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ABSTRACT

The infrastructure expansion planning in cellular networks, so called Base Station (BS)

Placement (BSP) problem, is a challenging task that must consider a large set of

aspects, and which cannot be expressed as a linear optimization function. The BSP is

known to be a NP-hard problem unable to be solved by any deterministic method. Based

on some fundamental assumptions of Long Term Evolution (LTE)-Advanced (LTE-A)

networks, this work proceeds to investigate the use of two methods for BSP optimization

task: the Particle Swarm Optimization (PSO) and the Differential Evolution (DE), which

were adapted for placement of many new network nodes simultaneously. The optimiza-

tion process follows two multi-objective functions used as fitness criteria for measuring

the performance of each node and of the network. The optimization process is performed

in three scenarios where one of them presents actual data collected from a real city. For

each scenario, the fitness performance of both methods as well as the optimized points

found by each technique are presented.

Keywords: Base Station Placement Problem, Particle Swarm Optimization, Differential Evolution



RESUMO

O planejamento de expansão de infraestrutura em redes celulares é uma desafio que

exige considerar diversos aspectos que não podem ser separados em uma função

de otimização linear. Tal problema de posicionamento de estações base é conhecido por

ser do tipo NP-hard, que não pode ser resolvido por qualquer método determinístico.

Assumindo características básicas da tecnologia Long Term Evolution (LTE)-Advanced

(LTE-A), este trabalho procede à investigação do uso de dois métodos para otimização

de posicionamento de estações base: Otimização por Enxame de Partículas – Particle

Swarm Optimization (PSO) – e Evolução Diferencial – Differential Evolution (DE) –

adaptados para posicionamento de múltiplas estações base simultaneamente. O processo

de otimização é orientado por dois tipos de funções custo commultiobjetivos, que medem

o desempenho dos novos nós individualmente e de toda a rede coletivamente. A otimiza-

ção é realizada em três cenários, dos quais um deles apresenta dados reais coletados de

uma cidade. Para cada cenário, são exibidos o desempenho dos dois algoritmos em ter-

mos da melhoria na função objetivo e os pontos encontrados no processo de otimização

por cada uma das técnicas.

Palavras-Chave: Problema de Posicionamento de Estações Base, Otimização por Enxame de

Partículas, Evolução Diferencial
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1. INTRODUCTION

This chapter introduces the main motivations of this work in Section 1.1 followed by

a review of the state of the art of the BSP problem in Section 1.2, where I present

the evolution of network planning strategies. I list the objectives, major contributions of

this work and thesis organization in Sections 1.3 and 1.4, respectively. Finally I present

my scientific production during the master course in Section 1.5.

1.1 Motivation

The continuous development of wireless communications systems, since early gen-

erations to advanced technologies, hasmade possible the growth of such volume ofmobile

services hard to be imagined half a century ago. Thanks to the development of Electronics

and Telecommunications Engineering in the past 40 years, with the exponential growing

of electronic hardware computational power and more efficient usage of wired and wire-

less channels, it seems there is no boundaries for the worldwide, personal and efficient

mobile communications, allowing people to be in contact with each other effortlessly.

However, as new mobile communication services become available, the usage of

these services begin to grow rapidly. Recently, the amount of Internet accesses from

smartphones and tablets considering only mobile applications overtook Personal Com-

puters (PCs) Internet usage in the United States [1]. The increase of smartphone usage is

expected to be about 35% per year [2] , but there is a question: are the operators ready

to support this growing with current technology?

For next wireless networks generations, i.e., 5G, wireless networks are expected

to be a mixture of network tiers of different sizes, transmit powers, backhaul connec-

tions, several Radio Access Technologies (RATs) that are accessed by an unprecedented

number of smart and heterogeneous wireless devices [3]. Thus, the heterogeneity and in-

creasing number of network nodes, shown in Figure 1.1, will make it difficult to perform

infrastructure planning.

In order to make users able to appreciate these possibilities, operators must attain

major keys of current mobile technology specifications, the Long Term Evolution (LTE),

by providing acceptable data rates and latency for satisfying their experience. Indeed, the

main way of guaranteeing network quality is setting up a good infrastructure by adjusting

both the amount and position of network nodes close to regions with large number of

subscribers or services’ demand. Nevertheless, the arrangement of infrastructure is one of
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Figure 1.1: A multi-tier network composed with different kinds of cells

the most important design tasks because it represents capital expenditure for operators, so

that ideally it must be done as to improve user’s satisfaction proportionally. There is still

room for studying the BS Placement (BSP) problem because each mobile communications

generation proposes different set points of requirements.

1.2 State of the Art

In early wireless network generations, it was established the radio planning had to

start from the predictions of coverage to estimate the number of base stations to cover

a given area [4], so 1st Generation (1G) and 2nd Generation (2G) planning design were

more oriented to coverage, but with the evolution of mobile technologies the rapidly

growing usage of broadband made the data rates experienced by the users in the network

become increasingly important [5], i. e., the infrastructure expansion planning in 3rd Gen-

eration (3G) was more oriented to capacity, leading to high throughput. The paradigm

for 4th Generation (4G) cellular networks was lead towards a high-data rate, low-latency

and packet-optimized radio access technology [6], resulting in an improvement of experi-

enced data-rates by two and three times on Uplink (UL) and Downlink (DL), respectively

compared to the previous generation and the use of flat architecture with radio-related

functionalities located in the BS [7]. This results in attainment of multiple services with

demanding data-rates, such as high quality video streaming for mobile devices. Finally,

besides improvement on data rates, it is expected an alignment for 5th Generation (5G)

networks with Energy Efficiency (EE).

From the operator’s perspective, the network deployment process is the first step

they have to face when supplying a set of services to their customers [8]. In order to
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attain success in the market, operators normally use strategic and operative software

tools for designing, planning and optimizing wireless networks, which are money-savers

for their business. Nevertheless, while operators keep providing wireless access services,

the technologies change demands repetition of network planning tasks based on new

requirements. Thus, it is very common to observe two or three different technologies

supported by an operator at the same time in order to satisfy many users’ requirements

simultaneously. Finally, the plan of deploying LTE 4G networks to satisfy the increasing

of traffic demands translates into a continuous need for LTE cell sites planning [9].

1.2.1 Network Planning Issues

The BSP optimization task depends on a set of variables, such as traffic density,

channel condition, interference scenario, number of BSs, etc. [10] defines the cell planning

problem as searching for a subset of base stations’ positions {BSo} ⊆ {BS∗} that satisfies
desired criteria, where {BS∗} corresponds to all possible configurations for BSs. Because

of the relation and combination between these variables, BSP is an Non-deterministic

Polynomial-time hard (NP-hard) problem [11] for which it is not possible to find a poly-

nomial time algorithm in the theory of computational complexity. Instead of perform-

ing exhaustive combination of all possibilities as solution of this problem, many works

suggested strategies using specially evolutionary and heuristic algorithms. A general op-

timization algorithm is implemented to optimize BS placement in a very realistic scenario

containing a large set of variables. However, this large number of attributes makes al-

gorithms’ runtime very long. On the other hand, limiting the set of variables produces

coarse results. Furthermore, the optimization problem can be formulated with various

objectives, for example: capacity enhancement, network lifetime maximization, power

and node number minimization [12].

1.2.2 Heuristics for BSP optimization

Some applicable heuristic methods for the BSP problem are described below:

• Particle Swarm Optimization (PSO): It was introduced by [13] in 1995 as an optimization

method for continuous non-linear functions and it inspired in social psychological

principles of the behaviour of bird flocks under foraging process. This optimization

method was applied for the BSP problem in several works: in [14] the authors

deployed BSs to maximize coverage and economy efficiency obtaining 91.12% of

coverage after 100 iterations; the work of [15] aimed at capacity maximization and

network balancing assuming a soft handover mechanism. On its turn, [16] focused

on the optimization of Coordinated Multi-Point (CoMP) antenna ports regarding
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various UE distribution. These works considered network planning for the first

placement of BSs. PSO has also been tested on wireless network optimization, such

as sensor’s coverage [17].

• Differential Evolution (DE): It was presented to scientific community by the year of 1995

in the First International Competition on Evolutionary Optimization by Price and

Storn [18]. The strength of the algorithm lies in its simplicity, speed and robustness

[19]. Also, DE was verified in wireless sensors network optimization in [20] with

the goal of finding the best operational mode for each sensor in order to minimize

energy consumption.

1.3 Objectives and Major Contributions

The objectives of this work are described as follows:

• Present the BSP task as an optimization problem;

• Adapt PSO and DE to the BSP problem for the placement of a single or multiple

bases and evaluate their performance by measuring their fitness;

• Apply these heuristic methods in a real-based scenario consisting on real informa-

tion of BSs’ position and traffic estimates derived from population data;

As main contribution, this work validates the use of PSO and DE as suitable tech-

niques for BSP optimization. The specific objectives are:

• Definition of fitness functions for optimization process based on network aspects in

Chapter 2;

• Modelling of many wireless network scenarios in Chapter 4;

• Compare PSO and DE performance for those layouts in Chapter 5.

1.4 Thesis Organization

This thesis is organized as follows: Chapter 2 discusses the fundamentals of BSP

modelling, formulates the task of placing one or multiple BSs as an optimization problem

and defines a set of fitness functions used to measure performance of heuristic methods.

Chapter 3 shows the mathematical fundamentals of PSO and DE, presenting their main

characteristics. In Chapter 4 the system modelling is described, with definition of which

scenarios are used, how UEs are represented and how to construct a real-based scenario.

The presentation and discussion of numerical simulation results using these heuristics is
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shown in Chapter 5 for all scenarios described previously in Chapter 4. The summary of

simulation results and further expectations of this work is exhibited in Chapter 6.

1.5 Scientific Production

The following work was submitted and accepted for a conference during theMaster

period.

• M. B. Pereira, F. R. P. Cavalcanti, and T. F. Maciel, ”Particle swarm optimization

for base station placement,” in International Telecommunications Symposium, Aug

2014.



2. BASE STATION PLACEMENT MODELLING

Eevaluating the BSP optimization problem requires mathematical modelling in or-

der to verify the practicability of obtaining an exact solution using a close expression

or either applying an optimization technique. This chapter exhibits mathematical devel-

opment for modelling this problem regarding a region composed of sets of BSs and UEs

with two dimensional positions.

2.1 Fundamentals

Wireless propagation radio channels confront several issues. In fact, the wireless

signals suffer severe attenuation in links between BSs and UEs caused by dissipation of

the power radiated by the transmitter as well as effects of the propagation channel. The

modelling of attenuation on received signal strength in the receptor can be assumed as

physical or statistic: the second one takes empirical approaches, measuring propagation

characteristics in a variety of domains and developing thesemodels for a class of particular

environments [21]. From these statistical representations, attenuation depends on many

parameters which can be split in two parts: the path loss and shadowing, described below:

• Path Loss (PL) is the ratio of transmitted pT and received pR power, which can be

given in linear scale or in Decibel (dB) scale (2.1):

PL=
pT
pR

→ PLdB = 10log10PL dB. (2.1)

Because most mobile communication systems operate in complex propagation en-

vironments that cannot be accurately modelled by free-space path loss or ray trac-

ing, many path loss models have been developed over the years [22] to predicting

channel effects in many environments. These theoretical and measurement-based

propagationmodels indicate that average received signal strength decreases with the

distance R between transmitter and receiver [23]. The value of R depends on the

absolute distance between spatial positions from sets of M UEs and N BSs, where

each UEm and BSn contain spatial positions represented by UEm(x) and BSn(x), re-
spectively, such that x= [x1 x2] in a two-dimensional plane. The distance between

these nodes is given byRmn, which denotes their absolute distance as shown in (2.2):

Rmn = |UEm(x)−BSn(x)| . (2.2)
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Given an empirical pathloss model and the distance Rmn between each UEm and

BSn, the PLmn can be obtained by any general expression (2.3):

PLmn = pathloss (Rmn) . (2.3)

• Shadowing (χ) is caused by obstacles between the transmitter and receiver that at-

tenuate signal power through absorption, reflection, scattering, and diffraction [22].

This effect was also verified empirically and is often modelled as a log-normal ran-

dom variable with mean µχ and standard deviation σχ , defined for each empirical

scenario.

Eventually, experimental models depend on definitions of the environment characteristics,

such as BS antenna heights, average building height, distance between buildings, etc. Such

information will be detailed in Chapter 4.

Considering the downlink scenario, the BSs and UEs are the transmitter and receiver

nodes, respectively, from which each BSn has transmission power PTXn , or PBSn . Also, other

attributes are defined for downlink case in order to model the links between BSs and UEs,

such as antenna gains for transmitter GTX
n , or GBS

n , and receiver GRX
m , or GUE

m , given in

dB, which depend on the radiation pattern of these antennas. With possession of these

attributes, the received power pmn at the UEm from BSn is estimated by:

pmn = PBSm +G
BS
m +G

UE
n −PLmn +χmn. (2.4)

From received power values, pmn, the matrix W presents signal strengths from all links

between UEs and BSs (2.5):

W=


p11 p12 · · · p1N

p21 p22 · · · p2N
...

... . . . ...

pM1 pM2 . . . pMN

=


w1

w2
...

wM

 , (2.5)

where row vectors wm = [pm1 pm2 · · · pmN] collect the received powers for UEm from all

BSs.

The highest value in each vector wm is the maximum received power for UEm. As-

suming the maximum received signal strength corresponding to power received from the

serving BS, the other values in wm are interpreted as interfering signals from all remaining

bases. Considering the following statement:

ψm =max (pm1,pm2, · · · ,pmN) ,
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ψm =max (wm) , (2.6)

if each BS uses all network spectrum resources and all links between BSs and UEs are

assumed as active in the network, the SINR is obtained as follows (2.7), given ψm and

wm converted from dB to linear scale:

SINRm =
ψm

N∑
n=1

pmn −ψm +N0

, (2.7)

where N0 denotes the Additive white Gaussian noise (AWGN) power noise. The expres-

sion
N∑
n=1

pmn−ψm is the sum of the powers received from all BSs minus the power incoming

from the serving BS, thus resulting in the sum of the interference contributions, since the

network model assumes a fully loaded system, in which all links are active. Finally, from

Shannon equation [24], the capacity C for this configuration is denoted by:

Cm = BW · log2 (1+ SINRm) bps, (2.8)

where BW denotes system bandwidth. A general expression assumes BW = 1 and returns

capacity in bits per second per Hertz (bps/Hz).

2.1.1 System Capacity

The capacity shown previously (2.8) is evaluated for a single user under the prop-

agation characteristics described in Section 2.1. Supposing the network has fully loaded

links between UEs and BSs, which are presumed to potentially serve all these users in its

full demand, the theoretical total capacity that could be sensed by users is interpreted as

the sum of single capacities for UEs (2.9):

Ctotal =
M∑

m=1

Cm. (2.9)

Although the amount of capacity sensed by users considers only their SINRs (2.8), in

a multicellular scenario the BSs have a maximum traffic which can be offered to connected

UEs. It means that the provided capacity for users is limited by the sum of the maximum

allowed traffic of all BSs. Assuming each BS has a throughput limit of ℓn, the maximum

capacity τ offered for users becomes:

τ=
N∑
n=1

ℓn. (2.10)
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Thus, the total offered capacity τmight be higher or lower than the sum of sensed capac-

ities Ctotal depending on the network planning. The choice of traffic model impacts on the

network evaluation by means of BSs overload. Adopting a full buffer traffic characterized

by a fixed number of users in the cell and the buffers of the users’ data flows always hav-

ing unlimited amount of data to transmit/receive [25] require full dimensioning of users’

demand.

2.1.2 Base Station Load

The measurement of BSs’ load depends on the amount of traffic demanded by each

BS, associating users with bases that provide the strongest power for them. From (2.6),

the maximum value of wm is equivalent to its received power, therefore, the position

where the highest value is found corresponds to the index of BS that services the UEm.

Considering the subset ofM∗ UEs as {UE1,UE2, · · · ,UEM∗}n that are connected only

to BSn and assuming their capacities as {C1,C2, · · · ,CM∗}n, the expected load for a single

BS is:

loadn =
M∗∑
m=1

Cm. (2.11)

The measurements on the BS load capture a more specific characteristic of network

in terms of BSs’ overload. For example, the offered capacity, τ, can be equal to users’

demand, Ctotal, but existing any BS, BSn, where the load loadn is higher than its offered

throughput, ℓn. From the evaluation of BSs loads, a measurement of overload of bases

can be asserted and regions where users are affected by high traffic load can be mapped.

2.2 Optimization Problem Formulation

The optimization problem consists of finding a solution with either maximum or

minimummeasurement [26] for a fitness or objective function. A mathematical optimiza-

tion problem has the following form [27]:

minimize f0(x)

subject to fi(x)≤ bi, i= 1, · · · ,m.
(2.12)

The vector x corresponds to the optimization variable and the function f0 : IRN → IR is

the objective function, the functions fi : IRN → IR are constraint functions and b1, · · · ,bm
correspond to limits for constraints.

As mentioned earlier the BSP placement problem is known to be Non-deterministic
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Polynomial-time hard (NP-hard), which cannot be solved by algorithms in polynomial

time. Furthermore, if objective or constraint functions are not linear and not known to be

convex, the general non-linear programming problem shown in (2.12) requires alternative

optimization algorithms, which is the case of capacity-based objective functions.

2.2.1 Inserting New BSs

The problem formulation starts by modelling the positioning of a new BS in the

environment. Rewriting the received power matrix (2.5) when inserting one new BS as:

W=


p11 p12 · · · p1N p1N+1

p21 p22 · · · p2N p2N+1
...

... . . . ...
...

pM1 pM2 . . . pMN pMN+1

=


w1 p1N+1

w2 p2N+1
...

...

wM pMN+1

=


w∗1
w∗2
...

w∗M

 , (2.13)

where the column N + 1 contains powers obtained when setting a single new BS. The

expressions for SINR and capacity shown in (2.7) and (2.8) differ only in theψ value due

to the changing on the interference originated from inserting new bases. The maximum

received power ψm from (2.6) becomes:

ψ∗m =max
�
pm1,pm2, · · · ,pmN,pm,N+1

�
,

ψ∗m =max
�
w∗m
�

. (2.14)

Although the placement of a new base N+ 1 increases total offered throughput by

τ+ℓN+1, the users’ sensed sum of capacities would increase or diminish due to interference

effects.

When using capacity-based functions as fitness, the optimization problem isNP-hard,

since the individual users’ capacities (2.11) depends on the SINRs, which is a non-linear

function of BS’ positions x. The placement of a single new BS can determine an approxi-

mate optimal position x a priori by using one of the following methods:

• Exhaustive Search by disposing random points in the map and test each one on the

fitness function, for which precision varies with the number of trials for finding

minimum or maximum.

• Grid Method by creating a grid set of points and testing all of them. The precision

depends on the length of data set, i.e., on the grid spatial resolution.

Due to the fact of the precision of both methods relies on the quantity of tested

points, the number of trials for finding the solution may be enormous. Depending of the
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size of the search space and the desirable precision, the solution can be obtained with a

good accuracy with relatively low number of tests, e.g., thousands of points.

Now assuming the placement of L new bases, (2.13) can be rewritten considering

multiple BSs as shown below:

W=


p11 p12 · · · p1N p1N+1 · · · p1N+L

p21 p22 · · · p2N p2N+1 · · · p2N+L
...

... . . . ...
... . . . ...

pM,1 pM2 . . . pMN pMN+1 · · · pMN+L



=


w1 p1N+1 · · · p1N+L

w2 p2N+1 · · · p2N+L
...

... . . . ...

wM pMN+1 · · · pMN+L

=


w∗1
w∗2
...

w∗M

 .
(2.15)

The placement of L new BSs will increase the offered throughput to τ+
∑L

l=1 ℓN+l,

corresponding to a potentially substantial improvement on the network throughput. On

the other hand, the amount of interference
∑N+L

n=1 pnm −ψm will be greater, causing the

users’ sensed capacity to be lower, thus decreasing the Quality of Service (QoS) of net-

work.

In the case of placing L new bases, the search for nearly optimal solutions increases

exponentially with L, because it is necessary to test every combination of L possible new

solutions.

2.2.2 Runtime Analysis

Consider both approximate methods for searching optimal points described in 2.2.1

and ignoring the complexity of evaluating the fitness function, assume that finding the

optimal position for inserting one single base requires testingK candidate positions. Now,

assuming S(1) as the solution for placing this one new base, consider as true the following

statement:

S(1) ⊇ {x1} . (2.16)

Then, expanding this solution to place L bases leads to:

S(2) ⊇ {x1,x2}
S(3) ⊇ {x1,x2,x3}

...

S(L) ⊇ {x1,x2, · · · ,xL} .

(2.17)
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Since the first solution S(1) is obtained after testing K points, the search of solution S(L)
requires testing KL sets of points to find the solution [x1 x2 · · · xL]. Depending on the

calculation time for measuring fitness, this growing of the number of required operations

makes it difficult to use the exhaustive search technique. Moreover, due to the fact that

variations in the set of positions for BSs affect the SINR values, the optimal points might

be different for any solution.

2.3 Fitness Functions

Fitness functions are used to compare different solution sets or make optimization

processes converge to a global value. The fitness functions are composed by some objec-

tive criteria that evaluate the performance of: 1) only new BSs or 2) the entire network.

The combination of measurements on demanded capacity of users Ctotal and overload of

bases loadn results into the definition of our fitness functions: the Network Index, which

aims to maximize performance of BSs without overloading them, and the capacity max-

imization with load balancing, whose objective is balancing BSs load and maximizing

users’ sensed capacity simultaneously. These fitness functions are described in following

subsections.

2.3.1 Function 1: Network Index

Assuming each BS has a maximum throughput ℓn, the amount of resources that

can be shared for all connected UE will be limited even if the sum of capacities of users is

greater than BS maximum throughput. The metric called network ratio xn defined here

establishes a factor to measure the overload of BS and it equals the ratio between the BS

load described in (2.11) and its throughput limit ℓn (2.18):

xn =

∑M∗
m=1Cm

ℓn
,

xn =
loadn
ℓn
· (2.18)

Based on the domain of variable xn ∈ [0,∞), let us make the following assessments:

• Case 1: When xn < 1, the sum of throughputs of users is lower than the BS’s through-

put maximum, thus, the requirements of users will be fully served, but the base has

not been demanded on its limit yet;

• Case 2: If xn > 1, the capacity demand from all UEs is higher than the BS’s through-

put maximum, hence, some users will experience a lack in the fulfilment of their
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demands;

• Case 3: In the case of xn = 1, the BS has assigned all its capacity for all users, fulfilling

their requirements.

For a wireless network, the aim is the optimization of positions for nodes in order

to make each BS close to case 3 operation because the amount of available resources is

equal to users’ demands. Thus, the objective function must map xn so resulting on its

highest value when case 3 is achieved. Defining N(xn) as objective function, it is designed

to have image N(x) ∈ [0,1], with maximum at x= 1 and minimum at 0 and∞ in order

to focus optimization towards case 3. Moreover, the mapping of these cases to fitness

values results in the continuous function η1 = N(xn) suitable to represent the effects of

overload as:

N(xn) = xn
α · e(1−xnα) , α ∈ IR : α≥ 2. (2.19)

Figure 2.1 exhibits the network index functions (2.19) emphasizing that the variation of α

parameters affects the sensitiveness for very low or large values of x. The fitness function

has no unity for its values.
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Figure 2.1: Network index functions

2.3.2 Function 2: Capacity Maximization with Load Balancing

The capacity maximization with load balancing metric targets the increase of the

mean throughput of all users, based on total capacity, Ctotal, (2.9), while balancing the

BSs load, loadn, (2.11).

The distribution of demands in all network BSs is based on the quantitative concept

of fairness measurement proposed by Jain [28], which estimates distribution of resources

in a system. From all N BSs load, considering loadn as the shared resource, the Jain’s
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Index J for BSs loads (2.20) is given as:

J=

�∑N
n=1 loadn
�2

N · �∑Nn=1 loadn2� . (2.20)

The variable loadn ∈ [0,∞] results in J ∈ [1/N,1]. Moreover, the value J= 1 means that

all BSs have the same load demand.

Now supposing the set of M UEs which has mean throughput equals to:

C=
Ctotal

M
, (2.21)

thus, combining the J value with the users total throughput mean demand C (2.22):

η2 = J ·C. (2.22)

2.4 Summary of Base Station Placement Modelling

This chapter described major aspects used in this work for performing the opti-

mization process on the BSP problem, such as the difficulty to find solutions because of

the inherent problem complexity. Also, it exhibited two fitness functions which mea-

sure single BS and network performance. The following Chapter 3 presents two heuristic

methods for BSP optimization.



3. SPATIAL OPTIMIZATION TECHNIQUES

Many optimization problems focus onmaximization orminimization of fitness func-

tions, but the optimization using classical approaches may be onerous if the search

space of the utility function is hard to be modelled mathematically. As discussed in Sec-

tion 2.2.1, for the BSP problem, each new point inserted in the search space affects the

overall performance parameters for all network nodes. Even for finding a nearly opti-

mal solution, this NP-hard problem requires an exhaustive combinatorial search, which

makes the simulation time grow very quickly depending of the number of BS positions

for combination.

Under these conditions, some heuristic-based methods for finding nearly-optimal

solutions might be considered, since they present good results without a very high com-

putational cost.

This chapter presents two methods of finding good near optimal solutions: Par-

ticle Swarm Optimization (PSO) and the Differential Evolution (DE), both inspired by

biological and sociological motivations and able to take care of optimality on rough,

discontinuous and multi-modal surfaces [19].

3.1 Particle Swarm Optimization

3.1.1 Fundamentals

The Particle Swarm Optimization (PSO) is a population-based stochastic algorithm

for optimization inspired by social-psychological principles [29]. PSO differs from other

evolutionary algorithms because it uses all population members from the beginning of a

trial until its end. The principle of PSO is based on the idea that these population individ-

uals move within the solution space influencing each other with stochastic changes, while

previous successful solutions act as attractors [30]. Thus, the interactions of individuals

with each other result in incremental improvement of the quality of problem solutions

over time.

In PSO a set of M simple entities, also called particles, are placed in the search

space of some problem. Each particle evaluates the objective function – the fitness –

at the current location or particles for each iteration. Their movements are given by a

velocity vector v⃗ calculated for each particle using a combination of two attributes: social
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influence and persistence; and considering some random perturbation.

3.1.2 Mathematical Representation

When representing problem in a IR2 space, each particle Pi in PSO contains two

vectors with same dimension as the search space. The position of particle is represented

by a vector xi (3.1a) while its velocity is represented by v⃗i (3.1b) ; both attributes relates

to the same iteration k. Given current position and velocity of a particle, PSO performs

the movement of individuals by updating position with xi[k+1] in the next iteration k+1
obtained by adding current xi[k] and v⃗i[k] in iteration k (3.2):

Pi

�
xi = [x1 x2]i , (3.1a)

v⃗i = [v1 v2]i , (3.1b)

xi [k+ 1] = xi [k] + v⃗i [k] . (3.2)

Assuming a random deployment of individuals and a random selection of their

velocities as initial conditions, the update of positions and velocities depends on the be-

haviour of particles regarding the fitness function within the search space. Two major

factors affect the optimization process:

• Persistence, which considers the best position reached by a single individual Pi, the

best particle represented by x∗i . The persistence on the particle Pi is:

persistence=
�
x∗i − xi [k]
�

,

thus, this parameter measures how far is the position of Pi to the best position found

by PSO;

• Social Influence, which relates to the best position ever found by the entire set of

particles, called also global best and represented as x∗g. The social influence on

particle Pi is represented by:

social influence=
�
x∗g − xi [k]
�

,

so this attribute calculates distance of the position of Pi and the best position ever

found by the group of particles.

Considering these two factors described above, PSO updates the velocity parameter in

each iteration, as shown in (3.3). Both social influence and persistence attributes are

scaled by two parameters: ϕ∗i for individual contribution and ϕ∗g for global contribution.
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Thus, one has

v⃗i [k+ 1] = v⃗i [k] +ϕ
∗
i ·
�
x∗i − xi [k]
�
+ϕ∗g ·
�
x∗g − xi [k]
�

. (3.3)

Moreover, (3.3) can be verbally read as:

NEW VELOCITY = CURRENT VELOCITY + PERSISTENCE + SOCIAL INFLUENCE. (3.4)

Therefore, the update of positions assumes new velocities obtained in every optimization

iteration.

The ϕ∗i and ϕ
∗
g parameters determine the strength of random perturbations towards

global and individual best positions P∗indi e P∗global [31], also called acceleration coeffi-

cients. Each of these perturbations can be rewritten as a product of the form ϕ∗ = c ·ϕ,

where c is a known scalar and ϕ is a uniform random variable between 0 and 1. Each in-

fluence attribute is scaled with constants cgB and cpB, respectively. The update of velocity

in (3.5) is represented by:

v⃗i [k+ 1] = vi [k] + cpB ·ϕi ·
�
x∗i − xi [k]
�
+ cgB ·ϕg ·
�
x∗g − xi [k]
�

. (3.5)

The effect of individuals update in PSO for a 2-dimensional search space is shown in

Figure 3.1.
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Figure 3.1: Update of individuals in PSO
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3.1.3 Improvements in PSO topology

Some studies proposed improvements in PSO by including an inertia weight for

velocities and updating both social influence and persistence parameters, as shown below:

1. Inertia coefficient: As proposed in [32], the inclusion of a decreasing coefficient for

velocities’ update is effective for reducing the inertia of the particles. This character-

istic stabilizes the position of individuals in late iterations. Assuming K iterations,

and given initial w0 and final wK values for inertia, w [k] for each iteration k are

equal to:

w [k] =w0 +
k
K
· (wK −w0) . (3.6)

That variation in inertia coefficient affects exploration, when individuals are lead

to search towards new unexplored regions, and exploitation, when they take ad-

vantage of positions where good fitness values were found previously.

2. Variation in Social Influence and Persistence: The work of [33] assumes also a temporal

variation for social and individual attributes, cgB and cpB. This concept emphasizes

local or global search in different periods of optimization, similar to the idea of

variation in acceleration discussed previously. Given initial and final values for cgB
and cpB as {c0, cK}, the variation of both coefficients is performed by:

c [k] = c0 +
k
K
· (cK − c0) . (3.7)

Regarding these two improvements, a general update for velocities in PSO becomes:

v⃗i [k+ 1] =w [k] · v⃗i [k] + cpB[k] ·ϕi ·
�
x∗i − xi [k]
�
+ cgB[k] ·ϕg ·
�
x∗g − xi [k]
�

. (3.8)

3.1.4 Simulation Chain

A generic simulation chain for the PSO algorithm is shown in Algorithm 1 present

the optimization process considering the particles’ positions xi and velocities vi lead by

a fitness function η, which should be maximized or minimized (≷). The optimization

algorithm requires input parameters such as acceleration coefficients w0 and wK, if they

present variation, and in constants cpB and cgB.
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Algorithm 1 PSO algorithm

1: Set up initially M particles Pi, i= 1, . . . ,M
2: Define w0, wK, cpB and cgB
3: for all Particles Pi do
4: Set xi and vi
5: end for
6: Set P∗ind← P1 and P∗global← P1

7: for K iterations do
8: Compute acceleration wk←w0 + (k/K) · (wK −w0) (3.6)
9: for all Particles Pi do

10: compute fitness ηi, η
∗ind and η∗global for Pi, P∗ind and P∗global

11: if ηi ≷ η∗ind then
12: P∗ind← Pi
13: end if
14: if ηi ≷ η∗global then
15: P∗global← Pi
16: end if
17: persistence← ϕ · (Pi −P∗ind)
18: social influence← ϕ · (Pi −P∗global)
19: v⃗i←wk · v⃗i + cpB · persistence+ cgB · social influence (3.8)
20: xi← xi + v⃗i (3.2)
21: end for
22: end for

3.2 Differential Evolution Optimization

3.2.1 Fundamentals

Differential Evolution (DE) is a stochastic parallel search method for maximization

or minimization of fitness functions [34]. DE was originally designed to handle opti-

mization of real-valued functions based specially on the use of a differential operator to

create new individuals for following generations, which is an advantage compared to the

classical Genetic Algorithm (GA), designed for discrete search spaces.

This technique performs a parallel search in aN-dimensional region usingM single

entities, with the same dimension of the search space, as population for each generation k,

attempting to replace all points in search space S by new positions at each generation [35].

A general formulation for optimization of the DE-based is to find x∗ given the objective

function f : X ⊆ IRN→ IR, i. e.:

x∗ ∈ X | f(x∗)≷ f(x) ∀x ∈ X, (3.9)

if, and only if x∗ is a finite value.
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3.2.2 Mathematical Representation

Similar to other evolutionary algorithms, DE starts the searching process with M

individuals whose positions are represented by xi. Thus, for a IR2 search space:

xi = [x1 x2]i . (3.10)

Assuming K generations for the optimization process, each trial performs Mutation, Re-

combination and Selection, as described below:

• Mutation expands the search space by giving ways for generating new individuals.

For all x individuals in each iteration k, the process chooses four of them xi, xr1,

xr2 and xr3, with i ̸= r1 ̸= r2 ̸= r3. The individual xi is called target vector and the

individual xr1 is added to the weighted difference between xr2 and xr3 given by:

vi = xr1 + ξ · (xr2 − xr3) , (3.11)

where ξ is the mutation factor and vi is the donor vector for the k-th iteration.

• Recombination incorporates solutions that resulted in successful fitness performance

previously. This process generates the trial vector ui from a combination of target,

xi, and donor vectors, vi. Each vector position is denoted by j. Giving ς as the

probability that elements of donor vector replace elements of the target vector – the

crossover rate – and giving φ[j] as a uniform random variable, we have:

ui[j] =

vi[j],xi[j],

φ[j]≤ ς OR j= ι,
φ[j]> ς AND j ̸= ι, (3.12)

where ι is a discrete random variable ∈ [1,2, · · · ,N]which avoid ui to become equal

to xi – at least one value of the donor vector vi will be propagated to its offspring ui.

Figure 3.2 shows how recombination process works: the trial vector will be filled

by elements of either the target or donor vectors, if conditions are satisfied (3.12).

• Selection compares the fitness values provided by the i-th trial and the target vectors.

If the trial vector results in better fitness, the individual that provides the target

vector is replaced by the trial vector as shown:

xi =

ui, if η(ui)≤ η(xi),
xi, otherwise.

(3.13)

These processes of mutation, recombination and selection are repeated until the
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Figure 3.2: Recombination process in DE

optimization criterion is reached or until at most K generations are simulated, as shown

in Figure 3.3. Assuming a 2-dimensional search space, the update of individuals by these

three processes is graphically shown in Figure 3.4.
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The performance of DE can be improved by adjusting the mutation factor, ξ,

crossover rate, ς, and the number of individuals, M.
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3.2.3 Simulation Chain

A generic simulation chain for DE is shown in Algorithm 2 by providing the muta-

tion factor, ξ, and crossover rate, ς.

Algorithm 2 DE algorithm

1: Define fitness target η∗, mutation factor ξ, crossover rate ς
2: Set up initial target vectors x
3: for all Individuals xi do
4: Set positions and get their fitness ηi
5: end for
6: Get best fitness ηbest of all ηi
7: while ηbest ≷ η∗ do
8: Choose random integers i ̸= r1 ̸= r2 ̸= r3
9: donor vector

10: vi← xr1 + ξ · (xr2 − xr3) (3.11)
11: for all Positions j do
12: Compute random integer ι and random scalar φ
13: Get the trial vector
14: if φ ≤ ς or j= ι then
15: ui[j]← vi[j] (3.12)
16: end if
17: if φ > ς and j ̸= ι then
18: ui[j]← xi[j] (3.12)
19: end if
20: end for
21: Compute fitness η(ui) and η(xi)
22: if η(ui)≷ η(xi) then
23: xi← ui

24: ηbest← η(ui)
25: end if
26: end while

3.3 Summary of Optimization Techniques

This chapter briefly discussed the PSO and DE optimization techniques, which are

suitable for performing spatial search on multi-modal non-linear fitness spaces. These

methodologies, as described in Chapter 1, were already used for network planning in a

couple of works, thus, these methods are expected to present good performance when us-

ing different fitness approaches. The following Chapter 4 describes characteristics and pa-

rameters of modelled regions, environment propagation model, optimization algorithms,

performance metrics and fitness functions considered in this thesis.
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Choosing a proper system model is relevant to perform a fair comparison of op-

timization techniques and to simulate how these methods could work using real

environment data. There are some techniques to generate a real-based region, which

placement of UEs and BSs not only looks like actual deployment from operators, but also

presents similar properties, such as coverage probability. This chapter discusses the gen-

eration of environments with different BS placement layouts and traffic characteristics.

4.1 Multi-cell Scenario

The multi-cell scenario is composed by sets of BSs and UEs distributed over the

coverage area and can be generated by many ways, given strategies for placing BSs and

modelling UE traffic. This section discusses three methodologies for deploying BSs: grid

layout, stochastic geometry and based on real data.

4.1.1 Grid Layout

The grid layout is widely used to represent a cellular network, which is composed

by BSs distributed in a hexagonal lattice with fixed distance from each other, as shown

in Figure 4.1a. The recommendation in [36] adopts a distance equals 500m between

BSs (Inter-site Distance (ISD)) and urban-microcell fading environment for path loss and

shadowing.

4.1.2 Stochastic Geometry

Stochastic Geometry (SG) can represent the randomness of an actual wireless net-

work allowing to study the average behaviour over many spatial realizations of a net-

work whose nodes are placed according to some probability distributions [37]. This

network randomness is particularly verified when working with Heterogeneous Net-

works (HetNets). In this scenario, due to the increasing number of nodes, network ele-

ments are placed to satisfy ad-hoc requirements.

There are many point processes used to generate regions such as the Poisson Point

Process (PPP) and the Hardcore Point Process (HCPP). The PPP is used to represent up

to infinity UE nodes within a finite service area [38] while HCPP is suitable for placing
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BSs because it requires a minimum distance R for deploying nearby bases. Indeed, the BS

locations appear to form a more regular point pattern than the PPP because of repulsion

between points [39].

A PPP is composed by a set Π of points from which any subset B ⊂ Π is composed

by Poisson random variables, as follows:

Π= {xi, i= 1,2,3, · · · } ⊂ Rd if, and only if B ⊂ Π is a Poisson variable, (4.1)

where Rd is the d-dimensional search space.

An HCPP is a repulsive point process where no two points of the process coexist

with a separating distance not smaller than a predefined hard core parameter R:

Π= {xi, i= 1,2,3, · · · } ⊂ Rd if, and only if xi − xj≥ R;∀xi,xj ∈ Π. (4.2)

The definition of regions with PPP and HCPP points require definition of density λ

for UEs and BSs, usually given in number of points per area unity. Figure 4.1b shows the

BSs deployment deploying according to a HCPP process with R= 70m.

4.1.3 Based on Real Data

The real scenario is based on real information of BS positions found in some databases

such as Brazilian Telecommunications Regulatory Agency (ANATEL) database [40], which

gives data from operators in Global Positioning System (GPS) coordinates. Figure 4.1c

shows an example of BSs existing in a Brazilian city.

The evaluation of fading properties requires conversion of distance dependent pa-

rameters originally given in GPS coordinates to meters in order to evaluate the distances

between points, such as Haversine (great circle) method [41]. Given two points with

latitude φ1,φ2 and longitude λ1,λ2, let ∆φ = φ2 −φ1 and ∆λ= λ2 −λ1:

a= sin2
�
∆φ

2

�
+ cos (φ1) · cos (φ2) · sin2

�
∆λ

2

�
,

c= 2 · asin
�p

a
�

.

Thus, the distance between these two points d is given by:

d= Rearth · c, (4.3)

where Rearth = 6,371 km, assuming a spherical surface of earth.
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All scenarios described in subsections 4.1.1, 4.1.2 and 4.1.3 are shown in Figure 4.1,

which Grid and SG BS layouts are described in meters while actual data is represented in

GPS coordinates.
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Figure 4.1: Layouts for BS initial deployment regions

4.2 UE Traffic Positioning and Representation

The characterization of demanded traffic can be done by the geographical and de-

mographical aspects of the service area [42]. The UEs placement can be implemented

by many ways in order to capture specific characteristics in the simulation, especially the
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heterogeneity of traffic demand in specific locations of network. In other words, the UEs

deployment represents the traffic inside the region of interest. In order to perform this

modelling, for the following methods supposing a set of m UEs with positions UEm(x), x

is the spatial location of UE and the traffic associated to UEm will be denoted by γm.

For a set of N BSs, assuming the throughput demanded by each BS, n, as Cm,n,

and supposing M∗ users connected to that base, the total required throughput can be

interpreted as:

Cm,n =
M∗∑
m=1

Cm. (4.4)

Thus, for user required throughput γm:

Cm,n =
M∗∑
m=1

γm. (4.5)

4.2.1 Randomly Heterogeneous UEs Deployment

In this technique, all user points are assumed as demanding traffic of the same kind.

Thus, high traffic regions can be interpreted as those where a larger amount of UE points

can be found. Using this methodology, the evaluation of outage or satisfaction analysis

is done by assessing single UEs performance.

The placement of users non-uniformly distributed is defined by setting up regions

whose probability of UE be inserted inside differs from each other. The set of UEm(x) has
a probability to be inserted depending on x position.

Since the users’ required throughputs are equal to all points, i.e., γm = γ∗, (4.5) can
be rewritten as:

Cm,n =
M∗∑
m=1

γ∗,

Cm,n =M∗ · γ∗, (4.6)

which is basically the number of connected UEs scaled to the throughput γ∗. The gen-

eration of this kind of environment assumes multiple subregions with varying density of

users. Assuming the global environment as R, a region Rk contains particular aspects

in terms of traffic demand or user density such that Rk ⊂ R. The region Rk contains nk
users, so the density of users λk can me denoted by:

λk =
area (Rk)

nk
, (4.7)
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interpreted as number of UEs per unity of area.

The simulation of two UE configurations for City 1 depends on this method. The

first configuration considers that the user density varies according to each neighbourhood,

called peak traffic, tpeak. This deployment bases on gathering population and area of City

1 neighbourhoods available in [43], which are used to generate a λk for each neighbour-

hood. The users were placed using PPP method inside every subregion, and varying the

λ parameter as shown in Figure 4.2. In the second configuration, a uniform deployment

of users is performed inside City 1 boundaries using a PPP with the same λ parameter

for all regions, which is called average traffic, tavg. Figures 4.3a and 4.3b show peak and

average traffic configurations, respectively.

City 1

 λ 3

 λ 2

 λ 1

Neighbourhoods

Figure 4.2: Variation of population density λ according to each neighbourhood

4.2.2 Grid UEs Deployment With Traffic Density

This method sets a grid containing a fixed quantity of UEs with different traffic

demands. The estimation of traffic metrics per BS is done by using (4.5), which provide

total required throughput given traffic per user γm.

Supposing the region Rk ⊂ R, the density of users λk for this method is denoted by:

λk =
area (Rk)

nk
= λ∗, (4.8)

for any region Rk which results in a fixed density λ∗ in comparison with (4.7). This

technique is used to set up users’ traffic for Grid and SG scenarios.

Considering the UEs deployment described in Sections 4.2.1 and 4.2.2, Figure 4.4

shows an example of UEs deployment into a map divided into three regions considering



CHAPTER 4. SYSTEM MODEL 45

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca de Pós-Graduação em Engenharia - BPGE

P493p Pereira, Marciel Barros.
Particle swarm optimization and differential evolution for base station placement with multi-

objective requirements / Marciel Barros Pereira. – 2015.
73 f. : il. color. , enc. ; 30 cm.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Departamento de 
Engenharia de Teleinformática, Programa de Pós-Graduação em Engenharia de Teleinformática, 
Fortaleza, 2015.

Área de concentração: Sinais e Sistemas.
Orientação: Prof. Dr. Francisco Rodrigo Porto Cavalcanti.
Coorientação: Prof. Dr. Tarcisio Ferreira Maciel.

1. Teleinformática. 2. Planejamento de redes celulares. 3. Otimização heurística. I. Título.

  CDD 621.38

MARCIEL BARROS PEREIRA

PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUTION FOR

BASE STATION PLACEMENT WITH MULTI-OBJECTIVE REQUIREMENTS

Dissertação submetida à Coordenação do

Programa de Pós-Graduação em Engenharia

de Teleinformática, da Universidade Federal

do Ceará, como requisito parcial para a

obtenção do grau de

.

Sinais e Sistemas.

15/07/2015.

BANCA EXAMINADORA

Prof. Dr. Francisco Rodrigo Porto Cavalcanti
(Orientador)

Universidade Federal do Ceará

Prof. Dr. Tarcisio Ferreira Maciel
(Coorientador)

Universidade Federal do Ceará

Prof. Dr. Emanuel Bezerra Rodrigues
Universidade Federal do Ceará

Prof. Dr. Francisco Rafael Marques Lima
Universidade Federal do Ceará

Área de Concentração:

Aprovada em:

Mestre em Engenharia de 

Teleinformática

−38.65 −38.6 −38.55 −38.5 −38.45 −38.4

−3.85

−3.8

−3.75

−3.7

Latitude

Lo
ng

it
ud

e

Users points

(a) Peak traffic

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca de Pós-Graduação em Engenharia - BPGE

P493p Pereira, Marciel Barros.
Particle swarm optimization and differential evolution for base station placement with multi-

objective requirements / Marciel Barros Pereira. – 2015.
73 f. : il. color. , enc. ; 30 cm.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Departamento de 
Engenharia de Teleinformática, Programa de Pós-Graduação em Engenharia de Teleinformática, 
Fortaleza, 2015.

Área de concentração: Sinais e Sistemas.
Orientação: Prof. Dr. Francisco Rodrigo Porto Cavalcanti.
Coorientação: Prof. Dr. Tarcisio Ferreira Maciel.

1. Teleinformática. 2. Planejamento de redes celulares. 3. Otimização heurística. I. Título.

  CDD 621.38

MARCIEL BARROS PEREIRA

PARTICLE SWARM OPTIMIZATION AND DIFFERENTIAL EVOLUTION FOR

BASE STATION PLACEMENT WITH MULTI-OBJECTIVE REQUIREMENTS

Dissertação submetida à Coordenação do

Programa de Pós-Graduação em Engenharia

de Teleinformática, da Universidade Federal

do Ceará, como requisito parcial para a

obtenção do grau de

.

Sinais e Sistemas.

15/07/2015.

BANCA EXAMINADORA

Prof. Dr. Francisco Rodrigo Porto Cavalcanti
(Orientador)

Universidade Federal do Ceará

Prof. Dr. Tarcisio Ferreira Maciel
(Coorientador)

Universidade Federal do Ceará

Prof. Dr. Emanuel Bezerra Rodrigues
Universidade Federal do Ceará

Prof. Dr. Francisco Rafael Marques Lima
Universidade Federal do Ceará

Área de Concentração:

Aprovada em:

Mestre em Engenharia de 

Teleinformática

−38.65 −38.6 −38.55 −38.5 −38.45 −38.4

−3.85

−3.8

−3.75

−3.7

Latitude

Lo
ng

it
ud

e

Users points

(b) Average traffic

Figure 4.3: Traffic demand estimation and BS positions for City 1
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different values of density λ in Figure 4.4a and demanded traffic of users γ in Figure 4.4b.
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Figure 4.4: Diagram of UEs deployment

4.3 Simulation Cases

Assuming all described scenarios previously in Sections 4.1 and 4.2, the following

simulation test cases are defined:

• Case 1: Grid deployment for BSs and UEs; fixed distribution of UEs: This arrangement con-

figures BSs in a grid layout by defining their radius and places UEs in grid distribu-

tion with homogeneous traffic demand, i.e., γ= constant for any UE. The network

is initially designed withN BSs, from which it is removed 1 or 2 BSs. The optimiza-

tion process tests PSO and DE, by placing one or two bases in the modified grid

and exhibits results for fitness evolution and distribution of optimized points.

• Case 2: Stochastic Geometry deployment for BSs and UEs, homogeneous distribution for UEs:

This configuration assumes BSs deployed under a HCPP process and UEs as PPP

process. Each distribution of BSs and UEs presents its own density λ. This model

tests the placement of multiple BSs: 1, 2 and 4 using PSO and DE, exhibiting fitness

performance only.

• Case 3: Actual Data for BSs and traffic estimation of UEs: The third case considers the

region of City 1 with actual deployment of BSs and two density of users: the first

corresponds to the heterogeneous population data of a city and the second is a

random deployment of users using PPP with fixed density. Only PSO is used in this

case, which tests the placement of 4, 8, 16 and 32 new bases.
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4.4 Fitness Functions

Using functions described in Section 2.3, two objective functions φ1 and φ2 are

defined below, considering the selection of α= 4 in (4.9a) to adjust the shape φ1 in order

to penalize points which result in high overload for new bases as well as regions where

new bases would present low demand.

φ =

�
φ1 = η1; α= 4, (4.9a)

φ2 = η2. (4.9b)

As described in Section 2.3, the fitness function φ1 attempts to place new bases

where they would serve traffic demand very close to their throughput limit and the func-

tion φ2 combines maximization of capacity sensed by users with load balancing of BSs’

demand.

The use of each objective function in all cases is described below:

• Cases 1 and 2 are evaluated with φ1 (4.9a) and φ2 (4.9b);

• Case 3 is verified with function φ2 when combining influences of average and peak

traffic shown in Section 4.2. Given the function η2 = J ·C (2.21), the contribution

of peak and average traffics for ηpeak2 and ηavg2 will be denoted by:

η
peak
2 = Jpeak ·Cpeak, (4.10)

η
avg
2 = Javg ·Cavg. (4.11)

Thus, these both influences were considered to generate the objective function φ∗2
(4.12):

φ∗2 = η
peak
2 +ηavg2 . (4.12)

4.5 Environment Parameters

After creating configurations for UEs and BS placement, the environment parame-

ters are defined for obtaining essentially received power for each UE by all bases, which

are described by 3rd Generation Partnership Project (3GPP) recommendation in [36]; the

urban-micro environment is used for simulation cases 1 and 2 while case 3 is performed

on the urban-macro environment. Main parameters are shown in Table 4.1 and Table 4.2.
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Table 4.1: Large-scale fading model parameters for urban-micro environment

Parameter Value Unit

Inter-site distance (Case 1 only) 500 m
Frequency 2 GHz
Noise Power -124 dBm
Minimum distance UE to BS 20 m
BS transmit power 38 dBm
UE transmit power 24 dBm
Path loss model for cellular links 34.5+ 38log10(d) dB, d in m
Lognormal shadowing standard deviation 10 dB

Table 4.2: Large-scale fading model parameters for urban-macro environment

Parameter Value Unit

Frequency 2 GHz
Noise Power -124 dBm
Minimum distance UE to BS 35 m
BS transmit power 46 dBm
UE transmit power 24 dBm
Path loss model for cellular links 32.2+ 35log10(d) dB, d in m
Lognormal shadowing standard deviation 8 dB

4.5.1 LTE Parameters

Within a BS coverage area, all subscribers connected to the BS will experience differ-

ent data rates due to the distance-dependent channel effects. The throughput performance

for UEs depends also on antenna technology and channel bandwidth. Thus, a realistic

configuration must be chosen by defining the following aspects: data sub-carriers NSC,

slots per second NSLOTS, symbols per second NSYMBOL, bits per symbol β , code rate υ and

spatial streams NSTREAMS, which relates to antenna diversity. These aspects are used to

estimate the throughput, τ, for LTE transmissions [44] as follows:

τ=NSC ×NSLOTS ×NSYMBOLS × β ×υ×NSTREAMS (4.13)

Considering τ as the throughput limit, and recovering definition of themaximum through-

put ℓ in (2.3.1), one has:

ℓ= τ. (4.14)

The definition of the maximum acceptable throughput of BSs requires specifications of

all these parameters. The objective is determine how much traffic can be demanded to a

single base. Assuming LTE common parameters, Table 4.3 specifies inputs for (4.13) for

simulation cases 1 and 2. Macro cells adoptingMultiple-InputMultiple-Output (MIMO)
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Table 4.3: Parameters for LTE throughput (Simulation Cases 1 and 2)

Parameter Value OBS.

BW 20 MHz
NSC 1200 20 MHz bandwidth

NSLOTS 2000
NSYMBOLS 7

β 6 64-QAM
υ 4

5
NSTREAMS 4 MIMO 2× 2

Parameter Value Unit

τ 322.56 Mbps
τ/BW 16.128 bps/Hz

2 × 2 result in a maximum throughput per BS equals 322.56 Mbps or 16.128 bps/Hz,

considering a 20 MHz bandwidth.

The simulation case 3 does not suppose maximum throughput per base, resulting

in the use of fitness function φ∗2 only. The changes on Table 4.3 parameters for this

simulation case consider a bandwidth of 10 MHz and NSTREAMS = 1 in a Single-Input

Single-Output (SISO) system, instead of adopting original values for simulation cases 1

and 2.

4.5.2 Traffic Model

The traffic model defines characteristics of network usage or demands from users,

which is set after generating UEs positions in regions of each case. The full buffer model,

which assumes all UEs present continuous transmission in UL and DL is known to be

impracticable because in realistic settings, users are not continuously transmitting [45].

Despite this aspect, this model has been extensively used in many works that aim to

measure spectral efficiency of systems.

4.6 Optimization Techniques Parameters

Each optimization techniques described in Chapter 3 requires the definition of

many parameters, which affect the performance by adjusting exploration and exploita-

tion stages. The following subsections exhibit main parameters for PSO and DE.
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Table 4.4: Parameters for PSO optimization – Simulation Cases 1 and 2

Cases 1 and 2 – Grid and Stochastic Geometry

No. of PSO No. of No. of Inertia Social
Persistence

No. of
repetitions iterations Individuals Attributes Influence BSs

Ntrials K M w0 wK cgB cpB NBS *Grid Only

50 100 [16, 32] 1 0.4 2 1 [1*, 2*, 4]

Table 4.5: Parameters for PSO optimization – Simulation Case 3

Simulation Case 3 – Actual Data

No. of PSO No. of No. of Inertia Social
Persistence

No. of
repetitions iterations Individuals Attributes Influence BSs

Ntrials K M w0 wK cgB[0] cgB[K] cpB[0] cpB[K] NBS

50 100 [16, 32] 1 0.4 2 0.5 1 2 [8, 16, 32]

4.6.1 PSO Parameters

Table 4.4 exhibits simulation parameters for Cases 1 and 2 and Table 4.5 shows pa-

rameters for case 3, described in Section 4.3. Cases 1 and 2 assumed variation in inertia

weights and fixed social influence and persistence attributes. In case 3, PSO performs

optimization with variation on social influence and persistence as described in 3.1.3.

The number of new BSs for placing varies from {1,2} in Case 1, {1,2,4} in Case 2 and

{8,16,32} in Case 3.

4.6.2 DE Parameters

Table 4.6 shows simulation parameters for Cases 1 and 2 described in Section 4.3.

Mutation factor and crossover rate are fixed for both cases. The optimization attempts

to deploy 1 or 2 new BSs in described scenarios. The number of iterations and repetitions

is equal to PSO case in order to compare performance.

Table 4.6: Parameters for DE optimization – Simulation Cases 1 and 2

Cases 1 and 2 – Grid and Stochastic Geometry

No. of DE No. of Mutation Crossover No. of
repetitions iterations Factor Rate BSs

Ntrials K ξ ς M (*Grid Only)

50 100 1 0.4 [1*, 2*, 4]
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4.7 Network Performance Metrics

The fitness functions described in Section 4.4 are appropriate to lead optimization

process towards values which result in good fitness, but the impact on performance of

network also needs evaluation.

There are some common metrics which are used to measure network performance

andQoS, fromwhich theCapacity andOutage of users are related to how users sense net-

work performance. The system capacity was previously described in Section 2.1, which

defines total capacity as the sum of sensed capacities of users.

In fading channel environments users experience rapidly changes on signal strength

and, usually, there is a minimum received power level Pmin which is impossible to perform

communication if signal drops below this set-point. Considering the shadowing, which is

log-normally distributed, there is a probability of received signal Pr falling below Pmin: the

outage probability (p), which depends on the combination of path-loss PL and shadowing

standard deviation σχ as follows [22]:

p(Pr ≤ Pmin) = 1−Q
�
Pmin −PL
σχ

�
, (4.15)

where Q(z) is defined as the probability that a Gaussian random variable x with mean

zero and variance one is bigger than z.

These twometrics are evaluated in simulation case 2, the stochastic geometry-based,

using the simulation parameters described in previous sections and urban-micro environ-

ment shown in Table 4.1. The estimation of outage considers the UE received power from

its connecting BS, whose the minimum received power is defined as Pmin = −100dBm.

4.8 Summary of System Model

This chapter presented methodologies for generating the multi-cell scenario and set-

ting up users’ traffic and parameters for the environment and optimization methods. The

performance comparison between PSO andDE techniques will be described in Chapter 5.
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This chapter discusses results for each of the simulation cases described in Section 4.3

in terms of fitness performance, optimized points and impact on network efficiency

using PSO and DE. Here, advances using the three simulation cases described earlier in

Section 4.3 will be shown.

5.1 Case 1 – Grid layout

The Grid layout simulation case – Case 1 – was described in Section 4.3, which

consists in a grid region with hexagonal layout for bases. For performing simulations, it

was created a region with sets of BSs and UEs presenting the same traffic for all points.

The major parameters for regions in Case 1, such as the region area and number of UEs,

are shown in Table 5.1.

5.1.1 Fitness Function

Figures 5.1a and 5.1b exhibit the fitness functions φ1 and φ2, respectively, described

in Section 4.4, for a grid region considering the following situations:

• Case A: removing the BS located at (0,0);

• Case B: removing bases at (0,0) and (0,0.5).

The elimination of these bases affects fitness functions because network demands

of UEs previously covered by removed the BSs increase as much as their sensed capaci-

ties lows: users will no longer be served by these bases. Supposing these facts, there is

expectation of high fitness values in these locations, which is confirmed in Figure 5.1,

where the higher the fitness function values become, the closer the positions approaches

the removed points. It is good to remind that fitness functions are evaluated for inserting

Table 5.1: Parameters for Simulation Case 1 – Grid Layout

Simulation Case 1

Region No. of No. of No. of Traffic density
area (A) BSs Removed BSs UEs per area (γ/A)

4km2 17 1 (case A), 2 (case B) 4096 380Mbps/km2
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a single new base, thus, it is hard to graphically present the impact of placing two bases

in the environment. Furthermore, it would be required to evaluate fitness for all combi-

nation of two sets N points, thus, testing N2 points for evaluating fitness performance.
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−0.5 0 0.5

−0.5

0

0.5

...
.

Placing 1 new BS

−0.5 0 0.5

−0.5

0

0.5

...
.

Placing 2 new BS

11.5

12

12.5

13

13.5

(b) Fitness function φ2

Figure 5.1: Fitness functions φ in Grid layout

For placing a single BS, it is expected for optimization algorithms to find solutions

at locations with the highest fitness values, but it could probably be different when in-

serting multiple bases simultaneously because the position x of eNB1 will affect fitness

performance of remaining bases.



CHAPTER 5. RESULTS 54

5.1.2 Performance Results

The results show the improvement on the values of the fitness functions for both

PSO and DE methods. PSO shows advantages and better solutions when using a lower

quantity of individuals than DE, such as in the 8 individuals case shown in Figure 5.3.

The mean final fitness values found by PSO, for fitness functions φ1 and φ2, respectively,

are 1.00 and 13.45, as shown in Table 5.2, when using 8, 16 or 32 individuals. For all

variations on the number of individuals, the mean optimized point after 50 trials is also

described in Table 5.2.

Table 5.2: Fitness results and best points found by PSO in 50 trials

Fitness No. of Fitness Best Points Std. deviation
function Individuals (K= 100) (Mean) (Best Points)

φ1

8 1.000 (0.005,−0.006) 0.039
16 1.000 (0.000,0.007) 0.038
32 1.000 (0.007,0.000) 0.037

φ2

8 13.449 (0.001,0.000) 0.004
16 13.449 (0.000,0.000) 0.004
32 13.449 (0.000,0.000) 0.004

Although DE presented a worse performance when using less individuals than PSO,

this technique is able to find suboptimal solutions very soon in terms of iterations, as

shown in Table 5.3, which the mean number of reached iterations is less than half of total

iterations in PSO for 5 of 6 simulation setups – in other words, DE converges in half of the

total number of iterations in 50% of trials. The increasing on the number of individuals

affects this mean of reached iterations because the less the number of individuals, the less

the needed amount of iterations to converge, which CDFs are shown in Figure 5.2.

Table 5.3: Mean number of iterations until DE find best solution

Fitness No. of Mean Number of
function Individuals Iterations

φ1

8 26.6
16 37.1
32 49.5

φ2

8 27.7
16 42.2
32 56.9

The performance of DE is worse than that of PSO for 8 individuals and all fitness

functions at the end of the iterations, but it presents advances as the number of individuals
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increases for fitness functions φ1 and φ2 as exhibited in Figure 5.3. DE is not able to

overtake PSO’s performance considering fitness function φ1, but it achieves higher fitness

at the end of iterations for function φ2 compared to the PSO case. On the other hand,

the standard deviation of mean solution points is lower in PSO in all cases, which means

the solutions are more concentrated in the search space than DE’s findings.

Table 5.4: Fitness results and best points found by DE in 50 trials

Fitness No. of Fitness Best Points Std. deviation
function Individuals (K= 100) (Mean) (Best points)

φ1

8 0.963 (−0.001,0.005) 0.130
16 0.989 (−0.007,−0.006) 0.079
32 0.999 (0.002,0.016) 0.050

φ2

8 13.442 (−0.009,0.003) 0.187
16 13.556 (0.012,−0.015) 0.085
32 13.590 (−0.002,−0.002) 0.044
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Figure 5.2: CDFs of number of iterations until find best solution in DE – Grid layout
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Figure 5.3: PSO and DE performance for 8, 16 and 32 individuals – Grid layout
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5.1.3 Optimized Points

The PSO set of optimized points for all fitness functions scenarios, considering cases

A and B, showed in Figure 5.4 for 32 individuals. In case A, PSO is able to find solutions

very close to the position of the removed BS; indeed, the fitness improves the quality of

solutions as shown earlier in Figure 5.3. A group of solutions can be found very close to

the excluded points for all fitness function {φ1,φ2} as shown previously in Table 5.2.

Due to the contributions of an optimized point from particle P1 to fitness perfor-

mance of particle P2, the exclusion of two BSs results on a wider distribution of solutions

for fitness function φ1 than the case of placing a single new base. On the other hand, the

fitness function φ2 results in narrowly spread solutions with very low error.
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Figure 5.4: PSO performance – Fitness functions φ in Grid layout
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The optimized points found by DE are shown in Figure 5.5, analogous to PSO case

when placing one or two BSs. DE presents higher standard deviation of mean optimized

points than PSO as shown Table 5.4, resulting in a disperse set of solutions as exhibited

in Figure 5.5.
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Figure 5.5: DE performance – Fitness functions φ in Grid layout

5.1.4 Summary of Optimization in Case 1

Both PSO and DE are effective to provide sets of results close to removed BS points

assuming fitness functions φ1 and φ2. The PSO presents a set of solutions which results

in lower standard deviation than DE for all combination of amount of individuals and

fitness functions but DE is capable to find good solutions in less than half the number of

the PSO iterations in at least 50% of trials.
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5.2 Case 2 – Stochastic Geometry

The Stochastic Geometry layout simulation case – Case 2 – was described in Sec-

tion 4.3. Analogous to Case 1, the region contains sets of BSs and UEs with the same

traffic for all points. The major parameters for regions in Case 2 are shown in Table 5.5.

Table 5.5: Parameters for Simulation Case 2 – SG layout

Simulation Case 2

Region Density of Density of Traffic density
area (A) BSs (HCPP) UEs (PPP) per area (γ/A)

4km2 λBS = 4 λUE = 150 380Mbps/km2

5.2.1 Performance Results

The CDFs shown in Figure 5.6 indicate that more than 50% of trials reached the

maximum number of iterations, suggesting that DE has not converged yet at that point,

when using function φ1. The use of fitness function φ2 decreases the number of tri-

als which reached K iterations to only 10%. Recovering the results of convergence in

Figure 5.2 for the Grid Layout, the convergence decreases as the number of individuals

grows.

For the case of placing 2 new bases, which CDFs are shown in Figure 5.7, more

than 70% of the individuals in DE trials also reach K iterations for fitness φ1. The results

of testing fitness functions φ1 and φ2 for placing 1 and 2 new bases using DE indicate

that the optimization must run as a greedy algorithm, thus, without limit on number of

iterations, to perform a proper optimization.

The performance of placing 1, 2 and 4 new BSs with 8, 16 and 32 individuals

for PSO and DE in stochastic geometry layout is shown in Figures 5.8, 5.9 and 5.10.

PSO presents better mean performance only when using fitness function φ2 in most cases

while DE showed better improvements when using fitness function φ1 in all comparisons

between number of individuals and number of new bases. PSOs has worse performance

than DE when using a lower number of individuals for performing searches. The results

on fitness function φ2 show that a large number of individuals benefits PSOs performance

and requires DE to run more iterations to converge.

The performance results of fitness functions for the stochastic geometry-based lay-

out are shown in Figures 5.8, 5.9 and 5.10 for 8, 16 and 32 individuals, respectively.

When using only 8 individuals for optimization, PSO presents its poorest fitness perfor-
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mance when placing 4 new BSs with fitnessφ1 while DE exhibited its poorest results when

placing 1 single BS with fitness φ2.

Similar to Case 1 results, the increase on the number of individuals of all opti-

mization techniques generates better fitness performance. When using a larger number

of individuals, the final fitness values in each case improves for PSO and DE, but con-

trasting as results discussed in Section 5.1, PSO exhibits higher fitness values than DE

assuming the function φ2 with 16 and 32 individuals, shown in Figures 5.9b and 5.10b.

The DE performance for function φ2 indicates that the number of iterations is insufficient

for performing optimization, which is evident in CDFs shown in Figure 5.7 when placing

2 new bases.

These results indicate that DE obtains better performance on optimization consid-

ering fitness function φ1 while PSO expresses better advances with φ2.
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Figure 5.8: PSO and DE fitness performance for 8 individuals placing 1, 2 and 4 new BSs
– Stochastic Geometry

5.2.2 Network Performance Metrics

In order to investigate optimization impact on BSP using metrics described in Sec-

tion 4.7, Figure 5.11 show the influence of optimization process in these attributes when

inserting 4 new bases.
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Figure 5.9: PSO and DE fitness performance for 16 individuals placing 1, 2 and 4 new
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Figure 5.11: PSO and DE network performance for placing 4 new BSs with 8 and 16 individuals – Stochastic Geometry
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The impact of placing different numbers of new bases for 32 individuals is shown

in Figure 5.12, considering only the fitness function φ2 for optimization. For both opti-

mization methods, the higher the number of bases, the more the improvement on network

metrics at the end of iterations, but DE does not improve as much as PSO on mean ca-

pacity, differently than when evaluating mean outage performance.
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Figure 5.12: PSO and DE network performance for 32 individuals placing 1, 2 and 4 new
BSs – Stochastic Geometry

The fitness function φ1 does only a little contribution to the improvement on net-

work metrics, thus, it is not effective to improve users’ capacity, but it presents some

enhancements on reducing mean outage of users.

On the other hand, the use of fitness φ2 for optimization generates improvement on

network metrics: the gain on users’ mean capacity benefits more when using PSO than

DE, when the number of iterations is fixed. In terms of mean outage probability, both
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Table 5.6: Improvements on network metrics by optimization in SG layout – fitness func-
tion φ2

Number of Increase on Mean Capacity Mean Outage Probability
new BSs number of BS PSO DE PSO DE

1 6.75% 3.86% 3.31% −14.0% −14.9%
2 13.1% 6.87% 6.65% −23.9% −26.3%
4 26.6% 11.0% 7.74% −37.9% −30.5%

methods result in similar improvement. The PSO also shows a higher increasing on mean

capacity metric when using larger population size.

According to results obtained in previous subsection, DE does not present good

performance on optimization using fitness function φ1, which does not result in improve-

ments on network metrics. Thus, PSO is more efficient to optimize fitness φ2 generating

enhancements on network metrics capacity-based.

The improvement on infrastructure for placing 1, 2 and 4 new bases is 6.75%,

13.1% and 26.6%, respectively, which results in enhancements for mean capacity and

mean outage probability shown in Table 5.6, considering 32 individuals for optimization

process. These results confirm that PSO has better performance than DE in terms of

mean capacity improvement, resulting on enhancements of 11% versus 7.74% of DE

when placing 4 new bases. DE is more effective for reducing mean outage probability

than PSO when placing 1 and 2 new bases, but as the number of new bases enlarges, PSO

overtakes DE in performance.

5.3 Case 3 – Real Data Based

Using actual data from City 1 – Case 3 – described in Section 4.3, PSO performs

optimization with variation on the number of new BSs for positioning and fixed number

of 128 individuals considering the fitness function φ∗2 presented in Section 4.4.

The results shown in Figure 5.13a exhibits improvement of all objective functions

for each number of new BS, which PSO is able to enhanceφ∗2: the more the amount of new

BSs, the higher the fitness improvement. Considering only old BSs on the environment, the

load distribution of traffic among bases, computed from (2.20) is fixed, thus, increasing

the number of new BSs contributes to individuals to have more control of this parameter

in the optimization process. On the other hand, increasing number of new BSs generates

higher interference, thus, limit the gain on fitness function.

The use of more individuals increases performance with iterations on optimiza-
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Figure 5.13: Fitness φ∗2 versus Iteration in Case 3

tion process. The enhancement on fitness function φ∗2 is shown in Figure 5.13b, which

confirms that the use of a larger number of individuals for optimization affects fitness per-

formance, but the use of 256 individuals enhances fitness by less than 0.4% as observed

when using 128 individuals.

Considering network metrics, PSO enhanced system capacity by 17%, when in-

creasing number of BSs by 8%, shown in Figure 5.14a. On the other hand, an increase

of 32% of infrastructure resulted in an improvement of only 29.5% for capacity due to

the higher interference in multiple BSs placement scenario.

When varying number of individuals, the enhances on capacity are shown in Fig-

ure 5.14b. Nevertheless, results for 256 individuals do not improve capacity more sig-

nificantly than whose observed for 128 individuals, resulting on enhancement by only

0.62%.

Finally, Figure 5.15 exhibit the distribution of the best points obtained in each trial

for placing 8 new BSs, for 128 individuals, which corresponds to the most suitable regions

for deployment of new BS. The overlapping of BS points, already placed infrastructure

and peak traffic distribution of UE implies the PSO reaches regions with poor coverage

and high traffic distribution, simultaneously.
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6. CONCLUSION AND FUTURE WORK

This thesis has proposed a modelling of Base Station (BS) Placements (BSPs) optimiza-

tion for Long Term Evolution (LTE)-Advanced (LTE-A) networks for infrastructure

expansion considering, as major objectives, the maximization of traffic for users without

overloading new bases and the increase of sensed capacities for users with load balancing

using Particle Swarm Optimization (PSO) and Differential Evolution (DE) as heuristic

methods. Chapter 2 presented some aspects of cellular networks used to compose two

fitness metrics for optimization: as described in that chapter, these two metrics aim to

improve performance of new placed nodes only or all network nodes respectively. Chap-

ter 3 exhibited the PSO and DE as optimization methods, highlighting their aspects and

some improvements for adjusting their performance. Chapter 4 showed modelling as-

pects for three scenarios: Grid, Stochastic Geometry (SG)-based and Actual data-based,

from which users traffic also were modelled. The numerical results for BSP using PSO

and DE were shown in Chapter 5.

Considering the simulation Case 1, the PSO exhibited better performance at the

end of iterations for fitness functions φ1 while DE presented better performance when

working on fitness function φ2. The standard deviation of PSO’s spatial points solutions

was lower than those obtained by DE when using 32 individuals, although DE was able

to result good performance after a fewer number of iterations. From simulation Case 2,

the Stochastic Geometry-based scenarios, DE presented better performance when using

few individuals for all fitness functions. As the number of individuals increases, PSO

overtake DE in performance. It was verified that DE has better convergence time when

using fitness function φ1 in Case 2 simulation scenario. Considering the function φ2,

PSO presented better fitness and network performance metrics as those observed with

DE. Both methods were able to reduce mean outage probability for network when using

the second fitness function. In Case 3, PSO was able to find solutions which optimized

performance of fitness function φ∗2 when placing 8, 16 and 32 new bases in the environ-

ment. The improvement on mean capacity in some scenarios was higher than the increase

on number of new bases.

The use of multi-objective requirements can be expanded for placement of nodes

when energy efficiency is also a concern, such as the 5th Generation (5G) predictions.

In this work, these heuristic methods were verified to be effective to find good solutions

in environments where there are many parameters which affect fitness, heterogeneity of

nodes and traffic distribution. The inclusion of energy efficiency metrics is a good start

point when carry on using these methods as tool for assisting network planning.
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