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Abstract. A polynomial expansion to probability density function
{pdf) approximation about Gaussian mixture densities is proposed
in this paper. Using known pclynomial series expansions we apply
the Parzen estimator to derive an orthonormal basis that is able
to represent the characteristics of probability distributions that
are not concentrated in the vicinity of the mean point such as
the Gaussian pdf. The blind source separation problem is used to
illustrate the applicability of the proposal in practical analysis of
the dynamics of the recovered data pdf estimation. Simulations
are carried out to illustrate the analysis.

INTRODUCTION

Probability density functions (pdf) play a key role in signal processing since
the estimation of data is, usually, done by exploiting statistical characteristics
of the involved signals.

Blind source separation (BSS) is a general framework on the interference
removal, In that case, no knowledge about the transmitted data neither
about their pdfs is available. Information-theoretical tools are used to solve
the problem but they require the knowledge of the signals pdfs and when
they are not known some estimation has to be performed to made a solution
possible.

Since only the mixture of data is available, the methods rely on the use of
such measures to estimate the pdfs and the source signals. The estimative of
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the higher-order statistics (HOS) is one of the most used strategies to perform
pdf estimation. With those measures, one can use polynomial expansions
for the pdf about reference densities, However, the existing expansions are
generally developed about a Gaussian density and many signals, such as the
originated in digital communication systems, cannot be represented by those
expansions.

In this paper we propose a new polynomial expansion developed about
Gaussian mixtures that are suitable to represent the data of digital commu-
nication systems. We observe that the obtained expansion is a general model
that can be used in several felds where some expansion of pdf using HOS is
required. OQur particular interest is to evaluate the impact of the number of
HOS used to approximate the pdf in BSS adaptive algorithms.

The rest of the paper is organized as follows. Next section shows the
existing polynomial expansions, namely the Gram-Charlier ann Edgeworth
ones. Later, the proposed expansion is presented and an application in a BSS
problem is shown in the sequence. Finally, we state our conclusions at the
end of the paper.

POLYNOMIAL EXPANSIONS: GRAM—CHARLIER, AND EDGE-
‘WORTH ONES

The polynomial representation of the probability density function is an ex-
pansion in an orthonormal series. The expansion is characterized by the use
of the statistics of the signal which pdf we want to represent and a reference
density [11, 3].

The reference density plays a key role since it has to be as similar as
possible to the desired density. Further, the orthonormal series (or basis) is
also reference-density-dependent. Let us describe a little the development of
a general expansion.

Let the characteristic function (moment generator function) of a real!
random variable (r.v.) y which fdp is py (y), defined as [9]:

o

Oy () 2 ] py () exp(n)dy, (1)

—00

where 3= v —1 and w € R.
Then, if the k-th moment of the r.v. ¥ exists, we can expand Oy (w) in a
power series around w = 0 as [9]:

Oy (w) = i Jw)k (2)
k=1

where ki (y) is the k-th central moment of r.v. 3.

1For complex-valued variables the development is similar [5], we use real ones for sim-
plicity reason only.
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If we take the logarithm of the characteristic function we have the cu-
mulant generator function (second characteristic function) which is given by
(9, 12]:

tn Sy ()] = Z .f, - (), (3)
=1

where ¢y, is the k-th order cumulant (or semi-invariant) of r.v. y. The cumu-
lants are related to the moments by the following recursion [7]:

k-1 E—1
Ckzﬁk’z(irl)ci‘ﬁkri- (4)

i=1

A reference variable is defined by conventence, and its characteristic func-
tion is given by Qp(w), such as

n R0 (w)] = JW) +Z (), (5)

where ¢, g is the k-th order cumulant of Qp{w).
If we subtract the cumulant generator function of r.v. ¢ from the one of the
reference density we have, alter some manipulation, the following expression

13, 1:
Q} (u.) Ce,|
Gole) *Z I (Z e W)k) (6)

k=3

Then, performing an inverse Fourler transform on Oy-{w) it is possible to
write the following approximation for the probability density function of r.v.
y about a reference density po(y} [5, 6, 3]:

Py (¥) = poly) > Ci - ba(v), (7)

where Cj, are the coefficients of an orthonormal series expansion. The by (y)
are appropriate mathematical functions that compose the orthonormal basis
given by the following expression [11]:

ok ~d¥poly)
by, (y) ( ) po(y) d’yk ’ (8)

Thus, the coefficients Cy of the orthonormal series are defined in terms
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of the k-th order cumulants of 3. The first 8 ones are given by [3]:

Cp =0

Cy=0

Cy=2

Ca= 35

Cs = 12 ()
Cs = 7—;0” (o6 + 10c3)

C; = @1:16 (c7 + 3Beqca)

Cly = E;:% (cs + 56eses + 35¢3) -

It is known that the ). can be also written as polynomials of the k-th central
moments [6]

Gram-Charlier Expansion

When the Gaussian distribution is considered as the reference one we obtain
the Gram-Charlier series expansion which is given by [11]:

k=3

py(y) =pa(y) (1 +3 G bk(y)) ' (10)

where pe{y) = Tlﬁexp (—%)

The elements of the orthonormal basis for the Gram-Charlier expansion
are then derived following Equation (8) when po(y) = pe(y) and in this case
we denote by = hy.. The obtained polynomials are the Hermife polynomials
which recursion generation rule is given by {3]:

Brear() =4 be — & Do (y)- (11)
The first 8 Hermite polynomials are (6]
bo(y) =1
hiy) =y
baly) = y* 1
ha(y) =4 — 3y
haly) = 4" — 657+ 3 (12)

hs(y) = 3> — 104° + 15y

ha(y) = 3° — 155" + 45y° — 15

br(y) =47 — 21y° +1055° — 105y
ha(y) = & — 28y° + 210y* - 420° + 105.
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Edgeworth Expansion

The Edgeworth expansion consists on the Gram-Charlier polynomial series
ordered in decreasing order of its coefficients. Although, they have the same
structure of the Gram-Charlier expansion they were developed independently
[13]. Therefore, we can write Edgeworth expansion as [5, 3|

2
py(y) = paly) (1 + E‘f:ifm(y) + %fn(y) + L‘;!C_shs(y) + Pi—","bs(y)

35 280c3 6
Dholy) + s ho(u) + Shoty) + T y)
+3E§f"‘ B(s) + 100':36‘%;10( )+ et )

(13)

The use of the Edgeworth expansion is useful when a truncated version of
the polynomial expansion is necessary and the most important terms should
be retained. Both polynomial expansions are able to approximate a large
number of probability density functions. However, typical densities encoun-
tered in digital communication systems cannot be approximated by none of
the presented expansions. To cope with that a new polynomial expansion is
proposed in next section.

POLYNOMIAL EXPANSION ABOUT GAUSSIAN MIXTURES
DENSITIES

Digital communication systems have the characteristic that the transmitted
sighals are discrete, belonging to an alphabet A with cardinality S, and
usually an additive noise with a Gaussian pdf. This implies that the pdf of
the signals at the receiver output have the signals y with the following density
distribution [1]:

5

Poarly) = Z\/%;e P[ ly o 2)] Pr(a;), (14)

1

where a; are the symbols of the transmitted alphabet, Jg is the variance of
each model and GM stands for Gaussian mixture.

If we want to exploit some characteristics of the signal at the receiver
in a digital communication system we have to evaluate the cumulants of a
distribution like the one described in Equation (14}).

For this sake we have developed an orthonormal basis using Equation (8)
for po(y) = pear(y) using the fact that a sum of Gaussians can model a large
number of densities as stated by Parzen {10}. Further, assuming that the
alphabet 4 has zero mean, we achieve the following recursion rule for the
orthonormal basis when the reference density equals to a sum of Gaussian
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mixtures with different means [1):

tep1(y) = Sy ely) — ko1 (), (15)

where ¢, is the obtained orthonormal basis for the polynomial expansion
about a Gaussian mixture density function. The first 8 ¢; are written as [1]:

co(y) =1
afy) =Sy
o(y)=(8-y)? -1
¢a{y) = (5 9)° - 3(5-y)
a(y)=(5-y)* —6((S-y)°* +3 (16)
es(y) = (S 4)° —10(S - )° +15(S - )
to{y) = (S-9)® - 15(S - y)* + 45(S - y)* - 15
cr(y) = (S-9)" —21(S - y)° + 105(S - y)* — 105(S - y)
es{y) = (S )% — 28(5 - 1) + 210(5 - y)* — 420(S - )? + 105,
that are also a class of Hermite polynomial since the Hermite polynomials

properties are still valid [3].
The polynomial expansion is written as:

pyv () = per(y) (1 +Y G Ck(y)) : (17)

k=3

This new expansion made possible the investigation on the dynamics evo-

lution on blind source separation problems. This is, explored in the simula-
tions on next section.

COMPUTATIONAL RESULTS: BLIND SOURCE SEPARATION

In the design of blind source separation criteria, the use of higher order
statistics is required in order to recover the sources [4]. Figure 1 shows the
scheme of BSS.

When discrete sources are considered, two existing approaches that use a
different number of higher order statistics in their structures can be evaluated.
Namely, the multi-user kurtosis (MUK) [8] and the multi-user constrained
fitting pdf (MU-CFP) |2].

Both of them use an equalization criterion constrained to have an orthog-
onal global system response. We can write the MUK as

mé}{ ']MUK(G) = Jél |K' [yk” , (18)

subject to: GHG =1
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Figure 1: General scheme of blind source separation

where s[/] is the kurtosis operator, G = W H is the global response matrix,
H is the mixing system, W is the demixing system and I is the identity
matrix. The adaptation procedure for the MUK is given by

We(n + 1) = W(n) + psign (k) X* (n)Z(n), (19)

where Z(n) = | Py - lysc{n))* v (n) ] The orthogonaliza-
tion procedure is performed using a Gram-Schimdt one [§].
The MU-CFP is given hy

K
m’ .] i W = D (-]
Vbn mu-crp{W) ‘El Py (1% (ye.od) 7 (20)

subject tor GG =1

where D, is the KLD between the pdfs, py is the pdf of the ideally equalized
signal and ®(y, 02) is the parametric model given by

s wil{n —al?
By = —=s 3 exp (~|—~"M—)-Pr(ai), 1)

230’2 20’3

T oi=1

where o7 is the assumed variance of each Gaussian in the model. The stochas-
tic gradient of the MU-CFP, for the k-th column of W, is given by [2]:

5 exp (208 i) - )

YV hag-cre (wi(n)) = 2

x*
S
0’3 . E exp (_ yk!go-!‘—ﬂri 2) (22)
t=1 b

wi(n+1) = wi(n) — pVJrp (Wi),

and the same (Gram-Schimdt procedure in (8] is used to assure the ortoghonal-
ization of the global response.

The main difference between both criteria is the number of used higher
order statistics. The MUK uses the kurtosis only and the estimation of the
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pdf at the output of the separation device uses this HOS only. On the other
hand, the MU-CFP is pdf-estimation-based and all HOS are involved in the
process.

The polynomial expansion about a Gaussian mixture is used to evaluate
the pdf estimation during the adaptation procedure. In the MUK case, we
use only the kurtosis to approximate the pdf through peas(y). The kurtosis
is computed for some time intervals using the available data at the moment.
A similar procedure is used for the MU-CFP. The difference is the greater
number of considered HOS. For simplicity we use only 8 terms of the ex-
pansion in Equation (14). Figures 2 and 3 show the evolution of the pdf
estimation for the MUK and MU-CFP algorithms at different time instants.

The simulation is done using two BPSK sources and two sensors. At the
receiver is considered additive white gaussian noise which power is given by
the signal-to-noise ratio (SNR) equals 30 dB. The mixture matrix is given
by:

[ 0.7138  0.7004 ]

H=1__. . e 23
2 (23)
§. Eﬁﬂ
(S &,
) o
S G Y
(a) Tterations 1-100. (bj Tterations 200~1000.
3. 2
& | @
M e ) T
(c) Iterations 1500-2000. {d) Iterations 2500-4000.

Figure 2: Dynamics of the pdf estimation for the MUK algorithin.

As one can see, the pdf of the data is faster estimated by the MU-CFP
than using the MUK. This behavior has been also observed in a wide range
of channels and situations.

The presented approach works at the extrems: one HOS and all HOS.
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Figure 3: Dynamics of the pdf estimation for the MU-CFPA algorithm.

The gain in terms. of convergence rate is very interesting for adaptive algo-
rithms and such analysis can help the design of new methods for blind source
separation.

CONCLUSIONS AND PERSPECTIVES

We have proposed a new polynomial expansion for probability density func-
tion approximation about Gaussian mixtures densities using higher-order
statistics .

The proposed expansion is based on the Parzen estimation and uses the
derivatives of known expansions (Gram-Charlier and Edgeworth} to a sum
of Gaussians with different means. The cbtained result is interesting in the
sense that investigation about systems that have densities given by Gaussian
mixtures, such as digital communication systems, can be done at each time
instant regarding the pdf estimation of the data.

The blind source separation problem benefits from the proposed approach
since the criterion may be uvsed to guide the project of criteria to maximize
the trade-off complexity x performance.
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A natural extension to this work is investigate the most important higher-

order statistics to provide a more efficient blind source separation criterion
in terms of performance (faster convergence) and complexity.
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