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Resumo

N
esta dissertação são propostos métodos baseados em processamento

tensorial de sinais para a estimação de parâmetros em arranjos de antenas

vetoriais elétricas (Tripolo), considerando diferentes estruturas de arranjos

ULA (do inglês, Uniform Linear Array), L-shape e UPA (do inglês, Uniform Planar

Array). Inicialmente, utilizando um arranjo em L-shape, foi desenvolvido um

modelo tensorial de terceira ordem (3-D) para os dados recebidos. Baseado

neste modelo, um algoritmo T-ALS (do inglês, Trilinear Alternating Least

Squares) é usado para a estimação cega de parâmetros das fontes. Em

seguida, sob transmissão supervisionada, é proposto um método alternativo,

utilizando a decomposição SVD, o qual é comparado ao método tensorial com

uso do algoritmo T-ALS. Uma segunda abordagem é proposta utilizando-se

uma estrutura de arranjo planar de antenas (UPA), a qual faz uso de um

modelo tensorial de quarta ordem (4-D) junto ao algoritmo de estimação

Q-ALS (do inglês, Quadrilinear Alternating Least Squares). Neste caso, um

método alternativo é proposto usando a fatoração do produto de Khatri-Rao

e uma análise comparativa destes métodos é realizada. Considerando-se o

caso supervisionado, é feito ainda um estudo comparativo dos algoritmos

Q-ALS, T-ALS e SVD, e um novo algoritmo, chamado Nested-SVD é proposto.

O desempenho dos métodos propostos é avaliado através de simulações de

Monte Carlo em diferentes cenários e configurações de arranjo. Por fim,

foi realizada a modelagem computacional do tripolo elétrico com uso de

software de simulação de alta frequência (HFSS), possibilitando a extração do

parâmetro de ganho espacial dos arranjos L-shape e UPA. Em seguida, é feita a

avaliação do desempenho dos métodos tensoriais propostos em uma situação

mais realista, e comparado ao desempenho usando modelos idealizados de

arranjos de antenas com ganho unitário e omnidirecional.

Key-words: Arranjos de antenas, antenas vetoriais, modelagem tensorial,

estimação cega de fontes.



Abstract

I
n this dissertation, we propose methods based on tensor signal processing

for the parameter estimation in electric vector (Tripole) antenna arrays,

considering different structures of arrays (ULA, L-shape and UPA). Initially,

using a L-shape array, we develop a third order (3-D) tensor model for the

received data. Based on this model, a trilinear alternating least squares

(T-ALS) algorithm is used for the blind estimation of the source’s parameters.

Then, under supervised transmission an alternative method is proposed

by resorting to the SVD decomposition, which is compared to the T-ALS

algorithm. A second approach is proposed, which is based on a uniform

planar array antenna (UPA). In this case a fourth-order (4-D) tensor model

is obtained, and the Q-ALS (Quadrilinear Alternating Least Squares) algorithm

is used for parameter estimation. An alternative method is also proposed,

which exploits the factorization of the Khatri-Rao product. Considering

the supervised case, a new algorithm called Nested-SVD is proposed and

a comparative study with Q-ALS, T-ALS and SVD algorithms is carried

out. The performance of the proposed methods is evaluated through

Monte Carlo simulations in different scenarios and array settings. Finally,

computational modeling of electric tripole using the high frequency simulation

software (HFSS) was performed, enabling the extraction of the L-shape and

UPA spatial array gain. Then, the performance of the proposed tensor

methods is evaluated in a more realistic scenario, and compared to idealized

omnidirectional and unitary gain antenna array models.

Key-words: Arrays antennas, blind source estimation, tensor models,

vectorial antennas.
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Notação

Ao longo da dissertação o significado para os seguintes símbolos segue

conforme notação abaixo:

(a, b, . . . ) Valores escalares em letras minúsculas,

(a,b, · · · ) Vetores em letras minúsculas e negrito

a ◦ b Produto externo dos vetores a e b.

(A,B, · · · ) Matrizes em letras maiúsculas e negrito

X Tensores em maiúsculas e caligráfica

C Conjunto de números complexos

CI Conjunto de vetores complexos de dimensão I

C
I×J Conjunto de matrizes complexas de dimensões (I× J)

CI1×···×IN Conjunto de tensores complexos de dimensões (I1 × · · · × IN )

xi O i-ésimo elemento de um vetor x

xij O elemento da i-ésima linha e da j-ésima coluna da matriz X

xijk O elemento (i, j, k) de um tensor de terceira ordem X
Ai. A i-ésima linha da matriz AI×J

A ⊗ B Produto de Kronecker de A ∈ C
I×J com B ∈ C

K×L,

A ⊗ B =










a1,1B a1,2B · · · a1,JB
a2,1B a2,2B · · · a2,JB

...
...

...
...

aI,1B aI,2B · · · aI,JB










∈ CIK×JL

diag(Ai.) Forma uma matriz diagonal com a i-ésima linha da matriz A

A ⊙ B Produto Khatri-Rao de A ∈ CI×K com B ∈ CJ×K,

A ⊙ B := [a1 ⊗ b1 a2 ⊗ b2 . . . aK ⊗ bK ] =










Bdiag(A1.)

Bdiag(A2.)
...

Bdiag(AI.)










∈ CJI×K

AT Transposta da Matriz A

A−1 Inversa da Matriz A



A† Pseudo inversa de Moore-Penrose da Matriz A

|A|F Norma de Frobenius da matriz A

vec(X) Converte X em um vetor coluna x empilhando suas colunas
~E Intensidade de campo elétrico

gn(θ, φ) Ganho do sensor n na direção (θ, φ)
~H Intensidade de campo magnético

i(.) Vetor unitário na direção (.)

α O ângulo de orientação da elipse de polarização ∈ (−π
2
, π
2
)

β O ângulo de elipsidade de polarização ∈ (−π
4
, π
4
)

γ Frequência do sinal

ǫ A permissividade elétrica

θ O ângulo de azimute ∈ |0, 2π), tendo como referência o eixo x

λ Comprimento de onda

µ A permeabilidade magnética

φ O ângulo de elevação ∈ |0, π], tendo como referência o eixo z

ω Frequência da onda portadora

∇ Operador Gradiente

kA k-rank da matriz A

rA Rank da matriz A
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Capítulo 1
Introdução

1.1 Contexto do Problema

A estimação de parâmetros de direção de chegada de sinais DOA

(Direction Of Arrival) usando arranjo de antenas é um desafio enfrentado

em diferentes aplicações, como Radar (Radio Detection And Ranging), Sonar

(SOund NAvigation Ranging), sistemas wireless, astronomia, entre outros.

Diversas técnicas de estimação de DOA foram desenvolvidas nos últimos 40

anos [1], utilizando uma miríade de arranjos geométricos de antenas, tais

como arranjo linear uniforme ULA ( Uniform Linear Array ), arranjo em formato

de L (L-shape) arranjo uniforme circular UCA ( Uniform Circular array), arranjo

retangular uniforme URA ( Uniform Rectangular Array), etc.

Outro aspecto importante é o conceito de “antenas vetoriais eletromagnéticas”

que foi introduzido por Nehorai e Paldi em [2] distinguindo das antenas

comuns, ou “escalares”, e consiste em duas tríades ortogonais de antenas do

tipo “dipolo” e “loop”, dispostas sobre um centro de fase comum, produzindo

como sinal de saída, um vetor contendo as medidas das seis componentes do

campo eletromagnético incidente, permitindo estimar a direção de chegada

de ondas incidentes com polarização arbitrária, um problema desafiador

para antenas escalares. Portanto, uma antena vetorial eletromagnética é,

intrinsecamente uma combinação polarimétrica de antenas escalares. A

Figura 1.1 ilustra uma antena vetorial eletromagnética, composta de uma

tríade de antenas dipolos elétricos e uma tríade de loops magnéticos, em um

centro de fase comum.

A exploração da polarização de onda aumenta a capacidade dos sistemas

de comunicação e melhora o desempenho dos sistemas de antenas ativos

como o radar. Em sistemas de radar, as informações polarimétricas da

ondas recebidas podem revelar características do alvo, tais como estrutura

geométrica, forma, e orientação, e pode assim ser explorada para melhorar
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Figura 1.1: Uma antena vetorial eletromagnética 6D

significativamente o desempenho da detecção [3], [4], [5], [6].

Para adquirir eficientemente informações polarimétricas completas sobre o

alvo, é desejável também que o RADAR seja capaz de comandar a polarização

da onda transmitida, o que permite também explorar a diversidade de

polarização na transmissão [7], [8], [9]. Entre os sistemas de RADAR

atuais, o polarimétrico, baseado na transmissão e recepção de ondas com

orientações horizontal e vertical, foi desenvolvido e aprovado em uma ampla

gama de aplicações. Em um trabalho com antenas vetoriais [10], métodos

de formatação de feixes de radiação polarimétricas foram propostos, mas

questões sobre como gerar tais ondas polarizadas não foram abordadas.

Em sistema de comunicações sem fio, o uso da informação de polarização

tem demonstrado melhorar significativamente a capacidade dos sistemas de

comunicação [11], e ganhos extras na capacidade de canal podem ser obtidos

por meio da utilização de antenas vetoriais eletromagnéticas, [11]. Tais

ganhos são oriundos da exploração de seis estados elétricos e magnéticos de

polarização.

O uso de antenas vetoriais eletromagnéticas ganhou popularidade recente

em processamento de sinais, ao melhorar o desempenho de técnicas de

localização de fontes de alta resolução [12]. Neste contexto, um problema

de importância primordial é estabelecer condições que garantam a localização

espacial de um determinado número de fontes co-canais (problema também

conhecido como estimação da direção de chegada).

Em [12], foi proposta uma abordagem original para o estudo das condições

de identificabilidade espacial de múltiplas fontes com arranjos de antenas

vetoriais eletromagnéticas, usando a decomposição tensorial CANDECOMP

(CANonical DECOMPosition)/PARAFAC (PARAllel FACtors), ou CP [13], [14].
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As decomposições tensoriais são ferramentas oriundas da álgebra

multilinear que apresentam grande potencial em problemas de modelagem de

dados multidimensionais, processamento de sinais, estimação de parâmetros,

tendo se destacado também na solução de problemas de modelagem do canal

de propagação, e localização espacial de multipercursos [15], [16], [17] e [18].

1.2 Revisão Bibliográfica

Os sistemas de estimação de ângulo de chegada (DOA) têm o objetivo de

identificar a direção da fonte de um ou mais sinais eletromagnéticos incidentes

em um conjunto de antenas, sob a forma de um ângulo [θ], que representa o

azimute para um arranjo linear, e um conjunto de ângulos [φ, θ], que definem

a elevação e o azimute, respectivamente, para arranjos planares.

A direção de chegada dos sinais foi inicialmente utilizada em sistemas de

Radar e Sonar, mas recentemente tem sido aplicada com grande ênfase em

sistemas de comunicações móveis. Existem várias técnicas de estimação de

DOA na literatura, que variam de acordo com o parâmetro analisado, tais

como amplitude, fase, polarização, frequência ou mesmo tempo de chegada.

Para cada parâmetro, dependendo do cenário, uma ou mais técnicas de

estimação de DOA podem ser utilizadas. Por exemplo, caso a fase seja

utilizada, um método empregado pode ser a interferometria [19].

As técnicas de estimação de DOA podem ser divididas preliminarmente em

termos da estrutura dos dados recebidos pelas antenas como: Matriciais e

Tensoriais. Os métodos matriciais tradicionalmente são divididos em três

tipos [20]:

◮ Métodos de Estimação espacial, baseados na conformação eletrônica

do feixe de radiação do arranjo de antenas, em conjunto com o

direcionamento de nulos do diagrama de radiação do arranjo, buscando

em todas as direções os picos de potência na saída, obtidos pela soma

ponderada da saída de cada antena. Estes métodos não exploram a

natureza do vetor de sinal, particularmente, nem o modelo estatístico

dos sinais e do ruído.

O método mais conhecido é o ’atraso e soma’ (Delay and Sum - DS) [21],

ou método conformador de feixe, que ao direcionar o feixe para uma

determinada direção, obtêm a melhor estimativa do sinal que chega

naquela direção. Estimando a potência que chega em cada direção,

varrendo toda a faixa de interesse, o ângulo estimado de chegada do

sinal está na direção que recebe a maior potência. A dificuldade deste

método é que na presença de interferências, a potência de saída conterá

também sinais interferentes.
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O método Capon [22], é uma variante dos métodos de conformação de

feixe que reduz a contribuição dos sinais indesejados, criando nulos nas

direções destes sinais e apontando o feixe para os sinais de interesse. Os

fatores de ponderação de cada antena utiliza a técnica MVDR (Minimum

Variance Distortionless Response), [23], minimizando a potência na saída,

mas mantendo o ganho na direção do sinal desejado.

Apesar de bastante utilizados, estes métodos apresentam diversas

limitações quanto à capacidade de separação espacial das fontes, com

a SNR (Signal to Noise Rate), e com custo computacional proibitivo para

uma maior quantidade de antenas.

◮ Métodos baseados em Sub-espaço, os quais exploram as propriedades

da matriz de autocorrelação da saída do arranjo, dividindo o espaço

varrido pelos autovetores em sub-espaços do sinal e do ruído, [24], onde

o sub-espaço do sinal é varrido pelos autovetores associados aos maiores

autovalores, e o sub-espaço do ruído aos autovetores associados aos

menores autovalores.

O método MUSIC (MUltiple Signal Classification), proposto por [24],

explora a geometria dos subespaços gerados pela matriz de correlação

dos sinais, onde os vetores diretores das direções de chegada pertencem

todos ao sub-espaço do sinal, ortogonais ao sub-espaço do ruído,

bastando procurar dentre todos os vetores possíveis do arranjo, aqueles

que sejam perpendiculares ao espaço gerado pelos autovetores do ruído,

[25].

A capacidade de resolução deste método se mostra superior à obtida

pelos métodos convencionais, distinguindo fontes próximas umas das

outras, desde que sejam descorrelacionadas, mas com forte dependência

de melhor desempenho ao maior número de amostras utilizadas na

estimação da matriz de correlação dos sinais incidentes, e de maior

SNR do sistema. Várias modificações foram implementadas neste

algoritmo com o propósito de reduzir a complexidade computacional

[26], e melhorar a resolução das fontes, tais como o Root-Music [27], e

Cyclic-Music [28]. Em [29] é utilizado o algoritmo MUSIC para melhorar

o desempenho sob baixa relação sinal ruído SNR em um conjunto de 2

arranjos L-shape ortogonais. Em um trabalho recente, [30], foi utilizado

o método MUSIC combinado com um arranjo de antenas L-shape 2-D.

A técnica ESPRIT (Estimation of Signal Parameters via Rotacional

Invariance), [31], utiliza dois subarranjos de antenas idênticos, com um

deles sendo a réplica deslocada do outro, onde os elementos devem
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estar separados por um vetor de deslocamento constante, ∆, com um

elemento em comum, e com o mesmo padrão de ganho. A ideia é explorar

a invariância rotacional do sinal subjacente, gerado pela invariância

translacional do conjunto de antenas, desta forma, o sub-espaço do

sinal é aquele que contém as saídas dos dois subarranjos. Diversas

versões deste método com melhorias foram implementadas, como LS e

TLS-ESPRIT [32] e Unitary-ESPRIT [33].

Os métodos MUSIC e ESPRIT por se basearem no sub-espaço do ruído,

apresentam uma fragilidade na estimação dos parâmetros sob baixa

SNR, [34] e em ambas as técnicas, para um arranjo de N antenas, são

possíveis a estimação de parâmetros de N − 1 sinais.

◮ Métodos de Máxima Verosimilhança - ML(Maximum Likelihood) , baseado

na observação dos dados de uma distribuição do sinal recebido na

estimativa dos seus parâmetros, [35], possuindo duas versões, [36],

diferenciadas entre si pelo modelo de sinais: Determinístico, quando

usa modelo de sinal condicional, ou seja, os parâmetros são aleatórios

dentro de uma amostra; Estatístico, quando usa de um modelo de sinal

incondicional, onde tanto o sinal como o ruído são aleatórios.

Este método foi um dos primeiros desenvolvidos para estimar os

ângulos de chegada de sinais incidentes em arranjos de antenas,

apresentando desempenho superior aos de sub-espaço em condições de

SNR desfavoráveis, ou com pequeno número de amostras dos sinais,

conseguindo boa resolução mesmo com fontes correlacionadas, mas

devido a complexidade computacional elevada [37] - [38], se tornou

menos utilizado e gradualmente foi sendo substituído pelas técnicas

de sub-espaço. Algumas soluções alternativas, [39], foram propostas

para otimizar o problema de maximização que mostra um esforço

computacional considerado muito alto.

Para uma explicação detalhada de cada um destes métodos, recomenda-se

a leitura de [40] e referências relacionadas.

Os métodos Tensoriais, por sua vez, rearranjam a estrutura de dados

recebidos explorando a diversidade da informação contida nas diversas

versões dos sinais recebidos permitindo um maior número de graus de

liberdade no processo de separação dos sinais, possibilitando expandir os

limites de detecção de fontes em comparação com os métodos baseados em

álgebra linear matricial.

O uso combinado de métodos tensoriais em arranjos de antenas tem sido

estudado sob diversas situações. O uso de arranjo L-shape foi usado em
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[41] juntamente com a decomposição tensorial PARAFAC trilinear estruturado

sobre a estatística de segunda ordem dos sinais recebidos.

A decomposição quadrilinear em arranjo quadrado uniforme USA (Uniform

Square Array) foi utilizada em [42] com antenas polarimétricas em formato de

cruz, limitando a saída da antena a duas dimensões elétricas, com ênfase na

avaliação do desempenho de BER ( Bit Error Rate).

Em [43] foi utilizado um arranjo linear uniforme ULA ( Uniform Linear Array)

de antenas vetoriais medindo as seis componentes ( três de campo elétrico

e três de campo magnético) e a partir da matriz de covariância do sinal

recebido gerado um algoritmo Q-ALS, avaliando o desempenho de estimativa

de ângulos de DOA.

Adicionalmente, o algoritmo LS-KRF ( Least Squares - Khatri-Rao Factorization)

proposto em [44] para sistemas MIMO ( Multiple Input Multiple Output), tem

sido usado também com sucesso na estimação de parâmetros de sinais em

[45].

Assim, esta dissertação faz uso intensivo dos modelos tensoriais utilizando

antenas polarimétricas dos campos elétricos (Tripolo), sob arranjos ULA,

L-shape e UPA, propondo métodos que explorem eficientemente as

características dos sinais presentes nestes arranjos.

A Figura 1.2 apresenta o ecologia de métodos tensoriais de estimação

de ângulos de chegada - DOA utilizados nesta dissertação, mostrando a

inter-relação entre formato de arranjo, tipo de antena e método utilizado.

Figura 1.2: Ecologia de Métodos Tensoriais
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Foi dado destaque ainda às condições do sinal para a identificação das

fontes, de forma supervisionada ou cega, definindo o nicho de atuação de

cada modelo do desenvolvimento de métodos de estimação de DOA nesta

dissertação, em função do tipo de antena, do arranjo utilizado e do tipo de

sinal recebido, conforme abaixo:

Sensor







Escalar






ULA







MUSIC

ESPRIT

Vetorial







ULA
{

T-ALS

L-shape







Cego







T-ALS

T-ALS∗

Supervisionado







T-ALS

T-ALS∗

SVD∗∗

UPA







Cego







Q-ALS

T-ALS+ SVD∗∗

Supervisionado







Q-ALS

T-ALS+SVD∗∗

N-SVD∗∗∗

(*) Método concatenado de tensores

(**) Decomposição do produto de Khatri-Rao, LS-KRF

(***) Nested-SVD por dupla decomposição LS-KRF

A aplicação de arranjos de antenas tem sido sugerido nos últimos anos

para sistemas de comunicações móveis para aumentar a capacidade dos

sistemas superando o problema da largura limitada da banda do canal, o que

satisfaz uma demanda cada vez maior para um grande número de usuários

em canais de comunicação [46].
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Quando um arranjo de antenas é usado apropriadamente em um sistema

de comunicações móveis, fornece melhoria no desempenho do sistema,

aumentando a capacidade do canal e a eficiência do uso do espectro,

bem como a extensão da cobertura, adaptando a forma da radiação,

guiando múltiplos feixes para acompanhar muitos celulares, e compensando

eletronicamente a distorção da abertura da antena. Também reduz os efeitos

do multipercurso, interferências cocanal, custo e complexidade do sistema,

e a probabilidade de interrupção do sinal [47]. Desta forma, os arranjos

com antenas adaptativas e os algoritmos para controlá-los são vitais para o

desenvolvimento de sistemas de comunicação de alta capacidade.

Desta forma, afim de estudarmos o diagrama de radiação das estruturas

radiantes propostas nesta dissertação, utilizaremos a modelagem

computacional, através do software High Frequency Structure Simulator -

HFSS, da antena tripolo elétrico e dos arranjos L-shape e UPA, sob diversas

configurações de número de elementos de antenas, obtendo seus padrões

de ganho, e investigando o impacto destes parâmetros no desempenho dos

métodos desenvolvidos, em situações práticas dos sistemas de comunicação

móvel [46].

1.3 Motivação e Objetivos

Como visto nas Sessões 1.1 e 1.2, e tendo como motivação os resultados

apresentados em [11], [12] e [15], os quais apresentam hipóteses simplificadas

para o modelo das antenas ou do canal de propagação [10], [16], nesta

dissertação são aplicadas as decomposições tensoriais na modelagem e

estimação do canal e parâmetros dos sinais, com uso de antenas vetoriais

eletromagnéticas.

O foco deste estudo é na decomposição tensorial PARAFAC [17], sendo

propostos modelos avançados de arranjos de antenas que exploram

eficientemente a polarização da onda, bem como a avaliação do desempenho

de algoritmos de localização espacial de fontes baseados em tais modelos.

A partir de [46] que apresenta os ganhos dos sistemas móveis com o uso

de arranjos de antenas em estações Rádio Base, foi feita a modelagem

computacional do ganho do arranjo das antenas, introduzindo aspectos mais

realistas destes modelos, simulando situações de espalhamento angular das

fontes em grupos, sob diferentes métodos de estimação de DOA e estruturas

de arranjos de antenas.

Neste contexto, esta dissertação apresenta como contribuições principais:

- Uso de antenas polarimétricas elétricas (tripolos) que permitem utilizar as

informações de polarização dos sinais das fontes;
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- A modelagem de sinal dos arranjos em formato L-shape e Planar (UPA) com

antenas polarimétricas ;

- Uso da decomposição tensorial PARAFAC para a modelagem dos sinais

e formulação de métodos de estimação dos parâmetros de chegada e da

polarização dos sinais;

- Uso de algoritmos de mínimos quadrados alternados (ALS) baseados na

decomposição tensorial PARAFAC de ordem 3 e ordem 4;

- Uso do algoritmo LS-KRF nos casos de identificação supervisionada de

fontes;

- Utilização de modelagem computacional de antenas polarimétricas para

extração mais realistas de parâmetros dos arranjos utilizados;

- Avaliação da influência do ganho do arranjo nos métodos tensoriais

propostos, usando situações de espalhamento angular de fontes em sistemas

de comunicações móveis;

- Uso combinado de métodos tensoriais que permitam explorar eficientemente

a polarização da ondas eletromagnéticas incidentes, tornando possível

distinguir fontes mesmo sem o uso de sequências de treinamento e com um

pequeno número de antenas.

- A comparação do desempenho destes arranjos usando a métrica de erro

quadrático médio de estimação dos ângulo em função do número de antenas

utilizadas, quantidade de fontes e tipo de arranjo.

1.4 Estrutura da Dissertação

Este documento está organizado da seguinte forma:

Capítulo 2 – neste capítulo é apresentada a base teórica utilizada na

metodologia deste trabalho, introduzindo o conceito de antena

polarimétrica, e sendo apresentados e descritos os conceitos básicos

de sinais eletromagnéticos, o modelo de sinal, os parâmetros mais

importantes utilizados nesta dissertação como ganho de radiação e

polarização de onda. Em seguida são apresentados os modelos de

arranjos utilizados neste trabalho.

Capítulo 3 – neste capítulo são apresentados os métodos propostos de

estimadores de DOA, incluindo os princípios de modelagem tensorial,

ferramenta importante na conceituação dos métodos propostos, bem

como os resultados numéricos de simulação para validar as formulações

desenvolvidas. Estes resultados são obtidos através de simulações de

Monte Carlo e serão discutidos ao longo do capítulo.
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Capítulo 4 – neste capítulo é apresentada a modelagem dos diversos métodos

utilizando simulação de estruturas por meio do software HFSS R©, com

ênfase na modelagem da estrutura tripolo elétrico.

A partir do modelo do tripolo são estruturadas diversas simulações para

obtenção dos seus parâmetros básicos e dos diversos arranjos sob análise

deste estudo. É apresentada ainda uma avaliação do comportamento

dos algoritmos baseados em métodos tensoriais sob uma parametrização

mais realista do ganho das antenas.

Capítulo 5 – neste capítulo são feitas as conclusões do trabalho e as

perspectivas de trabalhos futuros.



Capítulo 2
Modelagem e Arranjos

Neste capítulo serão apresentados a notação matemática utilizada,

os conceitos básicos do modelo de sinal eletromagnético, os modelos

paramétricos do sinal e das antenas, incluindo a polarização e a noção de

antena vetorial. Complementando este capítulo, os diversos aspectos na

modelagem de arranjos de antenas, incluindo os tipos e o modelo de sinal

serão definidos afim de fundamentar a análise dos métodos propostos nos

capítulos seguintes.

2.1 Conceitos Iniciais

2.1.1 Sistema de Coordenadas

Neste trabalho utilizaremos o sistema cartesiano de 3 dimensões que

representa o espaço, com o tempo sendo a quarta dimensão, e desta forma, um

sinal que varia no tempo e no espaço é escrito como s(x, y, z, t), por exemplo,

com x, y e z sendo as três variáveis espaciais em um sistema de coordenadas

cartesianas orientado à direita, como mostrado na Figura 2.1.

Os vetores unitários nas três direções espaciais são representados como

ix, iy, iz, com as seguintes características de ortogonalidade:

< ix, ix >=< iy, iy >=< iz, iz > 1

ixiy = iyiz = izix = 0

ix × iy = iz

No caso de sistemas de coordenadas esféricas, um ponto é representado

por sua distância r até a origem , seu azimute θ dentro de um plano equatorial

contendo a origem, e seu ângulo φ abaixo do eixo vertical.

As coordenadas esféricas e cartesianas são relacionadas pelas seguintes

11
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Z
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Figura 2.1: Coordenadas esféricas

expressões:

r =
√

x2 + y2 + z2 x = r cos θ sin φ y = r sin θ sin φ z = r cosφ

θ = arccos(
x

√

x2 + y2
) = arcsin(

y
√

x2 + y2
)

φ = arccos(
z

√

x2 + y2 + z2
)

2.1.2 Modelo de Sinal Eletromagnético

No caso de propagação de ondas, o sinal ou campo eletromagnético é

descrito pela equação de onda no meio de transmissão sob as condições de

contorno e de radiação apropriadas. Por exemplo, para o espaço livre as

equações de Maxwell tomam a seguinte forma em sistemas de coordenadas

cartesianas:

∇× ~E = −∂(µ ~H)

∂t
∇(ǫ ~E) = 0

∇× ~H =
∂(ǫ ~E)

∂t
∇(µ ~H) = 0

em que ~E, representa a intensidade de campo elétrico, ~H a intensidade

de campo magnético, ǫ é a permissividade elétrica, µ é a permeabilidade

magnética, e ∇ é o operador gradiente.

Assim, a equação de onda e sua solução governam como o sinal se propaga

de uma fonte de radiação até uma antena e a precisa caracterização de como
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o meio afeta a propagação resulta em uma melhor extração de informações

que as ondas de propagação carregam, como por exemplo a posição da fonte.

A solução da equação de onda para uma antena receptora localizada em uma

posição fixa, digamos na origem de um sistema de coordenadas cartesianas

(x, y, z) = (0, 0, 0), e que observa o sinal que chega, tem a forma de uma

exponencial complexa com frequência ω :

s(0, 0, 0, t) = Aej(ωt) = A cos(ωt) + jA sin(ωt)

O termo "onda plana"se deve ao valor de s(x, y, z, t0) em um determinado

momento t0, ser o mesmo em todos os pontos do plano dado por kxx+kyy+kzz =

C, onde C é uma constante. Usando a notação vetorial para a posição r da

antena e para o vetor de onda v como (kx, ky, kz), podemos escrever a solução

da equação de onda como:

s(x, t) = Aej(ωt−vrT )

Assim os planos de fase constante, onde vrT é constante, são

perpendiculares ao vetor r .

2.1.3 Modelo de Sinal no Sensor

Considerando a condição de campo distante de uma fonte geradora de

sinal m, com dimensões muito menores que a distância à antena, ou seja

pontual, localizado em uma posição determinada pelo vetor −vm, onde vm

é o vetor de onda na direção da propagação do sinal da fonte m, em um

meio isotrópico infinito, e a antena n, também pontual, localizado na posição

determinada pelo vetor rn, as ondas viajantes apresentadas na Figura 2.2

podem ser caracterizadas através dos seguintes parâmetros:

- Amplitude do sinal em um dado instante de tempo A(t);

- Frequência da onda portadora (ω);

- Posição do vetor r, de um ponto no espaço, conforme Figura 2.2.

Portanto, a função de onda no ponto definido pelo vetor rn da localização da

antena n possui a seguinte dependência com o tempo:

E(t, r) = s(t)ej(ωt−vrT ) (2.1)

Onde v é o vetor de onda na direção da propagação da onda, |v| = 2π
λ

é

denominada número de onda e λ é o comprimento de onda na direção de

propagação.

O argumento da função de onda dado por (ωt− vrT ) é denominado de fase, e
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Figura 2.2: Fontes e Sensores

desta forma podemos definir "frente de onda"como o conjunto de pontos com

a mesma fase em um tempo fixo t.

Por outro lado, a versão em banda básica da função de onda transmitida,

eliminando-se a portadora (ωt), pode ser expressa genericamente por:

E(t, r) = s(t)e−j(vrT ) (2.2)

Na qual s(t) = A(t)ej(γ(t)) é o sinal transmitido com frequência γ, considerado

de faixa estreita, ou seja suposto variar mais lentamente do que a portadora

ej(ωt).

2.1.4 Parâmetros do Sinal

Considerando que o meio é linear, de forma que o princípio de superposição

seja válido, podemos considerar os efeitos de várias ondas separadamente. A

expressão E(t, r) = s(t)e−j(vrT ) nos dá informações no tempo e espaço possíveis

de distinguir sinais com parâmetros distintos. Dentre estes parâmetros

destaca-se a Direção de Chegada (DOA), definido pelo ângulo de elevação φ

e o azimute θ.

O argumento do vetor v indica a direção de propagação da onda plana, assim

teremos:

v = |v|[cos θ sinφ, sin θ sinφ, cosφ] (2.3)

onde o conjunto ordenado (cos θ sinφ, sin θ sinφ, cosφ) indica uma posição no

espaço, θ indica o ângulo de azimute em relação ao eixo x, e φ indica o ângulo

de incidência vertical da onda, definido no sentido horário em relação ao eixo

vertical z, conforme Figura 2.2. O parãmetro DOA, dado pelos ângulos θ e φ,

definem a direção angular de cada fonte de sinal.

Considerando que uma antena n tem dimensões pequenas, ou seja, pontual,



2.1. Conceitos Iniciais 15

representado em uma coordenada espacial dada pelo vetor rn = [rnx, rny, rnz],

o campo medido por esta antena de uma fonte m com azimute θm e elevação

φm em um dado instante t, utilizando a Equação (2.2) será:

Em(t, rn) = sm(t)e
−j[|vm|[cos θm sinφm,sin θm sinφm,cosφm][rnx,rny,rnz]T ]

Em(t, rn) = sm(t)e
−j[|vm|[(rnx cos θm sinφm)+(rny sin θm sinφm)+(rnz cos φm)]] (2.4)

Assim, podemos generalizar o modelo do sinal obtido na saída da n-ésima

antena relativo à m-ésima fonte de sinal como:

xn,m(t) = gn(θm, φm)sm(t)e
−j[|vm|[(rnx cos θm sinφm)+(rny sin θm sinφm)+(rnz cosφm)]] (2.5)

onde gn(θm, φm) é o ganho da antena n na direção (θm, φm) e que pode ser

avaliado a partir das características de cada antena (geometria, dimensões,

estrutura, etc), de forma analítica ou utilizando um simulador de sistemas de

alta frequência (HFSS da Ansoft, CST Microwave Studio, e outros) e sm(t) é o

sinal da m-ésima fonte.

O parâmetro DOA pode ser usado em conjunto com outros parâmetros,

como polarização, por exemplo, possibilitando uma melhor caracterização e

identificação das fontes.

2.1.5 Ganho / Diagrama de Radiação de Antena

A Diretividade D mede a capacidade de uma antena em concentrar a

potência radiada na direção de máxima radiação (θ, φ) = (θmax, φmax) para

antenas transmissoras, ou no caso de antenas receptoras a capacidade de

concentrar a absorção de potência incidente na direção (θ, φ) = (θmax, φmax).

A Diretividade mede a capacidade de concentração de energia em uma

determinada direção, matematicamente expressa por:

D =
Umax

Umed

onde Umax é o valor máximo de intensidade de radiação da antena que ocorre

em (θ, φ) = (θmax, φmax) e Umed é a potência radiada caso a potência entregue à

antena fosse uniformemente radiada em todas as direções, ou seja, por um

radiador isotrópico.

Ganho G de uma antena é definido como a razão entre a máxima densidade

superficial de potência radiada pela antena e a densidade superficial de
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potência radiada por um radiador isotrópico, ou seja:

G =
Smax(θmax, φmax)

Pe/4πr2

, na qual Smax(θmax, φmax) corresponde à máxima densidade de potência radiada

na direção (θmax, φmax) e Pe

4πr2
é a densidade de potência radiada por um radiador

isotrópico alimentado por uma potência Pe.

Considerando a eficiência da antena não-isotrópica, definida por η = Pa

Pe
, em

que Pa corresponde à potência radiada pela antena, temos que:

G = ηD

e, portanto, o ganho de potência G de uma antena será no máximo igual à sua

diretividade.

O ganho da antena pode ser expresso em dB em relação ao radiador isotrópico,

definindo o parâmetro dBi = 10 log(G), e frequentemente também é calculado

em relação ao dipolo de meia onda, medido em dBd, devido ser fisicamente

irrealizável o radiador isotrópico.

A Figura 2.3 apresenta um diagrama de Ganho em 3D para um dipolo

elétrico parametrizado para 1 GHZ.

Figura 2.3: Ganho do dipolo de referência.

Diagrama de radiação: ρ(θ, φ) é a representação gráfica que mostra as

propriedades de radiação de uma antena em função de coordenadas espaciais,

[48]. O diagrama de radiação mostra a amplitude do campo distante (ou da

potência radiada) em função dos ângulos θ e φ. No caso geral, o diagrama
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é uma figura tridimensional, mas na maioria das vezes é representado como

figuras bidimensionais (planos de corte vertical e horizontal). As propriedades

de radiação incluem a densidade de fluxo de potência, intensidade de

radiação, intensidade de campo, diretividade ou polarização.

2.1.6 Polarização de uma Onda

A polarização de uma onda de rádio é definida como a trajetória traçada

através da ponta da seta que representa o vetor do campo elétrico instantâneo

quando se observa ao longo da direção de propagação. Se o vetor está sempre

sobre uma linha, que é normal à direção de propagação, o campo é dito

polarizado linearmente. Se tiver sempre a mesma amplitude e, se observado ao

longo do eixo de propagação, descrever uma trajetória circular, o campo é dito

polarizado circularmente. E por último, se o vetor de campo elétrico variar a

sua amplitude e, se observado ao longo do eixo de propagação, descrever uma

trajetória elíptica, o campo é dito polarizado elipticamente. Na verdade, todos

as polarizações são casos especiais da polarização elíptica [48].

A Figura 2.4 mostra a evolução do vetor campo elétrico ~E para os três tipos

de polarização, linear (A), circular (B) e elíptica (C). As curvas azuis mostram

a evolução do vetor campo elétrico, enquanto as de vermelho e verde mostram

as componentes x e y correspondentes.

(A) (B) (C)

Figura 2.4: A evolução do campo elétrico ~E para polarização linear (A), circular (B) e
elíptica (C).

Uma maneira simples, mas eficaz, de descrever a polarização da onda

em duas dimensões é através do uso da razão entre as suas componentes

transversais f .

Para uma propagação de onda na direção z um número complexo, f , é definido

como:
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f =
Ey

Ex

onde f mostra como as componentes transversais de ~E variam com o tempo.

Se f é real a onda tem polarização linear, se f = (±j), é circular e finalmente,

se f é um número complexo, a polarização é elíptica.

A polarização pode eficazmente ser representada por uma elipse

dependendo de dois parâmetros: o ângulo de inclinação, α, e a razão axial,

AR, definida como:

AR =
eixo menor

eixo maior
=

sin(β)

cos(β)
= tan(β)

AR assume valores entre zero e 1, onde para uma relação axial de zero

a polarização é dita linear, sem eixo menor, para uma relação axial de 1, a

polarização é circular com os eixos iguais, e caso contrário, é elíptica. O ângulo

α representa a inclinação em relação aos eixos de referência, e o ângulo β o

grau de elipsidade da polarização, conforme Figura 2.5.

Figura 2.5: Elipse de Polarização com os parâmetros α e β.

2.1.7 Sensores Polarimétricos ou Vetoriais

Tendo em vista a evolução da tecnologia de antenas, considere que cada

antena seja capaz de distinguir a polarização da onda elevando a capacidade

de distinção de fontes de ondas planas.

Neste caso, cada antena agora é uma antena vetorial eletromagnética 6D,

composta de uma tríade de antenas dipolos elétricos e uma tríade de loops

magnéticos, em um centro de fase comum, chamado de antena vetorial,

conforme Figura 2.6.
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Assim, considerando:

Figura 2.6: Antena Polarimétrica ( Vetorial)

◮ as condições de campo distante (ondas planas), e o uso do sistema de

coordenadas cartesianas;

◮ a antena de referência posicionado na origem;

◮ os ângulos de elevação φ e de azimute θ tem como referência o eixo z e x,

respectivamente;

◮ os sinais das fontes sendo completamente polarizados;

◮ o meio de propagação sendo linear, isotrópico e homogêneo.

Cada antena forma um subarranjo do sistema inteiro para uma onda

incidente com DOA (θ, φ) e polarização (α, β) [49], de acordo com a Figura

2.5 cuja distribuição, [50], é dada conforme abaixo :

c(θ, φ, α, β) ,















cos θ cosφ − sin θ

sin θ cos φ cos θ

− sin θ 0

− sin θ − cos θ cosφ

− cos θ − sin θ cosφ

0 sinφ















︸ ︷︷ ︸

V(θ,φ)

[

cosα − sinα

sinα cosα

][

j sin β

cos β

]

︸ ︷︷ ︸

p(α, β))

, (2.6)

ou de forma mais resumida:

c(θ, φ, α, β) , V(θ, φ)p(α, β). (2.7)
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Na Equação (2.6), o ângulo de azimute θ ∈ [0, 2π], o ângulo de elevação φ ∈ [0, π],

o ângulo de orientação da elipse de polarização α ∈ (−π
2
, π
2
), e o ângulo da

elipsidade β ∈ [(−π
4
, π
4
).

2.2 Arranjos de Sensores

Na seção anterior foi apresentado o modelo de sinal de uma única antena,

que apresenta baixos valores de diretividade. Em muitas aplicações é

necessário projetar sistemas com características mais diretivas, com alto

ganho, que pode ser atingido com o aumento das dimensões da antena.

Aumentando-se as dimensões da antena, frequentemente leva a melhores

características de diretividade, mas existe uma outra forma de atingir este

objetivo: A montagem de diversas antenas em uma configuração geométrica

(Array), de forma que a resposta deste conjunto seja a soma dos campos

recebidos por cada elemento individual. Em muitos casos são utilizadas

antenas idênticas por ser mais simples, conveniente e mais prático.

Assim, arranjos de antenas compreende um conjunto de antenas

espacialmente distribuídas atendendo a uma determinada geometria,

fornecendo como saída uma combinação dos sinais recebidos em seus

diversos elementos, e dependendo do tipo de aplicação, podem ser utilizados

diferentes tipos de antenas (escalares, vetoriais, etc).

As pesquisas em arranjos de antenas tiveram sua origem em aplicações

militares, desde a Segunda Guerra Mundial, sendo muito utilizadas em

sistemas de RADAR (Radio Detection And Ranging) e SONAR ( SOund

NAvigation Ranging). Hoje gera grande interesse em comunicações móveis

para aumentar a capacidade de atendimento a um maior número de usuários,

bem como reduzir a interferência total através do reuso de frequências de

maneira mais eficiente.

Em um arranjo de antenas temos pelo menos cinco parâmetros que podem

ser utilizados para dar forma ao padrão do arranjo, [48]:

◮ a geometria da configuração ( linear, circular, retangular, esférica);

◮ a disposição relativa entre os elementos ;

◮ a amplitude de excitação das antenas;

◮ a fase de excitação das antenas;

◮ o padrão de radiação de cada antena individual.

Um ponto particularmente importante no projeto de um arranjo de antenas

é o espaçamento entre cada elemento individual que deve ser menor que a
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metade do comprimento de onda da portadora (λ/2), evitando a geração de

lóbulos secundários e garantindo a recuperação do sinal completamente. Em

contrapartida, os valores de acoplamento mútuo aumentam muito quando a

proximidade entre antenas é menor que (λ/2), [51]. Desta forma, é utilizado

o espaçamento entre antenas próximas a metade do comprimento de onda da

portadora dos sinais (λ/2), de forma a atender ambos os critérios.

De maneira a simplificar a análise do arranjo de antenas, algumas condições

de contorno devem ser observadas:

◮ As fontes de sinais estão afastadas o suficiente do arranjo de antena , ou

seja consideradas em campo distante, de maneira que as frentes de onda

do sinal incidente sejam consideradas planas;

◮ O espaçamento entre antenas é muito menor que a distância entre a fonte

e o arranjo, de forma que a intensidade de campo seja aproximadamente

a mesma em todos as antenas em um determinado instante de tempo t;

◮ A onda plana atravessa um meio não dispersivo, assim a linearidade

permite representar o sinal da saída de qualquer antena imersa neste

meio como versões atrasadas ou adiantadas no tempo em relação a uma

antena de referência;

◮ Os sinais são considerados de faixa estreita, ou seja, a largura de banda

do sinal é pequena em relação à frequência da onda portadora;

◮ Os sinais são finitos, compondo um número discreto de frentes de ondas;

◮ Não há acoplamento mútuo entre antenas;

◮ O espaçamento entre antenas é a metade do comprimento de onda da

portadora dos sinais;

◮ As antenas têm o mesmo padrão de radiação, assim, o diagrama de

radiação do arranjo depende apenas da sua geometria;

Nesta seção serão tratados os casos especiais dos arranjos de antenas em

uma escala de complexidade crescente incluindo o parâmetro de polarização:

◮ Arranjo Uniforme e Linear (ULA) com antenas de campo elétrico;

◮ Arranjo em L-shape bidimensional com antenas de campo elétrico;

◮ Arranjo em L-shape com antenas de campos elétricos com 3 polarizações

x, y, z;
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◮ Arranjo Planar Uniforme, UPA 2-D com antenas de campo elétrico;

◮ Arranjo Planar Uniforme, UPA 2-D com antenas elétricos com 3

polarizações x, y, z;

2.2.1 Arranjo Linear Uniforme

O arranjo de antenas mais simples e prático é formado colocando-se os

elementos ao longo de uma linha reta, chamado de Arranjo Uniforme e Linear

(Uniform Linear Array - ULA).

Esta configuração fornece uma grande simplicidade matemática do modelo do

sinal na saída do arranjo, servindo de base para a exploração de arranjos com

configurações mais sofisticadas.

Admitindo que o espaçamento entre antenas é muito menor que a distância

entre a m-ésima fonte e o arranjo, de forma que podemos supor que a

intensidade de campo seja aproximadamente a mesma em todos os elementos

das antenas em um determinado instante de tempo t, quando uma onda plana

atravessa um meio não dispersivo, a linearidade permite representar o sinal

recebido em qualquer antena imersa neste meio como versões atrasadas ou

adiantadas no tempo em relação a uma antena de referência. Assim, as

diferenças de fase dos sinais recebidos em cada antena são transformadas

em diferenças temporais.

Na prática, é possível termos várias fontes de sinais em diferentes direções ao

mesmo tempo, e geralmente sobre estes sinais é adicionado ruído.

Considerando um arranjo linear vertical composto por N antenas,

uniformemente espaçados por uma distância d, com M fontes pontuais

de ondas planas incidentes, de faixa estreita e com mesma frequência de

portadora (ω).

A Figura 2.7 mostra a m-ésima onda incidente na direção indicada pelo vetor

vm no arranjo posicionado no eixo z, e a posição do n-ésima antena é dada

pelo vetor posição rn = [0, 0, nd]T .

Considerando o sinal da m-ésima fonte incidente no n-ésima antena no

instante t, conforme a Equação (2.5), substituindo |v| = 2π
λ

, temos:

zn,m(t) = gn(φm)sm(t)e
−jn[ 2π

λ
(d cos(φm))] (2.8)

com n = 0, 1, ...,N − 1 e m = 1, 2, ...,M

Definindo ainda a amplitude complexa do sinal sm(t) como:

sm(t) = Am(t)e
[jγm(t)] (2.9)
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Figura 2.7: Arranjo Linear Uniforme (ULA)

e chamando o argumento da exponencial 2π
λ
(d cos(φm)) de σm, definido como o

ângulo de fase elétrica associado à m-ésima fonte de sinal temos:

zn,m(t) = sm(t)an(m) com an(m) = g(φm)e
jnσm (2.10)

Considerando que todos os elementos do arranjo são idênticos e que

possuem a mesma diretividade, ou seja, g(φm) = g(φm+1), para m = 1, ...M, e

que as antenas são omnidirecionais, com ganho g(φm) = g, para m = 1, ...,M,

an(m) = gejnσm, que por simplicidade, com ganho normalizado, ou seja, g = 1,

sem perda de generalidade temos:

an(m) = ejnσm .

Concluindo, para sinais de banda estreita, onde a variação do sinal é mais

lenta que a variação da portadora, os sinais recebidos pelas antenas diferem

entre si apenas por uma defasagem que é um múltiplo de σm, que depende

apenas da distância entre antenas d e do ângulo de chegada φm da onda plana.

Assim, com o conhecimento de σm podemos calcular o ângulo de chegada φm

através da relação:

φm = arccos

[−λσm

2πd

]

. (2.11)

A Equação (2.10) define o sinal complexo da saída da n-ésima antena devido a
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m-ésima onda plana da fonte m, no instante t. O somatório das contribuições

produzidas pelas ondas incidentes das M fontes resultará no sinal zn(t) dado

pela n-ésima antena:

zn(t) =
M∑

m=1

an(m)sm(t), para n=0,1, ..., N-1. (2.12)

O modelo de sinal utilizado no processamento de sinais de um arranjo

é voltado para determinação de parâmetros do sinal, tais como azimute,

elevação, polarização, etc.

Considerando o sinal composto em (2.12) para cada uma das N antenas do

arranjo, teremos que o sinal na saída do arranjo, associado a cada onda

incidente, na forma vetorial como:

zm(t) = a(m)sm(t), para m = 1, 2...,M, (2.13)

com a(m), denominado de vetor de direção ( steering Vector).

a(m) = [1 ejσm ej2σm · · · ej(N−1)σm ]T (2.14)

Considerando o sinal produzido pelas M fontes de sinais, teremos:

z(t) =

M∑

m=1

a(m)sm(t) (2.15)

Desenvolvendo o somatório de forma mais explícita temos :

z(t) = a(1)s1(t) + a(2)s2(t) + · · ·+ a(M)sM(t)

z(t) = [a(1) a(2) · · · a(M)]










s1(t)

s2(t)
...

sM(t)










Chegando a uma forma mais compacta:

z(t) = As(t)

,

onde A = [a(1) · · · a(M)] ∈ CN×M e s(t) = [s1(t) · · · sM(t)]
T ∈ CM×1.

A matriz A tem em suas colunas os vetores de direção de cada antena em
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uma estrutura bastante simples e útil, da forma conhecida como matriz de

Vandermonde:

A =










1 1 . . . 1

ejσ1 ejσ2 . . . ejσM

...
...

. . .
...

ej(N−1)σ1 ej(N−1)σ2 . . . ej(N−1)σM










(2.16)

Nos casos de fontes de sinais totalmente independentes, com ângulos

elétricos distintos de maneira que não exista uma combinação linear entre

seus valores, teremos as colunas de A linearmente independentes, com posto

cheio e igual a M. Caso contrário o posto de A será menor que M.

Na prática, o sinal observado na saída de qualquer um das antenas

difere do sinal teórico por uma componente de ruído aditivo, proveniente do

ambiente, do amplificador da antena, ruído térmico, ou mesmo provocado por

erros de medida. Este ruído é modelado como branco, Gaussiano e de média

nula (iid, independent and identically distributed). Assim, o modelo de sinal

na saída do arranjo é definido como:

w(t) = z(t) + n(t) (2.17)

onde w(t), z(t) e n(t) ∈ CN×1 e n(t) corresponde ao vetor do somatório das fontes

de ruído em cada antena.

Considerando que o sinal e o ruído são mutuamente descorrelacionados,

podemos escrever de forma mais compacta e geral:

w(t) = As(t) + n(t) (2.18)

2.2.2 Arranjo L-shape

Conforme apresentado na seção anterior, um arranjo ULA pode fornecer

apenas informações em uma dimensão, o ângulo de chegada φ em relação ao

arranjo vertical.

Para a coleta de informações mais completa do ângulo de chegada, incluindo

o azimute θ, é necessário implementarmos um arranjo de antenas em

duas dimensões. Um arranjo bastante simples em duas dimensões é a

estrutura ’formato de L’ (L-shape) que consiste em dois ULA´s conectados

ortogonalmente nas extremidades de cada ULA. Em [52] é apresentado que

o arranjo L-shape apresentou melhor desempenho sob o critério de CRB

(Cramer-Rao Bound) em comparação a um arranjo em formato de cruz (cross

array).

Considerando um arranjo L-shape, composto por 2N − 1 antenas,
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uniformemente espaçados por uma distância d, com M fontes de ondas

planas incidentes, de faixa estreita e com mesma frequência de portadora

(ω), e a m-ésima onda incidente na direção indicada pelo vetor vm no arranjo

posicionado no plano xz, conforme mostrado na Figura 2.8, com a posição da

n-ésima antena dada pelo vetor posição rn = [id, 0, ld]T , onde i = 0, 1, · · ·N − 1

corresponde à posição do antena no eixo x, e l = 0, 1, · · ·N − 1 à posição do

antena no eixo z.

 

(N-1) d
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(N-2) d

         .

         .

         .
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         .
         .

         .

(N-2) d

(N-1) d

Z

Y

X

Fonte de Sinal (m)

Frente de onda plana

Figura 2.8: Arranjo L-shape em 2-D

Da mesma forma da seção anterior, considerando o sinal da m-ésima fonte

incidente na n-ésima antena no instante t, conforme a Equação (2.5).

Substituindo |v| = 2π
λ

, temos como sinal de saída para as antenas nos eixos z

e x, respectivamente:

zn,m(t) = gn(θm, φm)sm(t)e
−jn[ 2π

λ
(d cos(φm))] (2.19)

xn,m(t) = gn(θm, φm)sm(t)e
−jn[ 2π

λ
(d cos θm sin(φm))] (2.20)

com n = 0, 1, ...,N − 1 e m = 1, 2, ...,M.

Chamando o argumento da exponencial [2π
λ
(d cosφm)] de σm em (2.19), e
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[2π
λ
(d cos θm sin(φm))] de τm em (2.20), temos de forma mais compacta:

zn,m(t) = an(m)sm(t) (2.21)

com an(m) = g(θm, φm)e
jnσm.

xn,m(t) = bn(m)sm(t) (2.22)

com bn(m) = g(θm, φm)e
jnτm.

Considerando as contribuições das ondas incidentes das M fontes na

n-ésima antena em cada eixo, obteremos os sinais zn(t) e xn(t), conforme

abaixo:

zn(t) =

M∑

m=1

an(m)sm(t) (2.23)

xn(t) =
M∑

m=1

bn(m)sm(t) (2.24)

para n = 0, 1, · · · ,N − 1

Concluimos que os sinais recebidos por cada antena em cada eixo diferem

entre si apenas por uma defasagem que é um múltiplo de τm, para as antenas

no eixo x e de σm para as antenas no eixo z, e que dependem apenas da

distância entre antenas d, do azimute θm e elevação φm da onda plana.

Com o conhecimento de τm e σm podemos calcular o azimute θm e elevação φm

da onda plana utilizando as expressões:

φm = arccos

[
λσm

2πd

]

(2.25)

θm = arccos

[
λτm

2πd sinφm

]

(2.26)

O Modelo de Sinal desenvolvido considera o sinal composto em (2.23) e

(2.24) para cada um das N antenas do arranjo, tendo como sinal na saída

associado a cada onda incidente, na forma vetorial:

zm(t) = a(m)sm(t) (2.27)

xm(t) = b(m)sm(t) (2.28)
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com o vetor de direção de cada conjunto de antenas:

a(m) = [1, ejσm , ej2σm , . . . , ej(N−1)σm ]T

b(m) = [1, ejτm, ej2τm , . . . , ej(N−1)τm ]T

Podemos escrever de forma mais compacta e geral:

z(t) = As(t) (2.29)

x(t) = Bs(t) (2.30)

em que s(t) = [s1(t) s2(t) . . . sM(t)]
T , e as matrizes A e B têm em suas

colunas os vetores de direção de cada antena na forma:

A = [a(1) a(2) . . . a(M)]

B = [b(1) b(2) . . . b(M)]

∈ CN×M, com N ≥ M.

2.2.2.1 Arranjo L-shape com Antenas Polarimétricas

Considere que cada elemento radiante nas posições do arranjo L-shape

seja uma antena vetorial capaz de distinguir a polarização da onda, elevando

a capacidade de separação de fontes de ondas planas, e sob as mesmas

condições do arranjo L-shape, usando antenas vetorias, para uma onda

incidente com potência unitária, DOA (θ, φ) e polarização (α, β), os campos

elétricos e magnéticos da m-ésima fonte podem ser medidos em cada antena

na forma de um vetor c(m) ∈ C6×1.

Desta forma, considerando as Equações (2.6), (2.21) e (2.22), podemos

estender a expressão para os desvios de fase em cada direção (steering vector

e polarização) do arranjo dado por:

zn,m(t) = an(m)c(m)sm(t) (2.31)

xn,m(t) = bn(m)c(m)sm(t) (2.32)

Assim, o m-ésimo sinal chega a estes arranjos com a direção (θm, φm) com

polarização parametrizada por (αm, βm) de forma que a saída de cada arranjo

dos eixos x e z em um determinado tempo t , isto é, os vetores x(t) e z(t), são

obtidos pela soma de todas as contribuições de todos os M sinais incidentes
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nos arranjos posicionados nos eixos x e z:

x(t) =

M∑

m=1

(b(m)⊗ c(m))sm(t) (2.33)

z(t) =

M∑

m=1

(a(m)⊗ c(m))sm(t) (2.34)

onde ⊗ indica produto de Kronecker.

O Modelo de Sinal desenvolvido considera o sinal composto nas Equações

(2.33) e (2.34) para o arranjo vetorial, tendo como sinal a saída associada ao

conjunto de todas as M ondas incidentes, na forma vetorial.

Desenvolvendo o somatório da Equação (2.34) de forma mais explícita:

z(t) = [a(1)⊗ c(1) a(2)⊗ c(2) · · · a(M)⊗ c(M)]










s1(t)

s2(t)
...

sM(t)










Chegando a uma forma mais compacta:

z(t) = (A ⊙ C)s(t) (2.35)

Analogamente para as antenas do eixo x temos:

x(t) = (B ⊙ C)s(t) (2.36)

onde ⊙ indica produto de Khatri-Rao e C = [c(1) · · · c(M)] ∈ C6×M.

Desta forma, ao coletarmos amostras em intervalos discretos de tempo k,

onde k = 1, 2 · · ·K e K ≥ M, os dados podem ser organizados em matrizes X

e Z ∈ C
6N×K, relativas aos arranjos instalados nos eixos x e z:

X = [x(t1), x(t2), . . . x(tK)] = (B ⊙ C)ST

Z = [z(t1)), z(t2)), . . . z(tK)] = (A ⊙ C)ST

em que S , [s(t1) s(t2) . . . s(tK)]
T .

Resumidamente, temos então as seguintes estruturas do modelo de sinal

para o conjunto de antenas vetoriais sob arranjo em formato-L (L-shape):

X = (B ⊙ C)ST (2.37)
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Z = (A ⊙ C)ST (2.38)

2.2.3 Arranjo Planar Uniforme

Um arranjo planar uniforme (UPA) consiste em um conjunto de antenaes

uniformemente espaçados por uma distância d no plano XZ, permitindo

identificar o ângulo de elevação φ em relação ao eixo vertical z e o ângulo

de azimute θ em relação ao eixo horizontal x.
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Figura 2.9: Arranjo Uniforme Planar (UPA)

Desta forma, considerando um arranjo planar uniforme, conforme Figura

2.9, composto por I×L antenas, uniformemente espaçados por uma distância

d, com M fontes de ondas planas incidentes, de faixa estreita e com mesma

frequência de portadora (ω), temos que o sinal da m-ésima fonte, sm(t),

incidente no instante t, na n-ésima antena do arranjo, com ganho gn(θm, φm), e

n =(i,0,l). Usando a Equação (2.5) e substituindo |v| = 2π
λ

, temos como sinal de

saída para as antenas no plano xz:

ri,l,m(t) = gn(θm, φm)sm(t)e
−j[(iτm+lσm)], (2.39)
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onde τm = [2π
λ
(d cos θm sin φm)] e σm = [2π

λ
(d cosφm)] representam a diferença de

fase do sinal recebido pela antena posicionado em (i, 0, l) em relação à antena

de referência na origem (0, 0, 0), com i = 0, 1, ..., I, l = 0, 1, ..., L, e m = 1, 2, ...,M.

Para simplificação, utilizando antenas isotrópicas com ganho unitário, ou

seja, gn(θm, φm) = 1, e chamando as exponenciais [ e−j[iτm] ] de a(i,m), e [ e−j[lσm]

] de b(l, m), podemos escrever de forma mais compacta e geral:

ri,l,m(t) = a(i,m)b(l, m)sm(t) (2.40)

Considerando o sinal produzido pelas M fontes de sinais teremos como

sinal de saída da antena n:

ri,l(t) =

M∑

m=1

a(i,m)b(l, m)sm(t) (2.41)

Assim, o sinal recebido por uma antena n em um arranjo planar uniforme

no plano xz pode ser escrito como o produto da resposta de duas antenas

posicionados nas coordenadas (i, 0, 0) e (0, 0, l) do arranjo planar uniforme

(UPA), onde o vetor de direção (steering vector) de cada conjunto de antenas

posicionadas no eixo x tem a forma:

a(m) = [1 ejτm ej2τm . . . ejIτm ]T

e para as antenas posicionadas no eixo z:

b(m) = [1 ejσm ej2σm . . . ejLσm]T

Note que, a partir do conhecimento de τm e σm, é possível calcular o azimute

θm e elevação φm da onda plana utilizando as mesmas Equações (2.25) e (2.26)

do arranjo L-shape.

2.2.3.1 Arranjo Planar Uniforme com Antenas Polarimétricas

Considere que cada antena vetorial seja capaz de distinguir a polarização

da onda, elevando a capacidade de separação de fontes de ondas planas, para

uma onda incidente com potência unitária, DOA (θ, φ) e polarização (α, β),

os campos elétricos e magnéticos podem ser medidos em cada antena em um

vetor c ∈ C6×1. Desta forma, considerando as Equações (2.6) e (2.41), podemos

estender a expressão do sinal recebido pelas antenas do arranjo por:

ri,l,m(t) = a(i,m)b(l, m)c(m)sm(t) (2.42)
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Assim, o m-ésimo sinal chega a este arranjo com a direção (θm, φm) com

polarização parametrizada por (αm, βm) de forma que a saída de cada antena n

do arranjo, em um determinado tempo t é um vetor contendo as informações

de DOA e de polarização do sinal, isto é, ri,l(t), obtido pela soma de todas as

contribuições de todos os M sinais incidentes sm(t) naquela antena do arranjo

planar.

ri,l(t) =

M∑

m=1

a(i,m)b(l, m)c(m)sm(t) (2.43)

A Equação (2.43) apresenta o modelo do sinal de saída de uma antena em

um arranjo UPA como a soma de um produto de quatro grandezas, que pode

ser interpretado como a decomposição de um tensor de quarta ordem, que

será utilizado na formulação do algoritmo Q-ALS.

Neste capítulo foram apresentados os conceitos iniciais do modelo de sinal

bem como os parâmetros de DOA, ganho da antena e o conceito de polarização

e o reflexo na construção de antenas vetoriais, sensíveis à polarização na

montagem de arranjos de antenas vetoriais. Posteriormente, foram mostrados

a necessidade da montagem de arranjos de antenas e o modelo de sinal

(escalar e matricial) para os arranjos em formato linear, L e retangular de

antenas.

Estes conceitos são necessários para a compreensão e desenvolvimento do

Capítulo 3, a seguir, onde serão apresentados os métodos tensoriais propostos

de estimação de parâmetros de sinais.



Capítulo 3
Estimadores dos Parâmetros de

Direção e Polarização dos Sinais

via Modelagem Tensorial

Neste capítulo, serão introduzidos os conceitos de separação de fontes sob

a forma supervisionada e não-supervisionada, de tensores e as suas formas de

desdobramento para o entendimento dos métodos propostos e com o uso dos

modelos escalares apresentados no Capítulo 2 serão estruturados os modelos

matemáticos e a formulação escalar do modelo de decomposição tensorial

PARAFAC, bem como os diversos métodos tensoriais utilizados na estimação

dos parâmetros de direção de chegada e polarização dos sinais referentes a

cada arranjo de antenas.

De uma maneira bastante simples, um sistema de recepção deve ser capaz

de recuperar e discriminar vários sinais, gerados por fontes variadas, além

de mitigar a interferência entre elas. Para esta tarefa, são utilizadas duas

abordagens: Uso de sequências de treinamento previamente definidas para o

transmissor e o receptor, também chamado de processamento supervisionado

do sinal recebido, ou o uso de processamento não supervisionado, ou cego,

dos sinais recebidos.

A motivação pelo uso de técnicas de separação cega de fontes está no melhor

uso do espectro, evitando o uso de sequências de treinamento, ou transmissão

piloto, que sempre implica em gasto de tempo útil para transmissão.

Tradicionalmente, a separação cega de fontes é feita a partir de estatísticas de

ordem superior dos sinais recebidos, [53], [54] e demais referências em [55],

necessitando assim de um grande número de amostras, como por exemplo, em

sistemas de goniometria, onde há uma grande disponibilidade de amostras,

dada a janela de tempo bastante grande para obtenção. Já em outros sistemas

33
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pode ser proibitivo, como os de comunicações móveis, devido a dinâmica dos

sinais e dos usuários.

Por outro lado, a partir do uso de modelagem tensorial do sinal recebido,

podemos explorar mais eficientemente a diversidade da informação de

forma determinística, com menos amostras, nos diversos domínios (tempo,

polarização, frequência, código, etc), permitindo incluir mais graus de

liberdade no processo de separação conjunta dos sinais, possibilitando

detectar uma maior quantidade de fontes, para o mesmo número de antenas,

com menos amostras, em comparação com os métodos tradicionais baseados

em álgebra linear matricial.

3.1 Princípios de Modelagem Tensorial

O objetivo desta seção é fornecer uma ideia geral sobre tensores, métodos

para sua decomposição em estruturas de dimensões menores e exemplos de

aplicações.

3.1.1 Introdução

De uma forma geral, um tensor é um arranjo multidimensional de dados

organizados. Em diversas aplicações a organização destes dados é feita de

acordo com duas ou mais categorias, onde os objetos correspondentes a

estes tipos de dados são referenciados em Matemática como tensores e a

área relacionada ao seu estudo é a Álgebra Multilinear. Assim, usando a

terminologia adotada em [56], um tensor de ordem 3, com arranjos de dados

com três índices, refere-se como um tensor de terceira ordem, arranjo ordem

3, ou tensor ordem 3, X ∈ Ci×j×k, e cada diferente dimensão do arranjo é

referenciada como uma ordem distinta, que pode ser simbolicamente ilustrado

como na Figura 3.1. Segundo essa terminologia, um escalar é um tensor

ordem 0, um vetor é um tensor ordem 1 e uma matriz é um tensor ordem 2.

Uma fibra é definida pela fixação de todos os índices de um tensor a menos

de um, e são assumidas como orientadas a vetores coluna. Um tensor de

terceira ordem possui como fibras: colunas (x.jk), linhas (xi.k), e tubos (xij.),

como apresentado na Figura 3.2.

Já as camadas, ou fatias (slices), de um tensor são seções bidimensionais

definidas por todos os índices a menos de dois deles, apresentadas na Figura

3.3, com as visões das camadas horizontal (Xi..), lateral (X.j.) e frontal (X..k)

de um tensor de terceira ordem. De uma forma mais compacta, a i-ésima

camada horizontal (Xi..) de um tensor de terceira ordem pode ser denotada de

forma compactada como (Xi).
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( i= 1 ... I )

( j=1 ... J )

( k=1 ... K )

Figura 3.1: Tensor genérico X de ordem 3

(A) (B) (C)

Figura 3.2: Fibras de um Tensor X de Ordem 3: (A) Modo 1 (Coluna) x.jk, (B) Modo
2 (Linha) xi.k , (C) Modo 3 (Tubo) xij.

(A) (B) (C)

Figura 3.3: Fatias (Slices) de um Tensor X de Ordem 3: (A) Horizontal (Xi..), (B)
Lateral (X.j.) e (C) Frontal (X..k)

3.1.2 Matriciação ou Desdobramento

Apesar do tensor ser uma forma conveniente de representação de um

conjunto de dados com características multivariadas, devido o processamento



3.1. Princípios de Modelagem Tensorial 36

computacional de dados matriciais estar bem estabelecido, com maturidade

matemática e com otimização computacional em variados sistemas, se faz

necessário organizar os dados representados pela estrutura tensorial em um

formato de matriz, sem perda de informação, facilitando seu tratamento em

sistemas computacionais convencionais.

Assim, a matriciação, ou seja, a transformação de um tensor em uma

matriz, ou desdobramento de um tensor, é o processo de reordenação dos

elementos de um tensor de ordem N em uma matriz. A matriciação ordem

n de um tensor U ∈ CI1×I2···×IN , denotado por U(n), pode ser efetuada a

partir do rearranjo das fibras ordem n, onde os elementos (i1, i2, ..., iN) do

tensor U são mapeados como elementos (in, j) da matriz resultante, com

j = 1 +
∑N

k=1,k 6=n (ik − 1)Jk e Jk =
∏k−1

m=1,m6=n Im.

Outra forma de matriciação do tensor é baseada na concatenação das

camadas, conforme apresentado na Figura 3.4, a partir dos slices Horizontais,

Laterais e Frontais do tensor X ∈ CI×J×K. Deste modo, para um tensor de

ordem N , podemos obter N representações matriciadas, a partir das suas N

camadas.

(I)

(K)

(J)
i=I

i=2

i=1

J

J

J

.

.

.

K

.

.

.

(A) Horizontal

(I)

(K)

(J)
j=J

j=2

j=1

K

K

K

.

.

.

I

.

.

.

(B) Lateral

(I)

(K)

(J)
k=K

k=2

k=1

I

I

I

.

.

.

J

.

.

.

(C) Frontal

Figura 3.4: Matriciação concatenando os slices (A) Horizontal, (B) Lateral e (C)
Frontal do tensor X

Desta forma, tomando como exemplo o tensor X ∈ C3×5×2, com suas

camadas frontais:

X1 =







1 4 7 10 13

2 5 8 11 14

3 6 9 12 15







X2 =







16 19 22 25 28

17 20 23 26 29

18 21 24 27 30







Pode ser desdobrado nas matrizes X(1) ∈ C3×10, X(2) ∈ C6×5, e X(3) ∈ C2×15,

que representam as matriciações ordem n, feitas com a concatenação das

fatias, ou camadas, colocadas lado a lado:
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X(1) =







1 4 7 10 13 16 19 22 25 28

2 5 8 11 14 17 20 23 26 29

3 6 9 12 15 18 21 24 27 30







X(2) =












1 2 3 16 17 18

4 5 6 19 20 21

7 8 9 22 23 24

10 11 12 25 26 27

13 14 15 28 29 30












X(3) =

[

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

]

Caso a concatenação ocorra com o empilhamento das fatias, descrito na

Figura 3.4, ou seja, colocando uma abaixo da outra, teremos as matrizes

X(1) ∈ C6×5, X(2) ∈ C10×3, e X(3) ∈ C15×2:

X(1) =















1 4 7 10 13

2 5 8 11 14

3 6 9 12 15

16 19 22 25 28

17 20 23 26 29

18 21 24 27 30















X(2) =

























1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

























X(3) =






































1 16

2 17

3 18

4 19

5 20

6 21

7 22

8 23

9 24

10 25

11 26

12 27

13 28

14 29

15 30






































Assim, diferentes ordenações no desdobramento das colunas na matriciação

ordem n, ou modo n [56] e [57], podem acontecer para diferentes autores,

seja lado a lado ou empilhadas, mas em geral, a ordenação específica das

colunas não é tão relevante, desde que sejam consistentes com os cálculos

relacionados, e um tratamento mais generalizado pode ser encontrado em [58].

3.1.3 Formulação Escalar do Modelo de Decomposição Tensorial

PARAFAC

A modelagem do sinal recebido em matrizes, que são arranjos de dados

em duas dimensões, é a abordagem usual para processamento de sinais em

arranjos. De uma maneira geral são considerados como dimensões tempo

e espaço. Nestes modelos matriciais tempo-espaço, é comum considerarmos

que o espaço varia ao longo das linhas , enquanto o tempo varia ao longo das
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colunas da matriz de recepção do sinal.

No entanto, a principal limitação de trabalharmos com modelos matriciais

para o sinal recebido é a inerente falta de unicidade. Para superar

esta limitação geralmente toma-se alguma propriedade estrutural do sinal

transmitido, tais como ortogonalidade, código finito, etc.

Assim, uma alternativa para superarmos esta limitação é a incorporação de

um terceiro eixo (ou dimensão, ou ordem), ao modelo de sinal recebido em

problemas de processamento de sinal em arranjos de antenas, através do uso

de tensor, que é um modelo de arranjo de dados de 3 dimensões. Como

exemplos de terceira dimensão, podemos citar o uso da superamostragem

temporal de um sinal em um arranjo escalar de antenas, ou o código de

sequência direta em um sistema de acesso múltiplo por divisão de código

(DS-CDMA - Direct Sequence - Code Division Multiple Access), ou a frequência

em sistemas de multiplexação por divisão de frequências ortogonais (OFDMA

- Orthogonal Frequency Division Multiple Access).

Desta forma, sob o ponto de vista de processamento de sinais, modelar o

sinal recebido como um tensor 3-D possibilita a exploração simultânea das

múltiplas formas de diversidade do sinal recebido.

Uma análise de decomposição de tensores 3-D, chamada (PARAFAC - Parallel

Factor), ou análise por decomposição de fatores paralelos (Parallel Factor),

desenvolvida de maneira independente por Caroll e Chang [13] e Harshman

[14] como uma ferramenta de análise bem conhecida em Psicometria e

em Quimiometria [59]. No contexto de comunicações sem fio, diversas

contribuições foram trazidas por Siridipoulos e seus colaboradores em [60]

e nas diversas referências relacionadas.

A decomposição em fatores paralelos PARAFAC de M componentes, para

um tensor X de terceira ordem com dimensões I x J x K, é dado por:

xi,j,k =
M∑

m=1

ai,mbj,mck,m (3.1)

Onde ai,m = [A]i,m , bj,m = [B]j,m , e ck,m = [C]k,m são os elementos das matrizes

fatores A ∈ CI×M , B ∈ CJ×M , e C ∈ CK×M .

Ou seja, este modelo para um arranjo em 3 dimensões, expressa o tensor

original como a soma de fatores tridimensionais de rank 1, onde cada fator é

o produto externo de três vetores, conforme Figura 3.5.

Outra representação da decomposição tensorial PARAFAC é a matricial,

onde são definidas um conjunto de matrizes Xi.. ∈ CJ×K , onde i = 1, · · · , I ,

outro conjunto de matrizes X.j. ∈ C
K×I , onde j = 1, · · · , J , e finalmente as
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Figura 3.5: Ilustração do Tensor genérico representado pelo produto de 3 vetores

matrizes X..k ∈ CI×J , onde k = 1, · · · , K .

Assim, com base nestas definições podemos descrever o modelo matricial da

Equação (3.1) em três diferentes formas :

Xi.. =
M∑

m=1

ai,mbmcT
m = Bdiag(Ai.)C

T , i = 1, · · · , I (3.2)

X.j. =

M∑

m=1

bj,mcmaT
m = Cdiag(Bj.)A

T , j = 1, · · · , J (3.3)

X..k =

M∑

m=1

ck,mambT
m = Adiag(Ck.)B

T , k = 1, · · · , K (3.4)

Onde am, bm e cm são a m-ésima coluna das matrizes A,B e C, respectivamente,

e lembrando que o operador diag(Ai.) forma uma matriz diagonal com a i-ésima

linha da matriz A.

As matrizes Xi.. com i = 1, · · · , I, X.j. com j = 1, · · · , J, e X..k com k =

1, · · · , K, podem ser interpretadas como as fatias do tensor X ao longo das

dimensões, I, J e K, respectivamente.

3.1.4 Rank do Tensor

O rank de um tensor X , denotado por kX , é definido como o menor número

de tensores de rank 1 cuja soma sejam capazes de gerar o tensor X , [61],

[62], ou seja, o rank de um tensor 3-D é definido como o número mínimo

de componentes tridimensionais necessárias para decompor o tensor, sendo o

menor número de componentes em uma decomposição tensorial PARAFAC.

No caso de matrizes, o rank é definido como o número mínimo de matrizes de

rank 1, ou seja, aquelas descritas como o produto de dois vetores, necessárias

para construir a matriz em análise. Apesar de existirem algumas definições,

[14], [61], [63], o rank de um tensor ainda não é completamente conhecido,

e continua a ser objeto de pesquisa na busca de identificar precisamente as

características de um tensor, como a propriedade de unicidade.
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3.1.5 Unicidade

A propriedade de unicidade implica que as matrizes fatores da

decomposição tensorial PARAFAC são as únicas capazes de reconstruir o

tensor original, sem introduzir deformações, sofrendo apenas ambiguidade

de escala e permutação.

Ou seja, dado um tensor de ordem 3, X ∈ CI×J×K, com rank M , [58]:

X =

M∑

m=1

am ◦ bm ◦ cm = [[A,B,C]] (3.5)

As matrizes fatores A, B e C são únicas, a menos de fatores de escala dos

vetores individuais, αm, βm e γm, com αmβmγm = 1 para m = 1 · · ·M ou seja:

X =

M∑

m=1

(amαm) ◦ (bmβm) ◦ (cmγm) = [[A,B,C]] (3.6)

e permutação, pelo fato dos tensores componentes de rank 1 estarem

ordenados de forma arbitrária, isto é, dado uma matriz de permutação P

∈ CM×M :

X = [[A,B,C]] = [[AP,BP,CP]] (3.7)

Por outro lado, as decomposições matriciais, em geral não são únicas

devido os problemas de ambiguidade geradas pelo modelo bilinear do tipo

X =
∑M

m=1 ai,mbj,m = ABT , onde uma matriz P ∈ CM×M , não singular, irá gerar

infinitas soluções pois X = APP−1BT .

Devido a incerteza acerca do rank de um tensor, as condições para

satisfazer a unicidade não estão totalmente definidas, de modo que a condição

mais conhecida e geral para unicidade de uma decomposição tensorial

PARAFAC reside no conceito de Kruskal-rank, ou k-rank, de uma matriz A,

definido como o maior valor k tal que quaisquer sub-conjuntos de k colunas

de A sejam linearmente independentes [61].

Note que o k-rank é sempre menor ou igual ao rank da matriz, e se a matriz é

rank coluna completa, então ela é também k-rank completa.

A partir do conceito de k-rank das matrizes de decomposição do tensor X de

ordem 3, composto das matrizes A, B e C, a condição suficiente para unicidade

de uma decomposição tensorial PARAFAC, segundo [61], é satisfeita quando :

kA + kB + kC ≥ 2M + 2, (3.8)

Onde M é o número de colunas das matrizes de decomposição, ou seja, o

índice de soma da decomposição tensorial PARAFAC.
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Posteriormente [64] estendeu esta condição para tensores de ordem N , X ∈
C

I1×I2×···×IN , onde as matrizes fatores são A(n), com n = 1 · · ·N , da seguinte

forma:
N∑

n=1

kA(n) ≥ 2M + (N − 1) (3.9)

Estas condições de unicidade serão exploradas mais à frente na análise dos

algoritmos propostos em relação à capacidade de estimativa das matrizes de

decomposição do tensor de medidas das antenas que formam os arranjos.

3.2 Métodos Propostos

Os métodos propostos se baseiam no uso de antenas polarimétricas

(tripolos) detalhadas no Capítulo 2, substituindo as antenas escalares, sendo

necessário adequar as condições genéricas de polarização para o caso especial

deste tipo de sensor, descrito na Seção 2.1.7 para o caso de tripolo elétrico,

significando que será avaliada apenas as componentes do campo elétrico no

conjunto de três dipolos com centro de fase idêntico, eliminando as antenas

em loops magnéticos, conforme Figura 3.6.

Figura 3.6: Tripolo Elétrico

Assim, será estruturado o uso da antena vetorial tripolo elétrico em função

do arranjo, ULA, L-shape ou UPA, e a Equação (2.5) alterada para:

c(θ, φ, α, β) ,







cos θ cosφ − sin θ

sin θ cos φ cos θ

− sin θ 0






× p(α, β). (3.10)

Desta forma, teremos a polarização apenas das componentes do campo

elétrico, reduzindo as linhas da matriz C, ou seja, para os modelos propostos

à frente, C = [c(1) · · · c(M)] ∈ C3×M .
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Inicialmente será avaliado um arranjo de antenas vetoriais em arranjo simples

ULA, depois em arranjo L-shape, e finalmente utilizando um arranjo em

formato plano uniforme (UPA), e a sua capacidade de identificação de

fontes em comparação com arranjos de antenas escalares simples, e serão

apresentados os resultados de simulações computacionais para avaliação de

desempenho dos algoritmos propostos para os diferentes arranjos de antenas

utilizados no estudo.

Como parâmetro de desempenho na estimação dos parâmetros de chegada

do sinal (DOA), ou seja, os ângulos de Azimute θ e de Elevação φ, bem como

para os parâmetros de polarização, caracterizados pelos ângulos de orientação

da elipse α, e de elipsidade β, usaremos o erro médio quadrático Root Mean

Square Error - RMSE individual das estimativas dos ângulos DOA, definido

como:

RMSEξ =

√
√
√
√ 1

MC

MC∑

i=1

(ξi − ξ)2

Onde ξi é o valor estimado do ângulo sob análise em cada simulação Monte

Carlo, onde MC = 500.

De forma a facilitar a comparação entre métodos tensoriais, definimos um

outro parâmetro que avalia de forma integrada o erro médio dos 4 ângulos

estimados, referenciado simplificadamente como RMSE:

RMSE =

√
√
√
√ 1

4MC

MC∑

i=1

(e2θ + e2φ + e2α + e2β)

onde eθ = (θi − θ), eφ = (φi − φ), eα = (αi − α), e eβ = (βi − β), correspondem

às diferenças entre os valores estimados em cada simulação e os respectivos

parâmetros da fonte.

Na comparação da estimativa das matrizes de direção (Steering Vectors) e

de polarização, será utilizado o conceito de erro médio quadrático da norma

NMSE (Normalized Mean Square Error ) dado por :

NMSE =
1

MC

MC∑

i=1

(|Âi − A|F )2
(|A|F )2

Onde Âi corresponde à estimação da matriz A na i-ésima simulação, e |.|F o

operador norma de Frobenius.

Para a avaliação dos resultados foram considerados arranjos com antenas

vetoriais elétricas, ou seja (P = 3), os sinais emitidos pelas fontes têm potência

unitária e seguem uma modulação BPSK.
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A distância d entre antenas é λ/2 para evitar o efeito de aliasing na passagem

do sinal pelas antenas [51].

Os resultados representam o comportamento médio de 500 simulações de

Monte Carlo, frente a diversas situações e a sua dependência com o número de

fontes, o impacto da quantidade de antenas em cada arranjo, a dependência

com a SNR, o reflexo no número de iterações do algoritmo, e no tempo de

processamento do algoritmo.

3.2.1 Método Tensorial para Arranjo ULA

O método tensorial é desenvolvido a partir da observação da n-ésima antena

vetorial do arranjo ULA descrito na Figura 3.7, posicionado no eixo z, onde

n = 0, 2, · · · , N − 1. Desprezando o efeito do acoplamento mútuo entre antenas,

teremos a saída de p fluxos de dados simultâneos referentes às diferentes

polarizações, com índice p, onde p = 1, 2, · · · , 6.

 

(N-1) d

         d

         0

(N-2) d

         .

         .

         .

Z

Y

Fonte de Sinal (m)

Frente de onda plana

Figura 3.7: Arranjo Linear Uniforme (ULA)

Assim, a p-ésima saída da antena n no instante k, onde k = 1, 2, · · · ,K ≥ M ,

z(n, k, p) é obtida a partir da soma de todas as contribuições das M frentes de

onda, ou seja :

z(n, k, p) =
M∑

m=1

a(n,m)c(p,m)s(k,m) + η(n, k, p) (3.11)

em que a(n,m) corresponde ao valor na n-ésima antena do arranjo do eixo z

em relação à frente de onda m, c(p,m), ao valor da p-ésima componente de

polarização da frente de onda m no n-ésimo sensor, s(k,m), o valor da k-ésima

amostra temporal da frente de onda m, e η(n, k, p), o ruído branco aditivo para
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a amostra k da antena n, na componente de polarização p.

A Equação (3.11) expressa z(n, k, p) como uma decomposição tensorial

PARAFAC, e desta forma, os sinais na Equação (2.38) podem ser interpretados

como o formato de matriz de um tensor tridimensional com dimensões

(N × K × P) construída a partir da concatenação das diversas fatias (slices)

do tensor Z, conforme indicado na Figura 3.8, de forma a conter todas as

suas informações em um modelo matricial ao longo da dimensão espacial,

referente às antenas (N), do tensor Z que contém as outras duas dimensões:

a polarização do sinal (P ) e a direção temporal (K) das amostras.

(n)

(p)

(k)

Figura 3.8: Tensor genérico Z representando a estrutura de dados

A simetria da decomposição tensorial PARAFAC permite identificarmos

outras duas ordens de matriciação ao longo das dimensões restantes do tensor

Z, totalizando as 3 ordens da decomposição [59], [58]:

Zn.. = Cdiag(An.)S
T ,

Z.k. = Adiag(Sk.)C
T ,

Z..p = Sdiag(Cp.)A
T ,

em que n = 1 · · · ,N, k = 1 · · · , K, e p = 1 · · · , P .

As representações no formato de matriz do tensor são obtidas a partir do

empilhamento dos diversos slices conforme a seguir:

Z1 =







Z1..

...

ZN..






=







Cdiag(A1.)
...

Cdiag(AN.)







ST = (A ⊙ C)ST , (3.12)
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Z2 =







Z.1.

...

Z.K.






=







Adiag(S1.)
...

Adiag(SK.)







CT = (S ⊙ A)CT , (3.13)

Z3 =







Z..1

...

Z..P






=







Sdiag(C1.)
...

Sdiag(CP.)







AT = (C ⊙ S)AT . (3.14)

A representação do tensor de sinais recebidos, é feita utilizando as matrizes

de direção (A), polarização (C), e de sinais (S), nas equações (3.12), (3.13) e

(3.14).

A estimação dos parâmetros de direção e polarização é feita usando o algoritmo

trilinear de mínimos quadrados alternados (T-ALS-Trilinear Alternating Least

Squares), baseado no método de aceleração COMFAC, proposto em [59], para

atingir rápida e precisa convergência pela fatorização trilinear do tensor Z ∈
CN×K×P, gerando três matrizes estimadas: Â, Ĉ e Ŝ.

Cada iteração do algoritmo T-ALS é composta de três passos de estimação.

Em cada passo, uma componente da matriz é atualizada, fixando-se os outros

dois componentes em seus valores obtidos nos passos anteriores.

Dadas as representações desdobradas (unfolded) Zn=1,2,3 do tensor de sinal

recebido Z, as condições de atualização de mínimos quadrados na r-ésima

iteração são dadas por:

Ŝ
T

(r) = (Â(r−1) ⊙ Ĉ(r−1))
†Z1, (3.15)

Ĉ
T

(r) = (Ŝ(r) ⊙ Â(r−1))
†Z2, (3.16)

Â
T

(r) = (Ĉ(r) ⊙ Ŝ(r))
†Z3. (3.17)

Na primeira iteração, (r=1), as matrizes Â(0) e Ĉ(0) são inicializadas

aleatoriamente ou usando algum método de inicialização de forma a facilitar

a convergência.

Seja e(r) = ‖Z1 − (Â(r) ⊙ Ĉ(r))Ŝ
T

(r)‖F , o erro estimado após a r-ésima iteração,

a convergência é declarada quando |e(r) − e(r−1) |≤ 10−6. A partir daí, as

estimativas dos parâmetros φ, α e β são extraídas das matrizes estimadas

Â, Ĉ e Ŝ.

3.2.2 Comparação entre Métodos Matriciais e Tensoriais para Arranjo

ULA

Inicialmente foi feita uma avaliação do desempenho do algoritmo

T-ALS baseado no método tensorial utilizando antenas polarimétricas em
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comparação com os algoritmos baseados nos métodos matriciais clássicos

MUSIC e ESPRIT, [20], usando antenas escalares convencionais, sob a forma

de um arranjo ULA no eixo z, conforme Figura 3.7, com duas fontes de sinais

fixadas em (φ1 = 17, 45o e φ2 = 53, 56o).

A Figura 3.9, mostra o comportamento do erro médio de estimação do ângulo

de elevação, RMSEφ, para os diversos algoritmos, frente a variação da SNR,

com o uso de 3 antenas polarimétricos no algoritmo T-ALS baseado no método

tensorial em arranjo ULA, e 9 antenas escalares para os algoritmos MUSIC

e ESPRIT, de forma a realizar uma comparação mais justa, tendo em vista

o auxílio das informações de polarização do método tensorial com antenas

polarimétricas (tripolo).

Observa-se que para SNR inferiores a 18 dB, o algoritmo baseado no método

tensorial polarimétrico tem um melhor desempenho em relação aos que

utilizam métodos matriciais, apresentando estimações melhores do ângulo

de elevação φ, variando muito lentamente com a elevação da SNR, mesmo

com menor número de antenas, demonstrando a robustez do método tensorial

à SNR. Confirmando [34], os algoritmos MUSIC e ESPRIT apresentam baixo

desempenho sob baixa SNR, e uma forte dependência da SNR, com o algoritmo

ESPRIT apresentando melhores estimações para SNR a partir de 18 dB, e por

sua vez o algoritmo MUSIC apresenta maior erro de estimação em relação aos

algoritmos ESPRIT e T-ALS.
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Figura 3.9: RMSEφ para arranjo ULA com 3 antenas polarimétricas e 9 antenas
escalares para métodos de estimação tensoriais e matriciais

Complementarmente foi feita a simulação neste mesmo arranjo ULA
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elevando-se o número de antenas polarimétricos para 5, e ajustando a

quantidade das antenas dos algoritmos MUSIC e ESPRIT para 15, com a

Figura 3.10 mostrando o deslocamento do cruzamento do algoritmo ESPRIT

com o tensorial para 20 dB, mantendo-se o algoritmo MUSIC com estimações

com maiores erros.
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Figura 3.10: RMSEφ para arranjo ULA com 5 antenas polarimétricas e 15 antenas
escalares para métodos de estimação tensoriais e matriciais

No intuito de investigar a tendência do comportamento dos algoritmos

frente a um maior número de sensores, apesar de na prática não ser usual

utilizar muitas antenas por razões econômicas e de espaço físico, foi feita a

simulação do arranjo ULA elevando-se o número de antenas polarimétricas

para 10, e ajustando a quantidade das antenas dos algoritmos MUSIC e

ESPRIT para 30, com a Figura 3.11 apresentando o efeito desta alteração,

onde se percebe uma melhor estimativa para o algoritmo baseado no método

tensorial superando o desempenho dos outros métodos.

Observa-se ainda que os algoritmos MUSIC e ESPRIT apresentam pequena

melhoria na estimação com a duplicação de sensores, enquanto que o

algoritmo T-ALS baseado no método tensorial eleva consideravelmente seu

desempenho.

Desta forma, o algoritmo T-ALS baseado no método tensorial apresenta um

excelente desempenho principalmente para SNR baixas e com baixo número

de sensores, quando comparado com algoritmos baseados em métodos

matriciais tradicionais como MUSIC e ESPRIT, indicando a robustez do

método.
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Figura 3.11: RMSEφ para arranjo ULA com 10 antenas polarimétricas e 30 antenas
escalares para métodos de estimação tensoriais e matriciais

Elevando-se o número de antenas, o T-ALS leva vantagem no ganho de

diversidade, melhorando suas estimativas frente aos outros algoritmos.

3.2.3 Modelos Tensoriais para Arranjo L-shape

Observando o arranjo L-shape descrito na Figura 3.12, e o modelo de sinal

desenvolvido no Capítulo 2, em especial as Equações (2.37) e (2.38), podemos

estruturar os tensores Z e X , obtidos a partir dos sinais coletados nas antenas

dos eixos z e x, respectivamente, sob a forma de matrizes, conforme a seguir:

Z1 = (A ⊙ C)ST (3.18)

Z2 = (S ⊙ A)CT (3.19)

Z3 = (C ⊙ S)AT (3.20)

e

X1 = (B ⊙ C)ST (3.21)

X2 = (S ⊙ B)CT (3.22)

X3 = (C ⊙ S)BT (3.23)
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Figura 3.12: Arranjo L-shape em 2-D

Assim, sob uma abordagem tradicional, a partir das Equações (3.18) a

(3.23), a estimação dos parâmetros de direção e polarização é feita inicialmente

a partir do algoritmo T-ALS pela fatorização trilinear do tensor Z ∈ CN×K×P ,

gerando três matrizes estimadas após a convergência: Â, Ĉ e Ŝ.

Em seguida, aplica-se novamente o algoritmo T-ALS sobre o tensor X ∈
CN×K×P , obtendo-se a matriz estimada B̂, conforme Figura 3.13 .

Figura 3.13: Método T-ALS Convencional.

Finalmente, calcula-se o ângulo de elevação φ a partir da matriz de direção

estimada Â, o ângulo de azimute θ pela matriz de direção estimada B̂, e usando

estes dois ângulos, juntamente com a Equação (3.10) e a matriz estimada Ĉ,

obtém-se os ângulos dos parâmetros de polarização α e β.

Assim, o número máximo de fontes M que podem ser identificadas por um

arranjo L-shape de N antenas em cada braço, é limitada a M < N , [41].
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Z representando as estruturas de dados do arranjo L-shape

3.2.3.1 Modelo Proposto Tensorial Concatenado: Caso Não

Supervisionado

Uma forma alternativa de estrutura de sinais do arranjo L-shape é

gerarmos um tensor U a partir das dimensões N , K e P dos tensores X e

Z, obtendo 3 opções de concatenação, conforme Figura 3.14.

Avaliando estas opções, sob a dimensão temporal (K), não teremos ganho

significativo em relação ao desempenho do arranjo, pois é mais simples

duplicar o número K de amostras tratadas no receptor.

Em relação à polarização (P ), também não há vantagem pois os ângulos de

polarização seriam mantidos em ambas as matrizes, com a mesma limitação

do número de fontes passíveis de identificação de M < N .

Por outro lado, a composição na direção das antenas (N), eleva o número de

fontes M que podem ser identificadas por um arranjo de N sensores, de M < N

para M < 2N , sendo possível compor as matrizes de direção A e B em uma

única matriz D a partir de (3.18) e (3.21), da seguinte forma, [65]:

X1 = (B ⊙ C)ST

Z1 = (A ⊙ C)ST

}

⇒ U1 = (D ⊙ C)ST , (3.24)



3.2. Métodos Propostos 51

em que U1 =

[

X1

Z1

]

∈ C2NP×K, e D =

[

B

A

]

∈ C2N×M .

A representação do tensor de sinais recebidos, é feita utilizando a Equação

(3.24) pela concatenação das matrizes de direção (D), polarização (C), e de

sinais (S).

Desta forma, a representação em forma de matriz do tensor composto U ao

longo das 3 dimensões é dada por:

U1 = (D ⊙ C)ST ,∈ C
2NP×K (3.25)

U2 = (S ⊙ D)CT ,∈ C
2NK×P (3.26)

U3 = (C ⊙ S)DT ,∈ C
PK×2N (3.27)

A estimação dos parâmetros de direção e polarização é feita usando o

algoritmo (T-ALS), pela fatorização trilinear do tensor U ∈ C2N×K×P , gerando

três matrizes estimadas: D̂, Ĉ e Ŝ, conforme Figura 3.15.

Figura 3.15: Método T-ALS Concatenado.

As estimativas dos parâmetros θ, φ, α e β são extraídas a partir das matrizes

estimadas D̂, Ĉ e Ŝ, após o critério de convergência ser atingido.

3.2.3.2 Modelo Proposto para o Caso Supervisionado

Um segundo algoritmo é proposto para os casos onde há o uso de sequência

de treinamento, ou seja, com o conhecimento do sinal recebido, baseado no

uso da decomposição LS-KRF. Dado que a matriz S é conhecida, a Equação

(3.25) pode ser reescrita conforme abaixo:

(D ⊙ C) = U1(S
T )† (3.28)

O algoritmo de decomposição LS-KRF, conforme descrito em [45], é

sumarizado abaixo:

Seja

(Y ⊙ Z) = W (3.29)

onde Y ∈ C
I×M , Z ∈ C

L×M , e consequentemente W ∈ C
IL×M .
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1. Inicialize com m = 1

2. Seja wm, ym e zm a m-ésima coluna de W,Y e Z, respectivamente,

3. Obtenha Ŵm ∈ CL×I tal que vec [Ŵm] = wm;

4. Calcule a decomposição em valores singulares de Ŵm :

Ŵm = UmΣmVH
m

5. Então ŷm =
√
σ1v

∗
1 e ẑm =

√
σ1u1

Onde u1 e v1 representam o primeiro vetor coluna de Um e Vm,

respectivamente, e σ1 é o maior valor singular.

6. Desta forma, a melhor aproximação de Ŵm é obtida por Ŵm = ŷmẑ
T
m.

7. Repetir enquanto m <M .

8. Ao final obtemos Ŷ = [ŷ1 ŷ2 · · · ŷM ] e Ẑ = [ẑ1 ẑ2 · · · ẑM ]

Assim, a partir do algoritmo acima e das equações (3.28) e (3.29),

considerando W = U1(S
T )† , Y = D, e Z = C, obtemos as matrizes D̂ e Ĉ, e

consequentemente obter os parâmetros de direção θ, φ, e de polarização α e β.

Na seção 3.2.4 serão avaliados os resultados de desempenho para o caso

supervisionado usando os algoritmos T-ALS e LS-KRF, e não supervisionado

comparando o algoritmo T-ALS com outros algoritmos.

3.2.3.3 Unicidade

Utilizando as condições para unicidade de uma decomposição tensorial

PARAFAC apresentadas na seção 3.1.5, e considerando que em (3.25) o

número de colunas das matrizes de decomposição D, C, e S é M , temos que

a condição de Kruskal para atender a propriedade de unicidade, conforme

Equação (3.8):

kD + kC + kS ≥ 2M + 2 (3.30)

Analisando as características do sistema, a matriz D é do tipo Vandermonde,

garantindo que as colunas são independentes, com kD = min[2N − 1,M ] e

a matriz de polarização C tem a resposta da antena vetorial linearmente

independente, conforme [66], com kC = min[P,M ], e finalmente, a matriz de

sinais S tem fontes descorrelacionadas mutuamente, com kS = min[K,M ].

Nestas condições a Equação (3.30) pode ser reescrita como:

min[2N − 1,M ] +min[P,M ] +min[K,M ] ≥ 2M + 2
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e como K ≥ M , o kS = M , temos :

min[2N − 1,M ] +min[P,M ] ≥ M + 2 (3.31)

Estudando as condições da Equação (3.31) podemos distinguir as seguintes

situações:

1. Caso P ≥ M , N ≥ 2 antenas são necessárias para distinguir M fontes. Este

é o arranjo L-shape mínimo, com uma antena de referência no centro e uma

outra antena em cada braço do L-shape;

2. Caso (2N − 1) ≥ M , temos P ≥ 2 polarizações necessárias para distinguir M

fontes;

3. Caso (2N − 1) ≥ M , e P ≤ M , temos P ≥ 2 polarizações necessárias quando

o número de antenas do arranjo for superior ao de fontes de sinais.

3.2.4 Resultados de Simulação para Arranjos L-shape

Os resultados de simulação do desempenho do algoritmo baseado método

tensorial para um arranjo L-shape, conforme Figura 3.16, para o caso

não supervisionado, ou cego, são apresentados a seguir, avaliando seu

comportamento em relação à qualidade de estimativa fixando-se o número

de antenas e variando a quantidade de fontes.

Em sequência, foi fixado o número de fontes e avaliado o comportamento da

estimativa variando o número de antenas.

Finalmente, foi avaliado a capacidade de discriminação de fontes, fixando-se

uma fonte como referência e variando-se o ângulo de elevação da outra,

fixando-se os outros parâmetros.

Em um segundo momento, é mostrada a avaliação do algoritmo baseado

no método tensorial para o caso supervisionado, comparando os resultados

do modelo tensorial concatenado com uso do algoritmo T-ALS e o algoritmo

alternativo N-SVD, simulando diversas condições de SNR, número de antenas

e fontes.

3.2.4.1 Desempenho para o Caso Não Supervisionado

Inicialmente foi avaliado o efeito da SNR no desempenho do algoritmo

T-ALS baseado no modelo tensorial proposto, para diferentes números de

fontes, utilizando-se como métrica o erro médio quadrático NMSE da matriz

de direção A estimada, para um arranjo com N = 3 sensores, utilizando-se

o modelo tensorial concatenado dos tensores X e Z. Os resultados são

mostrados na Figura 3.17.

Conforme esperado, quando a SNR se eleva, o erro médio quadrático se reduz,

com um melhor desempenho obtido para 3 a 5 fontes em comparação a
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Figura 3.16: Arranjo L-shape em 2-D

6 fontes, limite superior do número de fontes que garante a unicidade do

modelo. Como referência, foi incluído o NMSE da matriz de direção estimada

pelo modelo tensorial convencional a partir dos tensores de forma separada,

mostrado pela linha contínua, utilizando-se 3 antenas e 3 fontes, que é

o limite superior do modelo tradicional, demonstrando resultados idênticos

ao concatenado para SNR de 0 dB, mas à medida que a SNR se eleva, o

melhor desempenho do modelo tensorial concatenado se apresenta, elevando

a qualidade da estimação, mesmo quando o número de fontes é perto do dobro

da quantidade de sensores.

Da mesma forma, avaliou-se o método tensorial quanto aos aspectos de

estimação dos parâmetros de polarização dos sinais das fontes em relação

à SNR, sendo apresentado na Figura 3.18 o comportamento do erro médio

quadrático da matriz de polarização B estimada pelo algoritmo T-ALS baseado

no modelo tensorial concatenado, com melhores resultados à medida que a

SNR se eleva, ratificando a comparação do modelo proposto em relação ao

modelo tradicional com tensores separados, mostrado na linha contínua.

O resultado de estimação para o modelo tradicional com o limite de fontes

M ≤ N identificáveis para um arranjo de N antenas se mostra mais próximo

ao limite de M ≤ 2N do modelo concatenado, para N = 3.

Em complemento, na Figura 3.19 é mostrada a variação do erro médio

quadrático RMSE de estimação dos ângulos de direção (θ, φ) e de polarização
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Figura 3.17: NMSE vs. SNR para da matriz de direção para diversos números de
fontes M e Arranjo com três antenas (N = 3) utilizando o modelo
concatenado dos tensores X e Z
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Figura 3.18: NMSE da matriz de polarização para diversos números de fontes M e
três antenas (N = 3)

(α, β) combinados, em função do número de fontes, incluindo a estimação

a partir do algoritmo baseado no modelo tensorial convencional com 3

fontes e 3 sensores, mostrado como uma linha contínua. Como reflexo

do comportamento da estimação das matrizes de polarização e de direção,

à medida que a SNR se eleva observa-se uma melhor estimação média,

ratificando a comparação do modelo tensorial concatenado proposto em
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relação ao modelo tradicional com tensores separados, mostrado na linha

contínua. O resultado de estimação para o modelo tradicional com o limite de

fontes M ≤ N identificáveis para um arranjo de N antenas se mostra próximo

ao limite de M ≤ 2N do modelo concatenado, para N = 3.
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Figura 3.19: RMSE dos ângulos para diversos números de fontes M e três antenas
(N = 3)

Em seguida foi feito um experimento para avaliar o desempenho do

algoritmo para separação cega de fontes em termos de valor médio quadrático

entre os valores angulares originais e os obtidos pelo simulação, com 4

antenas (N = 4), 2 fontes (M = 2), e com SNR de 20 dB. Uma das fontes

foi usada como referência, com seus parâmetros fixados em: θ1 = 51, 4o, φ1 =

78.1o, α1 = 35, 8o e β1 = 32, 9o, enquanto a segunda fonte, variava um parâmetro.

Na Figura 3.20 é mostrado o desempenho do algoritmo baseado no modelo

proposto na estimação do ângulo de elevação das fontes, em que o ângulo

de elevação da segunda fonte φ2 varia de 0 a 90o. Observa-se que para

ângulos de elevação φ2 até 10o o arranjo apresenta erro significativo devido

a sua geometria. É importante ressaltar que o algoritmo proposto baseado

no modelo tensorial concatenado conseguiu distinguir satisfatoriamente duas

fontes com mesmo ângulo de elevação (78.1o), apesar da pequena elevação

do erro de estimação. Isto se deve à exploração eficiente da diversidade de

polarização, característica inerente ao tipo de antena vetorial do arranjo.

3.2.4.2 Desempenho para o Caso Supervisionado

No caso supervisionado, com o conhecimento da matriz de sinais, temos

dois algoritmos sob análise. O primeiro é o modelo tensorial concatenando
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Figura 3.20: RMSE do ângulo de elevação φ2 em relação à fonte fixa em φ1 = 78, 1o

as matrizes de direção e usando o algoritmo T-ALS iterativo para estimação

da matrizes de direção e polarização, e o segundo algoritmo é baseado na

decomposição SVD do produto de Khatri-Rao das matrizes de direção e

polarização do modelo tensorial concatenado.

Inicialmente comparamos o desempenho dos algoritmos frente a variação do

número de fontes. A Figura 3.21 apresenta os resultados de simulação de

um arranjo L-shape com 3 sensores, variando-se o número de fontes de 3

até 6. Observa-se que as estimativas apresentam maior erro à medida que

mais fontes são adicionadas, e que os algoritmos de uma maneira geral são

equivalentes em termos de estimação.

Em seguida foi feita a avaliação quanto ao desempenho dos algoritmos

frente a variação do número de antenas para uma quantidade fixa de fontes. A

Figura 3.22 apresenta estes resultados, onde se observa que há uma pequena

variação do erro médio de estimação frente ao aumento do número de antenas

para ambos os algoritmos, com resultados bastante equivalentes sob baixa

SNR, com o algoritmo SVD com 6 antenas e alta SNR superando o algoritmo

T-ALS.

Adicionalmente foi feita uma avaliação do tempo médio de execução de cada

algoritmo, conforme Figura 3.23, onde fica claro o maior tempo de execução

do algoritmo T-ALS, por ser iterativo, com pequenas variações em torno de

4× 10−1 s, enquanto que o algoritmo SVD se mostra estável em relação à SNR

em torno de 3× 10−2 s, variando para mais em função do aumento do número
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Figura 3.21: RMSE dos ângulos para um arranjo L-shape com sequência de
Treinamento para diversas quantidades de fontes com 3 sensores
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Figura 3.22: RMSE dos ângulos para Arranjo L-shape com sequência de treinamento
para diversas quantidades de antenas com 3 fontes

de sensores, conforme esperado para uma técnica de cálculo dos dados de

forma direta.

3.2.5 Métodos Propostos para Arranjos UPA

Observando a n-ésima antena vetorial do arranjo planar uniforme,

mostrado na Figura 2.9, posicionado em (i, 0, l), onde i = 0, 1, 2, · · · , I, e
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Figura 3.23: Tempo de execução dos algoritmos SVD e T-ALS para um Arranjo
L-shape com sequência de Treinamento para diversas quantidades de
antenas com 3 fontes

l = 0, 1, 2, · · · , L, teremos a saída de p fluxos de dados simultâneos referentes às

diferentes polarizações, com índice p, onde p = 1, · · · , 3. Assim, a p-ésima saída

da antena n no instante k, onde k = 1, 2, · · · ,K ≥ M , r(i, l, k, p) é obtida a partir

da soma de todas as contribuições das M frentes de onda, ou seja, inserindo

a condição de antenas vetoriais podemos apresentar o modelo escalar para o

arranjo de antenas em arranjo planar uniforme como o produto quadrilinear:

r(i, l, p, k) =
M∑

m=1

a(i,m)b(l, m)c(p,m)s(k,m) (3.32)

Onde a(i,m).b(l, m) corresponde ao valor da fase na n-ésima antena do arranjo

em relação à frente de onda m, b(p,m), ao valor da p-ésima componente de

polarização da frente de onda m na antena n, e s(k,m), o valor da k-ésima

amostra temporal da frente de onda m.

3.2.5.1 Modelo 1 : Decomposição Tensorial PARAFAC de Quarta Ordem:

Caso Não supervisionado

A Equação (3.32) expressa r(i, l, p, k) como uma decomposição tensorial

PARAFAC de quarta ordem [58], onde podemos obter fatias (slices) do

tensor R ∈ CI×L×P×K fixando duas ordens. Concatenando estas fatias

sequencialmente, obtemos a representação da decomposição tensorial

PARAFAC de ordem 4 na forma matricial. Assim, considerando a fatia
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referente à variação das antenas no eixo x e de polarização p temos :

Ri.p. = Bdiag(Ai.)diag(Cp.))S
T

onde A = [a(τ1) a(τ2) · · · a(τM)] ∈ CI×M e B = [b(σ1) b(σ2) · · · b(σM)] ∈
C

L×M , são matrizes de direção, e C = [c(1) c(2) · · · c(M)] ∈ C
P×M é a matriz

de polarização para as M fontes. Concatenando estas fatias para i = 1 · · · I
temos:

R1p =










R1.p.

R2.p.

...

RI.p.










=










Bdiag(A1.)diag(Cp.)S
T

Bdiag(A2.)diag(Cp.)S
T

...

Bdiag(AI.)diag(Cp.)S
T










= (A ⊙ B)diag(Cp.)S
T (3.33)

E, em seguida, realizando o mesmo processo para p = 1 · · ·P :

R1 =










R1.1.

R1.2.

...

R1.P.










=










(A ⊙ B)diag(C1.)S
T

(A ⊙ B)diag(C2.)S
T

...

(A ⊙ B)diag(CP.)S
T










= (C ⊙ A ⊙ B)ST (3.34)

Ou seja, simplificadamente, concatenando as fatias:

Ri.p. = Bdiag(Ai.)diag(Cp.)S
T

Obtemos a matriz:

R1 = (C ⊙ A ⊙ B)ST (3.35)

Desta forma, a Equação (3.35) representa uma dos modos de matriciação,

onde podemos utilizar a simetria do modelo quadrilinear que permite

identificar os quatro modos de matriciação a partir das fatias:

Ri.p. = Bdiag(Ai.)diag(Cp.)S
T

Ril.. = Sdiag(Ai.)diag(Bl.)C
T

R.l.k = Cdiag(Bl.)diag(Sk.)A
T
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R..pk = Adiag(Cp.)diag(Sk.)B
T

Quando concatenadas geram os 4 modos, respectivamente:

R1 = (C ⊙ A ⊙ B)ST (3.36)

R2 = (B ⊙ A ⊙ S)CT (3.37)

R3 = (S ⊙ B ⊙ C)AT (3.38)

R4 = (S ⊙ C ⊙ A)BT (3.39)

A estimação dos parâmetros de direção e polarização é feita usando o algoritmo

quadrilinear de mínimos quadrados alternados (Q-ALS-Quadri-Alternating

Least Squares), baseado no método de aceleração COMFAC, proposto em [67],

para atingir rápida convergência pela fatorização quadrilinear do tensor R,

gerando quatro matrizes estimadas: Â, B̂, Ĉ e Ŝ.

Cada iteração do algoritmo Q-ALS é composta de quatro passos de estimação.

Em cada passo, uma componente da matriz é atualizada, fixando-se os outros

três componentes em seus valores obtidos nos passos anteriores.

Dadas as representações desdobradas (unfolded) Rn=1,2,3,4 do tensor de sinal

recebido R, as condições de atualização de mínimos quadrados na r-ésima

iteração são dadas por:

Ŝ
T

(r) = (Ĉ(r−1) ⊙ Â(r−1) ⊙ B̂(r−1))
†R1, (3.40)

Ĉ
T

(r) = (B̂(r−1) ⊙ Â(r−1) ⊙ Ŝ(r))
†R2, (3.41)

Â
T

(r) = (Ŝ(r) ⊙ B̂(r−1) ⊙ Ĉ(r))
†R3, (3.42)

B̂
T

(r) = (Ŝ(r) ⊙ Ĉ(r) ⊙ Â(r))
†R4, (3.43)

Na primeira iteração, (r=1), as matrizes Â(0), B̂(0) e Ĉ(0) são inicializadas

aleatoriamente ou usando algum método de inicialização de forma a facilitar

a convergência.

Seja e(r) = ‖R1 − (Ĉ(r) ⊙ Â(r) ⊙ B̂(r))Ŝ
T

(r)‖F , o erro estimado após a r-ésima

iteração, a convergência é declarada quando |e(r) − e(r−1) |≤ 10−6. A partir

daí, estimativas dos parâmetros θ, φ, α e β são extraídas a partir das matrizes

estimadas.
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3.2.5.2 Modelo 2: Decomposição Tensorial PARAFAC de Terceira Ordem

e LS-KRF: Caso Não supervisionado

Um segundo método, baseado na decomposição tensorial PARAFAC de um

tensor de terceira ordem, é feito em duas fases:

1) Primeira fase: Definindo H = A ⊙ B ∈ CI.L×M , temos:

R1 = (C ⊙ A ⊙ B)ST

= (C ⊙ H)ST (3.44)

Desta forma, a Equação (3.44) representa um dos modos de matriciação do

tensor de terceira ordem, R, e pela simetria do modelo trilinear podemos

identificar os três modos de matriciação, obtidos a partir da concatenação

das fatias:

Rn.. = Sdiag(Hn.)C
T

R.p. = Hdiag(Cp.)S
T

R..k = Cdiag(Sk.)H
T

Onde n = 0 · · · , (IL), número de antenas do arranjo planar uniforme, k =

1 · · · , K, número de amostras, e p = 1 · · · , P , polarização do sinal.

Estas fatias empilhadas vão gerar os três modos do tensor, respectivamente:

R1 = (H ⊙ S)CT (3.45)

R2 = (C ⊙ H)ST (3.46)

R3 = (S ⊙ C)HT (3.47)

A estimação dos parâmetros de direção e polarização é feita usando o

algoritmo T-ALS, pela fatoração trilinear do tensor R ∈ CIL×M×P , gerando três

matrizes estimadas: Ĥ, Ĉ e Ŝ.

Cada iteração do algoritmo T-ALS é composta de três passos de estimação.

Em cada passo, uma componente da matriz é atualizada, fixando-se os outros

dois componentes em seus valores obtidos nos passos anteriores.
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Dadas as representações desdobradas (unfolded) Rn=1,2,3 do tensor de ordem

3, as condições de atualização de mínimos quadrados na r-ésima iteração são

dadas por:

Ĉ
T

(r) = (Ĥ(r−1) ⊙ Ŝ(r−1))
†R1, (3.48)

Ŝ
T

(r) = (Ĉ(r) ⊙ Ĥ(r−1))
†R2, (3.49)

Ĥ
T

(r) = (Ŝ(r) ⊙ Ĉ(r))
†R3 (3.50)

Na primeira iteração, (r=1), as matrizes Ĥ(0) e Ŝ(0) são inicializadas

aleatoriamente com o erro estimado após a r-ésima iteração, e(r) =

‖R1−(Ĥ(r)⊙Ŝ(r))Ĉ
T

(r)‖F , e a convergência é declarada quando |e(r)−e(r−1) |≤ 10−6.

2) Segunda fase: Usando o algoritmo de fatoração do produto de Khatri-Rao

por mínimos quadrados, LS-KRF, descrito em [45], conforme Seção 3.2.3.2,

dado que H = (A⊙B), substituindo em (3.29): W = H, Y = A, e Z = B, podemos

estimar as matrizes Â e B̂.

É importante observar que esta fatoração não é única, pois existe uma

ambiguidade de escala (αm) tal que am ⊗ bm = (αmam)⊗ ( 1
αm

bm) ∀αm ∈ C 6=0. No

entanto, devido o conhecimento das matrizes A e B, que tem valores unitários

na sua primeira linha, esta ambiguidade de escala é facilmente removida.

Da mesma forma, as estimativas dos parâmetros θ, φ, α e β são extraídas a

partir das matrizes estimadas.

3.2.5.3 Modelo 3: Nested-SVD para o Caso Supervisionado

Um terceiro algoritmo é proposto para os casos onde há o uso de sequência

de treinamento, ou seja, com o conhecimento do sinal recebido, baseado no

uso da dupla decomposição LS-KRF, chamado de Nested-SVD.

Dado que a matriz S é conhecida, a Equação (3.45) pode ser reescrita conforme

abaixo:

(C ⊙ A ⊙ B) = R1(S
T )† (3.51)

Com uma sequência de três produtos Khatri-Rao que podem ser agrupados

dois a dois de maneira que permita utilizar a decomposição LS-KRF em duas

fases:

1) Primeira fase: Dado que H = (A ⊙ B), podemos reescrever a Equação

(3.51) como:

(C ⊙ H) = R1(S
T )†
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Desta forma, usando o algoritmo LS-KRF, conforme descrito em 3.2.3.2, e

a partir da Equação (3.29), substituindo W= R1(S
T )†, Y = C, e Z = H, podemos

obter as matrizes Ĉ e Ĥ.

2) Segunda fase: A partir da estimação anterior e que (A ⊙ B) = H, usando

o LS-KRF mais uma vez, substituindo na Equação (3.29): W= H, Y = A, e Z =

B, podemos obter as matrizes Â e B̂.

Assim, os parâmetros θ, φ, α e β são extraídas a partir das matrizes

estimadas Â, B̂ e Ĉ.

3.2.5.4 Unicidade

Utilizando as condições para unicidade de uma decomposição tensorial

PARAFAC apresentadas na Seção 3.1.5, e considerando que na Equação (3.36)

o número de colunas das matrizes de decomposição A, B, C, H, e S é M ,

temos a condição de Kruskal que atende a propriedade de unicidade, conforme

Equação (3.9):

kA + kB + kC + kS ≥ 2M + 3 (3.52)

Analisando as características do sistema, as matrizes A e B são matrizes

Vandermonde garantindo que as colunas são independentes, com kA=

min[I-1,M ] e kB=min[L-1,M ], a matriz de polarização C tem a resposta da

antena vetorial linearmente independente, conforme [66], com kC = min[P,M ],

e finalmente, a matriz de sinais S tem fontes descorrelacionadas mutuamente,

com kS = min[K,M ].

Nestas condições a Equação (3.52) pode ser reescrita como:

min[I − 1,M ] +min[L − 1,M ] +min[P,M ] +min[K,M ] ≥ 2M + 3

Para M ≥ P = 3, temos kC = 3, e como K ≥ M , o kS = M , implica nas

seguintes situações:

1. Caso max[I − 1, L− 1] ≤ M , temos I − 1 + L− 1 + 3 +M ≥ 2M + 3, ou seja,

I + L ≥ M + 2. Este é o limite inferior do número de antenas necessárias para

o caso da quantidade de sinais superar o número de antenas em cada eixo

que garante a identificabilidade dos sinais.

2. Caso min[I − 1, L − 1] ≥ M , resulta em M + M + 3 + M ≥ 2M + 3, com

M ≥ 1, ou seja a unicidade será sempre satisfeita quando o número de fontes

é inferior ao número de antenas em cada eixo.
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3. Caso I − 1 ≤ M , implica em I − 1 + M + 3 + M ≥ 2M + 3, com I ≥ 1.

Ou seja, o limite inferior do número de antenas necessárias para o caso de

mais de 3 fontes, é ter pelo menos uma coluna de antenas com pelo menos

L − 1 ≥ M sensores, ou seja uma ULA com L − 1 ≥ M . O mesmo se aplica

quando L− 1 ≥ M , com uma ULA no outro eixo.

3.2.6 Resultados de Simulação para Arranjos UPA

Apresentamos a seguir os resultados de simulações computacionais para

avaliação de desempenho dos algoritmos propostos para duas situações:

Separação cega de fontes, onde não existe informação prévia dos sinais com

a avaliação dos algoritmos Q-ALS e T-ALS. Outra situação é quando temos a

separação supervisionada de fontes, com piloto, ou sequência de treinamento

prévia. Neste caso é feita a avaliação dos algoritmos Q-ALS e T-ALS com

a matriz de sinais S conhecida, simplificando o algoritmo, juntamente com

o algoritmo N-SVD. Foi considerado um arranjo UPA com antenas vetoriais

elétricas (P = 3) dispostos sobre o plano xz, conforme Figura 3.24.
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Figura 3.24: Arranjo Uniforme Planar (UPA)
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3.2.6.1 Desempenho para o Caso Não Supervisionado

Inicialmente foi avaliado o desempenho dos algoritmos T-ALS e Q-ALS para

o caso de ausência de informações dos sinais, quanto ao número de fontes

para uma mesma configuração do arranjo com I = L = 3 antenas apresentada

na Figura 3.25.

Podemos observar que com a duplicação do número de fontes o erro médio

das estimativas se amplia por um fator de 10, e para 3 fontes o desempenho

dos algoritmos é equivalente, mas com seis fontes o algoritmo Q-ALS tem um

desempenho melhor quando comparado ao algoritmo T-ALS.
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Figura 3.25: RMSE dos angulos com I = L = 3 antenas sob UPA e 3 e 6 fontes

Em seguida avaliou-se o tempo médio de execução para a mesma

configuração anterior, conforme Figura 3.26, é mostrado que para 3 fontes

os tempos médios são próximos a 1 s.

Com a duplicação do número de fontes o algoritmo Q-ALS duplica os tempos

médios de execução quando comparado com 3 fontes, enquanto que o

algoritmo T-ALS aumenta por um fator de 6, explicado pelo menor impacto

das matrizes A ∈ CI×M e B ∈ CL×M no algoritmo Q-ALS frente a matriz H

∈ CIL×M usada no algoritmo T-ALS.

Em complemento, a Figura 3.27 apresenta o comparativo do desempenho

dos dois algoritmos para a mesma configuração de I = L = 3 antenas e fontes

M = 3, para uma SNR de 10dB, no formato de Scatter Plot, onde a posição

real das fontes é representada por um círculo, e as estimativas de posição por

um "x".
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Figura 3.26: Tempo médio de execução para os algoritmos Q-ALS e T-ALS+SVD, com
I = L = 3 antenas no arranjo UPA para 3 e 6 fontes (M )

O Q-ALS, nesta situação, apresenta estimativas com dispersão dos resultados,

e o algoritmo T-ALS apresenta as estimativas também dispersas no

círculo, mostrando um desempenho equivalente para ambos os algoritmos,

corroborando a avaliação anterior, feita pela métrica do RMSE de estimativa

dos ângulos com uma pequena diferença a favor do algoritmo T-ALS.

Finalmente, foi avaliado o desempenho dos algoritmos propostos para

diferentes números de antenas do arranjo, com 3 fontes, comparando-se o

erro médio quadrático (RMSE) dos ângulos de direção e polarização, mostrados

na Figura 3.28, com melhores estimativas quando aumentamos o número

de sensores, como esperado, e o desempenho do algoritmo Q-ALS supera o

algoritmo T-ALS neste caso.

3.2.6.2 Desempenho para o Caso Supervisionado

Nos casos de transmissão supervisionada, onde há o conhecimento prévio

das informações do sinal, por exemplo, uso de sequência de treinamento, ou

piloto, foram desenvolvidos três algoritmos de estimativa dos parâmetros dos

sinais: Q-ALS, T-ALS e N-SVD.

Inicialmente avaliou-se o desempenho comparando-se o tempo médio de

execução do algoritmo, mostrados na Figura 3.29, para 3 e 6 fontes, com

3 sensores.

O algoritmo N-SVD apresenta menores valores de tempo médio de execução,
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Figura 3.27: Comparativo do desempenho dos algoritmos Q-ALS e T-ALS com 3
fontes (M = 3), e I = L = 3 sensores, com SNR de 10 dB. A posição
real das fontes é representada por um círculo, e as estimativas por um
(x)
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Figura 3.28: RMSE dos ângulos para os algoritmos Q-ALS e T-ALS com I = L = 3 e
I = L = 6 antenas, para três fontes (M = 3)

mesmo para 6 fontes, tendo em vista não ser iterativo. Os algoritmos Q-ALS

e T-ALS para 3 fontes apresentam valores médios simulares, mas com a

elevação do número de fontes para 6, o algoritmo T-ALS apresenta os maiores

valores médio devido o impacto do tamanho da matriz H.

Foi avaliado ainda estes algoritmos em relação à variação do número
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Figura 3.29: Tempo médio de execução dos algoritmos Q-ALS, N-SVD e T-ALS com 3
e 6 antenas , para três fontes.

de fontes para uma mesma configuração do arranjo com N = 3 antenas

apresentado na Figura 3.30. Podemos observar que o algoritmo Q-ALS não

altera o seu desempenho com a variação de fontes quando comparado ao

algoritmo T-ALS, e que o algoritmo N-SVD tem desempenho melhor que o

T-ALS com a vantagem de não ser recursivo, com menor complexidade.

Em seguida destacou-se o desempenho dos três algoritmos para a mesma

configuração de 6 fontes, e 3 sensores, conforme Figura 3.31, onde o Q-ALS

apresenta uma maior precisão nas estimativas, com menor RMSE dos ângulos

estimados para a mesma SNR, seguido do N-SVD.

Em complemento, a Figura 3.32 apresenta o comparativo do desempenho

dos três algoritmos para a mesma configuração de 3 antenas e 6 fontes, para

uma SNR de 10dB, no formato de Scatter Plot, onde a posição real das fontes

é representada por um círculo, e as estimativas de posição por um "x".

O algortimo Q-ALS, mostrado à direita, apresenta melhores estimativas de

ângulos, todas concentradas no círculo indicativo da posição real. O algoritmo

N-SVD, da mesma forma, apresenta também excelentes estimativas. O

algoritmo T-ALS, mostrado mais à esquerda, apresenta uma maior dispersão

dos resultados estimados, corroborando a avaliação objetiva feita pela métrica

do RMSE médio de estimativa dos ângulos.

E finalmente, foi avaliado o desempenho dos algoritmos propostos

comparando-se o tempo médio de execução para um arranjo com 3 antenas e

com 3 e 6 fontes, mostrados na Figura 3.33.
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Figura 3.30: RMSE dos ângulos para os três algoritmos, com 3 antenas sob arranjo
UPA, para 3 e 6 fontes
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Figura 3.31: RMSE dos angulos com 3 antenas e 6 fontes

O algoritmo N-SVD apresenta os menores valores de tempo de execução,

variando pouco em função do número de fontes, pois não é um algoritmo

iterativo.
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Figura 3.32: Comparativo do desempenho dos algoritmos Q-ALS, N-SVD e T-ALS
com seis fontes (M = 6), I = L = 3 antenas, para SNR de 10 dB. A
posição real das fontes é representada por um círculo, e as estimativas
por um (x)

Os algoritmos Q-ALS e T-AlS têm resultados praticamente idênticos para

3 fontes, no entanto, o algoritmo T-ALS apresenta maior tempo médio de

execução quando são colocadas 6 fontes, devido o impacto do tamanho da

matriz H no algoritmo iterativo.
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Figura 3.33: Tempo médio de execução para os algoritmos Q-ALS, N-SVD e T-ALS
três fontes (M = 3)

3.3 Resumo dos Resultados do Capítulo

Neste capítulo foi feita uma revisão dos conceitos de tensores como

base para o entendimento dos métodos propostos, e foram estruturados

os modelos matemáticos utilizados no desenvolvimento dos estimadores
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tensoriais propostos.

Estes métodos foram submetidos à simulação computacional e avaliado o

desempenho dos algoritmos propostos frente a diversos critérios, como erro

médio, tempo de execução e número de fontes, Resumidamente, temos as

seguintes conclusões:

◮ Os métodos tensoriais mostraram-se mais preciso em suas estimativas,

mesmo para um pequeno número de antenas, frente aos métodos

convencionais MUSIC e ESPRIT para um arranjo ULA com número

equivalente de antenas. Mostrou-se ainda que à medida que o número

de antenas se eleva, os métodos tensoriais propostos tendem a superar

os métodos matriciais sob maiores SNRs.

◮ Na comparação entre métodos tensoriais para arranjos L-shape, foi

introduzido o modelo concatenado dos tensores de direção e polarização

de cada eixo, com desempenho superior ao modelo convencional que

utiliza os tensores de modo sequencial.

◮ Explorando a capacidade de estimação de fontes, foi mostrado ainda

que o modelo tensorial concatenado combinado com parâmetros de

polarização tem capacidade suficiente para distinguir fontes de forma

totalmente cega, ou seja sem informações prévias do sinal recebido.

◮ As simulações revelaram também que o algoritmo T-ALS proposto se

mostrou suficiente para identificar diversas fontes, mesmo com ângulos

de azimute e elevação idênticos, mas com características de polarização

distintas, usando um pequeno número de antenas.

◮ Ainda para o arranjo L-shape, no caso de uso de sequência de

treinamento no sinal transmitido, abriu-se a oportunidade para

desenvolver um modelo alternativo, usando SVD, com desempenho

equivalente ao algoritmo T-ALS, mas com a vantagem de tempo de

execução inferior.

◮ A partir da análise do sinal para arranjos UPA foram desenvolvidos

os algoritmos Q-ALS, e T-ALS combinado com SVD, que apresentaram

resultados equivalentes na métrica de RMSE, com o algoritmo Q-ALS

levando vantagem quando é utilizado um maior número de antenas ou

fontes, sob o parâmetro tempo de execução.

◮ Para os casos de sistemas supervisionados em arranjos UPA, foi

desenvolvido um algoritmo alternativo, com uso do SVD em duas
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fases, chamado N-SVD, com resultados de erro médio equivalente ao

Q-ALS, mas com vantagem de desempenho apresentando menor tempo

de execução. O algoritmo T-ALS combinado com o algoritmo SVD

apresenta estimações com maior tempo de execução em ambos os casos,

supervisionado ou cego.

No capítulo a seguir, será feita a inclusão de modelos mais realistas de

ganho dos arranjos utilizados, a partir da modelagem computacional em

sistemas de alta frequência e avaliado o desempenho em comparação com

os modelos ideais.



Capítulo 4
Modelagem de Arranjos de Antenas

Com Uso de Simuladores

Nos capítulos anteriores foram apresentados os modelos tensoriais de

arranjos de antenas polarimétricas utilizando uma visão idealizada do

comportamento dos elementos individuais, com ganho unitário e isotrópico.

No intuito de verificarmos o comportamento destas antenas de uma maneira

mais prática, perto do que se encontra no dia a dia em campo, buscou-se

uma forma de simular as condições de uso dos arranjos de antenas e obter os

parâmetros destes sistemas mais próximos da realidade.

Atualmente, a área de projetos de sistemas em alta frequência utiliza cada

vez mais softwares de simulação de campo eletromagnético (EM) altamente

especializados para desenvolver e otimizar projetos destes sistemas, onde

a análise e otimização assistida por computador substituíram o processo

tradicional de modificações experimentais iterativas a partir de um projeto

inicial [68].

Diversos procedimentos iterativos de simulação numérica foram

desenvolvidos com a evolução dos computadores para auxiliar na solução de

problemas envolvendo equações diferenciais, entre eles: Diferenças Finitas

no Domínio do Tempo, Método dos Momentos e Métodos de Elementos

Finitos, [69].

Neste contexto, o estudo e avaliação destas estruturas é feito usando uma

modelagem do sensor Tripolo elétrico com o apoio do software para análise de

estruturas de alta frequência, High Frequency Structure Simulator - HFSS R©

[70].

Inicialmente apresentaremos o software, suas características e condições de

utilização, e em seguida detalharemos o modelo do tripolo utilizado, bem como

as características de interesse obtidas para o elemento individual e para os

74
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arranjos L-shape e Planar, em especial o ganho que será utilizado nos modelos

matemáticos descritos anteriormente. Ao final é feita uma comparação de

resultados entre as simulações com o ganho ideal e o modelado para o arranjo

L-shape mais próximo da realidade.

4.1 O Simulador High Frequency Structure Simulator -

HFSS R©

O HFSS R© da Ansoft Corporation, [70], é um software de alto desempenho

para simulações eletromagnéticas em dispositivos com qualquer geometria

3D, usado para a análise do comportamento de estruturas radiantes

complexas, como Antenas do tipo monopolo, dipolos, fenda, corneta, microfita,

etc, apresentando como grande vantagem a integração entre modelagem da

estrutura, visualização, simulação e obtenção de resultados de forma precisa e

rápida, gerando os padrões de irradiação dos campos próximo e distante, bem

como os dados de caracterização de antenas, como frequência de ressonância,

impedância de entrada, ganho, diretividade, entre muitos outros.

Este simulador emprega o método de elementos finitos, Finite Element Method

- FEM para encontrar a solução dos campos eletromagnéticos, dividindo o

espaço a ser analisado em uma sequência de pequenas regiões, no formato

de tetraedros, representando os campos de cada tetraedro com uma função

local, discretizando-o. A função local é obtida a partir das equações de

Maxwell em forma diferencial ou integral que representam o fenômeno, com

suas respectivas condições de contorno. O conjunto de tetraedros representa

assim o modelo geométrico em estudo, chamado de Malha de Elementos

Finitos, onde o número destes elementos pode ser aumentado para uma maior

precisão, à custa de um maior esforço computacional, de forma adaptativa

dependendo da variação de campo elétrico, com maior número de tetraedros

onde há uma maior variação, conforme Figura 4.1.

Figura 4.1: Detalhe da Malha de Elementos Finitos para o tripolo elétrico
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Este processo faz uso de um conjunto de operações adaptativas afim de

gerar uma malha adequada para a estrutura, usando um processo iterativo

até que a diferença entre os parâmetros de espalhamento entre as iterações

seja reduzida para um valor abaixo do especificado pelo usuário. O tempo

de computação, assim, dependerá em grande parte do tamanho de cada

tetraedro, ou seja, a precisão da malha deve ser pequena o suficiente

para representar a fidelidade da estrutura, mas dentro dos limitantes

computacionais.

Para uma simulação confiável é necessário seguir um conjunto de etapas

fundamentais.

◮ Criação do Modelo Paramétrico: Definindo a geometria do modelo sob

análise, as condições de contorno e os tipos e a quantidade de excitações.

◮ Configuração de Análise: Definindo as configurações da solução desejada

e a faixa de frequência a ser coberta;

◮ Resultados: Criação dos relatórios e gráficos de campo utilizados, bem

como animações do comportamento dinâmico de alguns parâmetros;

◮ Laço de Resolução: Análise dos resultados, verificando a convergência

para valores esperados, ou se é necessário o refinamento do modelo.

A modelagem da estrutura sob análise é feita com o auxílio de ferramentas

do próprio software que possibilitam a geração de modelos com a geometria o

mais próximo possível da realidade, com ferramentas semelhantes a qualquer

software 3D, sendo possível ainda a importação de arquivos nos formatos mais

comuns utilizados para a geração destas geometrias. Adicionalmente é feita a

associação de cada estrutura gerada a um material com várias características

que são importantes para a solução das equações, tais como permissividade

elétrica ǫ, permeabilidade magnética µ, condutividade ℧, etc.

As condições de contorno controlam as características dos planos, faces ou

interfaces entre os objetos que são fundamentais para a solução das equações

de Maxwell, reduzindo a complexidade do modelo. São exemplos os tipos de

excitação, Wave ports oriundas do meio externo, ou Lumped ports internas à

estrutura, os tipos de superfície, de radiação, perfeitamente elétricas, etc, e as

propriedades dos materiais utilizados.

Para uma estrutura alimentada por portas, o software calcula o campo

elétrico para cada modo suportado, gerando a matriz de espalhamento de

reflexão e transmissão total através daquela porta. A matriz de espalhamento

é usada para representar os campos em cada tetraedro e assim calcular as

soluções para a região de campo distante através de técnicas numéricas.



4.2. Modelos Desenvolvidos 77

Os limites de radiação são usados para simular problemas não resolvidos

e que permitem irradiar ondas infinitamente longe no espaço, tais como

no design de antenas. Através de uma caixa criada especificadamente

para análise dos limites de radiação onde ocorre a absorção das ondas,

estabelecendo-se assim, um limite de análise.

A interface do HFSS R© pode ser vista na Figura 4.2 que também apresenta a

malha gerada para um sensor tripolo e a caixa de vácuo que absorve a radiação

emitida pela antena, usada para estimar o valor do campo eletromagnético

irradiado.

Figura 4.2: Interface de configuração de antena dipolo

4.2 Modelos Desenvolvidos

4.2.1 Dipolo

Inicialmente foi feita a simulação de um elemento irradiante bastante

conhecido, o dipolo elétrico, de forma a adquirir o domínio da ferramenta

e comparar os resultados de simulação com os padrões já conhecidos na

literatura especializada, conforme Figura 4.3, otimizando os parâmetros de

comprimento dos braços e raio do condutor utilizado, o tipo de porta de

excitação utilizada (Lumped port), e a dimensão do gap que separa os braços

do dipolo, ajustando através da ferramenta de projeto para sintonizar em 1

GHz.



4.2. Modelos Desenvolvidos 78

Figura 4.3: Módulo HFSS R© de configuração de antena dipolo

Em seguida foi gerado o modelo 3D no simulador, e após a convergência,

foram gerados gráficos com os resultados de alguns parâmetros da antena,

como a perda de retorno, RL (Return Loss), que é a medida da taxa de potência

refletida no sistema expressa em dB, confirmando o bom desempenho do

modelo simulado para a frequência de 1 GHz, com banda de aproximadamente

50 MHz com frequência central em 994,5 MHz, conforme Figura 4.4.

O resultado de ganho do dipolo elétrico projetado para menor perda de

retorno em 1 GHz sob a forma de diagrama 3D é apresentado na Figura

4.5. A variação dos parâmetros físicos do dipolo, tais como o comprimento

dos braços, o raio do condutor, ou tamanho do gap de alimentação, se

reflete nos seus parâmetros elétricos, alterando a sua banda de frequência e

ganho. Para o dipolo modelado, a figura do ganho em 3D toma forma de uma

esfera achatada nos polos, confirmando o caráter omnidirecional no diagrama

horizontal em relação ao ângulo de azimute θ, com pequena variação do ganho

em função do ângulo de azimute das fontes, mas com características diretivas

em relação ao ângulo de elevação φ das fontes.

A Figura 4.6 apresenta o ganho da antena Dipolo de uma maneira mais

tradicional, representando o corte vertical do ganho 3D, orientado pelo ângulo

φ de elevação, onde temos uma grande variação de Ganho, partindo de valores
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Figura 4.4: Perda de retorno da antena dipolo

Figura 4.5: Diagrama de ganho 3D de antena dipolo de referência

muito baixos (-50 dB) para ângulos pequenos, chegando a -3 dB para 38o

indicado pelo marcador m1, um máximo de 2,3 dB em 90o, indicado pelo

marcador m3, e caindo progressivamente de forma simétrica para -3 dB em

142o, indicado pelo marcador m2, e um mínimo em 180o. Desta forma, a largura

de banda de meia potência para o dipolo é de aproximadamente ±50o para o

ângulo de elevação de φ = 90o. Ou seja, um dipolo elétrico não pontual real,

com dimensões sintonizadas para menor perda de retorno em 1 GHz, tem

ganho com caráter omnidirecional no diagrama horizontal, e ganho direcional

no ângulo de elevação de φ = 90o ±50o no diagrama vertical.
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Figura 4.6: Diagrama vertical de ganho 2D da antena dipolo de referência

4.2.2 Tripolo

Após estes procedimentos de aprendizagem da ferramenta de modelagem

3D a partir do dipolo elétrico, partiu-se para a geração do modelo

tridimensional do tripolo elétrico, utilizando os parâmetros de projeto do dipolo

de referência, colocando-os de forma ortogonal seguindo os 3 eixos, conforme

Figura 4.7

Figura 4.7: Modelo 3D do tripolo

Na Figura 4.8 é mostrada a excitação do tripolo elétrico usando 3 portas
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Lumped port, uma para cada um dos eixos, de forma a representar o centro de

fase elétrico do tripolo, destacando o detalhe da excitação no eixo X do tripolo

elétrico.

Figura 4.8: Portas de Excitação destacando o eixo X do tripolo

De uma maneira mais explícita, na Figura 4.9, podemos ver a

representação gráfica dos vetores de campo elétrico de excitação do Tripolo,

um para cada eixo, mostrando a deflexão sofrida em função da estrutura

dos dipolos adjacentes, que será percebida no diagrama de ganho do tripolo,

apresentando variações expressivas, com lóbulos secundários e "nulos.

Figura 4.9: Campos elétricos no gap do tripolo

O resultado de ganho do Tripolo elétrico projetado para menor perda de

retorno em 1 GHz sob a forma de diagrama 3D é apresentado na Figura

4.10 que toma um formato esférico achatado nas laterais superior e inferior,

refletindo o efeito da proximidade mútua dos dipolos utilizados, reforçando

características diretivas em relação ao ângulo de elevação φ das fontes, e
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pequenas variações para azimute.

Figura 4.10: Diagrama de ganho 3D do tripolo elétrico

4.2.3 Arranjo L-shape

Consolidada a obtenção das características do tripolo, partiu-se para a

geração dos modelos físicos dos arranjos estudados nas seções anteriores

e a correspondente coleta dos parâmetros de ganho de arranjos, utilizando

o tripolo elétrico como sensor para avaliação do desempenho dos métodos

propostos na seção anterior.

A Figura 4.11 apresenta o diagrama de ganho 3D do arranjo L-shape com 3

antenas (N=3) que será usado mais à frente na avaliação dos diversos métodos

de DOA. Enquanto o ganho máximo do sensor tripolo individual era de 1,87

dB, o arranjo L-shape, com 3 antenas em cada braço, fornece um ganho

máximo de 8,04 dB, à custa de um maior número de lóbulos secundários

e nulos no diagrama.

Na Figura 4.12 é mostrado o ganho vertical no formato 2D da mesma

configuração do arranjo, onde se observa o destaque do ganho na direção

perpendicular ao plano do arranjo, com vários lóbulos secundários com

variações acentuadas de ganho. Os marcadores m2, em 72o, e m3, em 110o,

fornecem a largura de feixe de meia potência em 90o ± 30o.

Em seguida foi feita a alteração do número de antenas no arranjo de forma

a se observar o efeito no diagrama de ganho. A Figura 4.13 apresenta o

ganho 3D do arranjo L-shape com 5 antenas (N=5), onde se observa uma

maior ganho do arranjo, 10,3 dB, para azimute e elevação de 90o à custa de

um maior conjunto de lóbulos secundários com menor ganho e uma menor
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Figura 4.11: Ganho 3D do arranjo L-shape

Figura 4.12: Diagrama de ganho 2D vertical de arranjo L-shape com 3 antenas (N=3)

largura de feixe de meia potência, representado pela superfície mais irregular

do diagrama.

Em complemento, a Figura 4.14 apresenta o corte vertical do diagrama 3D

do arranjo L-shape com 5 antenas (N=5), mostrando um maior número de

lóbulos secundários, estreitando a faixa de maior ganho para uma elevação de

90o com uma largura de feixe de meia potência de ±12o, que será usada mais à

frente na avaliação de um caso prático na determinação da faixa de interesse

de localização de usuários em sistemas de comunicações móveis.
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Figura 4.13: Diagrama de ganho 3D do arranjo L-shape com 5 antenas (N=5)

Figura 4.14: Diagrama de ganho vertical de arranjo L-shape com 5 antenas (N=5)

4.2.4 Arranjo Planar Uniforme - UPA

Da mesma forma, foram geradas as configurações de arranjo planar

uniforme e obtidos os parâmetros de ganho 3D e 2D para diferentes conjuntos

de sensores.

A Figura 4.15 mostra o diagrama de ganho 3D do arranjo UPA com 3x3

antenas (N=3), com ganho máximo de 10,4 dB, com uma superfície mais

regular, indicando menor número de lóbulos secundários e nulos. Este

arranjo UPA e o arranjo L-shape com N=5 (2x5-1=9), por apresentarem o
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mesmo número de antenas, serão usados na avaliação do impacto do ganho

obtido por simulação, em comparação com o ganho ideal G(φ, θ) = 1.

Figura 4.15: Ganho 3D do arranjo UPA

Na Figura 4.16 é apresentado o ganho vertical no formato 2D da mesma

configuração do arranjo, onde se observa o destaque do ganho na direção

perpendicular ao plano do arranjo, com vários lóbulos secundários e com

variações acentuadas de ganho, mostrando uma largura de feixe de meia

potência de ±30o.

Figura 4.16: Diagrama de ganho 2D e vertical de arranjo UPA com 3 antenas (N=3)

O efeito da alteração do número de antenas no arranjo é observado no
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diagrama de ganho da Figura 4.17 que mostra o ganho 3D do arranjo UPA

com 5 antenas (N=5), onde se observa uma maior ganho do arranjo, 14,7

dB, para azimute e elevação de 90o à custa de um maior conjunto de lóbulos

secundários com menor ganho.

Figura 4.17: Diagrama de ganho 3D do arranjo UPA com 5 antenas (N=5)

A Figura 4.18 apresenta o corte vertical do diagrama 3D do arranjo UPA

com 5 antenas (N=5), mostrando a faixa de maior ganho para uma elevação de

90o com uma largura de feixe de meia potência em 90o ± 12o. Ou seja, o ganho

do arranjo se eleva à custa de uma maior diretividade.

Figura 4.18: Diagrama de ganho vertical de arranjo UPA com 5 antenas (N=5)
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A partir destas representações práticas dos arranjos gerados pelo software

HFSS R©, obteve-se a matriz de ganho G(φ, θ) dos arranjos, sob a configuração

específica da quantidade e disposição dos sensores, para uso nas simulações

dos algoritmos baseados nos métodos tensoriais propostos, substituindo o

valor ideal omnidirecional G(φ, θ) = 1, verificando seu efeito no desempenho de

cada modelo.

A Figura 4.19 resume a metodologia empregada e o impacto da modelagem

prática do arranjo nos modelos propostos que será investigada na seção

seguinte, onde para modelos de antenas ideais, o ganho do arranjo

é considerado omnidirecional, independentemente do tipo de arranjo

empregado, enquanto que na modelagem mais realista, para cada tipo de

sensor, polarimétrico ou escalar, e tipo de arranjo, é obtido um diagrama de

ganho (θ, φ) específico para cada situação.

Figura 4.19: Modelagem de Arranjos

4.3 Resultados de Simulação

Nesta seção serão avaliados os resultados de desempenho em relação

ao arranjo L-shape com ganho modelado pelo simulador de alta frequência

HFSS R© em comparação com os resultados idealizados com antena
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omnidirecional.

Na prática, tendo o conhecimento do ganho do modelo em relação aos ângulos

de azimute e elevação, dependendo da aplicação do arranjo de antenas,

esta informação pode ser usada de maneira diferente. Em sistemas de

goniometria, cujo objetivo é a identificação da origem da fonte de um sinal,

seja interferente ou não autorizado, esta informação é inserida como ajuste

do ganho direcional, sob a forma de curva de correção de leitura do sistema,

de modo a compensar a variação do ganho do arranjo utilizado para cada

direção. Outra forma, por exemplo em sistemas celulares, esta informação

auxilia a posicionar o arranjo para a direção de maior ganho, conforme Figura

4.20, melhorando a cobertura da área de interesse.

Figura 4.20: Esquema visual de uma Estação Radio Base com seu ganho diretivo

Neste sentido, foi simulada uma situação prática em redes móveis celulares

com sistemas setorizados, onde é utilizado arranjo de antenas para atender

uma faixa de maior interesse de cobertura, relativo à área com maior

probabilidade de posicionamento de usuários, ou cluster [46], e uma área

periférica mais larga com menor probabilidade de usuários.

Inicialmente foi utilizado um arranjo L-shape, onde foi identificada a largura

de feixe de meia potência do arranjo com maior ganho para azimute e elevação

de 90o, em uma faixa de ±15o na Figura 4.14, que apresenta o modelo de ganho

obtido pela simulação do arranjo em formato L-shape com tripolos e N=5

sensores, sendo considerado um sistema com diversos usuários posicionados

aleatoriamente entre 30o e 150o de azimute, cobrindo um setor de 120o, e

elevação entre 60o e 120o, com uma área central de maior interesse com azimute
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e elevação entre 90o ± 15o.

A Figura 4.21 mostra a plotagem de diversas estimações usando o algoritmo

T-ALS em um arranjo em formato L-shape para uma SNR de 10 dB, com a

posição real das fontes representada por um círculo e as estimativas por um

(x), onde se percebe uma maior concentração de estimativas de usuários na

faixa central correspondente ao cluster da estação.
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Figura 4.21: Scatter plot dos ângulos de DOA das fontes com a posição real
representada por um círculo, e as estimativas por um (x), de um arranjo
L-shape com N=5 sensores

Para investigar o efeito do ganho realista do arranjo, foram feitas

simulações sob três situações:

◮ A primeira com o uso de antenas com ganho unitário omnidirecional e

usuários com a mesma probabilidade de posicionamento dentro do setor

de 120o de azimute e elevação;

◮ Uma segunda com ganho direcional do arranjo e uma probabilidade de

0,66 de usuários posicionados dentro do cluster de 15o e os outros 0,33

distribuídos aleatoriamente no setor de 120o;

◮ Finalmente uma terceira simulação usando o ganho direcional do

arranjo, mas com usuários de mesma probabilidade de posicionamento

dentro do setor de 120o de azimute e elevação.

Os resultados estão mostrados na Figura 4.22, onde os valores de

estimação com uso do ganho direcional do arranjo mas com usuários
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equiprováveis dentro do setor apresentam resultados com maior erro médio

em relação às antenas ideais omnidirecionais, como resultado da influência

do ganho direcional do arranjo na matriz de direção.
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Figura 4.22: Comparação das estimativas para o caso Ideal, realista com cluster e
Omni, de um arranjo L-shape com N=5 sensores.

Por outro lado, as estimativas com uso do ganho direcional e usuários com

maior probabilidade dentro do cluster ficaram em uma posição intermediária

entre as estimativas otimistas do ganho unitário omnidirecional, e as

pessimistas com ganho direcional e usuários com posição equiprovável dentro

do setor, indicando ainda um delta de 4 dB na SNR, para se obter a mesma

qualidade de estimativa do modelo idealizado.

Em seguida, para investigar o efeito do ganho direcional em um arranjo UPA,

foram feitas simulações sob as mesmas condições do L-shape, usando um

arranjo UPA com 3x3 antenas (N=3), algoritmo Q-ALS e largura do cluster de

±30o, obtido da Figura 4.16.

A Figura 4.23, mostra uma série de estimativas de DOA de usuários sob

SNR de 20 dB, com uma área central com azimute e elevação entre 90o ± 30o,

correspondendo ao cluster de usuários do setor coberto pelo arranjo, relativo

à área com maior probabilidade de posicionamento de usuários, e uma área

periférica mais larga com menor probabilidade.

Os resultados de simulação estão mostrados na Figura 4.24, com as

estimativas do modelo UPA com o algoritmo Q-ALS usando ganho direcional

e cluster de usuários em posição intermediária entre as estimativas otimistas

do modelo idealizado, e as mais pessimistas com uso do cluster e distribuição

equiprovável de usuários dentro do setor, corroborando os resultados da
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simulação com L-shape.
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Figura 4.24: Comparação das estimativas para o caso Ideal, realista com cluster e
Omni, de um arranjo UPA com N=3 sensores.

4.4 Resumo do Capítulo

Neste capítulo, foi apresentada a ferramenta de modelagem de estruturas

de alta frequência HFSS R©, desenvolvidos os modelos para a estrutura dipolo,

tripolo elétrico, e para os arranjos L-shape e UPA, obtendo-se o parâmetro de
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ganho direcional. Foi demonstrada a influência do ganho direcional do arranjo

no desempenho dos métodos de estimação de DOA, a partir de simulações

computacionais sob condições de uso em sistemas de comunicações móveis,

introduzindo o conceito de cluster de usuários. Os resultados apontam

para desempenho similares do L-shape e UPA, obedecendo as características

direcionais de cada arranjo.

Assim, a partir do conhecimento do ganho do arranjo é possível ajustar

as características físicas de instalação do sistema de forma a obter a máxima

eficiência.



Capítulo 5
Conclusões e Perspectivas

Nesta dissertação foi estabelecida a ligação entre a decomposição tensorial

PARAFAC e arranjo de antenas vetoriais nos formatos ULA, L-shape e UPA

para separação de fontes e identificação de parâmetros. A partir dos modelos

tensoriais propostos foram usados os algoritmos T-ALS concatenado e SVD

para arranjo L-shape, e Q-ALS, T-ALS+SVD e N-SVD para o arranjo UPA,

com variações a partir da combinação do tipo de arranjo e conhecimento ou

não do sinal. Adicionalmente foi feita a avaliação dos diversos algoritmos

sob a ótica de erro médio de estimação e tempo de execução, apresentando

resumidamente as seguintes conclusões:

◮ O modelo tensorial mostrou-se mais preciso em suas estimativas, mesmo

para um pequeno número de sensores, frente aos métodos convencionais

MUSIC e ESPRIT para um arranjo ULA com número equivalente de

sensores.

◮ Na comparação entre modelos tensoriais para arranjos L-shape, o modelo

concatenado apresenta desempenho superior ao modelo convencional

devido a maior quantidade de informações na matriz de direção.

◮ Foi mostrado ainda que o modelo tensorial concatenado consegue

distinguir eficientemente fontes com mesma direção espacial (φ,θ), mas

com parâmetros de polarização (α,β) distintos.

◮ Nos casos de sinal supervisionado em arranjo L-shape, o algoritmo

alternativo, usando SVD, mesmo apresentando desempenho equivalente

ao algoritmo T-ALS sob modelo tensorial concatenado na estimação

dos ângulos de DOA, tem o diferencial de apresentar menor tempo de

execução.

◮ Em arranjos UPA, a partir dos modelos tensoriais desenvolvidos foram

usados os algoritmos Q-ALS, e T-ALS combinado com SVD, que apesar
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de fornecerem resultados equivalentes na métrica de RMSE, o Q-ALS leva

vantagem no critério de menor tempo de execução.

◮ Para os casos de sistemas supervisionados em arranjos UPA, o algoritmo

alternativo N-SVD obteve estimativas com erro médio equivalente ao

Q-ALS, levando vantagem pelo menor tempo de execução. O algoritmo

T-ALS combinado com SVD apresenta estimações com menor precisão e

maior tempo de execução.

Adicionalmente, foi desenvolvida a simulação computacional do sensor

tripolo, modelada a resposta de um arranjo com este tipo de sensor nos

formatos L-shape e UPA, e extraída a tabela de valores normalizados do ganho

em função dos ângulos, G(θ,φ). De posse desta informação, foram feitas

simulações computacionais incluindo este parâmetro nos modelos propostos.

Foi demonstrada ainda a influência do ganho direcional do arranjo no

desempenho dos algoritmos de estimação de DOA, com resultados similares

para o L-shape e UPA, obedecendo as características direcionais de cada

arranjo, em contraponto ao modelo isotrópico utilizado normalmente em

simulações.

Finalmente, de uma maneira geral, este trabalho descortina uma pequena

parcela do vasto mundo dos métodos tensoriais, com ênfase na modelagem

em arranjos de antenas polarimétricas, contribuindo com um aspecto realista

do parâmetro ganho direcional, obtido a partir de simulação computacional.

Como perspectivas de trabalhos futuros, sugerimos a abordagem dos

seguintes aspectos:

◮ Modelagem de sensor polarimétrico incluindo as antenas magnéticas, e

posterior simulação de arranjos sob diversos formatos, para obtenção do

parâmetro de ganho direcional;

◮ Extensão da avaliação de desempenho de novos métodos tensoriais, para

a mesma configuração de arranjos polarimétricos, elevando a diversidade

de informações pelo uso de transmissão em blocos de tempo sucessivos,

ou com códigos diferentes;

◮ Avaliação de arranjos de antenas vetoriais quanto a diversidade espacial,

melhoria da eficiência espectral e elevação da capacidade dos sistemas

de comunicação móvel;

◮ Modelagem dos métodos propostos e avaliação do desempenho incluindo

a propriedade de invariância ao deslocamento, naturalmente observada
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nos arranjos estudados, para melhor aproveitamento da diversidade

espacial.

◮ Modelagem do problema e avaliação do desempenho no caso mais realista

em que as antenas não possuem o mesmo centro de fase.
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