Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70658
Tipo: | Artigo de Evento |
Título: | A new look at nonlinear time series prediction with NARX recurrent neural network |
Autor(es): | Meneses, José Wally Mendonça de Barreto, Guilherme de Alencar |
Data do documento: | 2006 |
Instituição/Editor/Publicador: | Simpósio Brasileiro de Redes Neurais |
Citação: | MENEZES, J. W. M.; BARRETO, G. A. A new look at nonlinear time series prediction with NARX recurrent neural network. In: SIMPÓSIO BRASILEIRO DE REDES NEURAIS, 9., 2006, Ribeirão Preto. Anais... Ribeirão Preto: IEEE, 2006. p. 1-6. |
Abstract: | The NARX network is a recurrent neural architecture commonly used for input-output modeling of nonlinear systems. The input of the NARX network is formed by two tapped-delay lines, one sliding over the input signal and the other one over the output signal. Currently, when applied to chaotic time series prediction, the NARX architecture is designed as a plain Focused Time Delay Neural Network (FTDNN); thus, limiting its predictive abilities. In this paper, we propose a strategy that allows the original architecture of the NARX network to fully explore its computational power to improve prediction performance. We use the well-known chaotic laser time series to evaluate the proposed approach in multi-step-ahead prediction tasks. The results show that the proposed approach consistently outperforms standard neural network based predictors, such as the FTDNN and Elman architectures. |
URI: | http://www.repositorio.ufc.br/handle/riufc/70658 |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2006_eve_gabarreto.pdf | 258,54 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.