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Abstract. A polynomial expansion to probability density function 
(pdf) approximation about Gaussian mixture densities is proposed 
in this paper. Using known polynomial series expansions we apply 
the Pareen estimator to derive an orthonormal basis that is able 
to represent the characteristics of probability distributions that 
are not concentrated in the vicinity of the mean point such as 
the Gaussian pdf. The blind source separation problem is used to 
illustrate the applicability of the proposal in practical analysis of 
the dynamics of the recovered data pdf estimation. Simulations 
are carried out to illustrate the analysis. 

INTRODUCTION 

Probabi1it.y densit,y functions (pdf) play a key role in signal processing since 
the estima,tion of da,ta isl usually, done by exploiting statistical characteristics 
of the involved signals. 

Blind source separation (BSS) is a general framework on the interference 
removal. In t,hat case, no knowledge about the t,ransmitted data neither 
about their pdfs is available. Information-theoretical tools are used to solve 
the problem but they require the knowledge of the signals pdfs and when 
they are not known some estimation has to be performed to made a solution 
possible. 

Since only the mixture of data is available, the methods rely on the use of 
such memures to estimate the pdfs and the source signals. The estimative of 
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the higher-order statistics (HOS) is one of the most used strategies to perform 
pdf estimation. With t,hose measures, one can use polynomial expansions 
for the pdf about reference densities. However, the existing expansions are 
generally developed about a Gaussian density and many signals, such as the 
originated in digital communication systems, cannot be represented by those 
expansions. 

In this paper we propose a new polynomial expansion developed about 
Gaussian mixtures that are suitable to represent the data of digital commu- 
nication systems. We observe t.hat the obtained expansion is a general model 
that. can be used in several fields where some'expansion of pdf using HOS is 
required. Our particular interest is to evaluate the impact of the number of 
HOS used to approximate the pdf in BSS adaptive algorithms. 

The rest of the paper is organized as follows. Nest section shows the 
existing polynomial expansions, namely the Gram-Charlier ann Edgeworth 
ones. Later, the proposed expansion is present.ed and an application in a BSS 
problem is shown in the sequence. Finally, we state our conclusions at the 
end of t.he paper. 

POLYNOMIAL EXPANSIONS: GRAM-CHARLIER AND EDGE- 
WORTH ONES 

The polynomial representation of the probability density function is an es- 
pansion in an orthonormal series. The expansion is characterized by the use 
of the statistics of the signal which pdf we want to represent and a reference 
density [ll, 3). 

The reference densit,y plays a key role since it has t,o be as similar as 
possible to the desired density Further, the orthonormal series (or basis) is 
also reference-density-dependent. Let. us describe a litt,le t.he devclopment of 
a general expansion. 

Let t,he characteristic function (moment generator function) of a reall 
random variable (r.v.) y which fdp is py(y), defined as 191: 

m 

nu (U) / P ~ Y )  e x p ( w ) d v ,  (1) 
-m 

where J = fl and w E R. 

power series around w = 0 as [9]: 
Then, if the k-th moment of the r.v. y exists, we can expand n y ( w )  in a 

where K ~ ( V )  is the k-th central moment of r.v. y. 

'For complex-valued variables the development is  similar [SI, we use real ones for sim- 
plicity reason only. 
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If we take the logarithm of the characteristic function we have the cu- 
mulant. generator function (second characteristic function) which is given by 
[9, 121: 

where ck is the k-th order cumulant (or semi-invariant) of r.v. y. The cumu- 
lants are related to the moments by the following recursion (71: 

A reference variable is defined by convenience, and its characteristic func- 
tion is given by no(w),  such as 

where ck.0 is the k-th order cumulant of no(w). 
Ifwe subtract the cumulant Eenerator function of r.v. v from the one of the - 

reference density me ha,ve, after some manipulat,ion, the following expression 
13, 11: 

(6) 
c* - cc,o 

k=3 
Then, performing an inverse Fourier transform on n,.(w) it is possible to 

write the following approximation for the probability density function of r .v 
y about a reference density yo(y) (5 ,  6, 31: 

where Ck are t,he coefficients of an orthonormal series expansion. The bc(y) 
are appropriate mathematical fiinctions that compose the orthonormal basis 
given by l.he following expression [ll]: 

Thus, the coefficients c k  of the orthonormal series are defined in terms 
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of the k-th order cumulants of y. The first 8 ones are given by [3]: 

Cl = 0  
c, = 0 

ci. = f_ (c7 + 35c4c3) 
5040 

1 
40320 

c, = - (CS + 5 6 ~ ~ 3  + 3 5 4 )  

It is known that the Ck can be also written as polynomials of the k-th central 
moments 161 

Gram-Charlier Expansion 

When the Gaussian distribution is considered as the reference one we obtain 
the Gram-Charlier series expansion which is given by 1111: 

wherepc(y) = -&exp(-$). 
The elements of the orthonormal basis for the Gram-Charlier expansion 

are then derived following Equation (8) when po(y) = pc(y) and in this case 
we denote bk = hk. The obtained polynomials are the Hermate polynomials 
which recursion generation rule is given by [3]: 

hk+l(Y) = Y ' h - ' hk--1(Y). (11) 
The first 8 Hermite polynomials are (61 
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Edgeworth Expansion 

The Edgeworth expansion consists on the Gram-Charlier polynomial series 
ordered in decreasing order of its coefficients. Although, they have the same 
structure of the Gram-Charlier expansion they were developed independently 
1131. Therefore, we can write Edgewort,h expansion as 15, 31: 

The use of the Edgeworth expansion is useful when a truncated version of 
the polynoniial expansion is necessary and the most important terms should 
be retained. Both polynomial expansions are able to  approximate a large 
number of probability density functions. However, typical densities encoun- 
tered in digital communication systems cannot be approximated by none of 
the presented expansions. To cope with that a new polynomial expansion is 
proposed in next section. 

POLYNOMIAL EXPANSION ABOUT GAUSSIAN MIXTURES 
DENSITIES 

Digital communication systems have t.he characteristic that the transmitted 
signals are discrete, belonging to an alphabet A with cardinality S, and 
usually an additive noise with a Gaussian pdf. This implies that the pdf of 
the signals at t.he receiver output have the signals g with the following density 
distribution [l] :  

where ai are the symbols of the transmitted alphabet, us is bhe variance of 
each model and Ghl  stands for Gaussian mixture. 

If we want to exploit. some characterist,ics of the signal at t,he receiver 
in a digital communication system we have to  evaluate the cumulants of a 
distribution like t,he one described in Equation (14). 

For this sake we have developed an orthonormal basis using Equation (8) 
for pa(y) = P G M ( Y )  using the fact that a sum of Gaussians can model a large 
number of densities as stat,ed by Parzen [lo]. Further, assuming that the 
alphabet A has zero mean, we achieve the following recursion rule for the 
ort,honormal basis when the reference density equals to a sum of Gaussian 
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mixtures with different means [l]: 

c k + l ( Y )  = s ' Y' c k ( Y )  - kCk-l(Y), (15) 

where Ck is t,he obtained orthonormal basis for the polynomial expansion 
about a Gaussian mixture density function. The first 8 Ck are written as [l]: 

CO(!/) = 1 
c l ( Y ) = s . Y  

C'(Y) = (S  ' Y)2 - 1 

&(Y) = ( S  ' Y)3 - 3(S ' Y) 

c ~ ( Y ) = ( S . Y ) ~  - 6 ( ( S . ~ ) ' + 3  (16) 
c ~ ( ~ ) = ( S . ~ ) ~ - ~ O ( S . Y ) ~ + ~ ~ ( S . U )  

%(y) = ( S .  - 15(S Y ) ~  + 45(S. y)' - 15 

C?(V) = (S .?/) '  -21(S.2/)5+105(S.y)3 -105(S.y) 
~ ( y )  = ( S .  y)8 - 28(S. Y ) ~  + 21O(S. Y ) ~  - 420(S. y)' + 105, 

that are also a class of Hermite polynomial since the Hermite polynomials 
properties are still valid [3]. 

The polynomial expansion is written as: 

This new expansion made possible the investigation on the dynamics e v e  
lution on blind source separation problems. This is,explored in the simula- 
tions on next section. 

COMPUTATIONAL RESULTS: BLIND SOURCE SEPARATION 

In the design of blind source separation criteria, the use of higher order 
statist.ics is required in order to recover the sources (41. Figure 1 shows the 
scheme of BSS. 

When discrete sources are considered, two existing approaches that use a 
different number of higher order statistics in their structures can be evaluated. 
Namely, the multi-user kurtosis (MUK) [Si and the multi-user constrained 
fitting pdf (MU-CFP) [Z]. 

Both of them use an equalization criterion constrained to have an orthog- 
onal global system response. We can write the MUK as 

subject t,o: GHG = I  
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Figure 1: General scheme of blind source separation 

where K[ . ]  is the kurtosis operator, G = WHH is the global response matrix, 
H is t,he mixing system, 74' is the demixing system and I is the identity 
matrix. The adaptation procedure for the MUK is given hy 

W e ( n + l )  = W(n)+psign(~,)x*(n)2(n) ,  (19) 

Mrhere 2 ( n )  = [ lz/l(n,j12yl(n) . . .  I g K ( n ) l 2 y K ( n )  1. The orthogonaliza- 
tion procedure is performed using a Gram-Schimdt one [SI. 

The MU-CFP is given by 

where D+ is the KLD between the pdfs. p y  is the pdl of the ideally equalized 
signal and @(g. U: )  is the parametric model given by 

where U: is the assumed variance of each Gaussian in the model. The  stochas- 
t,ic gradient of the MU-CFP. for t,he k-th column of W, is given by 121: 

5 exp (--I ~ n )  -ai) 
X* F 1  

(22) 
V k - C F P  (wii(n)) = 

u , ~  . ?  exp (- 
i= l  

W t ( n  + 1) = w k ( n )  - LLVJFP (wk) ,  

and the same Gram-Schimdt procedure in [SI is used to assure the ortoghonal- 
izat.ion of the global response. 

The main difference between both criteria is the number of used higher 
order stat,istics. The MUK uses the kurtosis only and the estimation of the 
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pdf at the output of the separation device uses this HOS only. On the other 
hand, the MU-CFP is pdf-estimation-based and all HOS are involved in the 
process. 

The polynomial expansion about a Gaussian mixture is used to  eva1uat.e 
the pdf estimat,ion during the adaptation procedure. In the MUK case, we 
use only the kurtosis t,o approximate the pdf through pcnr(y). The kurtosis 
is computed for some time intervals using the available data at the moment. 
A similar procedure is used for the MU-CFP. The difference is the greater 
number of considered HOS. For simplicity we use only 8 terms of the ex- 
pansion in Equat,ion (14). Figures 2 and 3 show t,he evolution of the pdf 
estimation for the AlUK and AIU-CFP algorithms at different time instants. 

The simulation is done using two BPSK sources and two sensors. At the 
receiver is considered addit.ive white gaussian noise which power is given by 
the signal-t*noise ratio (SNR) equals 30 dB. The mixture matrix is given 
hv: 

(a) Iterations 1-100. (b) Iterations 200-1000 

(c) Iterations 1500-2000. (d) Iterations 2500-4000. 

Figure 2: Dynamics of the pdf estimation for the MUK algorithm. 

As one can see, t.he pdf of the data is faster estimated by the MU-CFP 
than using the MUK. This behavior has been also observed in a wide range 
of channels and situations. 

The presented approach works at the ext.rems: one HOS and all HOS. 
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(a) Iterations 1-100. (b) Iterations 200-500. 

(c) Iterations 500-1000. (d) Iterations 2500-4000. 

Figure 3: Dynainics of the pdf estimation for the MU-CFPA algorithm 

The gain in terms.of convergence rate is very interest,ing for adaptive algo- 
rithms and such analysis can help the design of new methods for blind source 
separabion. 

CONCLUSIONS AND PERSPECTIVES 

We have proposed a new polynomial expansion for probability density func- 
tion approximation about Gaussian mixtures densit.ies using higher-order 
st.atist,ics . 

The proposed expansion is based on the Parzen estimation and uses the 
derivatives of known expansions (Gram-Charlier and Edgeworth) to a sum 
of Gaussiairs wit,h different means. The ohtained result. is int,eresting in t,he 
sense that investigation about systems that have densities given by Gaussian 
mixtures, such as digital communication systems, can be done at each time 
instant regarding t,he pdf estimation of the data. 

The blind source separat.ion problem benefits from t.he proposed approach 
since the criterion may be used to guide t.he project of crit,eria to maximize 
the trade-off complexit), x performance. 
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A natural extension to  this work is investigate the most important higher- 
order statistics to provide a more efficient blind source separation criterion 
in terms of performance (faster convergence) and complexity. 
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