## UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA HIDRÁULICA E AMBIENTAL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL ÁREA DE CONCENTRAÇÃO: RECURSOS HÍDRICOS

FRANCISMÁRIO DE MENEZES ALVES

# DESENVOLVIMENTO DE UM APLICATIVO COMPUTACIONAL PARA OBTENÇÃO DE EQUAÇÕES IDF EM REGIÕES DESPROVIDAS DE PLUVIÓGRAFOS UTILIZANDO O MÉTODO DAS ISOZONAS

JUAZEIRO DO NORTE - CE 2014

# FRANCISMÁRIO DE MENEZES ALVES

# DESENVOLVIMENTO DE UM APLICATIVO COMPUTACIONAL PARA OBTENÇÃO DE EQUAÇÕES IDF EM REGIÕES DESPROVIDAS DE PLUVIÓGRAFOS UTILIZANDO O MÉTODO DAS ISOZONAS

Dissertação submetida à Coordenação do Programa de Pós-Graduação em Engenharia Civil, da Universidade Federal do Ceará como requisito parcial para obtenção do grau de Mestre em Engenharia Civil.

Área de concentração: Recursos Hídricos

Orientador: Prof. Dr. Paulo Roberto Lacerda Tavares

JUAZEIRO DO NORTE - CE 2014

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca de Pós-Graduação em Engenharia - BPGE

V479d Alves, Francismário de Menezes. Desenvolvimento de um aplicativo computacional para obtenção de equações IDF em regiões desprovidas de pluviográfos utilizando o método das isozonas / Francismário de Menezes Alves. – 2014.

87 f. : il. color., enc. ; 30 cm.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Departamento de Engenharia Hidráulica e Ambiental, Programa de Pós-Graduação em Engenharia Civil, Juazeiro do Norte, 2014. Área de Concentração: Recursos Hídricos. Orientação: Prof. Dr. Paulo Roberto Lacerda Tavares.

1. Recursos hídricos. 2. Desagregação - Métodos. I. Título.

## FRANCISMÁRIO DE MENEZES ALVES

# DESENVOLVIMENTO DE UM APLICATIVO COMPUTACIONAL PARA OBTENÇÃO DE EQUAÇÕES IDF EM REGIÕES DESPROVIDAS DE PLUVIÓGRAFOS UTILIZANDO O MÉTODO DAS ISOZONAS

Dissertação submetida à Coordenação do Programa de Pós-Graduação em Engenharia Civil, da Universidade Federal do Ceará como requisito parcial para obtenção do grau de Mestre em Engenharia Civil.

Área de concentração: Recursos Hídricos

Aprovado em: 27 / Agosto / 2014

## BANCA EXAMINADORA

Prof. Dr. Paulo Roberto Lacerda Tavares (Orientador) Universidade Federal do Cariri – UFCA

Prof. Dr. Luiz Alberto Ribeiro Mendonça (Membro Interno) Universidade Federal do Cariri – UFCA

Prof. Dr. Camilo Allyson Simões de Farias (Externo à Instituição) Universidade Federal de Campina Grande - UFCG

### AGRADECIMENTOS

Agradeço ao meu orientador, Prof. Dr. Paulo Roberto Lacerda Tavares, pelo incentivo e pela oportunidade de aprendizado.

Aos professores Dr. Luiz Alberto Ribeiro Mendonça e Dra. Celme Torres Ferreira da Costa pelos conselhos, ensinamentos e incentivos.

Ao programa de Pós-graduação em Recursos Hídricos pela oportunidade oferecida.

Aos meus colegas de curso e de trabalho por todo apoio e que de alguma forma contribuíram para construção deste trabalho.

Em especial, aos meus familiares e ao Me. em Ciências da Computação Bruno Lopes Alcântara Batista por todo conhecimento compartilhado em programação de computadores.

### **RESUMO**

Para tornar uma estrutura hidráulica segura e economicamente viável é preciso que seu projeto seja concebido de forma a suportar eventos extremos, mas sempre seguindo a linha tênue entre os custos de execução e os riscos calculados pelas consequências da obra não suportar os excessos de chuva. A relação Intensidade-Duração-Frequência (IDF) da chuva é uma das ferramentas mais comumente utilizadas em engenharia de recursos hídricos para definir a vazão de projeto. As IDF são determinadas através de dados pluviográficos, porém, muitas vezes estes dados são escassos levando a determinação de equações através de dados pluviométricos diários desagregados. Dada a escassez de dados pluviográficos e equações IDF no Estado do Ceará foi desenvolvido neste trabalho um programa computacional na linguagem Java que sistematizou a metodologia desenvolvida por Fechine Sobrinho (2011) para elaboração de equações IDF com base no método de desagregação de chuva através de isozonas, possibilitando a elaboração das equações IDF para os 30 municípios que compõe a mesorregião do Cariri cearense. A ferramenta computacional permite a geração das equações IDF a partir do processamento dos dados obtidos na base de informações da Fundação Cearense de Meteorologia e Recursos Hídricos - FUNCEME, apresentando grande potencial para o desdobramento das aplicações, como é o caso da espacialização dos parâmetros. A sistematização do método foi validada comparando os valores obtidos com os valores de equações IDF consagradas na literatura e formuladas através de dados pluviográficos. Foram obtidas correlações acima de 95% para as funções de distribuição empregadas e realizada a espacialização dos parâmetros.

Palavras-chave: Métodos de desagregação, eventos extremos, vazão de projeto.

## ABSTRACT

In order to design a safe and economically viable hydraulic structure it is necessary to design a project to withstand extreme events, but always following the fine line between execution costs and calculated risks. The Intensity-Duration-Frequency (IDF) relationship of rainfall is one of the most commonly used tools in water resources engineering to define the design outflow. The IDF is determined by rainfall-duration recorded data, however, these data are often scarce, leading to determination of equations using disaggregated daily rainfall data. Due to insufficient data about rainfall-duration and IDF equations in the state of Ceará, this work developed a computational program in Java which systematized the methodology developed by Fechine Sobrinho (2011) for IDF equations establishment. This methodology was based on the isozone disaggregation of rain method, allowing the establishment of IDF equations for the 30 municipalities of the Cariri region located in the southern state. The computational tool allows the generation of IDF equations from the data obtained in the Fundação Cearense de Meteorologia e Recursos Hídricos - FUNCEME, showing great applications, such as the spatial distribution of the parameters. The systematization of the IDF equations establishment through isozone method was validated by comparison of the obtained values with existing equations on the technical literature. Correlations above 95% were obtained for the distribution functions for the employed and performed the spatial parameters.

Key words: Disaggregation methods, intense rain events, design discharge.

## LISTA DE FIGURAS

| Figura 1 – Pluviômetro tipo ville de Paris (A), Pluviógrafo convencional (B)14                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figura 2 – Detalhe Mapa do Brasil com isozonas                                                                                                                                                      |
| Figura 3 – Territórios Rurais de Identidade do Estado de Ceará                                                                                                                                      |
| Figura 4 – Detalhe no Cariri dos Territórios Rurais de Identidade do Estado de27                                                                                                                    |
| Figura 05 – Sequência de secções para acesso aos dados das séries históricas das estações<br>pluviométricas                                                                                         |
| Figura 06 – Fluxograma de funcionamento do algoritmo de seleção dos eventos máximos anuais                                                                                                          |
| Figura 07 – Sequência para abertura de arquivos com dados das séries históricas da<br>FUNCEME na interface computacional para obtenção de equações IDF                                              |
| Figura 08 – Tela para testes e comparação da aderência das séries de eventos máximos anuais<br>às distribuições de frequência                                                                       |
| Figura 09 – Fluxograma de obtenção e exibição dos resultados obtidos pelo algoritmo em<br>Java                                                                                                      |
| Figura 10 – Tela para seleção da isozona a qual pertence o posto pluviométrico                                                                                                                      |
| Figura 11 – Tela final do algoritmo para exibição da equação IDF do posto pluviométrico em estudo                                                                                                   |
| Figura 12 – Correlação linear entre as intensidades calculadas pelo método de Fechine<br>Sobrinho (2011) e o algoritmo desenvolvido neste trabalho para a cidade de<br>Juazeiro do Norte            |
| Figura 13 – Correlação linear entre as intensidades calculadas pelo método de Fechine<br>Sobrinho (2011) e o algoritmo desenvolvido neste trabalho para a cidade de Crato.<br>                      |
| Figura 14 – Correlação linear entre as intensidades calculadas pelo método de Fechine<br>Sobrinho (2011) e o algoritmo desenvolvido neste trabalho para a cidade de<br>Barbalha                     |
| Figura 15 – Correlação linear entre as intensidades Observadas em Laura (1997) para o<br>período de 1974 a 1996 e o algoritmo desenvolvido neste trabalho para a cidade<br>de Fortaleza no Ceará    |
| Figura 16 – Correlação linear entre as intensidades Observadas em Laura (1997) para o<br>período de 1975 a 1994 e o algoritmo desenvolvido neste trabalho para a cidade<br>de Miracema no Tocantins |
| Figura 17 – Correlação linear entre as intensidades Calculada pela Equação IDF da literatura obtidas por série pluviométricas no período de 1944 a 2013 e o algoritmo                               |

|             | desenvolvido neste trabalho para a cidade de Caxias do Sul no Rio Grande do Su                                                                                                                                                | l.<br>53 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Figura 18   | – Correlação linear entre as intensidades Calculada pela Equação IDF da literatura obtidas por série pluviográficas no período de 1962 a 2013 e o algoritmo desenvolvido neste trabalho para a cidade de Recife no Pernambuco | 53       |
| Figura 19-  | <ul> <li>Mapa de isovalores do parâmetro A da equação de chuvas intensas IDF para a<br/>região do Cariri.</li> </ul>                                                                                                          | 52       |
| Figura 20 - | <ul> <li>Mapa de isovalores do parâmetro B da equação de chuvas intensas IDF para a<br/>região do Cariri.</li> </ul>                                                                                                          | 53       |
| Figura 21 - | <ul> <li>Mapa de isovalores do parâmetro S da equação de chuvas intensas IDF para a<br/>região do Cariri.</li> </ul>                                                                                                          | 53       |
| Figura 22 - | <ul> <li>Mapa de isovalores para intensidades de chuva de 15 minutos e tempo de retorno<br/>de 20 anos definidas pela Equação IDF.</li> </ul>                                                                                 | )<br>54  |

## LISTA DE TABELAS

| Tabela 1 – Valores mínimos considerados para chuvas intensas                                                           | 15                  |
|------------------------------------------------------------------------------------------------------------------------|---------------------|
| Tabela 2 – Estimativa de tempo de retorno de amostras ordenadas para diferentes                                        | valores de a.<br>17 |
| Tabela 3 – Correções para as isozonas de igual relação                                                                 | 20                  |
| Tabela 4 – Resultados dos Testes no Ajuste das Distribuições de Frequência para<br>de Caxias do Sul - RS e Recife - PE | as Cidades<br>52    |
| Tabela 5 – Parâmetros para Equações IDF das Cidades de Caxias do Sul - RS e Ro                                         | ecife - PE.<br>52   |
| Tabela 6 – Resultados dos Testes no Ajuste das Distribuições de Frequência para<br>do Cariri Cearense.                 | as Cidades<br>55    |
| Tabela 7 – Parâmetros da equação IDF para os municípios do Cariri.                                                     | 61                  |

# SUMÁRIO

| 1 INTRODUÇÃO                                                           | . 10 |
|------------------------------------------------------------------------|------|
| 1.1 Justificativa                                                      | . 11 |
| 1.2 Objetivo geral                                                     | . 11 |
| 1.3 Objetivos específicos                                              | . 12 |
| 2 REVISÃO DA LITERATURA                                                | . 13 |
| 2.1 Elementos de hidrometeorologia                                     | . 13 |
| 2.1.1 Precipitação e dados hidrológicos                                | . 13 |
| 2.1.2 Estudo de precipitações intensas                                 | . 14 |
| 2.1.3 Análise de frequência das séries de valores extremos             | . 16 |
| 2.2 Equação de chuvas intensas - IDF                                   | . 18 |
| 2.2.1 Determinação das equações IDF                                    | . 19 |
| 2.2.2 Métodos de desagregação através das isozonas                     | . 20 |
| 2.2.3 Equações IDF em regiões distintas                                | . 21 |
| 2.3 Hidroinformática                                                   | . 24 |
| 2.3.1 A linguagem de programação Java                                  | . 25 |
| 3 MATERIAIS E MÉTODOS                                                  | . 26 |
| 3.1 Área de estudo                                                     | . 26 |
| 3.2 Dados pluviométricos                                               | . 28 |
| 3.3 Desenvolvimento de uma interface computacional em Java.            | . 29 |
| 3.4 Algoritmo de seleção dos eventos máximos                           | . 30 |
| 3.5 Ajustes dos eventos máximos anuais às distribuições de frequências | . 31 |
| 3.5.1 Distribuição Log-normal com dois parâmetros                      | . 32 |
| 3.5.2 Distribuição Log-normal com três parâmetros                      | . 33 |
| 3.5.3 Distribuição Gama com dois parâmetros                            | . 33 |
| 3.5.4 Distribuição Gama com três parâmetros                            | . 34 |
| 3.5.5 Distribuição Gumbel                                              | . 35 |
| 3.5.6 Teste de aderência pelo método do Qui-Quadrado                   | . 35 |
| 3.5.7 Teste de aderência pelo método de Lilliefors                     | . 37 |
| 3.5.8 Índices estatísticos de comparação                               | . 38 |
| 3.5.9 Tendência e linearidade                                          | . 39 |
| 3.5.10 Interface de ajuste e teste das distribuições de frequência     | . 40 |

| 3.5.11 Aplicação do método das isozonas na obtenção de intensidades de chuvas                                                              | 42       |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 3.5.12 Formulação das equações IDF                                                                                                         | 43       |
| 3.5.13 Formulação da equação de chuvas Intensas – obtenção dos parâmetros "A", "B" e                                                       | "N"      |
|                                                                                                                                            | 42       |
| 3.5.14 Formulação da equação de chuvas intensas – obtenção do parâmetros "C"                                                               | 44       |
| 3.5.15 Formulação da equação de chuvas intensas – otenção do parâmetro "S"                                                                 | 45       |
| 3.5.16 Interface para obtenção da Equação IDF                                                                                              | 45       |
| 4 RESULTADOS E DISCUSSÃO                                                                                                                   | 47       |
| 4.1 Validação do algoritmo computacional para obtenção das equações IDF                                                                    | 47       |
| 4.1.1 Comparação entre as equações IDF obtidas pelos métodos manual e algoritmo computacional                                              | 47       |
| 4.1.2 Comparação entre as equações IDF obtidas por dados pluviográficos e as obtidas pel algoritmo computacional com dados pluviométricos. | lo<br>49 |
| 4.2 Aplicação da metodologia nos 30 municípios da região do cariri cearense                                                                | 54       |
| 4.3 Equações IDF obtidas através do algoritmo baseado no método das isozonas                                                               | 60       |
| 4.4 Espacialização dos parâmetros da equação IDF                                                                                           | 61       |
| 5 CONCLUSÃO                                                                                                                                | 65       |
| 6 REFERÊNCIAS                                                                                                                              | 68       |
| APÊNDICE                                                                                                                                   | 71       |

## 1 INTRODUÇÃO

Um projeto de engenharia deve garantir sua exequibilidade ponderando entre os fatores de segurança e viabilidade econômica. Assim, toda obra de engenharia deve ser precedida de estudos, os mais precisos possíveis, para garantir uma otimização dos recursos empregados (NHAT et al., 2006).

No campo da engenharia de obras hidráulicas, quanto mais preciso o conhecimento dos picos de cheia máxima e seus respectivos tempos de retorno, mais racional será a ponderação dos fatores financeiros e de segurança (RASHID et al., 2012).

Devido à grande extensão territorial do Brasil e aos altos custos que seria a implantação de uma densa rede de monitoramento dos fenômenos hidrológicos, há uma limitação quanto aos dados de observação nas estações meteorológicas. Muitas destas estações limitam-se ao monitoramento de temperaturas e pluviometria.

No tocante às pequenas bacias e regiões distantes dos grandes centros urbanos, como a região do Cariri cearense, a precariedade dos dados de estações meteorológicas é ainda maior, dificultando a determinação do volume de chuvas intensas, tempos de retorno de eventos extremos e vazões máximas de projeto.

Para contornar situações como estas, são utilizadas equações de pluviógrafos de regiões próximas ou com condições meteorológicas similares ou através de interpolação de valores de equação de regiões de contorno ao local de interesse. Todavia, os resultados obtidos não possuem uma formulação criteriosa e, portanto fornecem resultados não confiáveis.

Recentemente, foi realizado por Fechine Sobrinho (2011) um trabalho para determinar as equações IDF de chuvas intensas nas três maiores cidades da região do Cariri. Tomou-se como base o método de isozonas desenvolvido por Torrico (1974). Os resultados obtidos por Fechine Sobrinho (2011) foram comparados e validados em regiões diferentes à do Cariri cearense mostrando excelente correlação.

Apesar da metodologia criteriosa aplicada por Fechine Sobrinho (2011) nas três cidades do cariri, a expansão desta metodologia em uma escala que contemple toda uma microrregião dentro do Estado se torna exaustiva, deixando uma lacuna muito grande no que se refere à quantidade de informações sobre chuvas intensas para as demais cidades.

Considerando a problemática levantada, inicia-se o presente trabalho com o seguinte questionamento: Como desenvolver uma metodologia que permita a obtenção sistemática de equações IDF de chuvas intensas para todas as cidades da região do Cariri?

## 1.1 Justificativa

Na região do Cariri cearense, o número de dados pluviográficos é insuficiente para uma criteriosa análise do comportamento das precipitações intensas. Nesta pesquisa propõe-se a criação de uma ferramenta que definirá equações IDF em todas as cidades desta região. Desta forma será possível criar um mapa de isovalores dos parâmetros destas equações, permitindo uma melhor compreensão do comportamento destes fenômenos o que é fundamental para o correto dimensionamento de obras hidráulicas, bem como servir de base para estudos em outras áreas, tais quais agronomia, meteorologia e políticas públicas para prevenção de desastres.

### 1.2 Objetivo geral

Automatizar, por meio do desenvolvimento de um programa computacional, o processo de determinação de equações de chuvas intensas com base no método de desagregação de chuva através de isozonas desenvolvido por Fechine Sobrinho (2011), com aplicação nos municípios da região do Cariri cearense.

## 1.3 Objetivos específicos

- Obter os dados de pluviometria para as cidades da região do Cariri cearense;
- Desenvolver um programa computacional para obtenção de equações de chuvas intensas utilinzando a metodologia proposta por Fechine Sobrinho (2011), com base no método das Isozonas;
- Comparar os resultados obtidos na interface computacional desenvolvida, com os trabalhos de Fechine Sobrinho (2011), Laura (1997), Sampaio (2011) e Encimbra (1978) para validação da ferramenta;
- Aplicar a ferramenta computacional desenvolvida para obtenção das equações de chuva IDF nas cidades do Cariri cearense;
- Espacializar os parâmetros das equações de chuva IDF na região do Cariri cearense.

## 2 REVISÃO DA LITERATURA

#### 2.1 Elementos de hidrometeorologia

### 2.1.1 Precipitação e dados hidrológicos

As características climáticas de uma região dependem de sua localização no globo terrestre, variando das regiões mais extrema nos polos onde predominantemente estão os climas mais frios e variando até a linha do equador onde se tem as regiões mais quentes do planeta. A precipitação e o seu modo de ocorrência é um dos fatores climáticos mais importantes, assim como a temperatura e a incidência de ventos. Estes fatores também sofrem influência da topografia e da geologia do local (TUCCI, 2004).

A precipitação pode ser caracterizada por algumas grandezas como altura pluviométrica definida como a espessura da lâmina d'água que recobriria a região de ocorrência tendo mm como unidade, a duração do evento de precipitação e a intensidade que é definida como o volume de precipitação pelo tempo de duração tendo como unidade usual o mm/min ou mm/h (BERTONI & TUCCI, 1993).

Existem alguns instrumentos que permitem quantificar pontualmente um evento de precipitação e outros mais modernos como radares que possibilitam a medição espacial. Os valores pontuais de precipitação podem ser medidos quanto ao volume total através do pluviômetro e quanto a relação de volume pelo tempo através do pluviógrafo. O pluviômetro é o equipamento dotado de um cone metálico com dimensões padronizadas que deve ser posicionado seguindo especificação técnicas próprias. Diariamente se tem o volume coletado medido e os valores são inseridos em uma série de dados. Já o pluviógrafo é um aparelho mais moderno que mede a ocorrência do evento ao longo do tempo. Todo o registro fica impresso em papel especificamente graduado ou gravado em memória de computador. Na Figura 1 é possível ver e comparar os dois equipamentos.

Para projetos de várias áreas da engenharia sempre é preciso o conhecimento do comportamento dos eventos de precipitação, desde dimensionamento de canais, bueiros, passagens de nível, galerias, barragens, etc. A magnitude e a frequência de ocorrência são subsídio indispensáveis para o correto, seguro e econômico dimensionamento destas obras (NHAT et al., 2006).

Vários são os órgãos ou entidades que realizam a coleta e o arquivo de séries hidrométricas ou hidrometeorológicas no país. A Fundação Cearense de Meteorologia e Recursos Hídricos (FUNCEME) possui um registro disponível na internet de todos os postos pluviométricos do Estado do Ceará. A Agência Nacional de Águas (ANA) também disponibiliza vários dados com amplitude nacional através do portal *Hidro-Web* na internet.





**Figura 1** – Pluviômetro tipo ville de Paris (A) e Pluviógrafo convencional (B).

#### 2.1.2 Estudo de precipitações intensas

São definidos como chuvas intensas aqueles eventos onde um grande volume de água precipita em um curto intervalo de tempo. Estas chuvas geralmente são as responsáveis pelos grandes problemas de engenharia e o conhecimento da forma de sua ocorrência permite a realização de projetos adequados.

Um dos grandes questionamentos no estudo das precipitações intensas é saber quando ocorrerá um evento extremo. Por se tratar de um fenômeno físico de extrema complexidade e mesmo com os grandes avanços da ciência é praticamente impossível predizer de forma confiável quando e como irá ocorrer uma chuva intensa (TUCCI, 2004).

Wilken (1978) definiu os valores de duração nos quais as relações de volume pela duração podem ser consideradas como chuvas intensas, estes valores estão reproduzidos na Tabela 1.

Apesar de não ser possível definir com exatidão quando e como ocorrerá um evento extremo, o estudo dos registros de chuvas em longos períodos de tempo possibilita definir períodos de recorrência para aqueles de maiores intensidades. Período de retorno ou tempo de recorrência de um evento é o tempo médio em anos no qual este evento pode ser igualado ou superado (CHOW, 1957).

| Duração (min) | Intensidade (mm/min) | Duração (min) | Intensidade (mm/min) |
|---------------|----------------------|---------------|----------------------|
| 5             | 2                    | 60            | 0.42                 |
| 10            | 1.2                  | 90            | 0.31                 |
| 15            | 1                    | 120           | 0.25                 |
| 20            | 0.85                 | 180           | 0.18                 |
| 30            | 0.67                 | 240           | 0.15                 |
| 45            | 0.51                 | -             | -                    |

Tabela 1 – Valores mínimos considerados para chuvas intensas

Fonte: Fechine Sobrinho (2011)

Nos projetos em que a ocorrência de falha implica em grades prejuízos econômicos ou risco para vidas humanas é comum utilizar tempos de retorno bastante longos, chegando a ordem de 1.000 a 10.000 anos (KESSLER, 1978 *apud* FECHINE SOBRINHO, 2012).

Deve-se considerar sempre o comportamento não cíclico na ocorrência dos eventos extremos, pois mesmo este possuindo um tempo de recorrência de 100 anos nada garante que não venha a se repetir no ano seguinte ou bem após 100 anos ou várias vezes dentro de 100 anos.

De acordo com Pinto et al. (1996) *apud* Sampaio (2011), se os resultados da análise da variação da intensidade da chuva com sua duração e da análise da variação da intensidade com o período de retorno forem colocados num gráfico é possível observar que a intensidade média máxima cresce com o período de retorno e que a intensidade máxima média de um mesmo período de retorno decresce com a respectiva duração, de modo que, essas duas observações estão sempre presentes nas expressões empíricas, apresentadas em quase todos os livros de hidrologia (Equação 2.1).

$$I = \frac{A(Tr)^B}{(t+C)^N}$$

(2.1)

Em que A, B, C e N são parâmetros a serem definidos para cada localidade, Tr é o tempo de retorno, t é a duração da chuva e I é a intensidade da chuva.

2.1.3 Análise de frequência das séries de valores extremos

O método da Califórnia permite de forma simplificada obter, através de uma série histórica de precipitações intensas, a frequência estimada com que um dado evento seja igualado ou superado. Para isto, as precipitações anotadas para cada duração são colocadas em ordem decrescente e o período de recorrência (tempo de retorno) pode ser calculado segundo a equação 2.2 (TUCCI, 2004):

$$T = n/i \tag{2.2}$$

Em que T é o tempo de retorno, n é o número de eventos máximos para uma determinada classe e i é o número de ordem para as precipitações.

Este método recebeu esta denominação por ter sito utilizado no Estado da Califórnia para o dimensionamento dos bueiros nas rodovias. Porém, de acordo com Tucci (2004), outros estudos já indicaram que este procedimento não é uma boa alternativa, vindo a ser substituída por modelos teóricos de probabilidade. Com estes modelos é possível a interpolação e extrapolação de valores além dos dados da série amostral permitindo a análise de um evento para qualquer tempo de retorno.

Através da análise de várias formulações para estimativa dos períodos de retorno, Cunnane (1978) percebeu que estas mantinham uma estrutura geral que pode ser representada pela equação 2.3:

$$T = \frac{n+1-2a}{i-a} \tag{2.3}$$

Em que T é o tempo de retorno, n é o número de eventos máximos para uma determinada classe, i é o número de ordem para as precipitações e a é uma constante que recebe valores conforme a distribuição testada.

Segundo Pinto (2007) apud Sampaio (2011) as séries de eventos máximos anuais são ordenadas de forma decrescente para que a posição de plotagem represente a probabilidade da variável X ser maior ou igual a um determinado valor,  $P(X \ge x)$ . Quando a constante a recebe o valor zero a equação 2.3 descreverá a distribuição de Weibull (1951); se a for 0,44, a equação será a fórmula de Gringorten (1963); se a for 0,375, será a fórmula de Blom (1953); se a for0,5; será a fórmula de Hazen (1914) e, se a for 0,4, a fórmula de Cunnane (1978).

A Tabela 2 a seguir mostram os valores de a adequados para as distribuições mais utilizadas nos estudos de chuvas intensas em hidrologia.

| a     | Fórmulas                 | Autor     | Aplicação                                                        |
|-------|--------------------------|-----------|------------------------------------------------------------------|
| 0     | (n + 1) / m              | Weibull   | Tempos de retorno para quase todas as distribuições.             |
| 0.375 | (n + 0.25) / (m - 0.375) | Blom      | Tempos de retorno para a distribuição de<br>Normal e Log-Normal. |
| 0.44  | (n + 0.12)/ (m - 0.44)   | Grigorten | Tempos de retorno para a distribuição de Gumbel.                 |
| 0.5   | (n) / (m - 0.5)          | Hazen     | Tempos de retorno para a distribuição de Gama de 3 parâmetros.   |
| 0.4   | (n + 0.2) / (m - 0.4)    | Cunnane   | Tempos de retorno para quase todas as distribuições.             |
| E     | (2011)                   |           |                                                                  |

Tabela 2 – Estimativa de tempo de retorno de amostras ordenadas para diferentes valores de a

Fonte: Sampaio et al. (2011)

As diversas fórmulas apresentadas são chamadas de distribuições empíricas e permitem a elaboração de um gráfico de probabilidade através da classificação em ordem decrescente ou crescente, dependendo da análise de máximos ou mínimos respectivamente, cálculo da posição de plotagem de acordo com as fórmulas apresentadas e a plotagem dos pares de valores, formando o gráfico de distribuição empírica (SAMPAIO et al., 2011).

A comparação de características dos modelos teóricos de distribuição com características de fenômenos naturais permitiram a elaboração de modelos probabilísticos que representam a ocorrência de processos hidrológicos. O estudo da adequação destes modelos permite a estimativa confiável para eventos como as precipitações intensas. Desta forma vários autores realizam trabalhos no campo da hidrologia com o intuito de obter valores de dimensionamento para projetos (FECHINE SOBRINHO, 2011).

#### 2.2 Equação de chuvas intensas - IDF

Para caracterizar as precipitações é necessário o conhecimento do comportamento de parâmetros como duração, intensidade e frequência. A relação entre esses três parâmetros é transformada em uma curva IDF que é utilizada como ferramenta no processo de transformação da chuva em vazão (DAME et al., 2008).

A relação Intensidade-Duração-Frequência (IDF) da chuva é uma das ferramentas mais comumente utilizadas em engenharia de recursos hídricos, seja para planejamento, concepção e operação de projetos de recursos hídricos, ou para diversos projetos de engenharia contra enchentes.

A escassez de pluviógrafos com períodos longos de observação dificulta a análise e obtenção de registros pluviográficos e a determinação da relação precipitação, duração e frequência das chuvas (OLIVEIRA et al., 2008b). Por isso, vários estudos foram realizados com o objetivo de desenvolver uma metodologia que, utilizando dados diários dos pluviômetros conseguisse obter chuvas de menor duração (BACK, 2009).

Existem várias pesquisas bastante difundidas sobre a relação IDF: Hershfield (1961) desenvolveu vários mapas de contornos para fornecer a representação gráfica da lâmina de precipitação para vários períodos de retorno. Bell (1969) propôs uma equação de IDF genérica utilizando uma chuva de uma hora e tempo de retorno de 10 anos como um índice;  $P_1^{10}$ , ele estabeleceu relações entre chuvas de diferentes durações empiricamente com base em observações de séries de precipitações parciais. Suas equações foram obtidas com base em dados de vários continentes, com o princípio de que as precipitações máximas são ocasionadas por células convectivas que tem características semelhantes em várias partes do mundo. Chen (1983) desenvolveu uma equação IDF genérica para qualquer local dos Estados Unidos utilizando três bases de dados pluviométricos:  $P_1^{10}$ ,  $P_{24}^{10}$  e  $P_1^{100}$ , que descreve a variação geográfica da precipitação. Kouthyari e Grade (1992) apresentaram uma relação entre a intensidade de precipitação de chuva e  $P_{24}^2$  para a Índia. Torrico (1967) desenvolveu o método das isozonas no Brasil que estabeleceu oito zonas de igual relação entre as alturas de precipitação. Mello et al. (2003) ajustaram o método de Bell para regiões do Estado de Minas Gerais, baseando-se na chuva máxima com duração de uma hora e período de retorno de dois anos. Esse ajuste permite que se obtenha para diferentes durações, a altura máxima da chuva sem necessitar de coeficientes regionais (BACK, 2009).

#### 2.2.1 Determinação das equações IDF

Muitos são os trabalhos dedicados à definição de equações para relação entre a intensidade, duração e frequência. Normalmente, o comportamento das chuvas intensas é obtido através dos registros pluviográficos onde são definidas as séries de intensidades médias máximas. Porém, frequentemente é preciso determinas estas equações para locais onde não se dispõe de postos pluviográficos (SOUZA et al., 2012).

Aproveitando da vasta rede de pluviômetro disponível no Brasil, frequentemente são utilizados coeficientes de desagregação de chuva para obter, através de chuvas máximas de 24 horas, chuvas com durações menores. Esta prática permite obter funções para as relações de intensidade, duração e frequência (ARAGÃO et al., 2012).

A metodologia proposta por Fechine Sobrinho (2011) é definida através da junção do método de Torrico (1974) com a técnica tradicional de obtenção da equação IDF utilizando-se de dados pluviográficos.

Sampaio (2011) apresentou algumas etapas para definir uma equação IDF em uma região que possui apenas dados pluviométricos:

a) Obter uma série hidrológica com os valores diários de precipitação. É desejável que se obtenham séries superiores a 20 anos para um melhor ajuste das funções de distribuição;

 b) Deve ser criada uma série com o maior valor de precipitação de um dia para cada ano e ordená-las de forma decrescente;

c) Os valores obtidos nos pluviômetros correspondem ao valor total de precipitação no período de 24 horas e não indica a duração real do evento, desta forma é aplicado um coeficiente para transformar a chuva de um dia em uma chuva virtual de 24 horas;

 d) Com as chuvas virtuais de 24 horas ordenadas de forma decrescente é possível determinar as frequências correspondentes para várias classes de valores de precipitações máximas;

e) Uma função de distribuição é ajustada para descrever o comportamento na ocorrência dos eventos máximos. O ajuste é testado através de um teste de aderência;

f) É obtida a extensão da série de dados e determinada as chuvas para diferentes durações.

g) É definido finalmente o ajuste para os parâmetros da função IDF, através de métodos de ajustamento, como o método dos mínimos quadrados.

2.2.2 Métodos de desagregação através das isozonas

O método das isozonas foi desenvolvido por Torrico (1974) que, ao estudar o comportamento das chuvas intensas, percebeu que havia áreas homólogas na relação entre as precipitações de 1 e 24 horas para um mesmo período de retorno. Estas relações permanecem constantes independentes da lâmina precipitada, desta forma é possível determinar a relação entre os dados de postos pluviográficos e pluviométricos para tempos de chuva inferiores a 24 h (OLIVEIRA et al. 2008a).

Percebendo a existência destas regiões o autor delimitou sobre todo o território brasileiro regiões com relações iguais denominando-as isozonas. Ao todo foram delimitadas 8 regiões, as quais são classificadas pelas letras de A a H.

A determinação dos coeficientes para obtenção das chuvas com duração de 1 h e 6 min se dá através da identificação da isozona na qual o posto em estudo se encontra. A Figura 1 mostra o mapa do Brasil com as delimitações de casa isozona e a Tabela 3 apresenta os coeficientes de igual relação para os diferentes tempos de retorno.

| T. | 1h/24h |      |      |      |      |      |      | 6min/24h |      |       |      |      |
|----|--------|------|------|------|------|------|------|----------|------|-------|------|------|
| 11 | 5      | 10   | 15   | 20   | 25   | 30   | 50   | 100      | 1000 | 10000 | 5-50 | 100  |
| А  | 36,2   | 35,8 | 35,6 | 35,5 | 35,4 | 35,3 | 35,0 | 34,7     | 33,6 | 32,5  | 7,0  | 6,3  |
| В  | 38,1   | 37,8 | 37,5 | 37,4 | 37,3 | 37,2 | 36,9 | 36,6     | 35,4 | 34,3  | 8,4  | 7,5  |
| С  | 40,1   | 39,7 | 39,5 | 39,3 | 39,2 | 39,1 | 38,8 | 38,4     | 37,2 | 36,0  | 9,8  | 8,8  |
| D  | 42,0   | 41,6 | 41,4 | 41,2 | 41,1 | 41,0 | 40,7 | 40,3     | 39,0 | 37,8  | 11,2 | 10   |
| Е  | 44,0   | 43,6 | 43,3 | 43,2 | 43,0 | 42,9 | 42,6 | 42,2     | 40,9 | 39,6  | 12,6 | 11,2 |
| F  | 46,0   | 45,5 | 45,3 | 45,1 | 44,9 | 44,8 | 44,5 | 44,1     | 42,7 | 41,3  | 13,9 | 12,4 |
| G  | 47,9   | 47,4 | 47,2 | 47,0 | 46,8 | 46,7 | 46,4 | 45,9     | 44,5 | 43,1  | 15,4 | 13,7 |
| Н  | 49,9   | 49,4 | 49,1 | 48,9 | 48,6 | 48,6 | 48,3 | 47,8     | 46,3 | 44,8  | 16,7 | 14,9 |

Tabela 3 - Correções para as isozonas de igual relação

Fonte: Tucci (2004)

Oliveira et al.(2008a) realizou um trabalho para o Estado de Goiás, onde comparou a obtenção de precipitações máximas através de três diferentes métodos difundidos na literatura, o método das isozonas, o método de desagregação da chuva de 24 horas do DAEE-CETESB (1980). e o método de Bell (1969). O método das isozonas apresentou o melhor

desempenho em relação aos outros com índice de concordâncias bem superiores e próximos a unidade.



Figura 02 – Mapa do Brasil com isozonas. Fonte: Modificado Carneiro et al. (2002)

Outro trabalho que se utilizou das isozonas para determinação das Equações IDF nos Municípios de Juazeiro do Norte, Crato e Barbalha foi realizado por Fechine Sobrinho (2011). Este autor conseguiu obter resultados com correlação superior a 95% na geração destas equações se baseando nas zonas de igual relação para determinação das precipitações máximas. Vários trabalhos foram desenvolvidos com o intuito de se obter equações IDF para distintas regiões no país. A forma mais consistente para obter uma equação que relacione a intensidade, duração e frequência é através de séries de dados pluviográficas. Estas são tidas pelas literaturas como as funções IDF que melhor representam os comportamentos das precipitações intensas.

Laura (1997) desenvolveu para a cidade de Fortaleza uma equação IDF tomando como base o registro de 23 anos para o período de 1974 a 1996. Este registro tinha como base dados de pluviógrafos do posto da FUCNEME o qual foi utilizado por Torrico (1974) na formulação do método das isozonas.

Também Laura (1997), obteve através de registros pluviográficos, a equação IDF para a cidade de Miracema do Norte no Estado do Tocantins. Foram utilizadas uma série de 20 anos de registro para o período de 1975 a 1994 obtidos no posto da Agência Nacional de Águas de número 948000. Este posto não foi utilizado na formulação das isozonas.

A Equação 2.4 definida por Laura (1977) para a cidade de Fortaleza no Estado do Ceará e as Equações 2.5 e 2.6, para Miracema do Norte no Estado do.

### Para Fortaleza

$$I = \frac{36,16(Tr-1)^{0,154}}{(t+26,94)^{0,864}}$$
(2.4)

Para Miracema do Norte

$$I = \frac{28,99(Tr-1)^{0,101}}{(t+17)^{0,796}}, \text{ para t} \le 45 \text{ minutos}$$
(2.5)

e

$$I = \frac{16,66(Tr-1)^{0,184}}{(t)^{0,787}}, \text{ para } t \ge 45 \text{ minutos}$$
(2.6)

Em que Tr é o tempo de retorno, t é a duração da chuva e I é a intensidade da chuva.

ENCIBRA (1978) foi uma consultora que elaborou a equação de chuva para a prefeitura de Recife. Foram tomados como base uma série histórica de dados pluviográficos entre 1926 a 1977 no posto de Curado. A Equação 2.7 a seguir apresenta a função para a cidade de Recife:

$$I = \frac{335,47(Tr)^{0,218}}{(t+4)^{0,539}}$$
(2.7)

Em que Tr é o tempo de retorno, t é a duração da chuva e I é a intensidade da chuva.

Para o Estado do Rio Grande do Sul, Sampaio (2011) obteve para 130 municípios as equações de chuva se baseando em vários modelos de desagregação de chuvas. Em sua pesquisa ele concluiu que as diferentes metodologias de desagregação não apresentaram diferenças quando comparadas com as relações de duração obtidas com a metodologia tradicional (dados de pluviográfos) fornecidas para diferentes regiões do Rio Grande do Sul.

O autor determinou a função IDF para a Cidade de Caxias do Sul se utilizando de dados pluviométricos, para isto foi utilizada uma série histórica de precipitação diária de 67 anos para o período de 1943 a 2010. Os dados foram coletados no posto de número 02951022 da Agência Nacional de Águas. A função IDF está descrita na Equação 2.8.

$$I = \frac{1010,24(Tr)^{0,1316}}{(t+0,754)^{8,84}}$$
(2.8)

Em que Tr é o tempo de retorno, t é a duração da chuva e I é a intensidade da chuva.

Fechine Sobrinho (2011) concluiu em seu trabalho as equações para as cidades de Juazeiro do Norte, Crato e Barbalha no cariri Cearense. Estas são respectivamente as equações 2.9, 2.10 e 2.11.

$$I = \frac{26,734(Tr-2,90)^{0,098}}{(t+10,14)^{0,798}}$$
(2.9)

$$I = \frac{21,02(Tr-3,05)^{0,092}}{(t+6,82)^{0,750}}$$
(2.10)

$$I = \frac{20,240(Tr-2,98)^{0,0769}}{(t+5,45)^{0,728}}$$
(2.11)

Em que Tr é o tempo de retorno, t é a duração da chuva e I é a intensidade da chuva.

## 2.3 Hidroinformática

Com o passar do tempo os avanços tecnológicos na área de computação vem sendo de grande importância no desenvolvimento de ferramentas que provoca uma economia de tempo e proporciona mais qualidade aos projetos. Na engenharia de recursos hídricos não é diferente. A necessidade de obtenção de resultados cada vez mais rápidos e com maior precisão para as mais diversas áreas fomenta a busca constante pela redução do tempo gasto com processos cansativos, repetitivos e de alta complexidade matemática (VALDIVINO, 2011).

O desenvolvimento de programas de computador possibilita a análise e a simulação de diversificadas situações com variados tipos de parâmetros de forma simples e objetiva além de permitir a análise em maiores escalas. Neste aspecto, os programas de computador estão se tornando ferramentas indispensáveis para projetos de engenharia, fato notório dado a crescentes demanda de utilização na elaboração de projetos.

É de fundamental importância para a elaboração de um projeto a representação com o máximo de detalhes do ambiente em estudo (VALDIVINO, 2011). Estes programas computacionais não são apenas utilizados para o desenvolvimento de projetos, mas também são utilizados como ferramentas de suporte a decisão, planejamento e gestão. A utilização em conjunto de todas estas ferramentas computacionais forma uma linha de estudo denominada Hidroinformática.

A Hidroinformática lida com toda uma gama de informações como coleta, medição e interpretação de dados para gestão e desenvolvimento de estruturas de engenharia civil.

Também é responsável pelo uso de simulações para águas subterrâneas, fluxos de água e ocorrência de eventos extremos para prever desastres decorrentes de eventos naturais (DUARTE, 2009).

As etapas de desenvolvimento de um programa computacional se iniciam e com a definição de uma linguagem de programação que atenda todas as necessidades para solução do problema em estudo e que também possa permitir a continuidade do seu aprimoramento por terceiros além de sua aplicabilidade em conjunto com outros programas e possível comercialização.

2.3.1 A linguagem de programação Java

A linguagem de programação em Java é a mais utilizada em todo o mundo, não sendo apenas uma linguagem orientada a objeto, mas também uma plataforma de desenvolvimento.

Desde que surgiu no ano de 1995a linguagem Java, trouxe consigo a característica marcante de ter independência de plataforma. Todos os códigos em Java não são compilados diretamente para as instruções de uma determinada arquitetura de hardware, mas sim para um formato intermediário que permite sua interpretação por meio de uma máquina virtual. Assim, todo e qualquer código Java pode ser utilizado em várias plataformas (LIMA, 2007).

Muitas outras tecnologias permitem a portabilidade de código, mas sempre através de uma recompilação do código fonte. Já o código Java não necessita passar por recompilação para ser executado em outra plataforma. A compilação é realizada apenas uma vez em um formato denominado de *bytecode*. Este formato representa um código binário pré-compilado que pode ser interpretado em várias plataformas através de sua máquina virtual.

A flexibilização na portabilidade do código leva a uma interpretação que pode chegar a ser 20 vezes mais lenta que outros códigos comuns. Porém um pequeno percentual do código de uma aplicação representa uma parte significativa de seu desempenho (LIMA, 2007).

Os códigos gerados a partir da linguagem Java são mais fáceis de serem elaborados devido à grande disponibilidade de bibliotecas na literatura além de resultar em interfaces computacionais multiplataforma.

## **3 MATERIAIS E MÉTODOS**

## 3.1 Área de estudo

A região do Cariri cearense é proposta pelo Instituto de Pesquisa e Estratégia Econômica do Ceará – IPECE como uma mesorregião formada por 30 municípios, situada na região sul do Estado e que faz fronteira com os Estados do Pernambuco, Piauí e Paraíba (Figura 3 e 4). Possui sua limitação bem definida com o Pernambuco e o Piauí por fatores geográficos associados a formação geológica da Chapada do Araripe.



**Figura 3** – Territórios Rurais de Identidade do Estado de Ceará – Fonte: Instituto de Pesquisa e Estratégia Econômica do Ceará – IPECE (2014).

Esta formação serrana tem forte influência no microclima desta região, com fácil percepção das características destoante com o clima e a vegetação das regiões circunvizinhas. Distanciando não mais que 30 km, fica evidente a transição de uma região com vegetação do tipo floresta tropical para adentrar totalmente na caatinga constituída do sertão do Nordeste brasileiro.

A região é composta por duas sub-bacias, sendo a oeste, em divisa com o Piauí, a subbacia do alto do Jaguaribe e, a Leste, divisa com Paraíba, a sub-bacia do Salgado. Segundo a Fundação Cearense de Meteorologia e Recursos Hídricos – FUNCEME (2006), a precipitação média anual é de aproximadamente 1000 mm, tendo um leve acréscimo do volume precipitado nos municípios mais próximos ao sopé da chapada e valores inferiores a média para os municípios que ficam mais distantes.

Mesmo com sistemas ambientais diferentes, é muito pequena a variação de temperatura média anual em toda a região. Estas se situam entre 23° e 27°C tendo o período de Maio a Agosto como o mais ameno do ano (FUNCEME, 2006).



**Figura 4** – Detalhe no Cariri dos Territórios Rurais de Identidade do Estado de Ceará – Fonte: Instituto de Pesquisa e Estratégia Econômica do Ceará – IPECE (2014).

### 3.2 Dados pluviométricos

A FUNCEME disponibiliza no seu endereço eletrônico, arquivos digitais com as séries históricas para precipitação de quase todos os municípios do Estado. Muitos municípios ganharam com o passar dos anos novos postos e é possível encontrar mais de uma série histórica por município. Porém, para esta pesquisa, foi dado preferência ao posto de maior série e sempre com históricos superiores a 20 anos.

Para obter estes dados deve-se acessar o endereço eletrônico <u>http://www.funceme.br/</u> disponibilizado pela fundação em seguida a sequência das secções "Produtos e Serviços", "Tempo" e "Download de Séries Históricas", como exibido na Figura 03. Em seguida, escolhe-se qual município se deseja obter os dados.



**Figura 5** – Sequência de secções para acesso aos dados das séries históricas das estações pluviométricas. – Fonte: Fundação Cearense de Meteorologia e Recursos Hídricos (2014).

O arquivo obtido é do tipo ".txt" e pode ser utilizado através de qualquer programa de computador para edição de texto e planilhas eletrônicas. Nestes arquivos é disposto o nome do município e do posto pluviométrico, sua localização geográfica em longitude e latitude, além da precipitação total para cada dia do ano.

Todos os 30 municípios da região em estudo possuem mais de 20 anos de dados pluviométricos, sendo os mais antigos iniciados em 1974. Para este trabalho foram definidos critérios na seleção dos dados, sendo que qualquer falha, números fora da ordem de grandeza para precipitação diária e descontinuidade dos dados implica na exclusão do ano problemático para a análise.

#### 3.3 Desenvolvimento de uma interface computacional em Java.

Mediante à complexa e iterativa metodologia na definição de equações IDF para uma localidade, muitas vezes se torna inviável ou simplesmente não há atrativos para o desenvolvimento de estudos em regiões menos favorecidas, seja pela escassez de recursos, baixo índice populacional ou ausência de estações meteorológicas. Sendo assim, a proposta de desenvolver uma interface computacional é automatizar, ou, tornar sistêmica a obtenção das equações de chuva.

Fechine Sobrinho (2011), tomando como base os critérios do método das isozonas desenvolvido por Torrico (1974) determinou as equações de chuva para as três maiores cidades do Cariri. Logo, uma interface que seja possível seguir criteriosamente toda a metodologia de obtenção, assim como foiproposta por Fechine Sobrinho (2011), permitirá a fácil obtenção para uma análise da variação dos parâmetros das equações na região em estudo (CANEIRO, 2002).

Para o desenvolvimento desta interface foi escolhida a linguagem Java por se tratar de uma plataforma de programação de linguagem simples e com um grande número de bibliotecas de classes já testadas. Uma interface Java permite sua distribuição em ambientes heterogêneos e suas aplicações podem ser executadas em uma variedade de sistema operacional e de arquitetura de hardware. Também há um objetivo futuro de aplicar este algoritmo em um sistema de informações geográficas, como o gvSIG. Já que a linguagem Java permite a compatibilidade total com SIG's.

### 3.4 Algoritmo de seleção dos eventos máximos

Para tornar o processo de aquisições de dados de precipitações máximos através dos arquivos com as séries históricas para pluviometria disponibilizada pela FUNCEME foi implementado no algoritmo em linguagem Java uma função que seleciona automaticamente o maior evento de precipitação de cada ano e formando um banco de dados.

Dentro deste algoritmo tomou-se o cuidado de criar uma rotina onde fosse verificada a consistência dos dados. Falhas como descontinuidade de coleta, ausência de anos ou meses, valores absurdos, são detectadas, resultando na exclusão do referido ano para a montagem do banco de dados das precipitações máximas. O fluxograma da Figura 6 exibe a sequência de análise do algoritmo.



Figura 6 – Fluxograma de funcionamento do algoritmo de seleção dos eventos máximos anuais.

Quando iniciada a interface computacional desenvolvida em Java, a primeira janela exibida é a opção do tipo de arquivo a ser aberto. Inicialmente o algoritmo foi concebido para

funcionar apenas para dados da FUNCEME, mas em seguida implementou-se uma alternativa de entrada de dados manuais, possibilitando a entrada de dados de outras plataformas, viabilizando assim estudos em qualquer parte do território nacional.



**Figura 7** – Sequência para abertura de arquivos com dados das séries históricas da FUNCEME na interface computacional para obtenção de equações IDF.

Quando selecionada a opção abrir, uma janela padrão de seleção de arquivo é exibida. Uma vez aberto o arquivo com a série histórica, todo o tratamento de dados será realizado e uma lista com os eventos máximos para cada ano é exibida (ano0 e precipitação em mm (Figura 7).

### 3.5 Ajustes dos eventos máximos anuais às distribuições de frequências

Para muitas análises hidrológicas, planejamento ou projetos, a estimativa confiável de intensidades de chuvas é necessária. As relações entre duração, frequência e intensidade das chuvas compreende estimar intensidades de eventos para diferentes durações e vários períodos de retorno (RASHID et al., 2012).

O primeiro passo na técnica de estabelecimento das equações IDF é o ajuste dos eventos máximos a uma distribuição de frequência onde se relaciona a intensidade de precipitação para cada intervalo de tempo e um tempo de retorno (NHAT et al., 2006).

Fechine Sobrinho (2011) utilizou cinco diferentes modelos de distribuição de eventos extremos máximos, sendo eles: Log-Normal com dois e três parâmetros, Gamma com dois e três parâmetros e Gumbel. Segundo Tucci (2004), o modelo de distribuição mais utilizado nas análises de frequência com variáveis hidrológicas é a Gumbel. Para Souza et al. (2012), a distribuição Gumbel foi a função que melhor apresentou ajuste para a obtenção de equações IDF no Estado do Pará. Já Aragão et al. (2012) não conseguiu esta mesma qualidade de ajuste com Gumbel no Estado de Sergipe, optando pela função de Weibull que melhor se adequou àquele Estado.

Todavia, não há uma função específica bem definida para a obtenção de uma equação IDF. Uma técnica comum é testar mais de uma função de distribuição e através de critérios pré-estabelecidos concluir qual representa o fenômeno com maior fidelidade (SAMPAIO 2011).

Seguindo a mesma metodologia que Fechine Sobrinho (2011) a função de distribuição escolhida será aquela que atender o maior número de testes e de índices satisfatoriamente.

3.5.1 Distribuição Log-normal com dois parâmetros

A distribuição log-normal com dois parâmetros é muito usada para caracterizar a ocorrência de eventos extremos além de outros fenômenos como fadiga de metal e tempo de vida de materiais.

Esta é definida por uma variável aleatória X e tem sua função densidade de probabilidade dada por:

$$f(x;\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} e^{\frac{-(\ln x - \mu)^2}{2\sigma}}, \ x > 0$$
(3.1)

Em que:  $fx = \ln x$ ,  $\mu$  é a média da amostra e  $\sigma$  é o desvio padrão da amostra.

3.5.2 Distribuição Log-normal com três parâmetros

Neste caso é inserido na distribuição um parâmetro de posição  $A_0$  na qual todo o conjunto amostral sofre um deslocamento do tipo y = ln (x -  $A_0$ ). Assim a função fica definida com:

$$f(x;\mu,\sigma) = \frac{1}{(x-A_0)\sigma_0\sqrt{2\pi}} e^{\frac{-(\ln(x-A_0)-\mu_0)^2}{2\sigma_0}}, \quad x > 0$$
(3.2)

Em que:  $fx = \ln x$ ,  $\mu_0$  é a média da amostra deslocada, e  $\sigma_0$  é o desvio padrão da amostra deslocada e A<sub>0</sub> é o fator de posição para deslocamento.

O terceiro parâmetro da distribuição é definido pelo menor valor obtido para a função:

$$f(x; \mu_0, \sigma_0, A_0) = N \times LN(\sigma_0) + \frac{N \times LN(2\pi)}{2} + \sum_{1}^{N} [LN(y_{t-}A_0)] + \frac{\sum_{1}^{N} [LN(y_{t-}A_0) - \mu_0]^2}{2\sigma_0},$$
  

$$A_0 < Menor valor da Amostra$$
(3.3)

Em que:  $\mu_0$  é a média da amostra deslocada, e  $\sigma_0$  é o desvio padrão da amostra deslocada e  $A_0$ é o fator de posição para deslocamento, N é número de dados da amostra e  $y_t$ é o valor dos dados da amostra.

### 3.5.3 Distribuição Gama com dois parâmetros

Várias distribuições são oriundas de casos particulares da distribuição Gama, sua função de densidade de probabilidade para a variável aleatória *X* contínua é dada por:
$$f(x;\beta,v) = \frac{\beta^{-v} x^{v-1} e^{-x/\beta}}{\Gamma(v)}, \ x \ge 0$$
(3.4)

Em que:  $\beta$  é o parâmetro de taxa, v é o parâmetro de forma e  $\Gamma$ é uma função.

$$\Gamma(x) = \int_0^\infty x^{\nu - 1} e^{-x} dx , \ x > 0$$
(3.5)

Os parâmetros  $v, \beta$  podem ser obtidos através de estimativas oriundas da média e desvio padrão da amostra com a utilização das seguintes fórmulas:

$$\beta = \frac{\sigma^2}{\mu} \tag{3.6}$$

$$v = \frac{\mu^2}{\sigma^2} \tag{3.7}$$

Onde Em que:  $\sigma$  é o desvio padrão da amostra e  $\mu$  é a média da amostra.

## 3.5.4 Distribuição Gama com três parâmetros

No caso da distribuição Gama com três parâmetros, esta apresenta a inclusão de um parâmetro extra de locação.

Com a adição deste parâmetro a sua função de densidade de probabilidade da variável aleatória *X* contínua é dada por:

$$f(x;\beta,v) = \frac{\beta^{-v}(x-\delta)^{v-1}e^{-(x-\delta)/\beta}}{\Gamma(v)}, \ x \ge \delta$$
(3.8)

Em que:  $\delta$  é o parâmetro de locação.

Os parâmetros  $v, \beta \in \delta$  podem ser obtidos através do método dos momentos e ficam definidos como:

$$\beta = \frac{\sigma A_s}{2} \tag{3.9}$$

$$v = \frac{4}{A_s^2} \tag{3.10}$$

$$\delta = \mu - \frac{2\sigma}{A_s} \tag{3.11}$$

Em que:  $A_s$  é o coeficiente de assimetria da amostra.

## 3.5.5 Distribuição Gumbel

Uma variável Y tem distribuição Gumbel se tiver função densidade de probabilidade dada por:

$$f(x;\beta,\alpha) = \alpha e^{\{-\alpha(x-\beta)-e^{[-\alpha(x-\beta)]}\}} \quad x \in (-\infty,\infty)$$
(3.12)

Em que:  $\alpha$  é o parâmetro de escala e  $\beta$  é o parâmetro de posição.

A obtenção dos parâmetros desta distribuição pode ser alcançada em função das estimativas amostrais da média e do desvio padrão:

$$\beta = \mu - 0.451\sigma \tag{3.13}$$

$$\alpha = \frac{1,2826}{\sigma} \tag{3.14}$$

Em que:  $\sigma$  é o desvio padrão da amostra e  $\mu$  é a média da amostra.

## 3.5.6 Teste de aderência pelo método do Qui-Quadrado

O teste do Qui-Quadrado (X<sup>2</sup>) é um teste de hipótese que avalia a associação existente entre variáveis através da definição de um valor de dispersão para duas variáveis nominais. Este método compara possíveis divergências para certo evento entre as frequências observadas e esperadas.

Caso as diferenças entre as frequências observadas e esperadas não sejam significativas ou próximas a zero, indica que há um comportamento semelhante entre as duas variáveis.

As diferenças entre as proporções observadas e esperadas são dadas por:

$$X_0^2 = \sum_{i=1}^k \frac{(Fo_i - Fe_i)^2}{Fe_i},$$
(3.15)

Em que:  $Fo_i$  é a frequência observada,  $Fe_i$ é a frequência estimada.

O teste de aderência baseia-se em duas hipóteses: H<sub>0</sub> – As frequências esperadas não são diferentes das frequências observadas. H<sub>1</sub> – As frequências esperadas são diferentes das frequências observadas.

Para definição de rejeição ou não da hipótese formulada é necessário obter duas estatísticas e compará-las. A primeira é calculada através dos dados experimentais, relacionando os dados observados com os dados calculados, e a segunda estatística é retirada de uma tabela de valores críticos onde constam os valores teóricos para um nível de significância ( $\alpha$ ) e um grau de liberdade.

O nível de significância indica a máxima probabilidade de erro que se tem ao rejeitar uma hipótese. Neste trabalho iremos adotar o mesmo valor de significância adotado por Sobrinho (2011) que foi de 5%.

Para se calcular os graus de liberdade têm-se:

$$GL = k - 1 - m \tag{3.16}$$

Em que: GL são os graus de liberdade, k é o número de intervalos da classe de distribuição de frequência e m é o número de estatísticas utilizadas na determinação dos parâmetros.

A decisão sobre rejeição da hipótese é realizada com a comparação destes dois valores estatísticos, logo, quando o valor calculado é superior ao valor tabelado, a hipótese  $H_0$  é rejeitada e se tem a hipótese  $H_1$  como verdadeira.

Assim, para se deixar de rejeitar a hipótese  $H_0$  é preciso que os valores estatísticos obtidos neste trabalho, para cada distribuição de frequência, sejam menores que o valor tabelado.

3.5.7 Teste de aderência pelo método de Lilliefors

O teste de Lilliefors é usado para verificação de normalidade de um conjunto de dados. Este foi criado através de uma adaptação do teste de Kolmogorof-Smirnoff. A diferença entre o teste de Lilliefors é que nele a normalidade é testada a partir de média e desvio fornecidos, enquanto Kolmogorof-Smirnoff usa a média e o desvio-padrão, calculados no próprio conjunto de dados.

Os cálculos se processam como no teste de Kolmogorov-Smirnov, porém os dados originais passam por padronização através da estimativa da média e do desvio padrão.

$$Z_{i} = \frac{X_{i} - \bar{X}}{S} \quad (i = 1, ..., n).$$
(3.17)

Em que:  $Z_i$  é o dado padronizado,  $X_i$  é o dado original,  $\overline{X}$  é a média e S o desvio padrão.

Desta forma, as hipóteses a serem testadas são:

H0: A amostra provém de uma população que segue uma distribuição normal;H1: A amostra não provém de uma população que segue uma distribuição normal.

Em que:

 $H_0: Z \sim N(0,1)$  $H_1: Z \not\sim N(0,1)$ 

Sendo  $F_0$  a função de distribuição N(0,1), a estatística de teste é dada por:

$$D_n^* = \sup_{-\infty < Z < \infty} |F_n(z) - F_0(z)|,$$
(3.18)

Em que:  $F_n$  é a função de distribuição definida para as variáveis aleatórias  $Z_n$ .

Da mesma forma, o valor observado da estatística de teste  $D_n^*$  é obtido substituindo-se na estatística a função de distribuição da amostra padronizada pela função empírica. Logo, deixa-se de rejeitar a hipótese  $H_0$  se, para o nível de significância definido, o valor observado for inferior ou igual ao ponto crítico.

A definição do ponto crítico é realizada através de consultas à tabela definidas por Lilliefors, o valor do nível de significância para este trabalho ficou definido em 5%.

## 3.5.8 Índices estatísticos de comparação

Com o intuito de subsidiar com mais informações e permitir um suporte na decisão de qual distribuição de frequência tem o melhor ajuste, são utilizados três índices estatísticos: desvio quadrático médio, desvio quadrático residual e o desvio percentual médio absoluto.

Com estes valores é possível observar as discrepâncias entre as frequências observadas e as calculadas. Apesar de não possuir critérios mais refinados na análise, estes índices permitem, de forma menos apurada, uma visualização rápida de quão distante está a diferença entre as frequências.

$$DQM = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\frac{x_{oi} - x_{ei}}{x_{ei}})^2}$$
(3.19)

$$DQR = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{oi} - x_{ei})^2}$$
(3.20)

$$DPMA = \frac{1}{N} \sum_{i=1}^{N} \frac{|x_{oi} - x_{ei}|}{x_{ei}} \right)^2$$
(3.21)

Em que:  $x_{oi}$  é a I-ésima precipitação observada,  $x_{ei}$  é a I-ésima precipitação calculada e N é o número de eventos da amostra.

## 3.5.9 Tendência e linearidade

A análise de regressão para estes eventos terá o eixo passando pela origem por se tratar de uma análise entre fenômeno observado e calculado. A equação de regressão linear será dada por:

$$Y = b * X \tag{3.22}$$

Em que:

$$b = \frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} X_i^2}$$
(3.23)

Em que: b é o coeficiente angular da reta que passa pela origem, X é o valor de precipitação observado, Y é o valor de precipitação calculado e n é a I-ésima precipitação analisada.

O coeficiente de determinação (R<sup>2</sup>) será dado por:

$$R^2 = 1 - SQR/SQTo \tag{3.24}$$

Em que:  $R^2$  é o coeficiente de determinação, SQR é a soma do quadrado residual e SQTo é a soma do quadrado total.

$$SQR = \sum_{i=1}^{n} (Y_i - bX_i)^2$$
(3.25)

$$SQTo = \sum_{i=1}^{n} (Y_i^2 - \bar{Y})^2$$
(3.26)

Em que: X é o valor de precipitação observado, Y é o valor de precipitação calculado e i é a Iésima precipitação analisada.

3.5.10 Interface de ajuste e teste das distribuições de frequência

Para tornar possível a realização de todos os cálculos exibidos nos itens 3.4.1 a 3.4.8 de forma automática, foi desenvolvida a interface de um algoritmo computacional em Java descrita na Figura 8. Com este algoritmo é possível realizar o ajuste da série de eventos máximos anuais a várias distribuições de frequência, além de obter os resultados para os testes de aderência Qui-Quadrado e Lillierfors, os índices estatísticos de comparação e os testes de linearidade de tendência.



Figura 8 – Tela para testes e comparação da aderência das séries de eventos máximos anuais às distribuições de frequência.

A Figura 9 mostra o fluxograma de cálculo realizado pelo algoritmo desde a leitura dos dados da série de eventos máximos anuais até a obtenção de todos os resultados exibidos pela interface.

O primeiro passo realizado pelo algoritmo após a leitura dos dados da série de eventos máximos anuais é a determinação dos parâmetros estatísticos como média, desvio padrão, coeficiente de assimetria, dentre outros. Estes valores são utilizados para o cálculo dos parâmetros das cinco distribuições de frequência apresentadas nas seções 3.4.1 a 3.4.5 que estão presentes no algoritmo.

Para cada distribuição ajustada com seus parâmetros, o algoritmo se utiliza de estatística descritiva e cria tabelas com distribuição dos eventos calculados e compara com valores observados. Desta forma iniciam-se os testes de aderência.



Figura 9 – Fluxograma de obtenção e exibição dos resultados obtidos pelo algoritmo em Java.

Nos testes de aderência do Qui-quadrado e LillIefors são definidos os graus de liberdade para cada distribuição, e com isso tem-se através de tabelas inseridas no algoritmo do programa os valores para estatísticas de teste.

Os demais testes são calculados diretamente e seus valores são exibidos dentro dos locais específicos na janela de exibição dos testes da interface computacional.

Após a obtenção dos valores de testes fica a cargo do operador da interface decidir qual distribuição apresentou aderência ideal à série histórica daquele município e prosseguir com a metodologia para obtenção da equação IDF. 3.5.11 Aplicação do método das isozonas na obtenção de intensidades de chuvas.

O método das isozonas na determinação das equações IDF consiste na utilização de regiões definidas por isovalores as quais possuem relações de altura de chuva de 1 hora e 24 horas e 6 minutos e 24 horas constantes para um período de retorno (TORRICO, 1974).

A ideia de Torrico (1974) foi utilizar-se de dados diários de estações pluviométricas e por meio do processo de desagregação, obter valores de precipitação com diferentes durações, variando de 6 minutos a 24 horas.

Para obter os valores desagregados da chuva, inicia-se o processo de transformação da chuva de um dia em chuva virtual de 24 horas de duração através da Equação 3.27, os valores de transformação desta equação é proposto por Torrico (1974), baseado nas estações usadas por Pfafstetter (1957).

$$P_{24horas} = 1,095 P_{1\,dia} \tag{3.27}$$

Em que:  $P_{24horas}$  é a chuva virtual de 24 horas e  $P_{1 dia}$  é a precipitação registrada no pluviômetro para um dia de ocorrência.

Para cada posto selecionado definiu-se a localização sobre o mapa das isozonas do Brasil (Figura 2) do qual obteve-se os valores percentuais das relações entre a chuva de 1 hora e 24 horas e a relação de chuva de 6 minutos e 24 horas, de acordo com vários períodos de retorno. Estes valores foram apresentados na seção 2.2.2 e podem ser conferidos na Tabela 3.

3.5.12 Formulação das equações IDF.

A formulação geral apresentada por Fechine Sobrinho (2011) para as relações entre precipitações intensas de diferentes durações de chuvas (IDF) é apresentada na Equação 3.28.

$$I = \frac{A(Tr-S)^B}{(t+C)^N}$$
(3.28)

Em que: A, B, C, S e N são parâmetros a serem definidos para cada localidade, Tr é o tempo de retorno, t é a duração da chuva e I é a intensidade da chuva.

Seguindo a mesma formulação apresentada por Fechine Sobrinho (2011), os parâmetros A, B, C, S e N serão determinados de forma direta e específica através de uma metodologia criteriosa descritas nas seções 3.5.13 a 3.5.15.

3.5.13 Formulação da equação de chuvas intensas - obtenção dos parâmetros "A", "B" e "N"

A obtenção dos parâmetros A, B e N foi feita através de análise de regressão linear múltipla utilizando o método dos mínimos quadrados. Estes são os passos adotados por Fechine Sobrinho (2011).

Com a aplicação do logaritmo na equação 3.28 chega-se a:

$$Ln(I) = Ln(A) + BLn(Tr + S) - nLn(t + C)$$

$$(3.29)$$

A aplicação dos mínimos quadrados nos leva a um sistema de três equações e três incógnitas, sendo estas os parâmetros almejados A, B e N. O sistema de equação é dado pelas Equações 3.30, 3.31 e 3.32.

$$\sum Ln(i) = NLn(A) + B \sum Ln(Tr + S) + n \sum Ln(t + C)$$
(3.30)

$$\sum [Ln(Tr+S)Ln(i)] = Ln(A) \sum Ln(Tr+S) + Ln(A) \sum [Ln(Tr+S)]^2 + n \sum [Ln(Tr+S)Ln(t+C)]$$

$$(3.31)$$

$$\sum [Ln(t+C)Ln(i)] = Ln(A) \sum Ln(t+C) + B \sum \{[Ln(Tr+S)Ln(t+C)] + n \sum [Ln(t+C)]^2 \}$$
(3.32)

3.5.14 Formulação da equação de chuvas intensas - obtenção do parâmetros "C".

O parâmetro C é obtido pelo método proposto por Wilken (1978) que define o período de retorno como aquele que corresponde a um quinto do número de anos observado na série histórica. São locados três pares de valores de intensidade e seus respectivos tempos de duração em que  $i_1$  é a maior intensidade e seu tempo de duração  $t_1$ ,  $i_2$  a menor intensidade e seu tempo de duração  $t_2$  e  $i_3$  a relação dada pela Equação 3.33.

$$i_3 = \sqrt{i_1}\sqrt{i_2} \tag{3.33}$$

Com a definição do valor de  $i_3$ , define-se seu respectivo tempo de duração e através da equação 3.34 obtém-se o valor para o parâmetro C.

$$C = \frac{t_3^2 \cdot t_1 \cdot t_2}{t_1 + t_2 - 2 \cdot t_3} \tag{3.34}$$

3.5.15 Formulação da equação de chuvas intensas - obtenção do parâmetro "S"

O parâmetro S é obtido por minimização do valor de Qui-Quadrado através de uma função polinomial  $f(s) = X^2$ .

Através de um processo iterativo, definem-se valores de intensidades geradas pela equação com os valores já obtido para os parâmetros A, B, C e N em função de S. Desta forma, para cada valor de S tem-se um valor para o Qui-quadrado. O menor valor do Quiquadrado indicará o valor de S que otimizará a equação.

3.5.16 Interface para obtenção da equação IDF.

Os procedimentos para obtenção das equações IDF descritos nas seções 3.10 a 3.14 foram inseridos na interface do algoritmo de forma a obter todos os processos de forma automática.

Após o usuário definir na interface exibida na Figura 8 qual a função de distribuição que possui melhor ajuste, a próxima tela será exibida para definir sobre qual região de isovalores se localiza o posto pluviométrico de onde foram extraídos os dados (Figura 10).

Com a seleção da isozona para o posto em estudo, o algoritmo automaticamente define as precipitações diárias máximas para os diferentes tempos de retorno. Em seguida define através do método das isozonas as intensidades de chuvas para diferentes durações e diferentes períodos de retorno.

Como definido nas seções 3.12, 3.13 e 3.14, o algoritmo calcula e exibe através da interface da Figura 11 os valores para os cinco parâmetros que compõe a equação IDF.



Figura 10 – Tela para seleção da isozona a qual pertence o posto pluviométrico.



Figura 11 – Tela final do algoritmo para exibição da equação IDF do posto pluviométrico em estudo.

## **4 RESULTADOS E DISCUSSÃO**

#### 4.1 Validação do algoritmo computacional para obtenção das equações IDF

4.1.1 Comparação entre as equações IDF obtidas pelos métodos manual e algoritmo computacional

O Algoritmo desenvolvido ao longo deste trabalho representou de forma sistêmica toda a metodologia desenvolvida por Fechine Sobrinho (2011) para obtenção de equações IDF de forma automática e mantendo todos os seus critérios.

A metodologia foi aplicada em todos os 30 municípios da região do Cariri, os quais apresentaram no histórico disponível pela FUNCEME séries diárias de chuva maiores que 20 anos. Tomou-se o cuidado de aplicar, em um primeiro instante, o algoritmo para as mesmas séries históricas das três cidades nas quais Fechine Sobrinho (2011) desenvolveu seu trabalho, com intuito de verificar e comparar seus resultados.

O resultado obtido no primeiro passo do algoritmo trouxe as mesmas séries de eventos máximas que Fechine Sobrinho (2011). Em seguida foram obtidas, seguindo os mesmos critérios e as mesmas distribuições, as equações IDF para Juazeiro do Norte, Crato e Barbalha. A comparação das equações obtidas pelo algoritmo deste trabalho e às obtidas por Fechine Sobrinho (2011) está nos gráficos de correlação linear das Figuras 9, 10 e 11.

Para a cidade do Crato também foi encontrada uma relação com índices próximos à unidade, porém percebeu-se que o coeficiente angular da correlação linear apresentou uma leve divergência, 1,2187. A discordância ocorreu pela utilização de aproximações na determinação do terceiro parâmetro da função de distribuição Log-Normal III utilizada para obter a Equação IDF. O processo automático de geração das Equações IDF, evita a propagação de erros provocados por arredondamentos numéricos.



**Figura 12** – Correlação linear entre as intensidades calculadas pelo método de Fechine Sobrinho (2011) e o algoritmo desenvolvido neste trabalho para a cidade de Juazeiro do Norte.



**Figura 13** – Correlação linear entre as intensidades calculadas pelo método de Fechine Sobrinho (2011) e o algoritmo desenvolvido neste trabalho para a cidade de Crato.



**Figura 14** – Correlação linear entre as intensidades calculadas pelo método de Fechine Sobrinho (2011) e o algoritmo desenvolvido neste trabalho para a cidade de Barbalha.

4.1.2 Comparação entre equações IDF obtidas por dados pluviográficos e as obtidas pelos algoritmo computacional com dados pluviométricos.

Laura (1997) formulou para a cidade de Fortaleza sua equação IDF se baseando em dados pluviográficos de um posto da FUNCEME para um período de observação de 23 anos. Esta equação apresentada na seção 2.2.3 (Equação 2.4) foi comparada com uma equação obtida através do algoritmo desenvolvido neste trabalho para valores de intensidade, duração e frequência para durações de até 240 minutos baseado em dados pluviométricos do mesmo período.

Os valores da correlação são exibidos na Figura 15 e apresenta valor muito próximo à unidade, 1,0315 para correlação linear e 0,9828 para coeficiente de determinação.

Também, para a cidade de Miracema do Norte, Laura (1997) desenvolveu a equação IDF se baseando em dados pluviográficos de 1975 a 1994, oriundos de um posto pluviométrico cujo os dados estão hoje disponíveis na Agência Nacional de Águas. Esta equação apresentada na seção 2.2.3 (Equações 2.5 e 2.6) foi também comparada com os

valores encontrados da equação IDF do algoritmo computacional para durações de até 240 minutos.

Assim como a relação entre as equações de Fortaleza, os índices de correlação e determinação verificados foram próximos à unidade tendo 1,0975 para o coeficiente angular e 0,96 para o coeficiente de determinação (Figura 16).



**Figura 15** – Correlação linear entre as intensidades Observadas em Laura (1997) para o período de 1974 a 1996 e o algoritmo desenvolvido neste trabalho para a cidade de Fortaleza no Ceará.



**Figura 16** – Correlação linear entre as intensidades Observadas em Laura (1997) para o período de 1975 a 1994 e o algoritmo desenvolvido neste trabalho para a cidade de Miracema no Tocantins.

Com o intuito de verificar a qualidade dos resultados obtidos para equações IDF por meio do algoritmo desenvolvido neste trabalho, tomou-se a iniciativa de compará-los com os resultados de equações disponíveis na literatura para regiões distintas e de isozonas diferentes às da região de estudo.

Sampaio (2011) desenvolveu para os 130 municípios do Estado do Rio Grande do Sul suas equações IDF, utilizando dados pluviométricos e o método de desagregação proposto por Robaina e Peiter (1992). Comparou-se os valores de intensidade de chuva para a cidade de Caxias do Sul, com durações de até 240 minutos entre a equação da seção 2.2.3 (Equação 2.8) definida por Sampaio (2011) e os valores de intensidade através da equação obtida pelo algoritmo deste trabalho.

A série de dados foi obtida no portal da internet da Agência Nacional de Águas para o posto pluviométrico da localidade de Nova Palmira cujo código de referência é 02951022. Este posto fica localizado n a isozona D com uma série com período de observação de 1944 a 2013.

Os testes de aderência de Lilliefors e qui-quadrado apontaram hipótese aceita para as cinco distribuições testadas, logo, como critério de seleção tomou-se a distribuição log-normal com dois parâmetros que apresentou coeficiente angular da reta de tendência igual a 1,00051 e coeficiente de determinação 0,9874 (Tabela 6).

Coutinho (2013) publicou uma coletânea de equações de chuvas intensas para o Estado do Pernambuco. EMCIMBRA (1978) *apud* Coutinho (2013) determinou para a cidade de Recife a equação de chuva intensa (Equação 2.7) tomando como base séries histórica entre 1926 e 1977, utilizando-se a metodologia clássica com dados pluviográficos.

Com as séries pluviométricas obtidas através da Agência Nacional de Águas para o posto de Curado em Recife cujo código de referência é 00834007 e localização na isozona E, foi aplicado o algoritmo deste trabalho, que resultou nas hipóteses de aderência aceita para as cinco distribuições de frequência nos testes de Lilliefors e qui-quadrado. Optou-se por utilizar a função de distribuição Gama três parâmetros que apresentou coeficiente angular da reta de tendência próximos a unidade com o valor de 1,0281 e coeficiente de determinação 0,9804 (Tabela 4).

Após a definição das funções de distribuições que melhor se ajustaram às séries hidrológicas para as duas cidades escolhidas, o algoritmo fornece os resultados dos parâmetros para a equação IDF (Equação 3.28). Em seguida compararam-se os valores de intensidade com duração até 240 minutos obtidos entre as equações da literatura e às definidas pelo algoritmo. Ambos os resultados exibidos nas Figuras 16 e 17 mostram coeficientes angulares próximos, porém, ligeiramente superiores à unidade. Estes ajustes indicam que o algoritmo baseado no modelo das Isozonas proposto por Torrico (1974). Os coeficientes de determinação mostraram um bom ajuste sendo respectivamente 0,9852 e 0,97 para as cidades de Caxias do Sul e Recife.

| Município                                                            | F. Distribuição      | X²          | LF                        | DQM        | DQR       | DPMA    | а      | R²     |
|----------------------------------------------------------------------|----------------------|-------------|---------------------------|------------|-----------|---------|--------|--------|
|                                                                      | Dist. Gama II        | 12,0089     | 0,0718                    | 0,4080     | 0,0435    | 11,9427 | 0,9875 | 0,9782 |
| <b>a</b> ·                                                           | Dist. Gumbel         | 8,3419      | 0,0505                    | 0,1188     | 0,0245    | 6,2900  | 0,9945 | 0,9929 |
| Caxias do<br>Sul                                                     | Dist. Log Normal II  | 9,8999      | 0,0634                    | 0,4078     | 0,0324    | 9,3364  | 1,0005 | 0,9875 |
|                                                                      | Dist. Gama III       | 7,4205      | 0,0513                    | 0,09309    | 0,0201    | 5,4503  | 1,0056 | 0,9953 |
|                                                                      | Dist. Log Normal III | 7,4924      | 0,1998                    | 0,19182    | 0,0192    | 5,8740  | 1,0044 | 0,9956 |
|                                                                      | X²                   | (2P) =12,59 | 92; X <sup>2</sup> (3P) = | 11,07; LFS | 5 = 0,285 |         |        |        |
|                                                                      | Dist. Gama II        | 9,6571      | 0,0761                    | 2,3603     | 0,0561    | 16,5406 | 1,0148 | 0,9637 |
|                                                                      | Dist. Gumbel         | 5,2148      | 0,0653                    | 0,7616     | 0,0431    | 12,2987 | 1,0187 | 0,9792 |
| Recife                                                               | Dist. Log Normal II  | 5,1602      | 0,0672                    | 1,3242     | 0,0427    | 10,7517 | 1,0323 | 0,9822 |
|                                                                      | Dist. Gama III       | 1,7457      | 0,0236                    | 0,1891     | 0,04382   | 10,6615 | 1,0281 | 0,9804 |
|                                                                      | Dist. Log Normal III | 3,6329      | 0,0270                    | 0,8397     | 0,0361    | 8,7727  | 1,0358 | 0,9894 |
| X <sup>2</sup> (2P) =11,07; X <sup>2</sup> (3P) = 9,488; LFS = 0,271 |                      |             |                           |            |           |         |        |        |

Tabela 4 – Resultados dos Testes no Ajuste das Distribuições de Frequência para as Cidades de Caxias do Sul - RS e Recife - PE.

| Μυνιζίριο     | С       | S     | Α       | В       | N      | DISTRIBUIÇÃO<br>UTILIZADA | ISOZONA<br>TORRICO |
|---------------|---------|-------|---------|---------|--------|---------------------------|--------------------|
| CAXIAS DO SUL | 13,6082 | -2,06 | 0,7659  | 20,0549 | 0,1017 | LOG NORMAL 2P             | D                  |
| RECIFE        | 21,8264 | -2,03 | 32,7233 | 0,1260  | 0,7834 | GAMA III                  | В                  |

Tabela 5 - Parâmetros para Equações IDF das Cidades de Caxias do Sul - RS e Recife - PE.



**Figura 17** – Correlação linear entre as intensidades Calculada pela Equação IDF da literatura obtidas por série pluviométricas no período de 1944 a 2013 e o algoritmo desenvolvido neste trabalho para a cidade de Caxias do Sul no Rio Grande do Sul.



**Figura 18** – Correlação linear entre as intensidades Calculada pela Equação IDF da literatura obtidas por série pluviográficas no período de 1962 a 2013 e o algoritmo desenvolvido neste trabalho para a cidade de Recife no Pernambuco.

Lembrando que a equação IDF para cidade de Recife foi obtida com séries pluviográficas enquanto que a equação IDF de Caxias do Sul utilizou-se séries pluviométricas. Estes resultados indicam que o algoritmo proposto pode ser utilizado com certa segurança para estimativa de chuvas intensas inferiores à 240 minutos em cidades que só dispõe de dados pluviométricos.

#### 4.2 Aplicação da metodologia nos 30 municípios da região do Cariri cearense.

Para aplicação do algoritmo com o método de determinação das equações IDF com base nas isozonas definidas por Torrico (1974) foram utilizados os arquivos com séries de precipitação diária anual dos 30 municípios da região do Cariri cearense. Todos os 30 municípios selecionados apresentaram séries com períodos superiores a 20 anos, sendo os mais antigos com início em 1974. A média de anos das séries foi 37,4 anos sendo que 17 postos possuem 40 anos de dados. Todas as séries de precipitações diárias máximas anuais para cada município obtidas pelo algoritmo estão disponíveis no Apêndice A.

A cidade de Salitre foi a que apresentou a menor série de dados com apenas 24 anos o que implicou também em uma menor correlação com a função de distribuição.

O município que apresentou a série histórica de precipitações máximas diárias com maior média foi Brejo Santo com 101,89 mm e desvio padrão de 45,49mm, e a de menor foi Campos Sales com 64,19 mm com desvio padrão de 22,51mm.

A maior precipitação encontrada nos registros foi de 232 mm para a cidade de Brejo Santo e a segunda maior foi em Caririaçu com 208 mm.

Após a definição das séries de precipitação máxima anual para cada município o algoritmo obteve para cada município os testes realizados para determinar qual equação de distribuição possui o melhor ajuste. A Tabela 6 mostra todos os índices e coeficientes encontrados a partir das frequências observadas e estimadas para cada município e para cada distribuição testada.

| Município                                                            | F. Distribuição      | X²                      | LF                       | DQM          | DQR       | DPMA     | а      | R²     |  |
|----------------------------------------------------------------------|----------------------|-------------------------|--------------------------|--------------|-----------|----------|--------|--------|--|
|                                                                      | Dist. Gamma II       | 2,67222                 | 0,055129                 | 0,228831     | 0,022587  | 10,79494 | 0,9913 | 0,9944 |  |
|                                                                      | Dist. Gumbel         | 3,30612                 | 0,04731                  | 0,203378     | 0,033433  | 12,23654 | 0,9906 | 0,9872 |  |
| Abaiara                                                              | Dist. Log Normal II  | 2,7759                  | 0,051257                 | 0,263383     | 0,029258  | 9,185959 | 1,0076 | 0,9901 |  |
|                                                                      | Dist. Gamna III      | 2,6746                  | 0,055744                 | 0,243362     | 0,02334   | 0,810146 | 0,9896 | 0,9941 |  |
|                                                                      | Dist. Log Normal III | 2,73222                 | 0,163686                 | 0,26793      | 0,028326  | 8,932545 | 1,0074 | 0,9907 |  |
| X <sup>2</sup> (2P) =7,185; X <sup>2</sup> (3P) = 5,991; LFS = 0,319 |                      |                         |                          |              |           |          |        |        |  |
|                                                                      | Dist. Gamma II       | 4,60935                 | 0,095201                 | 0,405687     | 0,033814  | 10,24224 | 0,9961 | 0,9867 |  |
|                                                                      | Dist. Gumbel         | 4,73595                 | 0,073734                 | 0,244027     | 0,035162  | 8,969806 | 0,9955 | 0,9856 |  |
| Altaneira                                                            | Dist. Log Normal II  | 4,63818                 | 0,081307                 | 0,423061     | 0,034128  | 10,15387 | 1,0117 | 0,9868 |  |
|                                                                      | Dist. Gamna III      | 4,88388                 | 0,082916                 | 0,260631     | 0,033884  | 9,537662 | 1,0014 | 0,9866 |  |
|                                                                      | Dist. Log Normal III | 4,99529                 | 0,326293                 | 0,327253     | 0,042038  | 10,51948 | 1,0087 | 0,9794 |  |
|                                                                      | Х                    | ² (2P) =7,18            | 85; X² (3P) =            | = 5,991; LFS | 5 = 0,319 |          |        |        |  |
|                                                                      | Dist. Gamma II       | 6,71217                 | 0,104618                 | 0,570991     | 0,065975  | 20,56149 | 1,0240 | 0,9514 |  |
| Antonina                                                             | Dist. Gumbel         | 5,86272                 | 0,098808                 | 0,531812     | 0,061002  | 18,72578 | 1,0149 | 0,9571 |  |
| do Norte                                                             | Dist. Log Normal II  | 4,84381                 | 0,075623                 | 0,556949     | 0,051791  | 15,13242 | 1,0361 | 0,9733 |  |
|                                                                      | Dist. Gamna III      | 5,6178                  | 0,094069                 | 0,272697     | 0,062001  | 15,36982 | 1,0197 | 0,9566 |  |
|                                                                      | Dist. Log Normal III | 4,14358                 | 0,488159                 | 0,465507     | 0,049297  | 13,50325 | 1,0288 | 0,9745 |  |
|                                                                      | Х                    | ² (2P) =7,18            | 85; X² (3P) =            | = 5,991; LFS | 5 = 0,319 |          |        |        |  |
|                                                                      | Dist. Gamma II       | 4,58775                 | 0,065485                 | 0,148326     | 0,035827  | 9,755899 | 0,986  | 0,986  |  |
|                                                                      | Dist. Gumbel         | 5,16252                 | 0,073633                 | 0,174800     | 0,035873  | 10,47371 | 0,9832 | 0,9860 |  |
| Araripe                                                              | Dist. Log Normal II  | 4,98744                 | 0,071727                 | 0,203967     | 0,036670  | 9,936549 | 0,9989 | 0,9841 |  |
|                                                                      | Dist. Gamna III      | 4,559                   | 0,06525                  | 0,148675     | 0,036981  | 9,882231 | 0,9844 | 0,9850 |  |
|                                                                      | Dist. Log Normal III | 5,40034                 | 0,235439                 | 0,217950     | 0,041232  | 10,37037 | 0,9962 | 0,9799 |  |
|                                                                      | >                    | <sup>(2</sup> (2P) 5,99 | 1; X <sup>2</sup> (3P) = | 3,841; LFS   | = 0,337   |          |        |        |  |
|                                                                      | Dist. Gamma II       | 7,50783                 | 0,074566                 | 0,237834     | 0,04096   | 16,8084  | 0,9849 | 0,9813 |  |
|                                                                      | Dist. Gumbel         | 10,3986                 | 0,102852                 | 0,266758     | 0,053756  | 18,76362 | 0,9797 | 0,9677 |  |
| Assaré                                                               | Dist. Log Normal II  | 8,97429                 | 0,092096                 | 0,272992     | 0,049812  | 14,05482 | 0,9951 | 0,9707 |  |
|                                                                      | Dist. Gamna III      | 6,64505                 | 0,077076                 | 0,247145     | 0,040989  | 16,04388 | 0,9796 | 0,9821 |  |
|                                                                      | Dist. Log Normal III | 8,33247                 | 0,2                      | 0,268172     | 0,046922  | 13,36149 | 0,9958 | 0,9740 |  |
|                                                                      |                      | X² (2P) 9,4             | 80; X <sup>2</sup> (3P)  | = 7,815; LF  | S = 0,3   |          |        |        |  |
|                                                                      | Dist. Gamma II       | 3,81776                 | 0,083841                 | 0,107302     | 0,027814  | 5,992643 | 0,9891 | 0,9914 |  |
|                                                                      | Dist. Gumbel         | 5,70258                 | 0,099542                 | 0,129284     | 0,040689  | 8,7363   | 0,9843 | 0,9815 |  |
| Aurora                                                               | Dist. Log Normal II  | 4,91345                 | 0,092763                 | 0,156559     | 0,037273  | 8,678063 | 0,9994 | 0,9835 |  |
|                                                                      | Dist. Gamna III      | 3,70625                 | 0,083689                 | 0,109504     | 0,027546  | 5,885512 | 0,9883 | 0,9917 |  |
|                                                                      | Dist. Log Normal III | 5,41546                 | 0,275                    | 0,157672     | 0,041057  | 9,266282 | 0,9981 | 0,9800 |  |
|                                                                      |                      | X <sup>2</sup> (2P) 9.4 | 80: X <sup>2</sup> (3P)  | = 7.815: LF  | S = 0.3   |          |        |        |  |

Tabela 6 – Resultados dos Testes no Ajuste das Distribuições de Frequência para as Cidades do Cariri Cearense.

Tabela 6 – Continuação.

| Município      | F. Distribuição      | X²                      | LF                      | DQM           | DQR      | DPMA     | а      | R²     |
|----------------|----------------------|-------------------------|-------------------------|---------------|----------|----------|--------|--------|
|                | Dist. Gamma II       | 9,02057                 | 0,128067                | 0,259953      | 0,052819 | 12,73042 | 0,9757 | 0,9698 |
|                | Dist. Gumbel         | 6,84827                 | 0,109696                | 0,246436      | 0,045987 | 14,09838 | 0,9756 | 0,9776 |
| Baixio         | Dist. Log Normal II  | 7,56248                 | 0,116074                | 0,287767      | 0,046837 | 12,29982 | 0,9897 | 0,9744 |
|                | Dist. Gamna III      | 8,31659                 | 0,120738                | 0,24565       | 0,049339 | 12,89832 | 0,9791 | 0,9733 |
|                | Dist. Log Normal III | 5,93331                 | 0,30541                 | 0,287181      | 0,043984 | 13,12456 | 0,9874 | 0,9777 |
|                |                      | X² (2P) 9,4             | 80; X <sup>2</sup> (3P) | = 7,815; LF   | S = 0,3  |          |        |        |
|                | Dist. Gamma II       | 8,27315                 | 0,088735                | 0,107492      | 0,035552 | 7,030879 | 0,9891 | 0,9857 |
|                | Dist. Gumbel         | 9,21054                 | 0,113299                | 0,135299      | 0,043251 | 9,909464 | 0,9871 | 0,9787 |
| Barbalha       | Dist. Log Normal II  | 8,53595                 | 0,098604                | 0,161336      | 0,04     | 9,075648 | 1,0019 | 0,9810 |
|                | Dist. Gamna III      | 8,2776                  | 0,089813                | 0,108806      | 0,035659 | 6,989045 | 0,9886 | 0,9856 |
|                | Dist. Log Normal III | 8,51115                 | 0,195568                | 0,162219      | 0,039721 | 9,039652 | 1,0018 | 0,9813 |
|                |                      | X² (2P) 9,4             | 80; X <sup>2</sup> (3P) | = 7,815; LF   | S = 0,3  |          |        |        |
|                | Dist. Gama II        | 2,45231                 | 0,061547                | 0,179008      | 0,025824 | 9,477495 | 0,9929 | 0,9924 |
|                | Dist. Gumbel         | 3,35316                 | 0,064545                | 0,197244      | 0,029756 | 11,40504 | 0,9937 | 0,9897 |
| Barro          | Dist. Log Normal II  | 2,64386                 | 0,063756                | 0,20731       | 0,028818 | 8,351987 | 1,0073 | 0,9904 |
|                | Dist. Gama III       | 2,65802                 | 0,05872                 | 0,185357      | 0,028977 | 9,329618 | 0,9885 | 0,9907 |
|                | Dist. Log Normal III | 2,50566                 | 0,112469                | 0,210251      | 0,027469 | 7,492801 | 1,0042 | 0,9911 |
|                |                      | X² (2P) 9,4             | 80; X <sup>2</sup> (3P) | = 7,815; LF   | S = 0,3  |          |        |        |
|                | Dist. Gama II        | 4,26711                 | 0,044554                | 0,12921       | 0,040416 | 8,093985 | 0,9879 | 0,9815 |
| Ducio          | Dist. Gumbel         | 4,07045                 | 0,041631                | 0,136694      | 0,039325 | 8,196412 | 0,9811 | 0,9833 |
| Brejo<br>Santo | Dist. Log Normal II  | 3,95508                 | 0,041547                | 0,204769      | 0,035752 | 9,868637 | 0,9941 | 0,9850 |
| Canto          | Dist. Gama III       | 4,13218                 | 0,042483                | 0,120548      | 0,037226 | 7,597367 | 0,9900 | 0,9842 |
|                | Dist. Log Normal III | 4,00724                 | 0,227705                | 0,20545       | 0,036413 | 10,00726 | 0,9902 | 0,9847 |
|                |                      | X² (2P) 9,4             | 80; X <sup>2</sup> (3P) | = 7,815; LF   | S = 0,3  |          |        |        |
|                | Dist. Gama II        | 1,48596                 | 0,031119                | 0,616543      | 0,035719 | 11,82796 | 0,9992 | 0,9851 |
| Compos         | Dist. Gumbel         | 1,07054                 | 0,018469                | 0,265782      | 0,031573 | 10,04858 | 0,9988 | 0,9883 |
| Sales          | Dist. Log Normal II  | 1,10625                 | 0,015809                | 0,609386      | 0,032648 | 9,089545 | 1,0133 | 0,9881 |
| • • • • •      | Dist. Gama III       | 1,4213                  | 0,032391                | 0,223329      | 0,030944 | 10,61663 | 1,0086 | 0,9891 |
|                | Dist. Log Normal III | 1,11254                 | 0,23015                 | 0,524666      | 0,032804 | 9,068422 | 1,0135 | 0,9880 |
|                |                      | X² (2P) 9,4             | 80; X <sup>2</sup> (3P) | = 7,815; LF   | S = 0,3  |          |        |        |
|                | Dist. Gama II        | 3,87348                 | 0,043143                | 1,189731      | 0,029308 | 13,38585 | 1,0038 | 0,9900 |
|                | Dist. Gumbel         | 2,92146                 | 0,044287                | 0,411023      | 0,024158 | 10,86241 | 1,0049 | 0,9932 |
| Caririaçu      | Dist. Log Normal II  | 3,06099                 | 0,044319                | 1,002005      | 0,026016 | 9,415484 | 1,0190 | 0,9934 |
|                | Dist. Gama III       | 3,48879                 | 0,049045                | 0,265637      | 0,035817 | 12,98833 | 1,0094 | 0,9853 |
|                | Dist. Log Normal III | 2,93033                 | 0,324915                | 0,634993      | 0,029488 | 9,902683 | 1,0185 | 0,9911 |
|                |                      | X <sup>2</sup> (2P) 9 4 | 80· X <sup>2</sup> (3P) | = 7 815 · I F | S = 0 3  |          |        |        |

Tabela 6 – Continuação.

| Município | F. Distribuição      | X²           | LF                        | DQM          | DQR       | DPMA     | а      | R²     |
|-----------|----------------------|--------------|---------------------------|--------------|-----------|----------|--------|--------|
|           | Dist. Gama II        | 1,12857      | 0,039606                  | 0,124987     | 0,027607  | 8,227515 | 0,9938 | 0,9912 |
|           | Dist. Gumbel         | 1,34505      | 0,03108                   | 0,150065     | 0,030614  | 9,273572 | 0,9977 | 0,9890 |
| Crato     | Dist. Log Normal II  | 1,02827      | 0,142024                  | 0,168843     | 0,028701  | 7,593875 | 1,0080 | 0,9905 |
|           | Dist. Gama III       | 1,19910      | 0,043833                  | 0,128095     | 0,028608  | 8,299079 | 0,9920 | 0,9907 |
|           | Dist. Log Normal III | 1,01515      | 0,029683                  | 0,163665     | 0,029472  | 7,508458 | 1,0095 | 0,9901 |
|           |                      | X² (2P) 9,48 | 80; X² (3P) =             | = 7,815; LFS | 5 = 0,3   |          |        |        |
|           | Dist. Gamma II       | 2,24613      | 0,051513                  | 0,16176      | 0,030472  | 9,634379 | 0,9851 | 0,9901 |
| Forios    | Dist. Gumbel         | 3,28317      | 0,064363                  | 0,185706     | 0,046684  | 13,81751 | 0,9805 | 0,9760 |
| Brito     | Dist. Log Normal II  | 2,53704      | 0,055089                  | 0,19498      | 0,037946  | 9,743615 | 0,9989 | 0,9830 |
|           | Dist. Gamna III      | 2,19089      | 0,05218                   | 0,166163     | 0,030279  | 0,086911 | 0,9834 | 0,9904 |
|           | Dist. Log Normal III | 2,93895      | 0,257143                  | 0,201492     | 0,044789  | 11,31207 | 0,9971 | 0,9763 |
|           | X²                   | ² (2P) =7,18 | 35; X² (3P) =             | 5,991; LFS   | = 0,319   |          |        |        |
|           | Dist. Gamma II       | 2,50248      | 0,063199                  | 0,357695     | 0,037407  | 9,979172 | 0,9937 | 0,9838 |
|           | Dist. Gumbel         | 4,07116      | 0,079212                  | 0,14299      | 0,043867  | 8,807944 | 0,9924 | 0,9776 |
| Granjeiro | Dist. Log Normal II  | 3,1949       | 0,063758                  | 0,470748     | 0,039869  | 9,548142 | 1,0093 | 0,9815 |
|           | Dist. Gamna III      | 3,36145      | 0,071867                  | 0,161017     | 0,039869  | 8,882528 | 0,9988 | 0,9815 |
|           | Dist. Log Normal III | 4,15259      | 0,314286                  | 0,313455     | 0,047231  | 0,070524 | 1,0072 | 0,9738 |
|           | X²                   | ² (2P) =7,18 | 35; X² (3P) =             | 5,991; LFS   | = 0,319   |          |        |        |
|           | Dist. Gamma II       | 4,63793      | 0,061168                  | 0,222703     | 0,046515  | 14,00324 | 0,9830 | 0,9759 |
|           | Dist. Gumbel         | 3,66301      | 0,054732                  | 0,227954     | 0,039945  | 12,68819 | 0,9813 | 0,9827 |
| Ipaumirim | Dist. Log Normal II  | 3,75057      | 0,053353                  | 0,271995     | 0,039494  | 11,13912 | 0,9972 | 0,9816 |
|           | Dist. Gamna III      | 4,52428      | 0,060976                  | 0,218572     | 0,044937  | 13,74917 | 0,9844 | 0,9774 |
|           | Dist. Log Normal III | 3,39958      | 0,226557                  | 0,274407     | 0,037884  | 10,71564 | 0,9964 | 0,9831 |
|           | X²                   | ² (2P) =7,18 | 35; X² (3P) =             | 5,991; LFS   | = 0,319   |          |        |        |
|           | Dist. Gamma II       | 3,23275      | 0,050395                  | 0,089093     | 0,022331  | 5,581475 | 0,9985 | 0,9942 |
|           | Dist. Gumbel         | 4,94572      | 0,073178                  | 0,1438       | 0,037343  | 9,504605 | 0,9981 | 0,9836 |
| Jardim    | Dist. Log Normal II  | 4,03215      | 0,060303                  | 0,152437     | 0,035014  | 8,886919 | 1,0137 | 0,9862 |
|           | Dist. Gamna III      | 2,8788       | 0,047954                  | 0,084211     | 0,021177  | 5,539909 | 0,9936 | 0,9949 |
|           | Dist. Log Normal III | 3,17973      | 0,144971                  | 0,187105     | 0,026018  | 7,509469 | 1,0104 | 0,9924 |
|           | х                    | (2 (2P) =7,1 | 85; X² (3P) =             | = 5,991; LFS | 5 = 0,319 |          |        |        |
|           | Dist. Gamma II       | 2,06845      | 0,078849                  | 0,233555     | 0,036377  | 13,52787 | 0,9896 | 0,9850 |
|           | Dist. Gumbel         | 1,50994      | 0,078149                  | 0,245697     | 0,033457  | 13,44252 | 0,9889 | 0,9874 |
| Jati      | Dist. Log Normal II  | 1,56514      | 0,078577                  | 0,277682     | 0,035313  | 10,74799 | 1,0046 | 0,9853 |
|           | Dist. Gamna III      | 2,34924      | 0,077109                  | 0,242696     | 0,039954  | 13,51727 | 0,9856 | 0,9822 |
|           | Dist. Log Normal III | 1,69524      | 0,161758                  | 0,276947     | 0,03526   | 10,83368 | 1,0040 | 0,9854 |
|           | х                    | (2P) =7,1    | 85; X <sup>2</sup> (3P) = | = 5,991; LFS | 5 = 0,319 |          |        |        |

Tabela 6 – Continuação.

| Município               | F. Distribuição                                                   | X²                       | LF                        | DQM          | DQR      | DPMA     | а      | R²     |  |  |
|-------------------------|-------------------------------------------------------------------|--------------------------|---------------------------|--------------|----------|----------|--------|--------|--|--|
|                         | Dist. Gamma II                                                    | 1,19868                  | 0,044322                  | 0,144247     | 0,030696 | 8,399651 | 0,9865 | 0,9897 |  |  |
| luczoiro do             | Dist. Gumbel                                                      | 1,4964                   | 0,030386                  | 0,119956     | 0,03417  | 7,128344 | 0,9838 | 0,9873 |  |  |
| Norte                   | Dist. Log Normal II                                               | 1,27168                  | 0,027742                  | 0,228124     | 0,031278 | 8,009252 | 0,9990 | 0,9884 |  |  |
|                         | Dist. Gamna III                                                   | 1,23256                  | 0,030304                  | 0,109927     | 0,028609 | 7,299828 | 0,9897 | 0,9908 |  |  |
|                         | Dist. Log Normal III                                              | 1,92312                  | 0,265578                  | 0,191868     | 0,045031 | 10,11564 | 0,9904 | 0,9763 |  |  |
|                         | X <sup>2</sup> (2P) 9,480; X <sup>2</sup> (3P) = 7,815; LFS = 0,3 |                          |                           |              |          |          |        |        |  |  |
|                         | Dist. Gamma II                                                    | 5,13115                  | 0,072778                  | 0,241843     | 0,031778 | 11,43892 | 1,0048 | 0,9883 |  |  |
|                         | Dist. Gumbel                                                      | 3,62056                  | 0,046933                  | 0,156938     | 0,03281  | 9,547873 | 1,0131 | 0,9880 |  |  |
| Lavras da<br>Mangabeira | Dist. Log Normal II                                               | 4,27272                  | 0,062219                  | 0,29592      | 0,030888 | 10,81888 | 1,0229 | 0,9908 |  |  |
| mangabena               | Dist. Gamna III                                                   | 4,43271                  | 0,065937                  | 0,191765     | 0,030601 | 10,03212 | 1,0113 | 0,9895 |  |  |
|                         | Dist. Log Normal III                                              | 4,7873                   | 0,109899                  | 0,359553     | 0,030396 | 11,38644 | 1,0190 | 0,9905 |  |  |
|                         | X <sup>2</sup> (2P) 9,480; X <sup>2</sup> (3P) = 7,815; LFS = 0,3 |                          |                           |              |          |          |        |        |  |  |
|                         | Dist. Gamma II                                                    | 2,80742                  | 0,054989                  | 0,186949     | 0,039401 | 10,45175 | 0,9911 | 0,9821 |  |  |
|                         | Dist. Gumbel                                                      | 2,82779                  | 0,038587                  | 0,159059     | 0,026342 | 8,154865 | 0,9942 | 0,9920 |  |  |
| Mauriti                 | Dist. Log Normal II                                               | 2,70881                  | 0,037374                  | 0,235891     | 0,029206 | 9,673144 | 1,0076 | 0,9901 |  |  |
|                         | Dist. Gamna III                                                   | 2,62094                  | 0,03969                   | 0,154129     | 0,031501 | 8,863391 | 0,9986 | 0,9884 |  |  |
|                         | Dist. Log Normal III                                              | 2,76918                  | 0,15896                   | 0,222967     | 0,027192 | 8,843659 | 1,0087 | 0,9915 |  |  |
|                         |                                                                   | X² (2P) 9,4              | 80; X <sup>2</sup> (3P)   | = 7,815; LF  | S = 0,3  |          |        |        |  |  |
|                         | Dist. Gamma II                                                    | 6,05929                  | 0,109008                  | 0,175288     | 0,047859 | 11,34725 | 0,9801 | 0,9748 |  |  |
|                         | Dist. Gumbel                                                      | 6,05785                  | 0,094299                  | 0,202453     | 0,041942 | 11,93941 | 0,9794 | 0,9811 |  |  |
| Milagres                | Dist. Log Normal II                                               | 5,85761                  | 0,097305                  | 0,225378     | 0,042463 | 11,37057 | 0,9936 | 0,9788 |  |  |
|                         | Dist. Gamna III                                                   | 5,87168                  | 0,1052                    | 0,174841     | 0,045993 | 11,36417 | 0,9819 | 0,9766 |  |  |
|                         | Dist. Log Normal III                                              | 5,99868                  | 0,252481                  | 0,236118     | 0,04095  | 10,87234 | 0,9928 | 0,9803 |  |  |
|                         |                                                                   | X² (2P) 9,48             | 80; X² (3P) =             | = 7,815; LFS | 5 = 0,3  |          |        |        |  |  |
|                         | Dist. Gamma II                                                    | 4,64501                  | 0,072887                  | 0,317623     | 0,041907 | 14,06036 | 1,0118 | 0,9800 |  |  |
| . <i>.</i> . ~          | Dist. Gumbel                                                      | 8,53808                  | 0,100311                  | 0,23961      | 0,044305 | 12,90346 | 1,0244 | 0,9792 |  |  |
| Wilssao<br>Velha        | Dist. Log Normal II                                               | 5,56135                  | 0,085573                  | 0,325482     | 0,043833 | 11,17268 | 1,0317 | 0,9811 |  |  |
| Venia                   | Dist. Gamna III                                                   | 4,39524                  | 0,067175                  | 0,346257     | 0,042286 | 14,14978 | 1,0081 | 0,9793 |  |  |
|                         | Dist. Log Normal III                                              | 4,26859                  | 0,075                     | 0,436734     | 0,042074 | 11,98941 | 1,0196 | 0,9805 |  |  |
|                         |                                                                   | X² (2P) 9,48             | 80; X² (3P) =             | = 7,815; LFS | 5 = 0,3  |          |        |        |  |  |
|                         | Dist. Gamma II                                                    | 3,64775                  | 0,071688                  | 0,198766     | 0,030862 | 9,965599 | 0,9834 | 0,9900 |  |  |
|                         | Dist. Gumbel                                                      | 2,94054                  | 0,054801                  | 0,179839     | 0,026297 | 9,368974 | 0,9818 | 0,9932 |  |  |
| Nova<br>Olinda          | Dist. Log Normal II                                               | 3,08022                  | 0,059073                  | 0,234287     | 0,025607 | 8,131981 | 0,9963 | 0,9923 |  |  |
| Cinida                  | Dist. Gamna III                                                   | 3,39931                  | 0,064499                  | 0,182579     | 0,027122 | 9,37458  | 0,9860 | 0,9922 |  |  |
|                         | Dist. Log Normal III                                              | 2,75089                  | 0,245692                  | 0,228299     | 0,032114 | 10,18905 | 0,9908 | 0,9881 |  |  |
|                         |                                                                   | X <sup>2</sup> (2P) 9,48 | 80; X <sup>2</sup> (3P) = | = 7,815; LFS | 5 = 0,3  |          |        |        |  |  |

Tabela 6 – Continuação.

| Município                                                            | F. Distribuição      | X²           | LF                       | DQM          | DQR       | DPMA     | а      | R²     |  |
|----------------------------------------------------------------------|----------------------|--------------|--------------------------|--------------|-----------|----------|--------|--------|--|
|                                                                      | Dist. Gamma II       | 5,26474      | 0,075911                 | 0,315597     | 0,050864  | 15,73167 | 0,9868 | 0,9706 |  |
| Davas                                                                | Dist. Gumbel         | 3,70643      | 0,061792                 | 0,297393     | 0,041101  | 13,57033 | 0,9848 | 0,9811 |  |
| Pena<br>Forte                                                        | Dist. Log Normal II  | 3,5195       | 0,061328                 | 0,363969     | 0,037269  | 11,45401 | 1,0029 | 0,9836 |  |
| Torte                                                                | Dist. Gamna III      | 4,33625      | 0,061434                 | 0,278277     | 0,041778  | 14,16276 | 0,9939 | 0,9798 |  |
|                                                                      | Dist. Log Normal III | 2,17321      | 0,287124                 | 0,349919     | 0,030271  | 9,357039 | 0,9994 | 0,9892 |  |
| X <sup>2</sup> (2P) =7,185; X <sup>2</sup> (3P) = 5,991; LFS = 0,319 |                      |              |                          |              |           |          |        |        |  |
|                                                                      | Dist. Gamma II       | 1,34622      | 0,043237                 | 0,342424     | 0,038667  | 10,67651 | 0,9953 | 0,9826 |  |
|                                                                      | Dist. Gumbel         | 0,79785      | 0,034676                 | 0,159282     | 0,029485  | 7,295375 | 0,9959 | 0,9899 |  |
| Porteiras                                                            | Dist. Log Normal II  | 0,90387      | 0,037641                 | 0,432599     | 0,030502  | 8,177669 | 1,0122 | 0,9896 |  |
|                                                                      | Dist. Gamna III      | 1,05539      | 0,049885                 | 0,119896     | 0,027379  | 6,769394 | 1,0060 | 0,9914 |  |
|                                                                      | Dist. Log Normal III | 0,71449      | 0,288207                 | 0,303084     | 0,02917   | 8,176657 | 1,0116 | 0,9905 |  |
|                                                                      | Х                    | (2P) =7,1    | 85; X² (3P) =            | = 5,991; LFS | 5 = 0,319 |          |        |        |  |
|                                                                      | Dist. Gamma II       | 2,0289       | 0,038651                 | 0,12025      | 0,037866  | 8,006925 | 0,9822 | 0,9845 |  |
|                                                                      | Dist. Gumbel         | 2,39262      | 0,054955                 | 0,126459     | 0,036558  | 8,494272 | 0,9792 | 0,9861 |  |
| Potengi                                                              | Dist. Log Normal II  | 2,15674      | 0,045576                 | 0,211351     | 0,035519  | 9,500679 | 0,9942 | 0,9852 |  |
|                                                                      | Dist. Gamna III      | 2,05663      | 0,035787                 | 0,102383     | 0,034197  | 7,516139 | 0,9853 | 0,9872 |  |
|                                                                      | Dist. Log Normal III | 2,66763      | 0,204486                 | 0,191317     | 0,037936  | 9,757308 | 0,9908 | 0,9833 |  |
|                                                                      |                      | X² (2P) 9,4  | 80; X <sup>2</sup> (3P)  | = 7,815; LF  | S = 0,3   |          |        |        |  |
|                                                                      | Dist. Gamma II       | 2,75031      | 0,050364                 | 0,442375     | 0,061911  | 22,45003 | 1,0103 | 0,9563 |  |
|                                                                      | Dist. Gumbel         | 2,29278      | 0,04779                  | 0,361349     | 0,057384  | 19,45737 | 1,0081 | 0,9619 |  |
| Salitre                                                              | Dist. Log Normal II  | 2,25252      | 0,046644                 | 0,584451     | 0,059917  | 17,23854 | 1,0318 | 0,9618 |  |
|                                                                      | Dist. Gamna III      | 2,52021      | 0,071715                 | 0,584451     | 0,059917  | 17,23854 | 1,0318 | 0,9618 |  |
|                                                                      | Dist. Log Normal III | 2,09269      | 0,402098                 | 0,584451     | 0,059917  | 17,23854 | 1,0318 | 0,9618 |  |
|                                                                      |                      | X² (2P) 5,99 | 1; X <sup>2</sup> (3P) = | 3,841; LFS   | = 0,337   |          |        |        |  |
|                                                                      | Dist. Gamma II       | 2,95629      | 0,090741                 | 0,945011     | 0,044109  | 14,9832  | 1,0231 | 0,9793 |  |
| Contono                                                              | Dist. Gumbel         | 2,52         | 0,073017                 | 0,34381      | 0,037777  | 11,95741 | 1,0325 | 0,9872 |  |
| do Cariri                                                            | Dist. Log Normal II  | 2,55329      | 0,07915                  | 0,916632     | 0,04192   | 11,79947 | 1,0464 | 0,9874 |  |
|                                                                      | Dist. Gamna III      | 3,74775      | 0,073285                 | 0,263818     | 0,047827  | 13,9312  | 1,0455 | 0,9808 |  |
|                                                                      | Dist. Log Normal III | 2,76552      | 0,185153                 | 1,633021     | 0,042055  | 12,80372 | 1,0376 | 0,9845 |  |
|                                                                      | Х                    | (2P) =7,1    | 85; X² (3P) =            | = 5,991; LFS | 5 = 0,319 |          |        |        |  |
|                                                                      | Dist. Gamma II       | 1,78541      | 0,03326                  | 0,175802     | 0,034134  | 7,886449 | 0,9934 | 0,9865 |  |
| Márzas                                                               | Dist. Gumbel         | 1,35442      | 0,038193                 | 0,131583     | 0,027975  | 7,595115 | 0,9971 | 0,9908 |  |
| Varzea<br>Alegre                                                     | Dist. Log Normal II  | 1,35485      | 0,029593                 | 0,215811     | 0,030179  | 8,257831 | 1,0097 | 0,9896 |  |
| ,                                                                    | Dist. Gamna III      | 1,54696      | 0,030921                 | 0,149983     | 0,031096  | 7,772469 | 0,9975 | 0,9887 |  |
|                                                                      | Dist. Log Normal III | 1,39752      | 0,091184                 | 0,225067     | 0,030526  | 8,359481 | 1,0090 | 0,9893 |  |
|                                                                      |                      | X² (2P) 9,4  | 80; X <sup>2</sup> (3P)  | = 7,815; LF  | S = 0,3   |          |        |        |  |

Analisando os três municípios do trabalho de Fechine Sobrinho (2011), tem-se para o município de Juazeiro do Norte o melhor coeficiente de determinação para a função Gama III, já o coeficiente angular da reta de correlação teve melhor resultado para função Log-normal II, tendo a Log-normal III e Gama III ligeiramente inferiores. Os valores de teste de aderência qui-quadrado e Lilliefors indicaram em todas as distribuições como hipóteses aceitas, porém os melhores ajustes foram para as distribuições Gama III seguido da Log-normal II. Já os índices estatísticos de comparação apresentaram os menores desvios para a distribuição Gama III, sendo esta definida para a cidade de Juazeiro do Norte.

Para cidade do Crato os testes de aderência indicaram para todas as distribuições hipótese aceitas, porém os melhores ajustes se deram para a Log-normal III e ligeiramente inferior para a Log-normal II. O coeficiente de determinação e o angular da reta de tendência foram praticamente os mesmos para as distribuições Log-normal III e Log-normal II indicando que a melhor distribuição para a cidade do Crato foi a Log-normal III.

Para cidade de Barbalha foram obtidos os melhores ajustes nos teste de aderência para a função Gama II. A análise dos desvios mostraram menores valores para a Gama II, tomouse esta distribuição como a de melhor ajuste para cidade de Barbalha tendo os coeficientes de determinação e angular da reta de tendência com bons resultados.

## 4.3 Equações IDF obtidas através do algoritmo baseado no método das isozonas.

A partir da definição da função de distribuição com melhor ajuste para a série de eventos máximos, o algoritmo calculou as precipitações diárias máximas anuais para diferentes tempos de retorno em cada município, os valores obtidos estão disponíveis no Apêndice B.

Através da tabela de correção de valores para as isozonas de igual relação foram obtidas as intensidades para durações inferiores 240 minutos em cada município para diferentes tempos de retorno. Os resultados obtidos estão disponíveis no Apêndice C. Através destes valores, o algoritmo estimou os parâmetros A, B e N, utilizando-se as Equações 3.30 a 3.32.

O parâmetro C foi obtido pelo método de Wilken (1978), enquanto o parâmetro S foi estabelecido pelo processo de minimização do qui-quadrado, descrito na seção 3.4.14. Todos os parâmetros definidos, além da distribuição selecionada e a isozona a qual pertence o posto pluviométrico, estão dispostos na Tabela 7.

O parâmetro A teve variação com amplitude de 14 a 48 e mostrou seus maiores valores concentrados sobre o território de Missão Velha, Juazeiro do Norte, Crato e Barbalha. O parâmetro B mostrou-se inversamente proporcional ao valor de intensidade de chuva determinado pela equação IDF. Sua amplitude variou entre 0,05 e 0,22.

DISTRIBUIÇÃO ISOZONA **MUNICÍPIO** С S Α В Ν UTILIZADA TABORGA G ABAIARA 9,8594 -2,09 24,8784 0,1020 0,7944 LOG NORMAL 2P ALTANEIRA 9,8594 -2,12 24,2661 0,1189 0,7944 GAMMA 3P G G ANTONINA DO NORTE 9,8594 -2,09 17,4266 0,2248 0,7944 LOG NORMAL 3P F ARARIPE -2,07 18,3518 0,1319 0,7874 LOG NORMAL 2P 11,1123 G ASSARÉ 9,8325 -2,09 19,6055 0,1148 0,7939 LOG NORMAL 2P G AURORA 9,8325 -2,16 25,8624 0,1052 0,7939 GAMMA 2P BAIXIO 11,0931 -2,08 20,8938 0,1146 0,7871 LOG NORMAL 2P G G BARBALHA 9,8325 -2,16 27,6134 0,0961 0,7939 GAMMA 2P G BARRO 9,8325 -2,06 32,0896 0,0849 0,7939 LOG NORMAL 3P F **BREJO SANTO** 11,0931 -2,07 27,5785 0,1703 0,7871 LOG NORMAL 2P F CAMPOS SALES 11,0931 2,1 17,2912 0,1385 0,7871 GAMMA 3P 0,7939 GUMBEL G CARIRIAÇU 9,8325 -2,08 25,7178 0,1293 G CRATO 9,8325 -2,08 31,8614 0,0896 0,7939 LOG NORMAL 3P G FARIAS BRITO 9,8594 -2,1 24,7966 0,0947 0,7944 LOG NORMAL 2P G GRANJEIRO 9,8594 -2,16 28,5960 0,0936 0,7944 GAMMA 2P F **IPAUMIRIM** 11,1123 -2,09 20,7849 0,1556 0,7874 LOG NORMAL 3P F JARDIM 11,1123 -2,15 21,8546 0,0981 0,7874 GAMMA 2P F 0,7874 LOG NORMAL 2P JATI 11,1123 -2,07 22,4518 0,1342 G JUAZEIRO DO NORTE 9,8325 -2,14 25,8762 0,1067 0,7939 GAMMA 3P LAVRAS DA 9,8325 -2,08 27,7128 0,0730 0,7939 LOG NORMAL 3P G MANGABEIRA F LOG NORMAL 3P MAURITI 11,0931 -2,09 21,1809 0,1343 0,7871 G LOG NORMAL 3P MILAGRES 9,8325 -2,11 18,3233 0,1465 0,7939 G MISSÃO VELHA 9,8325 -2,05 48,1817 0,0547 0,7939 LOG NORMAL 3P G NOVA OLINDA 9,8325 -2,09 25,6480 0,1204 0,7939 LOG NORMAL 2P F PENA FORTE 11,1123 -2,1 14,7938 0,1808 0,7874 LOG NORMAL 3P F PORTEIRAS 11,1123 -2,1 23,2794 0,1363 0,7874 GAMMA 3P G POTENGI -2,09 0,1202 0,7939 LOG NORMAL 2P 9,8325 20,7801 F SALITRE GUMBEL 11,1697 -2,1 19,0561 0,1512 0,7882 G SANTANA DO CARIRI 9,8594 0,1252 0,7944 -2,08 23,4557 GUMBEL VÁRZEA ALEGRE -2,07 0,7939 G 9,8325 24,2761 0,1186 GUMBEL

Tabela 7 – Parâmetros da equação IDF para os municípios do Cariri.

#### 4.4 Espacialização dos parâmetros da equação IDF

Os valores dos parâmetros A, B e S das equações IDF foram posicionados sobre o mapa georreferenciado da região do Cariri cearense se utilizando das coordenadas geográficas de cada posto pluviométrico. Foram geradas linhas de isovalores, indicando a variação e o comportamento dos valores de cada parâmetro separadamente.

As curvas de isovalores foram geradas a partir de triangulação com interpolação linear através da ferramenta computacional Surfer© 11.0. A triangulação é definida por linhas entre pontos dos dados inseridos. Cada triângulo define um plano ao longo dos nós da rede definindo uma malha de planos, cada um com a inclinação e a elevação determinadas pelos três pontos dos dados originais informados. Desta forma foram definidos planos de mesmo valor, obtendo-se isolinhas com valores intermediários aos dados originais.

Em seguida posicionou-se as curvas geradas sobre o mapa da região com a utilização do programa computacional Topo EVN 6.0 CAD, conservando o georreferenciamento das isolinhas e limites dos municípios em estudo. O comportamento pode ser observado nas Figuras 18, 19 e 20.

Para permitir a comparação direta da influência dos parâmetros com os valores de precipitação obtidos através de cada equação, foi gerado também um mapa de isovalores para as intensidades de chuvas obtidas pelas equações estabelecidas com o algoritmo deste trabalho. Tomaram-se como referências as chuvas de 15 minutos de duração e tempo de retorno de 20 anos que são valores bastante utilizados em projetos de drenagem urbana.

A espacialização dos parâmetros obtidos para a equação IDF nas trinta cidades da região do Cariri resultou em mapas de isolinhas. Como não houve variação para os parâmetros C e N, apenas os parâmetros A, B e S foram espacializados.

Apesar da pequena amplitude nos valores encontrados, o parâmetro S se mostrou bastante constante no oeste da região do Cariri e com muita variação para a região leste.

O parâmetro A teve variação com amplitude de 14 a 48, ordem de grandeza compatível com valores de outros trabalhos sobre equações de chuvas intensas. Suas isolinhas mostraram que este parâmetro está em proporção direta com a intensidade da precipitação e mostrou seus maiores valores concentrados sobre o território de Missão velha, Juazeiro do Norte, Crato e Barbalha.

O parâmetro B mostrou-se inversamente proporcional ao valor de intensidade de chuva determinado pela equação IDF. Sua amplitude variou entre 0,05 e 0,22 sendo esta

ordem de grandeza compatível com valores encontrado na literatura. Os menores valores foram encontrados sobre a cidade de Missão Velha e as isolinhas apresentaram acréscimo suave em todas as direções do mapa.



Figura 19 – Mapa de isovalores do parâmetro A da equação de chuvas intensas IDF para a região do Cariri.



Figura 20 – Mapa de isovalores do parâmetro B da equação de chuvas intensas IDF para a região do Cariri.



Figura 21 – Mapa de isovalores do parâmetro S da equação de chuvas intensas IDF para a região do Cariri.



Figura 22 – Mapa de isovalores para intensidades de chuva de 15 minutos e tempo de retorno de 20 anos definidas pela Equação IDF.

## **5 CONCLUSÃO**

Considerando toda metodologia empregada para o desenvolvimento deste trabalho, pode-se através das análises dos resultados obtidos, concluir que:

O algoritmo computacional criado para este trabalho permitiu a sistematização da metodologia desenvolvida por Fechine Sobrinho (2011) para elaboração de equações IDF com base no método das isozonas, de forma prática e criteriosa. A obtenção dos parâmetros da função IDF para todas as cidades do Cariri se deu através de poucos comandos na interface computacional.

O algoritmo foi concebido de tal forma que todo o processo é realizado por etapas iterativas e o usuário define, através de dados estatísticos exibidos, qual distribuição incorporada no programa tem a melhor adequação no posto pluviométrico estudado. Em sequência, define-se a isozona na qual o posto está localizado, estimando todos os parâmetros da equação IDF.

Foram testados e comparados os resultados de intensidades de chuvas para durações de até 240 minutos entre as equações obtidas através do algoritmo proposto neste trabalho e as equações definidas por Fechine Sobrinho (2011). Ficou claro na comparação observou-se uma correlação linear de 1,002 e coeficiente de determinação de 0,9972 para a cidade de Juazeiro do Norte e uma correlação linear de 1,027 e coeficiente de determinação de 0,9974 para a cidade de Barbalha, indicando que o algoritmo reproduz com fidelidade o método de Fechine Sobrinho (2011).

O método implementado no algoritmo computacional foi validado em zonas climatologicamente distintas, comparando-se as equações concebidas por meio de dados pluviométricos com equações consagradas em trabalhos científicos, obtidas através de dados pluviográficos. Para estas, foram utilizadas as equações de Laura (1997) para as cidades de Fortaleza no Ceará, localizada na isozona C e Miracema do Norte no Estado do Tocantins localizada na isozona E e a equação definida por ENCIMBRA (1978) para a Cidade de Recife em Pernambuco, sob a isozona B.

Verificou-se que para os três municípios correlações bem próximas a unidade, sendo os coeficientes angulares da reta de tendência de 1,0315 para Fortaleza, 1,0975 para Miracema do Norte 1,2342 para Recife. Os coeficientes de determinação também foram bastante altos sendo 0,9828 para Fortaleza, 0,96 para Miracema do Norte e 0,97 para Recife.

Avaliaram-se também os resultados das chuvas intensas para a equação desenvolvida através de dados pluviométricos em uma região no extremo sul do país com o intuito de verificar a eficiência do algoritmo em uma localidade com características climatológicas totalmente diferentes da região de estudo. A comparação entre os valores de intensidade de chuva com durações inferiores a 240 minutos obtidas pela equação desenvolvida por Sampaio (2011) e os valores obtidos pela equação do modelo proposto neste trabalho apresentou coeficiente angular na reta de tendência em 1,1225 e coeficiente de determinação 0,9852 para a cidade de Caxias do sul no Estado do Rio Grande do Sul localizada na isozona D. Isto mostra que os critérios do modelo permite a determinação de equações IDF nas mais diferentes regiões climatológicas do país.

A aplicação do algoritmo em todas as trinta cidades da região do Cariri cearense permitiu observar uma correlação linear com valores bem próximos à unidade no ajuste às distribuições de frequência testadas e excelentes resultados no coeficiente de determinação. As distribuições Log-normal com dois e três parâmetros foram definidas como a de melhor ajuste em nove municípios cada uma.

As três maiores cidades do Cariri obtiveram como função de distribuição de melhor ajuste a Gama três parâmetros para Juazeiro do Norte, Log-normal três parâmetros para o Crato e Gama dois parâmetros para Barbalha, mantendo-se a e as mesmas definidas como melhor ajuste no trabalho de Fechine Sobrinho (2011).

Foi verificado que os parâmetros C e N da equação IDF se mostrarame constantes para uma relação de número de eventos da série de máximos anuais e a isozona a qual o posto pertence. Aragão (2012) deparou-se com esta ocorrência em sua pesquisa e verificou que este comportamento vem da metodologia de desagregação das chuvas empregada e a definição do parâmetro C pelo método de Wilken (1975).

Por fim, foi possível constatar no mapa de isovalores que as maiores intensidades de chuva com tempo de retorno de 20 anos e duração de 15 minutos se deram sobre a cidade de Missão Velha definindo picos de intensidade que indicam uma possível influência da topografia da chapada do Araripe.

A criação de um programa computacional faz parte de um processo de desenvolvimento contínuo com vária possibilidade de ampliação e aperfeiçoamento. Como sugestão para melhoramento do programa está a possibilidade de ampliar a capacidade de processamento para outras bases de dados como por exemplo, os dados fornecidos na plataforma Hidro-Web, da Agência Nacional de Águas. Outro aperfeiçoamento pode ser implementado na interface com a inserção de mais distribuições e em telas para visualização

de memórias de cálculo. Também é possível a implementação do programa em plataformas de Sistema de Informações Geográficas, por exemplo, o programa gvSIG.

Quanto a utilização dos dados obtidos, sugere-se a ampliação para todos os municípios do Estado do Ceará e a obtenção de mapas de isovalores com análise geoestatística.

# **6 REFERÊNCIAS**

ARAGÃO, R.; SANTANA, G. R.; COSTA, C. E. F. F. da; CRUZ, M. A. S.; FIGUEIREDO, E. E. de; SRINIVASAN, V. S. Chuvas intensas para o Estado de Sergipe com base em dados desagregados de chuva diária. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 17, n. 3, p.243-252, 21 dez. 2012.

ASCARI, L. C. Teste Baseado em Defeitos de Classes Java Utilizando Aspectos e Mutação de Especificações OCL. 2009. 103 f. Dissertação (Mestrado em Informática) - Universidade Federal do Paraná. 2009.

BACK, Á. J. Relações entre precipitações intensas de diferentes durações ocorridas no Município de Urussanga, SC. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 13, n. 2, p.170-175, 2009.

BERTONI, J. C.; TUCCI, C. E. M. Precipitação. In: TUCCI, C. E. M. (Org.). Hidrologia ciência e aplicação. Porto Alegre: ABRH, 1993. p.177-242.

BELL, F.C. Generalized rainfall duration frequency relationships. Journal of Hydraulic Division, ASCE, 95(1), 311-327, 1969.

BLOM, G. **Statistical Estimates and Transformed Beta Variables.** Pp. 68-75, 143-146, john Wiley, New York, 1953.

CARNEIRO, P. H.; MARTINZ, D. D. G.; STUDART, T. M. C.; CAMPOS, J. N. C. Emprego de Ferramentas Computacionais na Determinação de Chuvas Intensas: Um Instrumento Adicional para o Ensino de Hidrologia. In: SIMPÓSIO DE RECURSOS HÍDRICOS DO NORDESTE, 6., 2002, Maceió. Anais... Porto Alegre: ABRH, 2002. p. 10.

CHEN, C. Rainfall Intensity – duration – frequency formulas. Journal of Hydraulic Engineering – ASCE, v. 109, n. 12 p. 21, 1983.

CHOW, V.T. A general for hydrologic frequency analysis. **Transactions of American Geophysical Union, Richmond**, v. 32, n. 2, p. 231-237, 1951.

COUTINHO, A. P.; Leite, L. L. RIBAS, L. V.; ANTONINO, A. C. D. P.; CABRAL, J. J. da S. P.; MONTENEGRO, S. M. G. L. Coletânea de Equações de Chuvas Intensas Para o Estado de Pernambuco. In: SIMPÓSIO BRASILEIRO DE RECURSOS HÍDRICOS, 20, 2013, Bento Gonçalves. Anais... Porto Alegre: ABRH, 2013. p. 7.

CUNNANE, C. Unbiased plotting positions. In: A review: Journal of Hydrology, v. 37, 1978. p. 205–222.

DAEE-CETESB. Departamento de Água e Energia Elétrica - Companhia de Tecnologia de Saneamento Ambiental. **Drenagem urbana:** Manual de projeto. São Paulo: DAEE-CETESB, 1980. 466p.

DAME, Rita de C. F.; TEIXEIRA, Claudia F. A.; TERRA, Viviane S. S.. Comparação de diferentes metodologias para estimativa de curvas intensidade-duração-freqüência para Pelotas - RS. **Engenharia Agrícola**, Jaboticabal, v. 28, n. 2, Junho 2008.

DUARTE, A. A. L. S.; VIEIRA, J. M. P. Aplicação da hidroinformática na gestão sustentável de sistemas estuários. In: SIMPÓSIO DE HIDRÁULICA E RECURSOS HÍDRICOS DOS PAÍSES DE LÍNGUA OFICIAL PORTUGUESA. 9, 2009, Benguela, República de Angola. **Anais...** Lisboa: APRH, 2009. P. 12.

EMCIBRA S.A. ENGENHARIA DE CONSULTORIA (1978). Plano **Diretor de Drenagem Urbana para a Cidade do Recife**, disponível impresso na EMLURB, Recife.

FECHINE SOBRINHO, V. S. Aplicação do método das isozonas na obtenção das Equações IDF de chuvas intensas dos Municípios de Juazeiro do norte, Barbalha e Crato – CE. 2011. 72 f. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal do Ceará, Juazeiro do Norte, 2011.

FUNCEME – Fundação Cearense de Meteorologia e Recursos Hídricos: Produtos e serviços. Disponível em: <a href="http://www.funceme.br">http://www.funceme.br</a>>. Acesso em 13 de Março de 2014.

\_\_\_\_\_. **Zoneamento Geoambiental do Estado do Ceará** – Parte II: Mesorregião do Sul Cearense. Fortaleza: FUNCEME, 2006. 128 p.

GRINGORTEN, I. I.; Aplotting rule for extreme probability paper, **Journal of Geophysical Research**, 68, p. 813-814, 1963.

HAZEN, A. Storage to be provided in impounding reservoirs for municipal water supply. **Transactions of the American Society of Civil Engineers**, 77, p. 1547-1550, 1914.

HERSHFIELD, D. M., **Estimating the probable maximum precipitation**, Proc. ASCE, J. Hydraul. Div., 87(HY5), p. 99-106, 1961

IPECE – Instituto de Pesquisa e Estratégia Econômica do Ceará: Produtos e serviços. Disponível em: < http://www.ipece.ce.gov.br/>>. Acesso em 13 de Março de 2014

JEBARI, S. et al. Soil erosion estimation on rainfall disaggregation. Journal Of Hydrology. v. 436-437, p. 102-110, 2012.

KESSLER, J.; RAAD, S. J. **Análise de dados pluviométricos.** In: International Institute for Land Reclamation and Improvement: Principios y aplicaciones del drenaje. Wageningen: ILRI. v.3, p.16-5, 1978. Publication 16.

KOTHYARI, U.C.; GRADE, R.J. **Rainfall intensity duration frequency formula for India**, Journal of Hydr. Engrg., ASCE, 118(2), 323-336, 1992.

LAURA, A. A. **Estudo do uso de séries parciais e anuais na análise de frequência de chuvas intensas aplicando modelos de distribuição de probabilidade.** 1997. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal do Ceará, Fortaleza, 1997.
LIMA, G. de A. F. **Análise de desempenho de sistemas distribuídos de grande porte na plataforma Java**. 2007. 91 f. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal do Rio Grande do Norte, Natal. 2007.

MELLO, C. R. SILVA, Antônio M. da, LIMA, José M. de, et al. Modelos matemáticos para predição da chuva de projeto para regiões do Estado de Minas Gerais. **Revista Brasileira de Engenharia Agrícola e Ambiental**, v.7, n.1, p.121-128, 2003.

NHAT, Le M.; TACHIKAWA, Y.; TAKARA, K. Establishment of Intensity-durationfrequency curves for precipitation in the monsoon area of Vietnam. **Annuals of disaster prevention research institute,** Kyoto University, N° 49 B, 2006. p. 93-102.

OLIVEIRA, L. F. C.; ANTONINI, A. A.; GRIEBELER, N. P. Estimativa de chuvas intensas para o Estado de Goiás. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 12, n. 6, Dec. 2008a.

\_\_\_\_\_. L F. C.; ANTONINI, J. C. A.; FIOREZE, A. P.; SILVA, M. A. S. Métodos de estimativa de precipitação máxima para o Estado de Goiás. **Revista Brasileira de Engenharia Agrícola e Ambiental**, Campina Grande, v. 12, p. 620-625, 2008b.

PFAFSTETTER, O. Chuvas intensas no Brasil. 2.ed. Rio de Janeiro: DNOS, 426 p.

PINTO, F. A. Chuvas intensas no Estado de Minas Gerais: análise e modelos. 1995. Tese (Doutorado em Irrigação e Drenagem) - Universidade Federal de Viçosa. 1995.

RASHID, M. M. et AL. Modeling of Short Duration Rainfall Intensity Duration Frequency (SDRIDF), Equation for Sylhet City in Bangladesh, ARPN Journal of Science and Technology, v. 2, No. 2, p.92-95, Março de 2012.

ROBAINA, A.D.; PEITER, M.X. Modelo de desagregação e de geração de chuvas intensas no RS. In: CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA, 21° SIMPÓSIO DE ENGENHARIA AGRÍCOLA DO CONE SUL, 1°, 1992, Santa Maria. Anais... Santa Maria: Sociedade Brasileira de Engenharia Agrícola, 1992. p.746-753.

SAMPAIO, M. V. Espacialização dos coeficientes das equações de chuvas intensas em bacias hidrográficas do Rio Grande do Sul. 2011. 155 f. Tese (Doutorado em Engenharia Agrícola) – Universidade Federal de Santa Maria, Santa Maria. 2011.

SOUZA, R. O. R. de M.; SCARAMUSSA, P. H. M.; AMARAL, M. A. C. M. do; NETO, J. A. P.; PANTOJA, A. V.; SADECK, L. W. R.. Equações de chuvas intensas para o estado do Pará. **Revista Brasileira de Engenharia Agrícola e Ambiental,** Campina Grande, v. 16, n. 9, p.999-1005, 10 out. 2012.

TORRICO, J. J. T. Práticas Hidrológicas. Rio de Janeiro: Transcon, 1974. 119 p.

TUCCI, C.E.M. (Org.). Hidrologia: Ciência e Aplicação, 3. ed. Porto Alegre: UFRGS/ABRH, 2004.

VALDIVINO, R. S. de A. **Uma ferramenta computacional para auxílio em projetos de sistemas de abastecimento d'água.** 2011. 112 f. Dissertação (Mestrado em Engenharia Civil) – Univerisdade Federal do Ceará, Fortaleza. 2011.

WEIBULL, W.; A statistical distribution function of wide applicability, **Journal of Applied Mechanics American Society of Mechanical Engineers**. ASME 18 (3): 293 – 297, 1951.

WILKEN, P. S. **Engenharia de Drenagem Superficial.** Companhia de Tecnologia de Saneamento Ambiental (CETESB), São Paulo. 1978, 478 p.

## APÊNDICE

|      | Precipitações Diárias Máximas Anuais (mm) |           |                      |         |        |        |        |          |       |                |  |  |
|------|-------------------------------------------|-----------|----------------------|---------|--------|--------|--------|----------|-------|----------------|--|--|
| Ano  | Abaiara                                   | Altaneira | Antonina<br>do Norte | Araripe | Assaré | Aurora | Baixio | Barbalha | Barro | Brejo<br>Santo |  |  |
| 1974 | -                                         | -         | -                    | -       | 68.0   | 70.0   | 59.0   | 115.2    | 60.2  | 156.8          |  |  |
| 1975 | -                                         | -         | -                    | -       | 59.8   | 89.0   | 47.0   | 107.8    | 79.6  | 232.0          |  |  |
| 1976 | -                                         | -         | 120.2                | -       | 47.8   | 60.0   | 124.0  | 48.0     | 75.4  | 122.5          |  |  |
| 1977 | -                                         | -         | 130.7                | -       | 82.0   | 90.0   | 89.0   | 56.2     | 65.0  | 62.4           |  |  |
| 1978 | -                                         | -         | 206.3                | -       | 104.6  | 158.0  | 65.0   | 124.6    | 56.2  | 139.5          |  |  |
| 1979 | -                                         | 157.2     | -                    | 59.4    | 66.4   | 80.0   | 61.0   | 163.9    | 137.6 | 154.4          |  |  |
| 1980 | -                                         | 68.2      | -                    | 53.2    | 67.0   | 108.0  | 108.0  | 99.0     | 97.1  | 75.6           |  |  |
| 1981 | 58.30                                     | 56.0      | 190.0                | 103.4   | 94.8   | 90.0   | 75.0   | 69.3     | 102.2 | 61.0           |  |  |
| 1982 | 64.00                                     | 50.4      | 78.2                 | 65.2    | 76.2   | 75.0   | 65.0   | 55.9     | 70.0  | 101.0          |  |  |
| 1983 | 136.40                                    | 62.0      | 58.2                 | 42.0    | 67.2   | 73.0   | 68.0   | 125.6    | 126.5 | 73.0           |  |  |
| 1984 | 95.30                                     | 59.0      | 56.5                 | 67.8    | 52.2   | 49.0   | 102.0  | 77.9     | 86.2  | 72.8           |  |  |
| 1985 | 106.00                                    | 92.0      | 71.2                 | 96.0    | 83.6   | 98.0   | 94.0   | 118.2    | 78.4  | 77.2           |  |  |
| 1986 | 76.00                                     | 86.0      | 77.2                 | 56.0    | 68.4   | 48.0   | 71.0   | 73.0     | 61.0  | 83.2           |  |  |
| 1987 | 47.00                                     | 80.0      | 43.2                 | 38.0    | 108.0  | 88.0   | 130.0  | 60.6     | 114.0 | 70.0           |  |  |
| 1988 | 60.00                                     | 95.0      | 70.7                 | 94.0    | 67.0   | 81.0   | 87.0   | 99.2     | 63.0  | 71.0           |  |  |
| 1989 | 98.00                                     | 85.5      | 92.0                 | 54.6    | 94.0   | 122.0  | 55.0   | 92.6     | 124.6 | 114.4          |  |  |
| 1990 | 136.00                                    | 77.4      | 33.4                 | 69.0    | 95.0   | 66.2   | 63.0   | 125.1    | 64.0  | 76.4           |  |  |
| 1991 | 58.00                                     | 61.0      | 32.0                 | 87.0    | 39.4   | 58.2   | 69.0   | 75.0     | 81.6  | 45.0           |  |  |
| 1992 | 69.00                                     | 79.0      | 72.0                 | 35.5    | 101.0  | 105.5  | 45.0   | 103.0    | 36.0  | 53.2           |  |  |
| 1993 | 113.00                                    | 126.0     | 62.0                 | 54.0    | 36.2   | 58.0   | 49.4   | 85.0     | 118.0 | 66.0           |  |  |
| 1994 | 70.00                                     | 47.0      | 45.0                 | 48.0    | 42.2   | 96.0   | 120.0  | 78.2     | 59.6  | 170.0          |  |  |
| 1995 | 103.20                                    | 74.0      | 73.0                 | 60.0    | 105.0  | 106.0  | 58.0   | 74.0     | 74.5  | 84.0           |  |  |
| 1996 | 106.00                                    | 100.0     | 61.0                 | 106.6   | 68.2   | 90.0   | 56.0   | 98.9     | 88.0  | 119.0          |  |  |
| 1997 | 85.00                                     | 118.0     | 82.0                 | 81.0    | 47.8   | 146.5  | 119.0  | 131.0    | 73.1  | 92.8           |  |  |
| 1998 | 81.00                                     | 50.0      | 44.0                 | 58.0    | 53.5   | 92.0   | 45.0   | 78.5     | 65.7  | 56.2           |  |  |
| 1999 | 80.00                                     | 80.0      | 104.0                | 77.4    | 72.4   | 108.8  | 56.0   | 62.0     | 58.0  | 95.0           |  |  |
| 2000 | 74.00                                     | 101.0     | 63.0                 | 40.0    | 41.2   | 101.0  | 120.3  | 72.0     | 88.7  | 37.5           |  |  |
| 2001 | 80.00                                     | 55.0      | 28.0                 | 40.9    | 46.0   | 102.0  | 66.4   | 67.0     | 58.2  | 194.0          |  |  |
| 2002 | 105.00                                    | 62.0      | 53.0                 | 54.5    | 59.0   | 61.2   | 71.0   | 78.0     | 118.0 | 140.0          |  |  |
| 2003 | 71.00                                     | 70.0      | 50.0                 | 100.0   | 44.4   | 77.2   | 65.0   | 79.0     | 75.0  | 72.0           |  |  |
| 2004 | 86.00                                     | 94.0      | 72.4                 | 85.3    | 70.0   | 84.0   | 90.0   | 117.0    | 94.0  | 118.0          |  |  |
| 2005 | 97.00                                     | 100.0     | 90.0                 | 64.0    | 75.0   | 57.8   | 85.0   | 112.5    | 88.0  | 63.0           |  |  |
| 2006 | 104.00                                    | 155.0     | 77.0                 | 70.0    | 80.6   | 63.2   | 95.0   | 100.5    | 102.0 | 195.0          |  |  |
| 2007 | 88.00                                     | 114.2     | 75.0                 | 66.0    | 74.0   | 53.8   | 60.4   | 141.5    | 48.4  | 112.0          |  |  |
| 2008 | 135.00                                    | 75.8      | 41.0                 | 64.0    | 96.0   | 136.0  | 82.0   | 108.0    | 122.0 | 113.0          |  |  |
| 2009 | 90.00                                     | 93.2      | 76.0                 | 123.0   | 44.3   | 47.5   | 69.0   | 85.0     | 99.0  | 51.0           |  |  |
| 2010 | 83.00                                     | 95.0      | 50.0                 | 69.2    | 64.5   | 136.0  | 63.0   | 101.0    | 85.2  | 95.0           |  |  |
| 2011 | 65.00                                     | 90.0      | 33.0                 | 113.0   | 56.2   | 114.0  | 102.0  | 155.0    | 75.0  | 120.5          |  |  |
| 2012 | 55.00                                     | 96.0      | 42.0                 | 38.0    | 102.0  | 119.0  | 85.0   | 77.0     | 46.0  | 160.0          |  |  |
| 2013 | 122.00                                    | 62.0      | 73.0                 | 38.0    | 43.4   | 62.0   | 66.0   | 98.0     | 89.2  | 80.0           |  |  |

## APÊNDICE A – SÉRIE DE PRECIPITAÇÕES DIÁRIAS MÁXIMAS ANUAIS PARA CADA MUNICÍPIO OBTIDAS PELO PROGRAMA

| Ano  | Campos<br>Sales | Caririaçu | Crato | Farias<br>Brito | Granjeiro | Ipaumirim | Jardim | Jati  | Juazeiro<br>do Norte | Lavras da<br>Mangabeira |
|------|-----------------|-----------|-------|-----------------|-----------|-----------|--------|-------|----------------------|-------------------------|
| 1974 | 78.0            | 77.0      | 137.0 | -               | -         | -         | -      | -     | 126.0                | 118.0                   |
| 1975 | 52.7            | 50.6      | 84.0  | -               | -         | -         | -      | -     | 56.0                 | 76.0                    |
| 1976 | 64.6            | 55.4      | 127.0 | -               | -         | -         | -      | -     | 93.0                 | 55.0                    |
| 1977 | 64.0            | 92.2      | 139.0 | -               | -         | -         | -      | -     | 62.0                 | 56.0                    |
| 1978 | 52.0            | 64.5      | 82.2  | -               | -         | 115.0     | -      | -     | 93.0                 | 109.0                   |
| 1979 | 47.6            | 123.5     | 125.1 | 76.0            | 60.0      | 164.0     | 94.4   | 133.0 | 125.0                | 80.0                    |
| 980  | 53.4            | 127.0     | 140.0 | 126.0           | 98.0      | 130.3     | 90.4   | 85.0  | 90.0                 | 62.0                    |
| 981  | 99.0            | 131.0     | 91.0  | 95.0            | 68.0      | 70.2      | 63.8   | 136.0 | 55.0                 | 79.0                    |
| 982  | 46.2            | 99.0      | 127.0 | 75.0            | 80.0      | 56.1      | 49.6   | 122.5 | 74.0                 | 63.0                    |
| 983  | 59.9            | 77.0      | 85.0  | 60.0            | 68.0      | 79.0      | 50.0   | 92.7  | 61.0                 | 91.0                    |
| 984  | 29.8            | 76.0      | 73.0  | 83.0            | 130.0     | 70.0      | 68.2   | 50.0  | 72.0                 | 74.0                    |
| 1985 | 51.6            | 107.0     | 100.0 | 135.0           | 100.0     | 134.0     | 89.4   | 65.0  | 112.8                | 70.0                    |
| 1986 | 40.4            | 93.0      | 98.0  | 105.2           | 152.0     | 87.0      | 63.0   | 57.0  | 112.0                | 70.0                    |
| 987  | 44.6            | 53.0      | 110.0 | 118.2           | 112.0     | 95.0      | 42.8   | 72.0  | 91.0                 | 88.0                    |
| 1988 | 74.5            | 109.0     | 110.0 | 63.0            | 78.0      | 70.0      | 93.0   | 131.0 | 77.0                 | 90.0                    |
| 989  | 63.0            | 87.0      | 55.0  | 100.0           | 80.0      | 63.0      | 55.0   | 81.0  | 63.0                 | 97.0                    |
| 990  | 46.0            | 83.0      | 63.0  | 59.0            | 95.5      | 66.0      | 74.0   | 36.0  | 81.4                 | 72.5                    |
| 991  | 57.0            | 73.0      | 72.3  | 58.8            | 101.5     | 46.5      | 37.0   | 55.0  | 110.0                | 66.0                    |
| 992  | 78.0            | 68.0      | 125.2 | 70.0            | 102.0     | 64.2      | 69.0   | 71.0  | 110.2                | 68.0                    |
| 993  | 48.5            | 66.0      | 55.4  | 98.0            | 75.0      | 56.5      | 54.0   | 36.8  | 58.0                 | 78.0                    |
| 994  | 79.0            | 75.0      | 94.2  | 55.8            | 73.5      | 98.0      | 75.0   | 69.4  | 54.0                 | 82.0                    |
| 995  | 66.0            | 70.0      | 87.0  | 83.4            | 98.0      | 66.0      | 61.0   | 114.0 | 112.0                | 79.2                    |
| 996  | 51.0            | 78.0      | 82.2  | 89.0            | 67.0      | 89.6      | 89.4   | 128.0 | 102.0                | 76.4                    |
| 1997 | 70.8            | 62.0      | 83.6  | 128.0           | 105.0     | 121.0     | 115.0  | 75.0  | 88.0                 | 89.0                    |
| 1998 | 52.6            | 82.0      | 108.6 | 85.8            | 57.0      | 70.0      | 105.0  | 80.3  | 63.0                 | 74.4                    |
| 1999 | 100.0           | 97.0      | 83.2  | 89.4            | 132.4     | 154.0     | 117.0  | 81.0  | 107.0                | 60.4                    |
| 2000 | 84.0            | 125.0     | 62.0  | 61.0            | 133.0     | 157.0     | 47.1   | 50.4  | 64.0                 | 53.9                    |
| 2001 | 36.0            | 85.0      | 66.0  | 90.0            | 91.2      | 48.0      | 110.0  | 81.0  | 75.0                 | 38.0                    |
| 2002 | 32.0            | 92.0      | 91.8  | 58.4            | 68.4      | 83.0      | 75.0   | 81.0  | 86.0                 | 71.4                    |
| 2003 | 46.6            | 114.0     | 120.0 | 124.0           | 122.1     | 77.0      | 80.0   | 60.0  | 115.0                | 57.4                    |
| 2004 | 94.6            | 208.0     | 156.0 | 101.4           | 185.0     | 83.0      | 68.0   | 102.0 | 166.0                | 94.0                    |
| 2005 | 80.0            | 49.0      | 101.0 | 111.4           | 75.0      | 132.0     | 83.0   | 92.0  | 85.0                 | 58.1                    |
| 2006 | 41.0            | 110.0     | 98.0  | 92.6            | 110.0     | 87.2      | 80.0   | 60.0  | 60.0                 | 120.3                   |
| 2007 | 75.0            | 113.0     | 110.2 | 103.0           | 109.1     | 70.0      | 101.0  | 145.0 | 80.0                 | 60.8                    |
| 2008 | 92.0            | 115.0     | 93.2  | 103.4           | 125.0     | 135.0     | 80.0   | 51.0  | 130.0                | 80.1                    |
| 2009 | 56.0            | 77.0      | 113.2 | 67.0            | 101.0     | 41.4      | 101.0  | 74.0  | 75.0                 | 81.3                    |
| 2010 | 145.0           | 135.0     | 87.5  | 80.0            | 102.0     | 65.0      | 70.0   | 90.0  | 77.0                 | 88.9                    |
| 2011 | 79.0            | 86.0      | 162.0 | 83.0            | 114.0     | 97.4      | 100.0  | 75.0  | 150.0                | 129.5                   |
| 2012 | 80.0            | 108.0     | 92.8  | 75.0            | 75.0      | 101.0     | 65.0   | 58.0  | 85.0                 | 89.2                    |
| 2013 | 56.0            | 56.0      | 75.6  | 66.0            | 90.0      | 88.0      | 137.0  | 110.0 | 100.0                | 85.2                    |

APÊNDICE A – CONTINUAÇÃO...

| Ano  | Mauriti | Milagres | Missão<br>Velha | Nova<br>Olinda | Pena<br>Forte | Porteiras | Potengi | Salitre | Santanas<br>do Cariri | Várzea<br>Alegre |
|------|---------|----------|-----------------|----------------|---------------|-----------|---------|---------|-----------------------|------------------|
| 1974 | 92.7    | 94.0     | 95.0            | 137.0          | -             | -         | 90.1    | -       | -                     | 95.8             |
| 1975 | 82.8    | 77.2     | 70.0            | 156.0          | -             | -         | 61.2    | -       | -                     | 114.0            |
| 1976 | 74.4    | 50.0     | 52.0            | 60.0           | -             | -         | 54.0    | -       | -                     | 152.2            |
| 977  | 62.4    | 67.0     | 79.0            | 80.0           | -             | -         | 52.3    | -       | -                     | 78.0             |
| 978  | 86.0    | 112.4    | 144.0           | 109.0          | -             | -         | 82.3    | -       | -                     | 94.0             |
| 979  | 145.0   | 77.0     | 66.0            | 86.0           | -             | 107.3     | 52.6    | -       | 90.0                  | 109.8            |
| 1980 | 98.2    | 86.0     | 79.0            | 100.0          | -             | 98.5      | 92.1    | -       | 93.0                  | 76.0             |
| 981  | 63.0    | 68.0     | 100.0           | 120.0          | 81.0          | 71.0      | 96.0    | -       | 133.0                 | 84.5             |
| .982 | 54.7    | 69.0     | 101.0           | 55.0           | 50.0          | 126.8     | 54.0    | -       | 93.6                  | 99.0             |
| 983  | 135.2   | 60.0     | 77.0            | 55.0           | 61.0          | 62.3      | 47.2    | -       | 29.0                  | 96.0             |
| 1984 | 52.0    | 52.1     | 104.0           | 74.0           | 55.0          | 50.5      | 50.0    | -       | 84.0                  | 105.0            |
| 1985 | 60.0    | 70.2     | 119.0           | 93.0           | 68.0          | 95.6      | 105.0   | -       | 108.0                 | 74.0             |
| 986  | 60.4    | 64.0     | 123.0           | 67.0           | 32.0          | 52.0      | 61.1    | -       | 93.6                  | 75.0             |
| 987  | 39.3    | 44.0     | 94.0            | 66.0           | 38.0          | 57.0      | 38.0    | -       | 74.6                  | 57.0             |
| 988  | 73.5    | 61.1     | 87.0            | 140.0          | 129.0         | 88.2      | 56.5    | -       | 70.6                  | 110.0            |
| 989  | 68.0    | 81.0     | 92.0            | 79.0           | 60.0          | 75.4      | 67.6    | -       | 79.0                  | 123.0            |
| 990  | 75.0    | 53.6     | 102.0           | 84.0           | 80.0          | 122.0     | 46.0    | 44.0    | 79.4                  | 67.0             |
| 991  | 87.0    | 51.4     | 55.0            | 157.0          | 55.0          | 85.0      | 110.0   | 41.0    | 73.0                  | 82.0             |
| 992  | 70.4    | 67.0     | 83.0            | 77.0           | 98.0          | 69.0      | 107.0   | 36.0    | 74.0                  | 71.0             |
| 993  | 80.2    | 40.0     | 97.0            | 96.0           | 46.8          | 64.0      | 59.0    | 63.0    | 53.0                  | 56.0             |
| .994 | 91.0    | 101.0    | 43.0            | 106.0          | 50.0          | 68.0      | 49.2    | 155.0   | 67.0                  | 75.0             |
| 995  | 93.6    | 105.0    | 90.0            | 89.0           | 61.1          | 59.5      | 86.0    | 64.0    | 70.0                  | 84.2             |
| 996  | 119.0   | 68.6     | 80.0            | 140.0          | 135.0         | 88.0      | 74.8    | 75.0    | 122.0                 | 70.4             |
| 1997 | 72.2    | 71.0     | 96.6            | 73.0           | 51.0          | 75.0      | 99.1    | 87.2    | 88.0                  | 67.4             |
| 1998 | 54.3    | 120.0    | 92.0            | 67.0           | 55.0          | 102.0     | 92.0    | 45.6    | 96.2                  | 78.5             |
| 1999 | 52.0    | 81.6     | 86.5            | 118.0          | 50.8          | 106.0     | 117.0   | 72.0    | 65.0                  | 95.4             |
| 2000 | 78.8    | 102.0    | 87.0            | 50.0           | 44.3          | 43.2      | 71.0    | 82.2    | 98.0                  | 137.8            |
| 2001 | 116.0   | 70.0     | 67.0            | 53.0           | 73.0          | 152.0     | 42.0    | 31.0    | 62.0                  | 40.6             |
| 2002 | 70.0    | 56.6     | 62.6            | 73.0           | 62.0          | 71.0      | 69.0    | 62.0    | 88.5                  | 48.8             |
| 2003 | 77.0    | 90.0     | 116.5           | 101.0          | 125.0         | 76.0      | 60.0    | 68.0    | 54.0                  | 107.1            |
| 2004 | 83.0    | 118.0    | 111.0           | 93.0           | 75.0          | 71.0      | 93.0    | 135.0   | 104.0                 | 96.6             |
| 2005 | 117.0   | 147.0    | 84.0            | 124.0          | 40.0          | 70.0      | 68.0    | 84.0    | 102.0                 | 63.0             |
| 2006 | 74.2    | 75.5     | 92.8            | 60.0           | 64.0          | 120.0     | 55.0    | 70.0    | 62.4                  | 147.0            |
| 2007 | 145.0   | 52.6     | 143.0           | 91.0           | 110.0         | 96.8      | 58.0    | 73.0    | 86.5                  | 73.5             |
| 2008 | 90.0    | 119.0    | 143.0           | 67.0           | 60.0          | 115.0     | 78.5    | 49.0    | 61.0                  | 120.0            |
| 2009 | 104.0   | 67.0     | 92.0            | 74.0           | 80.0          | 54.0      | 86.0    | 85.0    | 71.0                  | 69.0             |
| 2010 | 163.0   | 132.0    | 76.5            | 95.0           | 87.0          | 80.0      | 140.0   | 70.0    | 78.0                  | 77.0             |
| 2011 | 125.0   | 104.0    | 103.2           | 78.0           | 70.0          | 182.0     | 77.0    | 40.0    | 179.0                 | 91.0             |
| 2012 | 78.0    | 65.0     | 141.0           | 60.0           | 122.0         | 97.0      | 66.0    | 47.0    | 51.0                  | 59.6             |
| 2013 | 101.4   | 120.0    | 90.0            | 109.0          | 40.0          | 74.0      | 63.0    | 67.0    | 87.0                  | 67.0             |

APÊNDICE A – CONTINUAÇÃO...

APÊNDICE B - PRECIPITAÇÕES DIÁRIAS MÁXIMAS ANUAIS PARA DIFERENTES TEMPOS DE RETORNO EM CADA MUNICÍPIO OBTIDAS PELO PROGRAMA

| Precipitação Máxima (mm) |         |           |                      |          |         |        |        |          |        |                |
|--------------------------|---------|-----------|----------------------|----------|---------|--------|--------|----------|--------|----------------|
| Tempo de                 |         |           |                      |          | Municíp | oios   |        |          |        |                |
| Retorno<br>(anos)        | Abaiara | Altaneira | Antonina<br>do Norte | Araripe  | Assaré  | Aurora | Baixio | Barbalha | Barro  | Brejo<br>Santo |
| 5                        | 106.08  | 105.01    | 84.00                | 85.0177  | 84.91   | 110.33 | 95.20  | 116.77   | 135.05 | 133.19         |
| 10                       | 119.32  | 120.59    | 108.02               | 98.5939  | 96.76   | 125.29 | 108.46 | 131.25   | 148.75 | 160.68         |
| 15                       | 126.53  | 129.10    | 122.12               | 106.1592 | 103.29  | 133.22 | 115.75 | 138.89   | 156.27 | 176.45         |
| 20                       | 131.49  | 134.93    | 132.23               | 111.4253 | 107.79  | 138.59 | 120.79 | 144.05   | 161.46 | 187.60         |
| 25                       | 135.26  | 139.37    | 140.14               | 115.4681 | 111.24  | 142.63 | 124.64 | 147.92   | 165.42 | 196.26         |
| 30                       | 138.31  | 142.94    | 146.67               | 118.7502 | 114.02  | 145.86 | 127.76 | 151.01   | 168.62 | 203.351        |
| 50                       | 146.68  | 152.72    | 165.27               | 127.8750 | 121.72  | 154.61 | 136.36 | 159.38   | 177.46 | 223.34         |
| 100                      | 157.76  | 165.56    | 191.34               | 140.1695 | 131.98  | 165.91 | 147.83 | 170.16   | 189.22 | 250.86         |

|                   |                 |            |        |                 | Precipitaçã | o Máxima (n | nm)    |        |                         |                         |  |  |
|-------------------|-----------------|------------|--------|-----------------|-------------|-------------|--------|--------|-------------------------|-------------------------|--|--|
| Tempo de          |                 | Municípios |        |                 |             |             |        |        |                         |                         |  |  |
| Retorno<br>(anos) | Campos<br>Sales | Caririaçu  | Crato  | Farias<br>Brito | Granjeiro   | Ipaumirim   | Jardim | Jati   | Juazeiro<br>do<br>Norte | Lavras da<br>Mangabeira |  |  |
| 5                 | 80.53           | 113.03     | 134.55 | 104.92          | 120.37      | 98.41       | 97.29  | 104.26 | 110.76                  | 115.05                  |  |  |
| 10                | 94.35           | 130.79     | 149.21 | 117.12          | 134.91      | 117.39      | 109.58 | 121.19 | 125.69                  | 125.38                  |  |  |
| 15                | 102.03          | 140.80     | 157.19 | 123.73          | 142.58      | 128.02      | 116.07 | 130.64 | 133.71                  | 130.95                  |  |  |
| 20                | 107.35          | 147.82     | 162.67 | 128.26          | 147.74      | 135.44      | 120.45 | 137.22 | 139.18                  | 134.76                  |  |  |
| 25                | 111.41          | 153.22     | 166.83 | 131.70          | 151.62      | 141.15      | 123.74 | 142.28 | 143.31                  | 137.65                  |  |  |
| 30                | 114.70          | 157.61     | 170.19 | 134.47          | 154.72      | 145.79      | 126.37 | 146.39 | 146.63                  | 139.97                  |  |  |
| 50                | 123.76          | 165.99     | 179.43 | 142.07          | 163.10      | 158.71      | 133.49 | 157.82 | 155.66                  | 146.34                  |  |  |
| 100               | 135.78          | 186.38     | 191.65 | 152.10          | 173.88      | 176.19      | 142.67 | 173.24 | 167.43                  | 154.71                  |  |  |

|                   |         | Precipitação Máxima (mm) |                 |                |               |           |         |         |                          |                  |  |  |  |  |
|-------------------|---------|--------------------------|-----------------|----------------|---------------|-----------|---------|---------|--------------------------|------------------|--|--|--|--|
| Tempo de          |         | Municípios               |                 |                |               |           |         |         |                          |                  |  |  |  |  |
| Retorno<br>(anos) | Mauriti | Milagres                 | Missão<br>Velha | Nova<br>Olinda | Pena<br>Forte | Porteiras | Potengi | Salitre | Santanas<br>do<br>Cariri | Várzea<br>Alegre |  |  |  |  |
| 5                 | 98.37   | 81.72                    | 196.50          | 111.73         | 71.71         | 108.04    | 90.50   | 89.30   | 102.49                   | 105.66           |  |  |  |  |
| 10                | 114.59  | 96.69                    | 209.76          | 128.07         | 88.12         | 126.27    | 103.71  | 106.17  | 118.00                   | 120.70           |  |  |  |  |
| 15                | 123.57  | 104.98                   | 216.96          | 137.10         | 97.40         | 136.39    | 111.01  | 115.69  | 126.75                   | 129.18           |  |  |  |  |
| 20                | 129.81  | 110.72                   | 221.90          | 143.35         | 103.91        | 143.40    | 116.06  | 122.36  | 132.88                   | 135.11           |  |  |  |  |
| 25                | 134.58  | 115.13                   | 225.65          | 148.14         | 108.94        | 148.75    | 119.93  | 127.49  | 137.60                   | 139.69           |  |  |  |  |
| 30                | 138.45  | 118.70                   | 228.67          | 152.01         | 113.04        | 153.08    | 123.06  | 131.67  | 141.44                   | 143.41           |  |  |  |  |
| 50                | 149.19  | 128.59                   | 236.97          | 162.74         | 124.52        | 165.02    | 131.72  | 139.63  | 148.75                   | 150.50           |  |  |  |  |
| 100               | 163.58  | 141.85                   | 247.92          | 177.10         | 140.15        | 180.84    | 143.33  | 159.01  | 166.57                   | 167.76           |  |  |  |  |

APÊNDICE C - INTENSIDADES PARA DURAÇÕES INFERIORES 240 MINUTOS EM CADA MUNICÍPIO PARA DIFERENTES TEMPOS DE RETORNO OBTIDAS PELO PROGRAMA

|       | Abaiara   |           |           |           |                     |           |           |           |  |  |  |  |
|-------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|--|
| t     |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |  |
| (min) | T (anos)  |           |           |           |                     |           |           |           |  |  |  |  |
| . ,   | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |  |
| 6     | 2.9842177 | 3.3566068 | 3.5594709 | 3.6989199 | 3.8050524           | 3.8906517 | 4.1261227 | 3.94809   |  |  |  |  |
| 12    | 2.4400316 | 2.7281105 | 2.8860322 | 2.9918675 | 3.0702748           | 3.1355418 | 3.3132136 | 3.3707418 |  |  |  |  |
| 18    | 1.9963539 | 2.2281389 | 2.3554495 | 2.4400887 | 2.5022426           | 2.5545156 | 2.6963372 | 2.791838  |  |  |  |  |
| 24    | 1.6939771 | 1.8889588 | 1.9961644 | 2.0671375 | 2.1190117           | 2.1628788 | 2.2816829 | 2.3837193 |  |  |  |  |
| 30    | 1.4772469 | 1.646352  | 1.7393907 | 1.8008193 | 1.8455818           | 1.8835686 | 1.98633   | 2.0868298 |  |  |  |  |
| 36    | 1.3141512 | 1.4640051 | 1.5464903 | 1.6008469 | 1.6403708           | 1.6739964 | 1.764886  | 1.8614846 |  |  |  |  |
| 48    | 1.0839692 | 1.2069312 | 1.2746564 | 1.3191707 | 1.351443            | 1.3789934 | 1.4533795 | 1.5410338 |  |  |  |  |
| 60    | 0.928208  | 1.0331374 | 1.0909547 | 1.1288911 | 1.1563406           | 1.1798275 | 1.2431954 | 1.3227542 |  |  |  |  |
| 90    | 0.7046767 | 0.7862722 | 0.8311037 | 0.8608698 | 0.8826965           | 0.9010845 | 0.9509452 | 1.0144426 |  |  |  |  |
| 120   | 0.5742026 | 0.6415945 | 0.6785635 | 0.7032695 | 0.7215164           | 0.7367601 | 0.7782081 | 0.8313963 |  |  |  |  |
| 180   | 0.4257374 | 0.4764866 | 0.5042759 | 0.5229842 | 0.5369123           | 0.5484398 | 0.5798795 | 0.6205674 |  |  |  |  |
| 240   | 0.3421506 | 0.3833102 | 0.4058248 | 0.4210467 | 0.4324312           | 0.4418032 | 0.4674092 | 0.5007078 |  |  |  |  |

|       | Altaneira |           |           |           |                     |           |           |           |  |  |  |  |
|-------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|--|
| t     |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |  |
| (min) | T (anos)  |           |           |           |                     |           |           |           |  |  |  |  |
|       | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |  |
| 6     | 2.9540899 | 3.3923628 | 3.6315522 | 3.7957405 | 3.9204673           | 4.0208731 | 4.2959833 | 4.1432032 |  |  |  |  |
| 12    | 2.4153977 | 2.7571715 | 2.9444759 | 3.0701807 | 3.1634024           | 3.2404894 | 3.449609  | 3.5373226 |  |  |  |  |
| 18    | 1.9761992 | 2.2518739 | 2.4031487 | 2.5039589 | 2.5781407           | 2.6400161 | 2.8073376 | 2.9298096 |  |  |  |  |
| 24    | 1.6768752 | 1.9090808 | 2.0365879 | 2.1212456 | 2.1832856           | 2.2352711 | 2.3756132 | 2.5015218 |  |  |  |  |
| 30    | 1.462333  | 1.6638896 | 1.7746144 | 1.8479564 | 1.901562            | 1.9466123 | 2.0681014 | 2.1899602 |  |  |  |  |
| 36    | 1.3008839 | 1.4796003 | 1.5778076 | 1.6427496 | 1.6901266           | 1.7300256 | 1.8375412 | 1.9534785 |  |  |  |  |
| 48    | 1.0730258 | 1.2197879 | 1.3004689 | 1.3537004 | 1.392435            | 1.4251487 | 1.5132109 | 1.6171912 |  |  |  |  |
| 60    | 0.9188371 | 1.0441428 | 1.1130472 | 1.1584403 | 1.1914147           | 1.2193167 | 1.2943742 | 1.3881243 |  |  |  |  |
| 90    | 0.6975625 | 0.7946479 | 0.847934  | 0.8834034 | 0.9094705           | 0.931244  | 0.9900929 | 1.064576  |  |  |  |  |
| 120   | 0.5684056 | 0.6484291 | 0.6923048 | 0.7216778 | 0.7434014           | 0.7614197 | 0.8102446 | 0.8724836 |  |  |  |  |
| 180   | 0.4214393 | 0.4815624 | 0.5144878 | 0.5366735 | 0.5531979           | 0.5667962 | 0.6037514 | 0.6512357 |  |  |  |  |
| 240   | 0.3386963 | 0.3873934 | 0.414043  | 0.4320678 | 0.4455477           | 0.4565905 | 0.4866511 | 0.5254526 |  |  |  |  |

|       |           |           | A         | Antonina do N | lorte               |           |           |           |  |  |
|-------|-----------|-----------|-----------|---------------|---------------------|-----------|-----------|-----------|--|--|
| t     |           |           |           | i (mm         | min <sup>-1</sup> ) |           |           |           |  |  |
| (min) | T (anos)  |           |           |               |                     |           |           |           |  |  |
|       | 5         | 10        | 15        | 20            | 25                  | 30        | 50        | 100       |  |  |
| 6     | 2.3629938 | 3.0385696 | 3.4352906 | 3.7196219     | 3.9423336           | 4.1259161 | 4.6490674 | 4.7884589 |  |  |
| 12    | 1.9320907 | 2.4696231 | 2.7853464 | 3.0086123     | 3.1810462           | 3.3251453 | 3.7331302 | 4.0882195 |  |  |
| 18    | 1.5807733 | 2.0170236 | 2.2732743 | 2.4537454     | 2.5925202           | 2.708985  | 3.0380709 | 3.3860934 |  |  |
| 24    | 1.3413423 | 1.7099807 | 1.9265237 | 2.0787068     | 2.1954628           | 2.2936662 | 2.5708633 | 2.8911047 |  |  |
| 30    | 1.1697287 | 1.4903608 | 1.6787081 | 1.810898      | 1.9121679           | 1.9974664 | 2.2380774 | 2.531021  |  |  |
| 36    | 1.0405846 | 1.3252912 | 1.4925375 | 1.6098065     | 1.6995532           | 1.7752216 | 1.9885676 | 2.25771   |  |  |
| 48    | 0.8583196 | 1.0925749 | 1.2301871 | 1.3265538     | 1.4002012           | 1.4623799 | 1.6375808 | 1.8690499 |  |  |
| 60    | 0.7349831 | 0.935248  | 1.0528943 | 1.1352093     | 1.1980598           | 1.2511706 | 1.400758  | 1.6043085 |  |  |
| 90    | 0.5579843 | 0.7117732 | 0.8021087 | 0.8656879     | 0.914543            | 0.9555722 | 1.071468  | 1.2303714 |  |  |
| 120   | 0.454671  | 0.5808037 | 0.6548903 | 0.7072055     | 0.7475477           | 0.7813113 | 0.8768381 | 1.0083628 |  |  |
| 180   | 0.3371117 | 0.4313397 | 0.4866831 | 0.5259112     | 0.5562834           | 0.5816034 | 0.6533734 | 0.752658  |  |  |
| 240   | 0.2709252 | 0.3469917 | 0.3916667 | 0.4234032     | 0.4480328           | 0.4685186 | 0.5266486 | 0.6072857 |  |  |

|       |           |           |           | Araripe   |                     |           |           |           |  |  |
|-------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|
| f     |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |
| (min) | T (anos)  |           |           |           |                     |           |           |           |  |  |
| · · · | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |
| 6     | 2.1586573 | 2.5033658 | 2.6954521 | 2.8291626 | 2.9318118           | 3.0151465 | 3.2468303 | 3.174933  |  |  |
| 12    | 1.8296611 | 2.1082796 | 2.2642129 | 2.3704043 | 2.4500592           | 2.5164355 | 2.6992509 | 2.8091309 |  |  |
| 18    | 1.5123849 | 1.739571  | 1.8668822 | 1.9530166 | 2.017168            | 2.0710547 | 2.2190497 | 2.3491725 |  |  |
| 24    | 1.2899967 | 1.4824381 | 1.5903499 | 1.6631136 | 1.7171063           | 1.7626489 | 1.8875434 | 2.0153977 |  |  |
| 30    | 1.1286186 | 1.2962555 | 1.3902971 | 1.4535734 | 1.5004157           | 1.5400316 | 1.6485714 | 1.7696334 |  |  |
| 36    | 1.0063033 | 1.1553177 | 1.2389367 | 1.295116  | 1.3366351           | 1.3718148 | 1.4681368 | 1.5818077 |  |  |
| 48    | 0.8325815 | 0.9553682 | 1.0242967 | 1.0705126 | 1.1045915           | 1.13354   | 1.2127306 | 1.3131149 |  |  |
| 60    | 0.7143758 | 0.8194471 | 0.8784459 | 0.9179513 | 0.9470385           | 0.9717882 | 1.0394529 | 1.1291496 |  |  |
| 90    | 0.5475791 | 0.6297828 | 0.6758511 | 0.7070097 | 0.7302084           | 0.7497024 | 0.8032338 | 0.8745042 |  |  |
| 120   | 0.4486407 | 0.5167621 | 0.5548976 | 0.5808324 | 0.6002573           | 0.6164712 | 0.6611012 | 0.720659  |  |  |
| 180   | 0.3347581 | 0.3862504 | 0.415042  | 0.4347427 | 0.4495962           | 0.4619026 | 0.4958668 | 0.5413082 |  |  |
| 240   | 0.2700467 | 0.3119003 | 0.3352862 | 0.3513446 | 0.3634977           | 0.3735241 | 0.401238  | 0.4383716 |  |  |

| APÊNDICE B | - CONTINUAÇÃO |
|------------|---------------|
|            |               |

| 4     |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |
|-------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|
| (min) | T (anos)  |           |           |           |                     |           |           |           |  |  |  |
|       | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |
| 6     | 2.3885267 | 2.722029  | 2.905484  | 3.0322732 | 3.1291293           | 3.207467  | 3.4239439 | 3.3029269 |  |  |  |
| 12    | 1.9529676 | 2.212352  | 2.3557772 | 2.452651  | 2.5248763           | 2.5849517 | 2.7493747 | 2.819924  |  |  |  |
| 18    | 1.5978541 | 1.8069017 | 1.9226793 | 2.0003179 | 2.0577485           | 2.1059517 | 2.2374776 | 2.3356197 |  |  |  |
| 24    | 1.3558359 | 1.5318448 | 1.6294062 | 1.6945827 | 1.742594            | 1.7830849 | 1.8933887 | 1.9941922 |  |  |  |
| 30    | 1.182368  | 1.3351036 | 1.4198099 | 1.4762623 | 1.5177357           | 1.5528206 | 1.6482986 | 1.7458179 |  |  |  |
| 36    | 1.0518284 | 1.18723   | 1.2623514 | 1.3123304 | 1.3489781           | 1.3800486 | 1.4645397 | 1.5572967 |  |  |  |
| 48    | 0.867594  | 0.9787568 | 1.0404619 | 1.08142   | 1.1113749           | 1.136847  | 1.206045  | 1.2892113 |  |  |  |
| 60    | 0.7429249 | 0.8378193 | 0.890512  | 0.925434  | 0.9509302           | 0.972654  | 1.0316298 | 1.1066011 |  |  |  |
| 90    | 0.5640135 | 0.6376248 | 0.6784038 | 0.7057175 | 0.7258958           | 0.7428572 | 0.7891144 | 0.8486711 |  |  |  |
| 120   | 0.4595838 | 0.5202989 | 0.55389   | 0.5765211 | 0.5933474           | 0.6073876 | 0.6457735 | 0.6955366 |  |  |  |
| 180   | 0.3407543 | 0.3864052 | 0.4116246 | 0.4287281 | 0.4415361           | 0.4521357 | 0.4811963 | 0.5191596 |  |  |  |
| 240   | 0.2738526 | 0.3108441 | 0.331262  | 0.3451625 | 0.3556149           | 0.3642241 | 0.387866  | 0.4188864 |  |  |  |

|       | Aurora                    |           |           |           |           |           |           |           |  |  |  |  |
|-------|---------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|--|
| ť     | i (mm min <sup>-1</sup> ) |           |           |           |           |           |           |           |  |  |  |  |
| (min) |                           |           |           | T (ai     | nos)      |           |           |           |  |  |  |  |
|       | 5                         | 10        | 15        | 20        | 25        | 30        | 50        | 100       |  |  |  |  |
| 6     | 3.1035213                 | 3.5244402 | 3.7476306 | 3.8986097 | 4.0122083 | 4.1030171 | 4.3491537 | 4.1519405 |  |  |  |  |
| 12    | 2.5375795                 | 2.8645185 | 3.0385927 | 3.1533864 | 3.2374277 | 3.3066906 | 3.492304  | 3.5447822 |  |  |  |  |
| 18    | 2.0761644                 | 2.3395478 | 2.4799626 | 2.5718193 | 2.6384705 | 2.69395   | 2.8420833 | 2.9359881 |  |  |  |  |
| 24    | 1.7616992                 | 1.9834084 | 2.1016851 | 2.1787339 | 2.2343756 | 2.2809363 | 2.4050156 | 2.5067971 |  |  |  |  |
| 30    | 1.5363045                 | 1.7286711 | 1.8313379 | 1.8980382 | 1.9460595 | 1.9863804 | 2.0936978 | 2.1945784 |  |  |  |  |
| 36    | 1.3666885                 | 1.5372067 | 1.6282404 | 1.6872701 | 1.7296764 | 1.765369  | 1.8602841 | 1.957598  |  |  |  |  |
| 48    | 1.1273043                 | 1.2672788 | 1.3420369 | 1.3903874 | 1.4250187 | 1.4542637 | 1.5319396 | 1.6206015 |  |  |  |  |
| 60    | 0.965316                  | 1.0847952 | 1.1486244 | 1.1898354 | 1.2192945 | 1.2442266 | 1.3103944 | 1.3910516 |  |  |  |  |
| 90    | 0.7328484                 | 0.8255865 | 0.8750372 | 0.9073447 | 0.9307525 | 0.9502688 | 1.002347  | 1.066821  |  |  |  |  |
| 120   | 0.5971581                 | 0.6736748 | 0.7144335 | 0.7412362 | 0.7607974 | 0.776975  | 0.8202728 | 0.8743235 |  |  |  |  |
| 180   | 0.4427576                 | 0.5003114 | 0.5309328 | 0.551218  | 0.566143  | 0.5783755 | 0.6112239 | 0.652609  |  |  |  |  |
| 240   | 0.3558291                 | 0.402476  | 0.4272774 | 0.4437773 | 0.4559738 | 0.4659184 | 0.4926742 | 0.5265606 |  |  |  |  |

|            | Baixio    |                           |           |           |           |           |           |           |  |  |  |  |  |
|------------|-----------|---------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|--|--|
| t          |           | i (mm min <sup>-1</sup> ) |           |           |           |           |           |           |  |  |  |  |  |
| t<br>(min) |           | T (anos)                  |           |           |           |           |           |           |  |  |  |  |  |
| ~ /        | 5         | 10                        | 15        | 20        | 25        | 30        | 50        | 100       |  |  |  |  |  |
| 6          | 2.4171925 | 2.7538807                 | 2.9390474 | 3.067004  | 3.1647438 | 3.2437911 | 3.4622065 | 3.3485172 |  |  |  |  |  |
| 12         | 2.0487935 | 2.3192577                 | 2.468836  | 2.5696789 | 2.644716  | 2.7072618 | 2.8783038 | 2.9627155 |  |  |  |  |  |
| 18         | 1.6935183 | 1.913652                  | 2.0355975 | 2.1172024 | 2.1774317 | 2.2281069 | 2.3662488 | 2.4776096 |  |  |  |  |  |
| 24         | 1.4444954 | 1.6307875                 | 1.7340741 | 1.8029279 | 1.8535301 | 1.8963141 | 2.0127522 | 2.1255862 |  |  |  |  |  |
| 30         | 1.2637895 | 1.4259734                 | 1.515942  | 1.5757721 | 1.6196234 | 1.6568152 | 1.7579282 | 1.8663851 |  |  |  |  |  |
| 36         | 1.1268249 | 1.2709318                 | 1.3509028 | 1.4039935 | 1.4428305 | 1.4758422 | 1.5655246 | 1.6682904 |  |  |  |  |  |
| 48         | 0.932297  | 1.0509731                 | 1.1168651 | 1.1605082 | 1.1923511 | 1.2194986 | 1.2931763 | 1.3849073 |  |  |  |  |  |
| 60         | 0.7999342 | 0.9014501                 | 0.9578334 | 0.9951215 | 1.0222805 | 1.0454809 | 1.1084042 | 1.1908839 |  |  |  |  |  |
| 90         | 0.6131609 | 0.6928059                 | 0.7369296 | 0.7664465 | 0.7882233 | 0.8065538 | 0.8565158 | 0.9223163 |  |  |  |  |  |
| 120        | 0.5023729 | 0.5684751                 | 0.6050453 | 0.6296617 | 0.6479477 | 0.6632194 | 0.7049549 | 0.7600598 |  |  |  |  |  |
| 180        | 0.3748509 | 0.424903                  | 0.4525505 | 0.4712906 | 0.4853166 | 0.4969296 | 0.5287598 | 0.5709034 |  |  |  |  |  |
| 240        | 0.3023893 | 0.3431126                 | 0.3655869 | 0.3808814 | 0.3923775 | 0.4018492 | 0.4278538 | 0.4623388 |  |  |  |  |  |

| APÊNDICE B | - CONTINUAÇÃO |
|------------|---------------|
| APÊNDICE B | - CONTINUAÇÃO |

| Barbalha |           |           |           |           |                     |           |           |           |  |  |  |  |
|----------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|--|
| ť        |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |  |
| (min)    | T (anos)  |           |           |           |                     |           |           |           |  |  |  |  |
| . ,      | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |  |
| 6        | 3.2848694 | 3.6921523 | 3.907097  | 4.0521436 | 4.1611023           | 4.2480982 | 4.4834621 | 4.2582642 |  |  |  |  |
| 12       | 2.685858  | 3.0008279 | 3.1678887 | 3.2775722 | 3.3575694           | 3.4236139 | 3.6001516 | 3.6355577 |  |  |  |  |
| 18       | 2.197481  | 2.4508763 | 2.5854881 | 2.6731019 | 2.7363848           | 2.789207  | 2.9298511 | 3.0111734 |  |  |  |  |
| 24       | 1.8646406 | 2.0777898 | 2.1911144 | 2.2645362 | 2.3172938           | 2.3615893 | 2.4792861 | 2.5709916 |  |  |  |  |
| 30       | 1.6260754 | 1.8109307 | 1.9092636 | 1.9727862 | 2.0182783           | 2.056618  | 2.1583544 | 2.2507776 |  |  |  |  |
| 36       | 1.4465482 | 1.6103554 | 1.6975241 | 1.7537178 | 1.7938651           | 1.8277918 | 1.9177324 | 2.0077286 |  |  |  |  |
| 48       | 1.1931761 | 1.3275829 | 1.3991423 | 1.4451432 | 1.4779015           | 1.5056859 | 1.5792482 | 1.6621022 |  |  |  |  |
| 60       | 1.0217224 | 1.1364157 | 1.1974999 | 1.2366932 | 1.2645428           | 1.288222  | 1.3508613 | 1.4266739 |  |  |  |  |
| 90       | 0.7756709 | 0.8648724 | 0.9122712 | 0.9430775 | 0.965293            | 0.9838699 | 1.033301  | 1.0941404 |  |  |  |  |
| 120      | 0.6320519 | 0.705732  | 0.7448336 | 0.7704273 | 0.7890308           | 0.8044485 | 0.8456041 | 0.8967134 |  |  |  |  |
| 180      | 0.4686293 | 0.5241189 | 0.5535247 | 0.5729259 | 0.5871527           | 0.5988267 | 0.6300994 | 0.6693211 |  |  |  |  |
| 240      | 0.3766213 | 0.421628  | 0.4454586 | 0.461254  | 0.4728951           | 0.482393  | 0.5078888 | 0.5400449 |  |  |  |  |

|       | Barro                     |           |           |           |           |           |           |           |  |  |  |  |  |
|-------|---------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|--|--|
| +     | i (mm min <sup>-1</sup> ) |           |           |           |           |           |           |           |  |  |  |  |  |
| (min) |                           |           |           | T (ai     | nos)      |           |           |           |  |  |  |  |  |
|       | 5                         | 10        | 15        | 20        | 25        | 30        | 50        | 100       |  |  |  |  |  |
| 6     | 3.799004                  | 4.1845466 | 4.3960768 | 4.5420582 | 4.6534648 | 4.743503  | 4.9920103 | 4.7353334 |  |  |  |  |  |
| 12    | 3.1062377                 | 3.4010256 | 3.5643553 | 3.6738391 | 3.7548538 | 3.822869  | 4.008508  | 4.0428628 |  |  |  |  |  |
| 18    | 2.5414219                 | 2.777731  | 2.9090663 | 2.9962868 | 3.0601675 | 3.1144789 | 3.262177  | 3.3485264 |  |  |  |  |  |
| 24    | 2.1564867                 | 2.3548889 | 2.4653361 | 2.5383245 | 2.5914876 | 2.6369932 | 2.7605055 | 2.8590294 |  |  |  |  |  |
| 30    | 1.8805822                 | 2.0524408 | 2.1482112 | 2.2113012 | 2.2570911 | 2.2964568 | 2.4031712 | 2.5029406 |  |  |  |  |  |
| 36    | 1.6729562                 | 1.8251163 | 1.9099721 | 1.9657467 | 2.0061242 | 2.0409453 | 2.1352561 | 2.2326619 |  |  |  |  |  |
| 48    | 1.3799273                 | 1.5046325 | 1.5742473 | 1.6198647 | 1.6527742 | 1.681276  | 1.7583785 | 1.8483137 |  |  |  |  |  |
| 60    | 1.1816383                 | 1.2879708 | 1.347369  | 1.3862126 | 1.4141698 | 1.4384519 | 1.5040862 | 1.5865095 |  |  |  |  |  |
| 90    | 0.8970758                 | 0.9802139 | 1.0264435 | 1.057098  | 1.0795113 | 1.0986069 | 1.1505058 | 1.216721  |  |  |  |  |  |
| 120   | 0.7309781                 | 0.7998501 | 0.8380508 | 0.863574  | 0.8823928 | 0.8982617 | 0.9415189 | 0.9971755 |  |  |  |  |  |
| 180   | 0.5419773                 | 0.5940167 | 0.6227992 | 0.6421941 | 0.6566276 | 0.6686607 | 0.7015701 | 0.7443077 |  |  |  |  |  |
| 240   | 0.4355686                 | 0.4778574 | 0.5012085 | 0.5170208 | 0.5288504 | 0.5386488 | 0.5654974 | 0.6005482 |  |  |  |  |  |

| Brejo Santo |           |           |           |           |                     |           |           |           |  |  |  |  |
|-------------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|--|
| ť           |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |  |
| (min)       | T (anos)  |           |           |           |                     |           |           |           |  |  |  |  |
| · · ·       | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |  |
| 6           | 3.3818911 | 4.0797135 | 4.4800712 | 4.7633121 | 4.9831963           | 5.163224  | 5.6706358 | 5.6822566 |  |  |  |  |
| 12          | 2.8664645 | 3.4358449 | 3.7633149 | 3.9909249 | 4.1643621           | 4.3092169 | 4.7142806 | 5.0275715 |  |  |  |  |
| 18          | 2.3693993 | 2.8349637 | 3.1029174 | 3.2881912 | 3.4285775           | 3.546534  | 3.8756022 | 4.2043725 |  |  |  |  |
| 24          | 2.0209917 | 2.4159165 | 2.6432971 | 2.8000969 | 2.918563            | 3.0184109 | 3.2966216 | 3.6070073 |  |  |  |  |
| 30          | 1.7681664 | 2.1124963 | 2.3107922 | 2.4473051 | 2.5502543           | 2.6371945 | 2.8792537 | 3.1671569 |  |  |  |  |
| 36          | 1.5765393 | 1.8828112 | 2.0592185 | 2.1805186 | 2.2718768           | 2.3491353 | 2.564122  | 2.8310006 |  |  |  |  |
| 48          | 1.3043756 | 1.5569553 | 1.7024684 | 1.8023657 | 1.8774725           | 1.9411067 | 2.1180515 | 2.3501145 |  |  |  |  |
| 60          | 1.119187  | 1.3354458 | 1.460052  | 1.5455063 | 1.60968             | 1.6641182 | 1.8154194 | 2.0208671 |  |  |  |  |
| 90          | 0.8578726 | 1.0263515 | 1.1233221 | 1.1903551 | 1.2411341           | 1.2838121 | 1.4028595 | 1.565122  |  |  |  |  |
| 120         | 0.7028693 | 0.8421627 | 0.9222872 | 0.977917  | 1.0202565           | 1.0556631 | 1.1546228 | 1.2897813 |  |  |  |  |
| 180         | 0.5244535 | 0.629469  | 0.6898352 | 0.7319534 | 0.7641781           | 0.7909753 | 0.8660385 | 0.9687928 |  |  |  |  |
| 240         | 0.4230725 | 0.5083012 | 0.5572742 | 0.5915404 | 0.6178365           | 0.6396335 | 0.700768  | 0.7845645 |  |  |  |  |

| APÊNDICE B | - CONTINUAÇÃO |
|------------|---------------|
|            | 2             |

| Campos Sales |           |           |           |           |                     |           |           |           |  |  |  |
|--------------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|
| t            |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |
| (min)        | T (anos)  |           |           |           |                     |           |           |           |  |  |  |
|              | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |
| 6            | 2.0446004 | 2.3954956 | 2.5905289 | 2.7256183 | 2.828836            | 2.9122754 | 3.1423599 | 3.0754246 |  |  |  |
| 12           | 1.7329873 | 2.0174337 | 2.1760761 | 2.2836501 | 2.3640043           | 2.4305795 | 2.6123995 | 2.7210874 |  |  |  |
| 18           | 1.4324751 | 1.6646128 | 1.7942119 | 1.8815383 | 1.9463178           | 2.0003943 | 2.1476493 | 2.275545  |  |  |  |
| 24           | 1.2218372 | 1.4185598 | 1.5284439 | 1.6022455 | 1.6567953           | 1.7025106 | 1.8268096 | 1.9522313 |  |  |  |
| 30           | 1.0689858 | 1.2403998 | 1.3361783 | 1.4003742 | 1.4477157           | 1.4874886 | 1.5955268 | 1.7141697 |  |  |  |
| 36           | 0.9531332 | 1.105535  | 1.1907099 | 1.2477161 | 1.2896877           | 1.3250111 | 1.4208978 | 1.5322309 |  |  |  |
| 48           | 0.7885904 | 0.9142013 | 0.9844249 | 1.031333  | 1.0657942           | 1.0948658 | 1.1737097 | 1.2719594 |  |  |  |
| 60           | 0.6766303 | 0.7841371 | 0.8442515 | 0.8843553 | 0.9137751           | 0.9386326 | 1.0060073 | 1.0937599 |  |  |  |
| 90           | 0.5186467 | 0.6026454 | 0.6495429 | 0.6811339 | 0.7045608           | 0.724124  | 0.7773889 | 0.8470956 |  |  |  |
| 120          | 0.4249359 | 0.4944948 | 0.5332977 | 0.5595746 | 0.5791741           | 0.5954383 | 0.6398296 | 0.6980721 |  |  |  |
| 180          | 0.3170705 | 0.3696069 | 0.3988861 | 0.4188316 | 0.4338048           | 0.4461433 | 0.4799117 | 0.5243426 |  |  |  |
| 240          | 0.2557783 | 0.2984605 | 0.3222348 | 0.3384858 | 0.3507304           | 0.3607802 | 0.3883277 | 0.4246322 |  |  |  |

|       | Caririaçu                 |           |           |           |           |           |           |           |  |  |  |  |
|-------|---------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|--|
| f     | i (mm min <sup>-1</sup> ) |           |           |           |           |           |           |           |  |  |  |  |
| (min) |                           |           |           | T (a      | nos)      |           |           |           |  |  |  |  |
|       | 5                         | 10        | 15        | 20        | 25        | 30        | 50        | 100       |  |  |  |  |
| 6     | 3.1796448                 | 3.6790821 | 3.9608611 | 4.1581545 | 4.3101235 | 4.4337539 | 4.669353  | 4.6641822 |  |  |  |  |
| 12    | 2.5998216                 | 2.990205  | 3.2114808 | 3.3633189 | 3.4778137 | 3.573237  | 3.7494192 | 3.9821163 |  |  |  |  |
| 18    | 2.1270888                 | 2.4422002 | 2.621066  | 2.7430347 | 2.8343827 | 2.9111045 | 3.0513271 | 3.2982128 |  |  |  |  |
| 24    | 1.8049104                 | 2.0704345 | 2.2212655 | 2.3237803 | 2.4002828 | 2.4647985 | 2.5820809 | 2.8160708 |  |  |  |  |
| 30    | 1.5739872                 | 1.80452   | 1.9355363 | 2.0243976 | 2.0905587 | 2.1464989 | 2.2478429 | 2.4653324 |  |  |  |  |
| 36    | 1.4002108                 | 1.6046548 | 1.7208831 | 1.7995979 | 1.8581087 | 1.9076722 | 1.9972444 | 2.1991148 |  |  |  |  |
| 48    | 1.154955                  | 1.3228832 | 1.4183953 | 1.4829506 | 1.5308294 | 1.5714892 | 1.6447261 | 1.8205417 |  |  |  |  |
| 60    | 0.9889934                 | 1.1323928 | 1.2139782 | 1.2690471 | 1.3098297 | 1.3445215 | 1.40687   | 1.5626713 |  |  |  |  |
| 90    | 0.7508238                 | 0.8618108 | 0.9248246 | 0.96775   | 0.9998629 | 1.0268682 | 1.0761432 | 1.1984391 |  |  |  |  |
| 120   | 0.6118053                 | 0.7032337 | 0.7550829 | 0.790583  | 0.8172883 | 0.8396056 | 0.8806641 | 0.9821924 |  |  |  |  |
| 180   | 0.4536176                 | 0.5222636 | 0.5611415 | 0.5879146 | 0.6081804 | 0.6249973 | 0.6562243 | 0.733124  |  |  |  |  |
| 240   | 0.3645569                 | 0.4201355 | 0.4515884 | 0.4733212 | 0.4898308 | 0.5034752 | 0.5289466 | 0.5915246 |  |  |  |  |

|       | Crato     |           |           |           |                     |           |           |           |  |  |  |  |  |
|-------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|--|--|
| ť     |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |  |  |
| (min) | T (anos)  |           |           |           |                     |           |           |           |  |  |  |  |  |
| . ,   | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |  |  |
| 6     | 3.7849211 | 4.1974058 | 4.4217965 | 4.5759227 | 4.6931627           | 4.7876821 | 5.0475202 | 4.7961603 |  |  |  |  |  |
| 12    | 3.0947229 | 3.411477  | 3.585209  | 3.7012303 | 3.7868859           | 3.8584737 | 4.0530817 | 4.0947946 |  |  |  |  |  |
| 18    | 2.5320008 | 2.7862671 | 2.9260861 | 3.0186264 | 3.0862733           | 3.1434859 | 3.2984517 | 3.3915393 |  |  |  |  |  |
| 24    | 2.1484926 | 2.3621255 | 2.4797598 | 2.5572496 | 2.6135952           | 2.6615531 | 2.7912017 | 2.8957546 |  |  |  |  |  |
| 30    | 1.8736109 | 2.058748  | 2.1607796 | 2.2277881 | 2.2763459           | 2.3178451 | 2.429894  | 2.5350917 |  |  |  |  |  |
| 36    | 1.6667545 | 1.8307249 | 1.9211466 | 1.9804029 | 2.0232382           | 2.0599538 | 2.1589997 | 2.2613412 |  |  |  |  |  |
| 48    | 1.3748119 | 1.5092563 | 1.5834576 | 1.631942  | 1.6668737           | 1.6969347 | 1.7779312 | 1.8720559 |  |  |  |  |  |
| 60    | 1.1772579 | 1.2919288 | 1.3552519 | 1.3965478 | 1.4262339           | 1.4518491 | 1.5208113 | 1.6068887 |  |  |  |  |  |
| 90    | 0.8937504 | 0.9832261 | 1.0324488 | 1.0649794 | 1.0887204           | 1.1088389 | 1.1632991 | 1.2323502 |  |  |  |  |  |
| 120   | 0.7282684 | 0.802308  | 0.8429539 | 0.8700126 | 0.8899204           | 0.9066278 | 0.9519884 | 1.0099846 |  |  |  |  |  |
| 180   | 0.5399681 | 0.5958421 | 0.626443  | 0.6469822 | 0.6622292           | 0.6748883 | 0.7093714 | 0.7538686 |  |  |  |  |  |
| 240   | 0.4339539 | 0.4793258 | 0.5041409 | 0.5208756 | 0.5333619           | 0.5436655 | 0.5717856 | 0.6082624 |  |  |  |  |  |

| Farias Brito |           |           |           |           |                     |           |           |           |  |  |  |  |
|--------------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|--|
| ٠            |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |  |
| (min)        | T (anos)  |           |           |           |                     |           |           |           |  |  |  |  |
| . ,          | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |  |
| 6            | 2.9515402 | 3.2947978 | 3.4807434 | 3.6081648 | 3.7049354           | 3.7828572 | 3.9966468 | 3.806292  |  |  |  |  |
| 12           | 2.413313  | 2.6778747 | 2.8221996 | 2.9184603 | 2.989491            | 3.0486684 | 3.2092463 | 3.2496796 |  |  |  |  |
| 18           | 1.9744936 | 2.1871096 | 2.3033523 | 2.3802198 | 2.4364046           | 2.4837401 | 2.6117272 | 2.6915675 |  |  |  |  |
| 24           | 1.6754279 | 1.8541753 | 1.9520138 | 2.0164191 | 2.0632571           | 2.1029541 | 2.2100847 | 2.2981066 |  |  |  |  |
| 30           | 1.4610709 | 1.6160359 | 1.7009193 | 1.7566351 | 1.7970216           | 1.8313824 | 1.9239998 | 2.0118801 |  |  |  |  |
| 36           | 1.2997611 | 1.4370467 | 1.5122854 | 1.5615692 | 1.5972101           | 1.6276167 | 1.7095046 | 1.7946283 |  |  |  |  |
| 48           | 1.0720997 | 1.1847066 | 1.2464639 | 1.2868041 | 1.3158844           | 1.340787  | 1.4077731 | 1.4856867 |  |  |  |  |
| 60           | 0.918044  | 1.0141131 | 1.0668253 | 1.1011932 | 1.1259154           | 1.1471392 | 1.2041845 | 1.2752467 |  |  |  |  |
| 90           | 0.6969604 | 0.7717936 | 0.8127215 | 0.8397479 | 0.8594713           | 0.876119  | 0.9211049 | 0.9780083 |  |  |  |  |
| 120          | 0.567915  | 0.6297801 | 0.6635552 | 0.6860144 | 0.7025321           | 0.7163474 | 0.7537882 | 0.8015362 |  |  |  |  |
| 180          | 0.4210755 | 0.4677125 | 0.4931225 | 0.5101525 | 0.5227853           | 0.5332447 | 0.5616831 | 0.5982794 |  |  |  |  |
| 240          | 0.338404  | 0.3762519 | 0.3968489 | 0.4107161 | 0.4210533           | 0.4295626 | 0.4527421 | 0.4827245 |  |  |  |  |

|            |           |           |           | Granjeiro |                     |           |           |           |  |  |
|------------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|
| +          |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |
| t<br>(min) | T (anos)  |           |           |           |                     |           |           |           |  |  |
| . ,        | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |
| 6          | 3.3861239 | 3.7951579 | 4.010745  | 4.1561263 | 4.2652872           | 4.3524155 | 4.5880153 | 4.3513284 |  |  |
| 12         | 2.7686483 | 3.0845466 | 3.2519269 | 3.3616785 | 3.4416356           | 3.507685  | 3.6841062 | 3.7150127 |  |  |
| 18         | 2.2652173 | 2.5192521 | 2.6540763 | 2.7416968 | 2.8048979           | 2.8576995 | 2.9981745 | 3.0769825 |  |  |
| 24         | 1.9221173 | 2.1357571 | 2.2492406 | 2.3226469 | 2.3753138           | 2.4195811 | 2.5371024 | 2.6271806 |  |  |
| 30         | 1.6761984 | 1.861453  | 1.9599129 | 2.0234102 | 2.0688116           | 2.1071209 | 2.2086867 | 2.2999683 |  |  |
| 36         | 1.4911374 | 1.6552819 | 1.7425563 | 1.7987202 | 1.8387796           | 1.8726755 | 1.9624535 | 2.0516074 |  |  |
| 48         | 1.2299552 | 1.3646205 | 1.4362589 | 1.4822273 | 1.5149049           | 1.5426599 | 1.6160759 | 1.6984274 |  |  |
| 60         | 1.0532165 | 1.16812   | 1.2292673 | 1.2684282 | 1.2962042           | 1.3198559 | 1.382363  | 1.4578538 |  |  |
| 90         | 0.7995806 | 0.8890011 | 0.936472  | 0.967278  | 0.9894618           | 1.0080301 | 1.0573973 | 1.1180528 |  |  |
| 120        | 0.6515346 | 0.7254208 | 0.7645926 | 0.7901974 | 0.8087864           | 0.8242028 | 0.8653234 | 0.916311  |  |  |
| 180        | 0.4830745 | 0.5387411 | 0.5682087 | 0.5876278 | 0.6018538           | 0.6135316 | 0.6447932 | 0.6839491 |  |  |
| 240        | 0.3882305 | 0.4333908 | 0.4572758 | 0.4730903 | 0.4847353           | 0.4942388 | 0.5197326 | 0.5518476 |  |  |

|            | Ipaumirim |           |           |           |                     |           |           |           |  |  |
|------------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|
| +          |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |
| t<br>(min) | T (anos)  |           |           |           |                     |           |           |           |  |  |
| ()         | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |
| 6          | 2.4987361 | 2.9806831 | 3.2505595 | 3.4389299 | 3.5838118           | 3.7015994 | 4.0298188 | 3.9909251 |  |  |
| 12         | 2.1179092 | 2.5102657 | 2.73051   | 2.8812957 | 2.9949232           | 3.0893478 | 3.3501881 | 3.5311079 |  |  |
| 18         | 1.7506488 | 2.0712554 | 2.2513521 | 2.3739488 | 2.4657621           | 2.542568  | 2.754184  | 2.9529353 |  |  |
| 24         | 1.4932252 | 1.7650949 | 1.9178701 | 2.0215633 | 2.0989702           | 2.1639479 | 2.3427334 | 2.5333767 |  |  |
| 30         | 1.3064232 | 1.5434128 | 1.6766179 | 1.766861  | 1.8340902           | 1.8906477 | 2.0461322 | 2.2244483 |  |  |
| 36         | 1.1648381 | 1.3756024 | 1.4940861 | 1.5742513 | 1.6338868           | 1.6841333 | 1.8221849 | 1.9883494 |  |  |
| 48         | 0.9637479 | 1.1375285 | 1.2352426 | 1.3012393 | 1.3502394           | 1.391611  | 1.5051864 | 1.6505997 |  |  |
| 60         | 0.8269199 | 0.9756912 | 1.059355  | 1.1157967 | 1.1576486           | 1.1930335 | 1.2901218 | 1.4193532 |  |  |
| 90         | 0.6338457 | 0.7498636 | 0.8150374 | 0.859391  | 0.892598            | 0.9203858 | 0.9969375 | 1.0992613 |  |  |
| 120        | 0.5193203 | 0.6152932 | 0.6691745 | 0.7060188 | 0.7337474           | 0.756822  | 0.8205289 | 0.9058761 |  |  |
| 180        | 0.3874965 | 0.4598969 | 0.5005167 | 0.5284425 | 0.5495811           | 0.5670631 | 0.6154474 | 0.6804303 |  |  |
| 240        | 0.3125904 | 0.3713704 | 0.4043358 | 0.4270696 | 0.4443353           | 0.4585637 | 0.4979985 | 0.5510378 |  |  |

APÊNDICE B - CONTINUAÇÃO...

|       |           |           |           | Jardim    |                     |           |           |           |  |  |  |
|-------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|
| t     |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |
| (min) | T (anos)  |           |           |           |                     |           |           |           |  |  |  |
| ( )   | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |
| 6     | 2.4702325 | 2.7822402 | 2.947059  | 3.0583349 | 3.1419522           | 3.2087309 | 3.3894656 | 3.2315173 |  |  |  |
| 12    | 2.0937498 | 2.3431415 | 2.4755658 | 2.5624155 | 2.6256695           | 2.6780006 | 2.8178307 | 2.8591958 |  |  |  |
| 18    | 1.7306788 | 1.9333588 | 2.0411463 | 2.1112179 | 2.1617504           | 2.2040247 | 2.316534  | 2.39104   |  |  |  |
| 24    | 1.4761917 | 1.6475814 | 1.7388011 | 1.7978318 | 1.8401815           | 1.8758179 | 1.9704643 | 2.0513165 |  |  |  |
| 30    | 1.2915206 | 1.4406581 | 1.5200743 | 1.5713181 | 1.6079594           | 1.6389077 | 1.7209942 | 1.8011721 |  |  |  |
| 36    | 1.1515506 | 1.2840199 | 1.3545853 | 1.400025  | 1.4324397           | 1.4598907 | 1.532633  | 1.609999  |  |  |  |
| 48    | 0.9527542 | 1.061796  | 1.1199096 | 1.1572279 | 1.1837641           | 1.2063178 | 1.2660067 | 1.3365175 |  |  |  |
| 60    | 0.817487  | 0.9107333 | 0.9604444 | 0.9923086 | 1.0149184           | 1.0341809 | 1.0851167 | 1.1492735 |  |  |  |
| 90    | 0.6266153 | 0.6999404 | 0.7389384 | 0.76428   | 0.7825467           | 0.7978363 | 0.8385204 | 0.8900898 |  |  |  |
| 120   | 0.5133964 | 0.5743293 | 0.6066946 | 0.6278819 | 0.6432813           | 0.6560511 | 0.6901438 | 0.7335027 |  |  |  |
| 180   | 0.3830762 | 0.4292786 | 0.4537841 | 0.4699584 | 0.4818215           | 0.4915586 | 0.5176505 | 0.5509556 |  |  |  |
| 240   | 0.3090246 | 0.346646  | 0.3665835 | 0.3798048 | 0.3895517           | 0.3975059 | 0.4188647 | 0.4461843 |  |  |  |

|       | Jati      |           |           |           |                     |           |           |           |  |  |  |
|-------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|
| f     |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |
| (min) | T (anos)  |           |           |           |                     |           |           |           |  |  |  |
|       | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |
| 6     | 2.6471655 | 3.0770071 | 3.3169446 | 3.4841233 | 3.6125503           | 3.7168643 | 4.0071073 | 3.9240073 |  |  |  |
| 12    | 2.2437168 | 2.5913876 | 2.7862742 | 2.9191609 | 3.0189394           | 3.1020878 | 3.3313069 | 3.4719001 |  |  |  |
| 18    | 1.8546404 | 2.1381902 | 2.2973307 | 2.4051466 | 2.485535            | 2.5530532 | 2.7386618 | 2.9034219 |  |  |  |
| 24    | 1.5819254 | 1.8221358 | 1.9570381 | 2.0481301 | 2.1158018           | 2.1728718 | 2.3295301 | 2.4908982 |  |  |  |
| 30    | 1.3840271 | 1.5932899 | 1.7108589 | 1.7900806 | 1.8487978           | 1.8984445 | 2.0346005 | 2.1871498 |  |  |  |
| 36    | 1.2340316 | 1.4200565 | 1.5245993 | 1.5949397 | 1.6469889           | 1.6910785 | 1.8119153 | 1.9550098 |  |  |  |
| 48    | 1.0209962 | 1.1742889 | 1.2604695 | 1.3183399 | 1.361067            | 1.3973498 | 1.4967033 | 1.6229232 |  |  |  |
| 60    | 0.8760404 | 1.0072217 | 1.0809898 | 1.1304602 | 1.1669317           | 1.1979534 | 1.2828509 | 1.3955542 |  |  |  |
| 90    | 0.6714973 | 0.7740962 | 0.8316826 | 0.8706849 | 0.8997557           | 0.9241813 | 0.9913189 | 1.0808294 |  |  |  |
| 120   | 0.5501689 | 0.6351771 | 0.6828408 | 0.7152971 | 0.7396313           | 0.7599431 | 0.8159045 | 0.8906868 |  |  |  |
| 180   | 0.4105145 | 0.4747589 | 0.5107386 | 0.5353871 | 0.5539882           | 0.5694016 | 0.6119788 | 0.6690212 |  |  |  |
| 240   | 0.3311588 | 0.3833717 | 0.4125934 | 0.4326821 | 0.4478984           | 0.4604547 | 0.4951918 | 0.5417983 |  |  |  |

|       | Juazeiro do Norte |           |           |           |                     |           |           |           |  |  |  |
|-------|-------------------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|
| ť     |                   |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |
| (min) | T (anos)          |           |           |           |                     |           |           |           |  |  |  |
| . ,   | 5                 | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |
| 6     | 3.1158253         | 3.5356574 | 3.7613965 | 3.9151945 | 4.0314594           | 4.1247208 | 4.3788612 | 4.1899773 |  |  |  |
| 12    | 2.5476398         | 2.8736354 | 3.0497542 | 3.166801  | 3.2529613           | 3.324182  | 3.5161587 | 3.5772567 |  |  |  |
| 18    | 2.0843954         | 2.3469939 | 2.489072  | 2.5827599 | 2.6511302           | 2.7082002 | 2.8614966 | 2.9628853 |  |  |  |
| 24    | 1.7686835         | 1.989721  | 2.109405  | 2.1880024 | 2.2450964           | 2.2930018 | 2.4214434 | 2.5297624 |  |  |  |
| 30    | 1.5423952         | 1.7341729 | 1.8380648 | 1.9061126 | 1.955397            | 1.9968878 | 2.1079992 | 2.2146834 |  |  |  |
| 36    | 1.3721068         | 1.5420992 | 1.6342213 | 1.6944479 | 1.7379756           | 1.7747073 | 1.872991  | 1.975532  |  |  |  |
| 48    | 1.1317736         | 1.2713122 | 1.3469665 | 1.3963021 | 1.4318561           | 1.4619563 | 1.5424037 | 1.6354482 |  |  |  |
| 60    | 0.9691431         | 1.0882478 | 1.1528436 | 1.194897  | 1.2251448           | 1.2508082 | 1.3193452 | 1.4037953 |  |  |  |
| 90    | 0.7357538         | 0.8282141 | 0.8782514 | 0.9112046 | 0.9352184           | 0.9552954 | 1.0091937 | 1.0765944 |  |  |  |
| 120   | 0.5995256         | 0.6758189 | 0.7170578 | 0.7443894 | 0.7644478           | 0.781085  | 0.8258758 | 0.8823334 |  |  |  |
| 180   | 0.4445129         | 0.5019037 | 0.5328831 | 0.5535629 | 0.5688595           | 0.581435  | 0.615399  | 0.6585877 |  |  |  |
| 240   | 0.3572398         | 0.403757  | 0.4288469 | 0.4456652 | 0.4581616           | 0.4683829 | 0.4960395 | 0.5313846 |  |  |  |

APÊNDICE B - CONTINUAÇÃO...

|       | Lavras da Mangabeira |           |           |           |                     |           |           |           |  |  |  |  |
|-------|----------------------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|--|
| ť     |                      |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |  |
| (min) | T (anos)             |           |           |           |                     |           |           |           |  |  |  |  |
| · /   | 5                    | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |  |
| 6     | 3.236562             | 3.5268942 | 3.6836057 | 3.7907804 | 3.8720632           | 3.937446  | 4.1165327 | 3.8716586 |  |  |  |  |
| 12    | 2.6463597            | 2.866513  | 2.9866811 | 3.0661688 | 3.1243454           | 3.1732541 | 3.3055129 | 3.3054873 |  |  |  |  |
| 18    | 2.1651648            | 2.3411768 | 2.4375946 | 2.5006869 | 2.5463096           | 2.5852397 | 2.6900702 | 2.7377906 |  |  |  |  |
| 24    | 1.8372192            | 1.9847895 | 2.0657797 | 2.1184737 | 2.1563296           | 2.1888926 | 2.2763797 | 2.3375726 |  |  |  |  |
| 30    | 1.6021623            | 1.7298747 | 1.8000511 | 1.8455416 | 1.8780843           | 1.906223  | 1.9817133 | 2.0464307 |  |  |  |  |
| 36    | 1.4252753            | 1.538277  | 1.6004234 | 1.640603  | 1.6692594           | 1.6941302 | 1.760784  | 1.8254479 |  |  |  |  |
| 48    | 1.1756293            | 1.2681612 | 1.3191094 | 1.3519315 | 1.3752433           | 1.3955791 | 1.4500015 | 1.5112008 |  |  |  |  |
| 60    | 1.0066969            | 1.0855506 | 1.1290012 | 1.1569265 | 1.1767049           | 1.1940177 | 1.2403059 | 1.2971469 |  |  |  |  |
| 90    | 0.7642639            | 0.8261613 | 0.860088  | 0.882249  | 0.8982417           | 0.9119221 | 0.948735  | 0.9948039 |  |  |  |  |
| 120   | 0.6227569            | 0.6741439 | 0.7022281 | 0.7207348 | 0.734223            | 0.7456214 | 0.7763993 | 0.8153012 |  |  |  |  |
| 180   | 0.4617376            | 0.5006598 | 0.5218623 | 0.5359722 | 0.5463679           | 0.5550361 | 0.5785317 | 0.6085538 |  |  |  |  |
| 240   | 0.3710827            | 0.4027563 | 0.4199778 | 0.4315032 | 0.4400468           | 0.4471169 | 0.4663228 | 0.4910145 |  |  |  |  |

|       | Mauriti   |           |           |           |                     |           |           |           |  |  |  |
|-------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|
| +     |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |
| (min) | T (anos)  |           |           |           |                     |           |           |           |  |  |  |
| · · · | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |
| 6     | 2.4976744 | 2.9094781 | 3.137625  | 3.2959261 | 3.4171842           | 3.5154609 | 3.7879437 | 3.7052552 |  |  |  |
| 12    | 2.1170093 | 2.4502984 | 2.6356436 | 2.7614805 | 2.8556757           | 2.9339969 | 3.1491053 | 3.2783516 |  |  |  |
| 18    | 1.749905  | 2.0217755 | 2.1731331 | 2.275231  | 2.3511177           | 2.4147125 | 2.5888742 | 2.7415645 |  |  |  |
| 24    | 1.4925907 | 1.7229289 | 1.8512373 | 1.937499  | 2.0013796           | 2.0551317 | 2.2021194 | 2.3520378 |  |  |  |
| 30    | 1.3058682 | 1.5065425 | 1.618367  | 1.6933882 | 1.7488151           | 1.7955746 | 1.9233206 | 2.0652225 |  |  |  |
| 36    | 1.1643432 | 1.3427409 | 1.4421769 | 1.508788  | 1.55792             | 1.5994451 | 1.7128149 | 1.8460236 |  |  |  |
| 48    | 0.9633384 | 1.1103543 | 1.1923264 | 1.2471289 | 1.2874607           | 1.3216325 | 1.4148431 | 1.5324499 |  |  |  |
| 60    | 0.8265685 | 0.9523831 | 1.0225497 | 1.0693976 | 1.1038242           | 1.1330406 | 1.212687  | 1.3177561 |  |  |  |
| 90    | 0.6335764 | 0.7319502 | 0.7867204 | 0.8236543 | 0.8510971           | 0.8741033 | 0.9371    | 1.0205763 |  |  |  |
| 120   | 0.5190997 | 0.6005946 | 0.6459253 | 0.6766599 | 0.6996322           | 0.7187645 | 0.7712797 | 0.8410336 |  |  |  |
| 180   | 0.3873318 | 0.4489105 | 0.4831272 | 0.5064678 | 0.5240286           | 0.5385478 | 0.5785074 | 0.6317252 |  |  |  |
| 240   | 0.3124576 | 0.3624988 | 0.3902879 | 0.4093105 | 0.4236761           | 0.4355044 | 0.4681079 | 0.5115946 |  |  |  |

|       | Milagres  |           |           |           |                     |           |           |           |  |  |
|-------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|
| f     |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |
| (min) | T (anos)  |           |           |           |                     |           |           |           |  |  |
|       | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |
| 6     | 2.2989338 | 2.7198934 | 2.9530264 | 3.1147541 | 3.2386194           | 3.3389984 | 3.6172619 | 3.5499367 |  |  |
| 12    | 1.8797124 | 2.2106163 | 2.3943247 | 2.5193656 | 2.6132233           | 2.690955  | 2.9046061 | 3.0308124 |  |  |
| 18    | 1.5379191 | 1.8054841 | 1.9541401 | 2.0547285 | 2.1297503           | 2.1923123 | 2.363807  | 2.5102893 |  |  |
| 24    | 1.3049789 | 1.5306429 | 1.6560681 | 1.7406771 | 1.8035684           | 1.8562054 | 2.0002906 | 2.1433282 |  |  |
| 30    | 1.1380178 | 1.3340561 | 1.4430422 | 1.5164181 | 1.5708422           | 1.6164985 | 1.7413626 | 1.8763791 |  |  |
| 36    | 1.0123747 | 1.1862986 | 1.2830072 | 1.3480271 | 1.3961797           | 1.4366414 | 1.5472285 | 1.6737593 |  |  |
| 48    | 0.8350508 | 0.9779889 | 1.057487  | 1.1108357 | 1.1502626           | 1.1834667 | 1.2741391 | 1.3856251 |  |  |
| 60    | 0.715058  | 0.837162  | 0.9050834 | 0.9506068 | 0.9842038           | 1.0125404 | 1.0898763 | 1.1893584 |  |  |
| 90    | 0.5428575 | 0.6371245 | 0.6895045 | 0.7249137 | 0.7512953           | 0.7733202 | 0.8336683 | 0.9121391 |  |  |
| 120   | 0.442345  | 0.5198907 | 0.5629533 | 0.592203  | 0.614109            | 0.6322953 | 0.6822343 | 0.7475524 |  |  |
| 180   | 0.3279728 | 0.3861021 | 0.41836   | 0.4403899 | 0.4569857           | 0.4706768 | 0.5083649 | 0.557985  |  |  |
| 240   | 0.2635805 | 0.3106002 | 0.3366825 | 0.3545513 | 0.368058            | 0.3791602 | 0.4097652 | 0.4502129 |  |  |

APÊNDICE B - CONTINUAÇÃO...

|       | Missao Velha |           |           |           |                     |           |           |           |  |  |  |  |
|-------|--------------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|--|
| t     |              |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |  |
| (min) | T (anos)     |           |           |           |                     |           |           |           |  |  |  |  |
|       | 5            | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |  |
| 6     | 5.5277781    | 5.9007963 | 6.1032162 | 6.2420608 | 6.347577            | 6.4325837 | 6.6660016 | 6.2043682 |  |  |  |  |
| 12    | 4.5197617    | 4.795922  | 4.9485102 | 5.0488844 | 5.1218232           | 5.1841276 | 5.3526976 | 5.2970735 |  |  |  |  |
| 18    | 3.6979209    | 3.9169895 | 4.0387512 | 4.1177378 | 4.1742336           | 4.2234918 | 4.3560963 | 4.3873343 |  |  |  |  |
| 24    | 3.1378172    | 3.3207229 | 3.4227062 | 3.4883692 | 3.5349289           | 3.5759817 | 3.6861971 | 3.7459814 |  |  |  |  |
| 30    | 2.7363596    | 2.8942287 | 2.9824314 | 3.0389475 | 3.078794            | 3.114186  | 3.2090366 | 3.2794238 |  |  |  |  |
| 36    | 2.4342513    | 2.5736694 | 2.6516763 | 2.7014869 | 2.7364617           | 2.7676911 | 2.8512804 | 2.925297  |  |  |  |  |
| 48    | 2.0078768    | 2.1217424 | 2.1855786 | 2.2261481 | 2.2544731           | 2.2799498 | 2.3480228 | 2.4217131 |  |  |  |  |
| 60    | 1.7193543    | 1.8162191 | 1.8705961 | 1.9050445 | 1.9290039           | 1.9506601 | 2.0084576 | 2.0786898 |  |  |  |  |
| 90    | 1.305299     | 1.3822387 | 1.4250448 | 1.4527489 | 1.4725116           | 1.4898021 | 1.5363096 | 1.5941824 |  |  |  |  |
| 120   | 1.0636169    | 1.1279005 | 1.1634931 | 1.1867926 | 1.2036314           | 1.2181175 | 1.2572423 | 1.3065277 |  |  |  |  |
| 180   | 0.7886093    | 0.8376467 | 0.8646524 | 0.8825547 | 0.8956755           | 0.9067593 | 0.9368305 | 0.9752131 |  |  |  |  |
| 240   | 0.6337783    | 0.6738458 | 0.6958441 | 0.7105315 | 0.7213805           | 0.7304524 | 0.7551279 | 0.7868552 |  |  |  |  |

|       | Nova Olinda |           |           |           |                     |           |           |           |  |  |  |
|-------|-------------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|
| ť     |             |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |
| (min) | T (anos)    |           |           |           |                     |           |           |           |  |  |  |
| ()    | 5           | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |
| 6     | 3.1431329   | 3.602766  | 3.8566894 | 4.0325984 | 4.167198            | 4.2761979 | 4.5780109 | 4.432052  |  |  |  |
| 12    | 2.5699678   | 2.9281784 | 3.127018  | 3.261763  | 3.362488            | 3.44626   | 3.6760728 | 3.7839317 |  |  |  |
| 18    | 2.1026634   | 2.391541  | 2.5521313 | 2.6602084 | 2.7403934           | 2.8076567 | 2.9916368 | 3.1340651 |  |  |  |
| 24    | 1.7841846   | 2.0274869 | 2.1628457 | 2.2536134 | 2.3206885           | 2.3772105 | 2.5315701 | 2.6759187 |  |  |  |
| 30    | 1.555913    | 1.7670884 | 1.8846312 | 1.9632706 | 2.0212349           | 2.0702219 | 2.2038705 | 2.3426361 |  |  |  |
| 36    | 1.3841322   | 1.571369  | 1.6756234 | 1.7452588 | 1.796493            | 1.839882  | 1.9581742 | 2.0896678 |  |  |  |
| 48    | 1.1416926   | 1.2954423 | 1.3810912 | 1.4381726 | 1.4800665           | 1.5156455 | 1.6125519 | 1.7299357 |  |  |  |
| 60    | 0.9776368   | 1.1089033 | 1.1820503 | 1.2307281 | 1.2663952           | 1.2967431 | 1.3793487 | 1.4848992 |  |  |  |
| 90    | 0.7422021   | 0.843934  | 0.9005015 | 0.9385286 | 0.9667071           | 0.9903779 | 1.0550916 | 1.1387943 |  |  |  |
| 120   | 0.6047799   | 0.6886463 | 0.7352241 | 0.7667112 | 0.7901866           | 0.8097697 | 0.8634365 | 0.93331   |  |  |  |
| 180   | 0.4484087   | 0.5114301 | 0.5463834 | 0.5701624 | 0.5880129           | 0.6027877 | 0.6433872 | 0.6966374 |  |  |  |
| 240   | 0.3603707   | 0.4114205 | 0.4397115 | 0.4590292 | 0.4735878           | 0.4855839 | 0.5185993 | 0.5620852 |  |  |  |

|       | Pena Forte |           |           |           |                     |           |           |           |  |  |
|-------|------------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|
| t     |            |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |
| (min) | T (anos)   |           |           |           |                     |           |           |           |  |  |
| · ,   | 5          | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |
| 6     | 1.820693   | 2.2373903 | 2.4730273 | 2.6383974 | 2.7660673           | 2.8701573 | 3.1615464 | 3.1745439 |  |  |
| 12    | 1.5432052  | 1.8842809 | 2.0773733 | 2.2105724 | 2.3115497           | 2.3954278 | 2.6283502 | 2.8087866 |  |  |
| 18    | 1.2756025  | 1.5547465 | 1.7128298 | 1.8213283 | 1.9031312           | 1.971464  | 2.1607623 | 2.3488846 |  |  |
| 24    | 1.0880319  | 1.3249333 | 1.4591165 | 1.550973  | 1.6200329           | 1.6778884 | 1.8379636 | 2.0151507 |  |  |
| 30    | 0.9519195  | 1.158532  | 1.2755717 | 1.3555617 | 1.4155924           | 1.4659761 | 1.6052687 | 1.7694165 |  |  |
| 36    | 0.8487541  | 1.0325685 | 1.1367015 | 1.2077887 | 1.2610709           | 1.3058484 | 1.4295735 | 1.5816139 |  |  |
| 48    | 0.7022306  | 0.8538631 | 0.9397732 | 0.9983299 | 1.0421454           | 1.0790315 | 1.1808761 | 1.312954  |  |  |
| 60    | 0.6025315  | 0.7323832 | 0.8059578 | 0.8560556 | 0.8934994           | 0.9250579 | 1.0121497 | 1.1290112 |  |  |
| 90    | 0.4618489  | 0.5628701 | 0.6200808 | 0.6593374 | 0.6889274           | 0.7136515 | 0.7821355 | 0.8743971 |  |  |
| 120   | 0.3784005  | 0.4618576 | 0.5091083 | 0.541668  | 0.5663229           | 0.586827  | 0.6437362 | 0.7205706 |  |  |
| 180   | 0.2823476  | 0.3452124 | 0.3807933 | 0.4054288 | 0.4241791           | 0.4396911 | 0.4828419 | 0.5412419 |  |  |
| 240   | 0.2277676  | 0.2787618 | 0.3076188 | 0.3276541 | 0.342948            | 0.3555625 | 0.3906988 | 0.4383179 |  |  |

APÊNDICE B - CONTINUAÇÃO...

|       | Potengi   |           |           |           |                     |           |           |           |  |  |  |
|-------|-----------|-----------|-----------|-----------|---------------------|-----------|-----------|-----------|--|--|--|
| ť     |           |           |           | i (mm     | min <sup>-1</sup> ) |           |           |           |  |  |  |
| (min) | T (anos)  |           |           |           |                     |           |           |           |  |  |  |
|       | 5         | 10        | 15        | 20        | 25                  | 30        | 50        | 100       |  |  |  |
| 6     | 2.5459069 | 2.91745   | 3.1226689 | 3.2648221 | 3.3735849           | 3.461657  | 3.7055006 | 3.5867844 |  |  |  |
| 12    | 2.0816488 | 2.3711821 | 2.5318715 | 2.6407479 | 2.7221261           | 2.7898077 | 2.9754604 | 3.0622716 |  |  |  |
| 18    | 1.7031368 | 1.9366235 | 2.0663995 | 2.1537248 | 2.218505            | 2.2728472 | 2.4214692 | 2.5363456 |  |  |  |
| 24    | 1.4451721 | 1.6418196 | 1.7512043 | 1.8245424 | 1.8787299           | 1.9243935 | 2.0490853 | 2.1655755 |  |  |  |
| 30    | 1.2602744 | 1.4309539 | 1.5259407 | 1.5894787 | 1.6363051           | 1.6758808 | 1.783841  | 1.8958556 |  |  |  |
| 36    | 1.1211335 | 1.2724641 | 1.3567121 | 1.4129747 | 1.4543637           | 1.4894167 | 1.5849713 | 1.6911326 |  |  |  |
| 48    | 0.9247599 | 1.0490241 | 1.1182364 | 1.1643554 | 1.1981984           | 1.2269415 | 1.3052202 | 1.4000076 |  |  |  |
| 60    | 0.7918762 | 0.8979684 | 0.9570777 | 0.9964067 | 1.0252193           | 1.0497363 | 1.1164625 | 1.2017037 |  |  |  |
| 90    | 0.6011764 | 0.6834014 | 0.7291144 | 0.7598398 | 0.7826046           | 0.8017282 | 0.8540046 | 0.9216069 |  |  |  |
| 120   | 0.4898658 | 0.5576524 | 0.5952933 | 0.6207352 | 0.6397012           | 0.6555227 | 0.6988765 | 0.7553119 |  |  |  |
| 180   | 0.3632067 | 0.4141462 | 0.4423935 | 0.4616078 | 0.47603             | 0.4879672 | 0.5207658 | 0.5637768 |  |  |  |
| 240   | 0.2918968 | 0.3331603 | 0.3560239 | 0.3716335 | 0.3833964           | 0.3930887 | 0.4197609 | 0.454886  |  |  |  |

| Porteiras  |                           |           |           |           |           |           |           |           |  |
|------------|---------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| t<br>(min) | i (mm min <sup>-1</sup> ) |           |           |           |           |           |           |           |  |
|            | T (anos)                  |           |           |           |           |           |           |           |  |
|            | 5                         | 10        | 15        | 20        | 25        | 30        | 50        | 100       |  |
| 6          | 2.7432808                 | 3.2059811 | 3.4630137 | 3.6409985 | 3.7769675 | 3.8868688 | 4.1898646 | 4.0960358 |  |
| 12         | 2.3251834                 | 2.7000067 | 2.9089741 | 3.0505982 | 3.1563397 | 3.2439732 | 3.4832421 | 3.6241082 |  |
| 18         | 1.9219802                 | 2.2278133 | 2.3984989 | 2.51344   | 2.5986586 | 2.6698265 | 2.8635675 | 3.0307079 |  |
| 24         | 1.6393632                 | 1.8985114 | 2.0432207 | 2.1403486 | 2.2120979 | 2.272256  | 2.4357759 | 2.6000993 |  |
| 30         | 1.4342795                 | 1.6600732 | 1.7862005 | 1.8706803 | 1.9329417 | 1.9852768 | 2.1273951 | 2.2830345 |  |
| 36         | 1.2788378                 | 1.4795787 | 1.5917385 | 1.666753  | 1.721948  | 1.7684262 | 1.8945537 | 2.0407174 |  |
| 48         | 1.0580673                 | 1.2235097 | 1.3159772 | 1.3776991 | 1.4230129 | 1.4612627 | 1.5649654 | 1.6940722 |  |
| 60         | 0.9078483                 | 1.0494398 | 1.1285937 | 1.1813599 | 1.220042  | 1.2527462 | 1.3413595 | 1.4567353 |  |
| 90         | 0.6958785                 | 0.8065428 | 0.8683076 | 0.9098881 | 0.9407061 | 0.9664522 | 1.0365312 | 1.128213  |  |
| 120        | 0.5701449                 | 0.6618008 | 0.7129113 | 0.7475039 | 0.773294  | 0.7947019 | 0.8531165 | 0.9297346 |  |
| 180        | 0.4254197                 | 0.4946586 | 0.5332301 | 0.5594933 | 0.5792017 | 0.5954453 | 0.6398901 | 0.6983511 |  |
| 240        | 0.3431828                 | 0.3994408 | 0.4307628 | 0.4521639 | 0.4682835 | 0.4815153 | 0.5177767 | 0.5655507 |  |

| Salitre    |                           |           |           |           |           |           |           |           |  |
|------------|---------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| t<br>(min) | i (mm min <sup>-1</sup> ) |           |           |           |           |           |           |           |  |
|            | T (anos)                  |           |           |           |           |           |           |           |  |
|            | 5                         | 10        | 15        | 20        | 25        | 30        | 50        | 100       |  |
| 6          | 2.2674306                 | 2.6958307 | 2.937531  | 3.1067625 | 3.2371163 | 3.3431622 | 3.545251  | 3.6015864 |  |
| 12         | 1.9218564                 | 2.2703693 | 2.4675621 | 2.6029904 | 2.7051963 | 2.7901968 | 2.9473429 | 3.1866271 |  |
| 18         | 1.588593                  | 1.8733135 | 2.0345472 | 2.1446483 | 2.227226  | 2.2963633 | 2.4230057 | 2.6648587 |  |
| 24         | 1.3549988                 | 1.5964116 | 1.7331794 | 1.8262998 | 1.8959173 | 1.9544062 | 2.0610301 | 2.2862305 |  |
| 30         | 1.1854889                 | 1.3959148 | 1.5151598 | 1.5961993 | 1.6566616 | 1.7075705 | 1.8000939 | 2.00744   |  |
| 36         | 1.0570102                 | 1.2441414 | 1.3502058 | 1.4221939 | 1.4758257 | 1.5210536 | 1.6030753 | 1.794374  |  |
| 48         | 0.8745347                 | 1.0288193 | 1.1162889 | 1.1755522 | 1.2196182 | 1.256857  | 1.3241944 | 1.4895738 |  |
| 60         | 0.7503727                 | 0.8824482 | 0.9573392 | 1.0080215 | 1.0456584 | 1.0775084 | 1.1349904 | 1.2808868 |  |
| 90         | 0.5751713                 | 0.678202  | 0.7365493 | 0.7763821 | 0.8062487 | 0.831262  | 0.8770602 | 0.9920217 |  |
| 120        | 0.4712474                 | 0.556492  | 0.6047331 | 0.6378242 | 0.6627652 | 0.6835367 | 0.721864  | 0.8175025 |  |
| 180        | 0.3516263                 | 0.4159463 | 0.452317  | 0.4774    | 0.496415  | 0.5121526 | 0.5414426 | 0.6140502 |  |
| 240        | 0.2836542                 | 0.33588   | 0.3653983 | 0.3858188 | 0.4013506 | 0.4141596 | 0.4381164 | 0.4972808 |  |

APÊNDICE B - CONTINUAÇÃO...

| Santana do Cariri |                           |           |           |           |           |           |           |           |  |  |
|-------------------|---------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
| +                 | i (mm min <sup>-1</sup> ) |           |           |           |           |           |           |           |  |  |
| (min)             | T (anos)                  |           |           |           |           |           |           |           |  |  |
| ()                | 5                         | 10        | 15        | 20        | 25        | 30        | 50        | 100       |  |  |
| 6                 | 2.883036                  | 3.3193836 | 3.5655678 | 3.7379388 | 3.8707109 | 3.9787241 | 4.184562  | 4.1684481 |  |  |
| 12                | 2.3573008                 | 2.697857  | 2.8909755 | 3.0234279 | 3.1232542 | 3.2065208 | 3.3601394 | 3.5588758 |  |  |
| 18                | 1.9286662                 | 2.2034298 | 2.3594841 | 2.4658286 | 2.5454203 | 2.612342  | 2.734526  | 2.9476612 |  |  |
| 24                | 1.6365418                 | 1.8680111 | 1.9995836 | 2.0889432 | 2.1555765 | 2.2118398 | 2.3139989 | 2.5167638 |  |  |
| 30                | 1.4271599                 | 1.6280947 | 1.7423701 | 1.8198156 | 1.8774284 | 1.9262068 | 2.0144628 | 2.2033038 |  |  |
| 36                | 1.2695941                 | 1.44777   | 1.5491393 | 1.6177338 | 1.6686764 | 1.7118906 | 1.7898825 | 1.9653812 |  |  |
| 48                | 1.0472166                 | 1.1935469 | 1.2768397 | 1.3330862 | 1.3747629 | 1.4102096 | 1.4739641 | 1.6270448 |  |  |
| 60                | 0.8967365                 | 1.0216804 | 1.0928234 | 1.1407995 | 1.176294  | 1.2065352 | 1.2608031 | 1.3965822 |  |  |
| 90                | 0.6807842                 | 0.7775528 | 0.8325273 | 0.8699509 | 0.897928  | 0.9214822 | 0.9644136 | 1.0710626 |  |  |
| 120               | 0.5547339                 | 0.6344795 | 0.6797258 | 0.7106881 | 0.7339666 | 0.7534381 | 0.78923   | 0.8777997 |  |  |
| 180               | 0.4113025                 | 0.4712026 | 0.5051397 | 0.528501  | 0.546177  | 0.5608548 | 0.5880925 | 0.6552037 |  |  |
| 240               | 0.3305497                 | 0.3790594 | 0.40652   | 0.4254882 | 0.4398931 | 0.4518043 | 0.4740292 | 0.5286542 |  |  |

| Várzea Alegre |                           |           |           |           |           |           |           |           |  |
|---------------|---------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| t<br>(min)    | i (mm min <sup>-1</sup> ) |           |           |           |           |           |           |           |  |
|               | T (anos)                  |           |           |           |           |           |           |           |  |
|               | 5                         | 10        | 15        | 20        | 25        | 30        | 50        | 100       |  |
| 6             | 2.9723863                 | 3.3952468 | 3.6338216 | 3.8008648 | 3.929533  | 4.0342076 | 4.2336832 | 4.1983669 |  |
| 12            | 2.4303577                 | 2.7595155 | 2.946316  | 3.0743255 | 3.1707174 | 3.2512359 | 3.399583  | 3.5844194 |  |
| 18            | 1.988439                  | 2.2537884 | 2.4046505 | 2.5073393 | 2.5841023 | 2.6487712 | 2.7666257 | 2.9688179 |  |
| 24            | 1.6872611                 | 1.9107038 | 2.0378606 | 2.1241093 | 2.1883342 | 2.242684  | 2.3411622 | 2.5348277 |  |
| 30            | 1.4713901                 | 1.6653042 | 1.7757234 | 1.8504511 | 1.9059591 | 1.9530679 | 2.0381099 | 2.2191179 |  |
| 36            | 1.308941                  | 1.4808582 | 1.5787936 | 1.6449674 | 1.6940348 | 1.735763  | 1.8108933 | 1.9794876 |  |
| 48            | 1.0796717                 | 1.2208249 | 1.3012816 | 1.3555279 | 1.3956548 | 1.429875  | 1.4912664 | 1.6387229 |  |
| 60            | 0.924528                  | 1.0450305 | 1.1137427 | 1.1600042 | 1.1941698 | 1.2233604 | 1.2756032 | 1.4066061 |  |
| 90            | 0.7018829                 | 0.7953234 | 0.8484639 | 0.884596  | 0.9115735 | 0.9343323 | 0.9757346 | 1.0787501 |  |
| 120           | 0.5719261                 | 0.6489803 | 0.6927374 | 0.7226521 | 0.7451204 | 0.7639448 | 0.7984945 | 0.8841001 |  |
| 180           | 0.4240495                 | 0.4819718 | 0.5148093 | 0.537398  | 0.5544771 | 0.5686759 | 0.5949959 | 0.6599064 |  |
| 240           | 0.3407941                 | 0.3877227 | 0.4143018 | 0.432651  | 0.446578  | 0.4581047 | 0.4795937 | 0.5324486 |  |