-

APLICACAO DA ALGEBRA LINEAR A0S METODOS DE ANALISE DISCRIMINANTE

Turibio Jose Gomes dos Santos

MONOGRAFTIA SUBMETIDA A COORDENAGAO DO

CURSO DE POS-GRADUACAO EM MATEMATICA, COMO REQUISITO PARACIAL
PARA OBTENCAO DO GRAU DE MESTRE
UNIVERSIDADE FEDERAL DO CEARA

U-C/BU/BCM 03/08/1998

R

[l T4

i da algebra lincar a
R832545 rplicacao g

metodns

C432423 -
TE1G S23%a
FORTALEZA - 1985 ’

e _ -
B.F € Centre de Ciénclas

s



- "A MATEMATICA e a arte de dar o mesmo - ~ . - =

nome a coisas diferentes'.

(H. Poincare)

"Sim, era desse jeito outrora; muda-
mos, porem, tudo isso e agora faze-
mos Medicina com metodo inteiramente

novo".

(Moliere)




E minha esposa Ana e filhos

Cristhiano e Andrea



Aos meus pais Avelino e Loide

As minhas irmas Lelia e Ana




——

AGRADECIMENTOS

A U.F.Pb, ao PICD e ao CNPq, pelo apoio financeiro.

Ao Professor Airton Fontenele Sampaio Xavier, meu orientador, pe
la incansavel orientacao e tambem pelo exemplo em Climatologia, juntamen-—

. a .
te com a Professorea Teresinha de M- B. S. Xavier.

Ao Medico Waldir Pedrosa Dias de Amorim pelos dados reais para a

realizacao do exemplo aplicado em Gastroenterologia.

=

Aos professores e colegas por sugestoes que tornaram possivel a

realizacao deste trabalho.

Ao Sr. Jose Alves Ferreira, pelo trabalho datilografia.



pagina

APRESENTACAO
CAP. I - CRITERIOS DE DISCRIMINACZO: ABORDAGEM CONFORME SEBESTYEN 1 i
1.1 - INETOAUGAD +vvvvvvonnoscncoonnncanaseanasonsananeanasnnnsns 2
B2 - Notacoes scccsvavansas erelels ereis 5 5 sl Be w8 N TP T O P e 2
1.3 - Q-Distancia entre os Individuos no Espagoimp sie 31w 88 55 s 51 4
1.4 - Q-Semelhana e Q-Agregagao .....ceeeveensennnnns N D e
.5 — Abordageni de SEDESEVEN wecewsonssnessisosssses & o6 E s e e i e 8
.6 — Teorema :ecies . O O A S C Ll B S B I 5 D S e C s o e 1.2
CAP. 1II - DISCRIMINAQKO LINEAR: PESQUISA DE EIX0OS FATORIAIS DIS-
CRIMINANTES c6ce cocsnrcccescnsens 20
Bl ~ IntrodUCBO s ssascsssanissnsesisnasia S 00O E GO D00 e S DS ST 21
2.2 - Nuvens de Pontos m0 RE .evtrriniinenneannnnn. 5086 18 8 068 21
2.3 - Baricentro de Nuvens de Pontos .............. SOnIg T ey 23
2.4 - Inercia de Nuvens de PontoS .......eeee... e 0 5 24
2.5 — Teorema de HUYghens ....iieeeeneeneenenecanenoncscaseaascas 30
2.6 - Eixos Fatoriais Discriminantes :ciieeeceecesccsnessaanaacnns 32
25,1 = TEoXemMa o s T ot otlas o s SEesfele sle e ta el ol et Yelleiotabatatale & e saranssersi e 34
2.8 - Eixos Fatoriais Discriminantes SucessivoS 4. .5i%<:35:i%%S.0an 36

2.9 - Funcao Linear Discriminante de Fisher e Dz'de'Mahalanobis:; 38

2.10 - Metodo de ClassSifiCaCa0 wevvvvereennenenennnennoneenannnans 40
2.11 - Definigao do Processo de Classificacdo ......c..eeeeeeeeennn 41
CAP. III = DISCRIMINAQKO SOB A HIPOTESE DE LEIS NORMAIS ......... 44
3.1 - INtroduGa0 .c.ceeevovssscncsacccnonscncencoes SO O O AR G T 45
3.2 - Lei de Laplace - GausSs ...... & e e 81 616 5.5 o BB RS e SR B e .. 46
3.3 - Métodos de Classificacao de Novos Individuos e Fungoes
DLSCrImINANEES, s uwsmisn. oo 5 0% s s @08 5850855, 00 65 0 5606 856805 00 51
3.3.1 - Classificagao sem Custos de Frros .......... 5 S AR Ol 52
3.3.2 - Classificacao com Custos de Erros .......... seEEmaTEEE Rane 55

Processo de Classificacao com Probabilidades a priori

CONhecTdas «eeswossn sssinminsenss sshseintsssssiosss caisisees 56

Processo de Classificagao com Probabilidades a priori

CONBECIAAS vt vveeeeeeeneeeeoceneanasenoacsassosncoassnanss 60




3.3.3 - Processo de Classificacao com Probabilidade a priori

desconhecidas ...s-i-spsaavssiscncece S i P ki 62

CAP. IV - DISCRIMINACAD PASSO A PASSO ......ccccceccccccccncnns 65
K.l — TOLEOdUCAD st he et lES sties s s o B LR e e 66
4.3 - Porcentagem de bem Classificados (19 critério) .......... 69
Exemplo Relativo ao primeiro crite€rio .....evecececcececss 70
Comportamento de uma .amostra teste .....ceeceeececenccnns 72
TOOTEMA o0 isioinmisiaie sisisinisin o oms o s o is #1581 0 &0 015 51is o 5 181 i 0 s e 1 606 1 74
Procedimento Passo a Passo para os metodos de Sebestyen . 76

4.4 - Trago da Mariz T_lB (29 criterio) ...... e e 80
4.5 - Criterio do Ade Wilks ..uveeveeennrnunnnnceeneeeeeennnnns 82

4.6 - Critério da Maximizagao das Diferengas entre as Medias

Condicionais para as Diferentes Classes ...... et 85

CAP. V - TESTE MULTIDIMENSIONAL NAO-PARAMETRICO PARA O PODER

DISCRIMINANTE DE UM HIPERPLANO ........ e ey 5 86
L = DEEOHOREE o.n s ki @8 o e rm o a1 IR 87
5.3 — Teste de Separabilidade ...eeeeeeeeeeeeeennennennennnnnns 96
D = TOOMBAR w5 5 505 e B, 50 R e 8 G 0 030 o 97
5.5 - Principio do Teste e Aplicacoes ..... SRS BTRT e et 6 e 98
Apendice I xS bR D w e Y ey .« 00,5
BRBOBTTEE BT, o o fo m s Gl e b i 1 b s e om0 107
Bibliografila ssssss sasenss s sees s aeese sees 5. 515116 18 910 21 011 1 R 113




APRESENTACAO

Esta Monografia tem a finalidade de expor os fundamentos da Ané
lise Discriminante comenfase nas tecnicas de Algebra Linear.

De fato, aqui, nos restringimos ao caso dos metodos de discrimi
nacao com base em variaveis quantitativas. Assim, achamo-nos em presen-—
ca de um conjunto de individuos ou elementos, repartidos num certo nume-
ro k de classes definidas "a priori"; ademais, supoe-se que para cada in
dividuo ou elemento dispoe-se dos resultados de p medidas ali efetuadas
(ou equivalentemente, de observagoes ou valores ali assumidos por p va-
riaveis)

Na discriminacao com fins descritivos deseja-se evidenciar o
possivel poder discriminante das variaveis em causa; ou seja, verificar se
as medidas ou observacoes-realizadas justificam a separagao segundo- —as———
distintas classes consideradas "a priori'". Por exemplo,em.uma aplicacao
tipica em Medicina, interessa discernir se os resultados de certos exa-
mes clinicos ou laboratoriais (expressados quantitativamente) justifi-~
cam, ou nao, a separagao de um grupo de pacientes em duas classes, de
acordo com as medidas terapeuticas mais indicadas:

i) a classe dos pacientes para os quais esta reservada uma con
duta cirurgica.

ii) a classe dos pacientes para os quais a melhor conduta envol ————-
ve um tratamento medicamentoso. -

A essa "etapa descritiva', por sua vez, pode seguir-se uma "

eta
pa decisional", ou discriminagao com fins decisionais ou de identifica-

cao, que se destina a se realizar a atribuigao de cada novo individuo, a




uma das classes, sob o menor risco possivel de atribuigao incorreta.

Com relagao ao exemplo precedente, que se relaciona com a indi-
cacao da melhor terapeutica, essa escolha se impoe desde que se apresen-
ta um novo paciente.

Note-se que a Analise Discriminante contrapoe-se éos chamados

"metodos de classificagao", segundo os quais nao existem classes determi

nadas "a priori'".

Os metodos de Analise Discriminante tem sido utilizados em di-

versos dominios da pesquisa aplicada. _
a) Antropologia

Discriminagao entre as diversas castas da India com base em da-

dos antropometricos, conforme referido por Rao (1952).
b) Politica =k

Discriminacao entre duas facgoes de parlamentares do-Partido Li — =——
beral britanico no periodo 1874 - 1855 (facgoes radical e nao-radical )
com bases nos votos atribuidos pelos parlamentares a determinadas  mon-
gSes (+#1 = voto a favor; 0 = voto branco; -1 = voto contra); este exem-—
plo, devido a Heyck & Kleck (1973), encontra—se relatado por Nil et al.
(1975). Um exemplo semelhante segundo dados do Laboratsrio do prof. Ben
zecri diz respeito a posicoes politicas de deputados da III? -~ Republica—-—~"+--=

(Franga) sendo apresentado por Romeder (1972).

c) Psiquiatria

Discriminagao entre tres grupos: normais, nevrosados e esqui-

zofrenicos, com bases numa escala de ansiedade (30 sintomas), conforme
Nakache et al (1971).



d) Medicinza Clinica

Um exemplo classico diz respeito a discriminagao de pacientes
ictericos, em dois grupos: ictericos cirurgicos (necessitando cirurgia, -
por exemplo,para extracao de calculos biliares) e ictericiasmedicas (pa-
cientes que se beneficiam de terapeutica exclusivamente medicamentosa e/
ou dietetica), tendo como base os resultados de exames clinicos, labora-
toriais, radiologicos,etc; encontra-se desenvolvido com detalhes em
Romeder (1972).

Outro exemplo ainda no campo de medicina, refere-se a discrimi-
macao de doentes com infarto do miocardio, em dois grupos: sobreviventes
e mortos, em seguida ao tratamento, com base em exames realizados antes
de ser instituido o tratamento especifico, conforme Lorente & Nakache

(1977), tambem referido por Nakache (1978).
e) Geografia Agraria

Discriminagao entre areas especializadas na produgao -de- -trigo—— —— —
e areas de produgao de graos (milho, etc...) em consorcio com a - criagao .- - - .~

de gado, no Estado de Dakota do Sul (EEUU), com base nos seguintes dados: .= *

»e
]

precipitagao media anual;

densidade da populaggo rural; X2

= tamanho medio das propriedades;

e
1]

porcentual de terras araveis; X4
vide King (1969),

Em nosso trabalho inicialmente (lapitulo 1), apresentamos cripé
rios de discriminagao com fins decisionais desenvolvidos por Sebestyen(1936).
conforme sao apresentados por Romeder (1972), permitindo atribuir um ele-
mento qualquer a cada uma dentre varias classes definidas "a priori", na
dependencia da consideracgao de fungoes que medem a semelhanga de um novo

individuo a cada classe. Outro criterio (Capitulo 2) relaciona-se a uma

abordagem com objetivos descritivosenvolvendo a determinacao dos chamados




- eixos fatoriais discriminantes. Tais eixos fatoriais correspondem aos j
_wetores proprios de certa matriz T-IB, definida no texto.

Faz-se, outrossim, uma ligagao com o metodo classico das fun-

.g;es lineares discriminantes introduzidas por Fisher(1970). No apitu-

1o 3, apresentamos a discriminacao sob a hipotese de validade de leis

rmais, apos consideracoes gerais sobre a Lei de Laplace—Gauss a duas

ensoes (bem como sua generalizacao para o caso p-dimensional), sendo

dado o problema da classificagao de novos individuos, mediante a de-

cao de fronteiras separadoras (hiperplanos e hipersuperficies), seja
considerar "custos de erros de classificacao", seja considerando

t2is custos (ou mais precisamente, via a minimizagao do custo de ma clas

-
-

 sificacao).

Por outro lado, no Capitulo 4, abordamos a tecnica basica de
®discriminacao passo a passo''. Para esse fim, consideramos a  chamada
"discriminagao passo a passo ascendente'a qual consiste em, dado um certo.con

lijunto de variaveis medidas sobre uma populacao, restringi-las a "melhor",

 em seguida as duas "melhores", etc..., no sentido de permitir-de cada vez.\ —— ..
 uma melhor discriminagao entre elementos pertencentes a classes distin-:=: =
.tas; ademais, em cada passo, nao se poe em causa as variaveis ‘relacionaf

das nas etapas precedentes. Evidentemente, sao considerados testes para
julgar o grau de otimizacao alcancado e decidir em que momento se deve
parar o processo (regra de parada).

Finalmente, no Capitulo 5, estudamos um teste multidimensional
nao-parametrico para avaliacao do poder discriminante de um hiperplano
separador com base em tecnicas de Analise Combinatoria Linear, conforme
descrito por Romeder (1972).

No Apendice I apresentamos um estudo sucinto sobre os operado-
res E (valor esperado), Var (variancia) e Cov (co-variancia), bara o ca-

so particular de p-uplas e matrizes de dados (valores observados), cuja

utilizagao e requerida no Capitulo 1.



No Apendice II apresentamos um exemplo de aplicagao de metodos

discriminantes, conforme sugerido por Xavier & Xavier(1982), para a .anali-

"se da validade de tecnicas de Analise de Fourier no que concerne a iden-

tificacao de "anos secos" e "anos chuvosos!, a partir da série secular
de precipitacoes pluviometricas de Fortaleza-Ceara. Apresentamos tambem
um outro exemélo,aplicado em Gastroenterologia utilizando metodos de Aqé
lise Discriminante, com dados cedidos por Amorim (1984) oriundos de sua
tese de Mestrado em Medicina.:

Para concluir esta apresentacao, advertimos que nao esgotamos
zbsolutamente o problema do estudo de métodos utilizaveis na discrimina
cao com variaveis quantitativas, pois de fato esse & um dominio de estu-

P 3

dos bastante rico e complexo.



CRITERIOS DE DISCRIMINACAO :

ABORDAGEM | CONFORME-SEBESTYEN — .



1.1 - INTRODUCAO

_ Neste capitulo, consideramos o problema da discriminagao com
fins decisionais, ou seja, procura-se estabelecer criterios discriminan-
tes que permitam atribuir um elemento arbitrario a uma dentre varias clas
ses definidas a priort.

Os criterios discriminantes a que nos referimos acima dependem
ée como se defina, convenientemente, fungoes permitindo medir a semelhan
¢z de um novo individuo ou elemento, relativamente aos diversos grupos ou
classes. Assim, a regra de atribuicao consiste em afirmar que o elemen-
to pertence a classe com relagao a qual sua semelhanca & a maior possi-
wel. -

0 metodo aqui utilizado, essencialmente, & o descrito por SE-
BESTYEN (1962), vide ROMEDER (1972).

Uma vez definidas tais fungoes discriminantes, seria necessario
dispor de meios para examinar a validade do método. Uma maneira de pro-
ceder e mediante a determinacao de porcentagens de atribuigoes corretas,

assunt9 §Ee sera objeto de Capitulos subsequentes-(4 & 5)+ = -

1.2 - NOTACOES

Sempre que, para cada elemento ou individuo x sao considerados -
os valores correspondentes a p variaveis quantitativas, entao um tal ele
mento pode ser pensado como um vetor x no espago RY, tal que x':(xz,rugppl

Suponhamos que, a priori, se disponha de N individuos reparti-
dos por k classes Cr’ cada uma delas contendo Nr elementos (r=1,2,...,Kk).
Evidentemente, tem-se z Nr = N , que e o total de elementos em causa.

r .- . < -

Representaremos por . o i-esimo elemento pertencentea classe

J i (i:1,2,...,Nr; r=1,2,...,k). Assim, para cada um desses elementos



teremos:

]
. r r
(xi)— (zil’ Tog aeens zip)’

. - @ ot L .-
onde a componente xij e o valor assumido pela j-esima variavel (ou o
. U - A T .
resultado da j-eésima medida a ser efetuada no individuo xi); T=1 525 e s 515 Ds
Por outro lado, com relagao a cada classe Cr, podemos conside
s =1
rar o vetor medio x , tal que:

(1.2.1) G ' =&, .,
( 1’ 2 D

onde cada componente E? s.d =15 2, sss » P 5 B o valor medio:
Ny
(1.2.1.1) x, = .0/ N s
J izl zJ / r e

este, calculado com relagao a cada variavel, a partir dos valores por
ela assumidos nos Nr elementos ou individuos da classe Cr.
Ainda com relagao a cada classe Cr’ pode-se tambem considerar

sua matriz de variancias—-covariancias: e

r ko

N
(1.2.2) .r{r,:; 7v'1— 1 (xli' ~ &5 (xi -x) ']‘_ =
r 1=1 - e
- N
‘r _ 1 Tl » —r r —r
.2.2.1) ij = iz: izl _}xij - xj)(xik - xk)} :

Jsk=1,2, ..., P $

< ~ r ; g~ . e -
guando J = k, entao Okk diz-se a variagncia da j—-esima variavel na
5 T . = "
classe C ; quando J # k, Ojk diz-se a covariancia entre as j—esima e
i

k-esima variaveis.
Sendo o costume notar a variancia de uma variavel qualquer por
2 : g st - < o =
0, onde 0 (raiz quadrada positiva da variancia) e designado como o des

g < = = r A2 r .
D0 padrao, entao tambem podemos notar ij = (Oj), sendo Uj o desvio



g
padrao respectivo. Para maiores detalhes a respeito dos conceitos que

conduzem a nogao de matriz de variancias-covariancias remetemos ao Apen-

dice I.
1.3 - Q-DISTANCIA ENTRE OS INDIVIDUOS NO ESPAGO RP

Dados dois individuos a e b no espago?RP,ﬂtais que a':gaj,azxﬂﬁgap)
e b':(bl’ b2,. LN bp) s .estamos interessados em considerar sua distancia mutua.

Para esse fim, em geral, consideramos uma matriz real Q:?(qjk);
S,k=1,2,...,p de sorte que a Q-Distancia entre a e b seja expressada

por db(a,b) = d(a,b), tal que:

P
2 == .
R.3.1) d"(a,b) = Z_ q3,(a5D) (@3B 5
j,k=1
ou em termos matriciais ,
2 '
(1.3.2) - d (a,b) = (a-b) Q(a-b)
Note-se que  um vetor v (ou x) - g “sempre pensa omTn

do como um vetor coluna, enquanto v' (ou x') representa o vetor 1inh§
correspondente, obtido por transposicao; essa convencao permite melhor
legibilidade das formulas matriciais.

Note-se que d(a,b), de fato, deve gozar das propriedades de uma

metrica, isto e:

(Al) d(a,b) > 0

(AZ) d(a,b) = 0 <=>a=b»

(A3) d(a,b) = d(b,a)

(a,) d(a,e) <d(a,b) + db,0)

a; b;c E RP .



Portanto, dz(a,b) € definida atraves de uma forma quadratica

positiva definida, onde @ € uma matriz real, simetrica e positiva defini
" d@a:; ver (1.3.2).
Quando Q = Ip (matriz identidade px p), entao a distancia em

consideracao e a distancia euclidiana usual, onde:

2

5 P
1.3.3) d°(a,b) = ) (a; - bj)

1=1

0 seguinte lema e essencial para o que se segue e, em especial,

. para nos permitir uma interpretagao transparente da Q-distancia.

Se Q for uma matriz real, simetrica e positiva definida, en-

tzo0 pode ser escrita como Q = S'S .
Demonstragao

- Sendo Q uma matriz real, simetrica e positiva definida, pode-.

mos encontrar uma matriz ortogonal P , tal que:

P"1QP:P'QP:D: .

onde cada di >0 .

Consideremos a matriz diagonal Dl’ cujos elementos sobre a dia

gonal principal sao de " Vd2 5 5 g Vdp , de modo que D :.Df = DlDi.
= 2 v v
Portanto, Q=PDP =P D1 P =P DlD P= (P Dl)(P Dl) s



isto e, pondoe S = (P Dl)' ; obtem-se

Q=S"S

Agora, substituindo Q = S'S em (1.3.2) segue-se:

d2 (a,b) = (a-b)' S'S(a-b) = (Sa-Sb)'(Sa—Sb):

onde S =83 e § =8b .-
a b

Assim, fica claramente evidenciado o fato contido na proposicao

2baixo.

1.3.5  PROPOSICAO

A Q-distancia entre dois vetores a,b E RP pode ser con
siderada como a distancia euclidiana usual entre os transformados S e
a

Sb, sendo a matriz S obtida via a decomposicao - Q = S'S.

1.4 Q-SEMELHANCA E Q-AGREGAGAO

No que se segue, introduzimos o conceito de Q-semelhanca entre
wm individuo e uma classe (fazendo-se a distingcao entre os casos em que

o elemento pertenca ou nao a essa classe).
1.4.1 DEFINICAO

a) Dada uma classe Cr e um individuo a £ Cr , a Q-seme-

lhanga entre a e C. e avaliada atraves da expressao:



N
r

(1.5.1.1) w(a,C_) = — I dz(a,x’i‘) :
r 1=1

- y
onde os x; percorrem Cr'

b) Por outro lado, tomando em particular um individuo

r 2. s
x E Cr » a Q-semelhanga entre X, e Cr e avaliada mediante :

N
r

(1.4.1.2) nal,C ) =t TG, D)
r i=1

Note-se que, num caso e outro, a semelhanga deve ser considerada

. r ' .
tanto mais forte, quanto menor for T7(a, Cr) ou ﬂ(xh s Cr)' Assim,a ri

T - . - . -,

gor, ﬂ(a,Cr) ou ﬁ(xh 5 Cr) e uma medida de proximidade, variando 1n-
wversamente com a semelhanca.

Em seguida, estamos interessados em definir o que se chama a
Q-agregagao entre os individuos pertencentes a determinada classe; ou se

ja, de forma que se tenha uma avaliagao numérica de quao :se encontram

agrupados (ou pelo contrario, dispersos) dentro da classe respectiva.

1.4.2 DEFINICAO

A Q-agregacao na classe Cr e avaliada atraves da ex-

pressao:

1
(1.4.2.1) D, = 5— Z m(x , C)

Note-se que (1.4.2.1) tambem se escreve

N

5 1 r r
(1.4.2.2) = ———— ] ] dz(x,; , x5,
x N (N.-1) p=1 i=1 1
rr .
i#h
bastando para isso, substituir em (1.4.2.1) a expressao para

’n(x; , C), dada em (1.4.1.2).




8
De forma analoga ao que ocorre com a Q-semelhanga, a Q-agrega-

= = - : 2 .
cao sera tanto maior, quanto menor for a medida Dr . Portanto, a raigor,
Dﬁ € mais uma medida de dispersao, variando inversamente com a agrega-

g2o. Vide esquema abaixo, para o caso de pontos no R2 .

C., : grande agregagao pequena dispersao

C2 : pequena agregacao grande dispersao

3.5 ABORDAGEM DE SEBESTYEN

0 fundamento da abordagem proposta.por Sebestyen, para.o probléi;fz_ -
ma de discriminacao, e determinar a matriz Q- que torne asagregagao - a - -
maior possivel para uma dada classe, sob certa restriggo de normalidade,
a2 saber: detQ = 1. Note-se que a maior agregagao possivel corresponde
20 menor valor possivel para Di .

Com a decomposicao Q = S'S, a condicao detQ = I se escreve
(detS)2 = 1, em geral escolhe-se S de sorte que detS = 1 ,

Alguns resultados preliminares (lemas) serao estabelecidos, an-
tes que se passe a resolver o problema de otimizagao acima proposto. No
gue se segue, supomos nossa atengao centrada em determinada classe, de
sorte que nos permitimos omitir o sobre-indice r que a ideqﬁifica. Com

isso, a notagao ficara mais aliviada.




5.5.1 LEMA

Seja C uma classe e I sua matriz de variancias-cova

riancias. Entao:

2e - B F .
(1.5.1.1) AN =) L g -x)0y - x)
h=1 i=1

Demonstragao

Conforme (1.2.2.1), o termo de ordem (j,k) de z escreve-se :

g, =,
ik~ W

I o~1'2

Desenvolvendo esta ultima expressao, teremos:

5. =
ik = W

o~z

) l(xij xik - xij T, - xj xik - xj xk) =

1 H - A
:T.Zl(xijxv;k‘xjxk) - L

3

parece no lado direito de (1.5.1.1), podemos escrever:
N

N
Q. = z 2 (x, . - x..)(x -x.,)
jk hel iZ1 hg 13" “Thk 7k

Desenvolvendo esta expressao, vem :

1] ] ; )
0., = () By s By — R P X. . + 2 Hoos Bow)
Jk T opE N h T Tk T L Tk Tak T L% Tk T L T Tk
N B B N
= Loy Mgy m N x e L ag)
- . 1=1
N - L N
=N = - N . - N .+ N s X
hzlxng “hk xg Ty Tk xg izlng ik
N
_ 2| 2 - = = B
- [,N R xé] L]

Por outro lado, quanto ao termo de ordem (j;k) da matriz quecom ----
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Comparando—-se [ A.] e ['B‘] ,» conclui-se que

0. =y = 1, 2, ici , P

.2 LEMA

Seja 2 uma matriz real, simétrica e positiva definida
(supomos, no que se segue, a matriz de variancias-covariancias

de uma classe C satisfaz a esta condigao). Entao:

=g do?

-

onde A designa a matriz diagonal dos seus valores proprios e

C a matriz dos vetores proprios normalizados e escritos em co-

lunas.
Demonstracao - B
Seja c. o vetor proprio normalizado, (isto &, 'chli = 1), cor

respondente a cada valor proprio Ai de Z s

Sabe-se que:

—
(S
Gl

Por outro lado, como ) & simétrica e positiva definida, ela

admite p valores proprios {J=2:2,.545D )
Seja C a matriz dos vetores proprios normalizados correspon -

- -~ >
dentes, escritos em colunas. Entao, a equacao 2 Cj = Aj cj escreve-se,

matricialmente:

. - : - =1
Por outro lado, sabe-se que a matriz C eortogonal, istoe, C'=C .
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Portanto

Z:cAc'I:CAc'

=g

y, e Yl=caler
1 ]

Note-se que, em consequencia, !|Z|| =
h|

No que se segue, notaremos Tr(A) o trago de uma matriz quadra

da A, isto e, a soma dos elementos sobre sua diagonal principal.

5.3 LEMA

-

Seja C uma classe e z sua matriz de variancias-cova-
riancias. Entao, a expressao (1.4.2.1) utilizada para avaliar

a Q-agregagao, passa a escrever-se

(1.5.3.1) 2= @l
N-1
Demonstragao
nE,
Tem-se que D2 = ———41——— Z z dg(xh ; X.), conforme a expres-—
N-1) h=1{=1 *
- i#h
sao (1.4.2.2). Conforme (1.3.2), vem
N N
D2 o 1 zrzr' (Xh_x )' Q(Xh_x )
N@-1) B=15=7 T *
17h

Por outro lado, (xh—xi)' Q(xh—xi), representa o produto de duas
matrizes, a saber: A = (xh—xi)' e B= Q(Xh_xi)° Donde, sendo A.B uma

matriz de ordem I x I, tem—se :
(gmx;)" QU %) = Tr [, %) "Qx,~x;)]

= Tr[Q(xh—xi).(xh—xi)']
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Assim sendo, utilizando (1.5.1.1) (vide Lema 1.5.1), vem:

LS
-———-—_—-Z { Tr[Q( =x.) (x,-x.)" 1=
N@-D L% h
1#h
1

2
= TEE R SR 2N
s r(Q 28°Y)

02 =

= ZN
= == Tr(Q 1)

De posse dos resultados precedentes, temos condigSes de deter-
minar a matriz Q , para a qual a agregacao e a maior possivel, relativa

mente a uma dada classe, conforme o Teorema a seguir.

1.5.4 TEOREMA

Seja uma Q-distancia (ou métrica) no RP , definida por
Q = S'S, que se supoe representar uma transformacao a volume
constante (isto e, detQ = I) e que minimiza a media dos quadra’

dos das distancias entre individuos de uma dada classe. Entao,’

1/p ¢-1
Q= (det])™" " §
onde Y @ a matriz de variancias—covariancias das p varia-

veis, com relagao a classe considerada.

Demonstracgao

Note-se que 2 e Q sao matrizes quadradas reais, de ordem p,
supostas simetricas e positivas definidas; sejam Ojk e qjk(j,k:Z,Z,...,p)

os termos gerais dessas matrizes, respectivamente.

S 2 .~ .
Ora, para minimizar D  sob a restrigao de normalidade detQ=1,
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corresponde a minimizar Tr( Q z ), sob a mesma condigao, conforme a ex-
pressao (1.5.3.1). Para tal fim, utilizaremos o méetodo de multiplicado-
res de Lagrange; a respeito desse metodo, vide por exemplo, Kaplan(1969).

Dessa maneira, obtem-se a seguinte equagao

3 _
_3 . -X\(d =0 ,
4 (1 a7 O (detQ)]

ds8 = 1;8,6 605D

donde se segue:

; A
Tep © Xij ; Jsk = 1,2,...,p [7]

expressao na qual ij designa o co-fator do termo qjk , isto e, o de-

J+k)

terminante menor correspondente a qjk , afetado de seu sinal (-I
. *
Lembremos que a matriz Q dos cofatores ij dividida por
= S =], 5
detQ e, exatamente, a matriz inversa Q ~. Logo sob forma matricial ,
~ A
a expressao [ J passa a se escrever :

L * _ “Q* _ -1 B
.2 =AQ =2 detq AQ ' ' [ 7]

Segue-se que detz = det(XQsl) :’kp(detQ)_1 =P

donde: & & (detZ)l/p [ ¢ ]

Substituindo [ ¢ Jem [ B:], obtem-se :

(1.5.4.1) Q= (dethH!/P §7

- . . - - x
Assim, esta matriz, constitue um "ponto critico" (no RP*P) para

iy ( ). Resta mostrar que, de fato e um "ponto de minimo".
q P

Pelo Lema 1.5.2, a matriz Q se escreve Q = HD H', onde D e

uma matriz diagonal, com elementos todos positivos na diagonal principal;
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e H e uma matriz ortogomal, isto e, H' = H ~. Evidentemente ,

detD = (detH)(detH') (detD) = det(HDH') = detQ = 1

Por outro lado, podemos definir uma matriz M , positiva defini
da, tal que M = H' z H onde z = HMH'. Dessa maneira, minimizar
Tr( Q,z ) sob a condicao detQ = I, corresponde a minimizar Tr(DM), com
det D=1

Deve-se observar que, embora sendo M positiva definida, nao

necessariamente e diagonal; ao passo que D e diagonal, com elementos

dl >0 , d2 20 5 sess 3 dp > 0 dispostos na diagonal principal. En-
tao :
p -
Tr (DM )= )d.m.. e
52, 9 37
p
detD = 1 4.
j=1 ¢

sendo mjk o termo geral da matriz M .

Desde que M e positiva definida, tem-se .m. > 0 ; em segui-
da, observa-se que se poderia escolher pdlﬁ arbitrariamente grande e os
demais d%(j > 1) arbitrariamente pequeno; porem, de sorte que .Eld.::l.
Assim, Tr( Q E ) =Tr( DM ) pode se tornar arbitrariamente é;ande

Portanto, a quantidade encontrada como o unico extremo de Tr( Q Z ) nao

odendo ser um maximo, & um minimo.
P 5

Uma vez determinada a forma da matriz Q , apresentaremos as ex
pressoes gerais das medidas de proximidades utilizadas para avaliar a
Q-agregagdo e a Q-semelhanga.

Para o caso da Q-agregagao, basta substituir em (1.5.3.1) o va-

lor (1.5.4.1); donde ;

Lt

il
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| (1.5.4.2) e - S ERR Sl
N-1

Por outro lado, no caso de Q-semelhanga de um individuo a ¢ *f

com esta classe C , teremos:

€1.5.4.3) ma, C) :(detZ)l/p [p+ (a%)" Z—I(a—;)]

Ja no caso em que o individuo x E C , entao d(xh,xh) =0
sendo assim, sao apenas N-1 individuos na classe para serem relaciona -
: dos com x . Portanto, basta tomar a media sobre os N-I individuos ,
.~ ou seja, multiplicar o segundo membro da expressao (1.5.4.3) por N/N-1;

-

@onde:

1/ el =
€1.5.4.4) T, 0 = = (@etD | [p+ (0 Ty

Consideremos, em seguida, o caso particular em que a matriz Q e

éiagonal, constituindo-se num corolario do Teorema 1.5.4. - — . .
B5.5 COROLARIO- R A2

. . A
Se Q e diagonal, a quantidade D e minimizadanaclas

se (C , desde que:

7 : ﬁ )l/p
W, = — . N
5i Oj k=1 k
2 . ~ . :
onde os w.; g = 1,2,..., p sao os elementos da diagonal prin

cipal de Q e os . Cj sao os desvios-padrao das j-ésimas varia

veis; J = 1,2,c.., P .



De.onstragSo

Observe-se que, neste caso, Q = S'S ; denotando-se por wj > 0
os elementos situados na diagonal principal da matriz S .
= =1 . : < :
Por outro lado, e obvio que z e a matriz diagonal cujos ele-

mentos na diagonal principal tem a forma 1/0? , onde 0? = Ojj; bem co-

mo:
P 1/p P 1/p12
@etD? = ( 1%y = [( I o.) ]
j=1 4 =11 -
= _ 1/p -1 - .
Portanto, a expressao Q = ||Z|! z e equilvalente a
(1.5.5.1) L 1ay"
5.5 w. = o} 3
g oj k=1 k
J = 1.’2." 3 p
Neste caso particular, as-expressoes definidas em (1.5.4.2)-

(1.5.4.3) e (1.5.4.4), tomam as seguintes formas:

P 1/
(1.5.5.2) =2 _ (1o :
; j=1 dJ
P 1/ P az=x 2
(1.5.5.3) m(a, C)=( I a?) p{f ( JO Ly # p}
=t H=1 T
P 1/pr P XK. 2
(1.5.5.4) mer , €) = (T o?) [ z(xh_g_J) +p]
j=11 =1 %

.5.6 LEMA

Os valores proprios A. de 2 sao iguais as variancias
J

y ==, s,

2 s g
(Oj)' das variaveis transformadas
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(7)

onde cada =x = {zfj)’ sendo C uma matriz ortogonal e

LN R e
Demonstragio

Como Q :(deti}/pz_l e simétrica e positiva definida, segue-se
que z-l tambem o e, bem como X . Por outro lado, conforme lema(l.5.2)
tem-se ) =CAC', onde C & ortogonal.

(7)

Sejam X = (x Y") e Y= (y(J)) = C'X ; tem-se (vide proposi-

cao (I.6) do Apendice I):
Y tE[X)EX)'] ,
donde, em virtude de (I.7.3):

E[(Y-Y)¥-)'] =

I

E[(C'X - CX)(C'X -C'X)'] =

E[C'EX -X)E=X)'¢ ] =

¢ Ef@ -Dme g ¢ Hrw St .x

Portanto, ve-se que os elementos na diagonal principal da ma-
triz diagonal A , que sao os valores proprios Xj de z , coincidem com

() _ @ ()

as variancias das variaveis associadas aos vetores Yy

S .7 TEOREMA

A métrica Q definida por Q :(detz}/p 2-1 equivale a uma

transformagao linear S sobre as variaveis iniciais, e que se
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escreve como um produto S = WC' , onde C' & uma rotagao (de-
finida pela matriz C' dos vetores proprios ortonormais de z s
escritos em linhas) e W e uma transformacao diagonal (defini-

da da mediante a expressao (1.5.5.1)).
Demonstracao

i 1 1
Sabemos que; Q = S'S, y CAC', bem como, Q = (detZD /p 2—

segue-se :

@ethDP 5t = Jlcac! P - cnen?

A jYP et e

p 1/p =1
= ( I &) CA-C'
j=1
B p 1/ _
=c¢| (1) PAl]C'
L o
_ . _
i/ E
M
1
=c¢| ( T 2
o1 3
3
0 1
/.
A
= 1
/Oiz ]
1
)
P, 1l/p /"2 0
=Cc| ( O o!)
j=1 "o
0 12
L o
2

&= 0w e



|

VAR

o, 0

I o,) g
2 ]
0
P
2

=Q=8"'s= (Wwc')"' (WC")

—CW C', tem-se S=WC'

= CW' WC'

19
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2.1 INTRODUCAO

Neste capitulo sao indicados os aspectos basicos relacionados a
uma abordagem do problema de discriminacao com finalidade descritiva. As
sim, devem ser determinados os chamados eixos fatoriais discriminantes ,
permitindo uma melhor separacao entre duas classes. Esses eixos corres-
pondem a certos vetores unitarios os quais, mais exatamente, sao vetores
proprios de uma matriz T_lB, onde T e uma "matriz de variancias—cova-
riancias total" e B & uma 'matriz de variancias-covariancias inter-clas
ses", as quais serao definidas no texto subsequente.

Faz-se, por outro lado, uma ligacao com o metodo classico das

-
funcoes lineares discriminantes, introduzido por R.A., Fisher em
1936. Tal metodo consiste em comparar as distancias de um individuo ar-
bitrario aos centros das classes, distancias essas que se medem atraves
de certa metrica, com o objetivo de serem evidenciados determinados fato
res, definidos como combinacoes lineares das variaveis originais, de sor

te os valores respectivosisejam tanto quanto possivel mais diferentes: ', <1 7~

para individuos pertencentes a~'classes distintas. - =2 -
2.2 NUVENS DE PONTOS NO RP

Procuramos manter, quanto possivel, as notagcoes ja introduzidas
- .
no capitulo anterior.
. . & T -~
Em cada classe C_ , os individuos x, poderao encontrar-se
T
fetados d = , i=1,2 i I d

afetados de pesos ou massas p (x.) , ¢ = 1,2,..., . sso corresponde
a se considerar uma aplicacao

(2.2.1) Pt € s [o,1] ,

X VNS> pr(x)

sujeita a "condicao de normalizagao':




2.2.2) ! p@=1 .
xeC

3

(2.2.3) DEFINICAO

A nuvem Cr e o conjunto dos pontos x € C , afetados
T

de seus pesos pr(x).

A todo rigor, observa-se que a nuvem Cr e de fato o par
(Cr , P.). Diz-se que os pesos ou massas sao equidistribuidas em Cr 5
guando pr(x) = Z/NP , para todo x pertencente a referida classe.

Por sua vez, consideraremos as classes C e C , tais que

ou seja, a classe C e formada por todos os elementos das classes Cr', =
enquanto E possui como elementos aquelas classes.

Se, para cada fﬁ = fr,e.E A atribuirmos;nnpeso:ou-massa ~qly)———
de sorte que:

lay =1,
yeC

entao o par ( C, g ) sera ainda uma nuvem. Em consequencia, pode-se
igualmente considerar a nuvem (.C , m ); onde:
r r
2. .) = q(C . :
(2.2.4) mx) =qC)  p, (x)
note-se que, de fato:
}omx) =1 .

xEC

Na hipotese dos pesos serem equidistribuidos em cada classe OC
P P -
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e, se alem disso, q(Cr) 2'5;/W , entao os pesos em C tambémserao equi

distribuidos, com #(x) = 1/N , para todo x pertencente a C .

2.3 BARICENTROS DE NUVENS DE PONTOS

Na presente secgao, considera-se o conceito de baricentro (ou

centro de gravidade) de uma nuvem de pontos.

(2.3.1) DEFINICAO

Dada a nuvem (Cr 5 pr) no Rp, seu baricentro(ou centro

-

de gravidade) gr e RP ¢ definido por :

(2.3.1.1) £ = p,(x) x
XBCr

. 5 . o = b
No caso de equidistribuicao de pesos, observe-se que g e, na-
- R . . - . — -
da mais, que o vetor medio introduzido no capitulo anterior:-

Analogamente, no caso da nuvem (C , T), tem—se o baricentro

g E RP , dado por

(2.3.1.2) g

z m(x) X
xcC

Por outro lado, ao se considerar a nuvem (C , g) cada classe

- - . . . r .
y = Cr’ podera ser identificada ao seu baricentro y = g ; em tal cir-

cunstancia, o baricentro de C sera :

(2.3.1.3) g = 1 aly) ¥
yEC

(2.3.2) PROPOSIGAO

Sejam g e g os baricentros das nuvens C e C , res-

pectivamente. Entao: g=g.
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Demonstragao

g= law e =lae» lp&x =
y&eC yEC xeC_
=1 lawp®=x= 1@ x=g .
yEE XECr xEC
2.4 INERCTA DE NUVENS DE PONTOS

Na secgao precedente considerou-se o conceito de baricentro de
uma nuvem de pontos; que e o equivalente, em termos ''mecanicos', ao con-
' -
- - . - - 4
ceito estatistico de media (ou vetor medio).
De maneira analoga introduz-se, aqui,o conceito de imercig,, equi
valente ao de variancia e de covariancia do @apitulo 1.

0 espaco onde trabalhamos &, ainda,o RP. No caso unidimensio-

nal (p = 1), a nuvem de pontos (C , ) distribui-se sobre uma linha reta

e sua variancia ou momento de inercia, calculado-com relacao ao seu cen=

tro de gravidade g , e dado por :

2.4.1) ve )@ g’
xEC

Ja no caso multidimensional (p > 1), teremos uma variancia ou
momento de inercia para cada uma das p variaveis; ou seja, trata-se da
variancia ou momento de inércia da nuvem, quando projetada ortogonalmen-—
te sobre o eixo de coordenadas correspondente.

De maneira mais geral, desde que seja fixado um vetor u E RP s
pode-se considerar a variancia ou momento de inércia da nuvem, projetada
ortogonalmente sobre a direcao definida pelo mesmo vetor unitario M (vi

de grafico e definigao a seguir).




(2.4.2) DEFINIGAO

A variagncia total ou momento de inércia total £(u) da
nuvem (C , m), projetada ortogonalmente sobre a direcao u (onde

u € R®? & um vetor unitario), definé-se como:-—— —— -

R.4.2.1) () = z (%) [:uu sz_ngz -
xeC

Note-se que u' Q(x-g) € o produto interno (ou produto escalar)
do vetor unitario u , pelo vetor (x-g); por outro lado, (x-g) denota o
afastamento ou desvio do vetor x com relagao ao vetor médio ou baricen

tro g da nuvem C .

Analogamente, para a nuvem (C,q) tem-se:

(2.4.3) DEFINICAO

A variancia inter—classes ou momento de inerciq inter—clas

ses b(uw) da nuvem (5,q), projetada sobre a direcao u, define-se

como:
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k 2
r
2.4.3.1) b) = ] q(g") [ q(g™-2)]
r=1
Em particular, para cada nuvem (Cr,pr), projetada sobre a mesma
gdirecao u , tem-se a variancia ou momento de inércia dentro<ﬂac1assecr,

@éada por:

2
T
2.4.3.2) vi() = ) p,(x) [u' QGx-gh)]
xeC
T
de sorte que, a variancia intra-classes ou momento de inércia intra-clas

ses, e dada conforme a definigao seguinte.

(2.4.4) DEFINIGAO

A variancia intra-classes ou momento de inércia intra—

classes w(u), segundo a direcao u , define-se como:

K
2.6.4.1)  — w@ = Yq@EH viw .
r=1

Finalmente, apresenta-se o .conceito de covariancia ou « produto
ée inercia, segundo duas diregoes y eu, (onde u ,u,E RP sao  vetores
mnitarios).

No caso da nuvem (C , ), tem-se a covariancia total, ou procu-
to de inercia total, segundo as referidas direcoes, atraves da definigao

abaixo.

(2.4.5) DEFINICAO

A covariancia total ou produto de inércia total t(ul,uz)

da nuvem (C,T) e dada por:

(2.4.5.1) Z(u,u) = ) 1® [u! Qx-g)] [u)Q(x-g)]
S x€EC 1
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Por outro lado, comsiderando-se a nuvem (E ».q), tem-se:
(2.4.6) DEFINICAO

A covariancia inter-classes ou produto de inércia inter-—
classes bﬁﬁ}uz),da nuvem (C, g), segundo as direcoes u eu,, de

fine-se como:

k
(2.4.6.1) b(u ,u) =] q(gh) [UiQ(gr—g)][?éQ(gr-gX]
r=1

Finalmente, tem-se:
(2.4.7) DEFINICAO

A covariancia intra-classes ou produto de inércia intra- -

classes w(ui’UZ)’ segundo as diregoes u; e u,, e dada por:

k - AP ) e
(2.4.7.1) w(ﬁl ,’uz’s) FEs rzlq(gr) é{ép(x) [u]'_ Q(x—gr)_] EJQ' Q(?;g}:)} 5 : :V-T"—.i”;‘%:‘
x 57

Se Yy eu, forem os vetores canonicos e, e ej (vetores unita-
rios sobre os eixos coordenados), entao I(ui),t(ul,uz), b(ul)’ b(ul,uz),

w(ul)etu(ul,uz) notar-se-ao tii S tij s bii s bij s We @ wij ; obser

ve—-se que as variancias ou momentos de inercia tii ’bii e w..sao co-

variancias ou produtos de inercia, onde 7 = j (isto e, sao variancias
ou momentos de inercia).
Os t.., b.. e w.. constituemos termos gerais de matrizes de
zJ J )

inercia T , B e W, conforme a definicao seguinte:
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(2.4.8) DEFINICAD

As matrizes de inércia total (T), inter-classes (B) e

intrq-classes (W), sao as matrizes de termos gerais tij s bij .

W...
J

Note-se que o produto interno e{ Q(x-g) nos da a i-esima coorde
nada do vetor (x-g), isto &, X783 analogamente, e{ Q(gr—g)::(g§—gi).

Como:

tij = Xgc'n(x)(xi—gi)(xj—gj), (2.4.8.1)

entao T tambem se escreve:

-

T = z m(x) (2-g) (x-g)' . (2.4.8.13)
xEC

Por outro lado, como:
k

beo= ¥

i T r
. ~g. .-g.), 2.4.8.
r=1q(g )(gl gl)(gJ gJ) (2.4.8.2)

segue—se que B se escreve:

k T - 5 = r
B= ) ae)E ™)@ T (2.4.8.2a)
r=1 v=i
Analogamente: .
k r r r
W, = rzl rgcq(g )p_(x) (Xi-gi)(xj—g 5 (2.4.8.3)
® &3
k r r r
e We= ) T aeDp (0 xgD gD . (2.4.8.3a)
r=1 rGCr r

Em consequencias das definicooes apresentadas no texto, podemos
ter em funcao de T, Be W » 08 valores das variancias total, inter-clas

ses e intra-classes com relagao a qualquer direcao u, respectivamente.

Para esse fim, consideremos:




29

2.5 LEMA

{2.5.1) Z(u) = v' Tv
{2.5.2) b(uw) = v' B v
§.5.3) wha) = v' Wv ,

onde v € a imagem do vetor unitario u pelo isomorfismo do R? no (ﬁRp)*
cuja matriz em relacao a base (ei) do RP e 3 base dual (el) de (?Rp)*,

£ precisamente a matriz Q .

Demonstragao da expressao (2.5.1) e

) m(x) [u'Q(x-g)] 2 =
xEC

t (u)

z m(x) [u'Q(x-g)] [:(x-g) 'Q u] =
xEC

(Qu) '[ z Tr(X—g) (X—g) '] QU"; S SN
xXEC =3z

como v = Qu e utilizando (2.4.8.1a), segue-se o resultado desejado,i.e,
t(uw) =v'Tv

Demonstracao da expressao (2.5.2)

k 1 o o= E 2
) alg) [v'ag -g)] =

r=1

b(u)

1

5
Y a(s") [w'ag™g)][(g -8 "qu] =

r=1

k
= @' [ 7] qeHE-E-] @ ;
r=1

desde que v = Qu e utilizando (2.4.8.2a), segue-se: b(u) = v'Bw .



a

Demonstracao da expressao (2.5.3)

De forma analoga, usando (2.4.8.3a), tem-se:

k
bw) = § qg") vi) =
r=1

a(e I p (0 [w'ex-g"H]* =

1
I o~

r=1 xXEC
T
k ¥ T r.!
= ) ae) L p 0 [wak-g)] [ au =
r=1 xECr

k
@)'L I I aeMp_(0x-g")x-g" T =
r=1 xECr

=v'Wv .

Com relagcao as matrizes de inércia, vale a seguinte importante

relacao:

2.6 TEOREMA (HUYGHENS) ——— -~

Sejam T , We B as'matrizes de inercia ou de covarian -~ -

cias total, intra-classes e inter-classes, respectivamente.

Entao:
T =W+ B
Demonstracao
Tem-se:
s T E o
w= ) ) a(g )pi.(X) (x-g )(x-g)' =
r=1 rECr

r . ,
2 q(g )pr(x)(x X'-grx'—x gr +gr gr 5
1 xECr

1
I >R

r



rlrEC

- zq<g><z p_(
r=1 xEC_

:2 ZQ(g)p (x
“leC

por outro lado,

k
z q(g") (g"-g) (g"-

Z 1 alg" )P (x)x x' z a(gHg ( ) P, (x)x)"' -

r=1 xEC
- k ot
x) x)g° + R COI®) P x)g g =
r=1 xEC
k r.r r' A
)xx—Zq(g)grg H [ :I
r=1

B = g)' =
B 21q<g )(g g -g'g'-gg +gg ") =
koo,
= ) fghg's" ~(Zq(g)g)g —g(Zq(g)g) #
r=1 r=1 r=
S r
+ () agNg g" =
r=1
e . T T B
=) ag) g g +gg' . L]
r=1 :
Ora, de [A] e [B:J, segue-se:
. G
B+ W= z Zq(g )p (x)xx -J-gg :._i,,_;,;_:;‘[: ]
r=1 XEC - '
Ademais,
T = ) m(x)(x-g) (x-g)' =
xEC
= ) mx)(x' - gx' - xg' + gg') =
xEC
k
= 1 I aehp (0x x' -
r=1 XEC
—g( )T - () T)x)g gg =
XEC xEC
:Z Zq(g)p(x)XX+gg'- [°]
r=1 xEC
Comparando [ ] e [D] chega—-se ao resultado desejado,
T=B+W.

i
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.e,

B
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A partir do resultado desse teorema, obtem-se:
{2.6.1) v Tv=v'Wv+v Bv; ondev=Qu¥uc€t RP
= conforme o lema (2.5), segue-se:
(2.6.2) £(u) = w() + b ,
gue e o teorema de Huyghens (classico em mecanica), aplicado a nuvem C .

2.7 EIXOS FATORIAIS DISCRIMINANTES

0 objetivo deste paragrafo e escolher um eixo, isto &, um vetor

snitario u que melhor permite discriminar as classes. Iniciamos  por
2 2 ; ; . _

dois exemplos no R™ -que nos encaminham de maneira mais objetiva para a

compreensao das ideias al subjacentes.

R;7.1) — —EXEMPLO (a): «(ma.-discriminagao)———o-—— -
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(2.7.2) EXEMPLO (b): (boa discriminagao)

A

-~
~
—

Nota-se no exemplo (a), de fato, o vetor unitario u nao permite

discriminar as classes Cl e C2 tao bem quanto v o faz no exemplo (b).

Obviamente, a discriminacao sera tanto mais facilmente alcanca-
dz quanto as classes se encontrem mais distanciadas uma das outras (va-
riancia inter-classes grande) e, concomitantemente, quanto os -individuos
{ou elementos) ‘de uma mesma classe se encontram-o mais proximo- possivel
entre si, (variancia intra-classes pequena).

Dessa forma, encontraremos o eixo fatorial, ou seja, owvetor uni
tario u , que melhor discrimina nao somente o conjunto dos individuos de
C , mas o conjunto C das classes de individuos de C .

Para esse fim, podemos dizer que o primeiro eixo fatorial dis-
criminante u1 sera o elemento u que maximiza o quociente da varian-

cia inter-classes de u pela variancia intra-classes de wu, .isto e, tra

ta-se de :
v'B v . -
§2.7.3) MAXIMIZAR —_— , ou equivalentemente
v'Wv
v'B v .
(2.7.4) MAXIMIZAR —— " onde v = Qu



De fato, tem—se a seguinte cadeia de equivalencias.

] 1
MAXIMIZAR Y2 Y . < MINIMIZAR 29 Y 4 7 <
vWvwv vVBv
v'Wv + vBv v'B v
<> — FERe——— |y
MINIMIZAR T <= MAXIMIZAR ———

Com finalidade de determinar o primeiro eixo fatorial discrimi-

m=nte, considera-se o seguinte teorema:
2.8 TEOREMA

i s : : : e 1 -
O primeiro eixo fatorial discriminante wu e tal que

1 — ' e —1 s
v = Qu1 e o vetor proprio de T "B, correspondente ao malor va-

lor proprio Al'

Demonstracao

Observa-se que o problema formulado atraves da expressao(2.7.4)

gorresponde ao problema classico de se obter o maximo do quociente ———de—
@uas formas quadraticas. E para esse fim, utilizaremos o metodo dos mul - -
tiplicadores de Lagrange.

Verifica-se primeiramente que e possivel escolher v'T v igual
2 uma constante Kk prefixada, pois os vetores proprios sao dados a me-
=0s de uma constante. Com efeito, suponhamos que se obtivesse um vetor

proprio w , tal que w'T w = k] # kR ; bastaria, nesse caso, em lugar

g2 w, escolher v = wr—%— w , donde v'T v =k .
1

Assim, tem-se que maximizar Vv'B v sob a condigao Vv'T v =k

{constante). Derivando em relacao a Vv e igualando a zero, segue-se:

|
o
)
<
!
b
<
5
<
]
I
o

isto e, 2Bv -A2T v =0 ,
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donde B i=" v 5

Como T e suposta inversivel, temos:

r Yy =1 .

. - . =1
Dessa forma, v e o vetor proprio de T "B, corresponde ao va
lor proprio A .
Por outro lado, tomando a equacao Bv = )XTv e multiplicando

por v' a esquerda dos dois membros, obtem-se

v Bv = AvVvTvw

v'B v

donde A = -Wv—— .

gue e exatamente a quantidade que desejavamos maximizar

(2.8.1) COROLARIO

- . -1 .~ ~3 5o
Os valores proprios A de T "B, sao todos positivos e -

e inferiores a 1 (isto e, 0 < A< I).
Demonstraggo

Como v'Bv e v'Twv sao variancias, entao

\

. v Bv

AS ——--7->0 .
vVTv

Por outro lado

) = v'B v_o_ vViTv -v'WvVv = 7 = v'W v é 1
vVTv VTV v'T v

i
e S

=



De maneira analoga, definiremos o segundo eixo fatorial discri-
- 2 ol -1
minante u , como sendo o segundo vetor proprio de T B e Q-ortogonal a
1 . 5 = ; e .
® ; o qual, constitue o melhor eixo fatorial discriminante independente
@0 primeiro.
; 1
De agora em diante chamaremos de PODER DISCRIMINANTE DO VETOR u
: e e )
{ou eixo fatorial u ) a quantidade Al s
Cbserve-se que considerando a variancia total ao longo da dire-
- " 1 ; .. .
¢20 definida por u , o poder discriminante Al varia entre zero e hum,
pois, se for igual a hum (1) a variancia intra—-classes sera nula, isto e,
os pontos da mesma classe tem as mesmas abscissas sobre o eixo fatorial
discriminante correspondente; sendo essas abscissas diferentes para clas

ses distintas. Por outro lado, se for igual a 0 (zero), os pontos me-

dios de cada classe tem as mesmas abscissas sobre o eixo fatorial.
2.9 ETX0S FATORIAIS DISCRIMINANTES SUCESSIVOS

S . S -1
Conforme foi visto anterioremente, o vetor proprio de T B re-

), define ~o segundo eixo -

lativo ao segundo valor proprio ~A2(X2 f,ll

fatorial discriminante e, a seguir, para cada um dos vetores proprios su
cessivos, duas questoes se apresentam:

AZ) Quantos vetores proprios independentes existem?

A2) Quantos eixos fatoriais podem se extrair de tal forma que

sejam significativamente discriminantes?

Primeiramente, observe-se que dentro da maior parte dos proble-
mas de discriminagao, o nimero total de individuos ¥ & superior ao nia-
mero de variaveis p consideradas, que por sua vez @ superior ao  numero
de classes k.

De um modo geral, os individuos xi geram O espago P 5 ao

3 -
passo que os elementos g  (pontos medios de cada uma das k classes )
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geram uma variedade linear afim ¥V de dimensao :
dim(variedade linear gerada pelcs ¢,) < min {p,k-1}.

Observe-se que V e gerado pelos k pontos correspondentes aos
eentros das classes e por isso nao devera ser confundido com o subespaco
@e dimensao k gerado pelos k vetores correspondentes.

Por outro lado, temos que a forma quadratica u T u' & definida
positiva e, portanto define sobre o RP uma estrutura euclidiana o produ

. o ; S =]
£0 escalar associado sendo definido mediante a matriz inversa T ~. As-

, x, ER? | Z dado por:

sim sendo, a distancia entre dois pontos x 2

1

2.9.1) d(x),x) = (x,x,)" T_l(xl—xz) -

Dessa maneira as formas lineares discriminantes podem ser defi-

midas geometricamente da seguinte maneira:
. - . . : 2 =1 _.

Em V , munido da metrica induzida pela matriz T ~ ficamdeter-
minados Os vetores diretores. fl’fZ""’fk 1 _dos eixos principais de
B_ . : r . =, )
inercia do sistema de pontos x' - -afetado das massas;pp(xi). As=formas.: . ==

i

lineares discriminante sao as formas,

(2.9.2) v. =T :
i

Ja no caso de duas classes de centros g1 e gz , tem-se f1 =
= gl - g2 e a forma linear discriminante sera:
! R | 2
(2.9.3) vy =T (g -g) .

Portanto, observa-se que sob as hipoteses N > p >k, existem

3.

exatamente (k-1) vetores proprios de T B , isto e, (k-1) eixos fato-

riais discriminantes.

—
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2.10 FUNCAO LINEAR DISCRIMINANTE DE FISHER E D2 DE MAHALANOBIS

Em 1936 Fisher introduziu a funcao linnear discriminante, para
€uas classes, como sendo: "A fungao linear das variaveis iniciais, tais
gue: a razao do quadrado da diferenga das medias (para cada uma das duas
classes) desta fungao a variancia desta funcao (variancia calculada a par
tir da matriz de covariancia intra-classe), seja maxima. £ bem assim,
gue formulamos em (2.7.3), o problema da procura do primeiro eixo fato-
rial discriminante, e nao sera surpresa que recaimos sobre a funcao de
Fisher, no caso de duas classes.

Os coeficientes desta fungao linear, podemos denotar como sendo

-

== vetor linha

1 2.v =1
(" -g) T
Se denotarmos por AI,XZ,...,Apas componentes deste vetor, o va-
lor desta fungao 1 discriminante para um individuo =x escreve-se
como:
P = + eee 4
§2.10.1) f(x) Azx] + A2x2 + Apxp

De posse dos fatos apresentados, podemos mostrar que o vetor vy
L = = ; 5z
€ 0 vetor proprio de T "B. Para tal fim escreve-se conforme a defini-
ggo (2.4.8.2), o0 termo geral da matriz de covariancia inter-classes, pa-

. 1 2 -
ra o caso de duas classes, com centros g e g . Isto e;

1J

gonde:

o
]

NJ NZ
7 & - 2 (- -p

com s NJ gl N N292 ;o
g = 7 e N = NZ + N




2 qual se transforma em:

N_N

{2.10.2) B = 122 (gl = gz')(g1 = gz)'
y

Por outro lado, se X e y designam o Gncio valor proprio e

E . - . -1 -
®R1co vetor proprio de T B » entao:

(2.10.3) I v oo,

2 qual se transforma em:

N_N
2.10.4) T Lj ' - - )y =y
N N —

Suando substituimos o valor da expressao (2.10.2).

Afirmamos que T—l(g1 - g?) = v e o valor proprio

De fato:
vy
-1 "7 : : -
T —%(g-l-gﬂgl,-gz)'v = -
g
NN '
Tlizz(g -8 ) (g —gz)'Tl(l-gz)':‘ .
N
NN
1”2 -1
_;;r_r (gl _ gz)(gl _ g2)v T (gl _ g2) =
N_N
1 "2 -1
T - gh L gl gt Ll 2
_ R _ :

Como (g1 - gz)' T—l(g1 - g2) € um escalar, entao

—lgg (g; - g?)' T_l(gl - g2) também sera um escalar, portanto
-y
-1-1-2, 1 2 2 =1 2 =1
T T(g -g)(gl—g\'T (g.l—g):eT (g}-gz) "
N
onde
NV_N
0= L2 g - g2)r 1l _ 2
NZ




- o o T o 1 2 - - .
Como A e o unico walor proprioe T l(g - g) =V e o unico
wetor proprio, entao 6 = A .
N
Dessa forma, —Zgg (g1 n gz)' T-l(g; = gz) e um escalar e exa-
N

tzmente o valor proprio A.

Sendo assim:

N_N

1712 1 _ 20,1 _ 2y ol -1 2
L2 @ - gD - e T - D) =T ! - gD
. , ,
N_N
Nota-se que o valor proprio encontrado A:?—lzé gl—gz)' T l(gl-gzh
N

© gqual indica o poder discriminante da funcao discriminante encontrada ,
e . 2 ; o s NJNZ
ma0 e senao o D de Mahalanobis a menos do coeficiente ——— . Com

N2

: 2 .
efeito; o D de Mahalanobis se escreve como: -

£2.10.4) 02 = (gl - g2 T—l(gl -g2)

2 qual nao e uma maneira de medir a distancia entre duas classes, mas &
precisamente a distancia entre os centros das classes, pela métrica defi

mida por T—1 2 —

2.11 METODO DE CLASSIFICAGAO

Os topicos que apresentamos nas secgcoes anteriores, concernen-—
tes a discriminagao, tinham objetivo descritivo. A partir de agora pas-
saremos a nos interessar pelo objetivo de natureza decisional, isto e,

pelo problema de classificagao, propriamente dito.

Sendo assim, para um problema de identificacao ou classifica-
g20, dispomos de um novo individuo (ou elemento) "anonimo" que designare
mos pela letra a , que tambem corresponde a um vetor do RP , de coorde
Para tal finalidade, teremos:

madas ‘' a su3 /L

FELITEE i ®
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(2.11.1) DEFINICAQ DO PROCESSO

Sendo dado um novo individuo a desejamos saber a que classe
p— b

ele pertence. De fato, supomos que o individuo a considerado pertence

2 uma das classes definidas inicialmente e queremos decidir de qual de-
las se trata. Para esse fim, procuraremos uma particao do RP em k re
gioes, correspondentes as k classes.

i % o~ e g —{L
Primeiramente, calculamos a distancia pela metrica T , de

1Y

20 centro gr da classe Cr » conforme expressao (2.9.1). Logo:
EE.11.1.1) d(a,gr) = (a - gr)'vT_l(a - gr) .
Logo apos, decide-se afetar a a classe Co , tal que:

(2.11.1.2) d(a,g_ ) = min {d(a,g"); " € cl.,

onde g € o centro da classe CO
De fato, e nula a probabilidade de serem iguais as distancias

de um ponto a duas classes-distintas, gquando as variaveis observadas ds—

sumem um conjunto ‘nao ‘discreto detvaldres,“(iSEOvE,fno:casé>Qe variaveis
continuas). |

Observa-se que as quantidades d(a,gr) definida em (2.11.1.1),
sao funcoes quadraticas de a , possuindo em comum o termo quadrado
2 T a ; portanto, poderemos comparar as funcoes lineares de a, re-
lativa a cada classe Cr

Para tal fim, considere-se

§e2.11.1.3) Yo (a) = d(a,gr) ~a' T} a
r
donde: -
_r' -1 r
(2.11.1.4) UC (a) =g T (g - 2a) .
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Nestas condigoes, a regra de decisao definida em (2.11.1.2) tor

"Decide-se afetar a a classe C0 ; tal que :

£2.11.1.5) vo(a) = min {vcn(a) ; Cr c C} s

emde v, (a) & definida em (2.11.1.4).
T
Para melhor compreensao, vejamos uma aplicacao, para o caso de

@mas classes CT e CZ .

Neste caso, existem somente duas fungoes Ve (a) e vc (a) a com
’ 1

2
Pparar.
A regra de decisao e a seguinte: "Tomamos a classe CI o -indi- '
- widuo a se :
vc(a)<vc(a)
1 2
Utilizando os valores de vc (a) indicada em (2.11.1.4), tem-
n
se: e
2' -1, 2 e N ]
v, (@) =g T (g" -2 - =
2
1' . -1. 1
Ve (a) =g T (g - 2a)
1
v .
donde: v, (a) -v, (a) = gz i & l(g2—2a) - g1 T 1(gl—Za)
Cs €1
- 2'_ r o~
B TS 0 SUDW L N L T
l_z L L 2 =k
=g T lg - g1 T 1gl # Z(gl—g R . a>J0
Por outro lado, observa-se que:
1' -11 2' -1 2 1 2 o Dy 2
g T g -g T g =(@ -g)'T (g +g),
pos: 1' . -12_ 2' -11
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Portanto, a desigualdade anterior, escreve-se:

2 1.k 1 2., -
& ~-s)" T8 +g)+2(g—g)"r1a>0

i

1 2 1 -1, 2 1 1 2 -1
:-—5—(g -g)'T (g +g)+(g -g)'T a>0

1 2 -1 | 2 -1.1 2
(g ~g)' T a-—H{g -g)' 7T g +g)

>0,

# = regra de decisao, torna-se: "AFETA-SE a a classe CI se :

1 2 "'1 1 1 2 - 2 "
£2.11.1.6) (g -g)'T a>—(g -g)' T gD

e; "AFETA SE a a classe C2 se :

1

1 2 - 1 2 — 1 2. n
$2.11.1.7) (g7 -g)'T a < —§~(g1 -g)'T 1(g +g)

Nota-se que, o termo da esquerda das expressoes (2.11.1.6) e

R. A. Fisher (que & a funcao linear maximizando a razao do quadrado da

' diferenga das méedias de duas-classes; pela variancia global) . e

2.11.1.7) e exatamente a funggo linear discriminante introduzida POT -




DISCRIMINAGAO SOB A HIPOTESE DE LEIS NORMAIS




8.1 INTRODUGAO

Neste capitulo consideraremos a distribuicao dos valores assumi

dos por cada variavel, relativamente aos individuos de uma classe, como

sendo uma distribuicao aleatoria. Assim, para cada classe e cada varia-
- . . . -~ .

wel supomos existir uma lei probabilistica, o que de certa forma nos

traz dificuldades para conhece-la com exatidao.

Alem disso, as variaveis tratadas no presente contexto sao de

. caracter quantitativo, podendo em geral assumir um conjunto contiInuo de

' walores reais. ‘Lembramos que uma variavel podendo assumir distintos va

lores, sujeitos a certas probabilidades, chama-se uma variavel aleatdria.
No caso em que a variavel X & continua e unidimensional,” su-
pomos existir certa fungao f(x) , ou densidade probabilistica, de sor-
fe que a probabilidade de X ~ estar = entre dois valores quaisquer aeb
‘& dada por ¢

b

e R Eab= | T

a ‘2

Note-se que uma funcao densidade f(x) esta sempre sujeita as

Seguintes condigoes:

(1) f(x) > 0 ¥ zER
(ii) flz)de = 1 .

==

a b b

flx)de = P(a < X < b)

a
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No caso bidimensional, dispomos de um vetor aleatorio E:(XI,XZ),

sendo f(x‘l,xz) sua densidade, tal que:

(1) Flzpzy) > 0 ¥ (z,,z,) E R

I
()
.

(ii) : [ f(xz,x2)dx1dx2

o J—oo

Entao, a probabilidade de & (XZ,XZ)se encontra : numa dada

regiao N do plano, sera:

P(£ EN) :J( ( flz,zp)de dz,

IN |
se B
N=[a,b] x [e,d] , entao :
b d
< = < =% =
P(a _X1 <D, & <X, < d f(xl,x2) dxldxg .
ale
O conceito de fungao densidadepode ser-estendida evidentemente,pa -
ra o caso de umvetoraleatorio £ = (XJ""’Xp) de:qualquer dimensao p>I.-

Assim, determinar a lei de £ corresponde a determinar sua funcao densi

Hade f(E) = f(xl,xz,...,xp).

Vamos nos restringir a situagoes em que a lei associada ao ve-

tor £ pertence a chamada familia de leis multinormais (ou leis de Lapla-

ce-Gauss), a cujo respeito nos deteremos no paragrafo seguinte.

B2 LEI DE LAPLACE-GAUSS

Como foi visto - anteriormente, ocorrem situagoes em que

ha necessidade de supor que as variaveis estao sujeitas a certas leis

probabilisticas. As leis multinormais, tambem chamadas de leis normais
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multivariadas (ou leis de Laplace-Gauss), sao aquelas supostas mais co-
mumente. Isso e decotrEncia, em parte,de sua universalidade; ou seja,
s20 aquelas que mais frequentemente ocorrem na pratica. Alem disso, os
testes usuais de significancia estatistica exigem de regra a normalidade
Romo pre-requisito para sua aplicacio.

Assim ;endo, para o caso de um vetor aleatorio & = (XJ’XZ) big

éimensional a fungao densidade normal bivariada correspondente e dada

por:

2 2
1 | (xl—ul) (x2—u2)
-2.1) f(xl,m2) = ex +

(
P R ] 9
chlcg_VJ—pg 2(1—93 - %

(x,-p. ) (x,—1,)
1 "4 2 "2 2
2p 5,5, s v (xl,xz) E R ;

onde L. e 05 sao as medias e variancias de Xi (2 =1,8), respectiyé
‘mente, e p e o coeficiente de correlacao entre XJ e X2 :

Szbemos que uma fungao de duas variaveis pode ser .representada . _
graficamente por uma superficie no espago a tres dimensges.,fAssim,<a-sE_ P
perficie representada por (3.2.1) assemelha-se a um sino, como revela a

‘figura seguinte (para p = 0,6 e 01/02 & Iy-i

jht
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Por outro lado podemos tambem descrever funcoes de duas varia-—

veis por meio de curvas ou linhas de nivel, obtidas seccionando a super-

ficie 2z = f(xl,xg) com os planos 2z = ¢ (constante) e, em seguida proje
tando as curvas resultantes de tais intersecgoes no plano z, 0 z, -
No nosso caso, isso corresponde a considerar curvas no plano

= 0 Ty s de equacao:

-

2 2
(x.,—-u.) (x~u,) (x,=u,) (x,-u,)
(3.2.1.1) 121 + 222 PN B A oS
o 99 9%

Cada uma dessas equacoes representa uma elipse com centro no pon

to (”1’“2)’ o qual e chamado de centroide da populagcao bivariada. Alem
-

disso, cada elipse tem um dos eixos ( o principal ou o secundario) coin-

cidindo com uma reta passando pelo ponto (Ul,uz) e fazendo angulo 6 com

o eixo positivo x4 0 Lo s tal que:

2po1 (o]
S 2
~g- ety =g—3 R T
01“02 -
B = 4
25° ¥ se 0, = 9 .

Observa-se que essa reta coincide com o eixo principal {maior ei
x0) se p > 0 e com o eixo secundario (menor eixo) se p < 0. Como o
angulo € depende somente de 0, » O, e p, segue-se que, tcmando varios

5 B 5 - - . 1 -
valores de ¢ , obtem—-se uma familia de elipses concentricas, todas com

a2 mesma orientacao. Vide exemplo abaixo.

EXEMPLO (a)
Suponhamos que & = (X7,X9) segue uma distribuicao normal biva-
riada com ul = 75 , uz = 2004 O1 = 02 =5 e p= 0,60.Entao a expressao
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(3.2.1.1) torna-se:
2T Cx.-20)> (z.-15) (zx.~20)
& | Tg 1 2 %

—* 5 — — 2.0,60 =g
5 5 5.5

ou ainda,

2 z
(x1—15) + (x2—20) -1,2 (x1—15)(x2~20) = 25

ou seja, e uma equagao definindo contornos elipticos de equidensidade,om
pma familia de elipses concentricas, cujo centro e o ponto (I15,20) e tem

; : ~ o g
do o eixo maior fazendo um angulo de 45 com o eixo x 0x2, uma vez gque

1

g, = O

1 , ePp > 0. A figura abaixo mostra as elipses de equidensidades cor

respondentes a determinados valores da constante C, a saber: C = 5,88

-

€=2,95; C = 2,06 (para as tres elipses mais internas) e C = 0,28 ;

c . 0,01 (para as tres mais externas).

]
S
(I
w
Q
]

35
30— / ) o
25
20|

I5

N\t

d
'
7/
s .\45'
¢

o

Veremos, agora, ser conveniente que se escreva a equaggo(3.2.1)

na forma matricial.

‘4




Primeiramente definimos 2 matriz de variancias—covariancias ou

matriz de dispersao para wma populacao bivariada, como sendo:

02 .
1 £
(3.2.2) 1= ,
2
0,0, a,
de sorte que: det z = Ofcg(l = 02) H

consequentemente, supondo a inversibilidade de z temos:

-0
/0,9,

NN
\

/0

Note-se que a expressao no expoente da equagao (3.2.1), a menos

do fator (-1/2), e equivalente a forma quadratica.

-1
(3.2.3) o=@ -y, oz, -y § ;

~y _

pondo x' = (xz = Uy Ty, u2), segue-ge 3 I, ===
(3.2.3.1) X2 = g s

Observa-se, ademais, que o fator constante da expressao (3.2.1),
que e 1/2ﬂ0102v1-pz se escreve (2n)_1(deti)_1/2

Portanto, a expressao (3.2.1) torna-se:
(3.2.4) flzy,zp) = (2m) 1 (aetz)"l/z exp(-Xz/Z),

que € a forma compacta para a funcao densidade normal bivariada.

No caso p-dimensional, definimos a matriz de variancias-covari

ancias z , como : e




% S P9
C o1 o 02 . . - . . . O O’ O’
(3.2.5) z he r2) & 2 2p 2 p
p. OO0 p. o0 G A e éz
pl pl PZ p 2 [
onde Gi € a variancia de Xi e pij (i # j) e o coeficiente de correla
gao entre Xi e Xj . Seja:
(3.2.5.1) =g .
com
- " - " .
x' = (:cz Has TooHoseennn. ,xp up) : -~

entao, a funcao densidade normal p-variada e dada por:

_ R
{3.2.6) f(xz,xg,...,xp) =k exp(-X"/2) ,
onde: 2 = (2ﬂ)_p/2(det2)—1/2 B :

ademais, U e o-vetor medio de dimensac p correspondente as-coordena-: =- -=
das do centro da distribuigcao, enquanto ) & uma matriz quadrada, sime-

trica e positiva definida de ordem p (matriz de variancias-covariancias).

3.3 METODOS DE CLASSIFICACAO DE NOVOS INDIVIDUOS E

FUNCOES DISCRIMINANTES

No presente paragrafo abordamos o problema de atribuicao que
zparece, naturalmente, quando se dispoe de certas medidas (ou observa-

= - - - -~ . . - . . -
goes) sobre cada individuo e, em decorrencia, desejamos classifica-lo em

sma dentre varias classes, com base nessas medidas. Como foi éstabelecido
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anteriormente, neste capitulo, supomos que todas as variaveis envolvidas
seguem leis normais.

De um modo geral, na classificacao de novos individuos, poe-se
a2 questao de se considerar custos de erros, interpretados como perdas ;n
como multas a pagar pela classificagao incorreta dos individuos.

Dessa forma, estudaremos os metodos de classificacao ligados =2
Analise Discriminante, seja sem considerar custos de erros, que & o caso

mais simples; seje numa etapa seguinte, ao se ‘considerar esses custos.

3.1 CLASSIFICACAO SEM "CUSTOS DE ERROS"

Consideraremos duas classes C1 e CZe variaveis X, e X_. Xao
levaremos em conta os custos da ocorrencia de erros.

Seja a figura abaixo, onde as densidades de probabilidade rela-—
tivas as classes C1 e CZ’ respectivamente, sao representadas por duas s

erficies em forma de sino (distribuicoes normais bivariadas).
P

o \2

RC

Assim sendo, parece natural adotarmos o seguinte método ou cri-

terio de classificacgao:

"Afetar um novo individuo x = (xj,x2) a classe para a qual a




densidade de probabilidade respectiva e mais forte; ou em ou-

tras palavras, a classe para a qual se tenha maior probabilida-

de a posteriori de se obter os valores zx, e x_."

1 2

Em consequencia, a fronteira de separagao das .classes C, e CZ
£ definida pela projecao, sobre o plano x, 0 z, , da interseccao das
duas superficies.

E claro que o método assim descrito se generaliza, de imediato,
2 varias classes; observando-se que tal procedimento nao ¢oncede privile-
gio a nenhuma classe e tampouco considera os custos de possiveis erros.

O problema consiste em definir de maneira precisa as fronteiras

separadoras, as quais sao de dois tipos, a saber:

(1) Hiperplanos (definidos por meio de funcoes lineares), se
supomos que as leis multinormais correspondentes as va-
rias classes possuem a mesma matriz de variancias-covari

ancias.

3
b

(ii) Hipersuperficies: (definidos por funcoes quadraticas), se= =*:-
nada podemos afirmar sobre a igualdade das matrizes ~~de

variancias-covariancias.

Para a determinacao da fronteira separadora definida por inter-
medio de fungoes lineares (hiperplanos) consideremos o caso de duas clas
ses 01 e CZ’ com leis fC (x) e fC (x) (densidades de probabilidade

1 2

correspondentes). Dessa forma, a regiac de afetagao a classe C, sera

definida por:

~
]

B.3.1.1)

ixiyg, &x) > £, (x)} .,
5 €,

supondo XC = XC = 2 .




Portanto, a condigao fc (x) > fc (x) traduz-se por:
1 2

<zn>‘P’%aetzc )y 1/2 arp[-l/Z(x-uc g Gxug ) >
1 1 | i |

> (2n)"p/%aet2C')‘1/2
2

1 g
exp[~"/2(x-u, )" ¥ (x-u )]
€, % e,

donde:

12D o e ) < @, > T )
"y o | ¢, C2

Observa-se que o método de classificaggo apresentado no capitu-

1o 2 e analogo a este, bastanto substituir

X por a e UC,UC por ¥;
2

1
sendo T , ali

» @ matriz de covariancia total.

=

Por outro lado, para a determinacao da fronteira separadora de-

finida atraves de funcoes quadraticas, consideremos novamente o caso de

cuas classes C] e CZ’ de leis fC (x)-- & £ (

X), respectivas. Nesse
1 €
€aso, a regiao de afetagao a classe C] » sera definida por
$.3.1.3) R, = x ; £ (x) > fo (x)} =
1 ) -4
supondo Z R
e L
Portanto, a condicao fo (x) > fo traduz-se agora por:
I 2
2m) P2 (4o} ) 2eap [ 2, ¥ T (xen )] >
& c e C
1 i | 1 1
-n/2 N 1 =
> (7P (gee] Y1200 L Y e )7
C C C C )
2 2 i 2
donde:
(3 3.1.4) A_l_(x_p )'Z-l(x_u ) + Ql_ In detz <
S 2 C1 C1 C1 2 Cl

1 =1 1
G ) ) e, ) + L gy, det)
2 Cz 02 c2 2 c2 -

e
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Observamos agqui, a analogia desta expressao com o metodo de

classificagzo de Sebestyen dada pela expressao (1.5.4.3), Capitulo 1.
3.2 CLASSIFICA(;KO COM '"'CUSTOS DE ERROS"

Vejamos, agora, o problema da classificagao de individuos, quan
do intervem "custos de erros".

Para tal fim, consideremos o caso de duas classes C, e CZ’ es—
tando o espago rP particionado em regioes RI c Rz,designadas como as
"regioes criticas" para a afetacao de um individuo arbitrario na classe
C, ou CZ’ respectivamente. Assim, se a p-upla (vetor no Rp) que repre -

o
senta o individuo cai na regiao R; , ele estara classificado na classe

CI; caso contrario, isto e, se ele cai em RZ , estara classificado em

CZ'

Evidentemente, existem possibilidades de ma classificagao (ou

erros de classificacao), isto e, de um individuo pertencer a uma classe

e ser classificado na outra. A partir desse erro de classificagao € que

surge a questao do '

ficando dizer que o individuo e classificado em C. quando, na verdade ,
i
se encontra em % P

Pode-se apreciar na tabela abaixo a indicagao dos custos decor-

reta e incorreta classificagao, para o caso de duas classes C, e CZ :

C C(1/1) =0 | C(2/1) >0

CLASSES
C2 C(1f2)y >0 - E(2/2) = 0
S Cy
CLASSIFICACAO B

Observe-se que para se obter uma boa classificacao, de algum

'custo de erro"; o qual sera notado por-C(i/j),-signi ===




modo tem—se de minimizar o custo da ma classificaggo; para isso conside-—
ra-se distintas maneiras de definir o "custo minimo" conforme dois casos
a2 saber:

(1) probabilidades a priori conhecidas;

(ii) probabilidades a priori naoconhecidas.

— PROCESSO DE CLASSIFICACAO COM PROBABILIDADES

"A PRIORI" CONHECIDAS (caso de duas classes)

Aqui, consideraremos q; como sendo a probabilidade de um indi-
viduo arbitrario provir da classe Ci (Z = 1,2). Alem disso, suponhamos
que as di;tribuigges envolvidas, relativamente a cada classe, tenham den
sidades; ou seja, fch) e a densidade associada a Ci.;i =q.8

L

Se Ri e a regiao critica (ou regiao de decisao) associada a Ci’

entao:

R 3.2.1) S P(1/1,Ry= fC (x)dx
1

Ry

representa a probabilidade de um individuo pertencente a  classe C, ser

1

bem classificado; enquanto

§3.3.2.2) P(2/1,R) = (%) dx

f
R C]
2

e a probabilidade da ma classificaggo. Na notagio P(j/Z,R), tem-se
R = {RI’RZ}’ que se refere a uma dada partigao do espago em duas regioces

de decisao.

De maneira analoga, consideram-se as probabilidades de correta
- - s - - - - . . . = . -
classificagao e de ma classificacao, respectivamente, de um individuo pro

veniente de CZ .




Visto que a probabilidade de se extrair um individuo de C, e
255 entao a probabilidade de um individuo ser extraido de C, e, em se-
guida ser bem classificado, torna-se q; P(1/1,R); no caso de ma clas-
sificagao tem-se q1 P(2/1,R). Toma-se o produto de probabilidades ,
tendo em vista a hipotese de independencia entre a escolha do individuo
e sua classificagao.

Analogamente, para a classe CZ’ nos casos de boa e de ma clas-
sificacao tem-se as probabilidades 95 P(2/2,R) e qz P(1/2,R).

Sendo assim, pode-se definir o custo esperado, como a soma dos
produtos de cada custo da ma classificacao, pelas probabilidade de sua

respectiva ocorrencia, isto e,
§8.3.2.5) C(R) = C(2/1) q, P(2/1,R) + C(1/2) q, P(1/2,R) ,

onde g, e g, sao conhecidas.

Este custo esperado (ou custo médio de ma classifagcao ) e aque-
le que se deseja minimizar. - Os-procedimentos utilizados para tal,dizem-
-se procedimentos de Bayes, os quais dependem da escolha de uma  parti-

o * - =
gao R = {R, ,iR2}§ adequada (conforme a‘definigao seguinte)tzA; eSS TS

(3.3.2.6) DEFINICAO

=
R determina wum procedimento de Bayes (portanto um pro-—

cesso :otimo), se E(R*) f_EKR) : ¥V R

Em outras palavras, para que se possa minimizar o custo espera-

e s *
do C(R), devem ser escolhidas regioes apropriadas R7 = R1 e RZ = RZ'

Em seguida, podemos definir probabilidades associadas as classes
e ao conjunto de variaveis observadas. Seja y= (yz,yg,...,y%) e RP 3

por outro lado, seja x = (xl,...,xp) um individuo arbitrario. Entao, a

e




Jo

probabilidade desse individuo Provir da classe C’ e ser tal que TS Yss

t=1,2,...,p e dada por:

1{72 b
18.2.2.7) Pc, (yl,-—-,yp) = a; fcl(x) drzdrz,...,d'cp ;

—00 /—00 — 00

Por outro lado, podemos definir a probabilidade condicional de

um individuo x = (z_.x s+++5% ) provir de uma dada classe, sendo conhe-
1,2 Jp p b

cidos os valores L1sTgs vy 5 isto &,

g.F. (%)
1 C1

(3.3.2.8)
I + qyf (x)
1 2

-

Ora, relativamente a expressao (3.3.2.5) e supondo C( 1/2 ) =

RC(2/1) = 1 , vem :

]

(3.3.2.9) C(R) = q1 fC(x)dx + q, fc(x)dx
1 2

2 1

Para o custo da ma-classificacio; o que nao deixa de ser uma probabilida-- e

de de mi—classificagio (tendo em vista a hipotese C(1/2) = CCa/1) = 1).

Para um dado individuo x observado, minimizamos sua probabili

de ma-classificacio, atribuindo-o 3 classe 3 qual corresponde a maior

probabilidade condicional. TIsto e, se

(3.3.2.10) > ,
q; fc] (x) + q2 fCZ(X) q] fCI(X) i q2 fCZ(X)
classificamos o individuo x na classe C, - Caso contrario, sera clas

sificado na classe CZ .

Uma vez que se minimizou a probabilidade de mEclassificaggo em

cada ponto, entao o mesmo e feito para o espago todo, donde a regra de

decisao pode ser escrita:
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(3.3.2.11) J

Observa-se que, se ¢, f, (x) = 99 fo (®), o individuo x pode
1 C, 2 CZ -

riaserclassificadoihdistintamentg em C’ ou CZ; mas preferimos coloca-
lo em C, . Contudo, se q; fp (X) + q, fr (x) = 0 s 0 individuo x nao

| 1 C] 2 CZ
poderiaser‘classificadocﬂlnenhuma das classes (em vista de (3.3.2.100)3

Mostraremos, em seguida, que (3.3.2.11) de fato nos da o me-—
Ihor procedimento de classificagao.

*

_ * -
Ora, para qualquer particao R = {Rl s RZ}’ a probabilidade de

ma-classificagcao e dada por: J

1

— %
{3.3.2.12) CR) j;*ql fbl(x)dx + j *q2 sz(x)dx =

2 Ky

=q [ (x)dx - ¢ fr (X)dx +
1 * Cl o [;* CZ

J
Ry 7
*q, j sz(x)dx * g, [ fb (x)dx =
e * 7
Ry R

*

J J
Ry

Note-se que no ultimo membro desta cadeia de igualdades o ter-

= gq, f fcz(x)dx e um valor constante (se RTURZ :“Rp, entao fica ape-

7y - . - - * . - .
nas q2); assim, C(R') serz minimizado se RZ incluir pontos tais que

2, fbl(x) - 4, sz(x) < 0 e excluir aqueles para os quais a, fb](x) ~

-9, sz(x) A



v
Com isso, mostramos 7jue de fato a exrressao (3.3.2.11) & o me-
lhor procedimento possivel.

Ademais, se tivermos garantia de que:
(3.3.2.13) Prob {quCI(x) -qucz(x) =0 | Ci} A 11,2,

entao o procedimento de Bayes €& Unico, a menos de conjuntos de probabili
dade nula.
Se C(1/2) e C(C(2/1) sao quaisquer (isto e, levantamos a res-

tricao C(1/2) = C(2/1) = 1), entao o custo se escreve:

1

(3.3.2.14) CR) = C(2/1) q fch)dx+C(1/2) q fcz(x)dx =

IR R

2 1

e escolheremos R, e RZ , conforme :

R, : C(2/1) q; fb§x) > C(1/2) a5 ftéi) s
.3.2.15)
o R2 s C(1/2) q2>fb§x) >-E(2/1) qj“fng) St

desde que C(2/1)'q1 C(1/2) q2‘sejam constantes nao-negativas..

— PROCESSO DE CLASSTFICAGAO COM PROBABILIDADES

"A PRIORI" CONHECIDAS (caso de p > 2 classes)

No caso de haver p classes Ci com densidades fC(x) respectivas

A
(2=1,2,....,p), sendo o espago rP particionado em regioces de decisao

lI’RZ""”Rp’ as probabilidades de ma-classificagao serao:

(3.3.2.16) P(i/i,R) = [ o wax i#3 .
A

R.
J
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Por outro lado, supondo as probabilidades a priori Q7395+ s

%
conhecidas, o custo esperado define-se como:
= P P
(3.3.2.17) C(R) = § a; { ) C(3/4) P(j/i,R)} 3
i=1 * =1
j=i
as probabilidades condicionais analogas as definidas em (3.3.2.8), serao

dadas por

a; fe®
(3.3.2.18) -
;
q. f.(x)
177G
Obtem-se

» Portanto,um resultado analogo aquele ja encontrado no

Easo p = 2 .

(3.3.2.19) TEOREMA

Se

a9 e a probabilidade a priori de se extrair um indi _ _

viduo de classe'Ci, cuja densidade éfc ()3 (2=1;2;7 5p) esé 6 e |

: 8

custo da ma-classificacao dé umindivdiuo de CL! como sendo de Cj— e

C(F/Z) (i # j), entac as regioes de decisao R]’RZ""’Rp que

permitem minimizar o custo esperado de mé—classificaggo sao da-
das pela condicao x E R, » quando:

P q
Lafe@emn < | qs.m00Gm |
1=1 A i=1 &3 j
i#k i#j ‘

Para j =1,2,...,p e j Ak

Demonstracao
P ?
Consideremos #%.(x) = Z a; fb(x) C(j/Z), entao o custo espera- |
¢ i=] L
i#] |

rado de um procedimento baseado em R e dado por:




0Z

P
.Z [ h. (x)dx = { h(x)dx
J‘IJR_J J
J
onde h(x) = hj(x) para x E Rj ‘

Para o procedimento descrito no teorema, tem-se que h(x) e

%
R (x) = mini hi(x) . Portanto:

[h(x) - h*(x)]dx s 7 [hj(x) - minihi(x)]dx >0

] R.
o

-

A igualdadepodeconsiderarrsesomentequando hj(x) = minihi(x)

para x E Rj » €Xceto para conjuntos de probabilidade nula.

Vejamos como este método -se aplica quando C(j/Z) = 1 para todo

Bej (Z#F J). Neste caso, em Rh’ tem-se :

P P
3.2.20) . Z—qi_fc-(x) < J a; foo - ;.
i=1 A o s | : <
i#k i#3
. 3
subtraindo Z 7 fc (x) de ambos os lados, obtem-se
i=1 * "%
i#k,j
£3.3.2.21) qj fbj(x) <q fbk(X) £

Seste caso, o individuo x estaem R, , se k & o Indice para o qual
s k P q

2. fb (x) € um maximo; ou seja, C

p © a classe mais provavel.
A

3.3.3 PROCESSO DE CLASSIFICAGAO COM PROBABILIDADES A PRIORL
DESCONHECIDAS

Suponhamos duas classes C, e (

1

7+ As probabilidades a priori ;




B sao supostas nao conhecidas. Entao, o custo esperado de ma-classi-
42 P

ficagao, sob a hipotese de que o indivdiuo x E C,,E dado por:
.3.3.1) 2(1,R) = C(2/1) P(2/1,R) s

enquanto, se x E C?’ e dada por uma expressao analoga.
- - . * o -
Consideremos dois preocedimentos R e R , este ultimo suposto
um procedimento de Bayes. Neste caso, diremos que "R & pelo menos tao

#
bom quanto R " se:

r(1,R) < r(1,R)
(3.3.3.2) ' :
r(2,R) < r(2,R) B

2o passo que ''R & melhor que R*, se ao menos uma das desigualdades prece
dentes vale estritamente.

Para o caso de varias classes e supondo ainda desconhecidas as
probabilidades a priori, nao e possivel definir um custo esperado incon-
dicional para um processo de classificagcao. No entanto, podemos definir
um custo esperado sob a condigao de que o elemento provém'de uma dada clgg
se, comc foi feito linhas atras. Assim, o custo esperado condicional de
ma-classificacao se o elemento provem de CL s define—se~por

(3.3.3.3) r(4L,R) = C(i/Z) P(jli,R) .

1

i

E
j

S (e B o]

. - ~ 5
Podemos dizer que "R e pelo menos tao bom quanto R " se :

*
§3.3.3.4) r(Z,R) < r(i,R) ; 1212 ceasP s

4
a0 passo que 'R e melhor que R*, se pelo menos uma das desigualdades va

le estritamente.
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A obtencao de um processo de Bayes, no caso das probabilidades
a priori serem desconhecidas e, contudo, um problema um pouco mais com-
plexo (exigindo a introducao do conceito de "procedimentos admissiveis de
Bayes'), o que nos obrigaria a divergir bastante dos objetivos do nosso
trabalho, caso tivessemos que ai nos deter. Os detalhes, nesse caso, po
derao ser encontrados em ANDERSON (1958).
Finalmente, note-se que para a discriminagao sob a hipotese de
leis normais, todas as densidades fc’(x) supoe-se ser densidades de La-

place—-Gauss.




DISCRIMINACAQ PASSO A PASSO




4.1 INTRODUCAO

- - . - ey
Neste capitulo apresentaremos os processos de discriminagao pas
so a passo e analisaremos as vantagens dos possiveis criterios utiliza-

veis.

4.2 DEFINICAO

A tecnica basica envolvida num processo de discriminacao passo

a2 passo consiste em, dado certo conjunto de variaveis medidas sobre uma
-~ . . - ~ » -~

populacao, sucessivamente restringl-las a melhor, em seguida as duas me-

lhores, as tres melhores, etc., no sentido de assim permitir, de cdda vez

uma melhor discriminagao entre elementos pertencentes a classes distin-

tas. -

No caso da chamada regressao linear multipla tem-se uma varia -
vel y a prever, com a ajuda de certo nﬁmero de outras variaveis LysLgs -
...,xp. A variavel que se deseja prever & frequentemente chamada endoge — ——- -
na, dependente ou "aexplicar", enquanto qué as demais sao ditas exogenas,
independentes ou "explicativas'. Ora, no que concerne ; regressao 1i-
near multipla, podemos estar interessados em selecionar, dentre as varié —
veis exOgenas xl,xz,...,xp , aquelas que mais contribuem para a previ-
sao ou explicacao da variavel endogena y. Para tal fim, podem ser utili
zados processos passo a passo (stepwise), sabendo distinguir entre pro-—
cessos ''stepwise'' ascendentes e descendentes.

Nos processos ascendentes, as variaveis sao introduzidas uma a

-

uma, de sorte a serem construidos subconjuntos de variaveis, de porte
crescente; evidentemente, a variavel a ser introduzida em cada etapa e

aquela que melhor contribue para o aumento do "indice ou percentual R

. = 2 . ' i3 m gt
de explicacao" (onde R™ e o "coeficiente de correlagao multipla"). Nos

UF € Centro de Ciénclas
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.-ocessos descendentes, pelo contrario, partimos do conjunto de todas as
variaveis exogenas zl,xz,...,x?, sendo sucessivamente eliminadas aquelas
de pequeno poder explicativo com relagao a variavel endogena y .

Procede-se de maneira analoga com relagcao aos problemas de dis-
eriminagao. Aqui, vamos nos restringir a processos passo a passo do ti-
po ascendente. Dessa forma, procura—séconstruirsubconjuntos de wvaria-
wveis garantindo a melhor discriminacao possivel, onde em cada etapa se
acrescenta uma variavel suplementar ao subconjunto retido no passo ante-
rior. Assim, o objeto deste capitulo sera estudar os diferentes crite -
rios para a escolha da nova variavel. Note-se que em cada passo nao se
colocara em causa o subconjunto considerado no passo anterior.

=

A vantagem do metodo passo a passo ascendente descrito acima e
duplo, pois permite:

i) diminuicao do "custo operacional", que se liga ao volume de

calculos a serem realizados.

ii) melhoria da confiabilidade do metodo.

No que concerne ao-''custo operacional', podemos nos referir;-tan-

to ao tempo necessario para efetuar esses calculos como,de maneira equi-
wvalente, ao custo financeiro correspondente. Com efeito, em An3lise Dis
criminante, os calculos envolvidos sao em geral impraticaveis sem a aju-
da do computador; ora, quanto maior o volume de calculos, maior sera o
tempo de processamento e o prego a ser pago pelo usuario.

Suponhamos que se escolha, éo azar, q variaveis; vamos chamar
de "unidade de operacao" ao conjunto de calculos a realizar quando se de-
seja testar' a discriminagao proporcionada pela escolha de tais va-
riaveis. No processo passo a passo em pauta, onde nao se coloca em cau-
sa o subconjunto de variaveis previamente escolhidas, teremos a seguinte

uvantidade de "unidades de operacao' em cada passo,a saber:
g P ¢ P ’

|
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19 passo —————> p unidades de operacao 1

29 passo ————> p-1 unidades de operagao 2

g-esimo passo —> p—g+1 unidades de operacao q

p-eésimo passo —> I  unidade de operagao

~ donde o total de unidades de operagao sera:

(4.2.1) W, = ppr1)/2

Pelo contrario, se em cada passo tivessemos de por em causa a
escolha anterior, o numero total de unidades de operagao seria drastica-

. mente aumentado, com:

p
(£.2.2) ¥, o= 3

1

12 nas duas alternativas, conforme o valor de P- (numero de variaveiscon -

A seguinte tabela mostra a diferenca entre os valores de N, e

sideradas).

P Nl NZ
b) 15 31
10 56 1.023
20 210 . 1048,575

Evidentemente, podemos atingir uma etapa a partir da qual as va
riaveis a serem sucessivamente acrescentadas pouco contribuem para a me-

lhoria da discriminacao entre as classes. Dai, a necessidade de se dispor
P




de criterios para dizer em gue momento se deve parar. Note-se que o fa-
to de nos determos num dado ponto em que apenas ¢ variaveis sao reti-
das (g < p), tambem contribue para a diminuigao do "custo operacional".
Por fim, quanto a confiabilidade do método, reside exatamente no
fato de se poder escolher um conjunto de variaveis que nos proporcione
uma discriminacao aceitavel.
Com relagao aos possiveis criterios de discriminagao, conside-

ram-se os seguintes, dentre outros:

i) criterio da "porcentagem de bem classificados'.

e =S . -1

ii) criterio do "trago da matriz T “B".

iii) criterio do "A de Wilks" -
iv) criterio da "maximizagao das diferencas entre as medias

condicionais para as diferentes classes'.

No presente capitulo, estudaremos com detalhes os criterios (i)
e (ii); quanto aos demais, nao serao considerados em profundidade. De
uma parte, eles constituem testes-classicos baseados na hipotese de mul-
tinormalidade, donde sua aplicabilidade se torna mais restrita dentro-do
ponto de vista da moderna Analise de Dados Multidimensionais. Por outro
lado, seu estudo exige forte embasamento de Estatistica Matematica o que
foge aos propositos do nosso trabalho, mais dirigido para aspectos de A1

gebra Linear e de Topologia Metrica.

5.3 PORCENTAGEM DE BEM CLASSIFICADOS (PRIMEIRO CRITERIO)

(4.3.1) INTRODUCAO E DEFINICAO

O criterio baseado em porcentagens de itens bem classificados e

intuitivo, apresentando-se nitidamente ao espirito, quando se queira ava

liar a validade de um método de discriminagao. Tal criterio e de carater
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bem geral, aplicando-se indistintamente as varias tecnicas de discrimina
cao estudados nos capitulos precedentes.

2 Como foi visto, essas diversas tecnicas, em ultima instancia, a
se obter uma particao do R® em %k regioes RI’RZ"'°’Rk’ as quais sao su
postas corresponder aproximadamente as Kk classes C]’CZ""’Ck ja defini
das "a priori".

No caso do Capitulo I, onde se descreve a tecnica introduzida
por Sebestyen, decide-se afetar cada individuo a classe com relacao a
qual o mesmo for mais proximo (sem olhar para o fato de pertencer ou nao,

"a priori", a referida classe). Obtem-se dessa maneira, uma particao do

RP, nas k regides RI’RZ""’Rk ; donde:

(4.3.1.1) Ro={x; mx, C) <nix, CJ.)} :

Observe-se, sem duvida que existe ambiguidade quanto a classifi
cacao dos pontos fronteiras, ou seja, os pontos tais que W(X,Cr):rﬂ(x,Cj);
porem essa eventualidade nao possue nenhuma chance de ocorrer; ma pratica:~:

Sendo esse particionamento efetuado a partir das amostras dis-
poniveis, para as diversas classes, e natural que se pergunte sobre a pos
sibilidade de alguns elementos ou itens serem afetados a classes as quais

de fato nao pertencgam.

A seguir, apresentamos:  um exemplo bastante simples, a titulo

de esclarecimento.

(4.3.1.2) EXEMPLO

Por hipotese, dispomos de um total de 56 (cinquenta e seis) in-

individuos, os quais sao, "a priori", supostos pertencer a classes CT 5




71
CII e CIII’ sendo que 18 (dezoito) individuos encontram-se na classeCI,
16 (dezesezs) na classe CII e 22 (vinte e dois) na classe CIII' (Na
figura que acompanha este exemplo, esses individuos sao representados pe
los algarismos 1, 2 e 3, respectivamente).

Suponhamos, alem disso, que o método de discriminagao permitiu
particionar o espaco em tres regioes (ou subconjuntos) RI’ RII e RITI'
(tambem representados na figura). Ora, se um dado individuo e classifi-
cado na regiao R, de mesmo indice da classe C8 a qual pertence "a priori"
(neste caso & = B), entao esse elemento esta bem classificado; caso con
trario (isto e, o # R) entao o individuo tera sido,"a posteriori"”, clas

sificado erroneamente.

CLASSE 1

.
~

ELASSE I1 -2

CLASSE III: 3--{<

artir do exame igu ao e dificil construir a  se-
A part d dessa f ra, nao e dif

guinte tabela:




T

(4.3.1.3) TABELA DE CLASSIFICACAO DE AMDSTRA INICTAL

GRUPO DE PERTINENCIA

I 15 § IEE
=
e I 14 0 2
O
s S |
.11 4 16 8
o w
5 2
= 4 I 0 0 12
o O
77,8 100,0} 54,5 7Z de bem classificados

em cada classe

Na tabela (4.3.1.3) observamos: que a classe II e a mais homogé—
nea, porque € encontrada uma porcentagem de bem classificados de 106,0% ,
ao passo que a classe III e a mais heterogenea, com uma porcentagem de
apenas 64,5% .

A porcentagem global de bem classificados e a razao da soma dos

elementos diagonais da tabela pela soma- total dos individuos, _ isto e,

B = P75, 08 oo - e

(4.3.2) COMPORTAMENTO DE UMA AMOSTRA-TESTE

A tabela anterior apresenta certo interesse, no sentido de mos-
trar como os diversos elementos puderam ser separados atraves do metodo
de discriminagao utilizado e, alem disso, indicando os porcentuais dos
erros cometidos, com relagao a classificacao disponivel "a priori". Con
tudo, ela nada nos diz sobre a forma como virao a se comportar novos in-
dividuos frente ao nosso metodo de discriminagcao, ou seja, se os porcen-
tuais de erro se manterao estaveis.

Assim, suponhamos que o numero de individuos em cada classe Cn

seja suficientemente grande, de sorte que possamos separar ao acaso a

%
1
]
i |
1
’\g
i
W

b e Lo
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1 ”n % 1 " .
classe C1 em duas sub-classes (',"L e Ca; gv1dentemente,~Ch e Cn consti-
tuem uma particgao dicotomica de C& S T P '
- - . .- ' ! !

Nessas circunstancias, podemos utilizar a amostra {CI’CZ""’Ck}
como aquela de que nos servimos para a determinacao das regioes de dis-
criminagao RI’RZ""’Rk; esta, e chamada de Amostra-de-Base (ou inici-

non " e
al). Enquanto a segunda amostra, {CI’CZ""’Ck} servira de Amostra-Tes-
te, a partir da qual se constroi nova tabela de classificacao.

A tabela de classificagﬁo da amostra-teste e aquela de que nos
serviremos para a estimacao das '"probabilidades a posteriori' de perti-
nencia a cada uma das classes C& (r = 1,2,...,k). A vantagem e que os
individuos da "amostra-teste'" nao estao comprometidos na determinacao das
regioes de discriminagao Rn Eridid Ble... k) e

Assim, suponhamos que além da amostra-de-base (ou-amostra iniei . -
~al) constituida de 56 individuos, dispomos ainda de uma amostra-teste com
28 individuos. Alem disso, supomos que os efetivos das classes nesta
amostra sao proporcionais aos efetivos das classes respectivas na amos—

tra inicial, ou seja, as probabilidades "a priori' de pertinenciaas clas -—— -

ses- distintas.

(4.3.2.1) TABELA DE CLASSIFICACAO DA AMOSTRA-TESTE

CLASSE DE PERTINENCIA PROBABILIDADES A POSTERIORI
I | II  III I T 511
6/9 | 1/9 | 2/9
1 6 | 1 2 I
2 0,666 |0,111..]0,222. .
& 2713 | 7/13 | 4/13
m O
& s My 24 7 4 T 0,154 |0,539 {0,308
b o
v v 1/6 0/6 5/6
<% 11} 1 0 5 111
8 8 0,166..10,000 |0,833...

(a) (b)
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Note-se que a tabela (4.3.2.1)(a) incorpora as frequencias abso
lutas enquanto na_tabela (4.3.2.1) (b) comparecem as frequencias relati-
vas, as guais funcionam como estimativas das probabilidades de erro e
acerto, "a posteriori".

Para melhor compreensao sobre a forma de construir a tabela do
lado direito a partir da tabela do lado esquerdo, consideremos a primei-
ra linha de ambas. Do total de 9 individuos que foram classificados na
classe CI (por terem caidos na regiao RI de classificacao), apenas 6 fo-
ram classificados corretamente, isto &, de fato pertencem a classe CI 3
donde a probabilidade "a posteriori" de classificagao correta e 2/3 =
E G666 . . . Por outro lado 7 (hum) individuo foi classificado erro-
neamente na classe CI’ quando de fato ele pertence a classe CII; nesse
caso, a probabilidade "a posteriori" & estimada como sendo 1/9 =0,111....
Finalmente 2 individuos foram classificados erroneamente na classe CI 3
quando de fato esta na classe CIII; donde a probabilidade "a posteriori" -
estimada e 2/9 = 0,222... . Procede-se analogamente para obter os va-
lores nas demais linhés da tabela (b) do lado-direitov = ————

Resta nos convencermos de que as- frequencias reiativas que eom—: Tz~ T
parecem na tabela sao, de fato, estimativas adequadas das '"probabilidades -

a posteriori'. Para isso consideremos o teorema seguinte:

R-3.3 TEOREMA

Se ﬁij sao os elementos da tabela (4.3.1.3)(a) (nij:?ni
mero de individuos da classe j classificados em i), e se os n J
(totais das colunas respectivas) sao proporcionais as probabili
dades a priori de pertinencias as classes, entao nij//ni.dESi§
na a probabilidade "a posteriori" de um dado individuo de fato

pertencer a classe j, sabendo que foéi classificado na classe <.
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Demonstracao

E preciso indicar com clareza as notacoes de sorte a eviden

ciar que o problema constitui um caso particular do Teorema de Bayes.

consideremos:

Bl = z 7n.. = somatorio dos termos da coluna j .
W F b

n, = 2 nij = somatorio dos termos da linha i .
k|

Evidentemente:

= ca = )M, =i M L.
E ) z 7. z o ~
1,] 1 a

Supomos existirem k classes, donde <Z,j = 1,2,...,K ; sendo as-

sim, distinguiremos dois tipos de acontecimentos:

A.
J

8,
%

{pertencer a classe j} ; 4 =1,2,...,k

{ser classificado na classe i}; 7 ='1,2,...,k .

]

Nestas condigoes, a probabilidade a posteriori de um elemento
pertencer a classe J , sabendo que 7 e a classe onde foi classificado,

e dado por:
Pij = Prob(Aj/Bi) .
Mas o Teorema de Bayes nos garante que:

Prob(Bj/Ai) * Prob (A‘;.)

Prob(Aj/Bi) =

§ Prob(Bi/Aj) -Prob(Aj)

ademais, sabemos que:




ro
-, .S .
Pmb(BtlAj' wl 3
Por outro lado, a hipotese de que os efetivos das classes da

amostra-teste sao proporcionais as probabilidades a priori de pertinen -

cia a estas classes, se formula como:
Prob (A.) =n ./n
J -J
Donde se conclui que:

Prob (Aj / Bi) = nij/ni.

-

Este resultado nos permite afirmar, por exemplo; que um indivi-
duo classificado na classe CI tem 66,6 chances sobre 100 de pertencer
a esta classe; que um individuo classificado na classe CII nao tem mais
que 53,9 sobre-100 de pertencer a elaao passo que um individuo classifica

do na classe CIII tem uma possibilidade ainda maior de pertencer de fatoa
esta classe.

No que se segue, indicam-se os problemas que aparecemno que-con - — — — &

cerne a utilizacao do criterio da "porcentagem de bem classificados", pa
ra realizar a discriminacao passo a passo, no caso dos metodos estudados

no Capitulo I (abordagem de Sebestyen, caso particular e caso geral).

3.4 PROCEDIMENTOS PASSO A PASSO PARA 0S METODOS DE SEBESTYEN
(a) Caso Particular (Matriz Diagonal)

Para aplicar o metodo de Sebestyen, no caso particular em que a
matriz e diagonal (conforme Capitulo I; formulas (1.5.5.3) e (1.5.5.4)),
tem-se expressoes semelhantes (substituindo p por ¢ , onde g e a or-

dem do passo que esta sendo considerado). Assim a expressao (1.5.5.3)

se escreve:




77

q , 1/qr 9 a.—=x. 2
(4.3.4.1) 7(a,€) = (I o)) [ ) (—35—3—) + c{'
j=1 J j=1 i

Para o calculo das porcentagens de bem classificados no passo

(g+ 1), pode-se proceder de duas maneiras:

s : s b =
i) calcular diretamente as novas distancias no :mq z
ii) conservar na memoria do computador todas as informagoes uti
. -.. . - . . -
lizadas no calculo das distancias obtidas no passo anterior

para auxiliar no calculo das novas distancias:

Os programas de computador desenvolvidos por ROMEDER utilizam a
segunda forma em 53 passos para um dado problema num teste utilizado no
Centro de Calculo e de Estatistica das Faculdades de Medicina de Paris ,

aquele pesquizador necessitou de 3 minutos e 13 segundos de tempo de CPU,

contra 30 minutos utilizando a primeira forma de proceder. &
(b) CASO GERAL

Consideremos, em seguida, os problemas- que surgem ligados —aos
calculos atraves das seguintes expressoes (1.5.4.3) e (1.5.4.4) do capi-

tulo 1 quando se aplica um procedimento passo a passo. No passo de or-

dem q , a expressao (1.5.4.3) torna-se:
o 1/q —_ -1 —
(4.3.4.2) @, €) (et} ) g + @' ] o],

= . s q
onde (a-x) designa o vetor projecao no R do vetor de mesmo nome noRP.

, contudo,

No passo (g+ 1), e necessario calcular a matriz 2;11

ela pode ser calculada a partir da matriz inversa obtida no passo ante-

rior. Da mesma maneira, o determinante det 2 g0 calcula a partir do
q .

determinante det Zq no passo anterior.  Para isso, utiliza-se o teorema

seguinte:
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L TEOREMA

Seja A uma matriz quadrada, inversivel de ordem P, que
se completa por um vetor coluna u » um vetor linha v e um es-

calar o de tal sorte que tenhamos uma matriz de ordem p+1.

A u C x\
Consideremos Z = . Se designa a inversa da ma
v o a y a/

triz Z; entao:

-1
i) a = L -) v) €= A_lé e, ... ) )
o - vA "u P o = vA "u
- 3 <A hy
11.) x == =)
o - vA u -
=i A u
iif) y= VA < det 1 - = det A (o - va ly)
a - vA u v o
Demonstracao
. % BwopRi e o u\
Como e inversa de | - » entao: L e
y a .ew OL/ ==
C x\ /A u i 0
=1. P ” donde:
y a/\v aJ 0 1

[CA+XV=I

YA + av = 0
l yu + aa = 1 A logo :
- =1 =
YA tiagw =0 YAA T 4+ avA T =
_ _ -

yu + ao = 1 yu + aoa =1
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-1 _ -1 _
y *tavi =0 -yu —avA u=0
{ {
yu+aa =1 yu + a a =1
1 - vA"
L TS S donde y = SR .
g=a vh T a - vVvA 'u
Por outro lado ;
CA + xv =1 caA™l & xval = 471
Cu+ xa =0 Cu +xa =0
—Cu - va—lu = A_lu N A—l
= x = h—‘i_l_ »
Cu + x a =0 a - vA u
=1
donde C=A 1(? * ———iLlLéi——-) .
P a - vA u
Para mostrar a ultima igualdade, basta considerar:
i 0 A u A u
P = : ;
—vA-l 1 =) A0 — =vA “uta =
portanto,
I 0\ /A u\| -1 = ﬂ
dar § P : = det A (-vA "u + @) A !
~=1
-vA 1 v Qo !

A u 1
det =det A (-vA "u+a) .
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De fato, aléem da inversa da matriz Xq obtida no passo anteri-

or, certos calculos anteriores tambem devem ser conservados, de forma a

permitir que nao se seja obrigado a recalcular totalmente as formas qua-

draticas definidas pela expressao (4.3.4.2), as quais sao necessariascom

relacao a cada individuo, relativamente a cada classe para fim da obten-
cao das porcentagens de bem classificados.

1

4.4 TRAGO DA MATRIZ T B  (Segundo Critério)

Este criterio, contrario ao anterior, nao necessita da defini-"

cao de um processo de classificacao. Iremos utilizar para justificar os

o

resultados do Capitulo 2 , e em particular a interpretacao geometrica do

conteudo do paragrafo (2.9).

. caille s s -1 - St
Vimos que a metrica definida por T ", onde T e a matriz - de

covariancia total se introduziria naturalmente. Com isso, procuraremos

verificar, em cada passo, qual e o conjunto de variaveis que maximiza a
. = . GeE g _1 . o o
a inercla da nuvem fo, calculada com a metrica T.~, relativamente a seu

centro de gravidade. - -

Precisamente, no passo q , procura-se qual o melhor subconjun-

ol . . .
to de q variavels que maxlmlza:

k Nr r G i r .
A R = T . :
(4.4.1) Zl{N (g -g) c (g g)}

onde Tq designa a matriz de ordem ¢q , deduzida de T colocando =zeros

nas colunas e linhas correspondente as variaveis diferentes das q varia-

veis consideradas. Da mesma maneira, a matriz Bq e deduzida da matriz

de covariancia inter-classes; entao (4.4.1) torna-se:

pp
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! : .} X %) =1
(4.4.1.2) ﬁ'[f XT g (g - ¢ )] 2 Tr('I'q - Bq)

q
T
giECr
r=1

Sendo assim, o criterio passa a ser:

(4.4.2) " MAXIMIZAR Tr(T;IBq) s

Como exemplo, podemos ter o caso de duas classes C, e CZ’ e ve
e = . - . 2 ..
remos que, o criterio proposto e igual ao D de MAHALANOBIS, definido
no Capitulo 2 , a menos de um fator.

Com efeito; na expressao (4.4.2) a matriz B se escreve como:

n, v, '
(4.4.3) . 5 (g.1 -g) (g} -2+ . (gz - g) (g2 -8

N]gl o N232
onde g = 7 : = NJ + N2 5

dessa forma, a expressao (4.4.3) transforma-se em:

Nl

NZ

(4.4:.3.1) (gl _ gZ)(gl iy g2)' P

e, se levarmos o valor obtido em (4.4.3.1) para (4.4.2) o criterio tor-
na-se
N_N
1 .2 ¢ -
L2l - ) il - g

N2

3!

(4.4.4) MAXIMIZAR Tr(T; Bq) =

De fato:

-1 1 V5l '
MAX Tr (T B):MAXATI-[T 2 - -gz)]
q9°q . 2T )

N1N2 =1 ‘ '
:mx{——é—rr[r @ - &) —é)}}
. i 4 =
S| S (RS
gx1l 1xq
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'1'2 $ 1 2
= Tr[(g e ) = (g- -8 )]}
i _ )

1xq gx1

I
~
e
|
4]
v_
3
|
]
o
I
o
st

2 2
que e o D de Mahalanobis menos do fator N, W, /N

A quantidade determinada em (4.4.2) constitue uma generaliza -
- 2 - g o e
¢ao do D de Mahalanobis . e pode ser considerado como indice de separa
cao entre varias classes no espacgo RP. P
Para o metodo passo a passo, os calculos serao simples: dispoe-
se inicialmente das matrizes T e B ambas de ordem -p e no primeiro pas-—
o e —
so, calcula-se para cada variavel, a quantidade Tr(T1 Bl), a qual se re
duz ao quociente dos termos diagonais de B e T correspondendo a varia-
vel considerada; no segundo passo, utiliza-se T, e B, relativas a varia
vel anterior e a uma nova variavel acrescentada, e calcula-se entao o
= o :
Tx:(T2 BZ) e assim sucessivamente. by
Observa-se que nao dispomos de teste de parada natural, como no
caso do critério de porcentagem de bens classificados. Com efeito; a
2 Lo & =
quantidade TrCfé Bq) podera crescer na passagem do passo @ ao passo
q + 1 sem que a discriminagao seja melhorada.
=5 N -1

- a T
Nota-se que, para o calculo de Tq+l e Bq+1 em funcao de

e Bq’ aplica-se o teorema (4.3.5).
4.5 CRITERIO DO A DE WILKS

Este criterio e baseado no valor da expressao A = detW/detT

(que € o chamado A de Wilks). No nosso caso, lembremos que W e T sao
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as matrizes de cowariancia intra-classes e total, respectivamente. Tra-
ta-se de um teste com base estatistica para detectar a existencia de uma

- - - - - - - - -
possivel diferenca significativa entre os vetores medios das diversas
classes. Se, de fato essa diferenca for significativa, e uma indicacao

da boa separagao (ou discriminagao) entre as classes; nesse caso, A e

M\

pequeno. Por outro lado, se a diferenca revelar-se nao significativa,
uma indicagao de ma discriminacao, quando A @ grande.

Tratando-se do procedimento passo a passo, considera-se em cada
etapa (g+1), o conjunto de (g+I) variaveis que minimizam Aq+1: detwq+l/
jhet Tq+1’ onde Wd+1 e Tq+1 sao as matrizes correspondentes as g+l va-
riaveis consideradas. Observe-se que nesse passo de ordem (g+I1) sao re-

_ =
tidas as g variaveis relacionadas no passo anterior, de ordem g, de sor-
te que na verdade se trata de selecionar uma nova variavel.

Nao entraremos em detalhes nas bases estatisticasdo teste emcau
sa, conforme foi mencionado anteriormente. Contudo e facil estabelecer
uma relagao entre este novo critério e o anterior (do trago da matriz
e AR

Para tal fim, sabemos que, o critério-anterior - e - - maximizar

Tr(T—1 B ), enquanto o novo criterio baseia-se em A:,detW/ﬁétT s -=Para

que se possa estabelecer uma relagao entre eles, mostraremos primeiramen

te que:

A q
(4.5.1) E = 1 B. .

T 4m?

- - - —1 -
onde Bi e valor proprio de Tq Wﬁ. Com efeito,
det W s q
Aoz ——L Ges{T " W) = 1 Bi
T det T, T 4 i=1 -

Portanto, e natural reter mo passo q o conjunto de variaveis




det W
que minimiza A = ————q—- . Assim, o criterio torna-se:
detT
q
q
MINIMIZAR I Bi .
i=1

Por outro lado, o critéerio anterior o

MAXTMIZAR Tr(T;I Bq) "

onde:
._1 g
Ty (T B):ZJ\i ,
R = |
= =11 =1 o
sendo os Xi os valores proprios de Tq Bq .
De fato, tem-se a relacao:
A. =1 -8, .
pt i
Com efeito, se u, designa o vetor de T;l Wq relativamente a
B., entao : 2ol i B
g =

Hl
=

=

(=

]

o)

=

porem (Cap. 2), Bq = Tq -W , donde:

q
e T i -w )u.
q q1 q
—alr -rly Ju.
q
= (1 -BDu. = A.u
i
Dessa forma: -1 §
Ty (T B) = A. -
q q 1= 1 =

torna-se:
-1 %1

Te(T " B ) = q - B
q q k- o
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- - - .| i _1
e o criterio gue consiste em maximizar TI{Tq Bq),corresponde Ay

q
MINIMIZAR ] B. .
i=1

Portanto, observa-se que os dois criterios sao semelhantes; um

minimiza a soma e o outro minimiza o produto dos Ai "

4.6 CRITERTO DA MAXIMIZAGCAO DAS DIFERENCAS ENTRE AS MEDIAS

CONDICIONAIS PARA AS DIFERENTES CLASSES

Este criterio tambem possui uma forte fundamentacao em termos
- . S - =
estatisticos, donde nao nos deteremos sobre a maneira de proceder, que
foge a nossos objetivos. Na verdade, ele consiste num 'teste F" exato,
classico em Estatistica Matematica.
Apenas, adiantamos que oferece uma vantagem, que e o de detec -
tar quanto a introdugaoumade(g+D-ésima variavel no passo (g+I), com re-

lagcao as q variaveis ja selecionadas até o passo anterior de ordem q, se

de fato melhora significativamente a discriminagao. — o




(O N

TESTE MULTIDIMENSIONAL NAO-PARAMETRICO PARA
0 PODER DISCRIMINANTE DE UM HIPERPLANO




5.1 INTRODUGAD

Neste capitulo estudaremos um teste multidimensional nao-parame
trico, utilizavel para avaliar o poder discriminante de um hiperplano se
parando duas classes. Como se trata de um teste nao-paramétrico, ele nao
deve depender de qualquer hipotese a respeito das distribuigoes de proba
bilidades envolvidas, ou seja, aquelas que eventualmente descrevam o com
portamento das variaveis relacionadas as duas classes. Assim, tem-se a
vantagem de nos colocarmos num plano de hipoteses menos rigidas que a dos
testes baseados sobre a hipotese de normalidade (que sao os testes para-
metricos).

O teste a que nos referimos foi introduzido por ROMEDER, com ba
se em trabalhos de COVER (1950) e BENZECRI (1969). Recalculamos as tabe
las oripinariamente apresentadas por ROMEDER, cuja finalidade € a seguin
te: determinar em funcao do numero p de variaveis, o tamanho minimo N
do nlmero total de individuos, para se ter garantia de alcangar uma dis-
criminacao significativa, e vice-versa, dado N , determinar-o p- maxi--
mo .

Note-se que a questao basica ai envolvida, sendo fornecidos N
pontos repartidos em duas classes de efetivos N, e N, (tais que N =

7 2
= NZ * N2), no espacgo 'Rp, consiste em encontrar um hiperplano separando
totalmente as duas classes e estimar a probabilidade da existencia de um
tal ente geométrico. =
Para esse fim, sao necessarios alguns resultados préevios, os

quais sao indicados sem exaustivos detalhes, porem precedido das defini-

coes indispensaveis e de alguns exemplos esclarecedores.

b2 UM TEOREMA DE ANALISE COMBINATORIA LINEAR 7

Comecamos revendo o conceito basico de hiperplano (ou variedade

afim de dimensao p-I1).
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(5.2.1) DEFINICAO

Num espago linear E = RP , um hiperplano e uma variedade afim
H de dimensao p-1 (portanto de dimensao imediatamente inferior a do es-
paco). Ou seja, existe um subespagco S de dimensao p-1, tal queH =S+u,

onde u e um vetor constante.

(5.2.1.1) EXEMPLO:

g = R A . s {o}

H:S+u:){u}

V,

(5.2.1.2) EXEMPLO

RS b e e
H = S + uD {u)

V

Lembremos que H = 8 + u interpreta—-se como:

H=S+u={x+us xES}=

:{y;y—uES}.
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Ademais, e facil ver que H=S + u =S + V, se e so se v -u

esta em H. Dado um conjunto A nao-vazio no espago, da mesma maneira

como faz sentido referir ao subespago < A > gerado por A, tambem se po

de considerar a variedade afim <<A>> gerada por A o

s como sendo a ''me-

nor variedade afim" contendo tal conjunto. (Vide Dieudome).

Uma questao relevante diz respeito ao numero de regices delimi-

tadas por q hiperplanos. De fato, esse nimero & sempre inferior ' ou

igual a 29; podendo ser estritamente inferior a ultima quantidade se a

dimensao p do espago for inferior a ¢q . Por exemplo, uma reta deter-

. 1 .~ - 2 -
mina 2° = 2 regioes no plano; duas retas determinam 2° = 4 regioes; po

- = = : . ~ 3
rem tres retas nao-concorrentes determinam 7 regioes (7 < 8 = 27), en-

-~ - - /.
quanto quatro retas igualmente nao-concorrentes tres a tres, determinam

11 regides (11 < 16 = 2%).

(5.2.2) EXEMPLO

Numero de regioces n(q) determinadas, no plano, por q retas

nao-concorrentes tres a tres (q:==3 e—=g:=4). =

0
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Em questao, e equivalente a uma outra, que se refere as diferen
tes maneiras de se conseguir separar g+l pontos no espago em duas clas
ses (uma delas eventualmente vazia), por intermédio de um hiperplano. As
sim, dados 4 = 3 + 1 pontos situados no plano, nao alinhado treés a tres,
ha 7 maneiras distintas de separa-los em duas classes, por intermedio de
uma reta (sendo irrelevante qual a reta utilizada em cada possivel cor-
te); analogamente, ﬁara 5 =4 + 1 pontos em identicas condicoes, o nu-
mero de distintas maneiras de faze-lo & igual a 11. Aqui, sao reproduzi
dos os resultados (7 e 11) ja encontrados anteriormente que se relaciona
vam ao numero de regioes determinados no plano por trés ou quatro retas,
respectivamente nao concorrentes tres a tres.

Assim, no exemplo (5.2.2) e no exemplo (5.2.3) a seguir, tem-se

situacoes de todo equivalentes, em termos combinatorios.
(5.2.3) EXEMPLO

Distintas maneiras de separar em duas-—classes, por-meio--de uma: =

reta, um conjunto de g+l pontos no plano, nao colineares tres.

‘a tres (casos q=3 e q = 4).
a) q=3, isto e g+l = 4 , donde n(3) =7
A




gl

Y
%

b) q =4, isto e g+l =5 donde n(4) =11

De fato, as coincidencias observadas nos exemplos(5.2.2) e (5.2.3)
n3o sao meramente casuais, pois se enquadram num resultado geral de Ana-

lise Combinatoria Linear (valido para qualquer dimensao finita p > 1) ;
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ao que parece ja explorado por SCHLAFFLI (1950), porem desenvolvido com
algum detalhe na memoria de COVER (1965) e no trabalho de BENZECRI(1969).

No que se segue, tomamos de emprestimo a BENZECRI (op. cit.), os
aspectos que a esse respeito nos interessam de forma direta. Comegamos
pela introducao do conceito de "situacao geral afim" para o caso de um

conjunto finito de pontos no RP.
(5.2.4) DEFINICAO

Seja A um conjunto de N pontos, no RP. Diz-se que A esta em
situacao geral afim, nesse espago, se todo subconjunto B de A, com M pon

tos (M < N), gerar uma variedade afim de dimensao igual a inf(p , M-1).
(5.2.4.1) EXEMPLO: = =

3 ' . = .
No R7, todo subconjunto B , com tres pontos, de um conjunto A

em situacdo geral afim, gera uma variedade afim de dimensao-inf{3,3-1)=2; —— =

isto €, um plano, jamais uma reta. -+~ v -
(5.2.5) DEFINIGAO

0 subconjunto B (A & uma parte afinamente separavel de A no
RP, se existir no RP um hiperplano separando totalmente B de A - B .

No seguinte resultado (apresentado sem demonstrar) fica deter-
minado o numero de partes afinamente separaveis de um conjunto em situa-

cao geral afim no RP.

(5.2.6) TEOREMA .

Seja A um conjunto de N pontos em situacao geral afim no
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R®. O nimero das partes B de A , afinamente separaveis e dado

por:
o(N , p+ 1),

onde:

|
N
0~
~
~

(5.2.6.1) ¢(N , p) =

Note-se que, sendo p = 2 (pontos situados no plano) e q =3
(donde N = q + 1 = 4), tem-se:
3

2 -~
2 Y ( )=14
=0 X

n(3) = ¢(4,3)

e, portanto n(3) = 7 ; analogamente se q = 4 (donde N = 5), segue-se:

2 vk
) = ¢5,3) =2 ) )=22 ,
X=0 X
isto e, n(4) = 11. . Assim, sao reproduzidos os resultados referentes ao

exemplo (5.2.3).

A expressao (5.2.6.1) oferece certas dificuldades do ponto de
vista de sua utilizacao para fins computacionais, uma vez que O calculo
dos numeros combinatorios ( Z )-= y!/’Exl(y—x)f] pode rapidamente envol
ver valores (fatoriais) que exaurem de muito a capacidade de armazenamen
to de inteiros, mesmo num computador de grande porte. Assim, o lema se-
guinte nos propicia uma formula recorrente de calculo, permitindo  obter

os O(N + 1,p) em funggo dos ¢(N,p) e o(N,p-1).

(5.2.7) LEMA:

d(N+1,p) = ¢(N,p) + ¢(N,p-1)

>

e

=y s s ey

T

i

|
i

¢




94

Nao demonstraremos o lema acima, pois tal nos desviaria consideravelmen-
te dos nossos objetivos; deve-se mencionar, nao obstante, que as linhas
gerais para sua prova encontram-se bem delineadas em BENZECRI, op. cit.
Contudo, mostraremos a equivalencia entre as expressoes (5.2.6) e (5.2.7y.

Que (5.2.6) implica (5.2.7), nao oferece dificuldades, pois se
trata de aplicagao corriqueira de conhecida identidade.

Quanto a implicaggo de (5.2.7) em (5.2.6), oferece mais resis -
téncia para sua prova, o que exige a formulagao de dois lemas prelimina-

res (para os quais, apresentam-se esbocos de suas demonstracoes) .
(5.2.8) LEMA:

Seja %7 uma fungao de duas variaveis inteiras, N e p, de
finida para N >N >0e p inteiro qualquer. Além disso, supo -

nhamos que kf satisfaz a equagao do lema (5.2.7), isto &

‘f(N+1,p) = ‘f(N,p)~+ ‘f(N;p-l)::f~'§¥47;vf-; g

Entao, quaisquer que sejam N >N e-pEZs gr coincide com a

fungao ¥ , dada por :

N-N
= ) o
(5.2.8.1) YN, p)= %; & lf(No,po)( )

18 PP,

Demonstragao

Inicialmente, nao sera dificil concluir que Y satisfaz a equa -

gao do lema (5.2.7), isto e,

Y(N+1,p) = Y(N,p) + Y(N,p-1) . .

Para esse fim, deve-se observar que (5.2.8.1) & somavel pois cada nimero
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N—N
combinatorio (p-pg) € suposto nao-nulo somente para 0 o KO e

De fato, Yy e \f coincidem para N = No e pEZ , Entao por
indugao finita, segue-se a coincidencia para N = N +1, N = N+2, ..., e

p EZ,

(5.2.9) LEMA

A aplicagao ¢ (do teorema (5.2.6) e lema (5.2.7)), satis-

faz a equacao:

N=1
(5.2.9.1) oM,p) = } o(Lp)C ) .
pOE z P-Po

Demonstragao

Trata-se da decorrencia imediata de (5.2.7) e (5.2.8), com ¢ em

lugar de lF na equacao (5.2.8.1) e tomando-"—-No 1o =

Para a demonstraggo det (52— .

Para a demonstracao de (5.2.7) => (5.2.6), consideremos a ex-

pressao, obtida de (5.2.9.1):

; N-1
o(N,p) = o(Ll,pi) G) .
KEZ ot K

De uma parte, devemos ter O < k < N-1 ; ademais, nao pode ocor
rer k = p-p_ > p-1, pois nesse caso teriamos P, <1, situacao em que
a expressao ¢(1,p0) fica destituida de sentido (portanto, sendo considg

rada nula).




Entao, se p < N, obtem-se (5.2.6.1); se p > N, a soma dos in-

dices se estende ate N-1 e o valor da expressac fica igual a 2,

A tabela abaixo nos fornece os valores de ¢(N,p) calculados atra

ves da formula de recorrencia do lema (5.2.7) pelo computador DEC-10 da

U.F.C.
(5.2.10) TABELA DOS VALORES DE ¢(N,p)
N A
3 39
10l 2 20 92 270 512 764 932 1004 1022 1024
2 18 74 186 326 438 494 510 512 512
2 16 58 128 198 240 254 256 256 256
27 14 44 84 114 126 128 128 128 128
2 12 32 .52 62 64 64 64 64 64
5] 2 10 22 30 32 32 32 32 32 32
2 8 14 16 16 16 16 16 I 7 N |
2 6 8 8 8 8- 8- 8= 8 8 ik
2 4 4 = 3
1|l 2 2 y) 3 5~ . S 2 2 =
N
~
1 2 3 4 5 6 7 8 9 10
P
5.3 O TESTE DE SEPARABILIDADE

Nesta secgao, passamos ao estudo propriamente dito do teste mul
tidimensional nao-parametrico para o poder discriminante de um hiperpla-
no, ou teste de separabilidade, nos termos anunciados na Introducao.

Agora, ja dispomos de elementos para testar (nao-paramétricamen

te) a hipotese de que duas classes se distribuem de forma identicas, ou

nao, no Rp; para esse fim, deve-se definir o que significa uma "dicoto-

mia aleatoria".




(5.3.1) DEFINICAD

Considere-se a extragao de N pontos no RrP segundo uma certa
lei de probabilidade (sob a condicao de que uns pontos se encontrem em
situacao geral afim, com probabilidade 1).

"Por éicotomia aleatoria entenden-se a distribuicao’ de cada um

desses pontos a uma ou outra dentre duas classes consideradas de maneira

independente e equiprovavel.

5.4 TEOREMA

A probabilidade de uma dicotomia aleatoria de N pontos
no RP ser afinamente separavel & dada por:
1

N
(5.4.1) Prob(N,p) = (—5-9 ¢(N,p+1)

Demonstragao

Sabemos que o numero de partes B afinamente separéveis de A no

RP, € igual a ¢(N,p+1), representando o numero de casos favoraveis. Por
N - =

outro lado, sabemos que 2 e o numero de maneiras distintas segundo as

quais podemos particionar um conjunto de N elementos em duas partes, re-

presentando o numero de casos possiveis. Dessa forma, sendo a probabili

dade de separabilidade, dada por:

numero de casos favoraveis

Prob(N,p) numero de casos possiveis ’
obtem-se: N
N,p+l 1
Prob(N,p) = 6( ’g L S ( 5 ) O(N,p+l) .
2




5.5  PRINCIPIO DO TESTE E APLICAGOES

0 principio do teste consiste em, obtidas duas amostras de efe-

+ N, = N), rejeitar a hipotese de que elas estao

tivos N, e N2 (com N1 9

1
sujeitas a uma mesma lei, desde que Prob(N,p) e suficientemente pequena
'(por exemplo inferior a 5% ou 1%); isto &, no que sugere a se encontrar
um hiperplano que separa totalmente as duas classes.

De fato, desejamos testar a hipotese de que duas classes estao
sujeitas a mesma lei ("hipotese nula" Ho), contra a alternativa que  se
encontram.sujeitas a leis distintas (hipotese alternativa H).

Para a realizacao do teste necessitamos dispor de uma tabela ,
fornecendo para cada valor de p (dimensao do espago) e para riscos res-—
pectivos a (o = 0,001; a = Q,OOS; @ = 0,01; o = 0,05), os valores mini-
mos Na(p) a partir dos quais se encontrarmos uma separabilidade - total

7

das duas amostras, rejeitaremos entao a hipotese nula. =

0 valor NG(P) por exemplo, e determinado por:
. 1 N : .
(5.5.1) ‘:N&(p) = inf N/('—z—) d}(N,p‘f‘l) i—«(], e e 027

A tabela a seguir e construida a partir dos valores da  tabela

(5.2.10) o qual nos da os valores de ¢(N,p), e da forma (5.4.1).

(5.5.2) TABELA (TESTE DE SEPARABILIDADE)

Valores minimos de N , em funggo de p , tais que a separag50 se

ja significativa :
N o
risco g,05 | 9 12 24 17 19 21 24 27 29 31
risco 0,011 | 12 15 18 20 23 26 28 31 34 37
risco 0,005 f 13 16 19 2% 25 27 30 33 35 188
riscor 0001 15 19 22 25 28 31 34 36 39 42

N

oV
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(5.6)  EXEMPLOS DE APLICACAO

I) Sejam sete individuos de uma classe, e dez individuos de ou £
tra classe. Suponhamos procurar discriminar entre estas duas classes com
a ajuda de duas variaveis, e que saiamos bem sucedido em determinar um
hiperplano, separando perfeitamente as duas classes. Uma vez que 17> 16,

considera-se separagao significativa; exceto no risco a = 0,001. Vide ta

bela (5.5.2)
I
II) Sejam dez individuos de uma classe e oito de uma outra, con *

5 :
segue-se separar estas duas classes no R™; pode-se dizer que esta sepa- s
i
U
ragao nao e significativa no risco a = 0,05 pois 18 < 19 . h?
Pode-se da mesma maneira indicar, em fungao de N, o valor maxi- j
|

mo de p, tal que chega-se a separar as duas classes significativamente . -

Para tal segue-se:

(5.6.1) TABELA (TESTE DE SEPARABILIDADE)

P4 =3
0,05 011 1 2 2 3°3 3°'4 % 5 5 3556, 67 =7
0,01F , 0 0 1 11 22 23 3 44 4 5 5 5 &
' ! e
0,005 : : O 1 1 1 2 2 2°'3-3% 3% & 4°% iy
I I | i
0,001 ' : | 9 1 1 1 1 2 2 2 3 3 3 4 3
! .
1 : ; Nﬂ%
O|J|lll||JL1'Jl!l"llljll]} il
1234567891011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 N '}
.
¥
Observa-se que o valor 0 (zero), corresponde a N = 11 (respecti J
s e %
|
vamente a N = 8), significa que e ilusorio esperar discriminar, mesmo com =

uma unica variavel no risco o = 0,01 (respectivamente a o = 0,05) duas ]

classes cuja soma dos efetivos seja inferior ou igual a 11, (respectiva-

mente, igual a 8).




APENDTICE I




101

BE L ND1IEE I

OPERADORES E (VALOR ESPERADO)
VAR(VARIANCIA) E COV(COVARIANCIA)

Na introdugao deste trabalho tivemos a oportunidade de conside-
rar, para cada classe C de efetivo N, individuos X (i=1,2,...,N) pen-
sados como p-uplas (xil,xiz,...,xip), onde cada componente Xij G=1,
2,...,p) se interpreta como resultado de uma j-esima medida efetuadd so-
bre X, usando outra terminologia, trata-se do valor assumido pelo indi-
viduo relativamente = certa "j-ésima variavel"”. —

Ora, sendo cada individuo concebido como um p-veto; xi=Cxij)§=1;

entao no mesmo contexto, cada "j-ésima variavel” (j = 1,2,...,p) conce-
() _ N

= (550510
(3)

be-se como um N-vetor x

5 N

Note—-se que a variavel x , em vez de um vetor nc R , pode tam

bem pensar-se como uma aplicacao x(J): f1,2,...,8} + R.Sch tal ' ponto

de vista, tem sentido considerar a aplicagao constante A; bem como, ex-
~ 2 .

pressoes Au, A+tu, utv, uv , u ,...., no sentido do resultado de opera-

coes definidas "ponto a ponto', relativamente as aplicagoes u,V,....... .

o N
sem duvida, no caso de u,v,....., serem pensadas como vetores no R , a

interpretacao correta corresponde ao fato de que as operacoes respecti -

vas sao agora definidas "coordenada a coordenada'. Portanto, faz senti-
. n "
do considerar o 'vetor A", como a N-upla (...., A,....); utv = (......,
2 2
W N, e s dig UV = (one aalle Vi, s oo St OIOMERMIEIRT. - 10 " < 5050 5 Btes

) B ;3 z % = 8
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(I.1)  DEFINICEO

0 operador valor esperado E, e aplicagao:

E: RN — >R ,

tal que:

1

N .
1

E(u) =

u.
i »

I o~12

1
onde u e um vetor de componentes u,v

Sem quaisquer dificuldades, podem ser evidenciadas as seguintes

propriedades:

(1.1.1.1) E(Q) = A

(1.1.1.2) - EQAu) = AE(u) ; p
(1.1.1.3) E(utv) = E(u) + E(v) ;

quanto a‘esta ultima propriedade, pode generalizar-se, por indugao fini- -

ta. e

(1.1.1.4) Blr gt & wax 4 290 & Bl e 5 BEYD)

(1.2) DEFINICAO

0 operador variancia VAR, e aplicagao:

VAR : R — R o

tal que:

(I.2.1) VAR (u) = E(uz) - [E(U):]Z

Para esse operador, valem as propriedades, cuja verificagao nao

envolve quaisquer dificuldades;
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(1.2.1.1) VAR(A) = 0 ;

(1.2.1.2) VAR(u+)) = VAR(u) ;
(1.2.1.3) VAR(Aw) = A% VAR(u) ;
(I.2.1.4) VAR(u) =E [u - E(u)]2 ;

(1.3) DEFINICAO

0 operador covariancia COV, & a aplicacao

cov :ZRN xZRN —31R ,

tal que:
(1.3.1) COV(u,v) = El(u = E(u))(u - E(v))]

A seguinte propriedade interrelaciona os operadores COV e VAR .

(1.3.2) VAR (u) = COV(u,u) , de fato,

COV(u,u) = E[u - E(u)]2 = VAR(u) R

Usando os operadores VAR e COV, e notando x(J) = (xij); obéeryg

-se que os 0., em (1.2.2.1), conforme Capitulo 1, sao precisamente as

jk

COV(X(J),x(k));‘se j = k, tem-se Ujj = (Oj)2 = VAR(X(J)). Ademais, com

relagao a (1.2.2), no referido capitulo, tem-se ¢

~~-

(1.4) z = eeeeee COV(x j),x(k)) cecees

. - - - - - - -
Esses resultados justificam a utilizacao das expressoes ''covari

- TN i . 2 . -~ "
ancia e variancla para oS cjk e (Oj) ; bem como, a designagao de ma-

triz de variancias-covariancias" para 2 .
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- . = 21 (r)

Por outro lado, considerada uma matriz X = (x 7,...,x °) on-
de cada x(J); para j =1,2,...,r, e uma variavel (ou N-vetor), defini-
remos:

1
(1.5) e = BN, ..., 2P .
. _ G ..

Analogamente, dada a matriz M = vEseew X = (=laliaiiy |2 onde

(3k) o i - -
cada x , para j=1,...,tr e k=1,2,...,s , e uma variavel (ou

3Ky

N-vetor), definiremos E(M) como a matriz cujas componentes sao E(x

No contexto acima, faz sentido o seguinte resultado, onde §e no

ta E(X) = X; e bem como X - X tem componentes x(J) - E(X(J)).
(1.6) PROPOSIGAO :
2 -
Se X = (x(l),x( ),...,x(r)), _entao: ¢ Semmassw

(I.6.1) Y =E[x-DE -X)'], onde X - X escreve-se como um
vetor coluna e (X - X)' & o vetor linha correspondente.

Demonstracao

(1) ()

Uma vez que X - X possui componentes x - E(x'7"), segue-se

que (X - X)(X - X)', possui, como termo geral

=D _ gy _ g ®

) (x )
donde E[x-X)X-X)' possui, por termo geral:

e[ - e x® - 5™ = covixP ,x®y)

Isso nos permite concluir, de fato pela validade de (I.6.1).
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0 outro resultado que se segue (Proposicao I.8) vai permitir in

terrelacionar as matrizes de variancias—-covariancias associadas as varia

veis x(J), j=1,2,...,p, e as suas transformadas y(J) = A x(J), onde A

e uma matriz N x N.

E (AM) A EM)
E(MB) = E(M)B

E(AMB) = A E(M)

Demonstragao
Tem-se, para-(I.7.1) e .

B(an) = 5[(a; ) ] =

El ) a4 x(jk))]
N

(a;) E[HT = 4 20w

Para (I.7.2) & analogo, concluindo-se em seguida (I.7.3).

PROPOSIGAO .

Sejam z e z as matrizes de variancias-covariancias as-
X

sociadas as X(J) e y(J) = A x(J), j=1,2,...,p, respectivamente,




onde A e uma matriz (constante) N x N. Entao:
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(1.8.1) Yy = & I, A" -
Demons tragEo :
Tem-se ZY=E[ (Y—;I-)(Y—Y)'] =

- E[ (AX - AX) (AX - AX)" ]

SE[AX -DE - X'A" ]

AE[E-DE-X"] A" =

ALy A
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APENDICE IT
APLICACOES DA ANALISE DISCRIMINANTE
Neste apendice mostraremos a utilizacao de metodos de Analise

Discriminante em duas situagoes distintas. A primeira delas refere-se a

uma aplicagao em gastroenterologia, envolvendo a discriminagao de entida-
des morbidas do antro do estomago. A outra, trata de um problema de dis-

-

criminacao em climatologia.
(11.1) UMA ABLICAQKO,;EM; GASTROENTEROLOGIA

Para esta aplicacao lancamos mao de dados cedidos por de Amorim,

W.P.D. (1984), oriundos-de-sua tese-de Mestrado em Medicina;-tendo em vis s

ta o estudo de cancer gastrico e de doencas gastricas benignas, a- partir -,
das determinacoes de fragoes eletroforeticas de isoenzimas da dehidrogena
se lactica (DHL).

Basicamente, dispomos de 65 (sessenta e cinco) individuos com

diagnostico de lesao do antro, classificados a priori nos seguintes gru-

poE:
Grupo I = gastrite cronica quiescente
Grupo IT = gastrite cronica ativa
Grupo III = Glcera peptica (benigna)

Grupo IV = gapcer 3
onde os numeros de pacientes em cada grupo foram os seguintes: 13, 21, 17

e 14, respectivamente.
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Eiii'ééda paciente dispomos de dados referentes a DHLT (dehidro-
genase lactica total), ISODHL1, ISODHL2, ISODHL3, ISODHL4 e ISODHLS5 (iso-
enzimas da DHL); bem comé, os valores dos "monomeros H e M" contidos nas
;Erias isoenzimas.

Na tabela (II.1.1) sao exibidos os valores observados (NORD & o

numero de ordem de cada individuo, enquanto GPO indica o grupo a que per-

tence: I, II, III ou IV).

(II.1.1) TABELA

“URD  DMLT  ISNDHL1  ISODWL2 1SODML)  1SODHL& ISODHLS - " cro
1 0.87 1710 12,60 23.10
2 2.66 3.%0 8.30 .20
3 0.21 2.20 17.10 26.%0
< 0.40 1.20 3.60 21.10
s 1.32 10.60 11.90 24.30
6 ©.50 2.9 10.40 28.50
1 1.04 .23 7.60 23.00
. 0.61 2.40 . s.40 25,70
v 0.%4 .59 11.40 20.30

10 0.8 s.50 13.50 31.60

1 0.36 2.60 9.10 26 4y

12 0.63 3.20 6.50 23.40

13 3.32 3.20 11.80 26.70

1 1.02 2.9%0 5.80 28.60

15 v.ea 7.30 14.50 26.00
° 1.02 6.60 11.30 31.60

17 0.s6 s.so 1s.70 31.9%0

1 o.en 5.90 9.00 31.40

1 119 .80 10,90 30.80

20 3.37 6.80 10.20 27.10

21 0.37 .50 13.30 26,50

22 9.6e <.e0 ‘1.0 27.90

23 1.1% 3.9 14.40 16 80

24 0.53 .69 &.70 27.%0

2 0.30 1.50 9.30 23.50

76 o.8C 19.49 19.10 23.10

27 0.865 <30 §.a0 21.50

28 ©.7? ~.20 17.90 10.5u

29 0.57 a.99 13.50 26,60

0 0.9¢ .. 19.90 - 30.30

3 0.68 2_*9 07302 29720

32 0.47 . 0% 7.00 - 48,00

3 0.46 e.m0 10.30 «8.00

s b.e8 1.10 5.30 27.10

3> 0.80 1.10 10,42 34.00

1o 0.7§ 1.49 12.70 31.%0 =

3 b.07 3.59 9.u0 10.60

ALl 1.37 7.30 12.79 32.00

3y V.09 10,20 15,10 24.99

10 0.56 12.10 9.90 8,80

A a.en 7.10 16.70 23.10

12 0.97 9.10 14.40 28.70

bt €.51 7.7 14.10 45,90

" 0.66 .29 10.90 47.40

5 0.3 5.10 7.40 48,40

e 0.4n S.00 5.70 k.40

a7 2.40 2.99 15.60 38,70

B 0.7 4.80 11.70 %%

iy 0.61 5.70 12.29 29.10

so 0.8 .60 17.20 36,60

81 1.07 5.40 12,30 22,40

s2 1.06 2.60 13.20 29,40

S3 o.e8 1.20 “.80 15.60

s4 0.54 s.69 20.50 21.70

85 2.02 3.30 10.10 27.40.

se 0.62 4.90 13.20 Q480

7 0.83 1.70 13,50 2%.10

-1 0.7t 4.70 13.10 22.40

59 ©.80 10.90 16.90 23.30

60 0.79 s.00 11.20 20,90

L3 c.74 .30 20.80 32,80

&2 0.50 6,30 14,80 23.30

o) 0.9 180 15.30 21.%0

i 64 0,93 s.00 11.90 24.80
i 6> 1.21 1.90 13.70 26.30
i

.
1

Utilizou-se o metodo de Analise Discriminante Passo a Passo, com
o emprego dos programas MAHAL 2 e MAHAL 3 descritos na obra de ROMEDER:
A Analise Discriminante com base nos 4 grupos originais, atingiu

uma porcentagem de individuos bem classificados da ordem de 50,777, no

- - -
passo de ordem numero 7, o que e considerado um resultado sofrivel do
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ponto de vista da discriminacgao.
Na tabela (II.1.2), tem-se a distribuigao de individuos, em ter-

mos dos grupos de origem e dos grupos de afetacao.

(I1.1.2) TABELA

GRUPO DE AFETAGAO

GRUPO | 1 6 2 1 4 VARIAVEIS: 6, 3, 5, 1, 7, 8, 2

DE 2 6 8 6 1

ORIGEM | 3 0 5 11 1

Em seguida, consideram-se os resultados, caso sejam reunidos os
grupos I e IT numa unica classe gastrite cronica ativa ou quiescente).
Nesta situacao, no passo de numero 8 e atingido um prcentual de 67,697 de

pacientes bem claséificados;'vide Tabela=(TF:1:3)=

(1I1.1.3) TABELA N

GRUPO DE AFETACAO

1 I 3
GRUPO | 1 23 6 5 VARIAVEIS: 4, 5, 1, 2, 6, 3, 7, 8
DE 2 4 11 2
ORIGEM | 3 l 2 2 10 I

Por outro lado, levando em conta que os individuos do grupo I
(gastrite cronica quiescente) constituem aqueles pacientes que sao menos

levados a consultar o medico, experimentou-se realizar a  discriminacao
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com base, unicamente, na presenca dos grupbs II, IITI e IV, sendo Os gru-
pos (gastrite cronica ativa ou ulcera peptica) por sua vez reunidos . numa
Unica classe. Neste caso, e atingido um porcentual de individuos bem
classificados da ordem de 82,697, no passo numero 8, vide tabela II.l.4

abaixo.

(I1.1.4) TABELA

GRUPO DE AFETAGAO

1 2
GRUPO VARIAVEIS: 5, 4, 2, 1, 6, 8, 3, 7
1 30 8
DE \
- f
ORIGEM . ! = i

Note-se que todos os individuos foram utilizados para constituir

nossa "amostra-de-base€', tendo em vista que seu numero total era  pequeno.
Assim, nao foi possivel considerar uma amostra de base. Por outro lado,
tambem se dispunha de um numero reduzido de variaveis a serem empregadas. - ..-—— - ..

com finalidades discriminatorias. !

(IT.2). UMA APLICAGAO EM CLIMATOLOGIA

Para esta aplicacao os dades foram obtidos pela Profa. Teresinha

e s

de M2 B.S. Xavier, conforme Girardi A. Teixeira (1979), que trabalharam

- . - . - - . - * = o -
com Analise Harmonica, foi possivel extrair da serie de totais pluviome -

F —

tricos de Fortaleza (no intervalo compreendendo os anos hidrologicos 1848/

e et

49 - 1977/78), duas componentes ciclicas dominantes, com periodos de 13 a
26 anos, aproximadamente. Conforme esses autores concluiram, a concordan
cia entre os minimos e maximos das curvas sinussdides correspondentes aos
dois ciclos mencionados, corresponderiam a uma probabilidada maxima para

"oy

- - & - f b B’
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a ocorrencia respectivamente, de anos secos e de anos excepcionalmente
chuvosos. Por sua vez, Xavier A, Xavier (1981) reexaminaram a questSO,

tendo concluido por um reduzido poder explicativo dos ciclos, quanto a

previsao de minimos e de maximos para a pluviometria anual.

Neste exemplo, consideremos as variaveis X(1),X(2),...,X(12) que
sao os totais pluviometricos mensais, tomados em ordem decrescente das
alturas pluviometricas em cada ano hidrologico. Esses, foram separados
em tres grupos A, M e B, correspondentes aos anos com previsao de precipi
taggo alta, media e baixa, conforme Teixeira A. Girardi (op. cit). Cons-

tituimos uma amostra-de-base (compreendendo 30, 40 e 30 anos, nos grupos

B, A e M respectivamente); e uma amostra-teste (com 10 para cada um dos

2

grupos) .
Utilizamos o programa MAHAL 3 FOR, o qual, no passo numero 4 nos
deu um porcentual de 54% para anos hidrologicos bem classificados, na amos-—

tra—de-base; na amostra-teste o porcentual cai para 36.677.

No passo numero 10, o porcentual de bem classificado na amostra-

-de-base sobe apenas para 567 enquanto na amostra-teste permanece  inva- -

riavel.

Conclui-se, pois, que as previsoes antes mencionadas, em termos B

da ocorrencia de anos secos, normais ou excepcionalmente chuvosos, nao
resistem convenientemente, a uma analise discriminante, quando se conside

ra o conjunto dos totais pluviometricos nos diversos anos hidrologicos. i
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