Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70724
Tipo: Artigo de Evento
Título: A GA-based approach for building regularized sparse polynomial models for wind turbine power curves
Autor(es): Maya, Haroldo Cabral
Barreto, Guilherme de Alencar
Data do documento: 2018
Instituição/Editor/Publicador: Encontro Nacional de Inteligência Artificial e Computacional
Citação: MAYA, H. C.; BARRETO, G. A. A GA-based approach for building regularized sparse polynomial models for wind turbine power curves. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL, 15., 2018, São Paulo. Anais... São Paulo, 2018. p. 1-12.
Abstract: In this paper, the classical polynomial model for wind turbines power curve estimation is revisited aiming at an automatic and parsimonious design. In this regard, using genetic algorithms we introduce a methodoloy for estimating a suitable order for the polynomial as well its relevant terms. The proposed methodology is compared with the state of the art in estimating the power curve of wind turbines, such as logistic models (with 4 and 5 parameters), artificial neural networks and weighted polynomial regression. We also show that the proposed approach performs better than the standard LASSO approach for building regularized sparse models. The results indicate that the proposed methodology consistently outperforms all the evaluated alternative methods.
URI: http://www.repositorio.ufc.br/handle/riufc/70724
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2018_eve_gabarreto.pdf428,62 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.