Please use this identifier to cite or link to this item: http://www.repositorio.ufc.br/handle/riufc/42041
Title in Portuguese: Método de contornos ativos radiais 3D: uma nova abordagem para segmentação de volumes
Author: Almeida, Thomaz Maia de
Advisor(s): Cortez, Paulo César
Keywords: Teleinformática
Processamento de imagens - Técnicas digitais
Active contour models
Image segmentation
Active rays
Active rays
Issue Date: 31-Jan-2019
Citation: ALMEIDA, T. M. de. Método de contornos ativos radiais 3D: uma nova abordagem para segmentação de volumes. 2019. 119 f. Tese (Doutorado em Engenharia de Teleinformática)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2019.
Abstract in Portuguese: Os Métodos de Contornos de Ativos (MCAs) são técnicas de segmentação de imagens que consistem em segmentar regiões partindo de uma curva em volta do objeto que tende a se moldar às bordas do objeto através da minimização de uma energia que é uma função da geometria da curva e da intensidade dos pixels da imagem. Existe uma gama de variação de MCAs em 2D e em 3D. Porém, segmentação em três dimensões tende a demandar alto custo computacional e dentre essas técnicas, os Método de Contornos Ativos Radiais são os que possuem menor custo computacional mas estão limitados ao espaço 2D. Nesta tese é proposto um novo Método de Contornos Ativos Radiais para três dimensoes (MCAR3D) que expande o conceito dos MCAs radiais 2D e que trata da análise das informações ao longo de feixes (1D) que divergem sobre um plano a partir do centro do objeto. Em três dimensões, os feixes divergem no espaço com uma combinação de angulação (azimute e elevação) a partir de um ponto interno ao objeto 3D. Dessa forma, apesar de três dimensões, a análise continua sendo ao longo do feixe/raios (1D). Esses feixes podem ser conectados de diferentes formas e formar diferentes malhas ou superfícies. Essas superfícies se deformam através de equações de energias, de modo a se expandir ou se contrair até atingir as bordas do volume de interesse. A principal vantagem dessa nova técnica é sua baixa complexidade computacional, quando comparado às técnicas da literatura para a segmentação 3D. Para avaliação do MCAR3D são utilizadas as seguintes métricas: ajuste de posição, ajuste de tamanho, ajuste de forma e coeficiente dice, além do cálculo do custo computacional. São realizados testes em cinco tipos de volumes sintéticos e cinco exames reais de tomografia computadorizada do tórax. Nestes, visa a segmentação dos pulmões como prova de conceito da nova técnica. A técnica proposta é comparada com as seguintes técnicas da literatura: MCA 3D, MCA Morfológico e Crescimento de Regiões 3D. Os resultados provaram a eficiência do MCAR3D na segmentação dos volumes sintéticos e reais com alta taxa de correspondência quanto à posição, forma e tamanho além do esperado baixo custo computacional, produzindo resultados 16 vezes mais rápido que o MCA Morfológico e duas vezes mais rápido que o Crescimento de Regiões 3D além de possuir segmentação superior e sem conexões indesejadas para outras regiões.
Abstract: Active Contour Methods (ACMs) are image segmentation techniques that consist of segmenting regions from a curve around the object that tends to mold to the edges of the object by minimizing an energy that is a function of the geometry of the curve and the intensity of the pixels of the image. There are many 2D and 3D ACMs. However, three dimensions segmentation tend to demand a high computational cost and among these techniques, the Radial Active Contour Method is the one that has the lowest computational cost but is limited to 2D space. In this thesis, a new three-dimensional Radial Active Contours Method (3DRACM) is proposed, which expands the concept of 2D radial ACMs and that analyzes information along beams (1D) that diverge on a plane from the center of the object. In three dimensions, the beams diverge in space with a combination of angulation (azimuth and elevation) from an internal point to the 3D object. Thus, despite three dimensions, the analysis continues to be along the beam (1D). These beams can be connected in different shapes and form different meshes or surfaces. These surfaces deform through energy equations to expand or contract until they reach the edges of the volume of interest. The main advantage of this new technique is its low computational complexity when compared to the literature techniques for 3D segmentation. To evaluate 3DRACM, the following metrics are used: position adjustment, size adjustment, shape adjustment and dice coefficient, in addition to calculation of computational cost. We performed tests on five types of synthetic volumes and five real chest TC scans. In these CT scans, we segmentat the lungs as a proof of concept of the new technique. The proposed technique is compared with the following techniques in the literature: 3D ACM, Morphological ACM and 3D Regions Growing. The results showed the efficiency of 3DRACM in the segmentation of the synthetic and real volumes with high correspondence rate in position, shape and size beyond expected low computational cost, producing results 16 times faster than the Morphological ACM and twice as fast as the 3D Region Growing in addition to having superior segmentation and no leaks.
URI: http://www.repositorio.ufc.br/handle/riufc/42041
metadata.dc.type: Tese
Appears in Collections:DETE - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2019_tese_tmalmeida.pdf8,84 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.