
Swarm and Evolutionary Computation 75 (2022) 101149

A
2

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

A novel BRKGA for the customer order scheduling with missing operations to
minimize total tardiness
Levi Ribeiro de Abreu a,∗, Bruno de Athayde Prata b, Allan Costa Gomes c,
Stéphanie Alencar Braga-Santos d, Marcelo Seido Nagano a

a Department of Production Engineering, University of São Paulo, São Carlos, Brazil
b Department of Industrial Engineering, Federal University of Ceara, Fortaleza, Brazil
c Department of Electrical Engineering, Federal University of Ceara, Fortaleza, Brazil
d Department of Teleinformatics Engineering, Federal University of Ceara, Fortaleza, Brazil

A R T I C L E I N F O

Keywords:
Customer order scheduling
Assembly scheduling
Genetic algorithms
Missing operations
Matheuristics

A B S T R A C T

We introduce a new variant of the customer order scheduling problem with missing operations to minimize
total tardiness. This problem arises in the pharmaceutical industry, more specifically in physical–chemical
analysis processes. Since each sample must be processed in some specific machines, we have missing operations.
Given the NP-hardness of the problem, we present approximate algorithms to solve large-sized instances. First,
we propose an innovative size-reduction matheuristic for a scheduling problem with due dates. This approach is
based on partitioning the decision variables considering due dates and a dispatch rule. Furthermore, we develop
a novel Biased Random Key Genetic Algorithm (BRKGA) that considers an efficient local search as 2-opt best
improvement with swap neighborhood and a parameter-free restart procedure which restarts the search if the
quality of the worst and best solutions were equal, minimizing the amount of parameters to be defined by
the BRKGA. We perform computational experiments on 640 test instances to evaluate the proposed solution
approaches. The results indicate the superiority of BRKGA compared to the competitive algorithms for order
scheduling and its recent variants. In all set of instances, the novel BRKGA performed better than benchmarking
methods and mathematical programming models, with average relative deviation index regarding best results
as lower as 0.15%. Computational results point to the capacity of the proposed approaches to solve large-sized
problems.
1. Introduction

In the last few years, the interest in assembly scheduling problems
increased substantially [1]. Nowadays, companies are faced with new
technologies and actuation at a global level. The customer orders are
produced in several production lines and assembled in a final operation.
If the processing time of the assembly operation is null, we have
the customer order scheduling environment. In this context, since the
products present due dates associated with the customer requirements,
the minimization of total tardiness plays a key role in production
planning.

Production sequencing problems in which some jobs can be skipped
in some machines appear in many real-world scenarios, such as the
steel industry [2]. Several researchers have reported production envi-
ronments with missing operations, such as permutation flowshop [3,4],
two-stage hybrid flowshop [2], multi-stage hybrid [5], cellular man-
ufacturing [6]. Several researchers have reported production environ-
ments with energy efficient problems and soft computing techniques [7,

∗ Corresponding author.
E-mail address: leviribeiro@alu.ufc.br (L.R. de Abreu).

8]. Concerning customer order scheduling, in the classical variant with
total tardiness minimization, there are 𝑚 independent single-machine
scheduling problems where each machine presents the same fixed
permutation [9]. With the missing operations, there are distinct routes.

The variant under study appears in the pharmaceutical industry,
more precisely in laboratories for quality control of raw materials, in-
process products, and completed goods. The planning of the laboratory
is based on the correct resource allocation, aiming at reducing the
operational costs as well as the lead times.

We present an overview of the process in the laboratory. First, the
laboratory receives samples of raw materials and finished products
that must be analyzed in distinct types of equipment. The samples
arrive in the laboratory, requiring a specific analysis of several types of
equipment (machines). Each sample presents a given due date as well
as setup time. In the following topics, we describe the main assumptions
of the problem under study:
vailable online 13 August 2022
210-6502/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.swevo.2022.101149
Received 30 April 2022; Received in revised form 11 July 2022; Accepted 4 Augus
t 2022

http://www.elsevier.com/locate/swevo
http://www.elsevier.com/locate/swevo
mailto:leviribeiro@alu.ufc.br
https://doi.org/10.1016/j.swevo.2022.101149
https://doi.org/10.1016/j.swevo.2022.101149
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2022.101149&domain=pdf

Swarm and Evolutionary Computation 75 (2022) 101149L.R. de Abreu et al.

t
o
o
t
s
o
p

• Each analysis must be processed for one machine among the set
of available machines in the laboratory.

• Each machine can perform a given type of analysis.
• The processing and setup times are deterministic and previously

known.
• The due dates are defined taking into consideration the urgency

of each type of sample.
• The analysis for each sample not necessarily must be performed

by all the available machines.
• Since a sample is analyzed in a given machine, it must be pre-

pared for the next analysis, and this setup time depends on the
type of sample.

Since the setup times are order-dependent, they can be added to
he processing times. In this variant, some orders are not processed
n all machines. Thereby, we observe a new variant of the customer
rder scheduling considering missing operations to minimize the total
ardiness. A set of orders must be processed on a set of machines with
pecific processing times, and each order does not need to be processed
n all machines. Therefore, there are missing operations. The new
roblem has the form 𝐷𝑃𝑚 → 0|𝑚𝑖𝑠𝑠𝑖𝑛𝑔|𝛴𝑇 in the notation proposed

by Framinan et al. [1].
In this paper, our main contributions are listed below:

• We introduce the customer order scheduling with missing opera-
tions.

• We develop two analytical models: mixed-integer linear program-
ming (MILP) formulation, and a constraint programming (CP)
model.

• We propose a new matheuristic named size reduction with par-
titions (SR-Q) which is developed for scheduling problems with
due dates.

• We develop an innovative BRKGA which considers a robust im-
provement procedure and a parameter-free restart operator.

• We perform computational experiments with a testbed with 640
test instances.

In this paper, we present a customer order scheduling environment
with missing operations and total tardiness minimization. We propose
a size-reduction heuristic and a BRKGA that outperforms the JPO
matheuristic, Framinan and Perez-Gonzalez [10] and adapted to the
problem under study, for the large-sized test instances. Finally, we
perform extensive computational experiments.

The main contributions and innovations of the new BRKGA are the
application of a local search 2-opt best improvement procedure as a
search intensification mechanism that considers the swap neighbor-
hood of the problem and the restart mechanism with parameter-free
to restart the search process if there are no more improvements in the
BRKGA loop when the quality of the best individual are equal to the
worst individual of the population, thus reducing the amount of BRKGA
parameters and simplifying the parameterization of the metaheuristic.

The remainder of the paper is structured as follows. Section 2
presents the literature review. Section 3 addresses the problem state-
ment as well as the MILP and CP models. In Section 4, we propose an
innovative size-reduction matheuristic with partitions. In Section 5 we
describe the computational results. Finally, in Section 6 we present the
main finding ans suggestion for future studies.

2. Literature review

The production environment addressed in this paper was not re-
ported yet. In this context, we present some related approaches. Sung
and Yoon [11] studied a variant where the orders have distinct com-
ponents produced by specialized and independent machines. The ob-
jective function is the weighted total completion time minimization. As
solution procedures, two constructive heuristics are developed. Ahmadi
2

et al. [12] addressed the coordinated customer order scheduling with
weighted completion time minimization. A Lagrangian heuristic and
three constructive heuristics are presented as solution procedures. The
heuristics developed by Leung et al. [13] improved the results of the
solution approaches previously addressed. Still regarding the weighted
total completion time objective, Wu et al. [14] introduced a variant
with ready times. Some dominance relation are considered in a Branch-
and-Bound (B&B) algorithm. Furthermore, five constructive heuristic
are adapted to the problem and study and used as initial solutions for
a Iterated Greedy (IG) algorithm.

Concerning the total completion time objective, Shi et al. [15]
developed quadratic modeling, which is transformed into an equiv-
alent MILP formulation. A nested partition algorithm is proposed as
a solution approach. Framinan and Perez-Gonzalez [16] presented a
constructive heuristic and a metaheuristic as solution procedures that
outperform the existing algorithms for this variant. Riahi et al. [17]
improved the constructive heuristic developed by Framinan and Perez-
Gonzalez [16]. This algorithm is an initial solution for a metaheuristic
that combines perturbative and constructive procedures.

Kung et al. [18] studied a variant considering unequal order ready
times for the total completion time minimization. As solution proce-
dures, eight metaheuristic are developed. Computational experiments
point to the superiority of simulated annealing-based algorithms in
comparison with genetic algorithms. With respect to the minimization
of the weighted number of tardy orders objective, Lin et al. [19] studied
a variant with release dates. As theoretical results, some dominance
rules and a lower bound are presented. As solution procedures, a
branch-and-bound (B&B) algorithm and with bee colony metaheuristic
are developed.

Concerning the total tardiness minimization, Lee [9] proposed four
constructive algorithms. Among them, the order modified due date
(OMDD) returned the best results. Framinan and Perez-Gonzalez [10]
proposed the FP algorithm that outperforms the OMDD heuristic. In
addition, two matheuristics (JPF and JPO) are introduced for the
problem under study. Computational results point to the superiority of
the JPO algorithm.

More recently, some studies have included sequence-dependent
setup times in the customer order scheduling environment. Prata et al.
[20] introduced the variant for the makespan minimization. Since this
is an NP-hard problem, two matheuristics are presented as solution
approaches. Prata et al. [21] addressed the total completion time
objective. As the solution approach, a discrete differential evolution
metaheuristic was proposed. Computational results pointed out the
superiority of this algorithm in comparison with other existing solution
procedures. Antonioli et al. [22] considered total tardiness minimiza-
tion. Two constructive heuristics were proposed, as well as a hybrid
matheuristic based on the JPO algorithm [10].

Based on the revised literature, the following research gaps can be
emphasized:

• The customer order scheduling problem with missing operations
was not addressed yet in the current literature.

• The total tardiness performance measure is a topic little studied
in the customer order scheduling environment.

• The development of a hybrid metaheuristic for a customer or-
der scheduling problem is still rather limited in the available
literature.

3. Problem description and exact methods

The problem under study considers a set of orders, with some
missing operations and order-dependent setup times to be added with
the process times and processed in a set of dedicated parallel machines.
The objective function is the total tardiness minimization. Let a set of
𝑚 dedicated parallel machines and a set of 𝑘 orders to be fulfilled, in
which each order presents a due date 𝑑𝑘. In each machine, a given order
presents an associated processing time 𝑝 for each existing operation.
𝑖𝑘

Swarm and Evolutionary Computation 75 (2022) 101149L.R. de Abreu et al.
Fig. 1. Gantt chart of an example solution for presented order scheduling instance (total tardiness = 11 u.t.).
Fig. 2. Gantt chart of the best solution for presented order scheduling instance (total tardiness = 7 u.t.).
Table 1
Operations and processing times for order scheduling
with missing operations example.
𝑝𝑖𝑗 𝑂1 𝑂2 𝑂3 𝑂4 𝑂5

𝑀1 3 – 2 3 3
𝑀2 4 1 2 – 2
𝑑𝑘 4 5 6 8 4

For representing the missing operations, we use a boolean parameter
𝑎𝑖𝑘 equals to one if the order 𝑘 is processed in machine 𝑖, being zero
otherwise and 𝛩 is the percentage of the processing time matrix with
missing operations.

A feasible solution for the problem is a permutation 𝛱 = {𝜋1,… , 𝜋𝑛}
in which 𝜋𝑗 ∈ 𝛱 is the order to be produced in the position 𝑗 of the
production sequence. The completion time 𝐶𝑖𝜋𝑗 of the operation from
order 𝜋𝑗 processed in position 𝑗 of machine 𝑖 is given by Eq. (1):

𝐶𝑖𝜋𝑗 =
𝑗
∑

𝑞=1
𝑝𝑖𝜋𝑞𝑎𝑖𝜋𝑞 (1)

We can define the completion time 𝐶𝜋𝑗 for the order 𝜋𝑗 in position 𝑗
of sequence 𝛱 as the maximum completion time among all the realized
operations, as expressed by Eq. (2):

𝐶𝜋𝑗 = max
1≤𝑖≤𝑚

{𝐶𝑖𝜋𝑗 } (2)

Thus, we can compute the tardiness 𝑇𝜋𝑗 for each order based on
Eq. (3):

𝑇𝜋𝑗 = max{𝐶𝜋𝑗 − 𝑑{𝜋𝑗}; 0} (3)

Table 1 presents an illustrative example with 𝑚 = 2 and 𝑛 = 5.
Fig. 1 describes a Gantt chart with the example solution of the

instance illustrated in Table 1. The solution is defined as the sequence
of orders on each machine 𝛱 = {3, 2, 1, 5, 4}. Each machine has the
same sequence of orders. The solution has a total tardiness of 11 time
units (u.t.).
3

The solution in Fig. 1 has a total tardiness of 11 u.t. Orders 1, 5,
and 4 have tardiness of 3, 5, and 3 u.t., respectively. Fig. 2 illustrates
the optimal solution for the instance, with the smallest total tardiness
of 7 u.t. For the solution in Fig. 2, some orders finish in sync or
before their due dates, which contributes to the reduction of the total
tardiness, such as orders 2, 5, 3 and 4 that do not generate delays in
their processing, unlike the solution in Fig. 1 that only order 3 and 2
does not finish late.

We are investigating the generation of production sequences that
minimizes the total tardiness with missing operations. This is an NP-
hard problem since it can be reduced to the 𝐷𝑃𝑚 → 0||𝛴𝑇𝑗 if the
number of missing operations is zero. Hereafter, the notation used for
the problem modeling is presented.

3.1. Mixed-integer linear programming model

Below we presented a new mixed-integer linear programming model
for the order scheduling with missing operations.

Indices and sets

𝑘: index for orders {1,2, . . . , 𝑛}.

𝑗: index for positions {1,2, . . . , 𝑛}.

𝑖: index for machines {1,2, . . . , 𝑚}.

Parameters

𝑝𝑖𝑘: processing time of the order 𝑘 in the machine 𝑖.

𝑎𝑖𝑘 =

{

1, if the order 𝑘 is produced in machine 𝑖
0, otherwise

Decision variables

𝑇𝑗 : tardiness of order in the position 𝑗.

𝑥𝑘𝑗 =

{

1, if the order 𝑘 is scheduled in position 𝑗

0, otherwise

Swarm and Evolutionary Computation 75 (2022) 101149L.R. de Abreu et al.

𝐶

𝑇

r
h
t
M
t
p
r
p

w
v
w
g
r
i
p
o
T
s
t
c

s
t
𝑂
c
d
s
v
s
t
c
m

The proposed mixed-integer programming model is presented as
follows.

minimize
𝑛
∑

𝑗=1
𝑇𝑗 (4)

subject to
𝑛
∑

𝑘=1
𝑥𝑘𝑗 = 1, ∀𝑗 (5)

𝑛
∑

𝑗=1
𝑥𝑘𝑗 = 1, ∀𝑘 (6)

𝑇𝑗 ≥
𝑛
∑

𝑘=1

(

𝑗
∑

𝑟=1
𝑝𝑖𝑘𝑎𝑖𝑘𝑥𝑘𝑟 − 𝑑𝑘𝑥𝑘𝑗

)

, ∀𝑖, 𝑗 (7)

𝑇𝑗 ≥ 0, ∀𝑗 (8)

𝑥𝑘𝑗 ∈ {0, 1}, ∀𝑘, 𝑗 (9)

Eq. (4) is the total tardiness to be minimized. Constraints (5) estab-
lish that a given order is processed only in a position 𝑘. Constraints (6)
enforce that a position 𝑘 receives only a job 𝑗. Constraints (7) determine
the tardiness for each order, considering processing and setup times,
as well as the missing operations. Finally, constraint sets (8), and (9)
determine the scope of the decision variables. The proposed model
presents 𝑛2 binary decision variables, 𝑛 continuous decision variables
and 𝑛(𝑚 + 3) integer linear constraints.

3.2. Constraint programming model

Constraint programming is a modeling approach for combinatorial
optimization problems. Mainly for problems that are not easily rep-
resented using integer linear programming equations [23]. Constraint
programming was initially proposed for artificial intelligence problems.
However, it has obtained competitive results in production, operations,
and project scheduling problems [24].

The order scheduling problem can be defined using constraint pro-
gramming equations and the same indexes, sets, and parameters in the
presented linear programming model. With the CP model, the prob-
lem can be represented with interval and discrete decision variables.
Interval variables represent an operation or task to be processed. In ad-
dition, constraint programming uses integer variables similar to MILP.
The present project uses IBM’s CP Optimize solver for modeling and
solving the CP model. This solver has obtained good results on recent
production scheduling problems, such as general scheduling [25,26],
parallel machines [27,28], flow shop [29], job shop [30,31], and open
shop [32,33].

Next, we illustrate a new CP model for order scheduling considering
missing operations. This CP model uses intervals and variables to rep-
resent the operations of jobs in machines, integer variables to represent
completion time and tardiness of orders, and the same indexes and
parameters of the MILP model.

Decision variables

𝑥𝑖𝑘: an interval variable to indicate the operation of order 𝑘 in machine
𝑖 with a duration 𝑝𝑖𝑘 just of operations with non-zero processing
times (𝑎𝑖𝑘 = 1).

𝑘: completion time of order 𝑘.

𝑘: tardiness of order 𝑘.

The CP model for the problem under study is presented below:

minimize
𝑛
∑

𝑇𝑘 (10)
4

𝑘=1
e

Table 2
Resume of comparison of the models.

Model Number of IVs Number of CVs Number of constraints

MILP 𝑛2 𝑛 𝑛2 + 𝑛
CP 𝑚𝑛 + 2𝑛* N/A 𝑚𝑛 + 𝑚 + 𝑛

subject to

noOverlap
(

[

𝑥𝑖𝑘
]

𝑘,𝑎𝑖𝑘=1

)

, ∀𝑖 (11)

𝐶𝑘 ≥ endOf
(

𝑥𝑖𝑘
)

, ∀𝑖, 𝑘, 𝑎𝑖𝑘 = 1 (12)

𝑇𝑘 ≥ 𝐶𝑘 − 𝑑𝑘, ∀𝑘 (13)

interval 𝑥𝑖𝑘, size = 𝑝𝑖𝑘, ∀𝑖, 𝑘, 𝑎𝑖𝑘 = 1 (14)

𝐶𝑘 ≥ 0, ∀𝑘 (15)

𝑇𝑘 ≥ 0, ∀𝑘 (16)

Eq. (10) is the total tardiness minimization. Constraint set (11)
enforces that a machine 𝑖 processes only one order at a time (over-
lap constraints). Constraint set (12) calculates the completion time of
orders with the maximum completion time of all operations of order
𝑘 in all machines. Constraint set (13) calculates the tardiness of order
𝑘. Finally, constraints (14), (15), and (16) define the scope of decision
variables.

We compare the main components of order scheduling models
with MILP and CP. MILP model uses positional notation for decision
variables. The constraint with the largest size is the one found in Eq. (7)
with the worst case complexity of 𝑂 (𝑚𝑛). The MILP model has alto-
gether 2𝑛+𝑚𝑛 constraints and 𝑛2 + 𝑛 decision variables, of which 𝑛 are
eal and 𝑛2 are binary integers [34]. The proposed CP model applies
euristic approaches in logical constraints of the problem to reduce
he search space and improve the branching strategy of the solver.
oreover, the CP solver keeps an ability to find feasible initial solu-

ions quickly due to explorations of the combinatorial domain of the
roblem [23]. Using logical constraints, the CP model can significantly
educe the number of decision variables and constraints, improving the
erformance of combinatorial production scheduling problems.

We compare the main components of order scheduling models
ith MILP and CP. MILP model uses positional notation for decision
ariables. The constraint with the largest size is the one found in Eq. (7)
ith the worst case complexity of 𝑂 (𝑚𝑛). The MILP model has alto-
ether 2𝑛+𝑚𝑛 constraints and 𝑛2 + 𝑛 decision variables, of which 𝑛 are
eal and 𝑛2 are binary integers [34]. The CP model uses logical model-
ng and applies heuristic approaches to reduce the search space for the
roblem solution. In addition, exploring the combinatorial search space
f the problem makes it very fast for CP to find a viable solution [23].
his result is very important when modeling combinatorial problems
uch as production scheduling, as it may mainly use logical modeling
echniques. This reduces the number of decision variables and model
onstraints.

The new CP model is presented in Eqs. (10)–(16). We used the
equence problems notation of the CP Optimizer solver. Eq. (12) illus-
rates the constraint with the largest size with the complexity of only
(𝑛𝑚) in the worst case. The proposed CP model is formed by 𝑚𝑛+𝑚+𝑛
onstraints and 𝑚𝑛+ 2𝑛 decision variables. The decision variables have
iscrete types such as interval or integer decision variables. Table 2
hows a comparison of models with the number of integers or discrete
ariables (IVs), continuous variables (CVs), and constraints (* the deci-
ion variables of CP are discrete and their types are interval or integer
ypes). Analyzing Table 2, the two proposed exact models have similar
omplexity of constraints and decision variables. However, similar
odels will not necessarily have the same performance, therefore all
xact methods will be performed in Section 5.4.

Swarm and Evolutionary Computation 75 (2022) 101149L.R. de Abreu et al.

w
𝑄
𝑥

𝑁

o
o
T
o

4

c
p
o

Fig. 3. Pseudocode of the algorithm SR-𝑄.

4. Proposed solution approaches

The following subsections describe the new proposed matheuris-
tic SR-Q and metaheuristic BRKGA with local search and parameter-
free restart procedure for the order scheduling problem with missing
operations.

4.1. Size reduction with partitions

In combinatorial optimization problems with permutation encoding,
we usually face binary decision variables in which the majority of the
decision variables values with null values in a feasible solution. In this
situation, we could reduce the number of decision variables, fixing
a subset of the total number of decision variables as zero. Thus, we
can solve the model with this reduction with a lesser computational
effort [35]. However, we cannot guarantee that the optimal solution of
the reduced problem is the optimal solution for the original problem.

Fanjul-Peyro and Ruiz [36] introduced the size reduction heuristic
for the unrelated parallel machine scheduling problem to minimize
the makespan. In this approach, the decision variables associated with
the highest processing times are set as zero, and the model with the
remainder free decision variables is solved.

Several studies have presented matheuristics as extensions and im-
provements of MILP models in production scheduling problems [20,37,
38]. The SR-Q matheuristic is a natural extension of the proposed MILP
model, along with the knowledge of the problem properties concerning
the matrix form of the decisions variables. The intuitive property of the
problem used is that orders with shorter deadlines should be processed
first in the solution. Benchmarking analysis will test this matheuristic
as another competitive alternative to the problem.

For the problem under study, the objective function is the total
tardiness minimization; therefore, we propose a new size-reduction
strategy based on the due dates. In this innovative procedure, we split
the set of decision variables on the basis of due dates. In Fig. 3, we
describe the algorithm size-reduction with partitions (SR-𝑄). The values
of some decision variables 𝑥𝑘𝑗 are fixed as zero, reducing the number
of decision variables in the optimization process. With a reduction of
the number of decision variables, in general, there is also a reduction
in, the computational effort for the problem resolution.

Since the objective function is the total tardiness minimization, we
can use the due dates as a criterion for the size-reduction. Intuitively,
orders with small due dates should be scheduled in the first positions
of the sequence. Similarly, orders with large due dates should not be
scheduled in the first positions of the sequence.

If we are looking for the total tardiness minimization, orders with
small due dates tend to appear in the first positions of the sequence.
Similarly, orders with large due dates tend to appear in the last po-
sitions of the sequence. This information is the key feature of SR-Q
5

compared to other traditional exact methods, using the knowledge of o
Table 3
Illustration of a SR-2 variable fixing scheme.
𝐱 1 2 3 4 5 6 7 8 9 10

1 – – – – – 0 0 0 0 0
2 – – – – – 0 0 0 0 0
3 0 0 0 0 0 – – – – –
4 0 0 0 0 0 – – – – –
5 – – – – – 0 0 0 0 0
6 0 0 0 0 0 – – – – –
7 – – – – – 0 0 0 0 0
8 0 0 0 0 0 – – – – –
9 – – – – – 0 0 0 0 0
10 0 0 0 0 0 – – – – –

Table 4
Illustration of a SR-3 variable fixing scheme.
𝐱 1 2 3 4 5 6 7 8 9 10

1 – – – 0 0 0 0 0 0 0
2 – – – 0 0 0 0 0 0 0
3 0 0 0 – – – – 0 0 0
4 0 0 0 0 0 0 0 – – –
5 0 0 0 – – – – 0 0 0
6 0 0 0 0 0 0 0 – – –
7 – – – 0 0 0 0 0 0 0
8 0 0 0 – – – – 0 0 0
9 0 0 0 – – – – 0 0 0
10 0 0 0 0 0 0 0 – – –

the problem due date to fix the variables and consequently reduce
the number of decision variables in the MILP model. Therefore, we
can exclude the possibility that orders with tight due dates appear at
the beginning of the sequence, as well as orders with large due dates,
appear at the ending of the sequence.

On the basis of the above, we develop the following strategy for
tackling the problem: the orders are divided into 𝑄 mutually exclusive
partitions taking into consideration the due dates. We set 𝑥𝑘𝑗 = 0 is the
order 𝑘 does not belong to the partition related to the position 𝑗.

We present an illustrative example with 10 orders and a due dates
vector 𝑑 = {3, 2, 5, 7, 4, 9, 2, 5, 4, 8}. For 𝑄 = 2, there are two partitions
𝑄1 = {2, 7, 1, 5, 9} and 𝑄2 = {3, 8, 4, 10, 6}. We can observe that these
partitions are divided taking into account the indices of the orders. The
next step is the variable fixing of the decision variables 𝑥𝑘𝑗 , as presented
in Table 3.

Taking into consideration the same instance, for 𝑄 = 3 we adopt
as the amount of elements 𝑁𝑞 in each partition the rounding of the
ratio 𝑞𝑛∕𝑄 minus the amount of elements in the previous partitions, as
expressed by Eq. (17), in which 𝑞 ∈ {1,… , 𝑄} is the partition 𝑞. In the
above mentioned example, we have 𝑁1 = 3, 𝑁2 = 4, and 𝑁3 = 3. Thus,

e obtain the following partitions 𝑄1 = {2, 7, 19}, 𝑄2 = {5, 9, 3, 8}, and
2 = {4, 10, 6}. Table 4 illustrates the values for the decision variables
𝑘𝑗 .

𝑞 = ⌈(𝑞𝑛∕𝑄)⌉ −
𝑞−1
∑

𝑟=1
𝑁𝑟 (17)

Based on the Tables 3 and 4, we can observe that the application
f the algorithms SR-2 and SR-3 results in a reduction of the number
f binary decision variables 𝑥𝑘𝑗 by half and third part, respectively.
herefore, the application of size-reduction with 𝑄 leads to a reduction
f the binary decision variables from de 𝑛2 para 𝑛2∕𝑞.

.2. Biased random-key genetic algorithm

The BRKGA is an evolutionary metaheuristic based on the core
oncepts of a genetic algorithm in which each solution of a given
opulation has a vector with random keys [39]. Thereby, the crossover
perator is performed in a biased way, favoring the genetic material

f the better solutions in the current population. Some of these new

Swarm and Evolutionary Computation 75 (2022) 101149L.R. de Abreu et al.
Fig. 4. Scheme for the main process of population evolution of BRKGA.
Fig. 5. Proposed decoder for the order scheduling problem.

operators of genetic algorithms and BRKGA were applied in other
metaheuristics as differential evolution [40,41]. The BRKGA was ini-
tially proposed to solve problems with a permutation encoding where
the solution can be structured as a sequence of values [42]. With
this structure, the BRKGA has been widely used in resolving produc-
tion scheduling problems, such as parallel machines [43–46], flow
shop [47–50], job shop [51–53], and open shop [54–56].

In our proposal, the BRKGA generates an initial population with 𝑝
random keys with float values between 0 and 1. A single element of
this initial population is replaced with a solution generated by the well-
known earliest due date (EDD) dispatch rule. The solution created with
the EDD is coded with random keys to be included as a valid solution
in the initial population.

Next, the BRKGA initiates its cycle of generations. Fig. 4 illustrates
the scheme for the evolution process of population . In this process,
a decoding function converts the key vector in the total tardiness of a
given solution. Thus, all solutions in the current population are sorted
considering the values of the objective function. The number of 𝑝𝑒
better solutions is included in the elite set; thereby, they are maintained
in the next generation.

The 𝑝𝑚 worse solutions are replaced with new mutant solutions
generated using the same procedure to generate the initial population.
The remainder of the new population is inserted using crossovers 𝑝−𝑝𝑒−
𝑝𝑚 between a member of the elite set and a solution outside the elite set.
We employ the uniform crossover in which the probability of insertion
of gen from a given parent is given by 𝜌. These steps are repeated
during a given number of generations or a specified time limit. In our
proposal, only the decoding operator is problem-dependent. It must be
designed to convert the characteristics of a given solution to the format
of random keys. Thus, we can calculate the objective function value for
any decoded solution. Fig. 5 illustrates the proposed decoding scheme.

Fig. 5 illustrates a decoded solution for an instance with five orders,
generation the solution {5, 3, 4, 1, 2} in which the indices represent each
of the keys. This permutation represents the global optimal solution of
the illustrative instance presented in Section 3. Moreover, the proposed
6

decoding operator does not generate infeasible solutions for the prob-
lem under study, and the objective function can be easily calculated
with Eq. (1), (1), and (3).

Aiming to make the proposed BRKGA more robust, we perform two
strategies of diversification and intensification. For the diversification,
we adopt a restart procedure based on the objective function of the
solutions of the current population. If the worst fitness equals the
best fitness, we restart the current population. Thus, we remove the
parameter for the restart procedure, and we reset the population in
the exact iteration in which the current population lost all diversity.
This strategy for the restart procedure has obtained competitive results
for another customer order scheduling environment [21]. Concerning
the intensification, we perform every 𝐿 iterations of the BRKGA a 2-
opt local search with the best improvement policy in the best solution
of the elite set. The swap neighborhood operator is used since the
solution is a list with the order sequence, and a swap neighborhood
is a natural approach for this type of solution representation used in
many production scheduling problems [48]. Fig. 6 describes the pseu-
docode of the proposed BRKGA. Our proposal presents the following
parameters: 𝑝, 𝑝𝑒, 𝑝𝑚, 𝜌, 𝐿, 𝑔𝑒𝑛 e 𝑡𝑖𝑚𝑒_𝑙𝑖𝑚𝑖𝑡. In Section 5 we propose
a parameter’s optimization process for BRKGA with Iterated Race for
Automatic Algorithm Configuration (IRACE) package [57].

In lines 1–9, the data structures and parameters of BRKGA are
defined. In line 10, the loop of the algorithm starts. Then, the algorithm
executes its genetic operators until the execution time or the number
of generations has not exceeded the limit. In line 11, the BRKGA
generation phases and operations are executed the same way as in
Fig. 4. In each iteration, one population evolved with crossover and
mutation operators between the elite and non-elite solutions to create
a new population for the next algorithm iteration. In lines 12–15, the
algorithm performs in each 𝐿 generation the 2-opt best improvement
local search procedure in the best solution found of population . The
local search (line 14) uses swap neighborhood in operations list solution
representation as in Fig. 5. In lines 16–22, the BRKGA tests if the
generation found no better solution than 𝑏𝑒𝑠𝑡𝑠𝑜𝑙. If the best and worse
finesses of the current population are the same, the algorithm executes
the restart in line 18. Otherwise, the best solution is updated. Finally,
in line 25, the best solution found is returned.

5. Computational experience

This section illustrates: the process for constructing the instance
set, the performance measures, the parameter’s optimization process

Swarm and Evolutionary Computation 75 (2022) 101149L.R. de Abreu et al.

o
t

t
(
m
a
o
p
m
1

5

l
i
a
f

Fig. 6. Pseudocode of the proposed BRKGA.
-

s
a
g
b
S

f BRKGA, the description of benchmarking algorithms, the computa-
ional results, and statistical tests performed.

We implement all the constructive heuristics as well as the matheuris
ics using Julia language (https://julialang.org/) within Atom IDE
https://atom.io/). For the pure MILP and CP model as well as the
atheuristics the commercial solver is the IBM ILOG CPLEX for MILP

nd CP Optimizer for CP (https://www.ibm.com/products/ilog-cplex-
ptimization-studio) version 12.8. We perform the computational ex-
erience on a PC with Intel Core i7-8700 CPU 3.20 GHz and 32 GB
emory. All instances and results are available at https://doi.org/10.
3140/RG.2.2.23905.17766/1.

.1. Test instances and statistics used in the computational experiments

Since the problem under study is not reported in the previous
iterature, we generate a set of test instances for the evaluation of the
nteger linear programming as well as the presented heuristics. We
dapt the procedures of Lee [9] and Framinan and Perez-Gonzalez [10]
or the random generation of the test instances:

• the processing times 𝑝𝑖𝑘 follow a uniform distribution 𝑈 [1, 100];
• the due dates 𝑑𝑘 follow a uniform distribution 𝑈 [𝑃 (1 − 𝑇𝐹 −
𝑅𝐷𝐷∕2), 𝑃 (1 − 𝑇𝐹 + 𝑅𝐷𝐷∕2)], in which 𝑃 is given by Eq. (18),
and 𝑇𝐹 and 𝑅𝐷𝐷 are factors for controlling the interval for the
variations of the due dates.

𝑃 =
∑𝑚

𝑖=1
∑𝑛

𝑘=1 𝑝𝑖𝑘𝑎𝑖𝑘
𝑚

(18)

• the missing operations matrix 𝑎𝑖𝑘 present a density 𝛩 of miss-
ing operations and is also guaranteed that there is at least one
operation for each order (in other words, ∑𝑚

𝑖=1 𝑎𝑖𝑘 ≥ 1, ∀𝑘)

For each level of parameters (𝑛 ∈ {100, 150, 200, 300}, 𝑚 ∈ {5, 10},
𝑇𝐹 ∈ {0.35, 0.65}, 𝑅𝐷𝐷 ∈ {0.35, 0.65}, and 𝛩 ∈ {60%, 80%}), a set of
10 instances are randomly generated, totaling 640 instances.

In order to compare the methods implemented, we analyze the
results obtained in the computational experiments with Relative Devi-
ation Index (RDI), as expressed in Eq. (19). The indicator RDI analyzes
7

the relative percentage deviation taking into account all the considered
methods. In Eq. (19), 𝑇 is the tardiness returned for a given method,
𝑇𝑏𝑒𝑠𝑡 is the best tardiness found for all the considered methods, and
𝑇𝑤𝑜𝑟𝑠𝑡 is the worst tardiness found for all the considered methods. Fram-
inan and Perez-Gonzalez [10] use this statistic for the 𝐷𝑃𝑚 → 0||𝛴𝑇
variant. For the cases in which one of the considered methods is not
able to find a feasible solution in one of the sets of instances, the results
of the whole set are removed from the analysis.

𝑅𝐷𝐼 =

{

0 𝑖𝑓 𝑇𝑏𝑒𝑠𝑡 = 𝑇𝑤𝑜𝑟𝑠𝑡
100 × 𝑇−𝑇𝑏𝑒𝑠𝑡

𝑇𝑤𝑜𝑟𝑠𝑡−𝑇𝑏𝑒𝑠𝑡
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (19)

Another performance indicator used in the result analysis is the
uccess rate (SR) that analyzed the overall performance of the methods
cross all tested instances. SR is calculated as the number of times that a
iven method finds the best solution (with or without a draw) divided
y the number of test instances in a given instance set [58,59]. The
R indicator is expressed in Eq. (20), where 𝑁𝐵𝐸𝑆𝑇 is the number of

times that given method finds the best solution and 𝑁𝐼𝑁𝑆𝑇 is the total
number of instances tested.

𝑆𝑅 = 100 ×
𝑁𝐵𝐸𝑆𝑇
𝑁𝐼𝑁𝑆𝑇

(20)

5.2. Parameter’s optimization of BRKGA

The IRACE package [57] has been widely used to find the best pa-
rameters for optimization algorithms like metaheuristics or matheuris-
tics [37,60,61]. Thus, to get the most competitive parameters in the
proposed SR and BRKGA algorithms, the IRACE package was applied.
Table 5 shows the proposed values of each parameter. The Selected
Value column shows the best value obtained by IRACE, ready to be used
in the final tests. IRACE performed several runs of the algorithms with
the range of possible values for each parameter. The parameter 𝑄 is the
partitions number of fixing decision variables and the other parameters
are from BRKGA. We performed 10000 iterations of IRACE using 25%
of the evaluated test instances, which were randomly selected.

In the IRACE execution, the algorithm changes the procedure the

parameters are sampled adaptively to explore a range of parameter

https://julialang.org/
https://atom.io/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://doi.org/10.13140/RG.2.2.23905.17766/1
https://doi.org/10.13140/RG.2.2.23905.17766/1
https://doi.org/10.13140/RG.2.2.23905.17766/1

Swarm and Evolutionary Computation 75 (2022) 101149L.R. de Abreu et al.
Table 5
IRACE parameter range settings and resulting values.
Parameter IRACE name Range Selected value

𝑄 Q {2, 3, 5, 10} 2
𝛼 alpha {5, 10, 20} 20
𝛽 beta {5, 15, 25} 5
𝑝𝑒 pe {0.05, 0.15, 0.25} 0.25
𝑝𝑚 pm {0.15, 0.20, 0.30} 0.15
𝜌 rho {0.35, 0.55, 0.75} 0.55
𝐿 L {10, 50, 100} 50

Fig. 7. Parameters sampling frequency for SR.

values that improve the quality of the solutions generated by the opti-
mization algorithms. Therefore, the number of times IRACE selects each
possible parameter value can indicate promising regions and explain
the general behavior of the optimization algorithm when its parameter
values are modified [57]. Figs. 7 and 8 show the sampling frequency
of the values of each parameter for the developed methods SR and
BRKGA, respectively.

As BRKGA has several new parameters, it is essential to verify
the performance of each parameter with the range of values available
regarding the quality of the solutions. Therefore, the test results of the
IRACE parameters were collected, and the RDI from the best and worst
solutions found for each instance used in the calibration was calculated.
Fig. 9 illustrates the results found for each of the six BRKGA parameters.

In order to analyze the effectiveness of the local search and restart
mechanisms presented in Section 4.2, we have compared four vari-
ants of BRKGA: (i) BRKGA1 (the default BRKGA initially proposed
by Gonçalves and Resende [39]); (ii) BRKGA1 (the BRKGA with the
proposed local search); (iii) BRKGA3 (the BRKGA with the proposed
parameter-free restart procedure); and (iv) BRKGA (the proposed
8

BRKGA with local search and restart procedures). In our tests, we used
the IRACE proposed parameters in each BRKGA. Fig. 10 illustrates a
boxplot with the RDI distribution of all BRKGA tested at all instance
sizes. The tests ran on a randomly selected subset of 25% of the data
set.

Analyzing Fig. 10, the BRKGA with local search and parameter-free
restart procedure got the best results, followed by BRKGA3, BRKGA2,
and BRKGA1. In addition, we performed an ANOVA test to evaluate if
the difference in the RDI values was statistically significant. The 𝑝-value
is very close to zero. Furthermore, we performed a Tukey’s test [62] to
evaluate the statistical significance of the differences among the BRKGA
variants and show the confidence intervals in Fig. 11.

As it can be seen in both Figs. 10 and 11, it is the addition of
the specific local search and parameter-free restart mechanisms that
produce a significant improvement in the performance of the BRKGA,
particularly when both mechanisms are combined. Thus, Fig. 11 il-
lustrates that the BRKGA outperforms the classic BRKGA (the interval
does not cross the zero line) due to the new components improving
the BRKGA efficiency. In addition, the BRKGA reduces the number of
parameters to be parameterized with the new parameter-free restart
procedure. Given these results, we adopt BRKGA (the BRKGA variant
including both local search and restart mechanisms) in the subsequent
computational experiments.

5.3. Methods under comparison

For these tests we compare the proposed methods SR and BRKGA
with benchmarking methods from the literature of order scheduling
and its variants adapted for the proposed variant by us. We adopt 𝑚×𝑛

2
seconds as a time limit of each instance for each tested metaheuris-
tic [21]. We adopted the same stopping criteria for all algorithms for a
fair comparison. With this time limit, We can test if the approximation
methods obtain quality solutions with a competitive computational
times. Each of the metaheuristics tested, due to stochastic behavior,
tested were executed five times, the average value found for each
instance set is reported in the results.

We consider the following algorithms in our computational experi-
ments:

• EDD, earliest due date priority rule;
• FP algorithm, presented by Framinan and Perez-Gonzalez [10];
• NEH, a constructive algorithm from Prata et al. [21] adapted to

proposed variant;
• OMDD algorithm, presented by Lee [9];
• MILP model, presented in Section 3;
• CP model, presented in Section 3;
Fig. 8. Parameters sampling frequency for BRKGA.

Swarm and Evolutionary Computation 75 (2022) 101149L.R. de Abreu et al.
Fig. 9. Mean and confidence interval (𝛼 = 0.05) of RDI for each BRKGA parameter.
Fig. 10. RDI distribution for all BRKGA tested in all sets of instances.
Fig. 11. Tukey’s test between all BRKGA tested.
• JPO20 algorithm, proposed by Framinan and Perez-Gonzalez
[10];

• SR2, the size-reduction SR-Q (algorithm under proposition), with
the value of 𝑄 equal to 2;

• DE, the recent differential evolution for order scheduling with
setup times proposed by Prata et al. [21];

• BRKGA, the proposed metaheuristic with local search and
parameter-free restart.

We added the four benchmarking approaches as a complementary
reference (FP, NEH, OMDD and JPO20). In addition, we tested the
9

EDD method. Since BRKGA uses EDD in the initial solution as a hybrid
approach, it is possible to evaluate the improvement provided by
BRKGA on the solution generated by EDD.

For the FP, OMDD and JPO20 the same parameters used by Fram-
inan and Perez-Gonzalez [10] were considered in the tests with FP
and JPO20 receiving OMDD as initial solution of algorithm, due to its
capacity to generated competitive solution in admissible computational
times [10]. For SR2, we too add OMDD with a warm-start of MILP.
Thus, the algorithm does not fix the arcs of the OMDD solution for
the initial solution to be valid. In DE and NEH we adapt the objective

Swarm and Evolutionary Computation 75 (2022) 101149L.R. de Abreu et al.
Table 6
ARDI for all tested methods and instances sets.
n m EDD FP NEH OMDD MILP CP JPO20 SR2 DE BRKGA

100 5 97.44 52.53 43.67 9.88 4.73 2.12 5.06 5.71 11.75 0.31
10 98.86 47.91 39.88 12.56 5.42 4.92 5.64 8.66 14.73 0.30

150 5 96.04 50.41 47.55 10.06 12.71 2.75 6.30 6.80 19.44 0.25
10 98.03 50.76 43.90 11.02 15.05 5.90 9.16 8.08 26.99 0.05

200 5 92.27 46.48 48.89 10.08 23.80 3.25 8.61 7.11 24.88 0.11
10 92.86 48.08 41.49 9.76 38.67 6.28 9.28 8.03 32.61 0.12

300 5 45.21 24.03 20.97 4.98 94.97 2.04 4.86 4.34 14.33 0.03
10 49.51 25.16 19.43 5.51 97.69 4.25 5.49 4.96 20.61 0.00

Total 83.78 43.17 38.22 9.23 36.63 3.94 6.80 6.71 20.67 0.14
Table 7
ARDI for all tested methods and due dates factors.
TF RDD EDD FP NEH OMDD MILP CP JPO20 SR2 DE BRKGA

0.35 0.35 82.90 33.15 36.15 11.13 27.20 4.40 5.59 5.98 18.56 0.18
0.65 72.54 54.29 63.71 6.74 40.15 2.34 5.73 3.92 23.06 0.38

0.65 0.35 90.77 33.38 26.66 11.36 34.92 5.14 8.51 9.81 21.56 0.02
0.65 88.91 51.86 26.38 7.71 44.25 3.88 7.37 7.14 19.49 0.00

Total 83.78 43.17 38.22 9.23 36.63 3.94 6.80 6.71 20.67 0.14
function for order scheduling with missing operations and remove the
filters in local search due there are no setup times in the proposed
variant. In addition, we use the following parameters for DE: NP = 2×𝑛,
𝐺𝑦 = 25 and CR = 0.85 [21].

5.4. Results and discussion

Table 6 shows the average RDI (ARDI) of tested methods in each set
of instances. The MILP and CP found feasible solutions for all the test
instances. To analyze the performance of the tested methods with the
factors controlling the range of due dates, Table 7 illustrates the results
of the proposed methods concerning the 𝑇𝐹 and 𝑅𝐷𝐷 factors.

Due the large values of 𝑛 100 to 300 jobs, the BRKGA in all instances
reaches the time limit before reaches the iteration limit. Analyzing
Tables 6 and 7 the methods with the most competitive results (with
ARDI less than 10) are OMDD, CP, JPO20, SR2 and BRKGA. The results
prove that the pure MILP model is more effective for smaller instances,
such as 100 orders and 5 or 10 machines. On the other hand, the SR2
method is more effective for intermediate instances, between 150 and
200 orders with 5 or 10 machines. For larger instances, the use of the
OMDD heuristic proved to be more effective when compared to MILP
and SR2. For better visualization of the results, Fig. 12 illustrates a
boxplot with the RDI of all methods at all instance sizes. The Figs. 13,
14, and 15 illustrate the RDI results in a boxplot grouped by due
date factors 𝑇𝐹 and 𝑅𝐷𝐷 and density of missing operations (𝛩),
respectively. In all next charts just the best eight methods are reported
for a better visualization of results.

Overall, BRKGA obtained the best results, followed by CP, SR2 and
JPO20. Comparing the matheuristic method, CP and MILP and the
tested metaheuristics, the proposed BRKGA has the lowest interquartile
range, median, and outliers values. The methods EDD, FP, MILP and
NEH got the worst results. BRKGA achieved a significant improve-
ment on the initial EDD solution. Therefore, improving the efficient
local search and the restart operator along with BRKGA iterations can
substantially improve the solution of the priority rule. For a better
comparison, Fig. 16 illustrates the ARDI of each of the tested methods,
grouped by job size.

From Fig. 16, NEH has poor performance compared to other strate-
gies up to instance size 200, and the NEH performance with instance
size 300 has similar performance to other methods. The MILP method
works well up to an instance size of 200. At large sizes, this method
gave the worst results of all the methods. The BRKGA, SR2, and CP
methods produced competitive results for most instance sizes, and
10
Fig. 12. RDI distribution for all tested methods in all sets of instances.

Fig. 13. RDI distribution for all tested methods in all sets of instances grouped by 𝑇𝐹 .

BRKGA produced better results. To verify performance differences be-
tween the approximated methods tested, Fig. 17 illustrates the ARDI for
each of the approximated methods (matheuristics and metaheuristics).

From Fig. 17, DE has poor performance compared to other strategies
in all instance sizes with the most variability of results. In addition,
JPO20 has an ARDI of less than 10% in each instance size but is
outperformed by BRKGA, which has competitive performance between
matheuristics and metaheuristics methods with an ARDI of less than
1% in each instance size.

Figs. 16 and 17 show that BRKGA method outperforms most other
algorithms in many instance sizes, with significant differences even

Swarm and Evolutionary Computation 75 (2022) 101149L.R. de Abreu et al.
Fig. 14. RDI distribution for all tested methods in all sets of instances grouped by
𝑅𝐷𝐷.

Fig. 15. RDI distribution for all tested methods in all sets of instances grouped by
percentage of missing operations in the process times matrix (𝛩).

Fig. 16. ARDI and confidence interval (𝛼 = 0.05) for all tested methods in each job
size.

Fig. 17. ARDI and confidence interval (𝛼 = 0.05) for matheuristic and metaheuristic
methods in each job size.
11
Fig. 18. Tukey’s test between all tested methods.

within the approximate methods, primarily with average instance
sizes of 200–300, and confidence intervals that do not intersect with
most other methods. For analyzing the results of all instances in each
method, Table 8 describes SR values for each method. The BRKGA got
the best result in 84% of instance set.

To check if the differences between methods in the ARID perfor-
mance indicator are statistically significant, we applied the analysis of
variance (ANOVA). The 𝑝-value obtained is very close to zero, indi-
cating that the results are significant. Finally, we applied Tukey’s test
in Fig. 18 to the tested data to check which ARID differences are sig-
nificant between the benchmarks methods and the BRKGA algorithm.
BRKGA obtained significantly better results when compared peer-to-
peer with all other benchmarking methods, outperforming CP, MILP, SR
and the most recent metaheuristic DE (the confidence intervals of each
BRKGA comparison do not cross the zero line demonstrating significant
results).

Therefore, analyzing the results present in Tables 6 and 7 and
Figs. 12 and 16. BRKGA, CP and SR2 methods obtained better solu-
tions than all other methods with SR2 performed slightly better on
average than the JPO20 but the result is not significant in Tukey’s test.
The proposed CP model outperformed MILP, becoming the best exact
model for the problem. BRKGA outperformed all tested benchmarking
methods concerning solution quality. Therefore, BRKGA got an ARDI
as lower as 0.15% and outperformed all other exact and approximation
methods with significant solution quality in Tukey’s test. The BRKGA
is so far considered a competitive meta-heuristic for order scheduling
with missing operations and total tardiness minimization, with a good
trade-off between solution quality and admissible computational cost.

6. Final remarks and perspectives

In this paper, we investigate a new variant for the customer order
scheduling problem with missing operations to minimize the total
tardiness. We introduce an innovative size reduction algorithm with
partitions for a scheduling problem with due dates. This approach does
not take into account the processing times as the early approaches,
but an efficient partitioning of the decision variables based on the
due dates and a dispatch rule. In addition, we propose a new BRKGA
metaheuristic with an efficient 2-opt local search and a parameter-free
restart procedure.

Computational experiments with randomly generated test instances
were carried out to evaluate the performance of the proposed solution
procedures with the average relative deviation index as performance
measure. In most tested problem instances, the BRKGA approach show
the best performance, outperforming the JPO20 algorithm, the best
algorithm in the literature adapted for the variant under study and DE,
the most recent metaheuristic for a closely related variant.

Some advantages of BRKGA are an intensive local search phase
to intensity quality search and a parameter-free restart procedure to

Swarm and Evolutionary Computation 75 (2022) 101149L.R. de Abreu et al.
Table 8
Success rate for each method.

Methods EDD FP NEH OMDD MILP CP JPO20 SR2 DE BRKGA

SR (%) 0 0 0 0 4 11 0 4 0 84
reduce the number of parameters in calibration processes. However,
BRKGA has disadvantages in considering just one population at a time,
reducing the number of solutions that can be created at the same
time [42]. Another disadvantage is the lack of hybridization with
quality exact approaches, such as the CP model, for improving the
search or the initial solution construction for BRKGA.

As a suggestion for future developments, we recommend the hy-
bridization of constraint programming and metaheuristics to improve
the solutions generated by the proposed methods. Future research could
also consider other performance measures, such as the total completion
time minimization.

CRediT authorship contribution statement

Levi Ribeiro de Abreu: Conceptualization, Methodology, Investiga-
tion, Software, Formal analysis, Writing – original draft, Visualization,
Writing – review & editing. Bruno de Athayde Prata: Conceptual-
ization, Methodology, Validation, Writing – review & editing, Super-
vision. Allan Costa Gomes: Conceptualization, Methodology, Investi-
gation, Software, Formal analysis, Writing – original draft. Stéphanie
Alencar Braga-Santos: Conceptualization, Methodology, Investigation,
Software, Formal analysis, Writing – original draft. Marcelo Seido
Nagano: Conceptualization, Validation, Writing – review & editing,
Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the Brazilian National Council for Sci-
entific and Technological Development (Conselho Nacional de Desen-
volvimento Científico e Tecnológico) [Nos. 309755/2021-2, 407151/
2021-4, and 312585/2021-7]; the Brazilian Coordination for the Im-
provement of Higher Education Personnel (Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior) [No. 001]; the São Paulo Research
Foundation (FAPESP) - through Grant no. #2021/11586-2.

References

[1] J.M. Framinan, P. Perez-Gonzalez, V. Fernandez-Viagas, Deterministic assembly
scheduling problems: A review and classification of concurrent-type scheduling
models and solution procedures, European J. Oper. Res. 273 (2) (2019) 401–417.

[2] C.-T. Tseng, C.-J. Liao, T.-X. Liao, A note on two-stage hybrid flowshop
scheduling with missing operations, Comput. Ind. Eng. 54 (3) (2008) 695–704.

[3] R. Leisten, M. Kolbe, A note on scheduling jobs with missing operations in
permutation flow shops, Int. J. Prod. Res. 36 (9) (1998) 2627–2630.

[4] C. Rajendran, H. Ziegler, A performance analysis of dispatching rules and a
heuristic in static flowshops with missing operations of jobs, European J. Oper.
Res. 131 (3) (2001) 622–634.

[5] M. Dios, V. Fernandez-Viagas, J.M. Framinan, Efficient heuristics for the hybrid
flow shop scheduling problem with missing operations, Comput. Ind. Eng. 115
(2018) 88–99.

[6] J. Sridhar, C. Rajendran, Scheduling in a cellular manufacturing system: a
simulated annealing approach, Int. J. Prod. Res. 31 (12) (1993) 2927–2945.

[7] F. Zhao, X. He, L. Wang, A two-stage cooperative evolutionary algorithm with
problem-specific knowledge for energy-efficient scheduling of no-wait flow-shop
problem, IEEE Trans. Cybern. 51 (11) (2020) 5291–5303.

[8] F. Zhao, R. Ma, L. Wang, A self-learning discrete jaya algorithm for multi-
objective energy-efficient distributed no-idle flow-shop scheduling problem in
heterogeneous factory system, IEEE Trans. Cybern. 3086181 (2021) 1–12.
12
[9] I.S. Lee, Minimizing total tardiness for the order scheduling problem, Int. J. Prod.
Econ. 144 (1) (2013) 128–134.

[10] J.M. Framinan, P. Perez-Gonzalez, Order scheduling with tardiness objective:
Improved approximate solutions, European J. Oper. Res. 266 (3) (2018) 840–850.

[11] C.S. Sung, S.H. Yoon, Minimizing total weighted completion time at a pre-
assembly stage composed of two feeding machines, Int. J. Prod. Econ. 54
(3) (1998) 247–255, URL: http://www.sciencedirect.com/science/article/pii/
S0925527397001515.

[12] R. Ahmadi, U. Bagchi, T.A. Roemer, Coordinated scheduling of customer orders
for quick response, Nav. Res. Logist. 52 (6) (2005) 493–512.

[13] J.Y.T. Leung, H. Li, M. Pinedo, Order scheduling in an environment with
dedicated resources in parallel, J. Sched. 8 (5) (2005) 355–386.

[14] C.-C. Wu, T.-H. Yang, X. Zhang, C.-C. Kang, I.-H. Chung, W.-C. Lin, Using
heuristic and iterative greedy algorithms for the total weighted completion time
order scheduling with release times, Swarm Evol. Comput. 44 (2019) 913–926,
URL: http://www.sciencedirect.com/science/article/pii/S2210650218301317.

[15] Z. Shi, L. Wang, P. Liu, L. Shi, Minimizing completion time for order scheduling:
Formulation and heuristic algorithm, IEEE Trans. Autom. Sci. Eng. 14 (4) (2017)
1558–1569.

[16] J.M. Framinan, P. Perez-Gonzalez, New approximate algorithms for the customer
order scheduling problem with total completion time objective, Comput. Oper.
Res. 78 (2017) 181–192.

[17] V. Riahi, M.H. Newton, M. Polash, A. Sattar, Tailoring customer order scheduling
search algorithms, Comput. Oper. Res. 108 (2019) 155–165, URL: http://www.
sciencedirect.com/science/article/pii/S030505481930098X.

[18] J.-Y. Kung, J. Duan, J. Xu, I. Chung, S.-R. Cheng, C.-C. Wu, W.-C. Lin, et al.,
Metaheuristics for order scheduling problem with unequal ready times, Discrete
Dyn. Nat. Soc. 2018 (2018) 1–13.

[19] W.-C. Lin, J. Xu, D. Bai, I.-H. Chung, S.-C. Liu, C.-C. Wu, Artificial bee colony
algorithms for the order scheduling with release dates, Soft Comput. 23 (18)
(2019) 8677–8688.

[20] B.A. Prata, C.D. Rodrigues, J.M. Framinan, Customer order scheduling problem
to minimize makespan with sequence-dependent setup times, Comput. Ind. Eng.
151 (2021) 106962.

[21] B.d.A. Prata, C.D. Rodrigues, J.M. Framinan, A differential evolution algorithm
for the customer order scheduling problem with sequence-dependent setup times,
Expert Syst. Appl. 189 (2022) 116097.

[22] M.P. Antonioli, C.D. Rodrigues, B.d.A. Prata, Minimizing total tardiness for the
order scheduling problem with sequence-dependent setup times using hybrid
matheuristics, Int. J. Ind. Eng. Comput. 13 (2) (2022) 1–24.

[23] F. Rossi, P. Van Beek, T. Walsh, Handbook of Constraint Programming, Elsevier,
2006.

[24] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Springer, New York,
2016.

[25] P. Laborie, D. Godard, Self-adapting large neighborhood search: Application
to single-mode scheduling problems, in: Proceedings MISTA-07, Paris, vol. 8,
Citeseer, 2007.

[26] M.F. Zarandi, H. Khorshidian, M.A. Shirazi, A constraint programming model for
the scheduling of JIT cross-docking systems with preemption, J. Intell. Manuf.
27 (2) (2016) 297–313.

[27] R. Gedik, D. Kalathia, G. Egilmez, E. Kirac, A constraint programming approach
for solving unrelated parallel machine scheduling problem, Comput. Ind. Eng.
121 (2018) 139–149.

[28] P. Yunusoglu, S. Topaloglu Yildiz, Constraint programming approach for
multi-resource-constrained unrelated parallel machine scheduling problem with
sequence-dependent setup times, Int. J. Prod. Res. (2021) 1–18.

[29] H. Öztop, M.F. Tasgetiren, L. Kandiller, Q.-K. Pan, Metaheuristics with restart and
learning mechanisms for the no-idle flowshop scheduling problem with makespan
criterion, Comput. Oper. Res. 138 (2022) 105616.

[30] J. Kelbel, Z. Hanzálek, Solving production scheduling with earliness tardiness
penalties by constraint programming, J. Intell. Manuf. 22 (4) (2011) 553–562.

[31] L. Meng, C. Zhang, Y. Ren, B. Zhang, C. Lv, Mixed-integer linear programming
and constraint programming formulations for solving distributed flexible job shop
scheduling problem, Comput. Ind. Eng. 142 (2020) 106347.

[32] L.R. Abreu, K.A.G. Araújo, B.d.A. Prata, M.S. Nagano, J.V. Moccellin, A new
variable neighbourhood search with a constraint programming search strategy
for the open shop scheduling problem with operation repetitions, Eng. Optim.
(2021) 1–20.

[33] L.R. Abreu, M.S. Nagano, A new hybridization of adaptive large neighbor-
hood search with constraint programming for open shop scheduling with
sequence-dependent setup times, Comput. Ind. Eng. 168 (2022) 108128.

[34] B. Naderi, S.F. Ghomi, M. Aminnayeri, M. Zandieh, Modeling and scheduling
open shops with sequence-dependent setup times to minimize total completion
time, Int. J. Adv. Manuf. Technol. 53 (5–8) (2011) 751–760.

http://refhub.elsevier.com/S2210-6502(22)00118-3/sb1
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb1
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb1
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb1
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb1
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb2
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb2
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb2
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb3
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb3
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb3
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb4
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb4
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb4
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb4
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb4
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb5
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb5
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb5
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb5
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb5
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb6
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb6
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb6
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb7
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb7
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb7
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb7
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb7
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb8
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb8
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb8
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb8
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb8
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb9
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb9
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb9
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb10
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb10
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb10
http://www.sciencedirect.com/science/article/pii/S0925527397001515
http://www.sciencedirect.com/science/article/pii/S0925527397001515
http://www.sciencedirect.com/science/article/pii/S0925527397001515
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb12
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb12
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb12
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb13
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb13
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb13
http://www.sciencedirect.com/science/article/pii/S2210650218301317
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb15
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb15
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb15
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb15
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb15
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb16
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb16
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb16
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb16
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb16
http://www.sciencedirect.com/science/article/pii/S030505481930098X
http://www.sciencedirect.com/science/article/pii/S030505481930098X
http://www.sciencedirect.com/science/article/pii/S030505481930098X
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb18
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb18
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb18
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb18
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb18
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb19
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb19
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb19
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb19
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb19
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb20
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb20
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb20
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb20
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb20
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb21
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb21
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb21
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb21
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb21
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb22
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb22
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb22
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb22
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb22
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb23
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb23
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb23
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb24
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb24
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb24
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb25
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb25
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb25
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb25
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb25
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb26
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb26
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb26
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb26
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb26
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb27
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb27
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb27
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb27
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb27
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb28
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb28
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb28
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb28
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb28
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb29
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb29
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb29
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb29
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb29
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb30
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb30
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb30
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb31
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb31
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb31
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb31
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb31
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb32
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb32
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb32
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb32
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb32
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb32
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb32
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb33
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb33
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb33
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb33
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb33
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb34
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb34
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb34
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb34
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb34

Swarm and Evolutionary Computation 75 (2022) 101149L.R. de Abreu et al.
[35] S. Braga-Santos, G. Barroso, B. Prata, A size-reduction algorithm for the order
scheduling problem with total tardiness minimization, J. Project Manage. 7 (3)
(2022) 167–176.

[36] L. Fanjul-Peyro, R. Ruiz, Size-reduction heuristics for the unrelated parallel
machines scheduling problem, Comput. Oper. Res. 38 (1) (2011) 301–309,
Project Management and Scheduling.

[37] F.E. Achamrah, F. Riane, C. Di Martinelly, S. Limbourg, A matheuristic for solving
inventory sharing problems, Comput. Oper. Res. 138 (2022) 105605.

[38] B. de Athayde Prata, V. Fernandez-Viagas, J.M. Framinan, C.D. Rodrigues,
Matheuristics for the flowshop scheduling problem with controllable processing
times and limited resource consumption to minimize total tardiness, Comput.
Oper. Res. (2022) 105880.

[39] J.F. Gonçalves, M.G. Resende, Biased random-key genetic algorithms for
combinatorial optimization, J. Heuristics 17 (5) (2011) 487–525.

[40] G.-G. Wang, D. Gao, W. Pedrycz, Solving multi-objective fuzzy job-shop schedul-
ing problem by a hybrid adaptive differential evolution algorithm, IEEE Trans.
Ind. Inf. (2022).

[41] S. Zhou, L. Xing, X. Zheng, N. Du, L. Wang, Q. Zhang, A self-adaptive differential
evolution algorithm for scheduling a single batch-processing machine with
arbitrary job sizes and release times, IEEE Trans. Cybern. 51 (3) (2019)
1430–1442.

[42] C.E. Andrade, R.F. Toso, J.F. Gonçalves, M.G. Resende, The multi-parent biased
random-key genetic algorithm with implicit path-relinking and its real-world
applications, European J. Oper. Res. 289 (1) (2021) 17–30.

[43] M. Kong, X. Liu, J. Pei, H. Cheng, P.M. Pardalos, A BRKGA-DE algorithm for
parallel-batching scheduling with deterioration and learning effects on parallel
machines under preventive maintenance consideration, Ann. Math. Artif. Intell.
88 (1) (2020) 237–267.

[44] J. Rocholl, L. Mönch, Decomposition heuristics for parallel-machine multiple
orders per job scheduling problems with a common due date, J. Oper. Res. Soc.
72 (8) (2021) 1737–1753.

[45] L. Abreu, B. Prata, A hybrid genetic algorithm for solving the unrelated parallel
machine scheduling problem with sequence dependent setup times, IEEE Lat.
Am. Trans. 16 (6) (2018) 1715–1722.

[46] L.R. de Abreu, B. de Athayde Prata, A genetic algorithm with neighborhood
search procedures for unrelated parallel machine scheduling problem with
sequence-dependent setup times, J. Model. Manage. (2020).

[47] L.S. Pessoa, C.E. Andrade, Heuristics for a flowshop scheduling problem with
stepwise job objective function, European J. Oper. Res. 266 (3) (2018) 950–962.

[48] C.E. Andrade, T. Silva, L.S. Pessoa, Minimizing flowtime in a flowshop scheduling
problem with a biased random-key genetic algorithm, Expert Syst. Appl. 128
(2019) 67–80.
13
[49] I. Maciel, B. Prata, M. Nagano, L. Abreu, A hybrid genetic algorithm
for the hybrid flow shop scheduling problem with machine blocking and
sequence-dependent setup times, J. Project Manage. 7 (4) (2022) 191–225.

[50] M.T. Pereira, M.S. Nagano, Hybrid metaheuristics for the integrated and detailed
scheduling of production and delivery operations in no-wait flow shop systems,
Comput. Ind. Eng. (2022) 108255.

[51] N.d.C.L. Beirão, Sistema de apoio à decisão para sequenciamento de operações
em ambientes Job Shop, Faculdade de Engenharia do Porto, 1997.

[52] J.F. Gonçalves, J.J. de Magalhães Mendes, M.G. Resende, A hybrid genetic
algorithm for the job shop scheduling problem, European J. Oper. Res. 167 (1)
(2005) 77–95.

[53] S.M. Homayouni, D.B. Fontes, J.F. Gonçalves, A multistart biased random key ge-
netic algorithm for the flexible job shop scheduling problem with transportation,
Int. Trans. Oper. Res. 00 (2020) 1–29.

[54] L.R. Abreu, J.O. Cunha, B.A. Prata, J.M. Framinan, A genetic algorithm for
scheduling open shops with sequence-dependent setup times, Comput. Oper. Res.
113 (2020) 104793.

[55] L.R. Abreu, R.F. Tavares-Neto, M.S. Nagano, A new efficient biased random key
genetic algorithm for open shop scheduling with routing by capacitated single
vehicle and makespan minimization, Eng. Appl. Artif. Intell. 104 (2021) 104373.

[56] L.R. Abreu, B.A. Prata, J.M. Framinan, M.S. Nagano, New efficient heuristics for
scheduling open shops with makespan minimization, Comput. Oper. Res. 142
(2022) 105744.

[57] M. López-Ibáñez, J. Dubois-Lacoste, L.P. Cáceres, M. Birattari, T. Stützle, The
irace package: Iterated racing for automatic algorithm configuration, Oper. Res.
Perspect. 3 (2016) 43–58.

[58] J.V. Moccellin, M.S. Nagano, A.R. Pitombeira Neto, B. de Athayde Prata,
Heuristic algorithms for scheduling hybrid flow shops with machine blocking
and setup times, J. Braz. Soc. Mech. Sci. Eng. 40 (2) (2018) 1–11.

[59] A.R. Pitombeira-Neto, B.d.A. Prata, A matheuristic algorithm for the one-
dimensional cutting stock and scheduling problem with heterogeneous orders,
Top 28 (1) (2020) 178–192.

[60] F.S.d. Almeida, M.S. Nagano, Heuristics to optimize total completion time subject
to makespan in no-wait flow shops with sequence-dependent setup times, J. Oper.
Res. Soc. (2022) 1–12.

[61] M.F. Rego, J.C.E. Pinto, L.P. Cota, M.J. Souza, A mathematical formulation
and an NSGA-II algorithm for minimizing the makespan and energy cost under
time-of-use electricity price in an unrelated parallel machine scheduling, PeerJ
Comput. Sci. 8 (2022) e844.

[62] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2017.

http://refhub.elsevier.com/S2210-6502(22)00118-3/sb35
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb35
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb35
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb35
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb35
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb36
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb36
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb36
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb36
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb36
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb37
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb37
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb37
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb38
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb38
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb38
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb38
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb38
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb38
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb38
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb39
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb39
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb39
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb40
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb40
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb40
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb40
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb40
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb41
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb41
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb41
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb41
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb41
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb41
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb41
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb42
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb42
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb42
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb42
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb42
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb43
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb43
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb43
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb43
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb43
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb43
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb43
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb44
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb44
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb44
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb44
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb44
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb45
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb45
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb45
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb45
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb45
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb46
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb46
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb46
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb46
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb46
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb47
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb47
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb47
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb48
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb48
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb48
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb48
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb48
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb49
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb49
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb49
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb49
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb49
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb50
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb50
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb50
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb50
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb50
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb51
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb51
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb51
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb52
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb52
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb52
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb52
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb52
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb53
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb53
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb53
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb53
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb53
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb54
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb54
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb54
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb54
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb54
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb55
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb55
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb55
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb55
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb55
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb56
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb56
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb56
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb56
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb56
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb57
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb57
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb57
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb57
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb57
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb58
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb58
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb58
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb58
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb58
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb59
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb59
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb59
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb59
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb59
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb60
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb60
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb60
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb60
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb60
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb61
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb61
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb61
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb61
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb61
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb61
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb61
http://refhub.elsevier.com/S2210-6502(22)00118-3/sb62

	A novel BRKGA for the customer order scheduling with missing operations to minimize total tardiness
	Introduction
	Literature review
	Problem description and exact methods
	Mixed-integer linear programming model
	Constraint programming model

	Proposed solution approaches
	Size reduction with partitions
	Biased random-key genetic algorithm

	Computational experience
	Test instances and statistics used in the computational experiments
	Parameter's optimization of BRKGA
	Methods under comparison
	Results and discussion

	Final remarks and perspectives
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

