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Orientação: Prof. Dr. José Soares de Andrade Júnior

1. Dijkstra’s Algorithm. 2. Optimal-Path. 3. Dynamic Time
Warping. 4. Standard Linear Interpolation. 5. Dynamic Time
Warping Interpolation. I.

CDD:000.0



To my parents, my
family and to my

love Lorena...



Acknowledgments

I would like to thank everyone who contributed to the thesis. In particular:

• First and foremost, my parents;
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ABSTRACT

In oil industry, it is essential to have the knowledge of the stratified rocks’ lithology and, as
consequence, where are placed the oil and the natural gases reserves, in order to efficiently
drill the soil, without a major expense. In this context, the analysis of seismological data is
highly relevant for the extraction of such hydrocarbons, producing predictions of profiles
through reflection of mechanical waves in the soil. The image of the seismic mapping
produced by wave refraction and reflection into the soil can be analysed to find geological
formations of interest. In 1978, H. Sakoe et al. defined a model called Dynamic Time
Warping (DTW)[23] for the local detection of similarity between two time series. We apply
the Dynamic Time Warping Interpolation (DTWI) strategy to interpolate and simulate a
seismic landscape formed by 129 depth-dependent sequences of length 201 using different
values of known sequences m, where m = 2, 3, 5, 9, 17, 33, 65. For comparison, we done
the same operation of interpolation using a Standard Linear Interpolation (SLI). Results
show that the DTWI strategy works better than the SLI when m = 3, 5, 9, 17, or rather
when distance between the known series has the same order size of the soil layers.

Keywords: Dijkstra’s Algorithm. Optimal-Path. Dynamic Time Warping. Standard
Linear Interpolation. Dynamic Time Warping Interpolation.
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1 INTRODUCTION

The field of complex systems is extremely wide. It encloses different areas of research,

such as biology, sociology, finance and geology [1, 2, 3, 4]. The relations between these

areas consist on the fact that all of them are made by parts connected, as the brain system

is made of neurons, or a social network is made by people. The study of this “complex”

connections is the aim of a complex systems researcher, in order to find the collective

behaviors of given system. Despite being a modern field of research, it is difficult to

determine when these studies first took place. Science paper, entitled “How long is the

coast of the Britain? Statistical Self-similarity and fractional dimension”, published by

the mathematician Benoit B. Mandelbrot in 1967 [5]. He explained how complicated is to

measure a coast of a country, in particular the coast of Britain which has a lot of inlets.

Mandelbrot cited the work of Richardson 1961 where he observed that the length depends

on the scale of the measure. The Richardson’s formula is,

L(G) = FG1−D, (1.1)

where G is a positive scale, F is a positive pre-factor and D is a constant, called the

dimension. Richardson defined D as a “characteristic” of a frontier. For the coast of

Britain, D = 1.25, and naturally, L is the approximated length of the coast.

The stratifications of rocks also can be studied using fractal models [6][7][8]. The

interpretation of the stratigraphic sequences is very important in a lot of fields such as

earth history or resources extraction [6]. The self-affinity, one of the fractals main feature,

is a characteristic of stratified rocks, therefore it is possible to apply fractal models to

better understand the structure of rocks in terms of their sections, that mathematically

are converted into sequences. A section is a vertical sequence of a rock, geometrically

represented by a vertical line segment with topological dimension 1. It is possible to plot

the line above in the presence or not of some properties like density, resistivity or the

presence of a particular fossil. For example, if it occurs only once in the sequence, the

fractal dimension is 0. If it appears at all points of the sequence, the fractal dimension is
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1, and if it appears in some points, the fractal dimension of the set will be between 0 and

1. That also could be treated as a sequence of sediments deposited during a particular

periods of time. This mathematical approach based on fractal geometry can be used to

study the lithology of stratified rocks.

This thesis is organized as follows: In Chapter 2, we present some theoretical foun-

dations of the science of Fractals that played an important role in the geometry of last

century. We introduce the traditional concept of the Hausdorff-Besicovith dimension and

its relation with the fractal dimension, the self-similarity and self-affinity. Some ele-

mentary notions about the percolation theory are then presented, introducing the forest

fire model and thepercolation model with some hints to its application in oil field. Some

elements of graph theory are presented, introducing the shortest path problem with its

numeral solution, the Dijkstra’s algorithm.

In Chapter 3, we presented in details a method that was born from the spoken word

recognition, called Dynamic Time Warping (DTW), and was an inspiration to our inter-

polation strategy. Moreover, we also showed the results of our method applied to seismic

data, in order to predict the lithology of stratified rocks and make comparisons with

standard technique.

Finally, we conclude this dissertation making some conjectures as well as some per-

spectives for future projects.



17

2 THEORETICAL
FOUNDATIONS

Benoit B. Mandelbrot started his book, The Fractal Geometry of Nature, written in

1982, with the following phrase:

“Why is geometry often described as “cold” and “dry”?”

— Benoit B. Mandelbrot

In a few words, Mandelbrot discovered that the Nature is “not that simple”. Actually, it

is a complex world which the Euclidian geometry cannot explain properly in its totality

and, in order to describe that world, he introduce the fractal theory. In this chapter, we

introduce the theoretical foundations of the complex systems presenting an introduction

to fractal theory and percolation theory. After that, we explain some concepts of the

graph theory, including the shortest path problem with its computational solution, the

Dijkstra’s algorithm.

2.1 Introduction to Fractal Theory

2.1.1 What is a Fractal?

The word Fractal was coined by B. B. Mandelbrot in 1975 in his book Les Objects

Fractals: Forme, hasard et dimension [11]. Mandelbrot described some pure mathematical

objects, as Koch snowflake, Peano curve and many others, which in those years were

considered extremely far from reality, appearing in the nature. He created a new kind of

geometry to explain the shapes in our world. In fact, the classical geometry, the Euclidean

geometry, is made out of perfect shapes, such as points, lines and planes, even though

nature is not that perfect, it can be, in fact, more complex and made of strange objects. In

this section, we present the main contributions of Mandelbrot, some concepts and models

related with fractals.
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As Mandelbrot explained in his another book, The Fractal Geometry of Nature [9], the

word fractal was chosen by him referring to the latin word fractus that means “irregular”

and the relative verb frangere that means “to break”. In this way, when we speak about

natural fractal we think of a natural structure that is easily representable by a fractal set

like a Brownian curve from a Brownian motion.

A fractal could be defined as an object that has the same pattern under a change of

scale [12]. In nature, there are some examples: A river and its tributaries or the branching

of trees and their roots and, also, a coastline with its multitude of inlets and peninsulas.

Another clear example is the Fern leaf, where each leaf branch is similar to the entire leaf.

This is the main characteristic of fractals and it is called “self-similarity”. The Fig. 1

shows the Mandelbrot set, .a famous fractal studied and popularized by Mandelbrot and

fractal examples existing in nature

a) b)

c)

d)

Figure 1: The Fig. a shows the Mandelbrot set with a zoom in a part of it. In Fig. b,
an image of a fern made available by the National Geographic, with a simulation of a
fern leaf. Fig. c and d are two images made available by NASA; the first one shows a
large-scale fractal motion of clouds and the second image shows the fractal patterns of
the fjords of the Greenland.
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2.1.2 Hausdorff-Besicovith dimension

A much accurate definition of fractals was given by Mandelbrot:

“A fractal is by definition a set for which the Hausdorff-Besicovitch dimension strictly

exceeds the topological dimension.”

In the context of the Euclidean geometry, the topological dimension gives us an intuitive

idea of the object and that dimension is an integer number. However, in case of fractals,

it does not necessarily give us an intuitive representation. For instance, the topological

dimension of the Cantor set is 0 and its Hausdorff-Besicovith dimension is 0.6309. The

Hausdorff-Besicovitch dimension is defined for a set of points S as a critical dimension

where Ml of this set changes from 0 to ∞,

Ml =
∑

h(l) =
∑

γ(l)δl = lim
δ→0

γ(l)N(δ)δl →

0 if l > D,

∞ if l < D,
(2.1)

where N(δ) is the necessary number of test function h(l) to complete the S set, γ(l) is a

geometric factor, l is the dimension of the measure and δ is the measured object’s length

of the test function.

Here we mention two methods to calculate N(δ): The box counting method and the

yardstick method. Using the box counting method, we divide the landscape in boxes of

length δ. If δ → 0, we have,

N(δ) ∼ 1

δD
. (2.2)

We also could find N(δ) using the yardstick method. It consists in trying to delimitate

the perimeter of the figure with segments of the same dimension δ. In this case we have

a similar expression:

N(δ) ∼ 1

δD
. (2.3)

In the field of Complex Systems, the Hausdorff-Besicovith dimension is usually called

the Fractal dimension. In 1967, Mandelbrot used the yardstick method to calculate the

Hausdorff-Besicovith dimension, or fractal dimension, of the west coast of Britain and

obtained D = 1.25 [5].
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2.1.3 Self-similarity and Self-affinity

We define fractals as self-similar objects; in other words, an object that has the same

pattern under a change of scale. A self-similar transformation or isotropic transformation

is a transformation that begins from a space of E-dimension with the following point

x = (x1, ..., xE) to the same space of E-dimension with the following new point x′ =

(rx1, ..., rxE), where r is the scale factor [14]. This is an isotropic transformation due to

the scale factor r that does not depend on the coordinates (it is always the same). Pure

geometrical objects, like the Koch snowflake or the Cantor set, are self-similar. Their

structures do not change with different scales as well as their fractal dimensions.

Are all the fractal self-similar? A. Lakhtakia et al. tried to answer this question

in their paper [7]. The answer is no. They argued that there is another feature of

fractals called self-affinity and the self-similarity is only a special case of this property.

To understand it, they provided a variant of the question: how long is the coastline

of continental Europe, excluding all islands? The fractal dimension of the coastlines of

France, Spain and Portugal are non-trivially different, but all have the same order of

magnitude. In other words, there are different local fractal dimensions. They conclude

that the coastline of continental Europe is not self-similar but it is self-affine. A self-affine

transformation or an anisotropic transformation is a transformation that begins from a

point x = (x1, ..., xE) in the E-dimension space to arrive in x′ = (r1x1, ..., rExE) and the

factor of scale is not a scalar, but it is a vector #»r = (r1, ..., rE). Therefore, in general, a

fractal is self-affine.

2.2 Introduction to Percolation Theory

2.2.1 The percolation model

The word “percolation” is naturally associated with the movement of some fluids

through porous media. Until the first half of the 20th century, the scientists studied

the percolation phenomena mainly by experiments, due to the difficulty to find exact

analytical solutions for most of the problems. After the advent of supercomputers, the

computational simulations of physical systems became a very important tool for the sci-

entific community. In 1957, Broadbent and Hammersley published a study [17] that is

considered the beginning of the percolation theory. In that paper, they defined a model

that explained the spread of a fluid or a gas through a random medium [10].
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There, we present an introductory example that explain the main concepts of the

percolation model and some phenomena associated. Consider a square lattice, initially

empty, of dimensions 128 × 128. We paint some of those squares with black. We also

could define a cluster as a group of neighbour squares painted in red in Fig. 2. Therefore,

the percolation theory deals with the properties of these clusters.

2.2 Introdução à teoria da percolação 35

(a) p= 0.1 (b) p= 0.4

(c) p= pc (d) p= 0.7

Figura 2.9: (a)-(d) Redes quadradas de tamanho L = 128 em diferentes valores da probabili-
dade de ocupação p para percolação de sítios. O agregado percolante está em vermelho e os
agregados isolados estão em preto.

Figure 2: The figure shows four square lattice of dimension 128× 128 for different values
of p. The black squares are the occupied sites and the white squares are the not occupied
sites. In red are shown the clusters [18].

Naturally the black squares could be distributed in different ways. We deal with the

case where the black squares are distributed randomly. The probability that one square
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is black is p, so if we have N squares, where N → ∞, only pN squares are black and

(1 − p)N squares are empty. From Introduction to percolation theory [16], we cite the

definition of percolation theory given by Stauffer:

“Each site of a very large lattice is occupied randomly with probability p,

independent of its neighbours. Percolation theory deals with the clusters thus

formed, in other words with the groups of neighbouring occupied sites.”

— Dietrich Stauffer

When the probability reaches p ≥ 0.6, there is one big cluster that extends from

the top to bottom and from left to right of the lattice. When p = pc, the percolation

process reveals a second order transition from a locally connected state to a state where

the connectivity covers globally network. The phenomena near to the probability pc are

called critical phenomena and the theory that deals with these type of problems is the

scaling theory.

2.2.2 The forest fire model

The forest fire model is a simple model of percolation frequently used to study critical

phenomena. There are two ways to study the propagation of a fire in a forest: One

experimental and the other using simulations. Since experimental study is complicated,

the simulation is a way to gain some in right on the phenomena. The forest may be

simulated using a lattice, exactly as we explained in 2.2.1, however in this case every

square is in place. The probability that one square is occupied by a tree with probability

p, so the probability that one square is not occupied is (1 − p). If p = 1 all the squares

are occupied and if p = 0 there are no trees in the forest. What happens in a natural

forest when a fire begins is that the burning trees could burn others that are near them,

even though after a period of time the burning tree stops to burn, so it can not burn the

others. One can start burning the first bottom row of the lattice. The trees burn for a

unit of time and then they stop and disappear. A tree could burn another tree only if

this one is a neighbour of the first. We define, as neighbours, only the nearest neighbours

of Von Neumann, as shown in Fig. 3.

When the probability p is the critical probability pc, the cluster formed is connected from

the bottom to the top. The life time of the fire increases up to pc and then it decreases,

as show in Fig. 4.
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Figure 3: First neighbours of Von Neumann. The dark green represents the tree and
in light green are represented the first neighbours of Von Neumann. A tree could burn
another tree only if this one is a neighbour of the first.

Figure 4: Lifetime 〈tv〉 as a function of the probability of occupation for a lattice of size
side L = 1024 for 1000 samples with Von Neumann neighbours [18].

For p = 0.592, we have the maximum of the lifetime 〈tv〉 (Fig. 5) [18].
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Figure 5: The forest fire model for a lattice of size side L = 1024 at p ∼= pc. The trees are
represented in green, the burning trees in red and the burned trees in black [18].

2.2.3 Percolation theory applied to oil fields

At first sight, it is strange to associate the percolation model with oil field. However

if you study the conformation of the rock, its structure is very similar to our lattice

previously explained. In this context, it is possible to imagine the white squares as the

solid part of the rock and the black squares as the pores where the oil could penetrate.

The average concentration of the oil in the rock is the probability of occupation p. The

pores are random located with correlations among them and there are some models that

allow to simulate this kind of situations [16].

We could start the study of this problem from the most simple case, using the previous

structure where the black squares are allocated with a probability p. When working in

oil exploration, there is interest in finding large reservoirs of oil that it is represented as

a large cluster in our lattice. Therefore, we could understand that if p < pc the clusters

formed are small and if p > pc the cluster formed is large, so this is the case of interesting.

The percolation model can be used in order to simulate a large landscape which it would

be impossible to access. One usually considers a small sample of the rocks, normally logs

of diameter between 5-10 cm and measure the porosity in this sample. After that, the
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structure of the entire rock based on that porosity can be extrapolated. This is a frame

of dimension L× L and it is possible to calculate how many points within this frame are

connected with other points. We define the mass M(L, p) as the number of points that

belongs to the largest cluster. When p < pc, M(L, p) grows in logarithmic form with

the dimension L. When p > pc, we may see that M(L) grows linearly with L2. When

p ∼= pc the situation is different, the cluster possesses a fractal structure that is ramified

and many holes are formed within the frame. In this case, M(L, p) grow linearly with LD,

where D is the fractal dimension. D = 1.9 in two dimensions. For a three dimensional

structure D = 2.5. Summarizing,

M(L, p) =


ln(L) if p < pc,

LD if p = pc,

Ld if p > pc,

(2.4)

where d is the Euclidean dimension [18]. Numerically, to calculate D we define the

gyration radius R as,

R2 =
∑
i

|ri − ro|2
s

, (2.5)

where s is the mass of the big cluster M(L, p), ri is the position of the i-element and ro

is the position of the center of mass given by,

ro =
∑
i

ri
s
. (2.6)

Considering the statistics on various samples, in the thermodynamic limit and criticality,

we have,

M ≡ 〈M(∞, pc)〉 ≡ 〈s〉 ∼ 〈R〉D. (2.7)

2.3 Introduction to Graph Theory

2.3.1 The seven bridges of Königsberg

In 1736, the Graph Theory was introduced by Leonhard Euler through the solution

of a famous problem, known as the Seven Bridges of Königsberg [4] (Fig. 6). Königsberg,

actually known as Kaliningrad in Russia, is a city crossed by a river called Pregel. The

form of that river produces two islands within the city. These islands are connected with

the city by seven bridges.
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Figure 6: The Seven Bridges of Königsberg. The seven bridges are represented by the
letters a, b, c, d, e, f, g and the land is represented by the letters A,B,C,D .

The question was “is it possible to find a path through the city crossing all the bridges

once?”. The Euler’s answer was no, it is not possible. He simplified the problem imagining

the land masses as points, called vertices, and the bridges as lines that connect the land

masses, called edges, as shown in Figure 6. Furthermore, the number of edges of each

vertex is called degree.

It should be noted that from the vertices D, B and C come out three edges and from

vertex A comes out five edges. Euler proposed a theorem that explain the viability of a

graph, by stating that a graph could be covered if and only if all the vertices have even

degrees or if two of the all vertices have odd degrees. However it is necessary to start the

navigation from one of these two vertices and finishing in the other one. In Königsberg

case, it is impossible to navigate all the graph without passing twice for an edge. In the

following years, the graph theory was widely studied and, nowadays, it is a solid field with

several application in different areas.

A graph is an ordered pair defined as:

G = (V,E), (2.8)
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where V is the set of vertices and E is the set of edges. The order |V | of a graph is the

number of vertices in V and the size |E| of a graph is the number of edges in E [19].

Another important property is the degree or valency d(v) of a vertex v. The degree d(v)

is the number of edges that end in that vertex v. If d(v) = 0, the vertex is called isolated

and if d(v) = 1, the vertex is called pendant or leaf. When all the vertices of a graph have

the same degree, the graph is called regular.

An important graph is the lattice, which is a graph that forms a regular tiling. It is

drawing embedded in Euclidean space Rn.

2.3.2 Shortest path problem

In order to introduce the concepts related with the Shortest path problem, we present

the following example. In the end of the day, you want to leave your work place and

arrive at home as soon as possible, even though, like you, there are a lot of other people

with the same desire. Therefore, you need to find the best route to arrive at your home.

In other words, the solution of this important problem is to find the best way from all

possible ways. The newest GPS devices estimate the number of cars on the roads and

solves this kind of problem for you. The Fig. 7 represents a graph where each vertex is

labeled and every edge has a given weight. The shortest path is represented in red. Such

path connects the source point S and the target point F .

2h

3h

30m

2h

1h 30m

15m 20m

10m

5m

10m

S

F

A

B C

D

D

E

G

Figure 7: The Figure shows the shortest path between the source point S and the target
point F . Every vertex is represented by a letter S,A,B,C,D,E, F,G and it is assigned
a time value for each edge. The red arrows represent the shortest path.
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2.3.3 Optimal path model

In the context of Complex Systems, the shortest path is called the optimal path (OP)

and we could also describe it using the mathematical formalism of the Graph Theory. If

we consider a graph,

G = (V,E), (2.9)

where V is the set of the vertex and E is the set of the edges (u, v), for each edge,

we can define a weight function w(u, v) : E → R. The total weight of the path p =

(vo, v1, ..., vk−1, vk) ∈ V ×V × ...×V is the sum of the weight of all the edges in the path,

w(p) = w(v0, v1, ..., vk−1, vk) =
k∑
i=1

w(vi−1, vi). (2.10)

Finally, it is possible to define the weight δ of the shortest path from u and v,

δ(u, v) =

min {w(p) : u v} if there is a path

∞ other cases
(2.11)

Therefore, the optimal path between the vertices u and v is defined as any possible path

p with weight given by w(p) = δ(u, v).

2.3.4 Dijkstra’s algorithm

The simplest way to solve the optimal path problem, between two nodes of a graph,

it is trying all the possible ways and finding the shortest one. However, over the years,

several algorithms have been developed to solve this type of problem. The most famous

are the Dijkstra’s algorithm and the Bellman-Ford’s algorithm. The difference between

them is that the Bellman-Ford’s algorithm finds the shortest path in a graph with negative

and positive weight edges and, in the cad of Dijkstra’s algorithm, the weight edges must

be positive. Here, we present the Dijkstra’s algorithm.

Given the graph G = (V,E), we suppose the existence of two sets: The first set S

represents all the vertices that have already an optimal path and the second set Q = V −S
represents the vertices that do not have that path yet. For each vertex v ∈ V , we define a

“father”, the predecessor π [v]. The π [v] is the vertex which precedes the vertex v or if the

vertex v is the first vertex of a given path, its predecessor is itself. We also define d [v] as

the total weight from the source s to v. The algorithm starts from the source s, d [s] = 0,
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and for all the other vertices, which the shortest path is unknown, we suppose d [v] =∞
∀v 6= s and π [v] = 0 ∀v ∈ V . At this moment, we have Q = V , therefore S = {0}.
Proceeding with the rest of the algorithm, we extract the vertex of minimum weight u in

Q, put it in the set S and calculate the total weight from the source s to all neighbours of

u. If the weight calculated is lower than the weight previously calculated, we update the

weight and the predecessor of that vertex. This procedure is called relaxation technique.

After that, we restart the process: We find the minimum from the Q set, put it in the

S set and continue the algorithm as before. The algorithm concludes when Q = {0},
in other words, when all shortest path have been found. We show an example of the

Dijkstra’s algorithm in Fig. 8 [18][20][21].
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Figura 4.2: Aplicação do algoritmo de Dijkstra. Os vértices pretos pertencem ao conjunto S e
o conjunto Q é representado pela relação Q = V − S. Os vértices sombreados são aqueles que
tem o menor valor dentro do conjunto Q. Desse modo, dado um vértice fonte s, o algoritmo
encontrará todos os caminhos mais curtos para cada vértice v ∈V . A cada iteração, o caminho
de custo mínimo estimado aparece dentro de cada vértice e os antecessores são representados
pelas arestas sombreadas.

Figure 8: Example of an application of the Dijkstra’s algorithm step by step [18]. The
black vertices belongs to the S set. The shaded vertices are those that have the minimum
value within the Q set, where Q = V − S. The shaded edges represent the connections
with the predecessors. The algorithm will find all the shortest path among the source
vertex and all the other vertices [18].
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3 DYNAMIC TIME WARPING
AND INTERPOLATION
TECHNIQUES

3.1 Dynamic Time Warping

In 1978, H. Sakoe and S. Chiba introduced the Dynamic Time Warping (DTW) in

a study about spoken word recognition [23]. The DTW allow us to relate two temporal

sequences with an non-trivial correlation between them by the introduction of a lattice

problem. Precisely, DTW can be used when a sequence correspond to a distortion of

the other or to automatically cope with time and speed deformations associated with

time-dependent data [22]. Considering two time-dependent correlated sequence, X =

{x1, x2, ..., xN} and Y = {y1, y2, ..., yM}, where N,M ∈ N. The aim of this algorithm is

to find a relation between these sequences through alignment, as shown in Fig. 9.

We first define a feature space F , where xn, ym ∈ F for n ∈ [1 : N ] and m ∈ [1 : M ].

In order to compare these sequences, we define a local cost measure c(x, y), such that

c : F × F → R ≥ 0. If c(x, y) is small (low cost), x and y are similar, and if c(x, y) is

large (high cost), x and y are not similar.

Taking into account all the possible pairs of elements, we define the cost matrix,

C(n,m) = c(xn, ym), (3.1)

where C ∈ RN×M . After that, the aim is to find a path in the matrix to depict the

correlations among the elements of each sequence.

Following [22], a (N,M)-warping path, or simply warping path, is a sequence p =

(p1, ..., pL) with pl = (nl,ml) ∈ [1 : N ] × [1 : M ] for l ∈ [1 : L] satisfying the following

three conditions:
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Sequence X

SequenceY

time

Figure 9: Alignment of two time-dependent sequences X(t) = {xt1 , xt2 , ..., xtN} and
Y (t) = {yt1 , yt2 , ..., ytM}, where N,M ∈ N. The grey lines represent the correlations
between the series.

1. Boundary condition: p1 = (1, 1) and pL = (N,M);

2. Monotonicity condition: n1 ≥ n2 ≥ ... ≥ nL and m1 ≥ m2 ≥ ... ≥ mL;

3. Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1 : L− 1].

The boundary condition imposes the correlations between the sequences. In fact, the first

and the last element of each sequence are correlated with themselves. Furthermore, the

monotonicity condition implies that the order of the elements in a sequence is the same

in the another sequence and the step size condition is a continuity condition. Therefore,

there are not replications in the alignment. We define the total cost cp(X, Y ) of the

warping path p between X and Y as:

cp(X, Y ) =
L∑
l=1

c(xnl, yml). (3.2)

Up to this point, we defined the general characteristics of the path. However, a lot of

paths obey the conditions previous listed. The optimal warping path p∗ is the path, among

all the existing paths, that has the minimal total cost. The DTW distance DTW(X,Y)

between X and Y is the cost of p∗,

DTW (X, Y ) = cp∗(X, Y ) = min {cp(X, Y ) | p is an (N,M)− warping path} (3.3)
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The DTW distance is well-defined if there are not several shortest paths. It is symmetric

if the local cost measure c is symmetric. Once we find the optimal warping path, we have

the evidence of correlation between the sequences.

3.2 Interpolation with DTW

3.2.1 Dynamic Time Warping Interpolation (DTWI)

As we already introduced in this chapter, H. Sakoe and S. Chiba defined a model called

Dynamic Time Warping DTW [23] for the local detection of similarity between two time-

dependent sequences. We developed the Dynamic Time Warping Interpolation DTWI, an

interpolation strategy based on DTW. Considering two time-dependent sequence, X =

{x1, x2, ..., xN} and Y = {y1, y2, ..., yN}, where N ∈ N, placed with a distance d between

them. In Fig. 10 is shown an example where the two sequences are two gaussian. The

result of a standard linear interpolation SLI, with the purpose to interpolate a sequence in

the middle of the two, is shown in Fig. 11. The black arrow in the Fig. 11 shows that the

SLI take into account the vertical correlations between the two sequences, the time grows

in the vertical direction. Instead, a DTWI strategy starts from the construction of the

t

X

Y

d/2

d/2

Figure 10: Two time-dependent gaussian sequences X = {x1, x2, ..., xN} in blue and
Y = {y1, y2, ..., yN} in red, where N ∈ N, separated by a distance d. The dashed black
line represents the unknown sequence to interpolate.

cost matrix C(i, j) = c(xi, yj) where xi, yj ∈ F for i, j ∈ [1 : N ] . Then, we find an optimal
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SLI

d/2

d/2
t

Figure 11: Standard Linear Interpolation (SLI) between two time-dependent gaussian
sequences X = {x1, x2, ..., xN} in blue and Y = {y1, y2, ..., yN} in red, where N ∈ N,
separated by a distance d. The pink sequence represents the result of the SLI where the
interpolated sequence is in the middle of X and Y . A SLI provides an interpolation where
the time flows from top to bottom or vice versa.

warping path OWP, observing the Boundary condition, the Monotonicity condition and

the Step size condition as explained in the previous section. The cost matrix and the

OWP is shown in Fig. 12. A linear interpolation among the coordinates indicated by the

OWP of the cost matrix, allow us to interpolate the sequence in the middle. The DTWI

takes into account the horizontal correlation between the sequences, the time grows in

the horizontal direction as shown in Fig. 13.
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Figure 12: The figure shows the cost matrix generated starting from the two sequences
X and Y . Each site is defined by C(i, j) = |xi − yj| and the colour scale represents the
level of correlations between the two points xi and yj of the sequences. Blue represents an
high correlation and red a low correlation.The black path represents the Optimal Warping
Path (OWP).
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Figure 13: Dynamic Time Warping Interpolation (DTWI) between two time-dependent
gaussian sequences X = {x1, x2, ..., xN} in blue and Y = {y1, y2, ..., yN} in red, where
N ∈ N, separated by a distance d. The green sequence represents the result of the DTWI
where the interpolated sequence is in the middle of X and Y . A DTWI provides an
interpolation where the time flows from right to left or vice versa.
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3.2.2 Where is the oil?

In the modern world, our lifestyle depends on the energy. Actually, we live using

an expressive quantity of energy daily wherever we are. This lifestyle began during the

industrial revolution by the massive exploration of the fossil fuels.

In the oil industry, it is essential to have the knowledge of the lithology of stratified

rocks. Therefore, the challenge is to know where are placed the oil and natural gases reser-

voirs in order to drill the soil efficiently and consequently obtain an economical profit. In

this context, the predictions of earth profiles through reflection of mechanical waves in the

soil and the resulting analysis of seismological data is highly relevant for the extraction of

such hydrocarbons. The image of the seismic mapping due to wave refraction and reflec-

tion into the soil could be analysed to find geological formations of interest.In particular,

we deal with the case that we want to reconstruct some depth profiles based on others.

3.2.3 Interpolation strategy

We apply the DTW model, previously used only to analyse the correlations between

two sequences, to build an interpolation strategy in order to recover the data of a given

earth region. Thereby, we start from two depth profiles f1(i) and f2(j), where i, j =

{1, 2, ..., N}, as shown in Fig. 15a and 15b from the landscape in Fig 14. In few words,

these sequences represent a characteristic of the earth in function of the depth. The idea

is to apply the Dynamic Time Warping Interpolation (DTWI) to these sequences, once we

know they are correlated with each other. As we stated, the DTW technique deals with

spoken word recognition or other type of sequences and the DTW potentiality consists

in the analysis of distorted signals. Thereby, are we sure the depth-dependent sequences

behave as distorted signals? The answer is not, necessarily this case is not that simple.

The stratigraphy of the earth is not a simple field, however the innovation of our study

lies here. Allied with the DTWI strategy of two depth-dependent sequences, we use this

interpolation strategy in order to find the others depth-dependent profiles.
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f2(y)
f1(y)

I

f1(y) f2(y)

Figure 14: Seismic data provided from WesternGeco [24]. The landscape is formed by
129 sequences made by 201 points each one. The colour scale represents the variation of
a characteristic of the soil. The red line represents f1(y) and the blue line f2(y). I is the
intensity of the seismic signal.

Initially, we use the two father sequences to build the cost matrix, where each site is

c(i, j) = |f1(i) − f2(j)|. The c(i, j) is small when the elements of the two sequences are

similar and c(i, j) is large when the elements of the two sequences are different (Fig. 16).
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y
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(a) f1
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f2(y)

(b) f2

Figure 15: Sequences depth-dependent f1(y) in Fig. 15a and f2(y) in Fig. 15b. The y
represents the depth and f1(y) and f2(y) represent a characteristic of the earth in function
of the depth.

i

j

c(i, j)

Figure 16: An example of the cost matrix generated by using the two sequences f1(y)
and f2(y) showed in Fig. 15a and 15b. The weight of each site is given by c(i, j) =
|f1(i)−f2(j)|, where i, j = {1, 2, ..., N}. The colour scale vary from blue (high correlation)
to red (low correlation).
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After building the cost matrix, we have to find the warping path that allow us to show the

correlations between the sequences. There are a lot of possible paths in this landscape,

however the aim is to find the optimal warping path, the warping path with minimized

total weight. Therefore, this path must be the shortest path between the points (1, 1) and

(N,N), where N is the dimension of each sequence.The optimal warping path is defined

as follows:

pk = ck(ik, jk) k ∈ [1 : L] , (3.4)

where L is the length of the path whose weight is given by,

w(p) = min

{
L∑
i=1

pi : (1, 1) (N,N)

}
. (3.5)

Furthermore, we have imposed the following conditions:

1. Boundary condition: pinitial = (1, 1) and pfinal = (N,N).

2. Monotonicity condition: i1 ≥ i2 ≥ ... ≥ iL and j1 ≥ j2 ≥ ... ≥ jL.

3. Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1 : L− 1] where l ∈
[1 : L].

The second and third conditions imply which direction the path could take. Each point

of the matrix is therefore “connected” only with three other points (Fig. 17).

As discussed in the previous chapter, there are several algorithms that allow us to find

the shortest path. Here we use the Dijkstra’s algorithm, which only riquires the condition

that each site must have a positive weight, and, in our case, each site is positive due to

the structure of the cost matrix. One should notice that, in our case the weights are not

in the edges but in the sites. This change does not create any problem since the only

difference is that the weight will be counted whenever it passes through a site and not

when it crosses an edge. With these conditions, it is possible to find the optimal warping

path, as shown in Fig. 18.
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Figure 17: The second and the third conditions imply that the path at a given site could
take three directions only. In order to develop the path, the blue squares represent the
predecessors of the dark green square. From the dark green square, the path may follow
only one of the three directions marked by the red dashed arrows. The possible next site
of the path can be only one of the squares painted by light green.

i

j

Figure 18: In green the optimal warping path pk resulting from the cost matrix of the
Fig. 16, where the sequences used are f1(y) and f2(y). In light blue, the external points
of the path.
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Each point pk = (ik, jk) of the optimal warping path represents a correlation between the

two sequences. They are coordinated, so we can identify which point of one sequence

is correlated with a point of the other sequence. We are simply following the DTW

method with two sequences that derive from seismic data. Precisely, they are two depth-

dependent sequences of the landscape in Fig. 14, precisely they are the first and the

last sequence.The innovation is here: we use the pieces of information obtained from the

DTW to interpolate the space between the sequences. The Figure 19 shows a schematic

representation of this strategy. However, there are a lot of other sequences we want to

simulate between the red and the blue sequences, precisely 127 that we assume to be

unknown.

f1(y1)

f2(y2)

y2

y1

d

yj

fi(yj)

dyj

Figure 19: Linear Interpolation between two points of the sequences f1(y) and f2(y) using
DTWI. f1(y1) and f2(y2) are the two elements of the sequences that are correlated, where
y1 and y2 are the respective depths. This result comes from the optimal warping path.
d is the distance between the two points of the sequences. dyj is the distance of the
interpolated point fi(yj) from the point f1(y1), and yj is its depth.

In order to interpolate the values of the sequences between the two considered sequences,

we use a simple linear interpolation,

fi(yj) = f1(y1) +
f2(y2)− f1(y1)

d
dyj , (3.6)
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where i ∈ [1, 129] and yj is the depth of the interpolated point. Applying this interpolation

strategy for all the points of the sequence, we obtain a simulation of the full landscape as

shown in Fig. 20.

y
f2(y)

f1(y)

I

f1(y) f2(y)

Figure 20: Interpolated landscape from seismic data using only the two series f1(y) and
f2(y) presented in Fig. 15a and 15b with DTWI.

In particular, Fig. 20 shows the landscape simulated using the first and the last sequence.

The results are not good, because the distance between the sequences is very large, making

the sequences almost uncorrelated. In order to test our method, we divide the landscape
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in much smaller landscapes. After that, we compare our results with the real data and

with the result of a standard linear interpolation (SLI) to verify that our technique is

better than the standard. As shown in Fig. 21, a standard linear interpolation is merely

a linear interpolation between the points with same depth-level in the two sequences,

fi(y) = f1(y) +
f2(y)− f1(y)

d
di, (3.7)

where fi(y) is the intensity of the interpolated point and di is the distance between the

first known sequence and the simulated point.

f1(y) f2(y)

yy

fi(y)

d

di

y

Figure 21: Linear Interpolation between two points of the sequences f1(y) and f2(y) using
SLI technique. The f1(y) and f2(y) are two values of the known sequences at the same
depth y. fi(y) is the interpolated point, where d is the distance between the known
sequences and di is the distance between the first known sequence and the simulated
point.

3.3 Results

In this section, we present the results of our study. We start from a landscape given

by WesternGeco [24] of a seismic profile (Fig. 14). The different colours in the Fig. 14 are
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due to the stratigraphy nature of the earth. During the years the different layers of rocks

settled one above the other, forming the classic stratigraphy conformation. This implies

that we can find different types of rocks, at the same depth, depending on the region.

We have started applying the DTWI for the first and the last sequence of landscape.

After that, we divided the landscape in two and applied the same technique in each

new landscape. Actually, we continued this process until only one sequence to interpolate

remains. Initially, we consider that only two sequences are known from the real landscape.

After that, three sequences used. In the third five sequences, and so forth. Therefore, the

number of known sequences is,

m = 2µ + 1 µ ∈ [0 : 6]. (3.8)

For each m, we perform an interpolation for the entire landscape. The interval of m

depends on the number of sequences of the real landscape. The maximum value of m

represents a situation where between the two known sequences there is only one unknown

sequence. The results, for the different values of m, are presented in Fig. 22. Next,

we simulated the same landscape, however using the SLI, as explained in the previous

section. The results are shown in Fig. 23.

We presented the simulated landscapes obtained by using the DTWI and by using SLI for

each value of m. As shown in Fig. 19, the depth of the points interpolated by the DTWI

do not coincide necessarily with the depth of the real points, because the interpolation is

made by two points of different depths. The difference between the depths could create

area where we can not have information as shown in Fig. 22. In order to compare the

results of DTWI and SLI, we calculate the square error for the DTWI case and for the SLI

case. For the SLI case, as the points interpolated are at the same depth of the real data,

as shown in Fig. 21, we calculated the square error in these points. For the DTWI case,

as the depth of the points interpolated by the DTWI do not coincide necessarily with the

depth of the real points, before we interpolate the real data using a linear interpolation

to find the points interpolated by the DTWI. The square error Err2DTWI is calculated as

follows:,

Err2DTWI =

∑N
i=1[fDTWI(i)− frealinterpolated

(i)]2

N
. (3.9)

Using the SLI, the square error Err2SLI is calculated as following,

Err2SLI =

∑N
i=1[fSLI(i)− freal(i)]2

N
, (3.10)

where the sets of fDTWI(i) and fSLI(i) represents the points interpolated by the two
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techniques. freal(i) is the set of real data and frealinterpolated
(i) is the set of real data

interpolated to find the points at the same depth of the points interpolated with the

DTWI. N is the numbers of the interpolated points. The result of this comparison is

presented in Fig. 24.

Err2

m

Err2
DTWI

Err2
SLI

Figure 24: The graph represents the square error Err2 for the DTWI interpolation strat-
egy Err2DTWI in red and for the SLI techniques Err2SLI in green in function of the number
of known sequences m in a logarithmic scale. For m = 3, 5, 9, 17 the Err2DTWI is less than
the Err2SLI .

The Figure 24 shows that the DTWI is better than the SLI technique when sequences

3, 5, 9, 17 are known. When m = 9 the Err2DTWI is much lower then Err2SLI , with a

percentage difference of ∼ 30%, as shown in Fig. 25. The Fig. 25 shows the evolution of

the percentage difference,

%DiffDTWI,SLI =
Err2SLI − Err2DTWI

Err2DTWI

100, (3.11)

in function of the number of known sequences m. Comparing the real landscape and

the landscape interpolated using the DTWI when m = 9, we conjecture that the DTWI

works better when the horizontal pattern of the soil has the same order size of the distance

between the sequences considered in the DTWI.
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%Diff

m

%DiffDTWI,SLI

Figure 25: The figure represents the percentage difference %DiffDTWI,SLI between
Err2SLI and Err2DTWI for the value of m = 3, 5, 9, 17, 33. For the fourth one, the DTWI
strategy is ∼ 20% better than the SLI technique.

Fig. 24 does not show the interpolation when the number of known sequences is two,

because the distance between them is large. It is an extreme case where any kind of

interpolation would be inconsistent. In Figure 26, we present the results of Err2DTWI and

Err2SLI obtained for each interpolated sequence. We observe that the DTWI interpolates

better the most of the sequences than the SLI technique.
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Err2

d

Err2
DTW

Err2
SLI

(a) m = 3

Err2

d

Err2
DTW

Err2
SLI

(b) m = 5

Err2

d

Err2
DTW

Err2
SLI

(c) m = 9

Err2

d

Err2
DTW

Err2
SLI

(d) m = 17

Figure 26: For m = 3, 5, 9, 17, the figures represent the variation of the Err2DTWI and the
Err2SLI in function of the distance d from the first sequence, in other words, for the cases
where the DTWI is better than the SLI technique. The blue vertical lines represent the
known sequences when m = 3, 5, 9. When m = 17 there are not blue lines because the
distance among them is too small to be represented.
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4 CONCLUSION

In the Chapter 3, we presented a technique introduced in 1978, by H. Sakoe and S.

Chiba in a study about spoken word recognition, called Dynamic Time Warping (DTW)

[23]. The DTW allows us to relate two correlated temporal sequences, f1(i) and f2(j)

where i, j ∈ [1 : N ]. The construction of a cost matrix, formed by the elements p(i, j) =

|f1(i)− f2(j)|, and the following search for an optimal warping path between the element

in position (1, 1) and (N,N) of that matrix lead us to find the global similarities between

the two sequences.

Next, we introduced our interpolation method starting from the description of the

problem we wanted to solve. We used a seismic landscape formed by 129 depth-dependent

sequences of length 201. Specifically, we applied the Dynamic Time Warping Interpo-

lation (DTWI) to interpolate the unknown sequences existent between two known se-

quences. This operation was repeated for different values of known sequences m, where

m = 2, 3, 5, 9, 17, 33, 65. The same operation was performed using a Standard Linear In-

terpolation (SLI). The two results obtained were compared through the calculation of the

square errors Err2DTWI and Err2SLI . Both the square errors were calculated comparing

the simulated data with the remaining real data from the seismic landscape. We obtained

a better interpolation, using the DTWI, for the values of m = 3, 5, 9, 17. Specifically, for

those cases, the percentage difference between them was ∼ 20% in favor of the DTWI.

We conjecture that our strategy works better when the horizontal pattern of the soil has

the same order size of the distance between the sequences considered in the DTWI.

As a perspective for future work, we intend to extend our interpolation strategy to

three dimensions using data from soil drilling. The soil drilling data are more available,

as it is not the result of the waves’ reflection and refraction, since they are taken onsite. A

three-dimensional analysis is possible when we have three sequences correlated with each

other. Another proposal is to apply an extension of the DTW recently developed by S.

M. Hope et al. called Global Correlation Analysis (GCA) [24]. While the DTWI gives us

an univocal correspondence between the elements of the two sequences, the GCA scheme
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gives us several correspondences and it can order them by importance.
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