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"A MATEMÁTICAzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAé a arte de dar o mesmo~lkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.'

nome a co~sas diferentes".

(H. Poincaré)

"Sim, era desse jeito outrora; muda-

mos, porem, tudo isso e agora faze-

mos Medicina com metodo inteiramente

novo".

(No I i e r e )



B~JpuyaoUB1q~S1JJ

soql}JaBUyBsodsaBqU}illy





AGRADECIMENTOS

Ã U.F.Pb, ao PICD e ao CNPq, pelo apoio financeiro.

Ao Professor Airton Fontenele Sampaio Xavier, meu orientador, p~

Ia incansável orientação e tambem pelo exemplo em Climatologia, juntamen-

te com a Professorea Teresinha de M~ B. S. Xavier.

Ao Medico Waldir Pedrosa Dias de Arnorim pelos dados rea~s para a

realização do exemplo aplicado em Gastroenterologia.

Aos professores e colegas por sugestoes que tornaram possível a

realização deste trabalho.

Ao Sr. Jose Alves Ferreira, pelo trabalho datilografia.



ag:LUa

APRESENTAÇÃOXWVUTSRQPONMLKJIHGFEDCBA

r AP. I - CRITt:RIOSDE DISCRIHINAÇÃO: ABORDAGEM CONFORME SEBESTYENzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt

~.1 - Introdução 2

~.2 - Notações 2

-t 3 . - . dlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAí o#'d E P 4.•..- Q-D~stanc~a entre os In ~v~ uos nospaço:IR .

_.4 - Q-Seme1hana e Q-Agregação .

1.5 - Abordagem de Sebestyen 8

l.6 - Teorema 12

CAP. 11 - DISCRIMINAÇÃO LINEAR: PESQUISA DE EIXOS FATORIAIS DIS-

CRIMINANTES 20

2.1 - Introdução 21

2.2 - Nuvens de Pontos no JRP ••••••••••••••••••••••••••••••••••• 21

2.3 - Baricentro de Nuvens de Pontos 23

2.4 - Inercia de Nuvens de Pontos. 24

2.5 - Teorema de Huyghens 30

2.6 - Eixos Fatoriais Discriminantes ;.;- :.................... 32

2.7 - 'I'eo rema" -.; --;-.·; 34

2.8 - Eixos Eat orí.a i s"Discriminantes Sucessivos " i - . ~ . • • • 36

2.9 - Função Linear Disciiminante de Fisher e D
2

de"Mahalanobis ~ 38

2.10 - Metodo de Classificação................................... 40

2.11 - Definição do Processo de Classificação '" 41

CAP. 111 - DISCRIMINAÇÃO SOB A HIPÓTESE DE LEIS NORMAIS ......... 44

3.1 - Introdução 45

3.2 - Lei de Laplace - Gauss 46

3.3 - Metodos de Classificação de Novos Indivíduos e Funções

Discriminantes 51

3.3.1 - Classificação sem Custos de Erros

3.3.2 - Classificação com Custos de Erros

52

55

Processo de Classificação com Probabilidades a priori

conhecidas 56

Processo de Classificação com Probabilidades a priori

conhecidas 60



!.2ES:"=!.ICéC20zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.;,.3.-, -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

25XWVUTSRQPONMLKJIHGFEDCBA

" - o P . IV - DISCRlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~•..•.5S0 A ?t-.SSO .

-.1 - Introdução .

-.3 - Porcentagem de bem Classificados (19 critério) .

Exemplo Relativo ao primeiro critério .....•.............

Comportamento de uma ·amostra teste .

Teorema ..•..................•....•......................

6:!

65

66

69

70

72

74

76

80

82

Procedimento Passo a Passo para os métodos de Sebestyen .JIHGFEDCBA

I . 4 da Har i -1 (20 . - . )~. - ,Traço a Mar1z T B . cr1ter10 .

4.5 - Critério do Ad e wilks .

.6 - Critério da Maximização das Diferenças entre as Medias

Condicionais para as Diferentes Classes ./85

CAPo V - TESTE MULTIDIMENSIONAL NÃO-PARAMÉTRICO PARA O PODER

DISCRIMINANTE DE UM HIPERPLANO ....•... ... ..... ... .... 86

5.1 - Introdução 87

5.3 - Teste de Separabilidade : 96

5.4 - Teorema 97

5.5 - Princípio do Teste e Apl í caço es ....•..............•..... 98

Apêndice I •.... ~ .~.•.•......................................... ' . 100

Apêndice l!I 107

Bibliografia 113



PRESENTAC]i;OzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Esta Monografia tem a finalidade de expor os fundamentos da Anã

__se Discriminante com ênf ase nas tecnicas de Ãlgebra Linear.

De fato, aqui, nos restringimos ao caso dos metodos de discrimi

-açao com base em variãveis quantitativas. Assim, achamo-nos em presen-

ca de um conjunto de indivíduos ou elementos, repartidos num certo núme-

roJIHGFEDCBAk de classes definidas "a priori"; ademais, supõe-se que para cada i~

':ivÍduo ou elemento dispõe-se dos resultados de p medidas ali efet'Gadas

(ou equivalentemenre, de observações ou valores ali assumidos por p va-

riáveis)

Na discriminação com fins descritivos deseja-se evidenciar o

possível poder discriminante das variãveis em causa; ou seja, verificar se

as medidas ou observações-realizadas -justificam a separação segundo -~as~--

distintas classes consideradas ."a priori". Por exemplo,em uma aplicação

típica em Medicina, interessa discernir se os resultados de certos exa-

mes clínicos ou laboratoriais (expressados quantitativamente) justifi-

cam, ou nao, a separação de um grupo de pacientes em duas classes, de

acordo com as medidas terapêuticas mais indicadas:

i) a classe dos pacientes para os quais esta reservada urna con

duta cirúrgica.

ii) a classe dos pacientes para os quais a melhor conduta envol -~----- -

ve um tratamento medicamentoso.

A essa "etapa descririva", por sua vez, pode seguir-se urna "eta

pa decisional", ou discriminação com fins decisionais ou de identifica-

ção, que se destina a se realizar a atribuição de cada novo indivíduo, a



- cas classes. slkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"*'zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s s av e e a~ribuição incorreta.::-::-~scc

Com relaçao ao ex~plo precedente, que se relaciona com a indi-

caçao da melhor terapêutica, essa escolha se impõe desde que se apresen-

-a um novo paciente.

Note-se que a Analise Discriminante contrapoe-se aos chamados

~~todos de classificação", segundo os quais não existem classes determi

nadas liapriori".

Os metodos de Analise Discriminante têm sido utilizados em di-

'ersos domínios da pesquisa aplicada.

~) Antropologia

Discriminação entre as diversas castas da lndia com base em da-

'os antropometricos, conforme referido por Rao (1952).

b) política

Discriminação entre duas facções de parlamentares do-!artido Li--·-

beral britânico no período 1874 - 1855 (facções radical e não-radical )

com bases nos votos atribuídos pelos parlamentares a determinadas mon-

çoes (+1 = voto a favor; O = voto branco; -1 = voto contra); este exem-

plo, devido a Beyck & Kleck (1973), encontra-se relatado porHGFEDCBAN i l et alo

(1975). Um exemplo semelhante segundo dados do Laboratório do prof. Be~

zecri diz respeito a posições políticas de deputados da lll~ República-

(França) sendo apresentado por Romeder (1972).

c) Psiquiatria

Discriminação entre tres grupos: normais, nevrosados e esqul-

zofrênicos, com bases numa escala de ansiedade (30 sintomas),

Nakache et aI (1971).

conforme
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eX5i:?!ozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc!.2ssic 'iz respeito ã ciscri~inaçao de pacientes

-ericos, em dois grupos: ictericos cirúrgicos (necessitando cirurgia,

~or exemplo,para excração de calculos biliares) e icterícias medicas (pa-

-ientrs que se beneficiam de terapêutica exclusivamente medicamentosa e/

~ dietetica), tendo como base os resultados de exames clínicos, labora-

--riais, radiológicos,etc; encontra-se desenvolvido com detalhes em

eder (1972).

Outro exemplo ainda no campo de medicina, refere-sezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAã discrimi-

--çao de doentes com infarto do miocardio, em dois grupos: sobreviventes

_ wortos, em seguida ao tratamento, com base em exames realizados sntes

~e ser instituído o tratamento específico, conforme Lorente & Nakache

~977), tambem referido por Nakache (1978).

e) Geografia Agrária

Discriminação entre areas especializadas na produção -de t~igo---

e áreas de produção de grãos (milho, etc ...) em consórcio com a crlaçao

de gado, no Estado de Dakota do Sul (EEUU) , ·com base nos seguintes dados:· ,.

"1
densidade da população rural; X

2

:\:3 = porcentual de terras araveis; X
4

v i.d e King (1969).

precipitação media anual;

tamanho medio das propriedades;

Em nosso trabalho inicialmente (Capítulo 1), apresentamos crite

YlOS de discriminação com fins decisionais desenvo Ivi.dospor Sebestyen(l936).

canforme sao apresentados por Romeder (1972), permitindo atribuir um ele-

mento qualquer a cada uma dentre varias classes definidas "a priori", na

dependência da consideração de funções que medem a semelhança de um novo

indivíduo a cada classe. Outro criterio (Capítulo 2) relaciona-se a uma

abordagem com obj etivos descr itivos envol vendo a determinação dos chamados



- fzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaccr í.a í.s

- .zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~:ores ?rO?rl05 oe certa

_2:'5 elXOS :é~O!'"1-é.!.S correspo::1de

. _-1:0
d ef i.rri d a texto.tr1.Z! ) no

ma t i.g aç ao com o metodo clássico das fun-

aos

Faz-se. ou rross í.

"ineares discriminantes introduzidas por Fisher(1970). No apítu-

~, apresentamos a discriminação sob a hipótese de validade de leis

!Cais, após considerações gerais sobre a Lei de Laplace-Gauss a duas

e~sões (bem como sua generalização para o caso p-dimensional), sendo

~dado o problema da classificação de novos indivíduos, mediante a de-

_üição de fronteiras separadoras (hiperplanos e hipersuperficies), seja

considerar "custos de erros de classificação", sej a considerando

-=i5 custos (ou mais precisamente, via a minimização do custo de má elas

i:icação).

Por outro lado, no Capítulo 4,abordamos a tecnica básica deHGFEDCBA

_ . • • , r

~lscrlmlnaçao passo a passo Para esse fim, consideramos a chamada

-iiscriminaçao passo a passo ascendente"a qual consiste em, dado um certo.con

:··::1tode variáveis medidas sobre uma população, rest ring i+Las _ã "melhor",

seguida às du asc.l'me Lhores",etc ... , no sentido de permitir -d e ..cada :vez":'"

_::lamelhor discriminação entre elementos pertencentes a classes distin-c_

:as; ademai~ em cada passo, não se põe em causa as variáveis relaciona-

~as nas etapas precedentes. Evidentemente, são considerados testes para

julgar o grau de otimização alcançado e decidir em que momento se deve

parar o processo (regra de parada).

Finalmente, no Capítulo 5, estudamos um teste multidimensional

::1ao-parametrico para avaliação do poder discriminante de um hiperplano

separadoL com base em tecnicas de Análise Combinatoria Linear, conforme

descrito por Romeder (1972).

No Apêndice I apresentamos um estudo sucinto sobre os operado-

res E (valor esperado), Var (variância) e Cov (co-variância), para o ca-

50 particular de p-uplas e matrizes de dados (valores observados),

~tilização e requerida no Capítulo 1.

cuj a



'ice e ap LiczyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaçao de er:odos

_l5cr~;::ina;:H:es.conf orme sug erlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi do por Xavier & Xavier(1982), para a .ana li-

a validade de tecnicas de Análise de FOlrrier no que concerne ~ iden-

o.' d" "" ,,' d -.~~=~caçao e anos secos e anos chuvosos', a part1r a ser1e secular

~c ?recipitações pluviometricas de Fortaleza-Ceara. Apresentamos tambem

outro exempl~ aplicado em Gastroenterologia utilizando metodos de Aná

_~e Discriminante, com dados cedidos por Amorim (1984) oriundos de sua

cese de Mestrado em Hed i c i.n a ,.

Para concluir esta apresentaçao, advertimos que nao esgotamos

a~solutamente o problema do estudo de metodos utilizáveis na discrimina

çao com variáveis quantitativas, pois de fato esse e um domínio de estu-

s bastante rico e complexo.
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NezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAst;e capítulo, consideramos o problema da discriminação com

=:u5 cecisionais, ou seja, procura-se estabelecer criterios discriminan-

::e3que permitam atribuir um elemento arbitrário a uma dentre varias clas

- cefinidasVUTSRQPONMLKJIHGFEDCBAa priori.

Os criterios discriminantes a que nos referimos acima dependem

C~ como se defina, convenientemente, funções permitindo medir a semelhan

e um novo indivíduo ou elemento,relativamente aos diversos grupos ou

~~asses. Assim, a regra de atribuição consiste em afirmar que o elemen-

pertence a classe com relação ã qual sua semelhança e a malor po ssí-

2. ..•..•

O metodo aqui utilizado, essencialmente, é o descrito por SE-

~~STYEN (1962), vide ROMEDER (1972).

Urna vez definidas tais funções discriminantes, seria necessário

c aspor de meios para examinar a validade do metodo. Urna maneira de pro-

eder e mediante a-determinação de porcentagens de atribuições corretas;

assunto que será objeto de Capítulos subsequentes~(4 ~5).HGFEDCBA

1 . 2 - NOTAÇÕES

Sempre que, para cada elemento ou indivíduo x são considerados

os valores correspondentes alkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp variáveis quantitativas, então um tal ele

:::::entopode ser pensado corno um vetor x no espaço ]RP, tal queJIHGFEDCBAx '-= (x
1
- ''' ' 'h 1

Suponhamos que, a priori, se disponha de N indivíduos reparti-

dos porXWVUTSRQPONMLKJIHGFEDCBAk classes c ,cada urna delas contendo N elementos (r-=1-,2-,... -,k).
r r

Evidentemente, tem-se L N
r

N que é o total de elementos em causa.

r
x .

1-

C (i-=1-,2,... ,N; r-=1,2, ... -'k ) . Assim, para cada um desses elementos
r r

Representaremos por o i-esimo elemento pertencente a: classe



3lkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

iLE~~S:

,
, .L, _HGFEDCBA

= . . = =i-'

.,...
.,..-XWVUTSRQPONMLKJIHGFEDCBA
= c z ~ ' . . . ,

r
x . ) ,

7,.pVUTSRQPONMLKJIHGFEDCBA

-iezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa componente
r

e o valor assumido pela j-esima variável (ou o7,."

-esultado da j-esima medida a ser efetuada no indivíduo x:); j=1.,2., ••• .,p.
1.

Por outro Lado , com relação a cada classe c , podemos conside
r

ré~ o vetor medio
-r
x ,tal que:

.2.1)
-r I -r-r

(x) = (Xl" x
2
.,· ..~ :ir)

p

and e cada componente
-r
x.

J
, j 1., 2., ••• ., P , e o valor media:

1.2.1.1)
-1'
X.

J

N

( LJIHGFEDCBAx r :.) / N

i=l 7,.J r

este, calculado com relação a cada variável, a partir dos valores por

a assumidos nos N elementos ou individuos da classe C.
r r

Ainda com relação a cada classe C ,pode-se t amb em considerar
r

~~a matriz d e variâncias-covariâncias:

.2.2) Ir

N

r [ ~ ]1 r -r r -r' -. - -N - L (x. - x ) (x. - x") _.,
-

r i=l 1. 1.

N

1
r

L r r -r r -r ]

N
_(X

ij
- Xj)(X

ik
- x

k
)

r i=l

(1. 2. 2.1) a r

jk

j.,k z : 1.,2~ ... s p

ando J k, então a ~ k diz-se a variância da j-esima variável na

cl a ss e C ;
r

j ]i k,
r

o.
Jk

diz-se a covariâ:ncia entre as j..;-ésimaequando

- - .
- r - e e t m a v ar i ave a s ,

Sendo o costume- notar a variancia de uma variável qualquer por

onde a (raiz quadrada positiva da variância) e designado como o d e s

t r i o padrão, então t ambem podemos notar
r r 2

a .. = (a.), sendo
JJ J

o desvio
r

a .
J



dos conceitos quee:a2C=:''t·HGFEDCBA_ ,a I - - 2 5 es areszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe::.t:o-:-es

a noçao de ~L=iz de variâncias-covariâncias remetemos ao Apên-

~1 •••••lkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'2

.3 - Q-DISTÂNCIA ENTRE OS INDIVíDUOS NO ESPAÇO :RP

Dados dois indivíduos a e b no espaço lRP, tais que a'=(. ": .•XWVUTSRQPONMLKJIHGFEDCBA" z : . . . .JIHGFEDCBAf i )
. .. p

'= õ·=(b..,. b 2 ' . . . . • b
p

) ' estamos interessados em considerar sua distância mútua.

Para esse fim, em geral, consideramos uma matriz real Q=VUTSRQPONMLKJIHGFEDCBA(qjk);

- 1.•2.••...•p de sorte que a Q-Distância entre a e b seja expressada

r dQ(a,b) = d(a,b), tal que:

2
p

1.3.1) d (a,b) = I q·k(a.-b .)Cak-b
k
)

j ,k=l J J J

u em termos matriciais

1.3.2)
2 ,

d (a,b) = (a-b) Q(a-b)

Note-se que um vetor v (ou x) e sempre pens~

rio como um vetor coluna, enquanto v' (ou x') representa o -ietor linha

correspondente, obtido por transposição; essa convenção permite melhor

legibilidade das fórmulas matriciais.

Note-se que d(a, b) , de fato, deve gozar das propriedades de uma

metrica, isto e:

(A
l
) dCa,b) > O

(A
2

) d(a,b) z : O ~ a z : b

(A
3
) d(a,b) = d(b,a)

(A
4
) d(a,c) < d(a,b) + d(b,c)

a,b,c E RP



5

. orzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcant o , c~ (a,b) ~cêfiiliGa at r aves àe uma forma quadr àtlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ca

--"a definiàa, onde Q e uwa matriz real, simetrica e positiva defini

er (1.3.2).

Q = I (matriz identidade p x p), então a distância
p

---iceraçao é a distância euclidiana usual, onde:

Quando em

•....3)
2JIHGFEDCBA

d (a,b)

p

I (a.

j =1 J

2
b.)

J

o seguinte lema e essencial para o que se segue e, em especial,

---a nos permitir uma interpretação transparente da Q-distância .

•.••• 4 - LEMA ./

Se Q for uma matriz real, simetrica e positiva definida, en-

pode ser escrita como Q = S'S .

Demonstração

Sendo Q uma matriz real-, simétrica e positiva definida, pode-o

5 encontrar uma matriz ortogonal P, tal que:

P-1Q P = P' Q P = DXWVUTSRQPONMLKJIHGFEDCBA

d
p

d
1

d
2 Q

o

~de cadaVUTSRQPONMLKJIHGFEDCBAd. > O .
1, -

Consideremos a matriz diagonal DI' cujos elementos sobre a dia

gonal principal são ~ ' ~ ,.... , I d
p

' de modo que D =-D~
,

DlDl'

~ortanto, Q PDP-l P D
2

p
l

1

, ,
P DlDlP = (p Dl)(P DI)



_sto e. -e;::-sezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 (? DI)

Q= S'S

Agora, substituindo S'S em (1.3.2) segue-se:lkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ

; (a, b) (a-b) , S'S(a-b) = (Sa-Sb) '(Sa-Sb)'

cnd e S
a

Sa e Sb Sb .

Assim, fica claramente evidenciado o fato contido na propOSlçao

alXo.

- .3.5 PROPOSIÇÃO

AVUTSRQPONMLKJIHGFEDCBAQ-distância entre dois vetares a,b E RP pode ser con

-~àerada corno a distância euclidiana usual entre os transformados S e
a

sendo a matriz S obtida-via a decomposição Q = SISoXWVUTSRQPONMLKJIHGFEDCBA

I ~... Q-SEMELRANÇA E Q-AGREGAÇÃO

No que se segue, introduzimos o conceito de Q-semelhança entre

indivíduo e uma classe (fazendo-se a distinção entre os casos em que

elemento pertença ou não a essa classe) .

.4.1 DEFINIÇÃO

a) C
r

e um indivíduo a $ C ,a Q - s e m e -
r

Dada uma classe

L h a n ç a entre a e C e avaliada at raves da expressão:
r



7

.~.1.l) -(a,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA)lkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-

r

r.2 rJIHGFEDCBA
L d -(a ,x .)

i=l 1-XWVUTSRQPONMLKJIHGFEDCBA
T '

onde os
r

xi percorrem C
r

b) Por outro lado, tomando em particular um indivíduo

r

~ E Cr ' aVUTSRQPONMLKJIHGFEDCBAQ-semelhança entre ~ e C
r

é avaliada mediante

~.4.1.2)
r

7f(~,Cr) -
1

N

{ d 2 ( ~

i=l

r
x. )

1-N -1
T '

Note-se que, num caso e outro, a semelhança deve ser considerada

<:2.atomais forte, quanto menor for rr Ca, C) ou
r

r
7f(~ , C ). Assim,a ri

r -

~....r, n Ca, C) ou
- r

r
7f(~ , C )

r
é uma medida de proximidade, variand; 1-n-

êrsamente com a semelhança.

Em seguida, estamos interessados em definir o que se chama a

agregação entre os indivíduos pertencentes a determinada classe; ou se

j2, de forma que se tenha uma avaliação numérica de quão ;se encontram

égrupados (ou pelo contrário, dispersas) dentro da classe respectiva .

.4.2 DEFINIÇÃO

A Q-agregação na classe C é avaliada através da ex-
r

pressao:

'1.4.2.1) D
2

r

N

- N
1

'/

r h=L

r
7f(~ , C

r
)

Note-se que (1.4.2.1) também se escreve

(1.4.2.2) D
2

=
1

N N
r r

T ' N (N -1 )

L . L a 2 ( r , x~)

r T '

h=l 1=1 ~ 1

dh

bastanjo para isso, substituir em (1.4.2.1) a expressao

r
rr (~ , C r)' dada em (1.4.1. 2) .

para



8HGFEDCBA

e lkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf o rmazyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAanaio>:c.éi Q-agrega-que ocorre com aVUTSRQPONMLKJIHGFEDCBAQ-semelhança, aXWVUTSRQPONMLKJIHGFEDCBA

_ c . sera tanto ~aior, ~u~,~o ~enor for a medidaJIHGFEDCBAD
2

.
1"

Portanto, a rlgoG

e mais una medida de dispersão, variando inversamente com a agrega-

. b . R2Vlde esquema a alXO, para o caso de pontos no .

C
7

Cz
x x

x x

x

rI grande agregação
-

pequena dispersão: --

C
2

- -
grande dispersão: pequena agregaçao --

. 5 ABORDAGEM DE SEBESTYEN

O fundamento da abordagem proposta ..por Sebe s t yen ç-rpa ra __o probl~ ~

-.2. de discriminação, ê determinar a matriz Q que torne acagregaçao . a

--lar possível para urna dada classe, sob certa restrição de normalidade,

- saber: detQ = 1. Note-se que a maior agregação possível corresponde

D
2

r

Com a decomposição Q = S'S, a condição detQ = 1

menor valor posslvel para

se escreve

ier.S)2 = 1, em geral escolhe-se S de sorte que detS = 1 .

Alguns resultados preliminares (lemas) serão estabelecidos, an-

=e5 que se passe a resolver o problema de otimização acima proposto. No

CCle se segue, supomos nossa atenção centrada em determinada classe, de

sorte que nos permitimos omitir o sobre-índice 1" que a identifica. Com

_S50, a notação ficara mais aliviada.
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9

. 5 . 1 :ir>.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Seja C ~a classe eJIHGFEDCBAí sua matriz de variâncias-cova

r~anc~as. Então:

2N
2
1 =

K N

L L (x, - x.)(~ - x.)
h=1 i=llkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh ~ ~

D e m o n s t r a ç ã o

Conforme (1.2.2.1), o termo de ordem ( j~ k ) de I escreve-se

O. =-..!:..

JkVUTSRQPONMLKJIHGFEDCBAN

N

L (x ..
i=l 1 .-J XWVUTSRQPONMLKJIHGFEDCBA

X
j
) (x

ik
- x

k
)

Desenvolvendo esta última expressão, teremos:

N
1 I - - x . x '

k
+ x . x

k
) z :o·k=T ( x . . x · k - x . . x

kJ i=l 1 .-J 1.- 1 .-J J 1.- J

N
1 L - - [A]z : T ( x . . x '

k
- x . x

k
)

i=l 1 .-J 1.- J

Por outro lado, quanto ao termo de ordem ( j~ k ) da matriz que co~

parece no lado direito de (1.5.1.1), podemos escrever:

N N

a·
k

= L I ( x
h

· - x . . ) ( x
h k

- x · k )

J h=l i=l J í-J - i :

Desenvolvendo esta expressao, vem

N N N N N

a .k z : L ( L x h · x h k - L x h . i x . k - I x.. x,k + I x . . x . k )

J h=l i=l J i=l J - i . i=l ~J n i=l 1 .-J i .

N

L (N ~. ~k
h=l J

N
\' 2 - - 2

- N L X
7

• x
h k

- N x . x
k

- N x
k

x . + N

h=l n J J J

2[ 1 N
z : 2 N = t r : I (x ..

l i i= 1 1 .-J

N ~j ~ - N ~k xj +

N

I x . . , . , . )

i=l í-J ~ ik

N

I x . . x

i=l í-J ik

x · k - x . x k l
1.- J:.J

[ B ]



_ _ _ _ _ - o r a lkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconc i u i+s e que

2JIHGFEDCBA
2 N G.

]VUTSRQPONMLKJIHGFEDCBA
;;~K 1~ 2~ ....• p .el. ,

]"

LEMA

Seja l uma matriz real, simétrica e positiva definida

(supomos, no que se segue, a matriz de variâncias-covariâncias

de uma classe C satisfaz a esta condição). Então:

L = C A C'

onde A designa a matriz diagonal dos seus valores próprios e

C a matriz dos vetares próprios normalizados e escritos em co-

lunas.

Demons tração

Seja c. o vetar próprio normalizado, (isto e,
J

II c.1
]

1), =z.

-:spondente a cada valor proprio À. de I
J

-"'e-se que:

L c.XWVUTSRQPONMLKJIHGFEDCBAz : À. c.
] J ]

Por outro lado, como L é simétrica e positiva definida, ela

-=:nite p valores próprios ( j z : 1 . • 2 ~ . . . ~ p ).

Seja C a matriz dos vetares próprios normalizados correspon -

':e~tes, escritos em colunas. Então, a equação r c.
]

escreve-se,À. c.
] ]

--r:ricialmente:

I C = C A

. - . - , -1
Por outro lado, sabe-se que a ma t r i z C e ortogonal, rst o e, C = C .



No t e+ s ezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAque, em consequência,zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p

IIIII = TI À.
. 1 JJ=

e I-l = C A-1C'

::-::aato

I = C A C - C A C'

No que se segue, notaremos Tr(A) o traço de uma matriz quadr~

ia A, isto ~, a soma dos elementos sobre sua diagonal principal .

. 5.3 LEMA

Seja C uma classe e I sua matriz de variâncias-cova-

rlanclas. Então, a expressão (1.4.2.1) utilizada para avaliar

aVUTSRQPONMLKJIHGFEDCBAQ-agregação, passa a escrever-se

(1.5.3.1) 2 - ~ Tr (Q I)JIHGFEDCBA
D - N - l

Demonstração

N N

2 1r r ..2
Tem-se que D = I ~d -(~

N (N -1 ) h = li= lXWVUTSRQPONMLKJIHGFEDCBA
' - ' - h

(1.4.2.2). Conforme (1.3.2), vem &r

t x.), conforme a
l

expres-

-
sao

2 1
D =---

N (N -1 )

N N
r r ,

I I. (~-xi)
h = li= l

ijh

Q(~-xi)

Por outro lado, (~-xi)' Q(~-xi)' representa o produto de duas

matrizes, a saber: A = (~-xi)' e B = Q(~-xi)' Donde, sendo A.B uma

matriz de ordem 1 x 1, tem-se

(x,-x.)' Q(x.-x.) z : Trf(x.-x.)'Q(x.-x.)]
hl hl ~hl hl

z : Tr [Q(~ -xi).(~-xi) 'J



(i.5.1.i)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(vi~e Le~a 1.5.1). vem:

~2lkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ r

2 I T r [Q (~ +x . ) (x
h

- x . ) 'J -
};=1JIHGFEDCBAi= l 1 1VUTSRQPONMLKJIHGFEDCBA

i::ih

Tr(Q 2 N
2 í)1

N (N - l)

2 N

N -1
Tr ( QXWVUTSRQPONMLKJIHGFEDCBAL )

De posse dos resultados precedentes, temos condições de deter-

_nar a matriz Q, para a qual a agregaçao é a maior possível, relativa

_~~e a uma dada classe, conforme o Teorema a seguir .

.5.4 TEOREMA

Seja uma Q-distância (ou metrica) no RP , definida por

Q = S'S, que se supõe representar uma transformação a volume

constante (isto é, detQ = 1) e que minimiza a media dos quadr~

dos das distancias entre indivíduos de uma dada classe. Então,

Q = (detI)l/p I-I

onde í e a matriz de variancias-covariâncias das p
. -

varla-

veis, com relação à classe considerada.

Demonstração

Note-se que L e Q sao matrizes quadradas reais, de ordem p,

-~postas simétricas e positivas definidas; sejam 0
jk

e qjk(j~k=1~2~ ...~p)

s termos gerais dessas matrizes, respectivamente.

Ora, para mlnlmlzar D
2

sob ares triç ão de normal idade detQ z : 1 ,



· 3zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

--~es?onde a üiüiwizêL T~( ), sob a ~esua condição, conforme a ex-

-essâo (1.5.3.1). ?a~a ~a! fiü, utilizaremos o metodo deVUTSRQPONMLKJIHGFEDCBAmultiplicado-lkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~2SXWVUTSRQPONMLKJIHGFEDCBAd e JIHGFEDCBAL a q ra n q e ; a respeito cesse metodo, vide por exemplo, Kaplan(l969).

~ssa maneira, obtem-se a seguinte equaçao

a
[ L q j k ° j k -À(detQ)] z : o

a q j k

. i , k - 1 ~ 2 ~ . . . ~ p

-'onde se segue:

°jk=ÀQjk
[ A ]

j ~ k = 1 ~ 2 ~ • . . » P

Exnressao na qual Qjk designa o co-fator do termo

terminante menor correspondente a q j k ' afetado de

*Lembremos que a matriz Q dos cofatores

q j k ' isto é, o de-

seu sinal (-1 j + k ) .

dividida
Qjk

por

cetQ e, exatamente, a matriz ~nversa
-1

Q . Logo sob forma matricial ,

a expressao [ A ] passa a se escrever

L À Q* = ÀQ* = À Q-l
detQ

[ B ]

Segue-se que
\' -1

detL = det(ÀQ )
-1

- ÀP(detQ) À
P

donde: À z : (dett) 1/p [ C ]

Substituindo [C J em [ B J, obtem-se

(1.5.4.1) Q = (detL)l/p L-I

Assim, esta matriz, constitue um "ponto crítico" (no RPxP) para

Tr( Q I). Resta mostrar que, de fato é um "ponto de mínimo".

Pelo Lema 1.5.2, a matriz Q se escreve Q z : H D H', onde D é

uma matriz diagonal, com elementos todos positivos na diagonal principal;



-lkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,.. - .

êXWVUTSRQPONMLKJIHGFEDCBAU ~zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=a~rlZ or~o~uua~. Evidentemente ,
-

i5L:OHGFEDCBAe R ' = R

detD (detR) (detH
I
) (detD) 1det (HDR I) detQ

Por outro lado, podemos definir urna matriz M, positiva defini

-- tal que M = H
I I H onde I H M H'. Dessa maneira, rninimizar

~r( Q,I ) sob a condição detQ = 1, corresponde a minimizar Tr(DM), com

-'etD = 1 •

Deve-se observar que, embora sendo M positiva definida, nao

~ecessariamente ~ diagonal; ao passo que D ~ diagonal, com elementos

__ > O
d VUTSRQPONMLKJIHGFEDCBA
2

> O , .... , d JIHGFEDCBA
p

> O dispostos na diagonal principal. En-

-
:ao

Tr ( DM )

p

I d . m

j =1 J j j

e

detD

P

TI d

j=l j

sendo o termo geral da matriz M.m
j k

Desde que M é pos~tiva defin~da, tem-se . m
11

> O ; em segui-

demais d . ( j > 1)
J

Tr( Q r )

ar b.í t rar í amen t e grande e os

p

arbitrariamente pequeno; por~m, de sorte que TI d.=l.
j=l J

grande .

da, observa-se que se poderia esco lher .dI'

= Tr( D M )Assim, pode se tornar arbitrariamente

Portanto, a quantidade encontrada corno o único extremo de Tr( Q l ) não

podendo ser um maXlmo,
- ~.
e um mlnlmo.

Urna vez determinada a forma da matriz Q, apresenraremos as ex

pressoes gerais das medidas de proximidades utilizadas para avaliar a

Q - a g r e g a ç ã o e a Q - s e m e Z - h a n ç a .

Para o caso da Q - a g r e g a ç ã o , basta subsrituir em (1.5.3.1) o va-

lor (1.5.4.1); donde
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_5.~.2) (àetI>l/p- r

Por outro lado, no caso deVUTSRQPONMLKJIHGFEDCBAQ-semelhança de um indivíduo a $lkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf
esta classe C, teremos:

.5 ..•. 3) v l/p [ - \-1 - ]
n(a, C) =(detL) P + (a-x)' L (a-x)

Jã no caso em que o indivíduo ~ t C , então d(~,~) = O

--o ass~m, sao apenas N-l indivíduos na classe para serem relaciona

- com Portanto, basta tom~r a media sobre os N-1 indivíduos~.

_ seja, multiplicar o segundo membro da expressão (1.5.4.3) por N/N-l;

_~~c.e:

.5.4.4)JIHGFEDCBA
N 1/p - t t-l - J
----.;:-(detL> [p + (xh-x) L (~-x)n(~ , C)

Consideremos, em seguida, o caso particular em que a matriz Q e

_iagonal, constituindo-se num coroLar io do Teorema 1..5.4. _

1.5.5 COROLÃRIO- "

Se Q e diagonal, a quantidade D
2

e minimizada na clas

se C, desde que:

UJ. -

J

1

a.
J

p l/p

( TIXWVUTSRQPONMLKJIHGFEDCBAa
k

)

k=l

2
UJ.

J

cipal de Q e os

onde os j 1~2~... ~ P sao os elementos da diagonal pr i.n

a .
J

sao os desvios-padrão das j-esimas var~a

veis; j = 1~2~ ...~ P



Demonstraçao

Observe-se que, neste caso, QlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs's ; denotando-se porVUTSRQPONMLKJIHGFEDCBAw. > OJIHGFEDCBA
J

- elementos situados na diagonal principal da matriz S .

Por outro lado, é óbvio que 2-1 é a matriz diagonal cujos ele-

2XWVUTSRQPONMLKJIHGFEDCBA
l i a . , onde

J

2
o. z : o .. ; bem co-
J JJ

-~ilLOS na diagonal principal têm a forma

1.5.5.1)

(detL> IIp z : (

P 2 IIp
TI o. )

j=l J
[

p l / p 1
2

z : ( .TI o.) .

J=l J --.J

Portanto, a expressão Q = I líl 11/p r-I e equivalente a

1
P l/p

w .= --( TIo)
J 0j k=l k

j= 1 ~ 2 ~ ... ~ p

Neste caso particular, as expressões definidas em (1.5.4.2)

(1.5.4.3) e (1.5.4.4), tomam as seguintes formas:

1.5.5.2)

1.5.5.3)

1.5.5.4)

1. 5.6

D
2 = 2 N

(

p IIp

s - i
TI o .)

j =1 J

P 2 1Ip r p a .-x. 2 J
1T( a , C) z : ( TI o.) l I ( J J) + P

.-1 J . 1 O.
J- J= J

N P 2 1Ip [P x. -x. 2 ]
1T (~, C) z : N -l ( TI o. ) I ( hj J) + P

'-1 J '-1 o.J- J- J

LEMA

Os valores próprios L
-. . - .-.

sao IguaIs as varIanClasÀ. de
J

( ),2 .-. f d ( jJ ,( j) . 1
o. das var i ave i.s trans orma as y z : C x , J z : ~ • • • ~ p ,

J
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onde cana
eJzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

::; cJ elkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(=~..:), sendo uma matriz ortogona1c
-,:

I = C 11. c'

Demonstração

(d \)l/p,,-l - . -. .. d f i idComo Q =VUTSRQPONMLKJIHGFEDCBAetL L e s~metr~ca e pos~t~va e ~n~ a, segue-se

,-1
_ueJIHGFEDCBAL

cem-se I

também o e, bem como I. Por outro lado, conforme lema(1.5.2)

= CHGFEDCBA1 1 . C ' , onde C e ortogonal.

Sejam X = (x(j)
(.)

y = (y J ) = C'X tem-se (vide propos~-e

çao (1.6) do Apêndice I):

IXWVUTSRQPONMLKJIHGFEDCBAt : E [(X-X) (X-X) 'J

éonde, em virtude de (1.7.3):

E [(y-y) (y-y) 'J

E[(C'X - C'X) (C'X - C'X) 'J =

E [ C' (X - X) (X-~-X)Je ]

- C' E [(X - X)(X "- X) 'J C - ~. -

- C ' I C = A •

Portanto, vê-se que os elementos na diagonal principal da ma-

~riz diagonal A, que são os valores próprios À. de í , coincidem com
J

.~. d .-. . d ( j) ,( j)
"5 var i.anc i as as v ar i avers a ssoc i.a as aos vetores y = C x .

.5.7 TEOREMA

A metrica Q definida por Q =(detlr/
p I-l equivale a uma

transformação linear S sobre as variáveis iniciais, e que se



segue-se

escreve c-- :0 S = ~~' ,onde C'lkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe una rotação (de-

fzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi.n í.d a pela t r i.z C' dos vetores próprio s ortonormais de !'

escritos em linhas) e W e uma transformação diagonal (defini-

da da mediante a expressão (1.5.5.1».

Demonstração

Sabemos que; Q = s's , I C A C', bem como, QXWVUTSRQPONMLKJIHGFEDCBAz : (detIl
l/p rI

(detI)l/p I-I = IIc A C'! Il/p • (C A C,)-l

- ! I A I Il/p C A-I C'

p I I p

- ( TI À.) C A-I C'

j =1 J

- -l ( ~ À.)l/p A-I Jc.
j =1 JJIHGFEDCBA

1 1 J

À
1

!

= C I ( ~ À. )1 1 p I
1 1 o

j =1 J

1,.2

o
1 1

À

1
1 0 ,2

1

z : C I p 2 1 1 p I

1

( TI a ! )

1 0 ,2 O

j=l J

2

I

O
·1

1 0 ,2

p

= C W
2

C'
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IXWVUTSRQPONMLKJIHGFEDCBA Df-
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&este capítulo s~o indicados os aspectos b~sicos relacionados a

'708 abordagem do problema de discriminaç~o com finalidade descritiva. As

~im, devem ser determinados os chamados eixos fatoriais discriminantes ,

ermitindo uma melhor separaç~o entre duas classes. Esses eixos corres-

ondem a certos vetores unit~rios os quais, mais exatamente, s~o vetores

rróprios de uma matrizcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-1

T B, onde TxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe umaYXWVUTSRQPONMLKJIHGFEDCBA" m a tr i z d e v a r iâ n c ia s - c o v a -

" ! ' iâ n c ia s total" eB e uma " m a tr i z d e v a r iâ n c ia s - c o v a r iã n c ia s Lnt e r-cl.as

ses",as quais ser~o definidas no texto subsequente.

Faz-se, por outro lado, uma ligaç~o com o metodo clássico das
~

f unçoe s lineares discriminantes, introduzido por R .A . F i s h e r em

"~36. Tal metodo consiste em comparar as distâncias de um indivíduo ar-

.itr~rio aos centros-das classes, distâncias essas que se medem atraves

e certa metrica, com o objetivo de serem evidenciados determinados fato

=es, definidos como combinações lineares das vari~veis originais, de so~

:e os valores r e spe ct Lvo s sejam tanto quanto possível mais diferentes", ..3'

?ara indivíduos pertencentes a 'classes distintas.

2.2 NUVENS DE PONTOS NO RP

Procuramos manter, quanto possível, as notaçoes já introduzidas

no capítulo anterior.

Em cada classe C
r

os indivíduos
r

x.
J.

poder~o encontrar-se

r
afetados de pesos ou massas p (x .)

r ~
1~2~ ... ~ZYXWVUTSRQPONMLKJIHGFEDCBAN

r
Isso correspondet :

a se considerar uma aplicaç~o

(2.2.1) p : C
r r

- - . . . . ; .> [O ~ l ]

sujeita a

X 'V\JVI.fV\fV-'> P (x )
r

"co nd í ç ao de no rma Lizaç ao ":
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Xc

_.2.3) DEFINIÇÃO

A nuvem CxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe o conjunto dos pontos x E C ,cbaZYXWVUTSRQPONMLKJIHGFEDCBA
r r

de seus pesosTSRQPONMLKJIHGFEDCBAP1"(x).

A todo rigor, observa-se que a nuvem C
r

e de fato o

Diz-se que os pesos ou massas são equidistribuídas emZYXWVUTSRQPONMLKJIHGFEDCBA, P ) .
~ 1 "

__ando p (x ) = l/N ,
1 " 1 "

x pertencente ã referida classe.para todo

Por sua vez, consideraremos as classes C e C , tais que :

k

C = U C
r= L r

C {C ; 1 "
r , . -

1~ 2~ ..... ~YXWVUTSRQPONMLKJIHGFEDCBAk }

seja, a classe C e formada por todos os elementos das classes

E~quanto C possui como elementos aquelas classes.

Se, para cada ~'y= -C E C , a t ribu í rrno sum p esorou lllassa-q(y) _,
r ' .

::e sorte que:

L q ( y ) = 1

yEC

- -

afetados

par

C
r

C
r

e~tao o par (C, q) será ainda uma nuvem. Em consequencia, pode-se

igualmente considerar a nuvem ( C , n ); onde:

2.2.4)
r

n (x .)
i.

q(C )
r

P1"(X~)

•.ote-se que, de fato:

L n (x ) = 1

xEC

Na hipótese dos pesos serem equidistribuídos em cada classe C
r
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-ezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalé~ cisso -
en~ao os pesos em)=R/lcbaZYXWVUTSRQPONMLKJIHGFEDCBA- . , . .- -

c também serão equi.(

'~s~ribuíàos, co -(x) = 1/!.' , para todo x pertencente a C •

l.3 BARICENTROS DE NUVENS DE PONTOS

Na presente secçao, considera-se o conceito de baricentro (ou

_~~o de gravidade) de uma nuvem de pontos.

2.3.1) IDEFINIÇÃO

Dada a nuvem (C ,p) no RP, seu baricentro(ou centro
r r

de gravidade)
r

g e definido por :E RP

2.3.1.1) gr 2YXWVUTSRQPONMLKJIHGFEDCBAr - (x ) x

xGC
r

No caso de equidistribuição de pesos, observe-se que
r -

g e, na-

ca mai~ que o vetor medio introduzido no capítulo anterior~

Analogamente, no caso da nuvem (C , TI) , i t em-is e o baricentro

g E RP , dado por :

(2.3.1.2) 2 TI (x) x

xGC

g

Por outro lado, ao se considerar a nuvem (C, q) cada classe

y = C , poderá ser identificada ao seu baricentro
r

r .
y = g ; em tal Clr-

cunstância, o baricentro de C sera

(2.3.1.3) g = 2_ q (y ) Y
yEC

(2.3.2) PROPOSIÇÃO

-
Sejam g e g os baricentros das nuvens C e C, res-

pectiv&~ente. Então: g z : g •
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DemonstraçãoZYXWVUTSRQPONMLKJIHGFEDCBA

L q ( y ) g
rxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 q ( y ) TSRQPONMLKJIHGFEDCBAL P (x) xg =

- -cbaZYXWVUTSRQPONMLKJIHGFEDCBAr

yEC yEC xEC
r

L L q ( y ) p (x) x = L 1T(X) X = g
r

yEC xEC xEC
r

_.4 INÉRCIA DE NUVENS DE PONTOS

Na secçao precedente considerou-se o conceito de baricentro de

a nuvem de pontos; que e o equivalente, em têrmos t t - . "mecanlCOS , ao con-

eito estatístico de média (ou vetor medio).

De maneira análoga introduz-se, aqui,o conceito de inerci4,equi

--lente ao de variincia e de covariincia do Capítulo I.

O espaço onde trabalhamos é, ainda,o RP. No caso unidimensio-

-aI (p = 1), a nuvem de pontos (C , 1T) distribui-se sobre uma linha retaYXWVUTSRQPONMLKJIHGFEDCBA

e sua var í.anc í.a ou r m o rn e n t o de inercia, ca l.cul.adoccom relação ao seu c e r r -

=ro de gravidade· g , é dado por

2.4.1) L 1T(X)

xEC

2
(x-g)v

Já no caso multidimensional (p > 1), teremos uma varlanCla ou

mento de inércia para cada uma das p variaveis; ou seja, trata-se da

variância ou momento d e inércia da nuvem, quando projetada ortogonalmen-

te sobre o eixo de coordenadas correspondente.

De maneira mais geral, desde que seja fixado um vetor ~ E RP

?ode-se considerar a variância ou momento de inércia da nuvem, projetada

ortogonalmente sobre a direção definida pelo mesmo vetor unitario ~ (vi

àe gráfico e definição a seguir).



_.4.2) DEFINIÇÃO

ATSRQPONMLKJIHGFEDCBAvariância total ou momento de inércia total ~(~) da

nuvem (C ,xwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATI), projetada ortogonalmente sobre a direção u (onde

ucbaZYXWVUTSRQPONMLKJIHGFEDCBAE RP é um vetar unitario), definê-se como:

_.4.2.1) ~(~) I TI(X) [u' Q Cx-g)J 2 -

xEC

)

Note-se que d Q (x-g) é o produto interno (ou produto escalar)

~o vetar unitario u , pelo vetar (x-g); por outro lado, (x-g) denota o

afastamento ou desvio do vetar x com relação ao vetar media ou baricen

=ro g da nuvem C .

Analogamente, para a nuvem (C,q) tem-se:

'2.4.3) DEFINIÇÃO

A uar-iancia inter-classes ou momento de inérciaYXWVUTSRQPONMLKJIHGFEDCBA- i n t er-c lae

ses b(u) da nuvem (C,q), projetada sobre a direção u, define-se

como:



_.~.3.1)xwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;"(u) -cbaZYXWVUTSRQPONMLKJIHGFEDCBA= - rZYXWVUTSRQPONMLKJIHGFEDCBA
- q g )

r 2
u' o ts -g ) ]

r=:'

Em particular, para cada nuvem (C ,p ), projetada sobre a mesma
r . r

_....reçao u , tem-se a variância ou momento de inércia dentro d a icLasse Cr'

-= a por:

_.~.3.2) vr(u)
r 2

[u' Q(x-g )]L Pr(x)
xEC

r

~_ sorte que, a variância intra-classes ou momento de inércia intra-clas

es, é dada conforme a definição seguinte.

. , /

.4) DEFINIÇÃO

ATSRQPONMLKJIHGFEDCBAvariância intra-classes ou momento de inércia intr~-

classes W(u) , segundo a direção u, define-se como:

_.4.4.1)
k

L q (g r )

r=l

r
v (u) .W(u)

Finalmente, apresenta-se o .conceito de covariâ~cia ou procuto

:':õ i.ner ci.a, segundo duas direções ~ e "z (onde u
l

,u
2

E R
P sao

ri t àri os) .

vetores

No caso da nuvem (C , n), tem-se a covariancia total, ou pro~u-

-o de inércia total, segundo as referidas direções, através da definição

=..:>alxo.

2.4.5) DEFINIÇÃO

A covw?iância total ou produto de inércia total ~(ul' u2)

da nuvem (C,n) é dada por: -

2.4.5.1) ~(Ul,u2) = L n(x) eu' Q(x-g)] ~;Q(x-gÜ
. x~ 1
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~or outr-o 12xwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-

ascbaZYXWVUTSRQPONMLKJIHGFEDCBAí der ando+se a nuvem ( C , q ) , tem-se:

....•.6) DEFINIÇÃO

ATSRQPONMLKJIHGFEDCBAcovariância inter-classes ou produto de inércia inter-

classes b(~, u
2
),da nuvem (C , q) , segundo as direções u

l
e u

2
' de

fine-se como:

~.4.6.l) b(U
l
,U2)

k

- I q ( g r ) [uiQ(gr_g)] [it~Q(gr_g)J

r=l

Finalmente, tem-se:

2.4 .7) DEFINIÇÃO

A covariância intra-classes ou produto de inércia intra-

classes W(~,u2)' segundo as direções u
1

e u
2
' ~ dada por:

2.4.7.1)
k

I q(gr) Ip (x ) [u]. ~(x-gr)J.~2 Q(~.:g~)}r, ,..

r=l cr .xê _.YXWVUTSRQPONMLKJIHGFEDCBA

~ - '7 1 ; f ~

<
w(il

l
;u

2
') .-

Se '1. e u
2

forem os vetares cancn i.co s (vetares unitã-e. e e.
~ J

.t(u
1

),.t(u
l
,u

2
), b ( u

l
), b (u

l
' u

2
) ,~~os sobre os eixos coordenados), então

(ui) e W(u
l
,u
2
) notar-se-ao b . . , b . . , 7 .U • • e 7 .U • •

1 . , . 1 . , . 1 . , . J 1.,.1.,. 1 . , . J
t .. , t ..

1 . , . 1 . , . 1 . , . J
obser

e-se que as variâncias ou momentos de inércia t . . , b . . e 7 . U . . S ao
1.,.1.,. 1.,.1.,. 1.,.1.,. co-

variâncias ou produtos de inércia, onde i = j (isto é, sao
. - .

var~anc~as

u momentos de inércia).

Os t . . , b . . e 7 . U . . constituem os termos gerais de matrizes de
1 . , . J 1 . , . J 1 . , . J

~nerc~a T B e W , conforme a definição seguinte:
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~.~.8)DEFINIÇÃO

AsTSRQPONMLKJIHGFEDCBA~~rizes de inércia total (T), inter-classes (B) e

intra-classes (W), sao as matrizes de termos gerais t .. , b ..ZYXWVUTSRQPONMLKJIHGFEDCBA
l , J l , J YXWVUTSRQPONMLKJIHGFEDCBA

w .. .
l , J

Note-se que o produto interno e~ Q(x-g) nos dã a i-esima coorde
1cbaZYXWVUTSRQPONMLKJIHGFEDCBA

a d a do vetor (x + g ) , isto é, X.-g. ; analogamente, e ' Q(gr_g) z : (g:_g.).
1 1 1 1 1

Como:

t . . = I n(x)(x.-g.)(x.-g.),
l , J xEC 1 1 J J

(2.4.8.1)

entao T também se escreve:

T = I n(x)(x-g)(x-g)I

xEC
(2.4.8.la)

Por outro lado, como:

k
\ r r r

b . . z : L q(g )(g.-g.)(g.-g.),
l , J r=I 1 1 J J

(2.4.8.2)

segue-se que B se escreve~

B -
k

I q(gr)(gr_g)(~r_g);'~_

r=l .~

.. - !

(2.4.8.2a)

Analogamente.:..

k

\ \ r r r
W • . z : L L q(g)p (x)(x.-g.)(x.-g .)

l , J r=1 rEC r 1 1 J J

r

(2.4.8.3)

e

k

\ \ r r r
W· = L L q(g )p (x) (x-g ) (x-g )1

r=l r8C r
r

(2.4.8.3a)

Em consequências das definiçõoes apresentadas no texto, podemos

ter em função de T, B e W , os valores das varíancias total, inter-cla~

ses e intra-classes com relação a qualquer direção li, respectivamen~.

Para esse fim, consideremos:
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_.5.1)

_.5.2)xwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

_.5.3)

2~ZYXWVUTSRQPONMLKJIHGFEDCBA

. t ( u ) cbaZYXWVUTSRQPONMLKJIHGFEDCBA:= v' T v

b ( u )YXWVUTSRQPONMLKJIHGFEDCBAz : v' B v

W ( u ) z : v' W V

~e v e a imagem do vetor unitário u pelo isomorfismo do ffiP no (lliP)*

- a matriz em relação à base (e.) do lliP e ã base dual (e1 ) de (lli
P

) *,
1.

e ?recisamente a matriz Q .

Demonstração da expressão (2.5.1) , . /

teu) - I TI (x ) [u 'Q (x-g)]2 -

xEC

I TI (x) [ u ' Q (x-g)] [(x-g)'Q u] -

xEC

- (Qu) , [ I TI (x+g ) (x+g) 'J Qu

xECTSRQPONMLKJIHGFEDCBA

-amo v:= Qu e utilizando (2.4.8.la), segue-se o resultado desejado,i.e,

teu) := v'T v

Demonstraçao da expressão (2.5.2)

b(u) -
~ r I-= - r ] 2
L q(g ) Lu'Q(g -g) -

r=l

k

I q(gr) [u'Q(gr_g)J[(gr_g)'Qt!] -

r=l

k

- (Qu)' [ I q(gr) (gr_g)(gr_g) 'J (Qu)

r=l

desde que v :=Qu e utilizando (2.4.8.2a), segue-se: b(u):= v'B V .



::-:õ::"açao:xwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

30

ao (2.5.3)

De forma analoga, usando (2.4.8.3a), tem-se:

k

b(u) =cbaZYXWVUTSRQPONMLKJIHGFEDCBAI r rq(g ) V (u) =
r=l

k

I r I - r J2= q(g) p (x) [uIQ(x-g) =
r= L xEC r

r

k

= I q(gr) I p (x ) [uIQ(x_gr)] Lcx_gr)' QuJ =
r=l xEC r

r

k

(QU)I[ I I q(gr)p (x)(x_gr)(x_gr)'](Qu) =
r=l xEC r

r

= VI W V .

Com relação às matrizes de inércia, vale a seguinte importante

_.6 TEOREMA (HUYGHENS)-~--'--= ~_-

Sejam as·matrizes de inércia ou de covar1anT , W e B

_~as total, intra-classes e inter-classes, respectivamente.

:::::~ao:

T = W + B

Demonstração

Tem-se:

k TSRQPONMLKJIHGFEDCBA

L L r r rW = q(g )R (x) (x-g ) (x-g ) I =
r

r=l rEC
r

k
r r rI r rI

= I I q(g )p (x) (x xl_g Xl-X g +g g ) =
r=l xEC r

r

.:-:t
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rEC -rcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r

.•..x - = q(gr)gr(ZYXWVUTSRQPONMLKJIHGFEDCBAL p (x)x)' -
r=l xEC r

r

r=

k , k

- L q(gr)( I p (x) x)gr + L

r=l xEC r r=l
r

r \' r r'
(g )( L P (x»g g -

xEC r
r

==TSRQPONMLKJIHGFEDCBAL L q(gr)p (x)x x' -
r=l xEC r

r

k
\' r r r'
L q(g)g g

r=l

[A]

r outro lado,

k
\' r r r'

B == L q(g )(g -g)(g -g) ==

r=l

k
\' r r r' r, r'

- L q(g )(g g -g g -gg +gg')-

r=l

k r r r'
- L f(g )g g -

r=l

k

+ ( L q (g r) ) s. g '

r=l

k r r r'
- L q(g) g g + g g' .

r=l

k
\ ' r r

( L q (g ) g ) s '
r=l

k
\' r r'

g( L q(g )g) +

r=l

[BJ

Ora, de
A [B -[ J e J , segue-se:

k

L
r=l

. - .[ c]
~----:-=,-.B + W == L q(gr)Pr(x)xx~ i gg' •

xEC --
r

Ademais,

T == L n(x) (x-g)(x-g), -

xEC

== L n(x) (xx' - gx' - xg' + gg') -

xEC

k

== L L q(gr)p (x)x x' -
r=l xEC r

r

g( L n(x)x) , - ( L n(x)x)g' f g g' -

xEC xEC

k D
- L L q(gr) p (x)x x' + g g ' . [ ]

r=l xEC r
r

Comparando [c] e [D ] chega-se ao resultado desejado,

T==B+W.

3 -

~.e,
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nzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApar t i r do esse teorema, obtem-se:

_.6.1) Vi T VixwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlrJ v Qu,V u E R
P

v' B v onde v

onforme o lema (2.5), segue-se:

2.6.2) t(u)ZYXWVUTSRQPONMLKJIHGFEDCBAW ( u ) + b ( u ) ,

~e e o teorema de Huyghens (clássico em mecânica), aplicado à nuvem C .

EIXOS FATORIAIS DISCRIMINANTES

o objetivo deste parágrafo é escolher um eixo, isto e, um vetor

~itário u que melhor permite discriminar as classes. Iniciamos por

is exemplos no R
2

que nos encaminham de maneira mais objetiva para ª -

~preensão das idéias ai subjacentes.

2,7.1) -. EXEMPLO (a): -(má discriminação) - --~--YXWVUTSRQPONMLKJIHGFEDCBA

t
- : : ? rTSRQPONMLKJIHGFEDCBA

°v ~
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2.7 .2)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcrirai.naçao)1 •••.• _-

)J:ZYXWVUTSRQPONMLKJIHGFEDCBA
fcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-
I ,

I ,.
I .

,

I
I

I
I

í
,

f
I

I
I

.
f I

. f i : " f ; I
~

I
/ , , I

I
IV

I f " I ,
I

f

O

- '

Nota-se no exemplo (a), de fato, o vetor unitário u não permite

~iscriminar as-classes C
1

e Cz tão bem quanto v o faz no exemplo (b).

Obviamente, a discriminação será tanto mais facilmente alcânça~

Cé quanto as classes se encontrem mais distanciadas uma das outras (va-

-iância inter-classes grande) e, .concomitantemente,-quant-o o s+i.nd-ivIduos

u elementos) 'de uma mesma classe se encontram o mais próximo possível

=Jtre si, (variância intra-classes pequena).

Dessa forma, encontraremos o eixo fatorial, ou seja, o .v et or u n i.

~ar~o u, que melhor discrimina não somente o conjunto dos indivíduos de

, mas o conjunto C das classes de indivíduos de C.

Para esse fim, podemos dizer que o primeiro eixo fatorial dis-

cr i.mi.nan t e
1

l i l i que maximiza o quociente da
. -

var~an-será o elemento

z i a inter-classes de u pela variância intra-classes de l i , .isto e, < t ra

ta-se de

v'B v
2.7.3) MAXIMIZAR , ou equivalentemente

v'W v

v'B v
• onde2.7.4) MAXIMIZAR , v = Qu

v T v'
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e ia:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc2~eia ~e equival~ncias.::eo-se - ~--e

.1AXIHIZAI
BcbaZYXWVUTSRQPONMLKJIHGFEDCBAv v'w v

v B v'
+ 1 ~~ ~a~nUZAR

v

~ MINIMIZAR
v'W v + v'B v

~ MAXIMIZAR
v'B v

v T V iB v T

Com finalidade de determinar o primeiro eixo fatorial discrimi-

-=e, considera-se o seguinte teorema:

TEOREMA

o primeiro eixo fator ia I discriminante
I -

u e tal que

1 - - . -1 . . ;
v = QU

l
e o vetor proprlo de T B, correspondente ao malor va-

lor próprio \.

Demonstração

Observa-se que o problema formulado através da expressão(2.7.4)

_;:-respondeao prob L e m a clássico de se -o b t er o máximo do quociente --dep
-----

as formas quadráticas. E para-esse fim, utilizaremos o metodo dos mul

- licadores de Lagrange.

Verifica-se primeiramente que é possível escolher v'T v igual

a constanteYXWVUTSRQPONMLKJIHGFEDCBAk prefixada, pois os vetores próprios sao dados a me-

~ de uma constante. Com efeito, suponhamos que se obtivesse um vetor

:-oprio 107 , tal que -w'T W "ZYXWVUTSRQPONMLKJIHGFEDCBAz : Q 1 t Q ; bastaria, nesse caso, em lugar

._-TSRQPONMLKJIHGFEDCBAw, escolher v
z : V ~1' w, donde v'T v =k.

Assim, tem-se que maxirnizar v'B v sob a condição v'T v k

-onstante). Derivando em relação a v e igualando a zero, segue-se:

a [' 'Ja v - vBv -)..vTv = 0

_5[0 e, 2Bv -)..2 T v o ,
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Como T é su?osta inversível, temos:

T-lBcbaZYXWVUTSRQPONMLKJIHGFEDCBAv
À v •

Dessa forma, v
- - . -1
e o vetor proprlo de T B, corresponde ao va

~ próprio À

Por outro lado, tornando a equaçao Bv ÀTv e multiplicandoZYXWVUTSRQPONMLKJIHGFEDCBA

T v' à esquerda dos dois membros, obtem-se

v'. B v À v'T v

de À
v'B v
v'T v

c u e e exatamente a quantidade que desej ãvamos m a x um zar

_.8.1) eOROLARIO

Os valores próprios À de T-lB , são todos' positivos e

e inferiores a 1 (isto é,TSRQPONMLKJIHGFEDCBAO < À < 1).

Jl)emonstração

Como v' B v e v'T v sao varlanClas, entao

v'B v
v'T v

> O •

Por outro lado

À
v'B v
v'r v

v' r v - v' W v
v' r v -

v.'W v
vir v

1 - < 1



ezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs o segundo eixo fatorial discri-e'~-_ .•..c

2cbaZYXWVUTSRQPONMLKJIHGFEDCBA
u , etor próprio de

-1
T B e Q-ortogonal ae

: o qual, constitue o ~lhor eixo fatorial discriminante independente

?r1IDe~ro.

d· 1De agora em ~ante chamaremos de PODER DISCRIMINANTEDOVETOR u

1 ) _ .
u a quant~dadee i xo fatorial 1 ..

1

•

Observe-se que considerando a variância total ao longo da dire-

~u definida por 1 d d í • •

u , o po er ~scr~m~nante 1 ..
1
varia entre zero e hum,

__5, se for igual a hum (1) a variância intra-classes será nula, isto e,

-.::pontos da mesma classe têm as mesmas abscissas sobre o eixo fatorial

~scriminante correspondente; sendo essas abscissas diferentes para cla~

es distintas.
~ TSRQPONMLKJIHGFEDCBA

O (zero), os pontos -me-Por outro lado, se for igual a

'os de cada classe têm as mesmas abscissas sobre o eixo fatorial.

_.9 EIXOS FATORIAIS DISCRIMINANTES SUCESSIVOS

Conforme foi visto anterioremente, o vetor próprio de
-1

T B re-

_ativo ao segundo valor próprio -1..
2
(1..

2
~ 1..

1
),

=atorial discriminante e, a seguir, para cada um dos vetores próprios su

define o segundo e~xo

_ess~vos, duas questoes se apresentam:YXWVUTSRQPONMLKJIHGFEDCBA

A
1

) Quantos vetores próprios independentes existem?ZYXWVUTSRQPONMLKJIHGFEDCBA

A
2

) Quantos eixos fatoriais podem se extrair de tal forma que

sejam significativamente discriminantes?

Primeiramente, observe-se que dentro da maior parte dos proble-

--s de discriminação, o nÚmero total de individuos N - . -e super~or ao nu-

-era de variáveis p consideradas, que por sua vez e super~or ao numero

:e classes k.

De um modo geral, os individuos
r

x.
~

aogeram o espaço -· IRP ,

:asso que os elementos gr (pontos medias de cada uma das k classes)
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a variecade ensaodeYXWVUTSRQPONMLKJIHGFEDCBA

à . i r '1 ( v a r - i e d a d e
ç ZYXWVUTSRQPONMLKJIHGFEDCBAe r c d a p e lo s C

r
) ~ m in { p . •k - l } .

Observe-se quexwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAé gerado pelos k pontos correspondentesv
aos

-~-ros das classes e por isso não deverá ser confundido com o subespaço

ensao k gerado pelos k vetores correspondentes.

Por outro lado, temos que a forma quadrãtica u T u' é definida

51t1va e, portanto define sobre o RcbaZYXWVUTSRQPONMLKJIHGFEDCBAP uma estrutura euclidiana o prod~

escalar associado sendo definido mediante a matriz 1nversa -1
T As-

sendo, a distância entre dois pontos xl ' x
2

E RP , é dado por:

.1.9.1) , -1
(x
l
-x
2
) T (x

l
-x
2
)TSRQPONMLKJIHGFEDCBAd(x

l
,x

2
)

Dessa maneira as formas lineares discriminantes podem ser defi-

'~as geometricamente da seguinte maneira:

Em -1

T ficam deter-v , munido da metrica induzida pela matriz

-~nados os vetores diretores_ f
l
,f

2
, ... ,f

k
_
1

dos eixos principais de

~ércia do sistema de pontos x~ afetado das massas Pr(x~). As formas .. _~

l~neares discriminante são as formas,

,9.2) T-I f .

1

V.
1

Jã no caso de duas classes de centros 1
g

2
e g ,tem-se fI

1 2 I' d i "- g - g e a forma 1near 1scr1m1nante sera:

2.9.3) -1 I 2
T (g - g )VI

Portanto, observa-se que sob as hipÓteses N > P > k,

exatamente ( k - l ) vetores próprios de T-
1
B , isto é, ( k - l ) eixos

~iais discriminantes.

existem

fato-



_ ..•.0xwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,çÃO DI.SCP~~'TE DE FISHER E D
2

DE MABALA..~OBISzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Em 1936 Fisher introduziu a função linnear discriminante a ré.

as classes, como sendo: liA função linear das variáveis iniciais, -ais

e: a razao do quadrado da diferença das medias (para cada urna das a-

_asses) desta função ã variância desta função (variância calculadaa~a-cbaZYXWVUTSRQPONMLKJIHGFEDCBA

" r da matriz de covariância intra-classe), seja máxima. f bem as s i c

_2 formulamos em (2.7.3), o problema da procura do primeiro eixo fato-

_a1 discriminante, e não sera surpresa que recaimos sobre a função de

-isher, no caso de duas classes.

Os coeficientes desta função linear, podemos denotar corno sendo

etor linha

(1 2)':"'1
g - g T

Se denotarmos por Àl,À2, ...,Àpas componentes deste vetor, o va-

or desta função 1 discriminante para um indivíduo x escreve-se

como:

2.10.1) ~f (x ) ÀYXWVUTSRQPONMLKJIHGFEDCBAx + À x + 000 + À x

1 1 2 2 p P

De posse dos fatos apresentados, podemos mostrar que o vetor vI

e o vetor próprio de T-IB. Para tal fim escreve-se conforme a defini-TSRQPONMLKJIHGFEDCBA

çao (2.4.8.2), o termo geral da matriz de covariância inter-classes, pa-

~a o caso de duas classes, com centros 1
g I s to e;

2
e g.

b . .ZYXWVUTSRQPONMLKJIHGFEDCBA
1 - J

k N

L ~
r=l N

(g: - g.)(g~ - g.)
1 1 J J

nde:
N

1
N

2
B z : N ( ~ .- g ) (~ - g ) ' + I r ( i - g ) ( i - g ) " , ,

c o m N
1

if + N 2 r l
N z : N

1
+ N

2

g z :

N
e



sezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt~ê.nsfor.::.

..•.0.2)cbaZYXWVUTSRQPONMLKJIHGFEDCBA
B := - ' ~~ (g!.-ZYXWVUTSRQPONMLKJIHGFEDCBAl ) (gl _ g2)xwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1

Por outro lado, se À e v designam o úncio valor propr1o e

co vetor próp~io de -1
T B, entao:

-.10.3) -1
T B v := À V

aI se transforma em:

-.10.4) T - 1 N ] N 2 1 2 I 2, _
-2- (g. - g. ) (g. - g) v -

N
À v

ando substituimos o valor da expressão (2.10.2).

. -1 1 2
Af1rmarnos que T (g - g.) := V

é o valor próprio

De fato:

N N

T-1 1 2 (-1 2) (.1 2) f _

-'-2- g. - g g. - g v . -YXWVUTSRQPONMLKJIHGFEDCBA
N

T-
1

N ] N 2 (1 .2)( I 2)1 T ~ l ( 1 2)
---2- g. -'g. g. - g g - g _.

N

N ] N 2 1 1
~ T- (g1 - g2) (gl _ g2) f T- (gl _ g2) z :

N

N N

T -1 ( . .1 '2 ) ] 2 (1 2 ) 1 T - 1 (1 2 )
g - g - 2 " " g - g g. - g

N

r

Como (1 2)fTSRQPONMLKJIHGFEDCBAT-1( 1 2)
é um escalar, entao

g - g g - g

_ . V 2 1
- (1 2)1 - (1 2) _ _

~ g: - g. T g. - g tambem sera um escalar, portanto

N - N

T-
1

122(gl - g2)(gl _ g2)f T-l(g~ _ g2) := e T-l(g~ _ g2)

N

de

N N

e ] 2 (1 2)1 T-1(1 2)
z : - - g - g g. - g

N
2



C o -xwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT-1(g . _ g - ) -e o Cille

- - ! : " próprio, -en t ao ;:;ZYXWVUTSRQPONMLKJIHGFEDCBA

f iY . r - 2 1
Dessa forraa, ~ 2 ( 1 _ ) ' T - ( 1 _ 2)YXWVUTSRQPONMLKJIHGFEDCBA

= : « : g g g- g
} , l~

--ente o valor próprio À.

e um escalar e exa-

Sendo assim:

N N

T-1~(-1_ 2)(-1_ 2)'T-1(1l_ 2)
2 s g. g . g g g

N

-1 1 2 )
À T (g . - g

ota-se que o valor próprio encontrado

N N

À z : ~(g1_g2), T-1 (gl_g2),

N
2

"ual indica o poder discriminante da funçio discriminante encontrada ,TSRQPONMLKJIHGFEDCBA
N
1
N
2

- N 2
-e D

2
de Mahalanobis a menos do coeficiente Comsenao o

=eito; o D
2

de Mahalanobis se escreve como:

_.10.4) D
2 (gl _ g2)' T-l(gl _ g2)

ual nao e uma maneira de medir a distância entre duas classes, mas e

~ecisamente a distância entre os centros das classes, pela métrica defi

-:.c.apor
-1

T

_.11 MÉTODO DE CLASSIFICAÇÃO

Os tópicos que apresentamos nas secçoes anteriores, concernen-

zes ã d i scr i.mi.naç ao , tinham obj etivo descritivo. A partir de agora pas-

aremos a nos interessar pelo objetivo de natureza decisional, isto e,

;elo problema de classificação, propriamente dito.

Sendo assim, para um problema de identificação ou classifica-

ao, dispomos de um novo indivíduo (ou elemento) "anônimo" que designar!:.

s pela letra a, que também corresponde a um vetor do RP ~ de coorde

-adas Para tal finalidade, teremos:a 1 ~ a 2 ~ . . . ~ a p



I . -zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-Á

.1) DEFISIÇÃO

Sendo dado um novo indivíduoxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, desejamos saber a que classe

=~e pertence. De fato, supomos que o indivíduo a considerado pertenceYXWVUTSRQPONMLKJIHGFEDCBA

,~ U ~ das classes definidas inicialmente e queremos decidir de qual de-

~2.S se trata. Para esse fim, prdcuraremos urna part ição -do R P emcbaZYXWVUTSRQPONMLKJIHGFEDCBAk re

5ioes, correspondentes ~s k classes.

Primeiramente, calculamos a distância pela metrica T-1
, de a

-=,u centro
r

g da classe Logo:c ,conforme expressao (2.9.1).
r

-.11.1.1)
rTSRQPONMLKJIHGFEDCBA

d(a,g )
r -1 r

(a - g ) '" T (a - g ) .

Logo após, decide-se afetar a ã classe C
o

tal que:

2.11.1.2) m~n {d(a,gr); gr E C }
r

d(a,g )
o

nd e e o centro da classego C .
O

De fato, é nula a probaoilidade de serem-iguais as distâncias

~e um ponto a duas-classes -distintas, quando as variáveis observ-adas à s - _ - - = - - _

swnem um conjunto não discieto de.va16res,~(is~o~é, no~caso de variáveis

ontínuas).

Observa-se que as quantidades d(a,gr) definida em (2.11.1.1),

5ao funções quadráticas de ~, possuindo em comum o termo quadrado

~ - .
a" Ta; portanto, poderemos comparar as funçoes l~neares de a, re-

~2tiva a cada classe C
r

Para tal fim, considere-se

2.11.1.3) r -1
d(a,g) - a' T a"c (a)

r

::onde:

2.11.1.4) r' -1 r
g T (g - 2a)V

c
(a)

r



-::-e:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

es. 2 re~r2TSRQPONMLKJIHGFEDCBAie decis~o definida em (2.11.1.2) tor

"Decide-se afetar axwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAã classe tal quec
o

- - .1. 5)YXWVUTSRQPONMLKJIHGFEDCBAV (a) = m1n
o

{ V
ccbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a ) ; C C C }

Jt r

--e V

c
(a) é definida em (2.11.1.4).

r

Para melhor cornpreens~o,vejamos uma aplicaç~o, para o caso de

5 classes C
r

e C
2

•

Neste caso, existem somente duas funçõesZYXWVUTSRQPONMLKJIHGFEDCBAV

c
(a) e V

c
(a) a com

1 2

! : ': : u o a se:

raro

:o.

1S:

A regra de d eci sao e a seguinte: "Tomamos ã classe C
1

o -indi-

"c (a ) < "c (a )

1 2
"

Utilizando os valores de V

c
(a) indicada em (2.11.1.4), tem-

Jt

2' -1 2 -
V

c
(a) = g T. (g - 2~)

2

l' -1 1
V

c
(a) = g T (g - 2a)

1

2' -1 2 l' -1 1
V

c
(a9 - V

c
(a) = g T (g -2a) - g T (g -2a)

2 1

2' -1 2 2' -1 l' -1 2 1 -1
= g T g - 2g T a - g T g + 2g T a

2' -1 2 l' -1 1 1 2 -1= g T g - g T g + 2(g -g )' Ta> O

Por outro lado, observa-se que:

l' -1 1
g T g

2' -1 2 1 2 -1 1 2
g T g = (g - g )' T (g + g ) ,

l' -1 2 2' -1 1
g T g =g T g
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rortan;:o. a e an~erior, escreve-se:

2 1 -1 2 1 1
- (g - g )' T (g T g ) + 2(g

2 -1
g)'TYXWVUTSRQPONMLKJIHGFEDCBAa > O

1 2 1, -1 2 1 1 2 -1cbaZYXWVUTSRQPONMLKJIHGFEDCBA
= ~(g - g) T (g + g ) + (g - g )' Ta>TSRQPONMLKJIHGFEDCBAO

1 2, -1 1 1 2 -1 1 2
- (g - g) T a - ~(g - g )' T (g + g) > O ,

::-egrade decisão, torna-se: IIAFETA-SE a ã classe C
1

se

_____1.1.6)
(1 2 ) , T -1 > 1 (1 2 ) , T -1 ( 1 2 ) "
g - g a -2- g - g g + g

I1AFETA SE a ã classe seCz

__l1.1. 7) (
1 2 -1

g - g)' T a < 1 (1 2 ) , -1 (1 2 ) "
-2- g - g T g + g

Nota-se que, o termo da esquerda das expressões (2 .1 1 .1 .6 ) e

_.il.I.7) é exatamente a função linear discriminante introduzida por -

_ ~. Fisher (que e a função linear maximizando a razão do quadrado da

;:erença das medias-de duas-classes, pela variância global~.
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-J

'este capítulo consideraremos a distribuição dos valores assum~

5 por cada variável, relativamente aos indivíduos de urna classe, corno

sendo urna distribuição aleatória. Assim, para cada classe e cada va r i.a-:baZYXWVUTSRQPONMLKJIHGFEDCBA

: = ~ supomos existir urna lei probabilística, o que de certa forma nos

_~az dificuldad es para conhecê-la com exat idão.

Além disso, as variáveis tratadas no presente contexto sao de

~~acter quantitativo, podendo em geral assumir um conjunto contínuo de

::.!.oresreais. Lernb ramo s que urna variável podendo assumir distintos va

~es, sujeitos a certas probabilidades, chama-se urna variável aleatória.

No caso em que a variávelUTSRQPONMLKJIHGFEDCBAX é contínua e unidimens ional .: su-

s existir certa funçãoSRQPONMLKJIHGFEDCBAf ( x ) , ou densidade probabilística, de sor-

__ que a probabilidade de~-X

':'adapor ~

P ( a < X < i»

est-ar entre dois valores quaisquer a e b

r f e x ) 1 l X

a

,

Note-se que uma função densidadeZYXWVUTSRQPONMLKJIHGFEDCBAf(x) está sempre sujeita -as

~;uintes condições:

(i) f ( x ) > O

(ii) t~eX)dx

TI- x E ] R

1

r f e x ) d x

a

P ( a < X < b )



ocas cispo~s de um vetar aleatórioZYXWVUTSRQPONMLKJIHGFEDCBA~=(X~~

sendoUTSRQPONMLKJIHGFEDCBA: ( x 7 ~ x 2 ) s~GtsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( i) ( X 1 ~ X 2 ) baZYXWVUTSRQPONMLKJIHGFEDCBAG R
2

( X 1 ~ X 2 ) > O v

(ii) [ ~ r ~fCxl,x2)dxldx2 = 1 .

00 J _ o o

Então, a probabilidade de ~ ( X 1 ~ X 2 ) s e encontra numa dada

região N do plano, sera:

PC, E N ) =.r r fCx1,x2)dx1dx2
J JN

se

N SRQPONMLKJIHGFEDCBAz : [ a ~ b J x [ c ~ eU , entao

P ( a ~ X 1 ~ b ~ c ~ X 2 - ~ d )

f
b rdfCX1,X2) dx

1
dx
2

.

a J c

o conceito de função densidade pode s er.es t end i.da ev i.d en t emen t e.pa

r-ao caso de um vetar aleatório Ç, z : ( X 1 ~ '" ~ X ) de qualquer dimensão p > 1. -
P -

Assim, determinar a lei de Ç, corresponde a determinar sua função densi

àade f(~) z : f ( x 1 ~ x 2 ~ " '~ x p ) '

Vamos nos restringir a situações em que a lei associada ao ve-

tor Ç, pertence ã chamada família de leis multinormais (ou leis de Lapla-

ce-Gauss), ã cujo respeito nos deteremos no paragrafo seguinte.

3.2 LEI D E LAPLA«::E-GAUSS

Como foi visto anteriormente, ocorre~ situações em que

ha necessidade de supor que as variáveis estao sujeitas a certas leis

probabilísticas. As leis multinormais, também chamadas de leis norma1S



_lti':ariacas (ou leisbaZYXWVUTSRQPONMLKJIHGFEDCBA" : ' '2 ' - éce-Gauss), sao aquelas supostas malS co-tsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7

-ente. Isso é c~cor~ê~cia. em parte,de sua universalidade; ou

aquelas que mais fre~uentemente ocorrem na prática. Alem disso,

seja,

os

_~stes usuais de significância estatística exigem de regra a normalidade

o pre-requisito para sua aplicação.

i~ensional a função densidade normal bivariada correspondente

Assim sendo, para o caso de um vetar aleatório ~ =ZYXWVUTSRQPONMLKJIHGFEDCBA(X
1
,X

2
) bi-

3.2.1)SRQPONMLKJIHGFEDCBAf ( x
1

- , x
2

)

1

2

[

-1UTSRQPONMLKJIHGFEDCBA( x l- lJ 1)

exp ( . 2 +

2(1-Pl 012no
1

0

2
Vl-p2'

- 2p

( x
1

- lJ 1 ) ( x 2 - lJ 2 )

°1° 2

2
V ( x

1
- , x

2
) E R

é dada

2

( x 2 -lJ 2)

2

°2

-de
2

são as medias
. - .

de X. ( i z : 1 .•2) , respectiv~lJ· e a . e varlanClas
1- 1- 1.-

-~:lte,e p e o coeficiente de correlação entre Xl e X
2

.

Sabemos que uma função de duas variáveis podecs er..representada_

~raficamente por uma superfície no espaço a três dimensões. :Assím,'a-su

-erfície representada por (3.2.1) assemelha-se a um sino, como revela a

~igura seguinte (para P = 0,6 e a
1
/a

2
= 1) :

~ ( X 1 ) X 2 ~

o

'iz

----------



?o:- :a=b~zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdescrever funções ce cuas

ebaZYXWVUTSRQPONMLKJIHGFEDCBAi s por me i o de c s de nível, obciàas seccionanào a suoe:--

'::ície z SRQPONMLKJIHGFEDCBAz : f ( : : : ~ ~ : : : 2 )c o r a os
• 1

--osZYXWVUTSRQPONMLKJIHGFEDCBAz = c (constante) e, em seguica pr~j~

_ando as curvas resultantes de tais intersecções no plano :::~O :::~
z

o nosso caso, isso corresponde a considerar curvas no ~~a-UTSRQPONMLKJIHGFEDCBA

_ O x
2

' de equaçao:

3.2.1.1)

( x _ ~ ) 2
1 1

2 +

°1

2
( x 2-lJ2)

2

°2 °1°2

( x
1

- lJ
1

) ( x
2

- lJ
2

)

- 2p c

Cada uma dessas equaçoes representa uma eli pse com centro no ? O ~

-o (Y1~lJ2)' o qual e chamado de centroide da população bivariada. .,1é:::

c i sso, cada e lLps e tem um dos eixos ( o principal ou o secundário) co i.n-

ciãindo com UIDa reta passando pelo ponto (lJ
l
,1J

2
) e fazendo ângulo 8 com

eixo positivo x
1

O x
2

' tal que:

8

se

2 p < 1 , 0 2

2 2

°1-°2

1
-2~ a r c t q se

°1 I °2

4~ °1 - ° .2

Observa-se que essa reta coincide com o eixo principal (maior e~

xo) se p > O e com o eixo secundário (menor eixo) se p < O. Como o

ângulo 8 depende somente de
- .

varlOS0 1 ' 0 2 e p , segue-se que, tomando

valores de c > obterr.-seuma família de elípses concêntricas, todas cozi

a mesma ori entação. Vid e exemplo abaixo.

- . X E M P L O (a)

Suponhamos que ~ = (Xl~X2) segue uma distriDuição normal biva-

• , 11 - 1 S 11 - 'l{J ° - ° - S e p - O 6 0 ~ • . : : - e' PC: ~;:-o~1aQa COI!! "I - '-, "'2- 6 , 1 - 2 - L - ~ • LIlLaoa xpr ! o c



3.2.1.1) torna-se:baZYXWVUTSRQPONMLKJIHGFEDCBA

( = _ tsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1.5) <;.
2UTSRQPONMLKJIHGFEDCBA

( xZYXWVUTSRQPONMLKJIHGFEDCBA
l
-15) ( x 2-20)(::;2-20)

+ - 2.0~60 =SRQPONMLKJIHGFEDCBAC ,

52 52 5.5

ainda,

2 2
(x
1
-lS) + (x

2
-20) - 1,2 (x

l
-lS)(x

2
-20) = 2SC

seja, e uma equação definindo contornos elípticos de equidensicac-

'~a família de elípses concêntricas, cujo centro e o ponto (15,20) e

~ 5° . Oo ei.xo ma i.o r fazendo um angulo de 4 com o ei.xo x l " z : uma vez

02 e p > O. A figura abaixo mostra as elípses

~espondentes a determinados valores da constante C, a saber: C

2~95; C = 2,06 (para as três elípses mais internas) e C=

- 0,13; C = 0~01 (para as três mais externas).

X
2

3

1

---

/ , 4 5 - I I I I I !_ ~~ ••. X I

o 5

s ~'~
.J

;,2..::

Veremos, agora, ser conveniente que se escreva a equação(3.2.1)

.a forma matricial.



de
.. - .. .-

ar1anc1as-covar~anc1as

~riz de dis?ersa açao bivariada, como sendo:

3.2.2)SRQPONMLKJIHGFEDCBAL tsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P0

1
:
2

)

°2baZYXWVUTSRQPONMLKJIHGFEDCBA
p 0
2

0

1

u e sorte que: detZYXWVUTSRQPONMLKJIHGFEDCBAL - 2 2 2
°1°2(1 - P )

onsequentemente. supondo a inversibi1idade deUTSRQPONMLKJIHGFEDCBAL temos:

3.2.2.1) I-1 =

1;02 -p

1
I 1 /°1°2

l-p
2

\ -p 1/ 2
/°2°1 °2

Note-se que a expressão no expoente da equação (3.2.1), a menos

o fator (-1/2), é equivalente ã forma quadrática.

3.2.3)

( = . - : ].11)

r = = . - "1' x 2 - "2) ~-1 \ x 2 - "2

ondo x ' ( X l - ].11' x
2

' 11
2

) , segue-se; ,

3.2.3.1)
2 z :» ,-1-

X = x t . x

ue e

Observa-se, ademais, que o fator constante da expressão (3.2.1),

1 . r : - 2 ' - 1 , - -1/2
/2no

1
0
2
y1-P se escreve (2n) (dett.)

Portanto, a expressao (3.2.1) torna-se:

3.2.4)
- 1 · ,-1/22

f ( x l ~ x 2 ) = (2n) (dett.) exp(-r /2)~

que é a forma compacta para a função densidade normal bivariada.

o caso p-dimensiona1, definimos a matriz de variâncias-covari

âncias I, como



2zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlp010pbaZYXWVUTSRQPONMLKJIHGFEDCBA

2

2 P2p020p
3.2.5)UTSRQPONMLKJIHGFEDCBAL

Pp20p02
·2
o
pPplOpOl

e o: e a variância de Xo e poo (iZYXWVUTSRQPONMLKJIHGFEDCBAF j) e o coeficiente de correia
1 1 1J

o entreSRQPONMLKJIHGFEDCBAX o e X o

1 - J
Seja:

3.2.5.1)
2 -, ,-1 -

X = x L x

i' = (Xl-~l~ x2-~2~· .....~xp-~p)
0/

--ao, a função densidade normal p-variada e dada por:

3.2.6)
_ 2

f(xl~x2~ ...~Xp) - k exp(-X /2) ,

--de:
k = (2TI)-p/2(detIl-1/2

::emais, e o-vetor medio de dimensão p correspondente às coordena-:u

2S do centro da distribuição, enquanto L e uma matriz quadrada, sime-

-~ica e positiva definida de ordem p (matriz de variâncias-covariâncias).

J.3 MfTODOS DE CLASSIFICAÇÃO DE NOVOS INDIvíDUOS E

FUNÇÕES DISlCRIMINANTES

No presente parágrafo abordamos o problema de atribuição que

larece, naturalmente, quando se dispõe de certas medidas (ou observa-

-es) sobre cada indivíduo e, em decorrência, desejamos classifica-Io em

a dentre varias classes, com base nessas medidas. Como fóiOestabelecido



::eriornen::e, - omos que todas as varlave1S en

eguem leis norwa~s.

De um modo geral, na classificação de novos indivíduos

a questão de se considerar custos de erros, interpretados co

mo multas a pagar pela classificação incorreta dos indivíduos.

Dessa forma, estudaremos os metodos de classificação li~2

~~ãlise Discriminante, seja sem considerar custos de erros, que 2

1S simples; sejé numa etapa seguinte, ao se considerar esses c_~_

t-~t

3.3.1tsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACLASSIFICAÇÃO SEM "COSTOS DE ERROS"

Consideraremos duas classes CbaZYXWVUTSRQPONMLKJIHGFEDCBA
1

e CZe variáveisZYXWVUTSRQPONMLKJIHGFEDCBAX~ e Z_.

'evaremos em conta os custos da ocorrência de erros.

, . ,

Seja a figura abaixo, onde as densidades de probabilidade ~

-ivas às classes C
1

e C
Z
' respectivamente, são representadas por

?erfícies em forma de sino (distribuições normais bivariadas).UTSRQPONMLKJIHGFEDCBA

o ) l 1\ l \ / "

xl

Assim sendo, parece natural adotarmos o seguinte método ou cr'-

terio de classificação:

'~fetar um novo indivíduo x (Xl~X2) ã classe para a qual a



e asbaZYXWVUTSRQPONMLKJIHGFEDCBA -e I:la1.szyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe-forte~ o€o e reS?ectlva

tras alav~as,ZYXWVUTSRQPONMLKJIHGFEDCBA é.-classe ara a qual se tenha malor

de a posteriori ce se obter os valores X "2·": e

Em consequência, a fronteira de separaçao das classes L. e

- cefinida pela projeção, sobre o plano xl O x
2

' da intersecção das

s superfícies.

E claro que o metodo assim descrito se generaliza, de imediato,

,_ var i.as classes; observando-se que tal procedimento não concede p ri.vi L à -

~o a nenhuma classe e tampouco considera os custos de possíveis erros.

o problema consiste em definir de maneira precisa as fronteiras

2?aradoras, as quais são de dois tipos, a saber:
- "

(i) Hiperplanos (definidos por meio de funções lineares), se

supomos que as leis multinormais correspondentes às -va-

rlas classes possuem a mesma matriz de variâncias-covari

~ .
anClas.

(ii) Hi.pe'rsupe rf Êci.es, (definidos por funções quadrâticas), se

nada podemos afirmar sobre a igualdade das matrizes de

variâncias-covariâncias.

Para a determinação da fronteira separadora definida por inter-

~dio de funções lineares (hiperplanos) consideremos o caso de duas clas

es C
1

e CSRQPONMLKJIHGFEDCBA
z

' com leis fC ( x )

1

e fe ( x ) (densidades de probabilidade

Z
rrespondentes). Dessa forma, a região de afetação ã classe e

1

-sera

efinida por:

3.3.1.1) Re
1

{x fe (x)
1

> fe ( x ) }

Z

pondo I = Ie = I .
e 1 Z



.•.Vr::anLO" ébaZYXWVUTSRQPONMLKJIHGFEDCBA
> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAie (X) traduz-se ?or:tsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2SRQPONMLKJIHGFEDCBA

- ? I - J - - l I ? [ 1 , ,-I
(21í) . lG2~!C) -UTSRQPONMLKJIHGFEDCBAe x p - /2 (x-l1e )ZYXWVUTSRQPONMLKJIHGFEDCBALe (x-l1

e
);>

1 1 1 1

> (27T)-P/1detl )-112 exp [_1/2(x-l1
e

)'I~l(x-l1e )]

e2 2 2 2

nd e :

3.3.1.2) ,-I ,-I
(x-llC )' L (X-l1

e
) < (X-l1

e
)'L (x-

l1
e
).

112 2

Observa-se que o metodo de classificação apresentado no capitu-

2 e análogo a este, bastanto substituir ~ por ~ e l1e ,
11
e por Y;

1 2e~do T, ali, a matriz de covariância total.

Por outro lado, para a determinação da fronteira separadora de-

finida atraves de funções quadraticas, consideremos novamente o caso de

~as classes C7 e C
2

' de leis fe (x)

1

asa, a região de afetação à classe C
7

e fe (x), respectivas.
2

, sera definida por

Nesse

3.3.1.3)
R e ; = ; { x

1

fC ( x ) > fC ( x ) } ,

7 2

upondo lc ;I
7

lc .
2

Portanto, a condição fC ( x ) > fC traduz-se agora por:

7 2

(27T)-p/2 (detl ) - 1 I2 e x p [_ 1 /2 ( x - l1 e ) ' leI ( X -
l1

e

) ] >

el 1 7 1

onde:

> (27T)-p/2(detl ) - 1 /2 e x p [ - 1 /2 C X - l1

c
)'Ic1 (x-

l1
e)J

e2 2 2 2

'3.3.1.4) 1. ,-I 1 v
-2-(x-l1

e )' t - e ( x - l1
e

) + -2- L n detL
e

1 1 1 1
<

1 ,-I 1
< - 2 - ( x - l1 e )'Le (x-l1

c
) + -2- ln det1e

222 2



e rv aozyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAé.CU::', ê. anaiog1.a desta expressao com o metodo

c!assificação de Sebes~yen dada pela expressão (1.5.4.3). capítulo 1.

3.3.2 CLASSIFICAÇÃO COM "CUSTOS DE ERROS"

Vejamos, agora, o problema da classificação de indivíduos, qua~

o intervêm "custos de erros".

Para tal fim, consideremos o caso de duas classes CbaZYXWVUTSRQPONMLKJIHGFEDCBA
1

e C
Z
' es-

:ando o espaçoUTSRQPONMLKJIHGFEDCBAR P particionado em regiões R
1

e Rz,designadas como as

"regiões críticas" para a afetação de um indivíduo arbitrario na classe

1 ou C
Z
' respectivamente. Assim, se a p-upla (vetor noZYXWVUTSRQPONMLKJIHGFEDCBARP) que repre -

enta o indivíduo cai na região R
1

' ele estara classificado na classe

~1; caso contrario, isto é, se ele cai em RZ ' estará classificado em

z:

Evidentemente, existem possibilidades de má classificação (ou

erros de classificação), isto é, de um indivíduo pertencer a uma classe

e ser classificado na outra. A partir desse erro de classificação é que

surge a questão do "custo de erro"; o qual sera notado por C(i/j), signi.

=icando dizer que o indivíduo é classificado em C. quando, na verdade,
1 .

e encontra em C..
J

Pode-se apreciar na tabela abaixo a indicação dos custosdecor-

reta e incorreta classificação, para o caso de duas classes C
1

e C
z

.

CLASSES {

C(l/l) = O C(2/1) > O

C(1/2) > O C(2/2) = O

C
1

Cz
C

1
Cz

CLASSIFICAÇÃO

Observe-se que para se obter uma boa classificação, de algum

. : > . : >

deSRQPONMLKJIHGFEDCBA

- r : ' :



a wa classificação; para isso conside-tsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe

r a+sebaZYXWVUTSRQPONMLKJIHGFEDCBAd i st i nras zaane í.r as ce definir o "custo mínimo" conforme dois casos

a saber:

(i) probabilidades a priori conhecidas;

(ii) probabilidades a priori nãoconhecidas~

- PROCESSO DE CLASSIFICAÇÃO COM PROBABILIDADES

"A PRIORI" fiNHECIDAS (caso de duas classes)

Aqui, consideraremosZYXWVUTSRQPONMLKJIHGFEDCBAq. como sendo a probabilidade de um indi-
~

"íduo ar b i t rar i,o provir da classe C.UTSRQPONMLKJIHGFEDCBA( iSRQPONMLKJIHGFEDCBAz : 1 .•2) .
..(.

Além disso, suponhamos

que as distribuições envolvidas, relativamente a cada classe, tenham den

sidades; ou seja, fC~x)é
..{.

regiao

a densidade associada a C.<. j i z : 1 .• 2 .•

crítica (ou região de decisão) associada a C.,
- < .

Se R.
..(.

-e a

entao:

(3.3.2.1) P O /1 ,R ) I fC) ( x ) d x

RI

representa a probabilidade de um indivíduo'pertencente a classe C
l

ser

~em classificado; enquanto

(3.3.2.2) p ( 2 1 1 ,R ) I fC) ( x ) d x

R
2

é a probabilidade da ma classificação. Na notação P(jli.•R), tem-se

= {Rl,RZ}' que se refere a uma dada partição do espaço em duas regiões

de decisão.

De maneira analoga, consideram-se as probabilidades de correta

classificação e de ma classificação, respectivamente, de um indivíduo pr~

veniente de C z



e se extrair um indivíduo detsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-eC
1

e a

~-:, entao a indivíduo ser extraido de se-

5uida ser bem classificado, torna-se

C 1 e,ZYXWVUTSRQPONMLKJIHGFEDCBA

ql P(l/l,R); no caso de má clas-

ebaZYXWVUTSRQPONMLKJIHGFEDCBAd e em

sificaçao tem-se ql P(2/1,R). Toma-se o produto de probabilidades,

~endo em vista a hipótese de independência entre a escolha do indivíduo

e sua classificação.

Analogamente, para a classe CZ' nos casos de boa e de má clas-

~ificação tem-se as probabilidades q2 P(2/2,R) e 92 P(1/2,R).

Sendo assim, pode-se definir o custo esperado, como a soma 'dos

rodutos de cada custo da má classificação, pelas probabilidade de sua

~espectiva ocorrência, isto ê,

3.3.2.5) C(R) C(2/1) ql P(2/1,R) + C(1/2) q2 P(1/2,R) ,

nde ql e q2 sao conhecidas.

Este custo esperado (ou custo medio de má c Las s i êaç ao ) é aque-:

le que se deseja minimizar.--Os pr~cedimentos utilizados para_tal, dizem-

-se procedimentos de Bayes, os quais dependem da escolha de uma

* -
~ao R = {R

1
' RZ}; adequada (conforme a -definição seguinte).-

parti-

3.3.2.6) DEFINIÇÃO

*R determina um procedimento de Bayes (portanto um pro-

- * -
cesso 'ótimo), se C(R) < C(R) v- R.

Em outras palavras, para que se possa mínimízar o custo espera-

ào C(R), devem ser escolhidas regiões apropriadas *R
1 SRQPONMLKJIHGFEDCBA

z : R
1

*e RZ z : RZ'

Em seguida, podemos definir probabilidades associadas às classes

e ao conjunto de variáveis observadas. Seja y =UTSRQPONMLKJIHGFEDCBA( y l " Y 2'" .'.•y ; ) E ] R . ~

?or outro lado, seja x = (x
1

. • . . . . • x
p

) um indivíduo arbitrário. Então, a

-------------- ......•••



ezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
OV1r da classe C

1
e ser tal queZYXWVUTSRQPONMLKJIHGFEDCBAx. < y.,

1- - 1-SRQPONMLKJIHGFEDCBA
i = 1~2~...UTSRQPONMLKJIHGFEDCBA~ p baZYXWVUTSRQPONMLKJIHGFEDCBAe d a d a O.,...·

3.2.2.7) = l'.lfY2.... fYpqj

-00 -00 -00

fC(x) dxldx2~" .~dx
1 P

P C
1

( Y l~ " . ~ y p )

Por outro lado, podemos definir a probabilidade condicional de

indivíduo
x = (xl~x2~"'~xp) provir de uma dada classe, sendo conhe-

'dos os valores
xl~x2~" .~xp isto e,

3.3.2.8)

q 1 f C ( x )

I

q1fC(x) + q~C(x)
1 2

Ora, relativamente à expressão (3.3.2.5) e supondo
C( 1/2 ) =

= C(2/1) = 1 , vem:

3.3.2.9)
- ql i fcixldx + q2

2

i fc~xldx

1

C ( R )

~ara o custo da má-classificação; o que não deixa de ser uma probabilid~~ ~

e de má-classificação (tendo em vista a hipótese C(1/2) = C(2/1) = 1 ) .

Para um dado indivíduo x observado, minimizamos Sua probabili

e má-classificação, atribuindo-o à classe à qual corresponde a
ma10r

robabilidade condicional. Isto e, se

3.3.2.10)

q1 fC ( x )

1
- - - - - - - - - >

q1 fC ( x ) + q2 fC ( x )

1 2
ql fC ( x ) + q2 fC ( x )

1 2

q 2 fC ( x )

2

assificamos o indivíduo x na classe C
1

. Caso contrário, será clas

-ificado na classe C
2

•

Uma vez que se minimizou a probabilidade de máclassificação em

ada ponto, então o mesmo e feito para o espaço todo, donde a regra de

ecisão pode ser escrita:

o



G baZYXWVUTSRQPONMLKJIHGFEDCBA- (x)UTSRQPONMLKJIHGFEDCBA
~ c tsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2ZYXWVUTSRQPONMLKJIHGFEDCBA·~e'l(x)

. .

i _
. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.3.2.11)

c;2 fe'l(x) > q te ( x )

1 7

Observa-se que, se q1 te (x) = q2 te (x), o

7 'l
rí.aser classificado indistintamente, em e

7
ou e'l; mas

individuo x Doce

preferimos colocã-

em e7 . Contudo, se q1 te (x) + q2 te (x) = o , o individuo x não

7 'l

der í a ser classificado en nenhuma das classes (em vista de (3.3.2.10)).

Mostraremos, em seguida, que (3.3.2.11) de fato nos dá o me-

or procedimento de classificação.

Ora, para qualquer partição * *R = { R
7

*R'l}' a probabilidade de

--classificação e dada por:

3.3.2.12)
e(R*) = ( ql te (x)dx + ( q2 te (x)dx z :

J * 7 J * 'l
R'l R 7

= ql (te (x)dx - q2 f te (x)dx +

J R'" 7 R* 'l
'l z

+ q2 ( te (x)dx + q2 f te (x)dx

--;

z :

JR* 'l R* 'l
z 7

= r [ql te (x) - q2 te (x)Jdx + f q2
J R* 7 ' l

' l

e (x)dx

' l

Note-se que no último membro desta cadeia de igualdade~ o ter-

q2 f te (x)dx é um valor constante (se R7UR'l = m P, então fica ape-

' l _ * *
-as q2); assim, e(R) será minimizado se R'l incluir pontos tais que

1 te (x) -

7

- " z te ( x )

z

q2 te (x) < o
' l

e excluir aqueles para os quais
q1 te (x)

7
> o .



5zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ue de fato a exrressão (3.3.2.11) e o me-

or procedi~enc:o ssível.

AdeQais, se tivermos garantia de que:

3.3.2.13)ZYXWVUTSRQPONMLKJIHGFEDCBAProb {q1fCbaZYXWVUTSRQPONMLKJIHGFEDCBA( x ) - q2fC ( x )

1 2SRQPONMLKJIHGFEDCBA

o IUTSRQPONMLKJIHGFEDCBAC . } = O
4..

i z : 1~ 2 ,

~~tão o procedimento de Bayes e único, a menos de conjuntos de probabili

::ade nula.

Se C ( 1 / 2 )
- .

sao qua~squer (isto e, levantamos a res-c ( 2 / 1 )e

~rição C(1/2) = C(2/1) = 1), então o custo se escreve:

3.3.2.14) C(R) = C(2/1) q1 r fC(x)dx + C(1/2) q2 f fC(x)dx

) R 1 R 2

2 1

z-

':::escolheremos R
1

e R
2

' conforme

{ RI : C(2/1) ql fC(x) ~ C(1/2) q2 fe(x)
3.3.2.15)

1 2

R2 : C(1/2) q2 fC(x) > C(2/1) q1 fc(x) , -
2 1

~esde que C(2/1) -q1 C(1/2) q2 sejam constantes não-negativas.

- PROCESSO DE CLASSIFICAÇÃO COM PROBABILIDADES

fiAPRIORI" CONHECIDAS (caso de p > 2 classes)

:;1~2~....~p), sendo o espaço RP

fC~x) respectivas
4..

particionado em regiões de decisão

No caso de haver p classes C. com densidades
~

-.,R
2
, ..."R

p
' as probabilidades de má-classificação serão:

3.3.2.16) P ( j / i , R ) z : f . 6
C

. (x)dx
R.4..

j

1 - t j



~C

rObabilicades a pr1or1ZYXWVUTSRQPONMLKJIHGFEDCBAql~q2~" .~qp

ecicas, o custo es~erãào define-se como:

as

3.3.2.17)baZYXWVUTSRQPONMLKJIHGFEDCBA

p

2 qi
i=l

; tsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtLC(j/i)
J=1

P(j/i,R) }
C(R) -

as probabilidades condicionais análogas às definidas em (3.3.2.8), -serao

iad as por

3.3.2.18)

qi fc~x)
1.-

p UTSRQPONMLKJIHGFEDCBA

. 2 qj fc~x)
j= L J

Obtem-se, portanto,um resultado analogo àquele já encontrado no

aso p:::: 2 .

3.3.2.19) TEOREMA

Se q. é a probabilidade a priori de se extrair um indi-----_1

viduo de classe'C., cuja densidade éfC (x)i(i::::l~2~.-..SRQPONMLKJIHGFEDCBA. t » e se o..{. .

1

custo da má-classificação de um indivaiuo de C. como sendo de C. e
. . . ( . j

C(j/i) (i I j), entao as regioes de decisão R
7
,R
2
, ...,R

p
que

permitem minimizar o custo esperado de ma-classificação são da-

das pela condição x E Rk ' quando:

p

. L qlfC~x)C(k/i)
1=1 ..(.

i;fk

q

< .2 qifc~x)C(j/i) ,
1=1 ..(.

ilj

para i= 1~2~ ... ~ p e J I k .

Demonstração

p

Consideremos h.(x):::: 2 q. fc(x) C(j/i), entao o custo espera-
J i=l 1.- . . < .

i;fj
rado de um procedimento baseado em R e
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.:, h.(x)dx = I h(x)dxUTSRQPONMLKJIHGFEDCBA
J - · J R J

. J
J

h (x)SRQPONMLKJIHGFEDCBAz : h. (x) para x 6 R.
J j

Para o procedimento descrito no teorema, tem-se que
h(x) -e

x) := m1.n.
1.

h . ( x )
1. Portanto:

r [ h ( x )

J

- h *cX)Jdx z : L ! [ h . ( x )

. J
J JR.

j

- min.h. (x)Jdx > o
1. 1.

A igualdade pode considerar::-sesomente quando h. ( x ) z : min. h. ( x )

J 1. 1.

--ra x 6 R. , exceto para conjuntos de probabilidade nula.
j

Vejamos como este metodo se aplica quandoZYXWVUTSRQPONMLKJIHGFEDCBAe(j/i) := 1 para todo

e j (i t j). Neste caso, em R
k
, tem-se

3.3.2.20)

p

t-- q . f e . ( x )

i=l 1- -<-

U k _ _

,

p

< i I Iq - i f
C i

( x )

i;lj

-:,traindo

p

L q. f e ( x ) de ambos os lados, obtem-se
i=l 1- -<-

i;lk,j

3.3.2.21)
q j f e j (x) < q k f

e k
(x)

este caso, o indivíduo x esta em R
k
, se k e o índice para o qual

- f e . ( x )
.{.

- - .
e um maXl.IDO;ou sej a, e

k é a classe mais provavel .

3.3.3
PROCESSO DE CLASSIFICAÇÃO COM PROBABILIDADES A PRIORI

DESCONHECIDAS

Suponhamos duas classes e7 e e
Z
' As probabilidades a pr1.or1.
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sa custo esperado de ma-classi--::é.S as. Entao, otsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsup

=icação, sob a h i ; ese de que o indivdiuo x E C
7
,é dado por:

3.3.3.1)ZYXWVUTSRQPONMLKJIHGFEDCBAC(2/1) P(2/1~R)Jt(1,R)

cilquanto, se x E Cz, e dada por uma expressão analoga.

*Consideremos dois p reoc ed i.mentos R e R , este último suposto

procedimento de Bayes. Neste caso, diremos que "R e pelo menos tao

*om quanto R" se:

3.3.3.2)

{

, r ( 1 , R )

r(2,R)

* UTSRQPONMLKJIHGFEDCBA
< - i i , « )

*< r(2,R )

*ao passo que "R e melhor que R , se ao menos uma das desigualdades prec~

~entes vale estritamente.

Para o caso de varias classes e supondo ainda desconhecidas as

robabilidades a priori, nao é possível definir um custo esperado incon-

~icional para um processo de classificação. No entanto, podemos definir

custo esperado sob a condição de que o elemento provem de uma dada clas

se, como foi feito linhas atraso Assim, o custo esperado condicional de

~ã-classificação se o elemento provem de C. , define-se por:
~

3.3.3.3) r ( i , R )

p

L C(j/i)

j=l

jh

P(j/i~R)

Podemos dizer que "R e pelo menos tao bom quanto *R " se

3.3.3.4) *r(i,R) ~r(i,R ) ~ i=1~2~ ... s P ~

ao passo que "R e melhor que Tif, se pelo menos uma das desigualdades va

e estritamente.

.~--------------.........•••



-ezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcesso de 3ayes, no caso das probabilidadesbaZYXWVUTSRQPONMLKJIHGFEDCBA; : :

ê pr~or~ serew Gesconhecidas ê, contudo, um problema um pouco ma~s com-

plexo (exigindo a introdução do conceito de "procedimentos admissivei s de

Eayes"), o que nos obrigaria a divergir bastante dos objetivos do nosso

trabalho, caso tivéssemos que ai nos deter. Os detalhes, nesse caso, p~

derao ser encontrados em ANDERSON (1958).

Finalmente, note-se que para a discriminação sob a hipotese de

e~s normais, todas as densidadesZYXWVUTSRQPONMLKJIHGFEDCBAfC.(x) supõe-se ser densidades de La-

~

place-Gauss.

6
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Teste capitulo apresentaremos os processos de discriminação pa~

o a passo e analisaremos as vantagens dos possiveis critérios utiliza-

Te1s.

.2 DEFINIÇÃO

A tecnica básica envolvida num processo de discriminação passo

2 passo consiste em, dado certo conjunto de variáveis medidas sobre uma

.opulação, sucessivamente restringi-las à melhor, em seguida às duas me-

L h o res, às três melhores, etc., no sentido de assim permitir, de caâa vez,

~a melhor discriminação entre elementos pertencentes a classes distin-

::as.

No caso da chamada regressao linear múltipla tem-se urna var1a -

"elNMLKJIHGFEDCBAy a prever, com a ajuda de certo número de outras var1ave1SHGFEDCBAx l~ x 2 ~ "

. z :

A variável .,.quese -desej a prever é frequentemente chamada endõg~ -- __ o. . . ~ x .

p

a, dependente-ou ua-exp1.icar", enquanto que as demais são di t á s exõgenas;--

independentes ou "explicativas".
,

Ora, no que concerne à regressao li-

ear múltipla, podemos estar interessados em selecionar, dentre as variá

-e i s exogenas x l~ x 2 ~ " . ~ x p ,

são ou explicação da variavel

aquelas que mais contribuem para a prev1-

endõgena y . Para tal .f i.m, podem ser utili

zados processos passo a passo (stepwise), sabendo distinguir entre pro-

cessos "stepwise" ascendentes e descendentes.

Nos processos ascendentes, as variáveis são introduzidas uma a

uma, de sorte a serem construidos subconjuntos de variaveis, de porte

crescente; evidentemente, a variável a ser introduzida em cada etapa -e

1 · d "... . R 2
aquela que me hor contr1bue para o aumento o 1nd1ce ou percentual

de explicação" ( R2 - " .. - - . ")onde e o coef1c1ente de correlaçao IDult1pla . Nos

U.F
,
nU



essos cesce~ce==es. rar~o, partimos do conjunto de todas asyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.!.0 c

-r::ave~shgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~.- ,." .•.. ,as = 2 '> -~ " P
sendo sucessivamente eliminadas aquelasexoge

pequeno poder explicativo com relação ã variável endõgenaNMLKJIHGFEDCBAy •

Procede-se de maneira análoga com relação aos problemas de dis-

~riminaçao. Aqui, vamos nos restringir a processos passo a passo do ti-

ascendente. Dessa forma, procura-se congtru~r subconjuntos de var~a-

"eis garantindo a melhor discriminação possível, onde em cada etapa se

:rrescenta uma variável suplementar ao subconjunto retido no passo ante-

r~or. Assim, o objeto deste capItulo será estudar os diferentes crite -

r~os para a escolha da nova variável. Note-se que em cada passo nao se

-olocará em causa o subconjunto considerado no passo anterior.

A vantagem do metodo passo a passo ascendente descrito ac~ma

':"plo, pois permite:

i) diminuição do "custo operacional", que se liga ao volume de

cálculos a serem realizados.

íi) melhoria da confiabilidade do metodo.

No que concerne ao~"custo ope rac i.ona l-'L, -podemos no sLr efer i r.-tan

~o ao tempo necessário para efetuar esses cálculos como,dé maneira equi-

va lente, ao custo financeiro correspondente. Com efeito, em Anál ise Di~

criminante, os cálculos envolvidos são em geral impraticáveis sem a aju-

~a do computador; ora, quanto maior o volume de cálculos, maior será o

=empo de processamento e o preço a ser pago pelo usuar~o.

Suponhamos que se escolha, ao azar,HGFEDCBAq variáveis; vamos chamar

':e"unidade de operação" a o conjunto de cálculos a realizar quando se de-

e j a testar" a discriminação proporcionada pela escolha de tais

~lave~s. No processo passo a passo em pauta, onde nao se coloca em cau-

sa o subconjunto de variáveis previamente escolhidas, teremos a seguinte

~uantidade de "unidades de operação" em cada passo,a saber:

67

-e

va-
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unidades de operaçaohgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1:::.

29 pzss unidades de operação 2

q+e s imo passo --+ PONMLKJIHGFEDCBAp-q+1 unidades de operação q

p-esimo passo --+ 1 unidade de operaçao

~onde o total de unidades de operaçao sera:

4.2.1) p(p+1)/2N
1

Pelo contrario, se em cada passo tivessemos de por em causa a

escolha anterior, o número total de unidades de operação seria drasSica-

~nte aumentado, com:

4.2.2)

p

I (
q=lHGFEDCBA

2
P

- 1
p )

q
N

2

2

A seguinte tabela mostra a diferença entre os valores de N
1

e

nas duas alternativas, conforme o valor de p-(número de variaveis con

sideradas). ---

p N
1

N.. 2

15 3l5NMLKJIHGFEDCBA

1 0 55 1 . 0 2 3

2 0 2 1 0 1 0 4 8 . 5 7 5

Evidentemente, podemos atingir urna etapa a partir da qual as va

~iaveis a serem sucessivamente acrescentadas pouco contribuem para a me-

:'horia da discriminação entre as classes. Dai, a necessidade de se dispor
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e critérios ;;:rara.yxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc rz er; e-hgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA°zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAse deve parar. ~ote-se que ° fa-e

~o de nos
.- .HGFEDCBA

q var1ave1S sao reti-?onto em que apenas

dasPONMLKJIHGFEDCBA(q < p), tambem contribue para a diminuição do "custo operacional".

Por fim, quanto ã confiabilidade do metodo, reside exatamenteno

rato de se poder escolher um conjunto de variaveis que nos proporcione

a discriminação aceitavel.

Com relação aos possíveis criterios de discriminação, conside-

=am-se os seguintes, dentre outros:

i) criterio da "porcentagem de bem classificados".

ii) critério do "traço da matriz T-1:8".

iii) criterio do "A de Wilks"

iv) criterio da "maximização das diferenças entre as medias

condicionais para as diferentes classes".

No presente capítulo, estudaremos com detalhes os criterios (i)

e (ii); quanto aos demais, não serão considerados em profundidade. De

ma parte, eles constituem-testes classicos baseados na-hipótese de mul- -

inormalidade, donde sua aplicabilidade se torna mais restrita dentro do

ponto de vista da moderna Analise de Dados Multidimensionais. Por outro

lado, seu estudo exige forte embasamento de Estatística Matemátic~ o que

foge aos propósitos do nosso trabalho, mais dirigido para aspectos de Ál

gebra Linear e de Topologia Metrica.

4.3 PORCENTAGEM DE BEM CLASSIFICADOS (PRIHEIRO CRITrnIO)

(4.3.1) INTRODUÇÃO E DEFINIÇÃO

O criterio baseado em porcentagens de ítens bem classificados e

intuitivo, apresentando-se nitidamente ao espírito, quando se queira av~

liar a validade de um metodo de discriminação. Tal cr i t er í.o e de carater

•
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e;::ge::ai, a às varias técnicas de discrimina

çao estucaàos 5hgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAca p i c os precedentes.

Como foi visto, essas diversas técnicas, em última instância, a

se obter uma partiçio do RP emPONMLKJIHGFEDCBAk regi~es ~l,RZ' ...,R
k
, as quais sao su

postas corresponder aproximadamente às k classes C
1
,C

Z
" ",C

k
já defini

cas "a
. • Ii

pr~or~ .

No caso do Capítulo 1, onde se descreve a tecnica introduzida

por Sebestyen, decide-se ~fetar cada indivíduo à classe com relação -
a

qual o mesmo for mais prcx i.mo (sem olhar para o fato de pertencer ou não,

"a priori", à referida classe). Obtem-se dessa maneira, uma partição do

P, nas k regi~es Rl,RZ'" .,R
k

; donde:

- '

(4.3.1.1) R
r

{x 'IT(x, C ) < 'IT(x
r

C.) }
JHGFEDCBA

r ~ J = 1 ~ 2 ~ . . .NMLKJIHGFEDCBA~ k .

Observe-se, sem dúvida que existe ambiguidade quanto à classifi

caçao dos pontos fronteiras, ou seja, os pontos tais que 'IT(x,C) ='IT(x,C.);
r J

porem essa event ua l í dade não possue nenhuma chance de ocorrer, na pratica.--, ~'•.~.

Sendo esse particionamento efetuado a partir das amostras dis-

poníveis, para as diversas classes, e natural que se pergunte sobreapos
, -

sibilidade de alguns elementos ou ítens serem afetados a classesàs quais

de fato nao pertençam.

A seguir, apresentamos um exemplo bastante simples, a título

de esclarecimento.

(4.3.1.2) EXEMPLO

Por hipótese, dispomos de um total de 56 (cinqüenta e seis) ~n-

indivíduos, os quais são, "a priori", supostos pertencer a classes C
I

'



7

__ e
íezohgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi t o)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAindivíduos encontram-se na classe C]'PONMLKJIHGFEDCBA

i6 (dezese:ts) na classe e 22 (vinte e dois) na classe CIIr. (N a

figura que aco~panha este exemplo, esses indivíduos são representados p~

os algarísmos 1~ 2 e 3, respectivamente).

Suponhamos, alem disso, que o metodo de discriminação permitiú

articionar o espaço em três regiões (ou subconjuntos) RI'NMLKJIHGFEDCBAR
I I

e RrII.

(tambem representados na figura). Ora, se um dado indivíduo e classifi-

cado na regiao Ra de mesmo índice da classe C
s

ã qual pertence liapriori"

rneste caso a = S), então esse elemento está bem classificado; caso co~

rrar i.o (isto e, aHGFEDCBAt = S) então o indivíduo terá sido) liapo steriori", clas

sificado erroneamente.

RI
0) 0 eu CD " n

CD ( j ) @@
CLASSE I : 1 I

G ) 0 0 0 0 0 0 0 2 ®
ICLASSE II: 2 o 0 -@ 0 ' - .-

CLASSE lIl: 3- _ I.~ - G ) G ) 0) (2) 0 ( j ) r J j -_®~Q~' -

G ) 0 0 ( jS 0 - ®

0
0 @ G ) ® @

0°0 0 0®
0 0

0 0 0) 0 0

" i u 0

A partir do exame dessa figura, nao é difícil construir a se-

guinte tabela:



(4.3.1.3zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADE A-~STRA INICIAL

GRUPO DE PERTINÊNCIAhgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f I , II j III
o

I~

I I IC> I 14 O 2
~
u

~ H

P ~ Irl 4 I 16 I 8
H

O U )

P -< U )

:::> ~ III O O 12p:: ~
o u

77,8 100,0 54,5 I z de"bem classificados

em cada classe

Na tabela (4.3.1.3) observamos. que a classe 11 e a mais homogê-

nea, porque é encontrada uma porcentagem de bem classificados deHGFEDCBA1 0 e - ~ 0 % ,

ao passo que a classe 111 e a mais heterogênea, com uma porcentagem de

apenas 54~ 5% .

A porcentagem global de bem classificados e a razao da soma dos

elementos diagonais da tabela pela soma- total dos indivíduos, isto é,
\

42
5 6 = 7 5 ~ 0 %

(4 .3 .2 ) COMPORTAMENTO DE U M A AMOSTRA-TESTE

A tabela anterior apresenta certo interesse, no sentido de mos-

trar como os diversos elementos puderam ser separados atraves do meto do

de discriminação utilizado e, alem disso, indicando os porcentuais dos

erros cometidos, com relação ã classificação disponível "a priori". Con

tudo, ela nada nos diz sobre a forma como v~rao a se comportar novos ~n-

divíduos frente ao nosso metodo de discriminação, ou seja, se os porcen-

tuais de erro se manterao estáveis.

Assim, suponhamos que o número de indivíduos em cada classe C Jr..

seja suficientemente grande, de sorte que possamos separar ao acaso a

-?PONMLKJIHGFEDCBA
1-
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classe
II , "

ePONMLKJIHGFEDCBACNMLKJIHGFEDCBA
k

; evidentemente, C e C consti-hgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L 'L ~ Jt Jt

ses

~ue ar::1çaoc.ico::ô;r;icade CJt (r = 1~ 2~ ••• ~ k).

I I I

podemos utilizar a amostra {C1,CZ' ...,C
k
}

uma

essas circunstâncias,

como aquela de que nos servimos para a determinação das regiões de dis-

criminaçao Rl,RZ'" .,R
k
; esta,yxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAé chamada de Amostra-de-Base (ou inici-

"" " -Enquanto a segunda amostra, {C1,CZ" ..,C
k
} servira de Amostra-Tes~

te, a partir da qual se constroi nova tabela de classificação.

a l ) .

A tabela de classificação da amostra-teste e aquela de que nos

s erv i.r emo s para a estimação das "probabilidades a posteriori" de perti-

nência a cada uma das classes CJt (r = 1 ~ 2 ~ . • • ~k). A vantagem e que os

indivíduos da "amostra-teste" não estão comprometidos na determinação das

regiões de discriminação RJt (r = 1~2~ ••• ~k)

Assim, suponhamos que além da amostra-de-base (ou amostra-Ínici

aI) constituída de 56 indivíduos, dispomos ainda de uma amostra-tesre com

28 indivíduos. Alem disso, supomos que os efetivos das classes nesta

amostra são proporcionais aos efetivos das classes respectivas na amos-

tra inicial, ou seja, às probabilidades "a pr i.ori l'Ld e pertinência às elas

ses distintas.

(4.3.2.1) TABELA DE CLASSIFICAÇÃO DA AMOSTRA-TESTE

CLASSE DE PERTINÊNCIA PROBABILIDADES A POSTERIORI

o
1<
c>
<

~ u
Q H

~
~ H
(I) (I)

(I) (I)

< <
H H
u u

I II I III

I 6 1 -2

11 2 7 4

111 1 ° 5

I II 111

6/9 1/9 2/9
I

0,666 0,111...0,222..

2/13 7/13 4/l3

11
0,154 0,539 0,308

1/6 0/6 5/6
111

0,166_. 0,000 0,833 ...

(a) (b)
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_ ê ~zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~a~ela (!.3.2.l)(a) incorpora as frequências abso

'utas enquanto na ~abela (4.3.2.l)(b) comparecem as frequências relati-

"as, as quais funcionam como estimativas das probabilidades de erro e

acerto, "a posteriori".

Para melhor compreensão sobre a forma de construir a tabela do

:ado direito a partir da tabela do lado esquerdo, consideremos a primei-

ra linha de ambas. Do total de 9 indivíduos que foram classificados na

classe CI (por terem caídos na região RI de classificação), apenas 6 fo-

ram classificados corretamente, isto e, de fato pertencem à classe C
I

'

donde a probabilidade "a posteriori" de classificação correta e 2/3 -NMLKJIHGFEDCBA

o ~ 666... 1 (hum) indivíduo foi classificado erro-Por outro lado

---
nesseneamente na classe C

I
, quando de fato ele pertence à classe C

I I
;

caso, a probabilidade "a posteriori" e estimada como sendo 1/9 := o ~ 111...•

Finalmente 2 indivíduos foram classificados erroneamente na classePONMLKJIHGFEDCBAC
I
,

quando de fato esta na classe C
I I I

; donde a probabilidade "a posteriori" --

estimada e 2/9:= O~222 ... Procede-se analogamente para obter os va-

lores nas demais linhas da tabela (b ) do lado -direito~-·- -

Resta nos convencermos de que as frequências relativas que eom~ _ THGFEDCBAr -

parecem na tabela são, de- fato, estimativas ade quad as das "probàbilidades

a posteriori". Para isso consideremos o teorema seguinte:

4.3.3 TEOREMA

Se
í -

n . . sao os elementos da tabela (4.3.l.3)(a)
~ J

( n . . z : nú
~ J -

mero de indivíduos da classe j classificados em i), e se os n .
•J

(totais das colunas respectivas) são proporcionais às probabili

dades a prior i de pertinências às classes, então n . . / n . desig
~JT t . , -

na a probabilidade "a posteriori" de um dado indivíduo de fato

pertencer ã classe j, sabendo que foi classificado na classe i.
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E preciso indicar com clareza as notaçoes de sorte a eviden

c~ar que o problema constitui um caso particular do Teorema de Bayes.

(onsideremos:PONMLKJIHGFEDCBA

n .= NMLKJIHGFEDCBAL n .. = somat.ori o dos termos da colunayxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ
.J i 1,J

n. = L n ..= somatõrio dos termos da linha ~
1,. . 1,J

J

Evidentemente:

n HGFEDCBA L
\ ' n .
L 1 , . ,/

L n .
. . J

J

n . .
1,J

i~,J

Supomos existirem k classes, donde 1,~J 1 ~ 2 ~ . • . ~ k sendo as-

s~m, distinguiremos dois tipos de acontecimentos:

A.
J

{pertencer ã classe j} ; j = 1~2~ ... ~ k

B. = {ser classificado na classe i}; 1 ,
1,

1 ~ 2 ~ . . : ~ k

Nestas condições, a probabilidade a posteriori de um elemento

pertencer a classe j, sabendo que i e a classe onde foi classificado,

e dado por:

PiJ'= probCA./B.) .
J 1 ,

Mas o Teor~nc de Bayes nos garante que:

Prob CAj./B .) = P r o b ( Bj/ A i ) . P r o b CA.)
~ J

I Prob{B./A.). ProbCA.)
. 1, J J

J

ademais, sabemos que:



,
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/ r. ..;

rzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=ro lado, a hipótese de que os efetivos das classes da

amostra-teste sao proporcionais as probabilidades a priori de pertinên -

cia a estas classes, se formula como:NMLKJIHGFEDCBA

P r o b (A.)HGFEDCBA
J

n . / n PONMLKJIHGFEDCBA
.J

Donde se conclui que:

Prob (A. / B.)
J 7-

n . . / n .
7 - J 7-.

~

Este resultado nos permite afirmar, por exemplo; que um indiví-

duo classificado na classe C
I

tem 66,6 chances sobre 100 de pertencer

a esta classe; que um indivíduo classificado na classe C
I I

não tem mais

que 53,9 sobre-lOO de pertencer a ela ao passo que um indivíduo classific~

do na classe C
IrI

tem uma possibilidade ainda maior de pertencer de fato a

esta classe.
No que se segue, indicam-se os problemas que aparecem no que- co.::.

cerne ã utilização do critério da "porcentagem de bem classificados", p~

ra realizar a discriminação passo a passo, no caso dos metodo~ estudados

no Capítulo 1 (abordagem de Sebestyen, caso particular e caso geral).

4.3.4 PROCEDIMENTOS PASSO A PASSO PARA OS MÉTODOS DE SEBESTYEN

(a) Caso Particular (Matriz Diagonal)

Para aplicar o metodo de Sebestyen, no caso particular em que a

matriz e diagonal (conforme Capítulo 1; fórmulas (1.5.5.3) e (1.5.5.4)),

tem-se expressoes semelhantes (substituindo p por q ,onde q -e a or-

dem do passo que está sendo considerado). Assim a expressão (1.5.5.3)

se escreve:

------------------ ........••••••
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(4.3.,+.1.)yxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-(a, C )
q. 2 l/q[ qhgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa .-x . 2

( rHGFEDCBAa . ) L (J J)

J
.-1 J . 1 a .
- J= J

+ ~

Para o cálculo das porcentagens de bem classificados no passo

( q + 1), pode-se proceder de duas maneiras:

i) calcular diretamente as novas distâncias no l R q
+

1 .,

ii) conservar na memória do computador todas as informações uti

lizadas no cálculo das distâncias obtidas no passo anterior

para auxiliar no cálculo das novas distâncias~

Os programas de computador desenvolvidos por ROMEDER utilizam a

segunda forma em 53 passos para um dado problema num teste utilizado no

Centro de Cálculo e de Estatística das Faculdades de Medicina de Paris ,

aquele pesquizador necessitou de 3 minutos e-13 segundos de -tempo de CPU,

contra 30 minutos utilizando a primeira forma de proceder.

(b) CASO GERAL

Consideremos, em seguida, os problemas-que surgem ligados -ªos

--
cálculos através das seguintes expressões (1.5.4.3) e (1.5.4.4) do capí-

tulo 1 quando se aplica um procedimento passo a passo. No passo de or-

dem q, a expressão (1.5.4.3) torna-se:

(4.3.4.2) " 1/q r - ,,,-1 - ]
trC a, C.) =(detL) L q + (a -x ) L (a + x )

q q

- - q p
onde (a-x) designa o veto r projeçao no I R do vetor de mesmo nome n o R .

,,-IPONMLKJIHGFEDCBA
LI' contudo,

q+

ela pode ser calculada a partir da matriz inversa obtida no passo ante-

No passo ( q + 1), e necessário calcular a matriz

r i.o r , Da mesma maneira, o determinante det Lq~l se calcula a partir do

detebIDÍnante det L no passo anterjor. Para isso, utiliza-se o teorema
q

seguinte:



i)

ii)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

iii)

4.3.5

7

Seja A uma matriz quadrada, inversivel de ordem p, que

se completa por um vetar coluna ~ , um vetar linha v e um es-

calar a de tal sorte que tenhamos uma matriz de ordemHGFEDCBAp hgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1.

Consideremos
z = (: :} designa a 1nversa da ma

x\NMLKJIHGFEDCBA

a JcSe

triz Z; entao:

1

a = -1

a - vA u
iv) c = A -1 ~ + u vA -

1
)

p -1
a - vA u

-1
- A l4

x z : -1

a - vA u

y
- vA-l

v)det (: :)
-1

det A (a - vA u)-1
a - vA u

Demonstração

(
C x) _ (A

Como y a e inversa de v
u\
a)'

entao:

C :)(: :) z : (:r :} donde:

CA + xv = I

Cu + xa = O

yA + av = O

1yu + a a logo

{

yA + av

yu + aa

= = = 9 { yA A -

1

yu

-1
+ avAO

O

= = = 9

1 + aa 1
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...~ ~ -~ -yxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a a - 1-

-1
-yu - a vA u = O

~{ =s=s-

yu + a a = 1

1
a = ------"";"1 -

a-a vA u

- vA-1

, donde y
-1

a - vA u

Por outro lado

r:':Cu + xa = O

-1 -1

{

CAA + xvA

Cu + x a = O

~

- A -1

=s=s-

-1 -1
-1{eu - xvA uNMLKJIHGFEDCBAz : A u

- A u
= = = 9 X =

-1
Cu + x a = O a - vA u

C = A-10p +

-1

)donde
u v A

-1
.

a - vA u

Para mostrar a última igualdade, basta considerar:

(::A -1 :) c-- :) z : ( :

u )
-1

-vA u+a

portanto,

det [::-1 :) C :1- -1
det A (-vA u + a)

d e t (: :) -1
- det A (-vA u + a ) .
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::ê. ::..nve-r-sada matriz 1: obtida no passo anteri-hgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q

os anteriores também devem ser conservados, de forma a

permitir que nao se seja obrigado a recalcular totalmente as formas qua-

draticas definidas pela expressão (4.3.4.2), as quais são necessar~ascom

relação a cada indivíduo, relativamente a cada classe para fim da obten-

ção das porcentagens de bem classificados.

4.4 TRAÇO DA MATRIZ T-
1
B (Segundo Critério)

Este critério, contrário ao anterior, não necessita da defini-"

çao de um processo de classificação. Iremos utilizar para justificar os

resultados do Capítulo 2 , e em particular a interpretação geométrica do

conteúdo do parágrafo (2.9).

vimos que a métrica definida por
-1

T ,onde T é a matriz = de

covariância total se introduziria naturalmente. Com ~sso, procuraremos

verificar, em cada passo, qual é o conjunto de variaveis que maximiza a

a ~nerc~a da nuvem c , calculada com a métrica
r

-1 1 . -
T -s re ativamente a seu

centro de gravidade.

Precisamente, no passo q, procura-se qual o melhor subconjun-

to de q variaveis que maximiza:

(4.4.1)
k {PONMLKJIHGFEDCBAN r 1 r }
1: N

r
(g . - g ) 'T~ (g. - g )

r=l

onde T designa a matriz de ordemNMLKJIHGFEDCBAq , deduzida de T colocando zeros
q

nas colunas e linhas correspondente às variaveis diferentes das q var~a-

veis consideradas. Da mesma maneira, a matriz B é deduzida da matriz
q

de covariancia inter-classes; então (4.4.1) torna-se:



(4.4.1.2)
- ~ !'zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr 'r ]hgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 . B ).l~ IT ) -,-o (g - g ) (g - g)NMLKJIHGFEDCBAz : T r(T

_ ti. ~- :" q q

c~cC
01. r

r=l

Sendo assim, o critério passa a ser:

(4.4.2) "MAXIMIZAR Tr(T-lB)"
q q

Como exemplo, podemos ter o caso de duas classes C
7

e Cz' e v~

. _ . _ . 2 ..
remos que, o cr1.ter1.Oproposto e 1.gual aoPONMLKJIHGFEDCBAD de MAHALANOBIS, def1.n1.do

no Capítulo 2 , a menos de um fator.

Com efeito; na expressão (4.4.2) a matriz B se escreve como:

(4.4.3)

N N
. 1 1 1 ' 2 2 _2 'HGFEDCBA
N (g - g ) (g - g ) + ----w- (g - - g ) (g- - g ) ,

onde

N gl + N g2

g z : 1 2
N

N z : N + N
1 2

dessa forma, a expressao (4.4.3) transforma-se em:

(4.4.3.1)

N
1
N
2

N
2

(gl _ g2)(gl _ g2)'

e, se levarmos o valor obtido em (4.4.3.1) para (4.4.2) o critério tor-

na-se

(4.4.4) Tr (T-IB )
q q

_ N 1

N

2 (é _ g2)' T-1 (gl - rl-)
?

N

MAXIMIZAR

De fato:

MAX Tr (T-IB ) z : MAX-Tr [T-1 N 1 ; 2 (ff - i ) ( ~ - g2)'J
' q q q N . ,

{

N 1

N

2 r:. 1 'J }
z : MAX - N

2
T):t; (gl - i-) (~ - i , > ' .

qXl lXq
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- 1 2hgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI -1 1 2 .l }
}lC?_X\ -.- Tr l (g - g ) T (g - g .tJ

lXq qXlPONMLKJIHGFEDCBA

MAXf N~N2 (gl _ g2) T-1(gl - g2)\)
\ ~72 .

N
1
N
2

--

N
2

1 2 I -1 1 2
(g - g ) T (g - g )

- D2 .que e o de Mahalanob1s menos do fator N
1

N
2

/N

A quantidade determinada em (4.4.2) constitue uma generaliza

çao doHGFEDCBAD

2

de Mahalanobis e pode ser considerado como índice de separ~

çao entre várias classes no esp~ço ~p.

Para o metodo passo a passo, os cálculos serão simples: dispõe-

se inicialmente das matrizes T e Bambas de ordem p e no primeiro pas-

so, calcula-se para cada variável, a quantidade Tr(T~1Bl)' a qual se r~

duz ao quociente dos termos diagonais de B e T correspondendo a var1a-

vel considerada; no segundo passo, utiliza-se T
2

e B
2

relativas ã variá

vel anterior e a uma nova variável acrescentada, e calcula-se entao o

(
-1 ) . .

T ~ T
2

B
2

e aSS1m suceSS1vamente.

Observa-se que não dispomos de teste de parada natural, como no

caso do c ri.ter i.ode porcentagem de be.ns classificados. Com efeito; a

quantidade
-1

Tr(r B) poderá crescer na passagem do passo
q q

ao passoNMLKJIHGFEDCBAq

q + 1 sem que a discriminação seja melhorada.

Nota-se que, para o cálculo de
-1

T
q+l e

-1
T

q
B 1 em função de
q+

e B, aplica-se o teorema (4.3.5).
q

4.5 CRITÉRIO DO A DE WILKS

~

Este cr i t er í.o e baseado no valor da expressão A = detW / det T

(que e o chamado A de Wilks). No nosso caso, lembremos que W e T sao



3S ilia::r-ize_ -ra-classes e total, respectivamente. Tra-

ta-se de bas e estatística para detectar a existência de urna-eS::2

possível diferença significativa entre os vetores médios das diversas

classes. Se, de fato essa diferença for significativa, é urna indicação

da boa separação (ou discriminação) entre as classes; nesse caso, fi.yxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe

pequeno. Por outro lado, se a diferença revelar-se nao significativa,

uma indicação de má discriminação, quando fi. é grande.

Tratando-se do procedimento passo a passo, considera-se em cada

etapaPONMLKJIHGFEDCBA(q+l), o conjunto de (q+l) variáveis que minimizamNMLKJIHGFEDCBAf l .

q
+
1
= detWhgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

q
+
1

/

! det T 1"'onde W 1 e T 1 são as matrizes correspondentes às q+l va-
q+ q+ q+

riáveis consideradas. Observe-se que nesse passo de ordem (q+l) sao re-

tidas as q variáveis relacionadas no passo anterior, de ordem q, de sor-

te que na verdade se trata de selecionar uma nova variável.

Não entraremos em detalhes nas bases estatísticas do teste em cau

sa, conforme foi mencionado anteriormente. Contudo é fácil estabelecer

uma relação entre este novo critério e o anterior (do traço da matriz

T-1B). - -

Para tal fim, sabemos que, o critériD-anterior- e - max~m~zar

Tr(T-I B ), enquanto o novo critério baseia-se em fI.=detW/detT.
q q

Para

que se possa estabelecer urna relação entre eles, mostraremos pr~me~rame~

te que:

(4.5.1) fi.
q

q

II S.
i=l ~

onde S. ê valor próprio de T-
1
W. Com efeito,

~ q q

det W
-1

q
fi. -

q
det (T W) - II Si- -

q
det T

q q
i=l

q

Portanto, e natural reter no passo o conjun to de
. - .

q var~ave~s

-e



queyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcn.mrzaza ssim, o critério torna-se:hgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- -

q

q

MINIMIZAR JI S.
.11
1=

Por outro lado, o critério anterior é

MAXIMIZAR Tr(T-1 B ) ,
q q

onde:

-1
Tr (T B)NMLKJIHGFEDCBAz :

q q

q

I À.
i=l 1

-. -1 -1sendo os À. os valores proprl0s de T B
1 q q

De fato, tem-se a relação:

À. z : 1 - S.
1 1

Com efeito, se u. designa o vetar de T-
1

W relativamente
1 q q

S., entao
1

-1
T W u. z : S. u .

q q 1 1 1

porem (Cap. 2), B = T
q q

w
q

donde:

T-
1

B u. = T-1(T
q q 1 q q

- W )u.
q 1

- (T-l T
q q

-1
T W )u.

q q 1

- (1 - S.)u. = À.u.
1 1 1 1

Des sa forma: a
-1 -

Tr(T B) = I À.q q i=l 1

1 q
Tr(T- B) = q - I s.

q q i=l 1

torna-se:

- '

a
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e o c r i.t e r i
-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T r(T B) ,corresponde a:
q q

5:!.s:e e- êXlilllzar

q

MINIMIZARHGFEDCBAL B .
i=l 1

Portanto, observa-se que os dois critérios sao semelhantes; um

mlnlmlza a sorna e o outro minimiza o produto dos À.
1

4.6 CRITERIO DA MAXIMIZAÇÃO DAS DIFERENÇAS ENTRE AS m:DIAS

CONDICIONAIS PARA AS DIFERENTES CLASSES

Este critério também possui uma forte fundamentação em termos

estatístico s, .donde não nos deteremos sobre a maneira de proceder,
.-/

que

foge a nossos objetivos. Na verdade, ele consiste num "teste F" exato,

clássico em Estatística Matemática.

Apenas, adiantamos que oferece uma vantagem,: que 'é o de detec -

tar quanto à introdução uma ·de( q + 1)-esima variável no pas so ( q + 1), com re-

L a ç ao as q variáveis já selecionãdas ate 0_ passo--élnterior::-de_~oT.deill.q,- se--~_--~

de fato melhora significativamente a discriminação.
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~esLe canítulo estudaremos um teste multidimensional nao-param~

trico, utilizável para avaliar o poder discriminante de um hiperplano s~

parando duas classes. Como se trata de um teste não-paramétrico, ele não

deve depender de qualquer hipótese a respeito das distribuições de prob~

bilidades envolvidas, ou seja, aquelas que eventualmente descrevam o com

portamento das variáveis relacionadas às duas classes. Assim, tem-se a

vantagem de nos co locarmos num plano de hipóteses menos rígidas que a dos

testes baseados sobre a hipótese de normalidade (que são os testes para-

métricos).

o teste a que nos referimos foi introduzido por ROMEDER, com ba

se em trabalhos de COVER (1950) e BENZE CRI (1969). Recalculamos as tabe

Ias ori?inariamente apresentadas por ROMEDER, cuja finalidade é a segu~~

te: determinar em função d~ número p de váriáveis, o tamanho mínimo N

do número total de indivíduos, para se ter garantia de alcançar uma dis-

crzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAum.naç ao signif-icat-~va,-e~v~~yeTsa, dado N s . determinar-o p-- maxa+

IDO.

Note-se que a questao básica aí envolvida, sendo fornecidos N

pontos repartidos em duas classes de efetivosIHGFEDCBAN
1

e N
2

(tais que N

= N
1

+ N
2
), no espaço mP, consiste em encontrar um hiperplano separando

totalmente as duas classes e estimar a probabilidade da existênQia de um

tal ente geométrico.

Para esse fim, são necessários alguns resultados prev~os, os

qua~s são indicados sem exaustivos detalhes, porém precedido das defini-

ções indispensáveis e de alguns exemplos esclarecedores.

5.2 UM TEOREMA DE ANÁLISE COMBINAT6RIA LINEAR

Começamos revendo o conceito básico de hiperplano (ou variedade

afim de dimensão p-1).



(5.2.1) DEFINIÇÃOzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8

Num espaço linear EkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= RP , um hiperplano e uma variedade afimIHGFEDCBA

H de dimensão p-l (portanto de dimensão imediatamente inferior ã do es-

paço). Ou seja, existe um subespaço S de dimensão p-l, tal queH=S+u.,

onde u e um vetar constante.

(5.2.1.1) EXEMPLO:

E z: 1R
2

(5.2.1.2) EXEMPLO

E z: ]<3

s~ {O}

H z: S + u:) {u}

§~ {O}A

H z: S +- Ú -=> {li}
-',

Lembremos que H = S + u interpreta-se como:

H = S + U = {x + U ; x E S} -

-{y y - u E S} . ---



êzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfacil ver que H = S + U = S + v, se e so sekjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v - u

esta emIHGFEDCBAH. Dado um conjunto A nao-vaZlO no espaço, da mesma manelra

corno faz sentido referir ao subespaço < A > gerado por A, tambem se p~

de considerar a variedade afim «A» gerada por A, como sendo a "me-

nor variedade afim" contendo tal conjunto. (Vide Dieudomé).

Uma questão relevante diz respeito ao número de regioes delimi-

tadas por q hiperplanos. De fato, esse número e sempre inferior 'I ou

igual a 2A
q

; podendo ser estritamente inferior ã última quantidade se a

dimensão p do espaço for inferior a q. Por exemplo, uma reta deter-

. 2
1

2 .- 1 . 22 4 .ffilna = regloes no p ano; duas retas determlnam = regl0es; p~

rem três retas não-concorrentes determinam 7 regiões (7 < 8 = 23), en-

quanto quatro retas igualmente não-concorrentes três a três, deter~inam

.- 4
11 regloes (11 < 16 = 2 ).

(5.2.2) EXEMPLO

Número de regioes n(q) determinadas,no plano, por q retas

não-concorrentes três a três (q 3 e q 4) -. >

a)

7

7n (3)

o

b)

10

o

11n (4)

9
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~ao, é equivalente a uma outra, que se refere às diferen

tes maneiras de se conseguir separar q+l pontos no espaço em duas clas

ses (uma delas eventualmente vazia), por intermédio de um hiperplano. A~

srm , dadoskjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 z: 3 + 1 pontos situados no plano, não alinhado três a três,

há 7 maneiras distintas de separá-los em duas classes, por intermedio de

uma reta (sendo irrelevante qual a reta utilizada em cada possível cor-

te); analogamente, para 5 = 4 + 1 pontos em idênticas condições, o -nu-
mero de distintas maneiras de fazê-lo é igual a 11. Aqui, são reproduzi

dos os resultados (7 e 11) já encontrados anteriormente que se relaciona

vam ao número de regiões determinados no plano por três ou quatro retas,

respectivamente não concorrentes três a três.

Assim, no exemplo (5.2.2) e no exemplo (5.2.3) a seguir, tem-se

situações de todo equivalentes, em termos combinatõrios.

(5.2.3) EXEMPLO

Distintas maneiras de separar em duas -clas ses , por-meio '-Cleuma= ~---

reta, um conjunto de q+l pontos no plano, não colineares três

'a três (casos q = 3 é q = 4).

a) 3, isto é q+I 74 , donde n(3)q

x
x

x

o· ::>

x

!x 1<

01 ~ ~

ir.'>f.
)(

o, >o· 7



X<'

b ) qzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, isto e q+l 5 donde n(4) 11

l' _

x
x

x
xzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x-

/x x x xA.> .
x

x

~

-7

x- x
x

x
x

x
x

x

\ x I
x

x r----. x -I x

x I x 'x I x \ x

;~x
f

x
I

x
\

7

De fato, as coincidências observadas nos exemplos(5.2.2) e (5.2.3)

nao sao meramente casuais, pois se enquadram num resultado geral de Aná-

lise Combinatoria Linear (válido para qualquer dimensão finita p ~ 1) ;



ao que ecezyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ã explorado por SCHLAFFLI (1950), porem desenvolvido com

algum detalhe na memória de COVER (1965) e no trabalho de BENZECRI(1969).

No que se segue, tomamos de emprestimo a BENZECRI (op. cit.), os

aspectos que a esse respeito nos interessam de forma direta. Começamos

pela introdução do conceito de "situação geral afim" para o caso de um

conjunto finito de pontos no R
P

.

(5.2.4) DEFINIÇÃO

Seja A um conjunto deIHGFEDCBAN pontos, no mkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP• Diz-se que A está em

situação geral afim, nesse espaço, se todo subconjunto B de A, com M po~

tos (M < N)~ gerar uma variedade afim de dimensão igual a inf(p ~ M~-l).

(5.2.4.1) EXEMPLO~

No ~3, todo subconjunto B , com três pontos, de um conjunto A

em situação geral afim, gera uma variedade af~m-àe~imensãe=~nf{3~~~1~72~ ~~

isto é, um plano, jamais uma reta.

(5.2.5) DEFINIÇÃO

o subconjunto B ~A é uma parte afinamente separável de A no

mP, se existir no mP um hiperplano separando totalmente B de A - B .

No seguinte resultado (apresentado sem demonstrar) fica deter-

minado o número de partes afinamente separáveis de um conjunto em situa-

ção geral afim no mP.

(5.2.6) TEOREMA

Seja A um conjunto deAN pontos em situação geral afim no



das partes B de A , afinamente separáveiszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe dado

por:kjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

<p (N , P + 1) ,

onde:

(5.2.6.1)IHGFEDCBA <P(N , p)

N-l

2A L ( )
02..k<p k

Note-se que, sendo p = 2 (pontos situados no plano) e q = 3

(donde N = q + 1 = 4), tem-se:

2n(3)

2 3

<P(4,3) = 2 L ( ) = 14
x=o x

~

e, portanto n(3) analogamente se q = 4 (donde N = 5), segue-se:7

zn (4)

2 4

<P(5,3) = 2 L ( ) = 22

x=o x

isto e, n(4) = 11. Assim, são reproduzidos os resultados referentes ao

exemplo (5.2.3).

A expressao (5.2.6.1) oferece certas dificuldades do ponto de

vista de sua utilização para fins computacionais, uma vez que o cálculo

dos numeras combinatõrios ( Y ) = Y~/ [~!(y-x):J pode rapidamente envol
x -

ver valores (fatoriais) que exaurem de muito a capacidade de armazename~

to de inteiros, mesmo num computador de grande porte. Assim, o lema se-

guinte nos propicia uma fórmula recorrente de cãlculo;-permitindo obter

os <P(N + l,p) em função dos <P(N,p) e ~(N,p-l).

(5.2.7) LEM A:

<P(N+l,p) = <P(N,p) + <P(N,p-l)

3



9"zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"ao c s o a aC1ma, p01S tal nos desviaria consideravelmen-

te dos nossos objetivos; deve-se menC10nar, nao obstante, que as linhas

gera1s para sua prova encontram-se bem delineadas em BENZECRI, op. cito

Contudo, mostraremos a equivalência entre as expressões (5.2.6) e (5.2.7).

Que (5.2.6) implica (5.2.7), nao oferece dificuldades, pois se

trata de aplicação corriqueira de conhecida identidade.

Quanto à implicação de (5.2.7) em (5.2.6), oferece ma1S reS1S _

tência para sua prova, o que exige a formulação de dois lemas prelimina-

res (para os quais, apresentam-se esboços de suas demonstrações).

(5.2.8) LEMA:

Seja ~) uma função de duas variáveis inteiras, N e p, d~

finida para NkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> N > O e p inteiro qualquer.
- o Alem disso, sup~

nhamos que I satisfaz ã equação do lema (5.2.7), isto e

j(N+l,p) I(N,.p) + I(N,p-l) ..

Então, quaisquer que sejam N > N e
- o

p E 1. , r coincide com a

função ~ , dada por :

(5.2.8.1) ~(N,p)= I
p E Z

o

N-N

~) (N o ' Po) ( o )

P-Po

Demonstração

Inicialmente, não será difícil concluir que ~ satisfaz à equa -

çao do lema (5.2.7), isto e,

~(N+l,p) = ~(N,p) + ~(N,p-l) .

Para esse fim, deve-se observar que (5.2.8.1) e somâvel po 1S cada numero



combinatõrio (p_po)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe suposto não-nulo somente para
o

o < p-p < N-N .
- o - o

De fato~ 1/J ekjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr coincidem para e P EA7L ~ EntãoN = N
o

indução finita~ segue-se a coincidência para N = N +l~ N
o

N+2~ ...~e
o

P E Z.

(5.2.9) LEMA

A aplicação ~ (do teorema (5.2.6) e lema (5.2.7»~ satis-

faz ã equação:

n-i

(5.2.9.1) I ~(l,p)(
E 7L o

po P-Po

~(N~p) - )

Demonstração

Trata-se da decorrência imediata de (5.2.7) e (5.2.8)~ com ~ em

lugar de r na equação (5.2.8·n e t om ando No = 1 .--

Para a demonstração de (5.2.7) -

Para a demonstração de (5.2.7) ~ (5.2.6), consideremos a ex-

pressão, obtida de (5.2.9.1):

~(N,p) -
'i' N-l
L ~(l,p) ( )

kE7L o k

De uma parte, devemos ter O ~ k ~ N-l ; ademais, nao pode ocor

rer k = p-p > p-l, pois nesse caso teríamos p < 1, situação em que
o o

a expressao ~(l,p) fica destituída de sentido (portanto, sendo conside
o

rada nula).

95

por



-kjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-~ .-zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:~-se (5.2.6.1); se p > , a soma dos ín-- <:::

dices seA25~Eü~E a:e ~- e o valor da expressão fica igual a 2 .

A tabela abaixo nos fornece os valores de ~(N,p) calculadosatr~

ves da fórmula de recorrência do lema (5.2.7) pelo computador DEC-lO da

U.F.C.

(5.2.10) TABELA DOS VALORES DE ~(N ,p)

N
rI,

2 22

101
.-r

2 20 92 270 512 764 932 1004 1022 1024

2 18 74 186 326 438 494 510 512 512

2 16 58 128 198 240 254 256 256 256

2 14 44 84 114 126 128 128 128 128

2 12 32 _-52 62 64 64 64 64 64

51 2 10 22 30 32 32 32 32 32 32

2 8 14 16 16__ 16 16_ 16 L6 ló

2 6 8 8 8 8 8 - 8 8 8

2 4 4 4 4. 4 4 . 4 4 4

11 2 2 :2 2 2- 2 2 2- 2 2

1 2 3 4 5 6 7 8 9 10

P

5.3 O TESTE DE SEPARABILIDADE

Nesta secçao, passamos ao estudo propriamente dito do teste mul

tidimensional não-parametrico para o poder discriminante de um hiperpla-

no, ou teste de separabilidade, nos termos anunciados na Introdução.

Agora, já dispomos de elementos para testar (não-parametricame~

te) a hipótese de que duas classes se distribuem de forma idênticas, ou

não, no R
P

; para esse fim, deve-se definir o que significa uma "dicoto-

mia aleatória".



(5.3.1)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Considere-se a extraçao de N pontos no ~p segundo uma certa

lei de probabilidade (sob a condição de que uns pontos se encontre~ em

situação geral afim, com probabilidade 1).zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"Por dicotomia aleatória entenden-se a distribuição' de cada um

desses pontos a uma ou outra dentre duas c-lasses consideradas de maneira

independente e equiprovavel.

5.4 TEOREMA

A probabilidade de uma dicotomia aleatória de NkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-"

pontos

no ~p ser afinamente separável e dada por:

(5.4.1)
1 N

(-2-) <p (N,p+1)Prob(N,p)

Demonstração

Sabemos que o numero de partesIHGFEDCBAB afinamente separáveis de A no

RP, e igual a <jl(N,p+l),representando o número de casos favoráveis.

outro lado, sabemos que 2
N e o número de maneiras distintas segundo

Por

quais podemos particionar um conjunto de N elementos em duas partes, re-

-presentando o número de casos possiveis. Dessa forma, sendo a probabili

dade de separabilidade, dada por:

Prob(N,p)
numero de casos favoráveis

nGmero de casos possíveis

obtem-se:

Prob(N,p)
<p (N ,p+1)

2
N

1 N
(-2-) <p (N ,p+ 1)

,/

as



5.5 _~LlCAÇÕESzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.::kjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o nrincípio do teste consiste em, obtidas duas amostras de efe-

tivos N
l

e N
2

(com N
l

+ N
2

= N), rejeitar a hipótese de que elas estao

sujeitas a uma mesma lei, desde que Prob(N,p) e suficientemente pequena

(por exemplo inferior a 5% ou 1%); isto e, no que sugere a se encontrar

um hiperplano que separa totalmente as duas classes.

De fato, desejamos testar a hipótese de que duas classes estao

sujeitas ã mesma lei ("hipótese nula" H ), contra a alternativa que se
o

encontram sujeitas a leis distintas (hipótese alternativa H).

Para a realização do teste necessitamos dispor de uma tabela

- ~
fornecendo para cada valor de p (dimensao do espaço) e para riscos res-

pectivos a (a = 0,001; a = 0,005; a = 0,01; a = 0,05), os valores
....

mlnl-

mos N (p) a partir dos quais se encontrarmos uma separabilidade
a /.

das duas amostras, rejeitaremos então a hipótese nula.

.to t a I

° valor N (p) por exemplo, e determinado por:
a

(5.5.1) =x (p)
a

. { 1 N . }-
.i.nf N /(-2-) cjl(N,p+l)-=- a .=~-

A tabela a seguir é construída a partir dos valores da tabela

(5.2.10) o qual nos da os valores de cjl(N,p),e da fórma (5.4.1).

(5.5.2) TABELA (TESTE DE SEPARABILIDADE)

Valores mínimos de N , em função de p , tais que a separaçao se

Ja significativa
N

a

risco 0,05 9 12 24 17 19 21 24 27 29 31

rlSCO 0,01 12 15 18 20 23 26 28 31 34 37

rlSCO 0,005 13 16 19 21 25 27 30 33 35 38

rlSCO 0,001 15 19 22 25 28 31 34 36 39 42
(

, , I

1 2 3 4 5 6 7 8 9 10 P



(5.6)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALI -o

I) Sejam sete indivíduos de uma classe, e dez indivíduos de o~

tra classe. Suponhamos procurar discriminar entre estas duas classes com

a ajuda de duas variáveis, e que saiamos bem sucedido em determinar um

hiperp1ano, separando perfeitamente as duas classes. Uma vez que 17> 16,

considera-se separação significativa; exceto no risco akjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0,001. Vide ta

bela (5.5.2}

11) Sejam dez indivíduos de uma classe e oito de uma outra, co~

1 5 .
segue-se separar estas duas c asses no ~ ; pode-se d~zer que esta sepa-

raçao não é significativa no risco a = 0,05 pois 18 < 19

Pode-se da mesma maneira indicar, em função de N, o valor máxi-

mo de p, tal que chega-se a separar as duas classes significativamente .

Para tal segue-se:

(5: 6.1) TABELA (TESTE DE SEPARABILIDADE)

P 1- -- .

0,05 ° 1
1 1 2 2 3 3 3 4 4 5 5 5 6 6 7 7

I

0,01
I

° °
1 1 1 2 2 2 3 3 4 4 4 5 5 5I

I I

0,005 I I

°
1 1 1 2 2 2 3 3 3 4 4 4 5I I

I I I

I
0,001 I I

°
1 1 1 1 2 2 2 3 3 3 4I

I I
I

I
I

I,

° 1 2 ~ 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 N

Observa-se que o valor ° (zero), corresponde a N = 11 (respecti

vamente a N = 8), significa que e ilusório esperar discriminar, mesmo com

urna un~ca variável no risco a = 0,01 (respectivamente a a = 0,05) duas

classes cuja soma dos efetivos seja inferior ou igual alI, (respectiva-

mente, igual a 8).
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A PzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE N D I C E I

OPERADORES E (VALOR ESPERADO)

VAR(VARIANCIA) E COV(COVARIANCIA)

Na introdução deste trabalho tivemos a oportunidade de conside-

rar, para cada classe C de efetivo N, indivíduos x. (ikjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1,2, ... ,N) pen-
~

sados como p-uplas (x.
l
,x.

2
, ... ,x. ), onde cada componente x .. (j = 1 ,

~ ~ r.p ~J

2, ... ,p) se interpreta como resultado de uma j-esima medida efetuadá'so-

bre xi; usando outra terminologia, trata-se do valor assumido pelo indi-

víduo relativamente a certa "j-esima variável",--

Ora, sendo cada indivíduo concebido como um p-vetor x.=(x ..)~ 1;
~ ~J J =

entao no mesmo contexto, cada "j-êsima variável" (j = 1,2, ... ,p) conce-IHGFEDCBA

C) N
be-se como um N-vetoT x J = (x ..). I'

~J J=

. - 1 (j)
Note-se que a var~ave _x , em

N
vez de um vetor ne R , pode tam

- . - (j) { }
bem pensar-se como uma apl~caçao x : 1,2, ... ,N +~. Sob tal ponto

de vista, tem sentido considerar a aplicação constante À; bem como, ex-

pressoes Àu, À+u, u+v, uv , u
2
, .... , no sentido do resultado de opera-

ções definidas "ponto a ponto", relativamente às aplicações u,v, .

sem dúvida, no caso de u,v, ..... , serem pensadas como vetores no
N

:IR,

interpretaçao correta corresponde ao fato de que as operaçoes respecti -

vas são agora definidas "coordenada a coordenada". Portanto, faz senti-

do considerar o "veto r À", como a N-upla ( , À, ); u+v = ( ,

u.+v. ,....); uv
~ 1.

2 2
(.... ,u.v., ..... ); u = ( ....• , u., ..... ); etc.

~ ~ ~

-"

a



(1.1)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

propriedades:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(1.1.1.1)

(1.1.1. 2)

(1.1.1. 3)

-~2

lÇÃOkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o operador valor esperado E, ê aplicação:

N
E: lR ---+ lR ,

tal que:

ECu)
1
N

N IHGFEDCBA

L u.
i=l l

onde ê um vetor de componentes u.-
l

u

Sem quaisquer dificuldades, podem ser evidenciadas as seguintes

E(À) = À

E(Àu) = ÀE(u)

E(u+v) E(u) + E(v)

quanto a'esta última propriedade,~pode generalizar-se, por indução fini-

ta.

(1.1.1. 4)

(1.2)

(1.2.1)

E(x(1)+x(2) + ••• + x(q» E(x(l» + ••• + E(x(q»

DEFINIÇÃO

O operador variancia VAR, ê aplicação:

VAR lR
N

~ lR

tal que:

VAR(u) = E(u
2

) - [E(u)]2

Para esse operador, valem as propriedades, cuja verificação nao

envolve quaisquer dificuldades;



relação a (1.2.2), no referido capítulo, tem-sekjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.,

i03

(I.2 .1.1)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV&"{(À) = O

(I.2.1.2) VAR(u+À) = VAR(u)

(I.2.1. 3) VAR(Àu)
2

= À VAR(u)

2
(I.2.1.4) VAR(u) = E [u - E (u)]

(1.3) DEFINIÇÃO

o operador covariancia COV, e a aplicação

N N
COV ::ffi. x IR --;.- IR ,

tal que:

(I.3.l) COV(u,v) E[(u - E(u»(u - E(v»]

A seguinte propriedade interrelaciona os operadores COV e VAR .

(I.3.2) VAR(u) COV(u,u) , de fato,

COV(u,u)
2

E[u - E(u)] VAR(u)

(")
Usando os operadores VAR e COV, e notando x J = (x..), observe

~J

-se que os ojk em (1.2.2.1), conforme Capítulo 1, são precisamente as

(j) (k) . 2 (j) .
COV(x ,x ); se J = k, tem-se o .. = (o.) = VAR(x ). Adema~s, com

JJ J

(I. 4) L
COV(x(j) (k)• ,x )

Esses resultados justificam a utilização das expressoes " .cov ar a

_ .,," ~ _ • AI

anc~~ e varlanCla para os ojk e

triz de variâncias-covariâncias"

)
2 . -

(oj ; bem como, a des~gnaçao de

paraA L

ma-"



de cada

remos:zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(L 5)kjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

?o:::- ou~ro lado, considerada uma matriz X
O ) (r}

(x ,...,X ) on-

(")
x J ; para j 1,2, ...,r, e uma variável (ou N-vetor), defini-

E(X)
Cll (r)

(E (x J, .... , E (x )).

Analogamente, dada a matriz onde
("k)

x J ••••••M

("k)
cada x J , para J

N-vetor), definiremos E(M) como a matriz cujas componentes são E(x(jk)).

l, ...,r e k = 1,2, ... ,s, é uma variável (ou

No contexto acima, faz sentido o seguinte resultado, onde ~e no

(") (")
ta E(X) = X; e bem corno X - X tem componentes x J - E(x J ).

(L 6)

(L 6.1)

PROPOSIÇÃO

Se X
(1) (2) (r)

(x , x , ... ,x ) , _entao:

L E [(X - X) (X - X) 'J , onde X - X escreve-se como um

vetor coluna e (X - X)' é o vetar linha correspondente.

que (X - X)(X - X)" possui, corno termo geral

donde

Demonstração

Uma vez que
(") (")

X - X possui componentes x J - E(x J ), segue-se

(x(j) - E(x(j)))(x(k) - E(x(k)) ,

E [(X - ~) (X - X) , possui, por termo geral:

E[(x(j) - E(x(j)))(x(k) - E(x(k)))] = Cov(x(j) ,x(k)))

Isso nos permite concluir, de fato pela validade de (1.6.1).



05zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

u~ro resultado que se segue (Proposição 1.8) vai permitir ~n

terrelacionar as matrizes de variâncias-covariâncias associadas as variá

. (j) .
ve~s x , JIHGFEDCBA

(") C)
1,2, ...,p, e as suas transformadas ykjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ = A x J , onde A

é uma matriz N x N.

(r. 7)

entao:

(I.7.l)

(I.7.2)

(I.7.3)

(1.8)

LEMA

Se M

E(AM)

(x(jk)) ~
J,k=l '

p

(a .. ) e B

~J . . 1
~,J =

P

(bV) k,-t=l'
A

A E(M)

E(MB) = E(M)B

E (AMB)

Demonstração

A E(M) B

Tem-se, para-(I~7.l)

E(AM) E[(a
ij

) (xqk))], , , .-:7 -} ,

EK I
J

x(jk))]a ..
~J

(a
ij

) .EDx(jk~Ü A E(M)

Para (1.7. ~ é análogo, concluindo-se em seguida (1.7.3).

PROPOSIÇÃO

Sej am L eAí
y x

. - C ) C )
soc~adas as x J e y J

as matrizes de variâncias-covariâncias as-

A
(j) . 1 2 .= x , J = , , ... ,p, r e s p e c t i vame nt e ,



onde AzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAé eoa matriz (constante) ~ x Então:

(1.8.1)

Tem-se

Iy = A Ix AI •

Demonstração:

I
y

=kjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [ (y - Y) (y - Y)' ] =

= E [ (AX - AX) (AX - AX) I ]

= E [ A (X - X) (X - X) I A I ]

= A E [ (X - X) (X - X) I ] A'

= AAí AI
X
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APLICAÇOES DA AN~LISE DISCRIMINANTE

Neste apêndice mostraremos a utilização de métodos de Análise

Discriminante em duas situações distintas. A primeira delas refere-se a

uma aplicação em gastroenterologia, envolvendo a discriminação de entida-

des mórbidas do antro do estômago. A outra, trata de um problema de dis-

criminação em climatologia.

Para esta aplicação lançamos mão de dados cedidos por de Amorim,

(lI.I) UMA ~LICAÇÃO_EM GASTROENTEROLOGIAA

\o l.P .D . (1984), .orkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiund os=d ev sua- t es-e=de Mestrado em Meâicina:;:-tendn em-VTS

ta o estudo de cancer gástrico e de doençás gástricas-benignas,~a- partir

Basicamente, dispomos de 65 (sessenta e cinco) individuos com

das determinações de frações eletroforéticas de isoenzimas da dehidrogen~

se láctica (DHL).

diagnóstico de lesão do antro, classificados a priori nos seguintes gru-

Grupo I = gastrite crônica quiescente

Grupo 11 = gastrite crônica ativa

Grupo 111 = úlcera péptica (benigna)

Grupo IV
~

= cancer

po s :

onde os numeros de pacientes em cada grupo foram os seguintes: i3, 21, 17

e 14, respectivamente.



_ara cada paciente dispomos de dados referenteszyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAã DHLT (dehidro-

genase lãctica total), ISODHLl, ISODHL2, ISODHL3, ISODHL4 e ISODHLS (iso-

enz~mas da DHL); bem como, os valores dos "monômeros H e M" contidos

var~as isoenzimas.

Na tabela (11.1.1) sao exibidos os valores observados (NORD

numero de ordem de cada individuo, enquanto GPO indica o grupo a que per-

tence: I, 11, 111 ou IV).

(II .1.1) TABELAA

_O JkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

"u lllO O"L.T tSOOHLl UOD"Ll J.!.ODI'tLl lSOOHL4 f!>O O H I,.5 . . <-o

I 0.'11' 1".10 11.60 :d.l0 '''-10 ae , to 62.JO ll.lO I,
'1.06 L 'l0 1.)0 )0.10 ] l.l'} 1~. 40

"" •• 0 H.'o IJ 'l.H 2. ~'J . 11.10 16. ~o 14.90 H.To 67 •• 0 H.'o I. 0.'/'I1 1.10 ).&0 11.10 )1.)0 "".10 77.60 11.40 I,
I.'!!) 10.60 11.'0 14. JO H.tlO 26.frlu ").600 n.40 I. o.~" '.-" 10.40 Je.!lo ]2.10 16.10 "l.OO JJ.OO

I,
I.!H .:.1' 1.60 1).00 )0.60 )4.&0 10.90 1'.10 I

O. " l. "O •••. 0 1:>.'0 '_.10 ".40 6OJ.'O )0.10 I, 0.1) •. =, ')? 11.40 10.)0 1].60 U.20 '8 •• 0 H.JO I
I. 0.(0) ".'io 13..0 )1."0 )1.00 17.40 Ito ••. o n.'o 1
II O.J'" 7."'0 Q .ID 16.4.) lJ.l0 11.10 "'1.10 )0.'0 I
r a 0 •• 3 .l.10 1>.,0 J).40 )1.10 ,'9.40 10.110 ,119.40 IlJ ~_J'lI l.10 11.10 , e , 10 1) .• 0 J4.~0 ".00 11.00 I.. 1.0' 7.'0 ".10 11.'0 h.10 16.51) 6'.)0 JO.10 ,
I> 11.04 , .10 14 ••• 11 16.00 ".'" 714.10 -61.'0 JI.JO ,,. 1.0' "."0 '1.)0 1l.60 10.1? :10.10 61. ~O )I.~o ,
"

0._60 "i.'\o I •• TO li.'\) 19.10 16.10 '\1.10 41.10 a

"
U .41) '\.9\1 9.00 )1.40 )7.yO 2L'C 64 • .,0 J).40 ,.. 1.1' l.PO 1t".10 )0.10 )1. JO n.)o '4.60 J).40 ,

"
'J.)' 6.!0 10.20 21.10 7 e , 20 21.'0 "'4.'0 J).20 ,

"
O.)' l ••••O 11.)0 1'.9u 11.'" :14.50 .s.oo H.OO ,

"
~.Io . 4.to 11.'0 1'.'0 )).10 ;U.40 ••••..10 n.'o ,

1J I.)) l.'J;) 14.#00 J e , !O )).10 1'.60 "1.10 J7.2:0 ,
"

0.::01 l.,,? •• 70 ,11.110 11.10 /"'.10 "'.)0 JO.SO ,
» 0.010 i.S0 '.)0 'J.~HI ) •.•• 0 ,11.10 ".10 Jl.'O

,,. O.IIIC' ,1) ••• .,
19.10 2J.lu '4.20 ,U.OO ~7.'O ".40

,
"

0.65 ".)0 •••• 0 :n.!IoO )).60 11.50 6!O•• O J'.40 ,
" O. "

e , 20 11.,,0 JO.'\I 79.40 1) •• 0 '!111.)O "'.SO
,

"
0.)1 ".'1) II.SO •...... lel.OO 11.00 6'.10 n.)o ,,. O.,,. ".-" ".'0. )0.1-0 71.'0 -. 14.!tO 5).1. 44.10 '''2_ I

"
o•• , '.-? 1.-,1)- 29;70 )'. '0- 14.'0 67..0- ,Jl,-io 1

"
0.41 ".01) 1.00 ,tI. 0.0 )9.40 J".60 11.JO .1'.'0- 1

JJ 0.44 '.flO 10.tlO .1.00 n.JO 11.10 '4.'0 - J).10 ,
"

CI.4. 1.10 10.)0 :P.IO }J. 'lio 29 .••.0 '0.40 ,.... ,
l> 0 •• 0) 1.tO 10 •• ' J4.00 )).O"} 41.10 6).)0 .H.~ • . )..

0.1' 1.'1) 12 • ..,0 ".)0 )0.)0 1'.90 61.10 ]1.)0 )

"
•.... ) l. ),

'1••• 0 JO.60 1e , 10 ;.!7.00 6S.)0 H.1g )

" I." '. lu n.1') 11.00 ]l.JO 1'!II.10 ~9.10 40.'0 J

"
,) •• '1 1e , 2:) 1 ).,0 -14.91) )~. ee -14.70 ~9 •• 0 - 40.'0 -.)

I. O. ~ft 11.10 '9.'90 ' •• 10 11.ftO -1).60 60.10 H.IO J.. a •• n 1.10 1•• 10 H.IO ·0.00 11. tu SI.IO 41.20 )

"
0.,,1 '1.10 14.ti.0 21.10 '1..0 2".00 '!li". 10 40.JO J., 0.0;\ 7."0 I" -1 o -ItIo.90 lO •• O .le.so "0.'0 lt.60 )

"
D.to" '.''J 11).'110 J7.41l

'9.'0 19.90 "').)0 H.SO J
I'

,).101 ,5.10 1 •• 0 .le .•• o )l.I"} .u .'(j "'!II.10 J4.)0 J.. O •• n ~.Oll s , '0 •••• 40 )l.tIolI ''I. )0 61 •• 0 )1.40 J

"
c • 41) '." 1S ••• 0 JI.71.1 ]).00 ".10 "n.l0 "'1.)0 J

"
o.n .••• 0 11.70 111.10 11.bO ll.)O " •• 10 J s . I o J

" O." s • 10 1 '-2? 1'.10 )1.90 1'.60 ""1•• 0 H.40 J
ve tI.H ~ • ti.O 11.10 .f&.61.1 '6.91) 11.'0 )).)0 44.~0 J

"
1.11' ~. 40 11.10 21.40 '1.10 JI.70 67.10 n.to J

"
1.1,16 l.ftO

11.20 .1'.40 )).00 21.10 •••••• 0 .f~.)O ·"
O.toll 1.10 "10 1) •• 0 21.10 :J'.'O .1.20 11.00 ·"
1I.~4 5.6') 10 • .,0 21.10 t'.IO J).40 "!.90 H.IO ·"
, •• 1 .J.)Q 10.10 21.4Q....

H ~~ ~U%- 1H~ · iHi
..

"
0.1.) 4.90 1).20 .4.10 •

"
0.1) 1.10 , )..,0 1).10 '1.20 lS.~O )2.)0 H.~O ·"
0.11 4.10 IJ.10 11 •• 0 11.60 ,J2.10 .'.40 H.IIO ·"
C.IO 10.')0 , •• ,0 2).)0 H.SO 10.40 ".'0

••.,.Jo ·.. 0.19 '1.00 11.10 20.90 '6.JO J'.6C 69.'0 lO.SO ·.. 0.1. '.)C 10.60 n.60 '1. 10 ".40 )).10 44.'0 ·"
O.SO #0.10 14 •• 0 1.).JO 71.JO H.SO IS.IO H.lO ·'I 0.9) "'.'0 1).)0 21.10 14."0 )0.'0 6)"0 H.te ·.. O.'JI~ 'f.10 11 •• 0 ] e , _0 , e , ]0 ~'. )0 ".40 ,1.'0 ..

"
1.11 l. '90 1).10 ' •• JO '1 •• 0 "'.'0 IIS.ilO H.U C

-

~:"J:!..~

nas

e o

,
'.

Utilizou-se o método de Análise Discriminante Passo a Passo, com

o emprego dos programas MAHAL 2 e MARAL 3 descritos na obra de RO}~DER,

A Análise Discriminante com base nos 4 grupos originais, atingiu

uma porcentagem de indivlduos bem classificados da ordem de 50,77%, no

passo de ordem numero 7, o que e considerado um resultado sofrível do



ponLo ce v~s=a ca ãiscriminação.

a tabela (11.1.2), tem-se a distribuição de individuos, em ter-

mos dos grupos de origem e dos grupos de afetação.

(11.1.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) TABELA

GRUPO DE AFETAÇÃO

GRUPO

1 2 3 4

1kjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 6 2 1 4

I

I 8 I 12 I 6 6

3 O 5 11 ! 1

4 2 I 3 1 I 8 I

VARIÁVEIS: 6,3,5, 1, 7,8, 2

DE

ORIGEM

Em seguida, consideram-se os resultados, caso sejam reunidos os

grupos I e 11 numa única classe gastrite crônica ativa ou quiescente).

Nesta situação, no passo de número 8 é atingido um prcentual de 67,69% de

pacientes bem classificados; vi de Tabela (II.l.J).

(11.1.3) TABELA

GRUPO DE AFETAÇÃO

DE

1 I 2 3

1 23 6 5

2 4
1

11 2

3
1 2 I 2 10 I

VARIÁVEIS: 4, 5, 1, 2, 6, 3, 7, 8GRUPO

ORIGEM

Por outro lado, levando em conta que os indivíduos do grupo I

(gastrite crônica quiescente) constituem aqueles pacientes que sao menos

levados a consultar o medico, experimentou-se realizar a discriminação



com base. unicawente, na presença dos grupos 11. 111 e senco os gru-

pos (gastrite crônica ativa ou úlcera peptica) por sua vez reunidos numa

única classe. Neste caso, e atingido um porcentual de individuos bem

classificados da ordem de 82,69%, no passo número 8, vide tabela 11.1.4

abaixo.

(11.1.4) TABELA

GRUPO DE AFETAÇÃO

GRUPO

DE

ORIGEMkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I
1 2

1 I 30zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8

2
I

1 13

VARIÁVEIS: 5,4,2,1,6,8,3,7

Note-se que todos os í.nd í.v Iduos foram utilizados para- constituir

nossa "amostra-de-base", tendo em vista que seu número total era pequeno.

Assim, nao foi possivel considerar uma amostra de base. Por outro lado,

também se dispunha de um número reduzido de variaveis a serem empregadas-

com finalidades discriminatorias.

(11.2) UMA APLICAÇÃO EM CLIMATOLOGIA

Para esta aplicação os dados foram obtidos pela Profa. Teresinha

de M~ B.S. Xavier, conforme Girardi A. Teixeira (1979), que trabalharam

com Analise Harmônica, foi possivel extrair da série de totais pluviomé -

tricos de Fortaleza (no intervalo compreendendo os anos hidrologicos 1848/

49 - 1977/78), duas componentes ciclicas dominantes, com periodos de 13 a

26 anos, aproximadamente. Conforme esses autores concluiram, a concordâ~

c~a entre os minimos e maximos das curvas sinussoides correspondentes aos

dois ciclos mencionados, corresponderiam a uma probabilidada maxima para

, "'~~-.-



a ocorrenClê ~esJectivawente, de anos secos e ce &,05 exce?cio~aiwenLe

chuvosos. Por sua vez, XavierzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, Xavier (1981) reexaminaram a questao,

tendo conc1uido por um reduzido poder exp1icativo dos ciclos, quanto -a

prev~sao de mlnimos e de maximos para a pluviometria anual.

Neste exemplo, consideremos as variaveis X(1),X(2), ... ,X(12) que

sao os totais pluviom~tricos mensais, tornados em ordem decrescente das

alturas pluviom~tricas em cada ano hidrolõgico. Esses, foram separados

em três grupos A, M e B, correspondentes aos anos com previsão de precipi

tação alta, m~dia e baixa, conforme Teixeira A. Girardi (op. cit). Cons-

titulmos uma amostra-de-base (compreendendo 30, 40 e 30 anos, nos grupos

B, A e M respectivamente); e uma amostra-teste (com 10 para cada um dos

grupos).

Utilizamos o programa MAHAL 3 FOR, o qual, no passo numero 4 nos

deu um porcentual de 54% para anos h i.drologkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi cos bem classificados, na amos-

tra-de-base; na amostra-teste o porcentual cai para 36.67%.

No passo numero 10, o porcentual de bem classificado na amostra-

-de-base sobe apenas para 56% enquanto na amostra-teste permanece ~nva-

r i ave L,

Conclui-se, pois, que as previsoes antes mencionadas, em termos

da ocorrencia de anos secos, normais ou excepcionalmente chuvosos, nao

resistem convenientemente, a uma analise discriminante, quando se consid~

ra o conjunto dos totais pluviometricos nos diversos anos hidrolõgicos.
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