue) to 10 meV (red).

ductor with tunable gap by applying an external electric field that breaks the two layers

inversion symmetry [54, 55, 56]. Figure 33 shows the spectrum of neutral (black solid

lines) and biased (green dashed lines) BLG. The band gap in the K point is given by

U = |U1 − U2|, while the actual band gap Eg occurs at momentum kg

kg =
U

2~v

√

2γ21 + U2

γ21 + U2
, Eg =

Uγ1
√

γ21 + U2
. (4.10)

Figure 33 shows the energy bands of BLG for three different values of U : U = 0 (solid

black lines), U = 0.1 eV (dashed green lines) and U = 0.2 eV (dotted orange lines). The

inset shows the formation of the Mexican hat shaped band gap as U in increased.

In the presence of a magnetic field the BLG spectrum splits into LLs presenting a

rather intricate dependence on Landau index and magnetic field B. Pereira et al. found

that, in the absence of bias, the explicit form of the LLs are given by [78]:

ǫn = ± γ
′

1√
2






1 +

2

γ′1
2 (2n+ 1)±

√

√

√

√

[

1 +
2

γ
′

1
2 (2n + 1)

]2

− 16

γ
′

1
4n(n + 1)







1/2

, (4.11)

where ǫn = EnℓB
~v

and γ
′

1 =
γ1ℓB
~v

. When n/γ
′

1 ≪ 1 the above expression can be simplified

to

ǫn = ± 2

γ
′

1

√

n(n+ 1), (4.12)
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Parameter Graphite [74] Bilayer [75] Trilayer [89]

γ0 3.16(5) eV 3.16(3) eV 3.1∗1

γ1 0.39(1) eV 0.381(3) eV 0.39∗

γ2 -0.020(2) eV − -0.028(4)

γ3 0.315(15) eV 0.38(6) eV 0.315∗ eV

γ4 0.044(24) eV 0.14(3) eV 0.041(10) eV

γ5 0.038(5) eV − 0.05(2) eV

∆ -0.008(2)eV 0.022(3) eV -0.03(2) eV

Table 2: Values of the Tight-binding parameters experimentally determined for graphite,
bilayer and trilayer graphene.
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Figure 33: Energy bands of BLG for U = 0 (solid black lines), U = 0.1 eV (dashed green
lines) and U = 0.2 eV (dotted orange lines). The inset shows an enlargement of the
low-energy conductance bands.

assuming a linear B-dependence for small energies. Then, these LLs move from a linear

in B spectrum, characteristic of an ordinary 2D electron gas, to a
√
B dependence as the

energy increases [79], creating another type of IQHE [80]. Left panel of Fig. 34 shows

the behavior of the LLs in BLG, while the right panel shows a schematic illustration of

the QHE in BLG. Alike the standard QHE, the plateaus in Hall conductivity σxy occur

at integer values of e2/h. Nonetheless, like in single layer graphene, the zero plateau is

still missing as a consequence of the LL E = 0.
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Figure 34: (Left panel) Landau levels (n = 0, · · · , 5) in an unbiased BLG as a function of
the magnetic field. The red solid lines result from Eq. 4.11 and the blue dashed ones are
the approximate results from Eq. 4.12 [78]. (Right panel) Schematic illustration of the
QHE in BLG [80].

4.2 Trilayer graphene

When three or more layers of graphene are stacked, the way these layers lie on top

of each other can be considerably determining on the electronic properties of the thin

film. Among the multilayer graphene films, trilayer graphene (TLG) has received a lot

of attention recently. The two more relevant stacking orders are the rhombohedral, or

ABC stacking, and the Bernal, or ABA stacking. In each case, the relative positions of the

lowermost layer (C in one case and A in the other) helps dictate the possible symmetries of

the subsequent wavefunctions associated with each layer [81, 82, 83]. The ABA stacking

is the most common one and a great part of the natural graphite has this crystalline

structure. In that case, the second layer is shifted in relation to the first one, just as

in bilayer, whereas the third layer lies exactly on the top of the first one. Although the

ABC stacking is less common, it has recently been reported that 16% of the synthesized

graphite [73] and around 15% of exfoliated TLG [85] has rhombohedral (ABC) stacking.

In ABC stacking, differently from ABA case, the third layer is shifted in relation to both

previous layers. Figure 35 illustrates both types of stacking orders.

In a similar way as in BLG, a tight-binding model can be applied to TLG and, if we

follow the same procedure, considering just the minimal coupling between adjacent layers,

we arrive in following Hamiltoninans for ABA and ABC TLG around the K point:
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Figure 35: Crystalline structure of ABA and ABC-stacked TLG.[84].

HABA
K =

























U1 vFπ
† γ1 0 0 0

vFπ U1 0 0 0 0

γ1 0 U2 vFπ γ1 0

0 0 vFπ
† U2 0 0

0 0 γ1 0 U3 vFπ
†

0 0 0 0 vFπ U3

























, (4.13)

HABC
K =

























U1 vFπ
† γ1 0 0 0

vFπ U1 0 0 0 0

γ1 0 U2 vFπ 0 0

0 0 vFπ
† U2 0 γ1

0 0 0 0 U3 vFπ
†

0 0 0 γ1 vFπ U3

























, (4.14)

By diagonalizing the above Hamiltonians, one finds the spectra shown in Fig. 36. Left

panels show the electronic spectra of ABA TLG for (a) U1 = U2 = U3 = 0; (c) U1 = 0.05

eV, U2 = 0, U3 = −0.05 eV; (e) U1 = 0.1 eV, U2 = 0.05 eV, U3 = 0.025 eV. The right

panels show the spectra for ABC TLG with the same potential values. In the first row

of figures all the six bands are shown, whereas the others show just the low energy bands

(E < γ1). Notice from Fig. 36 (a) that trilayers with ABA stacking have 4 low energy

bands, which look like superposition of monolayer and bilayer spectrum. While panel (b)

shows just 2 bands lying in this region. In addition, the two types of TLG behave very

differently when subjected to gate potentials. In ABC stacking the gate voltage opens a
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gap in the spectrum (see fig. 36(d) and (f)), whereas the potentials U1 = 0.05 eV, U2 = 0,

U3 = −0.05 cause a band overlap in TLG with ABA stacking. This behavior was recently

experimentally observed by C. H. Lui et al. [86].
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Figure 36: (Left panels) Free electronic spectrum of ABA TLG for (a) U1 = U2 = U3 = 0;
(c) U1 = 0.05 eV, U2 = 0, U3 = −0.05 eV; (e) U1 = 0.1 eV, U2 = 0.05 eV, U3 = 0.025 eV.
(Right panels) The same as in the left panels for ABC TLG.

The next two chapters will be devoted to a detailed studying of LLs in TLG.
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5 Landau levels in asymmetric

graphene trilayers

In this chapter we investigate the properties of three coupled layers of graphene, i.e.

trilayer graphene (TLG) in the presence of an external magnetic field perpendicular to

the plane of the layers. The properties of TLG in the absence of a magnetic field have

been considered in the literature within a tight-binding model (see, e.g. [70, 87]), as well

as through first principles calculations [88]. The effect of an external magnetic field was

calculated by means of an approximation based on the mapping of stacked graphene layers

to an 1D tight-binding chain by Guinea et al. [71]. Recent experimental [89, 90, 91] and

theoretical [82, 92, 93] studies have investigated the Landau-level spectrum of unbiased

TLG and recent magnetoconductance measurements of TLG have been performed [94,

95, 96, 97]. These results showed that one important aspect of TLG is the fact that

the energy bands at the vicinity of the Fermi energy are very sensitive to the particular

type of stacking of the layers. The type of stacking is also relevant to the properties of

the Landau levels of the TLG. The goal of the present chapter is to present analytical

results for the spectrum of TLG in a magnetic field considering different potentials in each

layer. In order to do that we perform a direct diagonalization of the six-band continuum

model and obtain analytical expressions for the the Landau level spectrum as function of

magnetic field and the potentials at each layer, for both the ABC and ABA stackings.

In particular, we calculate the TLG spectrum in the presence of electric fields that break

the layer symmetry. It has recently been shown that these different potentials can lead to

the opening of a gap in the TLG spectrum [87, 98, 81, 86]. In the present work we focus

on the modifications of the Landau levels as function of the layer potential.

5.1 ABA Stacking

Let us consider a system consisting of three coupled graphene layers, in the context

of the tight-binding model. We assume nearest neighbor hopping between sites within
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Figure 37: Diagramatic scheme of couplings in graphene trilayers for ABA (a) and ABC
(b) stackings.

each layer, described by the coupling parameter γ0. In the continuum approximation, this

parameter determines the magnitude of the Fermi velocity vF = γ0a~
−13/2 ≈ 106 m/s.

The nearest neighbor interlayer coupling scheme is A1−B2−A3, with coupling parameter

γ1 (see Fig. 37). The Hamiltonian is given as

H =

























U1 + U0 vFπ
† γ1 0 0 0

vFπ U1 0 0 0 0

γ1 0 U2 + U0 vFπ γ1 0

0 0 vFπ
† U2 0 0

0 0 γ1 0 U3 + U0 vFπ
†

0 0 0 0 vFπ U3

























(5.1)

where π = px+ipy, with px,y being the components of the in-plane momentum; U1,2,3 is the

potential in each layer, respectively, U0 is the onsite energy at sublattices A1, B2 and A3,

and we defined the eigenstates as Ψ = [ψA1, iψB1, ψB2, iψA2, ψA3, iψB3]
T . In the

presence of a uniform magnetic field in the z direction, with the gauge ~A = (0, Bx, 0) and,

for a given sublattice L, ψL(y) = φLe
ikyy, one obtains the following system of equations:

A+φB1 + γ′1φB2 = (ǫ− u1 − u0)φA1, (5.2a)

A−φA1 = −(ǫ− u1)φB1, (5.2b)

A−φA2 + γ′1φA1 + γ′1φA3 = (ǫ− u2 − u0)φB2, (5.2c)
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A+φB2 = −(ǫ− u2)φA2, (5.2d)

A+φB3 + γ′1φB2 = (ǫ− u3 − u0)φA3, (5.2e)

A−φA3 = −(ǫ− u3)φB3, (5.2f)

where ǫ = E/~vF , ui = Ui/~vF , γ
′
1 = γ1/~vF and β = eB/~ and we defined the operators

A± =
d

dx
± (ky − βx), (5.3)

which obey the commutation relation [A+,A−] = 2β.

For U1 = U2 = U3 = U the system can be easily solved by making use of its reflection

symmetry. Thus, we can define symmetric and antisymmetric combinations of the spinor

components. For the antisymmetric case we obtain φG ≡ 1√
2
(φA1 − φA3), and φH ≡

1√
2
(φB1 − φB3). That leads to the following pair of coupled equations

A−φG = −(ǫ− u)φH, (5.4a)

A+φH = (ǫ− u− u0)φG. (5.4b)

For the sake of convenience, let us now define the operator

Z ≡ A−A+ =
d2

dx2
− (ky − βx)2 − β. (5.5)

We can now decouple the equations to obtain

(Z + 2β)φG = −[(ǫ− u′)2 − (δu)2]φG, (5.6)

which corresponds to the equation that gives the spectrum for a single graphene layer

under an effective electrostatic potential U ′ = U + U0/2 as well as a finite gap term

given by δU = U0/2. Thus, the Landau level spectrum in this case is given by ǫ =

u′ ±
√

2βn+ (δu)2. Thus, the effect of the term U0 is only to introduce a small shift of

the dispersion branches and to generate a small gap in the energy spectrum.

For the symmetric case we have φC ≡ 1√
2
(φA1 + φA3) and φD ≡ 1√

2
(φB1 + φB3). The

equations become

A+φD +
√
2γ′1φB2 = (ǫ− u− u0)φC , (5.7a)
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A−φC = −(ǫ− u)φD, (5.7b)

and

A−φA2 +
√
2γ′1φC = (ǫ− u− u0)φB2, (5.7c)

A+φB2 = −(ǫ− u)φA2, (5.7d)

These equations can be decoupled, resulting in the fourth-order differential equation

{Z2 + λ1Z − λ2}φC = 0 (5.8)

where λ1 = 2(ǫ− u − u0)(ǫ− u) + 2β, and λ2 = −(ǫ − u− u0)
2(ǫ− u)2 + 2(γ′1)

2(ǫ− u)2.

This equation is similar to the one describing bilayer graphene. A second-order equation

can be obtained by calculating the roots of the second-order equation as

{Z − z+}{Z − z−}φC = 0 (5.9)

with

z± = −λ1
2

±
√

(λ1
2

)2

+ λ2, (5.10)

where we set ky = 0, since this term only introduces a shift of the wavefunction In

particular, for u0 = 0 the equations yield results that are identical to those of a gapless

single-layer and bilayer graphene, i.e. the Landau levels are found as the solutions of

2β(n+1) = z±. As in the previous case, the addition of remote coupling terms introduces

a gap in the spectrum.

A more realistic description of TLG structures should take into account asymme-

tries between the different layers, which can be brought about by the interaction with a

substrate or by gating. In order to assess the effect of layer symmetry breaking in the

spectrum, let us now consider the case U1 6= U2 6= U3. In addition, we now consider

U0 = 0, since we assume that the shifts caused by the layer potentials are more significant

than the effect of this term. A simple substitution allows us to write

[A+A− + (ǫ− u1)
2]φA1 = γ′1(ǫ− u1)φB2,

[A+A− + (ǫ− u3)
2]φA3 = γ′1(ǫ− u3)φB2. (5.11)
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In addition, we also have

[A−A+ + (ǫ− u2)
2]φB2 = γ′1(ǫ− u2)(φA1 + φA3). (5.12)

As in the previous case, we introduce symmetric and antisymmetric combinations of

wavefunctions, and let us also define ∆ = (u1 − u3)/2, s = (u1 + u3)/2 and δj = ǫ − uj,

j = 1, 2, 3, in order to simplify the notation. Thus, after some algebra, we can obtain the

following 6th-order differential equation for φB2 as

{

[A−A+ + δ21 + 2β][A−A+ + δ2
2][A−A+ + δ3

2 + 2β]

−γ′21 δ2(ǫ− s)[A−A+ + δ1
2 + 2β]

−γ′21 δ2(ǫ− s)[A−A+ + δ3
2 + 2β]

+4γ′21 ∆
2δ2(ǫ− s)

}

φB2 = 0. (5.13)

It is seen that for U1 = U2 = U3 (i.e. δ1 = δ2 = δ3, ∆ = 0), we recover the previous

solutions. One can rewrite Eq. (5.13) as

[Z3 + α1Z
2 + α2Z + α3]φB2 = 0. (5.14)

with the Z operator defined above and

α1 ≡ δ21 + δ22 + δ23 + 4β, (5.15a)

α2 ≡ (δ21 + 2β)(δ23 + 2β) + (δ21 + 2β)δ22 + (δ23 + 2β)δ22

−γ′21 δ2(δ1 + δ3), (5.15b)

α3 ≡ (δ21 + 2β)δ22(δ
2
3 + 2β)− 2βγ′21 δ2(δ1 + δ3)

−γ′21 δ1δ2δ3(δ1 + δ3), (5.15c)

This equation can be written as

{Z − Z1}{Z − Z2}{Z − Z3}φB2 = 0, (5.16)

where Zj, j = 1, 2, 3 are the three roots of the cubic equation, Eq. (5.14). Therefore, the
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spinor component φB2 is a solutions of

−d
2φB2

dx2
+ (ky − βx)2φB2 = −(Zj + β)φB2. (5.17)

For zero magnetic field, this equation allows us to obtain plane wave solutions for each

dispersion branch. The dispersion relation can be obtained by setting Zj = −k2. It

can be immediately seen that the energy gap at k = 0 can be found by solving the

equation α3 = 0. For finite magnetic fields, the solutions are expressed in terms of Hermite

polynomials. Therefore, for the Landau levels we obtain the relation Zj = −2β(n + 1).

Thus, the energies are found by solving the algebraic equation

−[2β(n+ 1)]3 + α1[2β(n+ 1)]2 − α2[2β(n+ 1)] + α3 = 0. (5.18)

It is evident that for U1 = U2 = U3, we have ∆ = 0 and the last term of Eq. (5.13)

vanishes. The spectrum should then consist of a superposition of the spectra of single

layer graphene and bilayer graphene.

5.2 ABC Stacking

Let us consider three coupled graphene layers in the ABC stacking configuration. For

the sake of simplicity, let us retain only the nearest-neighbor coupling terms. In this case,

the Hamiltonian can be written as

H =

























U1 vFπ
† γ1 0 0 0

vFπ U1 0 0 0 0

γ1 0 U2 vFπ 0 0

0 0 vFπ
† U2 0 γ1

0 0 0 0 U3 vFπ
†

0 0 0 γ1 vFπ U3

























(5.19)

where U1,2,3 is the potential in each layer, respectively, and we defined the eigenstates as

before.

Thus, one can obtain the following system of equations:

A+φB1 + γ′1φB2 = (ǫ− u1)φA1, (5.20a)

A−φA1 = −(ǫ− u1)φB1, (5.20b)
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A−φA2 + γ′1φA1 = (ǫ− u2)φB2, (5.20c)

A+φB2 − γ′1φB3 = −(ǫ− u2)φA2, (5.20d)

A+φB3 = (ǫ− u3)φA3, (5.20e)

A−φA3 − γ′1φA2 = −(ǫ− u3)φB3, (5.20f)

where ǫ = E/~vF , ui = Ui/~vF , γ
′
1 = γ1/~vF and β = eB/~vF . In order to decouple

these equations, let us first obtain φB1 and φA3 in terms of φA1 and φB3 from the second

and fifth equations as

φB1 = − 1

(ǫ− u1)
A−φA1, φA3 =

1

(ǫ− u3)
A+φB3, (5.21)

and substitute these expressions in the first and sixth equations, respectively, to give

A+A−φA1 − γ′1(ǫ− u1)φB2 = −(ǫ− u1)
2φA1, (5.22a)

A−A+φB3 − γ′1(ǫ− u3)φA2 = −(ǫ− u3)
2φB3. (5.22b)

Equations (5.22a) and (5.22b) allow us to obtain φB2 and φA2 in terms of φA1 and φB3,

respectively. Thus, by substituting them in Eqs. (5.20c) and (5.20d), respectively, and

after some tedious algebra, one can obtain a 6th order differential equation as

{

[A−A+ + δ21 + 2β][A−A+ + δ22 ][A−A+ + δ23 − 2β]

− γ′21 δ2δ3[A−A+ + δ21 + 2β]

− γ′21 δ1δ2[A−A+ + δ23 − 2β] + γ′41 δ1δ3

}

φA1 = 0. (5.23)

It is interesting to compare Eqs. (5.13) and (5.23). The former remains invariant if one

switches the potentials in layers 1 and 3. Equation (5.23), on the other hand, is found

to be invariant under an interchange of potentials between the topmost and lowest layers

together with a reversal of the magnetic field. This reflects the different symmetries of

each stacking of TLG.

As before, we can obtain the Landau level spectrum by rewritting Eq. (5.23) as

[Z3 + γ1Z
2 + γ2Z + γ3]φA1 = 0, (5.24)
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with Z ≡ A−A+, and

γ1 ≡ (δ21 + δ22 + δ23), (5.25a)

γ2 ≡ (δ21 + 2β)(δ23 − 2β) + (δ21 + 2β)δ22 + (δ23 − 2β)δ22

−(γ′1)
2(δ1 + δ3)δ2 (5.25b)

γ3 ≡ −(γ′1)
2δ2[δ3(δ

2
1 + 2β) + δ1(δ

2
3 − 2β)] + (γ′1)

4δ1δ3

+(δ1δ2δ3)
2 + 2β(δ23 − δ21)δ

2
2 − 4(βδ2)

2, (5.25c)

This equation can be written as

{Z − Z1}{Z − Z2}{Z − Z3}φA1 = 0, (5.26)

where Zj , j = 1, 2, 3 are the three roots of the cubic equation, Eq. (5.24). Therefore the

spinor component φA1 is found as a solution of

−d
2φA1

dx2
+ (ky − βx)2φA1 = −(Zj + β)φA1. (5.27)

For the particular case of U1 = U2 = U3 = 0 and zero magnetic field, we can obtain plane

wave solutions by setting Zj = −k2, where k is the in-plane wavevector. Thus, Eq. (5.24)

can be rewritten as

ǫ6 − (3k2 + 2γ′21 )ǫ
4 + (3k4 − 2k2γ′21 + γ′41 )ǫ

2 − k6 = 0. (5.28)

Let us now consider the low-energy limit ǫ << γ′1. That allows us to neglect the higher-

order powers of ǫ to obtain

ǫ ≈ k3

γ′21

1
√

1− 2k2/γ′21 + 3k4/γ′41
. (5.29)

Thus, for small wavevectors, the dispersion relation increases with the third power of k.

The Landau levels can be obtained using the relation Zj = −2β(n + 1), which leads

to the algebraic equation

−[2β(n+ 1)]3 + γ1[2β(n+ 1)]2 − γ2[2β(n+ 1)] + γ3 = 0. (5.30)

As seen above, for zero potential in each layer, we can find a simpler algebraic relation
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Figure 38: The lowest Landau levels as function of magnetic field for ABA-stacked
graphene trilayers calculated from Eq. (5.18), with U1 = U2 = U3 = 0, for n = 0
(black solid lines), n = 1 (red dotted lines), n = 2 (green dashed lines), n = 3 (blue
dot-dashed lines) and 4 (yellow dot-dot-dashed lines).

for the energy, namely

ǫ6 − [6β(n+ 1) + 2γ′21 ]ǫ
4

+[12β2(n + 1)2 − 4β(n+ 1)γ′21 + γ′41 − 4β2]ǫ2

−8β3(n + 1)3 + 8β3(n+ 1) = 0. (5.31)

For ǫ << γ1 we can then obtain

ǫ ≈ ±(2β)3/2

γ′21

√

n(n + 1)(n+ 2)F (β, n), (5.32)

where

F (β, n) =
[

1− 4
β

γ′21
(n+ 1)− 4

β2

γ′41
+ 12

β2

γ′41
(n + 1)2

]−1/2

. (5.33)

For small fields (i.e. β << γ′21 ), F (β, n) ≈ 1. Therefore, in the limit of low energies

and small fields, the Landau levels should approximately depend on the magnetic field as

B3/2, in agreement with the results of Ref. [70].
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Figure 39: Energy spectrum as function of magnetic field for ABA-stacked graphene
trilayers, for U1 = 100 meV, U2 = 50 meV and U3 = 25 meV, n = 0 (black dots), n = 1
(red squares), n = 2 (blue lozenges), n = 3 (green triangles) and 4 (yellow triangles).
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Figure 40: Low-lying Landau levels as function of the potential in the inner layer for
ABA-stacked graphene trilayers, for n = 1 (red squares), 2 (green lozenges) and 3 (blue
squares) for B = 3 T, U1 = U3 = 50 meV.
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Figure 41: Low-lying Landau levels as function of the potential in the uppermost layer for
ABA-stacked graphene trilayers, for n = 1 (red squares), 2 (green lozenges) and 3 (blue
squares) for B = 3 T, U2 = 50 meV, U3 = 25 meV.
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Figure 42: Landau level spectrum for the trilayer graphene for the ABC stacking, as
function of magnetic field, with U1 = U2 = U3 = 0 (a), and U1 = U3 = 50 meV, U2 = 100
meV (b) for n = 0 (black solid lines), n = 1 (red dotted lines), n = 2 (green dashed lines),
n = 3 (blue dot-dashed lines) and 4 (yellow dot-dot-dashed lines).
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Figure 43: Landau level spectrum for the trilayer graphene for the ABC stacking, as
function of magnetic field, with U1 = 100 meV, U2 = 50 meV, and U3 = 25 meV, for
n = 0 (black solid lines), n = 1 (red dotted lines), n = 2 (green dashed lines), n = 3 (blue
dot-dashed lines) and 4 (yellow dot-dot-dashed lines).
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Figure 44: Landau level spectrum for ABC-stacked trilayer graphene as function of U1,
for B = 3 T and U2 = U3 = 50 meV, with n = 0 (black dots), n = 1 (red squares), n = 2
(blue lozenges), n = 3 (green triangles) and 4 (yellow triangles).
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Figure 45: Landau level spectrum for ABC-stacked trilayer graphene as function of U2,
for B = 3 T and U1 = U3 = 50 meV, with n = 0 (black dots), n = 1 (red squares), n = 2
(blue lozenges), n = 3 (green triangles) and 4 (yellow triangles).

5.3 Numerical Results

Let us first consider the ABA case. Figure 38 shows the field dependence of the

low-lying Landau levels calculated from Eq. (5.18), with U1 = U2 = U3 = 0, for n = 0

(black solid lines), n = 1 (red dotted lines), n = 2 (green dashed lines), n = 3 (blue

dot-dashed lines) and 4 (yellow dot-dot-dashed lines). We find that for every value of

n there are two different types of low-energy branches: 1) those that depend linearly

on the magnetic field (i.e. “bilayer-like” behavior), and 2) branches that display a B1/2

dependence (“monolayer-like” branches). A third set of bilayer-like branches are found

around E = ±t1 not shown in the figure.

The effect of a potential difference between the layers on the energy spectrum as

function of magnetic field is shown in Fig. 39. As in the previous case, the figure shows

branches corresponding to n = 0 − 4. The potentials in the different graphene layers are

U1 = 100 meV, U2 = 50 meV and U3 = 25 meV. As seen from Eq. (5.24), for B → 0 we

have solutions corresponding to E = Uj , j = 1, 2, 3 and E = (U1 + U3)/2. Thus, we find

that the “monolayer-like” branches are shifted creating a gap with magnitude U1 − U3,

whereas for the “bilayer-like” states a smaller gap opens with magnitude (U1+U3)/2−U2.

One consequence of this difference is the appearance of level crossing as the magnetic field
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is increased.

Figure 40 shows the low-energy Landau levels as function of the potential in the inner

layer, for the ABA case, for n = 1 (red squares), 2 (green lozenges) and 3 (blue squares)

for B = 3 T, U1 = U3 = 50 meV. Notice that: 1) the lowest energy levels depend linearly

on U2 for small U2 (<< U1 = U3) and for large U2 (>> U1 = U3) values, and exhibit an

anticrossing behavior for U2 ≈ U1 = U3; 2) the higher energy states are not affected by the

bias. A different behaviour is observed when one varies the potential at the uppermost

layer (U1), as seen in Fig. 41. In contrast with the previous case, the bias is seen to cause

a significant shift also on higher-energy Landau levels.

The energy spectrum for the ABC case is shown in Fig. 42a, as function of magnetic

field and with U1 = U2 = U3 = 0, for n = 0 − 4. For small B-values we see a doubly-

degenerate branch with E = 0, and a B3/2-behavior for the remaining branches, which

turns into a linear behavior at large E. In comparison with the previous case, the results

in the ABC case show the presence of pairs of branches at low energies, whereas in the

ABA case one finds two sets of energy levels for each Landau index. That is caused by

the fact that, in the ABC case, the remaining four branches are found around E = ±t,
with t ≈ 400 meV.

Figure 42b shows results for an ABC TLG with U1 = U3 = 50 meV, whereas U2 = 100

meV. In this case, the main effect of the potential difference is the lifting of the degeneracy

of the n = 0 state and a shift of the whole spectrum to lower energy with increasing

magnetic field.

In contrast, Fig. 43 shows the LL spectrum for U1 = 100, U2 = 50 and U3 = 25 meV.

The inset shows an enlargement of the region around E = 100 meV. In this case, the bias

creates an energy gap, which can be found by setting β = 0 in Eq. (5.45), which leads to

solutions with E = U1 and E = U2. Notice also the existence of level crossings, as well as

the peculiar small magnetic field behavior where there is a reversal of the ordering of the

Landau levels as compared to the regular high magnetic field behavior.

Results for the dependence of the energy spectrum on U1 is shown in Fig. 44, for

B = 3 T and U2 = U3 = 50 meV. As seen, the degeneracy of the n = 0 is lifted for

U1 6= U2, U3. Moreover, when the magnitude of the potential in the uppermost layer is

increased, the Landau levels tend to become degenerate. A quite distinct picture emerges

if one varies instead the potential in the middle layer (U2), as shown in Fig. 45, for B = 3

T and U1 = U3 = 50 meV. In contrast with the previous results, the spectrum shows a

linear dependence on the potential and there are no degeneracies for the different Landau
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indices. As in the previous figure, a single Landau level at E = 50 meV is found to be

unaffected by the bias.
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6 Cyclotron resonance of trilayer

graphene

Along the last chapter we investigated how the difference in stacking order affects the

LL behavior in trilayer graphene (TLG) [84, 99] and verified that, within the simplest

tight-binding model, the LL spectrum of ABA TLG is found to be a superposition of

a monolayer-like and bilayer-like LLs[71, 93, 99, 100, 101]. In contrast, the ABC TLG

are predicted to have a nearly B3/2 field dependence.[71, 99, 101, 102]. These stacking-

dependent behavior produce another two new types of integer quantum Hall effect[89, 91].

Along this chapter we will concentrate on the cyclotron resonance transitions in differ-

ent stacked TLG. We will compare the results of unbiased and biased layers, and discuss

as well the different features appearing due to the stacking order in ABC and ABA TLG.

We will concentrate on the position of the cyclotron resonance peaks, and the oscillator

strength of those transitions.

6.1 ABC Stacking

Let us consider three coupled graphene layers with an ABC stacking configuration in

the continuum approximation. In the present work we retain only the nearest-neighbor

coupling terms. In this case, the Hamiltonian can be written as

HABC =

























U1 vFπ
† γ1 0 0 0

vFπ U1 0 0 0 0

γ1 0 U2 vFπ 0 0

0 0 vFπ
† U2 0 γ1

0 0 0 0 U3 vFπ
†

0 0 0 γ1 vFπ U3

























(6.1)
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whose eigenstates are defined by the six components spinor Ψ = [ψA1
, ψB1

, ψB2
, ψA2

,

ψA3
, ψB3

]T . In the above Hamiltonian π ≡ px + ipy, π
† ≡ px − ipy, vF =

√
3aγ0/(2~)

is the Fermi velocity in terms of the in-plane nearest neighbor hopping γ0 = 3.12 eV

and the carbon-carbon distance a = 1.42 Å. Ui (i = 1, 2, 3) is the potential in

each layer which we consider constant throughout each layer, and γ1 = 0.4 eV is the

nearest neighbour coupling term between adjacent layers. In the presence of a mag-

netic field p → p+|e|A, where e is the electron charge. By making use of the Lan-

dau gauge A = B(0, x, 0), we have [py, H ] = 0 and the eigenstates are found to be

ΨABC
n = An

[

idnψn+1
−dn
δn
1
lB
ψn+2 icnψn+1 bnψn

−i2n
δn
3
lB
ψn−1 ψn

]T

, with ψn given by

ψn = eikyye−x̄2/2Hn(x̄), (6.2)

where x̄ ≡ x/lB+ lBky, lB ≡
√

~/eB is the magnetic length, δni ≡ (En−Ui)/(~vF ), Hn(x̄)

is the Hermite polynomial, and ψn ≡ 0 for n < 0. The other constants appearing in ΨABC
n

are defined in Appendix A.

The magnetic field dependence of the LL are shown in Fig. 46. The levels for unbiased

layers are shown in Fig. 46(a) where they behave as B3/2 for low fields and become linear

in B for large fields. [99] When a bias is present, we show as an example in Fig. 46(b)

the LL for U1 = 100 meV, U2 = 50 meV, U3 = 25 meV. The arrows indicate some of the

allowed transitions dictated by the dipole selection rule.

The oscillator strength (OS) of the transition between the initial state |Ψn〉 and the

final one |Ψm〉 is usually defined within the dipole approximation in terms of |〈Ψm|x|Ψn〉|2.
Since the only effect of ky is to shift the symmetry center of the wave function and the

system is assumed to be infinitely extended, we set ky = 0 and work with the dimensionless

quantity

fmn =
1

lB
2

∣

∣

∣

∣

∫

Ψ∗
mxΨndx

∣

∣

∣

∣

2

=lB
2

∣

∣

∣

∣

∣

∑

C

∫

Ψm
C

∗x̄Ψn
Cdx̄

∣

∣

∣

∣

∣

2

, (6.3)

with C = A1, B1, B2, A2, A3, B3 that are defined in the inset of Fig. 46(a). The analytical

results of these integrals are given in Appendix A. Throughout the chapter we will refer

to a transition from the state |Ψn〉 to |Ψm〉 as (n,m).

Figure 47(a) shows the most important energy transitions ∆E in ABC TLG as a func-

tion of the magnetic field for the levels displayed in 46(a). The black solid, red dashed and
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Figure 46: The TLG Landau-level spectrum as a function of magnetic field for ABC
stacking with (a) U1 = U2 = U3 = 0, and (b) U1 = 100 meV, U2 = 50 meV, U3 = 25
meV for n = 0 (black solid lines), n = 1 (red dotted lines), n = 2 (green dashed lines),
and n = 3 (blue dot-dashed lines). The inset in (a) shows the coupling between the three
layers while in (b) it shows an enlargement of the LLs crossings for low magnetic fields.
The vertical arrows indicate some of the allowed optical transitions.

blue dot-dashed lines present the intraband transitions (0, 1+), (1+, 2+) and (2+, 3+) while

the red dotted and blue dash-dash-dotted lines show the interband transitions (1−, 2+)

and (2−, 3+), respectively. Here the sign “+”(“−”) stands for electron (hole) states. The

transitions follow a B3/2 dependence for low magnetic fields (B < 3 T) and this behavior

turns into a linear B-dependence for higher values of the field (B > 10 T). Figure 47(b)

shows the corresponding oscillator strength as a function of the magnetic field for the same

transitions appearing in the left panel. All transitions show an oscillator strength that

monotonically decreases with increasing magnetic field with the exception of the transi-

tion involving the zero LL (see inset of Fig. 47(b)). Notice that the OS associated with
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Figure 47: Left panel (a) shows the transition energies as a function of the magnetic field
B for unbiased, i.e. U1 = U2 = U3 = 0, ABC layers. The right panel (b) presents the
oscillator strength of the allowed transitions for the low-lying energy Landau levels.

interband transitions are much smaller than those involving the intraband transitions.
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Figure 48: (a) Transition energies between the low-lying energy LL in a biased ABC TLG
as a function of the magnetic field for U1 = 100 meV, U2 = 50 meV, U3 = 25 meV. (b)
Oscillator strength vs magnetic field B for the transitions presented in (a).

The effect of an applied bias is explored in Fig. 48, where we show the energy
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transitions (a) and oscillator strength (b) as function of magnetic field for biased layers

with U1 = 100 meV, U2 = 50 meV, U3 = 25 meV. The small difference between the

transition energies of the dashed and dotted red (green) lines reveals a clear asymmetry

between electron and hole transitions. For low magnetic fields, the energies involved

in the intraband electron transitions are slightly negative due to the crossing between

the LLs shown in the inset of Fig. 46(b), which are also responsible for the crossings

happening between the interband energy transitions (solid lines) in the left panel of Fig.

48. In contrast to the case with unbiased layers, now the OS show a stronger dependence

on the magnetic field, and although the electron and hole have very similar intraband

energy transitions, their OS are remarkable different and have the opposite magnetic field

dependence. While the hole-like transitions (2−, 1−), (3−, 2−) gain in OS as the magnetic

field increases, the electron-like transitions (1+, 2+), (2+, 3+) experience a considerable

decrease in OS. The inset in Fig. 48(b) shows the very small OS of the transitions

(1−, 2+) and (2−, 3+).

Figure 49 shows the TLG Landau-level spectrum as function of U1 (with U2 = U3 = 0)

(a) and U3 (with U1 = U2 = 0) (b) for n = 0 (black solid lines), n = 1 (red dotted lines),

n = 2 (green dashed lines), and n = 3 (blue dot-dashed lines) for a fixed magnetic field

of 10 T. Among the differences between the panels (a) and (b) it can be noticed that the

energies increase faster with U3 and also for n = 0 we have that E = U3 is always an

eigenenergy, although E = U1 is not. Figure 50 shows the transition energies between

some of the levels appearing in Fig. 49. It also shows the behavior of the oscillator

strength as U1 (top left panel) and U3 (top right panel) increase. The inset in top-right

panel shows the transition (0+, 1+) which has a very small OS as compared to the other

ones. The legend for this graph is the same as in Fig. 48. The transition energies shown

in the bottom panels are very similar, but when U3 is increased the interband (intraband)

transitions occur at slightly higher (lower) energies than when U1 is increased. The

difference in the role played by the top and bottom layers can be better noticed when we

look at the oscillator strengths, which behave completely different whether we vary U1 or

U3. Among the discrepancies, we can highlight the transition (0−, 1+) (black solid line)

that presents a small monotonic increase with U1 and an accentuated decrease with U3.

It is also worth noticing the hole-like transitions (2−, 1−) (red dotted line) and (3−, 2−)

(green dotted line), that monotonically decrease as U1 increases, and show the opposite

behavior as we increase U3. On the other hand the electron-like transitions (1+, 2+) (red

dashed line) and (2+, 3+) (green dashed line) decrease as U3 is increased, while the increase

of U1 causes a gain in their OS.
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Figure 49: The TLG Landau-level spectrum with a fixed magnetic field of 10 T for the
ABC stacking as a function of U1 with U2 = U3 = 0 (a) and U3 with U1 = U2 = 0 (b) for
n = 0 (black solid lines), n = 1 (red dotted lines), n = 2 (green dashed lines), and n = 3
(blue dot-dashed lines).
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Figure 50: Energy transitions (bottom panels) and oscillator strength (top panels) as a
function of U1 and U3 for fixed magnetic field of 10 T. The potential in the other two
layers is kept zero. The inset in the top-left panel shows the transitions (1−, 2+) (red
solid line) and (2−, 3+) (green solid line), while the inset in the top-right panel shows the
transition (0+, 1+) (black dashed line).
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For completeness we also calculated the CR spectrum as:

σ(E) =
∑

n,m

(Γ/2π)Emnfmn

(E − Emn)2 + Γ2/4
f(En)[1− f(Em)], (6.4)

where Emn = Em − En is the transition energy, fmn is the OS defined in Eq. (6.3), Γ is

the broadening of the Lorentzian function, and f(En) is the Fermi-Dirac distribution. In

the numerical results we set the temperature equal to zero and Γ = 2 meV. The position

of the Fermi level EF is taken between the levels 0 (0+) and 1+ (1+) for the unbiased

(biased) case.
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Figure 51: σ(E) vs energy in ABC TLG for B = 10 T (black lines) and B = 15 T (red
lines). The left (right) panels correspond to unbiased layers (biased). The inset shows
the first absorption peak corresponding to the transition (0, 1).

Figure 51 shows the optical absorption peaks for ABC TLG. Panels (a) and (b)

correspond to the unbiased case for B = 10 T (black line) and B = 15 (red line) T, while

the panels (c) and (d) present the absorption for biased layers, respectively. Notice in

panel (a) the absence of the peak corresponding to the transition (0, 1) (around E = 22

meV), which is caused by the small value of the OS of this transition (see Fig. 47(b))

that makes the contributions of the others transitions outgrow the absorption peak in this

region of energy. In panel (b) this first transition peak is now present around 36.5 meV,

although very small compared to the other absorption peaks. When a bias is applied we

observe the presence of an extra peak due the lifting of the electron-hole degeneracy of

the n = 0 LL.
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6.2 ABA Stacking

Let us now turn our attention to the case of ABA stacking. The Hamiltonian for

ABA-stacked TLG around the K point is given by

HABA =

























U1 vFπ
† γ1 0 0 0

vFπ U1 0 0 0 0

γ1 0 U2 vFπ γ1 0

0 0 vFπ
† U2 0 0

0 0 γ1 0 U3 vFπ
†

0 0 0 0 vFπ U3

























. (6.5)

In the presence of a magnetic field the six-component spinor of the nth LL is given by

ΨABA
n = Bn

[

−ilBδn1ψn−1, ψn, ibn1ψn−1,
2(n−1)bn

1

lBδn
2

ψn−2,
−ilBδn

3
bn
1

bn
3

ψn−1,
bn
1

bn
3

ψn

]T

for n > 0,

where bn1(3) are given in Appendix A. It is worth highlighting that in the case of un-

biased layers the LLs are simply the superposition of the monolayer and bilayer spec-

trum, and the spinor components that correspond to the third layer are identical to the

ones of the first layer, as it should be since the top and bottom layers are then sym-

metric relative to the middle layer. For this reason, we will refer now to the Landau

index no longer as n, but as nm = n for the monolayer-like levels and as nb = n − 1

for the bilayer-like levels. The case nm = 0 generates two LL, as can be seen in Fig.

52, the level we call 0+ corresponds to E0 = U1 and for the level 0−, E0 = U3. The

spinor associated to these zero levels are ΨABA
0+ = 1/(lB

√
π)1/2 [0, ψ0, 0, 0, 0, 0] and

ΨABA
0− = 1/(lB

√
π)1/2 [0, 0, 0, 0, 0, ψ0], respectively. While nb = 0 (n = 1) produces

E1 = U2 and a level starting from E1 = (U1 + U3)/2 that presents a small monotonic

decrease with B.

The oscillator strength was calculated according to Eq. (6.3) and the explicit expres-

sions for the ABA stacking are given in Appendix A. Figure 53(a) shows the energies of

some possible transitions between monolayer-like levels of the unbiased layers. All these

transitions occur at energies that follow a
√
B dependence. The oscillator strengths re-

lated to these transitions are presented in Fig. 53(b), where we can see that the transition

involving the zero energy level is the most pronounced one, and the interband transitions

are very small (see inset of Fig. 53(b)). Figure 54 presents the same kind of results, but

now for transitions between levels characteristic of the bilayer system. These transition

energies are linear in B for low values of the magnetic field (B < 5 T), however, as B

increases the linear behavior turns into a
√
B-dependence. The OS of the bilayer-like
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Figure 52: The ABA TLG Landau-level spectrum as a function of B with U1 = 100 meV,
U2 = 50 meV, U3 = 25 meV for n = 0 (black solid lines), n = 1 (red dotted lines),
n = 2 (green dashed lines), and n = 3 (blue dot-dashed lines). The upper inset shows the
coupling between the layers and the lower inset shows an enlargment of the non-linear
behavior of the levels nb = 1+, 2+ for low B.
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Figure 53: (a) The transition energies between monolayer-like levels as a function of the
magnetic field B for unbiased, U1 = U2 = U3 = 0, ABA layers. (b) The corresponding
oscillator strengths are shown in the left panel.
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Figure 54: (a) The transition energies between bilayer-like levels as a function of the
magnetic field B for unbiased, U1 = U2 = U3 = 0, ABA layers. (b) The oscillator
strength for the transitions showed in the left panel.
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Figure 55: (a) The transition energies between monolayer-like and bilayer-like levels as a
function of the magnetic field B for unbiased, U1 = U2 = U3 = 0, ABA layers. (b) The
oscillator strength for the transitions showed in the left panel.

transitions present all the same kind of behavior, i.e. a weak monotonic decrease as B

increases.
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In Fig. 55 the transitions between monolayer-like and bilayer-like levels are pre-

sented. The transition energy (nb = 0, nm = 2+), black solid curve, follows a perfect
√
B dependence, since the level nb = 0 is simply E = 0. The energies correspond to the

transition (nm = 1−, nb = 1+), red solid line, (nb = 1−, nm = 3+), green solid line, and

(nm = 2−, nb = 2+), green dashed line, can be well fitted by a power law with an expo-

nent that varies from 0.5 (low fields) to 0.6 (high fields) as B increases. The transition

(nb = 1+, nm = 3+) can be also fairly approximated by a power law, but in this case the

exponent varies from 0.4 to 0.5 as the magnetic field increases. The OS are shown in

panel (b) where we can see that all OS decrease with increasing B with the exception of

the intraband transition (nb = 1+, nm = 3+), red dashed line, which exhibits the opposite

behavior.
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Figure 56: σ(E) vs energy in an unbiased ABA TLG for B = 10 T (black lines) and
B = 15 T (red lines).

The CR absorption peaks of an unbiased ABA TLG are displayed in Fig. 56 for

B = 10 T (panel (a)) and B = 15 T (panel (b)). The Fermi energy is taken to be E = 0.

Above each peak it is shown which transitions are involved. We can notice that with

the exception of the peaks associated to transitions involving the level E = 0 each peak

receives equal contributions of two interband transitions. It means that if, for instance,

the Fermi level is increased in order to cross the level nb = 1+, the first and third peaks

will disappear, the second and fifth peaks will drop to half of their values and the other

ones will be unaffected.
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The following results consider the effect of a bias (U1 = 100 meV, U2 = 50 meV

and U3 = 25 meV) that breaks the mirror reflection symmetry of the ABA TLG. Figure

57(a) shows some of the transitions between the monolayer-like levels. We see two groups

of transition energies: the intraband transitons (dashed and dotted lines starting from

E = 0) and interband transitions (solid lines starting from E = 75 meV). The inset

displays the small asymmetry between the electron-like (nm = 0+, nm = 1+) and hole-

like (nm = 1−, nm = 0−) transitions due to the bias. In general the transition energies

increase less fast with B when a bias is applied. In panel (b) we notice that the OS of all

the intraband transitions have the same decreasing behavior as B increases, exibiting a

more strong dependence on B up to 5 T. Remarkably, the OS of the interband transitions

exhibit the opposite behavior, i.e. a small monotonically increasing behavior with B. The

upper inset displays an enlarged view of the OS for the transitions (nm = 1−, nm = 2+)

and (nm = 2−, nm = 3+).
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Figure 57: (a) The transition energies between monolayer-like levels as a function of the
magnetic field B for biased ABA layers. The inset shows the small difference in energy
of the electron and hole-like transitions. (b) The oscillator strength for the transitions
showed in the left panel. The lower inset shows the small difference in OS of the transitions
(nm = 0+, nm = 1+) and (nm = 1−, nm = 0−), while the upper inset shows an enlargement
of the (nm = 1−, nm = 2+) and (nm = 2−, nm = 3+).

Figure 58 focus on the transitions between bilayer-like levels. The main effect of the

bias on the transition energies is the disappearance of the linear behavior for small values

of B (see the inset of Fig. 52) and the breaking of the symmetry between electrons and
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magnetic field B for biased ABA layers. The inset shows the small difference in energy of
the electron and hole-like transitions. (b) The oscillator strength for the transitions are
shown in the left panel.

holes, as shown in the inset of panel (a). In panel (b) we see that for all the transitions,

with the exception of (nb = 1−, nb = 2+), the OS exhibit a strong dependence on B,

specially for low fields. The OS for the hole-like transitons have a strong increase up

to 5 T and then they continue to increase but now less fast, while for the electron-like

transitions the OS presents a significant increase for small values of B with a subsequent

decrease.

Figure 59 exhibits some transitions from monolayer to bilayer-like levels. The energy

of the transition (nm = 0−, nb = 0−) is 25 meV and constant while its, OS exhibits a

strong magnetic field dependence (panel (b)) due to the magnetic length lB appearing in

the constants of Appendix A. The other two intraband transition energies (red and blue

solid curves) can be well fitted by a power law whose exponent approaches 0.3 and the

oscillator strengths of these transitions are very small as shown in the inset of panel (b).

The interband transitions (nm = 1−, nb = 1+), red dashed line, and (nm = 2−, nb = 2+),

blue dashed line, have energies that can be described by a B0.6 dependence for B > 5 T

and their OS have a small increase for low values of magnetic field followed by a monotonic

decrease as can be seen in panel (b). In Fig. 60 we present the same kind of results for

some transitions from bilayer to monolayer-like levels. Note that in this case, with the

exception of the intraband transition (nb = 0+, nm = 0+), all the transitions have low
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Figure 59: (a) Transition energies from monolayer to bilayer-like levels as a function of
the magnetic field B for biased ABA layers. (b) The oscillator strength for the transitions
showed in the left panel. The inset shows the OS of the transitions (nm = 1−, nb = 1−)
in red solid line and (nm = 2−, nb = 2−) in blue solid line.

oscillator strengths for fields higher than 3 T.

Figure 61 shows the CR spectrum for the biased ABA layers for B = 10 T (panel (a))

and B = 15 T (panel (b)). We assumed that all levels are occupied until 0+b . This result

summarizes the main effects of the bias on the transitions between the LL, since it takes

into account both, transition energies and oscillator strength. We observe more CR lines at

low energies due to the lifting of the four-fold degeneracy (without taking into account spin

and valley degeneracy) of the level 0. The asymmetry between elctrons and holes induced

by the bias are usually small, which makes, for instance, the transitions (nb = 2−, nb = 1+)

and (nb = 1−, nb = 2+) appear as a single CR line, since the difference in energy of these

transitions are smaller than the broadening Γ of the peaks. The only evidence of this

kind of asymmetry in the CR spectrum is given by the transitions (nm = 1−, nb = 1+)

and (nb = 1−, nm = 1+) which occur at 147.14 meV and 159.69 meV for B = 10 T,

respectively. The inset in panel (a) shows an enlargement of the CR line corresponding to

(nb = 0−, nm = 2+) around 181.5 meV. Note also that the transition (nb = 0+, nm = 2+)

is not visible since its OS is very small (see inset in Fig. 15 (b)). In panel (b) it can be

seen that the first three peaks in panel (a) become two double peaks, since the energies

of the transitions (nb = 0+, nm = 0+) and (nb = 0−, nm = 0+) do not change, and the

energies of (nb = 0+, nb = 1+) and (nb = 0−, nb = 1+) increase. A similar behavior occurs
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a function of the magnetic field B for biased ABA layers. (b) The oscillator strength for
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Figure 61: σ(E) vs energy in a biased ABA (U1 = 100 meV, U2 = 50 meV, U3 = 25
meV) TLG for B = 10 T (black lines) and B = 15 T (red lines). The inset in (a) shows
an enlargement of the transition occurring around 181.5 meV, while the inset panel (b)
shows the formation of a double peak around 183 meV and 184.8 meV.
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around 185 meV, the transition energies of (nb = 2−, nb = 3+) and (nb = 3−, nb = 2+)

increase faster than the energies of (nm = 1−, nm = 0+) and (nm = 0−, nm = 1+) leading

to the formation of the double peak shown in the inset.
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7 Conclusions and Perspectives

In this thesis we theoretically study the basic electronic properties of carbon nanorib-

bons and trilayers graphene.

In the first chapter we started by introducing the carbon atom and its hybridizations,

followed by a brief review on the carbon materials discovered along the last three decades,

such as fullerenes, carbon nanotubes and graphene. Then, in the last part of the chapter,

we focused on graphene fabrication techniques and some electronic properties that make

this material an interesting research subject.

Along the second chapter we developed the mathematical framework that helps to

explain the basic electronic properties of graphene. More precisely, we presented the tight-

binding model applied to graphene and performed the continuum limit approximation in

order to obtain an effective Hamiltonian valid for a low density of carriers, which allows

the analogy with quantum electrodynamics. The formation of the Landau levels as a

result of an applied external magnetic field was also analyzed.

In chapter 3, we turned our attention to graphene nanoribbons, where we investigated,

by means of tight-binding model, how simple shear strain modifies the electronic spectrum

of graphene and carbon nanoribbons with zigzag and armchair edges. The effect of the

strain in zigzag ribbons with an even number of atom lines is to open a gap in the

spectrum, which can be controlled by changing the extension of the deformation δ. The

armchair nanoribbons that were initially semiconductors, become metallic when the strain

is applied.

In chapter 4, we showed how to mathematically treat the stacking of two and three

layers of graphene, describing the tight-binding parameters responsible for coupling the

layers. The free electron spectra, as well as the LLs are presented for bilayer graphene.

Concerning to trilayer graphene, we focused on the effect of the two stacking orders on

the free electron spectrum, and the role played by the interlayer asymmetries as well.

In chapter 5, we obtained exact analytical expressions for the Landau-level spectra
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of trilayer graphene, within a model that took into account the layer asymmetry induced

by different electrostatic potentials in each layer. The expressions were obtained for both

the Bernal (ABA) and rhombohedral (ABC) stackings, which were found to display quite

distinct behaviors. As shown in previous work [92] the Landau-level spectrum for the ABA

case in the absence of electrostatic bias between the layers shows both a monolayer-like as

well as bilayer-like character, indicated by the different magnetic field dependence of the

spectrum. The addition of a potential difference between the layers shifts the spectrum

and creates a tunable gap between the electron and hole states, the size of this energy gap

being different for the monolayer and the bilayer energy levels. Level crossings between

the monolayer and bilayer Landau levels are found for certain values of the magnetic

field. For the ABC case, the Landau levels have a magnetic field dependence which, in

the absence of bias, has a B3/2 dependence for low energies [71]. For stronger magnetic

fields the Landau levels exhibit a linear B dependence. The introduction of electrostatic

bias in the system lifts the degeneracy of the n = 0 levels and creates a tunable gap.

The results show also the existence of level crossings at small magnetic fields. This model

can be refined by taking into account second-nearest neighbor terms, as well as remote

coupling between the lowest and uppermost layers.

Finally, in chapter 6 we made use of the continuum approximation to describe the

TLG with both, ABA (Bernal) and ABC (rhombohedral), stacking sequences by a 6× 6

Hamiltonian in which we use the Peierls sustitution together with the Landau gauge to

include an external magnetic field. Using this approach we were able to find analytical

expressions for the six-components spinor that we use to calculate, within the dipole ap-

proximation, the oscillator strengths of the transitions between the Landau levels. We

also calculated the cyclotron resonance spectrum for neutral and biased layers. In sum-

mary the effect of an applied bias on the transitions between the LL are three: reduction

of the transition energies, lift of the degeneracy of the level n = 0 (two-fold degeneracy

in ABC TLG and four-fold degeneracy in ABA TLG), and the break of the electron-hole

symmetry. The first and second effects are easily observed in the CR spectrum for both

types of stacking: reduction of transition energies causes a shift of the peaks and the lift-

ing of the degeneracy appears as extra peaks. Although the asymmetry between electrons

and holes has a considerable influence on the OS of the transitions, the difference in the

transition energies are rather small, usually smaller than the broadening of CR peaks,

which makes difficult to see this asymmetry in the CR spectrum, with the exception of

the transitions (nm = 1−, nb = 1+) and (nb = 1−, nm = 1+) in ABA TLG which occur at

very distinguished energies.
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As a short-term perspective we intend to investigate the effect of an external mag-

netic field, acting together with the simple shear strain, on the energy bands of carbon

nanoribbons. Concernig TLG, we are interested to look for what is called topological

confined states. In 2008 Ivar Martin et al. found two branches of states inside the gap of

a biased bilayer graphene. Each one of these states appear to be localized on the domain

walls separating insulating regions experiencing the opposite gating polarity [103]. Since

trilayers having ABC stacking behave similarly to bilayers when subjected to a gate volt-

age, we believe these kind of confined states can be also found in TLG, but in this case,

instead of two branches we expect to find three energy modes.
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APPENDIX A

The constants appearing in ΨABC
n are given by:

bn ≡ 1

γ′1

(

δn3 − 2n

lB
2δn3

)

, (A.1a)

cn ≡ lB
2(n+ 1)

(δn2 bn − γ′1) , (A.1b)

dn ≡ 1

γ′1

(

δn2 cn −
bn
lB

)

, (A.1c)

An ≡
(

1√
πlBgn

)1/2

, (A.1d)

gn ≡2nn!
(

1 + bn
2
)

+ 2n+1(n+ 1)!
(

cn
2 + dn

2
)

+

2n+2(n+ 2)!
dn

2

δn1
2lB

2 + 2n−1(n− 1)!
4n2

δn3
2lB

2 , (A.1e)

where γ′1 = γ1/(~vF ).

The integrals involved in the calculation of the oscillator strength for ABC TLG are

given by

∫

Ψm
A1

∗x̄Ψn
A1
dx̄ =

√
π2m+1(m+ 1)!

dmdnAmAn

2
{2(m+ 2)δm+2,n+1 + δm,n+1} , (A.2a)

∫

Ψm
B1

∗x̄Ψn
B1
dx̄ =

√
π2m+2(m+ 2)!

dmdnAmAn

2δm1 δ
n
1 lB

2 {2(m+ 3)δm+3,n+2 + δm+1,n+2} , (A.2b)

∫

Ψm
B2

∗x̄Ψn
B2
dx̄ =

√
π2m+1(m+ 1)!

cmcnAmAn

2
{2(m+ 2)δm+2,n+1 + δm,n+1} , (A.2c)

∫

Ψm
A2

∗x̄Ψn
A2
dx̄ =

√
π2mm!

bmbnAmAn

2
{2(m+ 1)δm+1,n + δm−1,n} , (A.2d)

∫

Ψm
A3

∗x̄Ψn
A3
dx̄ =

√
π2m−1(m− 1)!

2mnAmAn

δm3 δ
n
3 lB

2 {2mδm,n−1 + δm−2,n−1} , (A.2e)

∫

Ψm
B3

∗x̄Ψn
B3
dx̄ =

√
π2mm!

AmAn

2
{2(m+ 1)δm+1,n + δm−1,n} , (A.2f)

where m and n are Landau level indices for the different eigenstates. The selection rule

is as usual |m− n| = 1. The result of Eq. (A.2e) is for m,n > 0, otherwise this integral

is zero.
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The constants appearing in ΨABA
n are given by:

bn1(3) ≡
1

γ′1

(

2n

lB
− lBδ

n
1(3)

2

)

, (A.3a)
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(
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πlBgn

)1/2
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The integrals needed to calculate the oscillator strength of the transitions are the

following

∫

Ψm
A1

∗x̄Ψn
A1
dx̄ =

√
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δm1 δ
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Equations (A.4a), (A.4c) and (A.4e) are valid for m,n > 0, while 9(d) is valid only for

m,n > 1, otherwise these integrals are zero.
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