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\ pensando, quel principio ond’ elli indige,
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’amor che mowve il sole e altre stelle.”

Paradiso XXXIII, 145, Dante Alighieri

“Qu’est-ce que cela fait? Tout est grace”
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Resumo

Sao apresentados aqui calculos de primeiros principios realizados para a obtencao de
propriedades épticas e eletronicas da molécula e do cristal de L-alanina. No caso da
molécula, foi efetuada a otimizacao da geometria para trés conformacoes e usando trés
métodos diferentes: aproximacao de Hartree-Fock na base 6-31++G(d,p), aproximagao
de Hartree-Fock na base 6-311++G(3d,3p) e teoria do funcional da densidade (funcional
de troca e correlagdo B3LYP) na base 6-314++G(d,p). A partir da otimizacao das geome-
trias para diferentes conformacgoes, foram obtidas a energia total, momentos de dipolo e
quadrupolo, polarizabilidades, propriedades termodinamicas, modos normais de vibracao,
espectros Raman, infravermelho e VCD, niveis de energia eletronicos e orbitais HOMO
e LUMO, com comparacoes com resultados experimentais ao longo do trabalho. Para
o cristal de L-alanina, a geometria dos atomos na célula unitéria foi otimizada usando
as aproximacoes LDA e GGA, determinando-se a estrutura de bandas, massas efetivas,
funcao dielétrica, absor¢ao, refletividade e indice de refragao. Estes dados sao usados na
investigagao do espectro de luminescéncia do cristal de L-alanina puro e dopado com man-
ganés. Os calculos ab initio permitem associar os picos de fotoluminescéncia no visivel a
processos de natureza excitonica relacionados a niveis de polaron e impurezas aprisionado-
ras de portadores. Calculando as transicoes vertical e adiabética entre os estados excitados
e o estado fundamental de uma molécula de L-alanina simples na forma zwitterionica, o
pico estreito da fotoluminescéncia no ultravioleta é atribuido a transigdes intramolecu-
lares nas moléculas de L-alanina fracamente interagentes dentro do cristal, o que deixa
uma assinatura molecular especifica do aminoacido. Ja o estudo da fotoluminescéncia
integrada do cristal dopado com Mn?* revela um forte quenching da luminescéncia pro-
vocado pela presenca do fon metdlico nos intersticios da célula unitaria. Resultados de
calculos ab initio preliminares indicam que tal quenching esta relacionado ao modo como
a distribuicao de energias excitonicas muda quando o fon é inserido num intersticio da
célula unitaria.






Abstract

Ab initio calculations for the molecule and crystal of L-alanine are presented. Geo-
metry optimizations were performed for three L-alanine molecular conformers using three
different methods: Hartree-Fock approximation with a 6-31++G(d,p) basis, Hartree-Fock
approximation with a 6-311++G(3d,3p) basis and Density Functional Theory (B3LYP
exchange-correlation functional) with a 6-314++G(d,p) basis. From the geometry optimi-
zations, total energies, dipole and quadrupole moments, polarizabilities, thermodynamical
properties, normal modes, Raman, infrared and VCD spectra, energy levels and frontier
molecular orbitals were obtained and comparisons with experimental results were car-
ried out. For the L-alanine crystal, geometry optimization was performed within the
framework of DFT (LDA and GGA), and band structures, effective masses, dielectric
function, absorption, reflectivity and refraction index were calculated. Those results were
employed to investigate the photoluminescence spectra of undoped and Mn-doped L-
alanine crystals. The ab initio results allow assignment of the photoluminescence peaks
in the visible region to lattice-related processes of exciton nature associated with polaron
levels and defect trapping centers for carriers. By evaluating the vertical and adiabatic
transitions between the ground state and excited states of a single L-alanine molecule
in the zwitterion form, the very thin photoluminescence peak in the ultraviolet region
is assigned to intramolecular transitions in the weakly interacting L-alanine molecules
forming the crystals, being a signature of the type of the crystalline amino acid. In the
case of Mn-doped alanine crystal, the integrated photoluminescence intensity is shown
to be dramatically quenched by the intersticial manganese, with a decrease greater than
65% for higher doping. Preliminar ab initio calculations indicate that this quenching is
related to the change of exciton energy levels due to the charge redistribution in the unit
cell when manganese ions are present.
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1 Introducao

1.1 Do genoma ao proteoma

Iniciado oficialmente nos anos 90, o projeto Genoma Humano [1] tinha como objetivos
identificar todos os genes (entre vinte e vinte e cinco mil) e seqiienciar os (aproximada-
mente) trés bilhdes de pares de bases nitrogenadas do ADN (4cido desoxirribonucléico,
em inglés, DNA - DeoxyriboNucleic Acid) humano. Para analisar a enorme quantidade
de dados obtida, foi necessario o desenvolvimento de novas ferramentas de andlise bioin-
formatica, motivando o intercambio de recursos e tecnologias entre os setores ptublico e

privado.

O genoma é todo o ADN de um organismo, incluindo seus genes. Estes tltimos
contém a informacao para fabricar as proteinas de que o organismo vivo necessita. Tais
proteinas determinam, entre muitas outras coisas, a aparéncia do ser vivo, a eficiéncia de
seu metabolismo, e 0 modo como responde a infecgoes. O genoma também traz profundas

implicagoes sobre a resposta do organismo ao meio.

O ADN é feito basicamente a partir de quatro bases nitrogenadas: adenina (A), timina
(T), citosina (C) e guanina (G), e de um agticar, a desoxirribose (ver Fig. 1). A ordem
dessas quatro letras no DNA determina a transcricao de proteinas que irao construir e

governar o metabolismo de um ser vivo.

Uma seqiiéncia rascunho e a analise preliminar do genoma humano foram publicadas
em fevereiro de 2001 e em abril de 2003 em vérias edi¢oes das revistas Nature e Science [2].
O conhecimento dos efeitos das variagoes de ADN entre individuos pode levar a maneiras
novas e revolucionarias de diagnosticar, tratar e prevenir milhares de desordens. O estudo
do ADN de organismos nao-humanos pode ajudar no desenvolvimento de medicamentos,
plantas e animais geneticamente modificados para a agricultura e a pecuaria, novas for-

mas de produgao de energia, processamento de informacao e gerenciamento racional dos
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recursos naturais (interacdo homem - meio ambiente).

5 3¢ H H*

Adenina P N-— C\ C

Citosina

Guanina

3f 5

Figura 1: Padroes de ligagoes de hidrogénio nos pares de base do ADN e tamanhos caracteristicos
3]-

Seguindo o projeto do Genoma Humano, o projeto Proteoma Humano [4] pretende
deslindar os segredos das proteinas, porquanto as pistas para a cura de muitas doencas
pode nao estar nos genes, mas nas proteinas que estes codificam (para se ter uma idéia,
existem cerca de 2000 medicamentos desenvolvidos pelo homem, os quais se baseiam em

aproximadamente 500 proteinas conhecidas).

A estrutura tridimensional das proteinas é bastante complexa e pode ser caracteri-
zada em quatro niveis de organizagao estrutural: niveis primario, secundario, terciario e

quaternario:

1. A estrutura priméria representa o arranjo linear dos aminoacidos individuais na
seqiiéncia protéica. Proteinas sao, basicamente, polimeros de aminoacidos ligados por

ligacoes peptidicas.

2. A estrutura secundéria descreve a arquitetura local dos segmentos lineares da cadeia
polipeptidica (por exemplo, hélice «, folha () sem considerar a conformagao das cadeias

laterais. Outro nivel de organizagao estrutural, recentemente introduzido, é a estrutura
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supersecundaria, que descreve a associacao de elementos estruturais secundarios através

de interacoes de cadeia lateral, os assim chamados “motivos”.
3. A estrutura terciaria revela a topologia global da cadeia polipeptidica dobrada.

4. A estrutura quaternaria descreve o arranjo de subunidades separadas ou monoémeros

dentro da proteina funcional.

Devido a notavel capacidade das cadeias polipeptidicas se dobrarem in vivo e in vitro,
é fato atualmente aceito que a maior parte dos aspectos que envolvem a arquitetura das
proteinas e sua estabilizagao derivam diretamente das propriedades da seqiiéncia particu-
lar de aminodcidos que compoem a cadeia polipeptidica (ou seja, a estrutura priméria).
Essas propriedades incluem as caracteristicas individuais das cadeias laterais de cada
residuo e a influéncia da espinha dorsal polipeptidica na conformagao da proteina. So-
mente com base nesta informacao a estrutura tridimensional de uma proteina pode ser

compreendida.

Em geral, apenas 20 aminoécidos sao encontrados nas proteinas obtidas da natureza
(ver Fig. 2), embora existam mais de 100 aminoécidos conhecidos e algumas proteinas

apresentem aminoacidos raros.

As propriedades fisico-quimicas das cadeias laterais, tais como tamanho, forma, hidro-
fobia, carga e capacidade de formar ligacoes tipo ligacao de hidrogénio, variam muito. A
estrutura de um aminodcido tipico é mostrada na Fig. 3. Pode-se distinguir na estrutura
o chamado carbono «, que se liga de modo covalente aos grupos amina e carboxila. Estes
sdo grupos fracamente acidos ionizéveis (com a amina protonada), os quais existem sob
equilibrio protonico em solucao, com pK 2 ou 10, respectivamente. Também ligado ao
carbono « estd um atomo de hidrogénio e uma cadeia lateral de tamanho variavel. E esta
cadeia lateral, chamada também de grupo R, que diferencia os aminoacidos entre si. Con-
forme varia o pH do meio, um aminoacido pode ser carregado positiva ou negativamente,

ou ainda assumir uma forma neutra.

Partindo de uma solucao fortemente acida, o préton do acido carboxilico sofrerd io-
nizacao, e o aminoacido tera a sua carga efetiva variando de 4+1 a 0 se o pH for aumentando
aos poucos. Entrando na regiao de pH bésico, o préton do grupo -NHJ passa a sofrer
ionizacdo, e a carga efetiva do aminodcido tende para -1. Em solugao neutra (pH 7), o
grupo carboxila existe na forma COO™ e o grupo amina como NH; . Como o aminodcido
neutro forma, em tais condigdes, um dipolo elétrico, ele é chamado de zwitterion (ion

dipolar, betaina). A existéncia de um zwitterion depende do meio (em solugao ha trés
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(a) Apolares (hidrofobicos)
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Figura 2: Os 20 aminoacidos que formam os blocos de construcao da maior parte das proteinas

podem ser classificados como (a) apolares, (b) polares ou neutros, (c) bésicos e (d) acidos.
Destaque para as cadeias laterais [3].
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formas zwitterionicas, dependendo da acidez ou alcalinidade do meio). Ha evidéncias su-
gerindo que em geral os aminoacidos em fase gasosa nao existem na forma zwitterionica.

Tal configuragao é estdvel apenas apenas em solugoes e sélidos [5, 6].

A flexibilidade conformacional dos aminodcidos é um fato agora bem estabelecido
tanto experimental [7, 8, 9, 10, 11, 12] como teoricamente [13, 14]. Tal liberdade, no caso
da glicina, fez com que por 15 anos existisse uma contradi¢ao entre os experimentos [7, 8] e
célculos ab initio na aproximacao de Hartree-Fock [15] para a conformagcao de mais baixa
energia da glicina neutra. A disputa que surgiu [10] foi rapidamente resolvida [11, 16] em

favor da teoria, o que reforcou a utilidade de calculos ab initio.

A glicina na fase gasosa nao é zwitterionica, como provaram medidas de pressao de
sublimagao, espectroscopia de massa e microscopia de microondas [7, 8, 11, 17, 18, 19, 20].
Zwitterfons formam ligacoes de hidrogénio na forma N—H" ———0O~ —C, as quais desem-
penham um papel importante na determinacao das estruturas de cristais de aminoacidos.
Pontes de hidrogénio tipicas em sistemas de aminoéacidos diluidos em 4dgua sao —COO™ —
——Hf —N—, —COO™ — — —H,0 e —NHZ — — — OH,. Como as ligacdes de hidrogénio
criadas entre zwitterions sao muito fortes, suas possiveis conformagoes estruturais sao

limitadas apenas a configuragoes energeticamente estaveis [6, 21, 22].

A presenca dos grupos amina e carboxila deixa as proteinas em solugao resistentes a

mudancas de pH, tornando-as importantes tampoes bioldgicos.

COO~

_
R

Figura 3: Estrutura geral de um a-aminoécido. Esta estrutura é comum a todos os aminoacidos
comumente encontrados nos seres vivos, excetuando-se a prolina. O grupo R ou cadeia lateral
(em vermelho) ligado ao carbono « (em azul) é diferente para cada aminodacido.

Os aminodcidos também sao moléculas quirais (exceto pela glicina). Por possuir
quatro grupos diferentes conectados, o carbono « é assimétrico. As duas possiveis con-
figuragoes para o carbono « formam isomeros que sao a imagem um do outro refletida
em um espelho (enantiomeros). A propriedade fisica que diferencia os enantiémeros é a
dire¢ao na qual eles giram a luz plano-polarizada. Os dois enantiomeros sao diferencia-
dos em dextrégiros (D, R, +) caso a polarizacao da luz seja girada no sentido horario, e

levégiros (L, S, —) se o giro for oposto. Solugoes contendo um excesso de uma das duas for-
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mas enantiomérficas sao opticamente ativas. Uma solu¢ao contendo concentragoes iguais

dos enantiomeros é chamada de mistura racémica e é opticamente inativa.

Caracteristica fundamental dos aminoacidos é sua capacidade de polimerizacao em
peptideos e proteinas. Os grupos carboxila e amina podem interagir, formando uma
ligacdo covalente e liberando uma molécula de dgua (ligagdo peptidica). Em solugao
aquosa, o equilibrio da reagao de formagao de ligacoes peptidicas favorece a hidrolise das
ligacoes. Por esta razao, sistemas bioldgicos devem formar as ligacoes peptidicas de modo

indireto e com gasto de energia.

As estruturas e abreviagoes dos 20 aminoacidos encontrados comumente nas proteinas
aparecem na Fig. 2. Todos os aminoacidos, menos a prolina, possuem grupos amina e
carboxila livres. Dentre as varias maneiras usadas para classificar os aminodcidos, a
mais tutil é baseada na polaridade das cadeias laterais. Temos entao aminoacidos com
cadeias apolares ou hidrofébicas, aminoacidos neutros, mas polares, aminoacidos acidos
(que possuem carga liquida negativa em dgua) e aminoacidos bésicos (com carga liquida
positiva em meio com pH neutro). Os aminodcidos apolares incluem todos os que pos-
suem cadeia lateral alquila (alanina, valina, leucina e isoleucina), bem como a prolina
(com sua estrutura ciclica pouco usual), metionina (um dos dois aminodcidos com enxo-
fre) e dois aminodcidos aromaticos, fenilalanina e triptofano. J4 os aminoacidos polares
eletricamente neutros (glicina, serina, asparagina, glutamina, treonina, tirosina, cisteina)
apresentam grupos R que podem formar ligagoes de hidrogénio com a dgua, sendo mais
hidrossoliveis que os aminoacidos apolares em geral (ha excegoes, por exemplo, a tirosina
é o aminoacido menos soltvel em agua entre os 20 aminoacidos, enquanto a prolina é
bastante solivel. A alanina ¢ t&o solivel em dgua como a arginina e a serina). Os dois
aminoacidos acidos sao o acido aspartico e o acido glutamico, que apresentam cada um
grupo carboxila na cadeia lateral. Esses aminoacidos carregados negativamente desempe-
nham papéis importantes nas proteinas. Muitas proteinas que ligam ions metalicos com
propdsitos funcionais ou estruturais possuem sitios de ligagao metalico contendo uma ou
mais cadeias laterais de aspartato e glutamato. Os grupos carboxila também podem agir
como nucledfilos em certas reacoes enzimaticas e podem participar em uma variedade
de interacoes de ligacao eletrostaticas. Por fim, trés aminodacidos possuem cadeia lateral
com carga liquida positiva. Sao os aminoacidos basicos, histidina, arginina e lisina. As
cadeias laterais da arginina e da lisina, protonadas em condigoes fisiologicas, participam

de interacoes eletrostaticas em proteinas.

Foram realizados diversos trabalhos usando modelos continuos para representar a
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solvatacao de aminoacidos em agua. As limitagoes desta abordagem sao varias: a estru-
tura molecular do solvente é ignorada e o solvente é modelado como um meio dielétrico
continuo infinito que envolve uma cavidade contendo uma molécula do soluto. O dielétrico
continuo é caracterizado por sua constante dielétrica (também chamada de permissividade
relativa), cujo valor é obtido experimentalmente a partir do solvente colocado & mesma
temperatura e pressao da solucgao, e efeitos quanticos sao ignorados. Mais recentemente,
calculos ab initio feitos com base em um tratamento mais detalhado das interagoes com
as moléculas de agua procuraram esclarecer os efeitos do solvente sobre a estrutura e o

espectro vibracional desses aminoacidos. Especificamente para a L-alanina, existem os
trabalhos de Jalkanen et al. [23], Frimand et al. [24] e Tajkhorshid et al. [25].

As estruturas cristalinas dos aminoacidos preservam caracteristicas moleculares, e
podem ser empregadas para o estudo de interacoes entre moléculas. Tal caracteristica
é relevante especialmente para a biologia, onde as macromoléculas de interesse formam
sistemas fechados com grupos polares a apolares [26]. Além disso, a maior parte (90%)
dos farmacos produzidos possuem formulacao particulada, em geral na forma de cristais
[27]. A producao desses particulados, por conseguinte, implica na cristalizagdo a partir
de solucoes do farmaco. No processo de cristalizacao sao definidas varias caracteristicas
fisico-quimicas da substancia cristalizada, tais como forma, tamanho, pureza quimica,
estabilidade, biodisponibilidade, solubilidade, dopagem e taxa de dissolucao. Dai a re-
levancia, tanto do ponto de vista experimental como do tedrico, da caracterizacao de
cristais de aminoacidos. A forma dos cristais e sua pureza ainda nao conseguem ser con-
troladas de modo satisfatério, e os processos de crescimento e nucleacao ainda nao sao
bem entendidos [28]. Quando se lembra que os processos bioquimicos se desenrolam em
meio aquoso, o modo distinto como as moléculas bioldgicas se comportam nos estados

cristalino e diluido em 4dgua nao pode ser ignorado.

1.2 Metaloproteinas e atividade biolégica

A presenca de pequenas concentracoes de metais em biomoléculas desempenha um
papel fundamental. Varios {fons metalicos sao essenciais para o metabolismo de seres vi-
vos (Zn, Cu, Fe, Na, K, Mg, Ca). Alguns desses ions ativam cascatas de enzimas e se
responsabilizam pelo equilibrio dinamico celular, equilibrando cargas elétricas de macro-
moléculas organicas no meio celular e equilibrando a pressao osmética, impedindo o co-
lapso da célula [29, 30]. Muitas proteinas retém fons metélicos em cardter permanente ou

transitorio. Esses ions desempenham uma variedade de papéis nas metaloproteinas: trans-
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Figura 4: Representacao da lectina extraida de sementes de Canavalia brasiliensis complexada
com Mn (esferas rosadas) e célcio [31]. Da esquerda para a direita: Ribbons do tetramero da
lectina com indicacao dos sitios de Mn; ampliacao do sitio de ligacdo ao Mn em uma das cadeias
da lectina; ligagao dos aminodcidos glutamato-8, aspartato-10, aspartato-19 e histidina-24 ao
manganeés.

feréncia de elétrons, conservacao da estrutura protéica, retencao de oxigénio, formacao de
radicais hidroxido coordenados, fixacao de substratos, e catalise eletrofilica. Nos tltimos
anos tornou-se evidente que as metaloproteinas também desempenham papel importante
no controle de expressao da informacao genética. Tais proteinas retiram quantidades
estequiométricas de tragos de ions metalicos e sofrem mudancgas conformacionais que pro-
duzem notaveis diferencas em suas habilidades de se ligarem a sitios especificos do ADN
ou do ARN (4cido ribonucléico) de um organismo. Os efeitos fisioldgicos da ligagao de
metaloproteinas a, ou sua liberacao por, acidos nucléicos incluem resisténcia aumentada
a metais pesados, controle de caminhos de absorcao e armazenamento de ferro, reconheci-
mento de sinais bioquimicos no ARN de retrovirus, controle de eventos no desenvolvimento
de vertebrados e reconhecimento de hormonios esterdides. Minerais presentes em altas

concentracoes, como Na™, Kt e Mg' podem desempenhar importantes papéis na estabi-
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lizacao de acidos nucléicos, mas é improvavel seu uso amplo na regulacao dos genes. As
metaloproteinas ilustram o nivel de complicagao das interacoes entre metais e aminoacidos
[32]. O modo como o oxigénio se liga de modo reversivel ao grupo heme da mioglobina e
da hemoglobina é um exemplo disso [29, 30]. Metais atuam como co-fatores (compostos
quimicos essenciais para a agao de uma enzima, mas nao fazem parte do sitio onde se da a
catdlise) de diversas enzimas, as quais se dividem geralmente em classes cujas atividades
estao relacionadas a presenca de metais. A Fig. 4 ilustra como um metal fica ligado a um
aminoacido em uma proteina. Em tempos recentes, proteinas que transportam metais do

meio extracelular para o interior das células tém recebido consideravel atengao [30].

Através da ressonancia paramagnética nuclear e ressonancia dupla nuclear eletronica,
vem sendo possivel investigar sitios ionicos de metais paramagnéticos em cristais de
proteinas [33]. No caso especifico do Mn, cuja interacao com a l-alanina é estudada na pre-
sente tese, as proteinas Smfl e Smf2 efetuam o seu transporte na espécie Saccharomyces
cerevisae. A enzima PMR1, da familia ATPase do tipo P, localiza-se no complexo de Golgi
onde acumula altas concentracoes de ifons de Mn. Nos mamiferos, as proteinas Nrampl
e Nramp2 possuem elevado grau de homologia com as Smfl e Smf2, respectivamente.
Sabe-se agora que a Nramp2 complementa a funcao da Smf em leveduras mutantes, ao
mesmo tempo em que a Nrampl é incapaz de exercer esse papel. Por esta razao foi su-
gerido que a Nramp2 pode estar envolvida no transporte de Mn celular [30]. Entre as
metaloproteinas encontradas na natureza, as que possuem Mg(II), Ca(II) e Zn(II) sao as

de maior abundancia e com maior nimero de trabalhos publicados a respeito [34].

Questoes relevantes para o entendimento de como agem as metaloproteinas é o modo
como sao capazes de selecionar um cation especifico de metal na mistura ionica em que
estao dissolvidas, e porque os fons metalicos preferem ligar-se nas proteinas tipicamente
em meios esféricos internos em centros de alto contraste hidrofébico. A resposta para
essas questoes pode depender de estudos da interacao de ions metalicos com aminoacidos
[35]. Pesquisas em cristais de aminoacidos com dopagens diversas (Fe, Cu e Zn) fo-
ram realizadas tendo como objetivo a compreensao das diferentes fungoes desses ions
nos complexos metal-aminoacidos, e suas diferentes interagoes. Usando ressonancia pa-
ramagnética eletronica (Electronic Paramagnetic Ressonance - EPR) e ressonancia dupla
nuclear eletronica (Electronic Nuclear Double Ressonance - ENDOR), foram feitos estu-
dos da L-alanina dopada com cobre, os quais revelaram detalhes sobre a ocupacgao de

sitios por impurezas no cristal [36, 37, 38, 39, 40].

Também foi efetuado um estudo da L-alanina dopada com ferro, combinando EPR,
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Figura 5: Esquerda: Medidas de luminescéncia normalizada para cristais de de L-alanina dopados
com 1% de Fe, obtidas a 77 K e 295 K [41]. Direita: Espectro Raman na configuragao a(b,b)a
para um cristal de L-alanina nao-irradiado a temperatura ambiente [41]. Modos em torno
de 2900 cm ™! originam-se do estiramento intra-molecular dos dtomos de hidrogénio do grupo
metila. J4 os modos em torno de 100 cm™! sdo oriundos das vibracdes da rede devido a ligacoes
de hidrogénio entre moléculas através do grupo amonia.

luminescéncia e espalhamento Raman ressonante (Ressonant Raman Scattering - RRS)
[41] (ver Fig. 5). Os resultados indicaram que os fons metalicos nos cristais de L-alanina

parecem localizar-se em sitios intersticiais, como propuseram Takeda et al. [37].

1.3 Proteinas, aminoacidos e aplicacoes em biotecnolo-
gia e ciéncias dos materiais

Com os avancos no dominio da nanotecnologia, aproximamo-nos cada vez mais das
escalas naturais de tempo e espaco em que ocorrem os fenomenos fundamentais que cons-
tituem os processos bioldgicos. Comecam, entao, a aparecer espontaneamente pontes
ligando as mais diversas disciplinas: fisica, quimica, bioquimica, biologia, bioinformatica,
etc. As ferramentas tedricas e experimentais dos mais diversos ramos do conhecimento

comecam a ser usadas para ajudar no progresso da investigacao desses fenomenos.

Existe uma notavel convergéncia entre as tecnologias sintéticas e fisicas e o mundo
da biologia molecular que abrird oportunidades sem precedentes para a criacao novas
biomoléculas funcionais. Os sistemas bioldgicos apresentam uma complexidade de ar-
quitetura com ordem hierarquica em escalas de distancia maiores que as que podem ser
alcancadas atualmente em sistemas sintéticos. As estruturas complexas da biologia sao
formadas através do auto-arranjo de componentes moleculares, intermediada através de

interacoes supramoleculares especificas programadas na prépria estrutura desses compo-
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nentes. O apice desse processo é o crescimento e a diferenciacao de células vivas e sua

integracao em tecidos, orgaos, sistemas e organismos biolégicos.

Nas tultimas décadas, a pesquisa basica sobre a estrutura de macromoléculas comecou
a esclarecer os principios estruturais subjacentes a especificidade tinica dos sistemas
organicos. Embora tal processo esteja longe de completar-se, a informacao obtida a par-
tir desses estudos fez com que a comunidade cientifica adquirisse uma compreensao dos
principios fisicos relevantes que conduzem o auto-arranjo de estruturas bioldgicas. Pode-
se prever a utilizacao dos mesmos principios para o projeto e construgao de materiais
que apresentam a especificidade e funcionalidade 1inica das biomoléculas que ocorrem na

natureza.

Um exemplo ilustrativo deste crossover entre biologia e a ciéncia de novos materiais é o
uso de nanoparticulas metdlicas ou semicondutoras com tamanho da ordem de 10 a 100 A
juntamente com macromoléculas biolégicas (dcidos nucléicos, proteinas). A similaridade
de tamanhos dessas estruturas pode permitir uma integracao entre a nanotecnologia e
a biologia, levando a avancos sem precedentes no diagnodstico de doencas, terapéutica
direcionada, biologia molecular e biologia celular [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52].
Espera-se que nanocristais ultrafinos sejam amplamente empregados em biotecnologia e
aplicacoes médicas para separar biomateriais, para identificagao de substancias através de

acao antigénica, diagndsticos, e transporte de medicamentos (drug delivery).

A fluorescéncia é uma ferramenta amplamente utilizada em biologia como forma de
rastrear o composto desejado, seja para estudo da farmacodinamica, seja para moni-
toracao de processos celulares in vivo ou do desenvolvimento de culturas celulares, como
fungos e células cancerosas. A iniciativa de medir mais indicadores biolégicos simulta-
neamente impoe novas demandas as amostras usadas nestes experimentos. No entanto,
os materiais comumente utilizados apresentam capacidades de absorcao limitadas porque
seu espectro de absor¢ao é muito estreito ou porque o inicio de tal processo nao pode
ser controlado facilmente. Por exemplo, cristais semicondutores bulk possuem um amplo
espectro de absorcao. O tnico problema é que o mesmo é plano demais e, portanto, dificil
de ajustar numa certa faixa de comprimentos de onda. Ja os corantes organicos possuem
picos de absorcao bem distintos os quais, infelizmente, tendem a ser assimétricos e pouco
controlaveis. Para piorar o quadro, experimentos usando corantes organicos sao limitados
a ensaios de curta duragao por causa do baixo tempo de fluorescéncia dessas substancias.
Tais corantes nao sao adequados para periodos longos de observacao usando microscopia

fluorescente e confocal. Muitas vezes é dificil ou impossivel registrar imagens fluorescentes
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de boa resolucao enquanto as sondas organicas coloridas se apagam durante o ajuste do

foco.

Em contraste, pontos quanticos combinam o amplo espectro de absorcao de um cristal
semicondutor com os picos de absor¢ao bem definidos de um corante organico, além de
apresentar tempos de fluorescéncia mais longos e brilho mais intenso. Finalmente, estas
nanoestruturas podem ser fabricadas de modo a produzir linhas de emissao gaussianas
em qualquer freqiiéncia no visivel ou infravermelho passiveis de excitacao por lampada de

mercurio.

Inicialmente, pontos quanticos sintetizados quimicamente nao foram empregados em
aplicacoes bioquimicas por nao serem soliveis em dgua. Uma vez que foram desenvolvi-
dos tratamentos para tornar as superficies dos pontos quanticos hidrofilicas, abriram-se
as portas para possiveis aplicacoes na area de obtencao de imagens bioldgicas in wvivo.
Apesar disso, os pontos sao instaveis em condicoes de acidez ou salinidade, agregando-se
facilmente em meios acidos ou isotonicos. Logo, é dificil produzir biomoléculas conjugadas
a pontos quanticos porque estas, em sua maioria, encontram-se em condicoes isotonicas in
vivo. As moléculas que podem ser conjugadas sao poucas: streptavidina, oligopeptideos,

e alguns anticorpos.

Para superar tal dificuldade, Alivisatos et al. [53, 54] usaram um revestimento de
silica/siloxano para criar pontos quanticos de ZnS revestidos com CdSe soliveis em dgua
e altamente estaveis contra agregacao, embora seu método permita apenas a fabricagao
de pequenas quantidades (miligramas) por vez. Zou et al. [55] obtiveram a silanizagao
de nanoparticulas de silicio, produzindo pontos quanticos revestidos com SiO,. Tais pon-
tos exibem notavel estabilidade e apresentam potencial para facil manipulacao. Li et al.
[56] prepararam nanoparticulas de silica porosa para aplicagoes em controle de liberagao
de medicamentos. As nanoparticulas produzidas foram aplicadas como portadores para
estudar o comportamento de liberacao controlada do corante azul brilhante F, o qual foi
inserido no interior e na superficie das nanoparticulas. Este corante foi liberado vagaro-
samente em uma solucao liquida ao longo de 1140 min, em comparacao com os 10 min
normalmente obtidos para nanoparticulas de SiO,. Além disto, observou-se que valores
baixos de pH e baixas temperaturas aumentaram o tempo de liberagao do corante. Recen-
temente, nanoparticulas de CaCQOj revestidas com SiO, foram fabricadas, abrindo novas

possibilidades para o desenvolvimento de aplicagoes bioldgicas [57].

Uma abordagem recente para o problema da hidrofobia dos pontos quanticos é o em-

prego de encapsulamento em micelas. A micela é um ligante quimico simples consistindo



1.3 Proteinas, aminoacidos e aplicacoes em biotecnologia e ciéncias dos materiais 29

Figura 6: Sensibilidade e multiplicidade de cores no uso de pontos quanticos para obtencao de
imagens in vivo. (a,b): sensibilidade e comparacao espectral entre células cancerosas marcadas
com pontos quanticos e células marcadas com proteinas fluorescentes (a), e obtencao simultéanea
de imagem in vivo de microcontas codificadas com pontos quanticos (b). As imagens do lado
direito em (a) mostram células cancerosas marcadas com pontos quanticos (laranja, acima)
e células marcadas com proteinas fluorescentes (verde, embaixo). Aproximadamente mil das
células marcadas com pontos quénticos foram injetadas no flanco direito de um rato, enquanto
o mesmo numero de células marcadas com proteina fluorescente foram injetadas no flanco es-
querdo (circulo) no mesmo animal. Similarmente, as imagens do lado direito em (b) mostram
microcontas codificadas com pontos quanticos (0.5 pm) emitindo nas cores verde, amarela ou
vermelha. Aproximadamente um ou dois milhoes de contas de cada cor foram injetadas sob a
pele do animal em trés pontos adjacentes [44].

de duas partes: uma regiao hidrofébica e outra hidrofilica. Empresas farmacéuticas empre-
gam micelas como revestimento para medicamentos dotados de qualidades hidrofébicas.
Dubertret et al. [50] fabricaram pontos quanticos de ZnS revestidos com CdSe e encapsularam-
nos dentro do interior hidrofébico de micelas usadas comumente para entrega de medi-
camentos e diagnostico por imagem. Apds um processo de purificacdo, eles conseguiram
injetar os pontos quanticos em células embriondrias de Xenopus (uma espécie de sapo),

atingindo concentragoes da ordem de até 109 pontos quanticos em uma tnica célula.
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Os processos de diferenciacao das células de um embriao em rapido processo de di-
visao celular tornam o embriao altamente sensivel a mudangas fisicas e quimicas do meio.
O fato de que a presenca de um nimero consideravel de pontos quanticos nao perturbou
o processo de divisao celular é uma noticia promissora para o estudo do desenvolvimento
embriondrio. Observou-se no experimento que quatro horas depois da fertilizacao, apos
os pontos quanticos se dispersarem pelo citoplasma, ocorre uma sibita relocalizagao dos
mesmos em torno do nicleo, sinalizando o inicio da atividade de transcricao. Gragas
aos pontos quanticos, o estudo também comprovou que nos primeiros estagios do desen-
volvimento do Xenopus nao existe sintese de RNA, ou seja, nao ocorre transferéncia de
informacao contida no DNA do embriao e, conseqiientemente, sintese das proteinas ne-
cessarias para o seu desenvolvimento. Nestes estagios, o embriao utiliza proteina e RNA
fornecidos pela mae. Uma vez, no entanto, que o embriao efetua sua 12% divisao celular

(4000 células), seu préprio RNA passa a controlar a sintese de proteinas.

Gao et al. [44] descreveram o desenvolvimento de sondas multifuncionais nanoparticu-
ladas baseadas em pontos quanticos semicondutores ZnS-CdSe com marcadores de células
cancerosas em animais vivos. O design estrutural desses marcadores envolve o encapsu-
lamento de pontos quanticos luminescentes dentro de um revestimento polimérico e a
ligacao deste polimero a ligantes marcadores de tumor e funcionalidades para transporte
especifico de medicamentos. Estudos in vivo de células de cancer de prostata humano
crescidas em ratos indicam que as sondas baseadas em pontos quanticos se acumulam nos
tumores em virtude da maior permeabilidade e capacidade de retencao de sitios tumorais
e através da ligagao de anticorpos a biomarcadores especificos na superficie das células
cancerosas. Usando ao mesmo tempo a injecao subcutanea de células cancerosas marca-
das com pontos quanticos e a injegao sistémica de sondas multifuncionais baseadas em
pontos quanticos, foram obtidas imagens precisas e coloridas de células cancerosas in vivo,
abrindo novas possibilidades para obtencao de imagens ultra-sensiveis e multiplexadas de

alvos moleculares in vivo.

Usando ainda a capacidade das células vivas de reconhecimento molecular, foram fei-
tos contatos elétricos seletivos com neurénios [58, 59]. Contatos de pontos quanticos de
CdS agem como fotodetectores, permitindo comunicacao com as células usando compri-
mentos de onda preciso. Processos de difusao de receptores laterais de neurotransmissores
mostraram que apenas um ponto quantico interage por sitio de receptores de glicina, de
modo que a microscopia eletronica desses receptores confirma a entrada destes na sinapse

por difusao.
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Uma idéia promissora consiste em tentar acoplar lectinas vegetais as micelas. As lecti-
nas sao de origem nao imune e tém a capacidade de se ligar reversivelmente a carboidratos,
ou seja, nao modificam quimicamente os receptores (carboidratos) aos que se ligam [60].
Sabe-se que este tipo de proteina se une a seus agucares receptores através de ligagoes de
hidrogénio e for¢as de Van Der Walls. E fato conhecido também que em células tumorais
existem diferencas estruturais marcantes. Glicoproteinas existentes na membrana celu-
lar de células cancerigenas podem ter formas distintas em comparacao com as de células
sadias. Muitos genes que codificam enzimas do tipo glicosiltransferases sao sujeitos a mo-
dificacoes que ocasionam mudangas poés-transducionais diferentes, ou seja, glicanos que
deveriam ser incorporados em estruturas protéicas de uma forma, sao inseridos de outra,

concorrendo para a formacao de uma célula anémala [61].

Pelo fato de as lectinas se ligarem a agucares presentes em membranas celulares de
uma maneira bastante especifica, estas podem, em alguns casos, ser utilizadas como exce-
lentes marcadores, podendo, até mesmo, serem marcadores especificos para determinados
tipos de células cancerigenas. Pode-se mencionar o exemplo da jacalina, lectinas de se-
mentes de jaca que tiveram sua estrutura cristalografica em complexo com antigeno T

[62] determinada.

Os polipeptideos (polimeros formados a partir de aminoécidos) sdo excelentes candi-
datos para a fabricacao de biomateriais por conta de sua biocompatibilidade e pelo fato
de serem biodegradaveis. Materiais baseados em peptideos podem ter suas seqiiéncias de
aminodacidos programadas e € facil controlar seu comprimento e estequiometria. Instrucoes
de montagem minuciosas podem ser codificadas em seqiiéncias de peptideos, e o uso de
biopolimeros para a construcao de materiais avancados a partir de polipeptideos é uma
possibilidade real [63, 64, 65, 66]. Existem trabalhos sobre o emprego de polipeptideos
sintéticos como matrizes para materiais compédsitos a fim de fabricar novos materiais para
engenharia (pldsticos para usos em dispositivos, substitutos de implantes dsseos, filmes
para tratamento de queimaduras) com propriedades de interesse. Tal pesquisa pode levar,
por exemplo, a criacao de um filme plastico capaz de conservar os alimentos frescos limi-
tando a exposicao ao oxigénio e matando as bactérias, ao mesmo tempo em que apresenta

biodegradagao apds poucas semanas ou meses.

Materiais baseados em polipeptideos podem ser preenchidos com enchimentos na-
nométricos para melhorar suas caracteristicas mecanicas. O uso desses enchimentos,
incluindo argilas inorganicas e fibras de peptideos autofabricadas, permite reforcar um

material (as propriedades do material nanocompésito nao mudam com o acréscimo desses



32 1 Introducao

enchimentos, mas sao melhoradas). Fibras de peptideos ja existem na natureza associadas
a doencas como o mal Alzheimer e a diabetes tipo II. Numa pessoa com Alzheimer, fibras
compridas e rigidas de proteinas sao formadas no tecido cerebral porque as proteinas se
agregam sem realizar suas fungoes naturais. Fibras benignas poderiam ser formadas em
laboratério e usadas como enchimento em um compdsito [65, 66]. Tais materiais baseados
em peptideos sdo alternativas sustentdveis para materiais baseados em petréleo (um re-
curso nao-renovavel) e como base para novas tecnologias de engenharia para produgao de
uma nova classe de materiais e dispositivos nanoestruturados, como plataformas bioativas
para a construcao de tecidos e sistemas inteligentes de entrega de farmacos (Drug Delivery

Systems), bem como, num futuro um tanto mais distante, nanomaquinas moleculares.
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Auto-montagem a partir
de um peptideo

Figura 7: Uso de peptideos para fabricacdo de uma nanoestrutura. A: peptideo. B: nanotubo
formado a partir do peptideo. C: imagem real da estrutura formada pelo peptideo [67].

Ha vérios relatos na literatura sobre nanotubos construidos a partir de peptideos
ciclicos artificiais [67, 68]. Os nanotubos construidos nesta técnica apresentam tamanhos
de poros ajustaveis, quimicas de superficie facilmente modificavel, extremidades abertas

para empacotar metais, ions ou pequenas moléculas, e facilidade de sintese.

Para compreender melhor todos esses novos sistemas e suas interagoes basicas, é ne-



1.4 Breve histérico dos métodos ab initio 33

cessario uma abordagem que leve em conta os efeitos quanticos relevantes na escala na-
nométrica. E neste ponto que entra com forca a fisica com suas ferramentas tedricas e
experimentais. Partir dos principios fundamentais que governam o comportamento da
matéria para estudar sistemas com muitos elétrons (como os aminodcidos, que sdo um
dos blocos fundamentais da vida), é a esséncia dos métodos de primeiros principios, ou

métodos ab initio, que sao a principal ferramenta do presente trabalho.

1.4 Breve histdorico dos métodos ab initio

Apesar de os fenomenos elétricos serem conhecidos deste a antiguidade, apenas com a
descoberta do elétron, em 1897, por Joseph John Thomson [69, 70|, comecamos a ter uma
compreensao mais profunda de sua importancia na descricao da estrutura da matéria. Um
pouco antes, Hendrik Anton Lorentz havia modificado a teoria de Maxwell do eletromag-
netismo para interpretar as propriedades elétricas e magnéticas das diferentes substancias
em termos do movimento de particulas eletricamente carregadas (o elétron possui carga
negativa). Com a descoberta do nicleo de carga positiva por Ernst Rutherford, em 1911
[71], a fisica cldssica deparou-se com o problema da estabilidade do dtomo. o qual foi
resolvido quando Niels Bohr [72] propos a quantizagao do momento angular orbital dos
elétrons no hidrogénio (era o ano de 1913). Pela hip6tese de Bohr, os elétrons movem-se em
torno do nicleo em um conjunto discreto de érbitas circulares com energias bem definidas
(quantizacao da energia). Quando um elétron muda de 6rbita, é emitido ou absorvido um
quantum de radiacao eletromagnética, originando um espectro de raias confirmado pelo
experimento. A teoria quantica de Bohr, embora erronea sob muitos aspectos, langou as
bases para a descoberta das leis da mecanica quantica, na primeira metade da década de
20, mormente através das notaveis contribuicoes de Louis de Broglie, Erwin Schrédinger

e Werner Heisenberg.

Os elétrons foram cruciais como campo de teste da mecanica quantica. Os experi-
mentos de Otto Stern e Walther Gerlach, realizados em 1921 [73, 74], nos quais dtomos
eram defletidos por campos magnéticos, foram formulados como testes da aplicabilidade
da nova teoria quantica a particulas em campos magnéticos. Pouco depois, Arthur Holly
Compton [75] propos a idéia de que o elétron possui um momento magnético intrinseco
com base em observacoes da convergéncia de feixes de raios. O acoplamento do momento
angular orbital com o spin do elétron foi formulado por Samuel Goudschmidt e George

Uhlenbeck [76], que consideraram a hipétese aduzida por Compton.
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Um dos grandes triunfos da nova teoria quantica foi a explicacao da tabela periddica de
elementos quimicos em termos da ocupacao de estados atomicos por elétrons obedecendo
ao principio de exclusao enunciado por Wolfgang Pauli, em 1925 [77]. No inicio de 1926,
Enrico Fermi levou adiante as conseqiiéncias do principio da exclusao, estabelecendo uma
formula geral para a estatistica de particulas nao interagentes, obtendo uma férmula
parecida com a obtida para a estatistica de Bose-Einstein [78, 79, 80]. Werner Heisenberg
e Paul Dirac, separadamente, discutiram a questao da simetria de troca da fungao de onda
de sistemas formados por varias particulas em 1926 [81, 82]. Juntando a equagao de onda
relativistica de Dirac e as leis da mecanica estatistica quantica, os grandes avancos feitos
nos anos 20 constituem a base de todas as teorias modernas sobre a estrutura eletronica

da matéria, dos atomos e moléculas isolados até a matéria condensada.

Rapidamente os progressos da teoria levaram a uma melhor compreensao do com-
portamento dos elétrons em moléculas e solidos. Usando novas ferramentas, as nogoes
mais fundamentais sobre as ligagoes quimicas em moléculas (como as desenvolvidas por
Gilbert Newton Lewis [83] e outros antes de 1920) foram explicadas em termos do com-
portamento das fungoes de onda eletronicas quando os atomos se aproximam. As regras
para o numero de ligagoes quimicas foram determinadas a partir do fendmeno quantico da
deslocalizacao, o qual permite o compartilhamento de elétrons entre dois ou mais atomos,

reduzindo sua energia cinética e tirando vantagem da atragao elétron-nicleo.

Para estudar o comportamento dos elétrons na matéria condensada, é necessario re-
solver um problema de muitos corpos, o qual exige conceitos estatisticos para determinar
as propriedades intrinsecas dos materiais no limite termodinamico. Com o fito de obter
resultados quantitativos é necessario fazer varias simplificacoes e aproximacoes, sendo a
primeira e mais simples a aproximacao na qual os elétrons nao interagem entre si. Nesta
aproximacao, nao se correlacionam diretamente os movimentos eletronicos, mas se impoe
o principio da exclusao de Fermi e cada elétron se move em algum tipo de potencial efetivo
médio produzido pelos seus companheiros. O estado do sistema é especificado por auto-
estados independentes de uma tunica particula e por nimeros de ocupacao, estes ultimos

determinados no equilibrio térmico através da estatistica de Fermi-Dirac.

Um dos primeiros feitos da nova teoria quantica foi a solucao da maior parte dos
problemas da teoria classica de Drude-Lorentz por Wolfgang Pauli e Arnold Sommerfeld
[84, 85]. Num primeiro momento, Pauli, em paper submetido no final de 1926 [84], explicou
o paramagnetismo através de um modelo de polarizacao do spin de elétrons obedecendo

a estatistica de Fermi-Dirac. Na auséncia de campos magnéticos e para T = 0K, os
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elétrons apresentam spins emparelhados e preenchem os estados de mais baixa energia
até o nivel de Fermi, deixando estados vazios acima deste nivel. Aumentando um pouco
a temperatura ou o campo magnético (ou seja, produzindo excitagoes energéticas bem
menores que as energias eletronicas caracteristicas), somente estados eletronicos préximos
do nivel de Fermi podem contribuir para a definicao de propriedades como condutividade
elétrica, capacidade térmica e paramagnetismo. Pauli e Sommerfeld basearam sua teoria
dos metais num modelo de gas homogéneo de elétrons livres, que resolveu a maior parte
dos problemas da teoria de Drude-Lorentz. No entanto, ainda nao estavam claras as
conseqiuiéncias de incluir os ntucleos e, por conseguinte, a periodicidade de uma estrutura

cristalina na teoria, elementos que certamente afetariam o comportamento dos elétrons.

Portanto, o passo seguinte foi incluir os efeitos de um potencial peridédico sobre os
estados quanticos eletronicos. Foi o que fez Felix Bloch em sua tese. Bloch [86] langou o
conceito de estrutura de bandas a partir da demonstracao de um teorema fundamental —
o teorema de Bloch — demonstrando que um elétron num cristal pode existir apenas em
estados quanticos que sao autoestados do operador “momentum cristalino”. Com isto, foi
resolvido um dos maiores problemas da teoria de condutividade de Pauli-Sommerfeld, a
saber, a mobilidade sem empecilhos dos elétrons em uma rede cristalina perfeita, sendo
esta propriedade afetada apenas pela presenca de perturbacoes na periodicidade da rede

(imperfei¢oes, impurezas, vibragoes).

Com base na teoria de bandas foi possivel mostrar, a partir do principio da exclusao
de Pauli, que os estados permitidos (o conjunto de estados contidos numa banda) para
cada spin podem conter, cada um, um nimero maximo de um elétron por célula unitaria
do cristal. Rudolf Peierls mostrou a importancia do preenchimento de bandas e da pre-
senga de “buracos” (lacunas de elétrons nas bandas) para explicar o efeito Hall e certas
propriedades dos metais [87, 88]. Contudo, foi somente com o trabalho de Alan Herries
Wilson [89, 90] que foram estabelecidos os fundamentos para a classificagdo tedrica de

todos os cristais em metais, semicondutores e isolantes:

— Isolantes: apresentam bandas completamente preenchidas e um grande gap de ener-

gias proibidas separando o estado eletronico fundamental dos estados excitados.

— Semicondutores: possuem gap pequeno, de modo que energias térmicas sao suficien-
tes para levar os elétrons a estados excitados. Por conta disso, apresentam condutividade

elétrica intermedidria entre isolantes e metais.

— Metais: possuem bandas parcialmente preenchidas e nao apresentam gaps de ex-

citacao, de modo que os elétrons podem conduzir eletricidade mesmo a T'= 0K.
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Figura 8: Tlustragao esquematica dos niveis de energia eletronicos, indicando a evolugao dos niveis
eletronicos discretos dos atomos isolados para as bandas eletronicas que se formam quando os
atomos se aproximam. Os preenchimento das bandas e os gaps proibidos determinam se o
material é isolante, semicondutor ou metéalico. Figura retirada de [91]

Douglas Rayner Hartree e Egil Hylleraas foram pioneiros no célculo de propriedades
de dtomos com vérios elétrons usando a mecanica quantica [92, 93, 94]. Hartree introduziu
o método do campo auto-consistente, no qual cada elétron se move em um campo médio
criado pelos ntcleos atomicos e pelos demais elétrons, lancando as sementes de varios
métodos numéricos ainda em uso nos dias atuais. Apesar disso, sua abordagem carecia de
rigor. Foi s6 em 1930 que Vladimir Fock [95] publicou os primeiros célculos empregando

funcoes de onda anti-simétricas, no que hoje conhecemos como método de Hartree-Fock.

Os anos 30 registraram as primeiras formulagoes da maior parte dos atuais métodos
tedricos para calculo de estrutura eletronica em sélidos. Entre os primeiros calculos quan-
titativos de estados eletronicos se encontra o trabalho sobre o sédio metélico publicado
por Eugene Wigner e Frederick Seitz, publicado em 1933 e 1934 [96, 97], no qual foi em-
pregado o método celular. As bandas de energia eletronicas foram obtidas em trabalhos
separados por John Slater e Wigner e Seitz [97, 98]. Embora a fungao de onda tenha
cardter atomico nas vizinhancas imediatas do nicleo, as bandas calculadas revelaram que

os elétrons se comportavam com grande liberdade de movimento no metal, resultado que
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se tornou a base de muito do entendimento tedrico dos metais com ligagoes do tipo sp.

Uma das grandes dificuldades no trato de sélidos em geral é ajustar a precisao com que
os estados eletronicos serao descritos perto do ntcleo e nas regices de ligagao. Slater uti-
lizou ondas planas aumentadas (Augmented Plane Waves - APWs) em 1937 [99], usando
diferentes conjuntos de base e condig¢oes de contorno apropriadas. Ondas planas ortogo-
nalizadas (Orthogonalized Plane Waves - OPWs) foram definidas por Conyers Herring em
1940 [100] para levar em conta efeitos de carogo sobre os elétrons de valéncia. Potenciais
efetivos, precursores dos pseudopotenciais, foram introduzidos em varios campos da fisica
(por exemplo, Fermi, em 1934 [101], adotou a técnica para estudar o espalhamento de
elétrons por atomos e espalhamento de néutrons por nicleos). Hans Hellmann desenvol-
veu uma teoria para elétrons de valéncia em metais notavelmente similar aos modernos
célculos de pseudopotencial [102, 103]. Embora nao fosse possivel completar os célculos
para sélidos em geral, o desenvolvimento dos conceitos - juntamente com o trabalho ex-
perimental - levou a muitos desenvolvimentos importantes, dentre eles destacando-se o

transistor.

Os primeiros calculos quantitativamente precisos de estrutura de bandas em materiais
mais dificeis, como os semicondutores (nestes os estados eletronicos sao bastante diferentes
dos estados atomicos originais), comegaram a surgir nos anos 50. Apesar do seu sucesso,
entretanto, a teoria de bandas até entao desenvolvida nao levava em conta os efeitos diretos
das interagoes elétron-elétron. Um dos efeitos mais importantes desse tipo de interagao
foi a explicacdo do magnetismo da matéria dada por Heisenberg e Dirac [104, 105] em
termos da “energia de troca” dos elétrons interagentes, que depende do spin e do fato
de a fungao de onda mudar de sinal quando dois elétrons sao “trocados” (permutados).
Tanto na fisica atomica quanto na quimica, sentiu-se a necessidade de descricoes mais
precisas que fossem além das aproximacoes de elétrons independentes, tendo em vista a
forte correlacao em sistemas localizados e os tamanhos tipicos das ligagoes quimicas nas

moléculas [106].

Na fisica de matéria condensada, as linhas essenciais tragadas pelo problema das in-
teragoes elétron-elétron foram expostas por Eugene Wigner e Nevill Mott [107, 108, 109,
110] em termos de transi¢oes metal-isolante. Uma maneira de apresentar a questao é con-
trastar a formacao de bandas quando se aproximam os atomos na estrutura cristalina com
os efeitos intensos de interagao em sistemas isolados (nos quais os dtomos se acham muito
distantes para que exista overlap significativo dos estados eletronicos). Se o dtomo é um

sistema de camada aberta, sabe-se que interacoes coulombianas produzem a separagao dos
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estados eletronicos independentes em multipletos, com o estado fundamental dado pelas
regras de Hund [111, 112, 113]. Em geral, existe competicao entre efeitos “formadores de
banda”, os quais devem dominar em altas densidades, e efeitos de muitos corpos tipica-
mente atomicos, dominantes em baixas densidades. O desafio é resolver problemas em
densidades intermedidrias, nas quais efeitos de banda e efeitos de muitos corpos produzem

contribuicoes de mesma ordem.

O papel da correlacao entre elétrons permanece como elemento definidor das grandes
questoes no campo da determinacao de estruturas eletronicas. Descobertas experimentais,
como a existéncia de materiais supercondutores ou com magnetoresisténcia gigantesca,
estimularam novos desenvolvimentos na teoria de sistemas eletronicos com alto grau de
correlagao. Interagoes podem produzir transicoes de fase para estados com quebra de

simetria, ordem de longo alcance, e outros comportamentos coletivos interessantes.

As ultimas décadas do século XX trouxeram promissores desenvolvimentos para apri-
morar nossa compreensao da fisica da matéria condensada. Relevantes contribuicoes ex-
perimentais, como a descoberta dos fulerenos, a fabricacao de nanotubos de carbono, a
sintese materiais supercondutores em altas temperaturas, o crescimento de nanoestruturas
semicondutoras, o emprego de novas tecnologias de microscopia (microscopia de tunela-
mento, for¢a atomica), abriram as portas para vastos campos de investigacao. No aspecto
tedrico, a teoria da supercondutividade criada por John Bardeen, Leon Neil Cooper e
John Robert Schrieffer (teoria BCS) [114] influenciou vérias dreas da fisica fornecendo
um alicerce para a emergéncia de fendmenos completamente novos a partir do compor-
tamento cooperativo de sistemas de muitas particulas. Novos métodos para o calculo
de propriedades eletronicas foram desenvolvidos, dentre os quais os seguintes merecem

destaque:

— Teoria do funcional da densidade (Density Functional Theory - DFT) para o estado

fundamental e extensoes para estados excitados.

— Métodos de Monte Carlo quanticos, que podem lidar diretamente com o sistema de

muitos corpos formado por elétrons e ntucleos.

— Métodos de muitos corpos perturbativos para o espectro de excitacoes do sistema

eletronico.

— Avangos computacionais que tornam possiveis calculos realistas e influenciam deci-

sivamente o desenvolvimento deste campo de pesquisa.
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1.5 Estado fundamental e estados excitados

Podemos dividir as propriedades da matéria em dois conjuntos: aquelas que sao de-
terminadas a partir do estado fundamental e aquelas definidas pelos estados excitados dos

elétrons:

— Estado fundamental: energia de coesao, estrutura cristalina no equilibrio, transicoes
de fase estruturais, constantes elasticas, densidade de carga, ordem magnética, suscetibi-
lidades dielétricas e magnéticas no caso estatico, vibragoes dos nticleos e seus movimentos

em geral (na aproximacao adiabética ou de Born-Oppenheimer), etc.

— Estados excitados: excitagoes de baixa energia em metais que contribuem para o
calor especifico, suscetibilidade de spin de Pauli, transporte; excitagoes de alta energia
que determinam gaps isolantes, propriedades Opticas, espectro de energias para adicao e

remocao de elétrons, etc.

A razao para esta divisao reside no fato de as energias cinéticas eletronicas serem bem
maiores que as nucleares, de modo que o estado de mais baixa energia para os elétrons
determina os movimentos de baixa energia e a distribuicdo espacial dos ntcleos. As
diversas formas de matéria sao, em larga medida, manifestacoes do estado fundamental dos
elétrons. O movimento dos nticleos, por exemplo, em vibracoes da rede cristalina, ocorre
em uma escala de tempo muito maior que a dos elétrons, o que justifica a suposicao de

que, instantaneamente, os elétrons sempre se encontram no estado de mais baixa energia

[115, 116].

Como o estado fundamental dos elétrons é crucial para o calculo das propriedades
eletronicas na matéria condensada, boa parte do trabalho tedérico desenvolvido nesta disci-
plina visa estabelecer métodos adequados e precisos para lidar com o estado fundamental.
No presente, a abordagem mais utilizada para célculo de primeiros principios do estado
fundamental é a teoria do funcional da densidade (Density Functional Theory - DFT)

[117, 118, 119).

A estrutura estavel dos sdlidos é classificada de um modo mais natural através do
estado fundamental eletronico, que determina como os atomos formam ligagoes. O estado
de mais baixa energia eletronica determina a estrutura espacial dos ntcleos, suas cargas
e o numero de elétrons, exatamente as informacgoes que sao o input para a equacao de
Schrodinger do sistema. Considerando a natureza geral das ligacoes quimicas, podemos
apontar esquematicamente cinco tipos principais de materiais quanto ao tipo de ligacao

que se forma entre seus atomos constituintes:
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1. Sistemas de camada fechada (closed-shell), tais como os gases nobres e os sélidos
moleculares, apresentam estados eletronicos qualitativamente parecidos com os estados
dos atomos (ou moléculas) componentes. As bandas formadas nao sao largas, e as es-
truturas formadas sao sélidos com célula unitaria bem compacta (close-packed), no caso
dos gases nobres, e estruturas complexas, no caso de sélidos formados por moléculas sem
simetria esférica. A ligagdo é muitas vezes descrita como oriunda da fraca atragao de Wan
der Waals equilibrada pela repulsao criada pelo overlap dos estados quanticos eletronicos.

Uma andalise mais detalhada revela que outros mecanismos também sao relevantes.

2. Cristais ionicos, formados por elementos com eletronegatividades muito diferentes,
podem ser caracterizados pela transferéncia de carga de modo a formar fons de camada
fechada, criando estruturas com anions grandes em um arranjo compacto (hep, fee, ou
bee), e pequenos cations localizados em posigdes que maximizam a atra¢do coulombiana.
Experimentos quantitativos e a teoria mostram, entretanto, que nao é possivel identificar
cargas associadas de modo tnico a um dado ion. Tais sistemas sao isolantes com um gap

de energia.

3. Sistemas metdalicos nao apresentam gaps de excitacao e sao excelentes condutores.
As bandas de um metal aceitam facilmente ntimeros diferentes de elétrons, possibilitando
a formacao de ligas entre atomos de diferentes valéncias em estruturas compactas. O
gas eletronico homogéneo é uma excelente aproximagcao para tais sistemas. Metais de
transi¢ao sao particularmente importantes por suas propriedades mecanicas e magnéticas,
bem como por seus efeitos de muitos corpos, os quais proporcionam boa parte dos desafios

tedricos a resolver.

4. Ligacoes covalentes implicam numa mudanca radical no carater dos estados eletronicos
dos atomos isolados. Tal mudanga envolve o preenchimento de bandas eletronicas até o
gap de energia. Ligagoes covalentes direcionais criam estruturas abertas, bastante dife-
rentes do empacotamento compacto tipico dos outros tipos de ligacao. E o que ocorre

com materiais semicondutores, por exemplo.

5. Pontes de hidrogénio sao freqiientemente identificadas como outro tipo de ligacao.
O hidrogénio ¢ o tinico elemento quimico sem elétrons de carogo. Seu nicleo, um préton, é
atraido mais fortemente por elétrons préximos por conta da auséncia da blindagem criada
pelos elétrons de carogo em outros elementos. As propriedades da dgua sao fortemente
afetadas pela formacao de ligacoes de hidrogénio. Tais ligacoes também sao especialmente

importantes para a bioquimica.

Em geral, num dado material, as ligagoes quimicas misturam em diferentes proporgoes
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os cinco tipos acima mencionados.

Por outro lado, para certas estruturas as excitacoes eletronicas sao o cerne das pro-
priedades eletronicas da matéria - incluindo condutividade elétrica, propriedades épticas,
excitacao térmica de elétrons, fenomenos causados por elétrons extrinsecos em semicon-
dutores, etc. Estas propriedades sao governadas pelo espectro de energias de excitagao e
pela natureza dos estados excitados. Existem dois tipos basicos de excitagao: adigcao ou
subtracao de elétrons, e excitagdes que conservam constante o nimero de elétrons. Como
as excitagoes podem ser considerados rigorosamente como sendo perturbacoes do estado
fundamental, os métodos de teoria de perturbagao sao nao poucas vezes a chave para o

entendimento tedrico e o calculo de tais propriedades.

Excitagoes eletronicas também se acoplam ao movimento nuclear, levando a efeitos
como a interagao entre elétrons e fonons. Tal interagao afeta os estados eletronicos (elec-
tronic states broadening) e implica em fortes efeitos nos metais (uma vez que estes possuem
energias de excitacao arbitrariamente pequenas, levando a misturas com excitacoes nucle-
ares de baixa energia). O acoplamento pode produzir transigoes de fase e novos estados

da matéria, como o estado supercondutor.
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Figura 9: Bandas de “quase-particula” no germéanio calculadas através da aproximagao GW com
pseudopotenciais e uma base gaussiana [120] comparadas com resultados experimentais (lado
direito) obtidos por fotoemissao [121] e fotoemissao inversa [122], e um resultado tedrico usando
a aproximacao LDA (Local Density Approzimation), indicado pelas linhas tracejadas na figura
da esquerda. As bandas LDA ilustram o conhecido problema do band-gap que produz gap zero
para o germanio. Este problema praticamente desaparece quando sao usados métodos de muitos
corpos ou quando se emprega o funcional de troca exato (EXX).
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A despeito dos impressionantes triunfos da teoria DFT para o estado fundamental,
esta teoria ainda nao é capaz de produzir resultados confidveis para as excitagoes. O gap
fundamental é o ponto chave do problema. Os gaps calculados através dos funcionais DF'T
se encontram bem abaixo dos valores experimentais para praticamente todos os materiais.
Obter avancos na teoria de excitagbes em isolantes constitui boa parte do esforgo atual
em pesquisa. A obtencao de gaps reduzidos nao é intrinseca a abordagem DFT e pode ser
corrigida através de um tratamento mais apropriado da energia de troca nao-local, como
o uso de um termo de troca exato (Eract Exchange - EXX, ver Ref. [123]) e funcionais
hibridos, que incluem caracteristicas ausentes nos funcionais comumente utilizados. Por
exemplo, o funcional EXX produz excelentes valores para os gaps sem destruir a pre-
cisao do célculo de energia do estado fundamental se um funcional de correlagao local é
incluido. Outra opcao, computacionalmente muito dispendiosa, é o calculo de corregoes

perturbativas de muitos corpos (aproximagao GW).
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Figura 10: Gaps de energia para diferentes semicondutores usando os funcionais da densidade
LDA e EXX. Os resultados usando o funcional LDA subestimam os gaps na maioria dos célculos
DFT. A teoria do potencial de troca exato exige maior trabalho computacional, mas fornece gaps
bem préximos dos resultados experimentais. Figura retirada de [124].

Excitagoes que conservam o numero de elétrons podem ser vistas como excitagoes do
tipo elétron-buraco, em que o elétron adicionado interage com a “lacuna”’ deixada pela
remocao de um elétron na banda de valéncia. A energia do éxciton assim formado é
inferior ao gap entre as bandas. A medida mais universal de excitagoes que conservam

o numero de elétrons é a capacidade térmica, por abranger todas as excitacoes possiveis
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sem distingoes. A capacidade térmica a baixas temperaturas é a medida que distingue
definitivamente sistemas com gaps de energia e sistemas sem gap, e a base da distin¢ao
entre metais e isolantes. Nos metais, “quase-particulas”, excitagoes de baixa energia que
atuam como elétrons fracamente interagentes, fornecem uma descri¢ao bastante adequada
do calor especifico, da condutividade elétrica e do paramagnetismo de Pauli. Introduz-se,
nesta descrigao, o conceito de superficie de Fermi, conjunto de pontos no espacgo reciproco
onde o tempo de vida das “quase-particulas” é infinito e a energia é igual a energia de

Fermi. Tal superficie ja foi minuciosamente mapeada para muitos cristais metalicos.

As funcgoes dielétricas e a condutividade sao as fungoes resposta mais importantes
em fisica da matéria condensada por serem determinantes para as propriedades Opticas,
condutividade elétrica, e muitas outras propriedades interessantes para aplicagoes tec-
nolégicas. Além disso, os espectros dpticos sao, provavelmente, a ferramenta de estudo
de excitagoes mais amplamente utilizada. A formulacao fenomenoldgica das equacoes de
Maxwell na presenca de meios polarizéveis ou condutores inclui a fungao dielétrica e(w)
e a condutividade o(w), onde w é uma freqiiéncia complexa. Note-se que o nimero de
elétrons nao muda, ou seja, a absorcao dptica pode ser vista como a adi¢ao simultanea de

um elétron e um buraco, os quais podem interagir.

Uma outra abordagem para o calculo do espectro de excitagao para o caso em que o
nimero de elétrons nao muda é a teoria do funcional da densidade dependente do tempo
(Time-Dependent Density Functional Theory - TDDFT) [125], que fornece, em principio,
uma solucao exata para a densidade de carga eletronica em funcao do tempo. Tal abor-
dagem vem sendo utilizada juntamente com funcionais de troca e correlagao aproximados
com consideravel sucesso no calculo de espectros opticos de sistemas confinados, como

moléculas e clusters, e também no calculo de excitacoes magnéticas em solidos.

A medida que a teoria progride e se torna mais acurada, torna-se mais relevante a
consideracao de efeitos de muitos corpos decorrentes da interacao elétron-elétron. Isto nao
apenas para melhorar as descrigoes tedricas sobre materiais e fendmenos ja conhecidos,
como também para prever novas propriedades e fenomenos coletivos fora do alcance das

teorias de campo médio.

1.6 L-Alanina

O objeto de estudo da presente tese é o aminoacido a-L-alanina (L significa a forma

enantiomorfica levégira), férmula quimica C3H;NO,. As duas formas enantiomérficas da
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alanina sao apresentadas na Fig. 11, juntamente com duas perspectivas da molécula de
L-alanina. Vale salientar que, de todos os aminoacidos quirais, a alanina é o mais simples

e que, na natureza, os aminoacidos apresentam-se na forma levégira.

Enantiémeros quirais da Alanina

coy i COy~
Hy'Nw—Co—==H | Hw=Co—==NH;"

CHj 5 CHj

L-Alanina ‘ D-Alanina

Espelho

Figura 11: Na parte superior, formas enantiomérficas da alanina, juntamente com (abaixo) duas
perspectivas diferentes da molécula de L-alanina (zwitterion neutro). Os dtomos cinzentos sao
de carbono, os azuis, nitrogénio, os vermelhos, oxigénio e os brancos, hidrogénio.

A alanina é incorporada na cadeia polipeptidica nascente durante a biossintese protéica
em resposta a quatro cédons (um cédon é uma seqiiéncia de trés bases nitrogenadas, ou
nucleotideos): GCU, GCC, GCA e GCG, e representa aproximadamente 8.3% dos residuos
de proteinas que jé foram caracterizadas [126]. O residuo alanil incorporado possui uma
massa de 71.09 unidades de massa atomica (ou dalton), um volume de van der Waals
de 67 A% ¢ uma superficie acessivel de 113 A2 [126]. Residuos de alanina sdo muitas
vezes variaveis através de varias espécies, sendo muitas vezes substituidos em proteinas
homélogas por residuos de serina, treonina, valina, acido glutamico e prolina. A cadeia
lateral da alanina consiste num grupo metila. Esta cadeia lateral apolar torna os residuos
de alanina nao-reativos quimicamente, relativamente hidrofébicos e pouco hidrofilicos.
Conseqiientemente, 38% dos residuos de alanina ficam profundamente enterrados nas
conformagoes dobradas das proteinas [126]. Nessas condigoes, a cadeia lateral de metila

sofre répidas rotagoes em torno da ligagao simples entre o carbono « e o carbono 5 (o
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carbono do grupo CHs). A alanina possui, dentre todos os residuos de aminodcidos, a
maior tendéncia para adotar a conformacao a-hélice em peptideos. A ocorréncia da ala-
nina em estruturas de proteinas dobradas em a-hélices é duas vezes mais freqliente que

em [-folhas e reversoes.

No organismo humano, a L-alanina é um aminodcido essencial cuja principal funcao
parece ser o metabolismo do triptofano e da piridoxina. Tem pouca relevancia terapéutica,
mas é uma importante fonte de energia para os musculos, sistema nervoso central e cérebro
e também toma parte na fabricacao de anticorpos. Existe alanina no fluido da préstata,
e ela pode desempenhar um papel importante na saide deste orgao [127]. Altos niveis
de alanina juntamente com baixos niveis de tirosina e fenilalanina vem sendo associados
com o virus de Epstein-Barr [128] e a sindrome de fadiga cronica [129]. Baixos niveis
do aminoacido tém sido encontrados em pacientes com hipoglicemia, diabetes e hepatite

alcdolica.

Cao et al. [130] otimizaram usando técnicas ab initio (método de Hartree-Fock e
teoria da perturbagao MP2) 13 conformagoes da alanina, encontrando bom acordo com
resultados experimentais. Ellzy et al. [131] fizeram medidas do espectro vibracional infra-
vermelho e do espectro de dicroismo circular vibracional ( Vibrational Circular Dichroism
- VCD) para os zwitterions a-D-alanina, a-L-alanina, a-D-manose e a-L-manose. Os
dados experimentais foram comparados com céalculos de otimizacao de geometria usando
o funcional hibrido B3LYP e a base 6-31G*. A estrutura zwitterionica da a-L-alanina
foi estabilizada pela adicao de moléculas de dgua. O estudo concluiu que a abordagem
DFT/B3LYP fornece uma boa descrigao do VCD para as moléculas estudadas. Tulip
e Clark [132] calcularam os tensores de polarizabilidade e as freqiiéncias normais de vi-
bragao para a alanina (e também para a leucina, isoleucina e valina) usando teoria da
perturbagao do funcional da densidade com um pseudopotencial de ondas planas. Eles
verificaram que o comportamento da densidade eletronica quando sao aplicados campos
externos depende em larga medida da estrutura da molécula estudada, e nao somente dos
grupos funcionais constituintes. Os modos normais podem ajudar a diferenciar os dife-
rentes tipos de ligagao de hidrogénio intramoleculares e ajudam a explicar a razao de os
calculos mostrarem a leucina estabilizada na forma zwitterionica mesmo na fase gasosa.
O espectro infravermelho calculado mostrou uma notavel diferenca entre os resultados
obtidos para moléculas neutras e zwitterionicas. Tais diferencas podem ser atribuidas aos

diferentes tipos de ligagao de hidrogénio e substancias quimicas presentes.

O pioneiro na cristalizagdo da L-alanina foi J. D. Bernal, em 1931 [133], seguido
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Figura 12: Célula unitdria da L-alanina. Os parametros de rede sdo a=6.023 A, b=12.343 A e
¢=5.784 A, de acordo com experimentos de difracéo de raios X e difracdo de néutrons [134, 135].

por H. J. Simpson et al. [134] e R. Destro et al. [136]. Os cristais obtidos por esses
trabalhos iniciais eram pequenos e nao puderam ser usados para investigagoes opticas.
Mesmo assim, bastaram para determinar a estrutura ortorrombica do cristal, com grupo
de simetria espacial P212121 e quatro moléculas por célula unitaria. Cristais maiores
foram crescidos por Misoguti et al. [137], sem que fossem revelados maiores detalhes

sobre o modo de crescimento e a qualidade das amostras.

Estudos posteriores [138] detalharam o crescimento em solugao e caracterizaram cris-
tais de alanina pura, sendo proposto um modelo preditivo para a forma dos cristais [28].
As amostras de maior qualidade foram conseguidas usando solugoes tamponadas e auto-
semeadura, com cristais crescendo no fundo do recipiente. Os habitos de crescimento per-
tencem as familias {020}, {011} e {120}, segundo o esperado para o sistema ortorrémbico
(ver Fig. 13). As maiores faces foram as {120}, que sofriam da existéncia de degraus
multiplos encadeados e macrodegraus. As menores faces sao as {020}, em geral, embora

apresentem melhor qualidade éptica.
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Figura 13: Habitos do cristal de L-alanina pura, com indicacao das faces.

O modo como as moléculas estao dispostas na face de um cristal de aminoacido
determina sua energia superficial, enquanto o ntimero de sitios disponiveis determina como
se dard a adsorcao das moléculas que vao sendo acrescentadas. Apesar de a composi¢ao
quimica numa face ser uniforme, as energias superficiais exibidas podem variar por causa
dos tipos de grupos funcionais de cada face. E esta a razao pela qual as faces de cristais

de aminodcidos apresentam velocidades de crescimento e qualidades épticas distintas [28,

138].

Uma rede de ligagoes de hidrogénio envolvendo todas as ligages N — H — — — O
é responsavel pela estabilizacao do cristal de L-alanina. Cada préoton do grupo amina
¢ empregado na formacao dessas ligagoes de hidrogénio, duas com o oxigénio niimero 2
(ver Fig. 14) e uma com o oxigénio nimero 1, promovendo um pequeno mas relevante
aumento no comprimento da ligacdo C—0O? em relacao ao comprimento da ligacio C—O".
Uma das ligacoes N — H — — — O? liga as moléculas de alanina entre si formando uma
cadeia ao longo do eixo ¢ do cristal, enquanto as outras duas ligacoes de hidrogénio ligam
estas cadeias entre si, configurando uma estrutura tridimensional. Os canais formados ao

longo desta rede sao ocupados pelos grupos metila (ver Fig. 15). A molécula de L-alanina
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no cristal bulk forma seis ligagoes de hidrogénio com as moléculas vizinhas. Todas estas

ligacoes de hidrogénio sao aproximadamente idénticas em comprimento [28, 135, 138, 139].

Figura 14: Pontes de hidrogénio formadas pelos atomos de oxigénio no cristal de L-alanina [135].

A cristalizacao se dd usualmente a partir de uma solucao ou a partir de um banho
fundido ou térmico, mas algumas vezes formam-se cristais por sublimacao a partir da fase
gasosa. Diversos aspectos do processo de condensacao de vapor sao também comuns ao
processo de cristalizagao. Cristais podem ser formados também a partir de solucoes de
reagentes, que ao mesmo tempo produzem e depositam materiais, como na cristalizacao
hidrotérmica do quartzo. Em alguns aspectos, pode-se enxergar a cristalizacao como o
inverso da decomposicao, mas com diferencas essenciais. Por exemplo, a quantidade de
particulas presentes durante a decomposicao permanecera a mesma ou diminuird, ao passo
que, na cristalizagdo, o nimero de ntcleos sobre os quais a substancia se deposita pode
aumentar constantemente. Além disso, enquanto na decomposicao poucas vezes ocorre
resisténcia apreciavel ao processo de transferéncia de substancia através da interface entre

as duas fases, o mesmo nao se aplica ao caso da cristalizacao.

O processo de cristalizacao consiste de duas etapas, que, via de regra, acontecem ao
mesmo tempo, mas que podem em alguma medida ser controladas de modo independente.
A primeira etapa é a formacao de pequenas particulas ou nicleos e a segunda etapa é
o crescimento desses ntcleos. Se o ntmero de ntcleos é controlado, também o serda o

tamanho dos cristais, o que é fundamental no processo de cristalizacao.

No processo de nucleagao, moléculas ou agregados nao-cristalinos livres em uma
solugao juntam-se formando um agregado termodinamicamente estavel e cristalino. A

formacao e dissolucao desses nicleos cristalinos obedece a uma lei de tamanho: se o agre-



1.6 L-Alanina 49

Figura 15: Vao na estrutura tridimensional do cristal de L-alanina ocupado por grupos metila.
O eixo ¢ aponta para fora da pagina.

gado excede um tamanho critico, torna-se um ntcleo capaz de favorecer o crescimento de
um cristal macroscépico. Caso contrario, dissolve-se espontaneamente. A intensidade da

nucleacao é determinada pelo grau de supersaturacao da solucao.

Segundo a teoria de ligacao de cadeia periddica, existem trés tipos diferentes de cres-
cimento de faces: faces planas, faces em degrau, e faces dobradas. As faces planas exigem
uma nucleagao bidimensional (a formacao de folhas de moléculas com tamanhos crescen-
tes) para induzir o crescimento, e assim crescem mais devagar. Faces em degrau crescem
como colunas de moléculas, com taxas de nucleacao unidimensionais, com velocidade de
crescimento intermediaria. Por fim, as faces dobradas sao locais de crescimento que nao
precisam de nucleacao, crescendo mais rapidamente do que os outros dois tipos de faces.
Logo, o tipo da face cristalina (plana, degrau, ou dobrada) pode influenciar fortemente

na taxa de crescimento do cristal.

Em trabalho desenvolvido para obtencao do grau de mestre em fisica no Departamento
de Fisica da Universidade Federal do Ceard, Jean Reinildes Pinheiro obteve o crescimento
de cristais de L-alanina com e sem dopagem metdlica pela técnica da evaporagao lenta
de solvente [140]. Tal escolha baseou-se na disponibilidade de equipamentos no Grupo de
Semicondutores quando foi iniciado o trabalho. O método de evaporacao lenta do solvente
ja vinha sendo empregado no crescimento de aminodcidos puros (alanina, glicina, arginina,
asparagina, histidina, treonina, prolina, etc), e de outros cristais tais como sal de Rochelle,
KDP, ADP, etc.

Todos os cristais de L-alanina dopados apresentados no trabalho de Pinheiro seguiram
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o mesmo procedimento desde a preparagao da solucao até o momento de sua deposi¢ao na
sala de crescimento de cristais. Varios cristais de aminoacidos apresentaram certas carac-
teristicas tais como: reducao no tempo de cristalizagao, estrutura morfologica, tamanho
do cristal e propriedades 6ticas e magnéticas, dependendo da dopagem metélica. Foi feita
a caracterizacao dos cristais pelas mais diversas técnicas: microscopia de forca atomica,
luminescéncia, espectroscopia Raman, espectroscopia no infravermelho, raios X e ICP
(Inductively Coupled Plasma - Mass Spectrometry, espectrometria de massa de plasma
indutivamente acoplado, para determinar a presenca, concentracao e quantidade de do-
pantes metdlicos). Também foi usada a técnica da ressonancia paramagnética eletronica
(Electronic Paramagnetic Ressonance - EPR). Medidas inéditas de EPR realizadas em
cristais de L-alanina dopados com manganés (Mn*") foram apresentadas e analisadas.
Tais medidas foram feitas no Laboratério de EPR do Departamento de Fisica da Uni-
versidade Federal de Minas Gerais (UFMG), pela equipe do prof. Klaus Krumbrock.
Investigou-se o efeito de dopagem a partir do crescimento de cristais de L-alanina em
solugoes com concentracoes de 0,5%, 1%, 2%, 3% e 5% de Mn?" em cristais de L-alanina

crescidos por evaporacao lenta de solugoes aquosas a temperaturas de 4 °C, 8°C e 27 °C.

Com base na teoria sobre as caracteristicas espectrais do Mn?*, as medidas de EPR
permitem concluir que no crescimento por evaporacao nas condi¢oes de temperatura espe-
cificadas, os fons Mn?* se incorporam aos cristais de L-alanina. Para baixas densidades de
dopagem (< 3% para baixas temperaturas de crescimento), esses fons ocupam individual-
mente sitios intersticiais, enquanto que para dopagens maiores as medidas EPR sugerem
fortemente a existéncia de clusters de fons Mn?* no cristal. Também foi provado que as
amostras sao crescidas com maior eficiéncia a baixas temperaturas (mas longe do inter-
valo de temperaturas do comportamento anoémalo da dgua, 0 °C-4 °C). Ao mesmo tempo,
as medidas EPR indicam também que, embora razodvel controle da dopagem tenha sido
obtido, novos esforcos devem ser realizados para melhorar a qualidade e homogeneidade

dos cristais de L-alanina com dopagem metalica.

Guzman et al. [141] estudaram como a presenga de um campo magnético afeta a
topografia da superficie (120) de cristais de L-alanina através de microscopia de forga
atomica (Atomic Force Microscopy - AFM) ex situ (ver Fig. 16). A aplicacdo de um
campo magnético de 5 T modificou a intensidade e a altura das ilhas bidimensionais
observadas nesta face. Sob a acao do campo magnético, a quantidade e o tamanho
tipico das ilhas diminuem, e conseqiientemente a taxa de crescimento do cristal também

¢é reduzida.
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Figura 16: Imagens de microscopia de forga atomica revelando a topografia da superficie da face
(120) de um cristal de L-alanina crescido a 3 °C: (a) submetido a um campo magnético de 5
T, (b) submetido a um campo magnético de 0 T; crescido a 7 °C: (¢) submetido a um campo
magnético de 5 T, e (d) submetido a um campo magnético de 0 T [141].

Na literatura existem estudos sobre o espectro vibracional de aminoacidos héa pelo me-
nos cinco décadas [142]. Para a L-alanina cristalina, hé indicios de que existem dois grupos
de modos: modos associados a vibracoes entre as moléculas na rede, com freqiiéncias mais

baixas que ~ 400 cm™*

, origindrias de interacoes intermoleculares mediadas por ligacoes
de hidrogénio entre grupos carboxila e amina; e modos com freqiiéncias acima desse limite,
originados de diferentes vibragoes do grupo carboxila nas moléculas [36]. O espalhamento
coerente inelastico de néutrons em cristais de L-alanina foi usado para efetuar medidas
da relagao de dispersao dos fonons na L-alanina [26]. Também foi mostrada a existéncia
de uma transicao de fase na L-alanina sob pressoes hidrostaticas da ordem de 22.8 kbar
[143]. Sinais de eco de fonon foram observados em um pé cristalino finamente disperso
de L-alanina [144]. Medidas do tempo de relaxagao revelaram uma transicao de fase nos
cristais de L-alanina a uma temperatura de cerca de 440 °C. Durand /etal [145] examina-
ram algumas das vibragoes em cristais de L-alanina usando espalhamento de néutrons e
simulagoes computacionais, encontrando evidéncias para a interacao entre os dois fonons
opticos de mais baixa freqiiéncia e o modo acustico longitudinal. A velocidade do som
é anisotropica e pode ser ligada ao arranjo de ligagoes de hidrogénio no cristal. Embora
algumas das freqiiéncias vibracionais calculadas tenham ficado um tanto elevadas, a forma

das relagoes de dispersao calculadas estd em bom acordo com o experimento. Crowell et
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al. [146] obtiveram a dependéncia das taxas de defasamento dos dois fonons épticos da L-
alanina (42 e 49 cm™!) em fungao da temperatura através de medidas de Raman coerente.
As intensidades Raman anomalas determinadas para esses modos sao atribuidas a uma

1

instabilidade termicamente induzida no modo de 49 cm™ e ao processo de localizacao

dindmica a baixa temperatura [147].

1.7 Escopo da presente tese

A presente tese de doutoramento divide-se em quatro capitulos, sendo o primeiro esta

introducao.

No capitulo segundo, sao apresentados resultados tedricos de diversas propriedades
Opticas, eletronicas e vibracionais obtidos para a molécula de L-alanina. Otimizacao de
geometria, calculos de funcoes de onda, orbitais HOMO e LUMO, densidades eletronicas,
potenciais eletrostaticos, analises populacionais e espectros Raman, infravermelho e VCD
sao calculados e discutidos em confronto com dados experimentais e outros resultados

tedricos.

O capitulo terceiro contém os resultados dos calculos tedricos para o cristal de L-
alanina, com a apresentacao da otimizacao da geometria, densidades eletronicas, estru-
tura de bandas, estimativa do band gap e massas efetivas, fungao dielétrica, absorcao e
refletividade 6ptica. E feito um estudo comparativo dos resultados em varios niveis de
refinamento computacional. Excitacoes moleculares sao investigadas através do método
CIS, em busca de uma interpretacao adequada dos picos de luminescéncia observados no
espectro da L-alanina cristalizada. Também se estuda o comportamento de sistemas com
varias moléculas de alanina em série e as implicacoes das propriedades moleculares nas
propriedades dépticas de cristais de L-alanina (efeitos de polaron). Por fim, uma andlise

do efeito da presenca de um fon Mn?* entre quatro moléculas de L-alanina é apresentada.

O quarto capitulo apresenta as conclusoes da tese e as perspectivas de novos desdo-
bramentos. Em um anexo sao apresentados os fundamentos tedricos dos métodos usados
para determinacao das propriedades optoeletronicas da L-alanina. Primeiramente é des-
crita a aproximacao de Hartree-Fock para um sistema de muitos elétrons, comecando da
aproximacao de Born-Oppenheimer, passando pelas implicagoes do principio da exclusao
sobre a forma da funcao de onda de muitos elétrons, pela expansao da funcao de onda
em determinantes de Slater, pela definicao do operador de Fock e chegando ao conjunto

de equagoes de Roothaan para um sistema de camada fechada (método de Hartree-Fock
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restrito). Sao realizados em seguida varios comentérios sobre o célculo de propriedades

moleculares e sobre métodos derivados a partir da aproximacao de Hartree-Fock.

Na seqiiéncia, é apresentada uma introducao a teoria do funcional da densidade com a
prova dos teoremas de Hohenberg-Kohn e a definicao e descricao do método dos orbitais de
Kohn-Sham. Vérias aproximacoes para o funcional de troca e o funcional de correlagao
sao discutidas, bem como o uso de funcionais hibridos. A aplicacao dos métodos ab
initio a cristais vem logo em seguida, com a apresentacao de alguns conceitos basicos e o
teorema de Bloch. Também sao feitos comentarios sobre métodos de integracao na zona
de Brillouin e o emprego de pseudopotenciais e ondas planas como funcoes de base em

sistemas periédicos.

O apeéndice consiste numa breve descricao do sistema de unidades atomicas.
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2 Calculos ab initio para a molécula
de L-alanina

E grande na literatura o niimero de resultados de primeiros principios para moléculas
de aminodcidos. No entanto, uma parte significativa dos trabalhos publicados procura
apenas identificar as geometrias moleculares que minimizam a energia total [6, 130, 148,
149, 150]. No presente capitulo serdao apresentados célculos tedricos de otimizagao de
geometria, determinacao dos orbitais moleculares, andlises de populacao eletronica, modos
normais de vibragao, espectros Raman e infravermelho, depolarizacoes Raman e espectros
VCD (Vibrational Circular Dichroism) para o aminodcido L-alanina nas condi¢oes neutra

e zwitterionica (solvatacao em dgua).

2.1 Definicoes iniciais

Para facilitar a apresentacao e discussao dos dados obtidos, os atomos da molécula
de L-alanina neutra e zwitterionica serao identificados de acordo com a Fig. 17. Calculos
tedricos indicam que a molécula de alanina isolada pode adotar diversas conformacoes
[130, 148, 151, 152], cuja estabilidade depende de um sutil equilibrio entre o efeito de cor-
relacao eletronica e a formacao de ligagoes de hidrogénio intramoleculares. Isto pruduz
uma certa variacao nas predigoes tedricas conforme o método de célculo adotado. Das 13
conformacgoes moleculares identificadas nesses estudos, as configuracoes de energia mais
baixa possuem valores de energia extremamente proximos, o que implica teoricamente na
coexisténcia de diversas conformagoes a alta temperatura com populagbes mais ou me-
nos iguais. Contudo, a primeira determinacao estrutural por difracao de elétrons na fase
gasosa [153] encontrou evidéncias da existéncia de uma tnica conformagao (conformagao
I da Fig. 17). Experimentos posteriores de espectroscopia rotacional [9] identificaram a

presenga de uma segunda conformagao da alanina (conformacgao II da Fig. 17), em uma
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proporg¢ao de uma molécula na conformacao II para cada 8 moléculas na conformacao I.
Os outros tipos de geometria molecular nao foram observados. Um segundo estudo de
difragao de elétrons [154], uma andlise de dados guiada por resultados de espectroscopia
rotacional [9] e cédlculos tedricos [148] confirmaram a coexisténcia das conformacoes I e
IT numa proporgao de 8 para 1 e a auséncia de outras geometrias. Pouca informagcao
a mais foi obtida a respeito da fase gasosa da alanina além do espectro de fotoelétrons
He I [155, 156, 157]. Tais resultados podem ser interpretados de modo a se obter in-
formacao sobre a estrutura eletronica da molécula. Também foi indicado recentemente
[158] que esses espectros de fotoelétrons de baixa resolucao parecem ter sido produzidos

predominantemente pela conformagao do tipo I.

Pode-se facilmente identificar na Fig. 17 os grupos carboxila, amina e a cadeia lateral
metila. A ordem em que os nimeros aparecem é a mesma usada nos inputs para os
calculos, e segue o numero atomico dos elementos em ordem decrescente. O carbono « é
indicado pelo nimero 5, enquanto o carbono do grupo carboxila é o &tomo de nimero 4. O
atomo de hidrogénio ligado ao C, é o a&tomo de ntimero 13. O nitrogénio do grupo amina
possui numero 3 e o hidrogénio que, na molécula zwitterionica passa para o nitrogénio
possui o nimero 7. O carbono do grupo metila é o de niimero 6, e seus hidrogénios possuem
os numeros 10, 11 e 12. Os dois hidrogénios que sempre estao ligados ao nitrogénio sao
numerados 8 ¢ 9. Os dois oxigénios possuem numeros 1 (o que, na Fig. 17, forma a
ligacao simples com o carbono nimero 4) e 2 (forma ligacao dupla com C*). No total
sao 13 atomos com 48 elétrons, sendo 36 elétrons de valéncia e 12 elétrons de caroco.
As configuracoes eletronicas na tabela periddica sao: O - 15%2s522p*, N - 1522522p3, C -
1522522p% H - 1s'.

Como o maior valor de Z presente é 8 nao sera necessario efetuar corregoes rela-
tivisticas nos calculos. Explica-se: um critério razoavel para determinar se é ou nao
necessario um calculo relativistico é medir a razao entre o niimero atomico do elemento
mais pesado na molécula e o inverso da constante de estrutura fina, que é aproximada-
mente 137 (ver segdo A.6.8 no Anexo A). Se a razao for préxima de 1, ou for uma fracao
significativa desse ntimero, é necessario incluir efeitos relativisticos. No caso da alanina,

o maior valor de Z é 8, e 8/137 ~ 0.058394, o que é bem menor do que 1.

A parte (c) da Fig. 17 apresenta os mesmos dtomos numa molécula zwitterionica. A
conformacao neutra estavel que mais se aproxima da geometria zwitterion é a forma II.
Note-se, em comparagao, que a ligacao dupla da forma neutra II entre o carbono 4 e o

oxigenio 2 passa a ser uma ligacao ressonante compartilhada com o oxigénio 1, que perde
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Figura 17: Convencao para identificar os dtomos da molécula de L-alanina: (a) L-alanina na
conformacao neutra I, (b) conformagao neutra II, e (c) forma zwitteridnica.

o hidrogeénio 7 para o nitrogénio 3. Observe-se também como os hidrogénios 8 e 9 abrem
espaco e giram para que o hidrogénio 7 possa se ligar ao atomo de nitrogénio na forma

molecular zwitterion em comparacao com a molécula neutra.

Removendo os graus de liberdade associados a translacao do centro de massa e ao
movimento de rotagdo, a molécula de L-alanina possui 33 graus de liberdade (e, por

conseguinte, 33 modos normais de vibragao).

Todos os célculos foram realizados usando o software Gaussian03 [159], revisao B.04,
gentilmente cedido pelo Prof. Sylvio Canuto da Universidade de Sao Paulo, empregando
funcoes de base gaussianas. Para as formas neutra I, neutra II e zwitterion, a tabela 1
apresenta as coordenadas zyz (cartesianas) em A que foram usadas como ponto de partida
para os cdlculos, enquanto a tabela 2 contém as distancias (em A) entre os atomos nas
configuragoes iniciais. A tabela 3 apresenta os comprimentos das ligagdes, os angulos
entre os atomos e os angulos de diedro para as trés conformacoes. Em todos os casos, o

grupo de simetria pontual da molécula é C (apenas a operacao identidade).



2 Calculos ab initio para a molécula de L-alanina

58

Conformacao | Conformacoes Il e zwitterion
Atomo X (A) Y &) Z (A) Atomo X (R) Y &) Z (A)
o' 0.971700 | -0.805200 | 0.303600 o' 0.000000 | 0.000000 | 0.000000
0? 0.969400 | 1.542600 | -0.779000 02 0.000000 | 0.000000 | 2.094453
NE -1.723800 | 1.310600 | 0.171800 NE 2.641514 | 0.000000 | -0.226764
c? 0.616700 | 0.524300 | -0.185900 c? 0.537297 | 0.098078 | 1.034158
o -0.778500 | 0.233400 | 0.373500 o 2.029985 | 0.379053 1.058515
ct -1.270200 | -1.101100 | -0.193400 ct 2.290354 | 1.834036 | 1.353194
H’ 1.922600 | -0.733800 | 0.150000 H’ 2.190437 | 0.514212 | -1.044536
He -1.300800 | 2.190700 | 0.392600 He 3.696372 | 0.266653 | -0.218414
H? -2.041700 | 1.332000 | -0.776000 H° 2.576972 | -1.064600 | -0.346156
H'0 -1.199700 | -1.108600 | -1.306100 H'0 1.881088 | 2.480014 | 0.551521
H' -0.650300 | -1.932300 | 0.216900 H' 1.827990 | 2.148663 2.308943
H'2 -2.332400 | -1.281700 | 0.098400 H'2 3.378518 | 2.021533 | 1.421801
H'3 -0.654600 | 0.120900 1.494500 H'3 2.485262 | -0.262680 | 1.842899

Tabela 1: Coordenadas iniciais (cartesianas) para os dtomos em diferentes conformagoes da molécula de L-alanina.
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Conformacao |
o' 0? N’ ct c
o' 0.000000
o? 2.585381 | 0.000000
N3 3.429242 | 2.865514 | 0.000000
ct 1.460550 | 1.230081 | 2.494826 | 0.000000
5 2.036363 | 2.469294 | 1.447285 | 1.531057 | 0.000000
ct 2.315315 | 3.513956 | 2.481012 | 2.490456 | 1.531024
Y 0.965868 | 2.636973 | 4.180464 | 1.844185 | 2.877737
He 3.761329 | 2.635619 | 1.001128 | 2.605448 | 2.025879
H 3.848862 | 3.018457 | 0.999922 | 2.840368 | 2.030750
H1o 2.719957 | 3.465789 | 2.882950 | 2.687102 | 2.190760
it 1.977057 | 3.961083 | 3.416261 | 2.793281 | 2.175136
H2 3.344583 | 4.432650 | 2.663794 | 3.469820 | 2.187650
PE 2.218278 | 3.134870 | 2.075599 | 2.145386 | 1.133423
Cé H7 H8 H9 H10
ct 0.000000
H’ 3.232152 | 0.000000
He 3.343693 | 4.359113 | 0.000000
H 2.618131 | 4.565159 | 1.628473 | 0.000000
H1o 1.114956 | 3.465467 | 3.712302 | 2.635621 | 0.000000
it 1.115130 | 2.839136 | 4.177697 | 3.684766 | 1.816549
Hi2 1.116258 | 4.290441 | 3.634324 | 2.771373 | 1.812621
K 2.172845 | 3.029877 | 2.432248 | 2.923351 | 3.106793
H11 H1 2 H1 3
it 0.000000
Hi2 1.807424 | 0.000000
P 2.418245 | 2.594493 | 0.000000

o' o’ N® c! c’
o' 0.000000
o 2.094453 | 0.000000
N 2.651230 | 3.516482 | 0.000000
ct 1.169526 | 1.192699 | 2.455051 | 0.000000
e 2.320555 | 2.310344 | 1.472953 | 1.519098 | 0.000000
ct 3.231183 | 3.026363 | 2.446072 | 2.487678 | 1.507184
W 2.480621 | 3.862082 | 1.066131 | 2.688310 | 2.113489
He 3.712409 | 4.368481 | 1.088072 | 3.402516 | 2.102386
o 2.809623 | 3.705500 | 1.073216 | 2.723484 | 2.087206
W1 3.161192 | 3.474133 | 2.708218 | 2.777108 | 2.166390
Wt 3.645479 | 2.829188 | 3.421751 | 2.737857 | 2.176210
W2 4.185988 | 3.994176 | 2.710635 | 3.452895 | 2.155982
e 3.105125 | 2.511733 | 2.092110 | 2.139807 | 1.111016
C6 H7 HB H9 H10
ct 0.000000
W 2.738800 | 0.000000
He 2.627457 | 1.735398 | 0.000000
o 3.372244 | 1.769122 | 1.744020 | 0.000000
W10 1.107910 | 2.550974 | 2.964291 | 3.722145 | 0.000000
Wt 1.107351 | 3.748148 | 3.663379 | 4.235042 | 1.789174
W2 1.106329 | 3.125120 | 2.423003 | 3.645869 | 1.791615
W3 2.161948 | 3.004624 | 2.448672 | 2.333120 | 3.091125
H1 1 |_l1 2 H13
Ht 0.000000
H'2 1.790899 | 0.000000
R 2.542396 | 2.488547 | 0.000000

Tabela 2: Distancias (em A) entre os 4tomos em diferentes conformacoes da molécula de L-alanina.
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Conformacao | Conformacdes Il e zwitterion

er?\:::ln\:izsos RAR) er?\:::ln\:izsos 0 (graus) er?\:::ln\:izsos Z(sraus) er?:::l':izsos i er?:::l':izsos 0 (graus) er?:::l':izsos 2
R(1-4) 1.4605 A4-1-7) 96.8173 | D(7-1-4-2) 11.0038 R(1-4) 1.1695 A(5-3-7) 111.687 | D(7-3-5-4) | 57.6198
R(1-7) 0.9659 A(5-3-8) 110.3407 | D(7-1-4-5) | -171.0164 R(2-4) 1.1927 A(5-3-8) | 109.4349 | D(7-3-5-6) | -64.8085
R(2-4) 1.2301 A(5-3-9) 110.8353 | D(8-3-5-4) | -44.5559 R(3-5) 1.473 A(5-3-9) | 109.1099 |D(7-3-5-13) | 174.8696
R(3-5) 1.4473 A(8-3-9) 108.9396 | D(8-3-5-6) | -169.1479 R(3-7) 1.0661 A(7-3-8) | 107.3296 | D(8-3-5-4) | 176.3213
R(3-8) 1.0011 A(1-4-2) 147.7209 | D(8-3-5-13) | 72.1619 R(3-8) 1.0881 A(7-3-9) | 111.5719 | D(8-3-5-6) 53.893
R(3-9) 0.9999 A(1-4-5) 85.7613 | D(9-3-5-4) 76.2053 R(3-9) 1.0732 A(8-3-9) | 107.5933 |D(8-3-5-13) | -66.4289
R(4-5) 1.5311 A(2-4-5) 126.4942 | D(9-3-5-6) | -48.3867 R(4-5) 1.5191 A(1-4-2) | 124.9062 | D(9-3-5-4) | -66.197
R(5-6) 1.531 A(3-5-4) 113.7573 | D(9-3-5-13) | -167.0769 R(5-6) 1.5072 A(1-4-5) | 118.7583 | D(9-3-5-6) | 171.3747
R(5-13) 1.1334 A(3-5-6) 112.7918 | D(1-4-5-3) | -179.7322 R(5-13) 1.111 A(2-4-5) | 116.3346 |D(9-3-5-13)| 51.0528
R(6-10) 1.115 A(3-5-13) 106.446 | D(1-4-5-6) | -53.0458 R(6-10) 1.1079 A(3-5-4) | 110.2651 | D(1-4-5-3) | -20.7445
R(6-11) 1.1151 A(4-5-6) 108.8435 | D(1-4-5-13) |  63.4628 R(6-11) 1.1074 A(3-5-6) 110.323 | D(1-4-5-6) | 101.5354
R(6-12) 1.1163 A(4-5-13) | 106.2965 | D(2-4-5-3) -1.0741 R(6-12) 1.1063 A(3-5-13) | 107.2942 | D(1-4-5-13) | -137.6263
A(6-5-13) | 108.3492 | D(2-4-5-6) | 125.6123 A(4-5-6) | 110.5753 | D(2-4-5-3) | 159.5847

A(5-6-10) | 110.7985 | D(2-4-5-13) | -117.879 A(4-5-13) | 107.8872 | D(2-4-5-6) | -78.1354

A(5-6-11) | 109.5686 |D(3-5-6-10) | 74.4992 A(6-5-13) | 110.4126 |D(2-4-5-13) | 42.7029

A(5-6-12) | 110.4772 | D(3-5-6-11) | -165.0838 A(5-6-10) | 110.9515 |D(3-5-6-10) | 58.9137
A(10-6-11) | 109.0886 | D(3-5-6-12) | -45.9777 A(5-6-11) | 111.7714 | D(3-5-6-11) | 179.1898

A(10-6-12) | 108.6605 | D(4-5-6-10) | -52.7391 A(5-6-12) | 110.2213 | D(3-5-6-12) | -60.6967

A(11-6-12) | 108.1918 | D(4-5-6-11) | 67.6779 A(10-6-11) | 107.7356 | D(4-5-6-10) | -63.3322

D(4-5-6-12) | -173.216 A(10-6-12) | 108.0228 | D(4-5-6-11) | 56.9439
D(13-5-6-10)| -167.926 A(11-6-12) | 107.9995 | D(4-5-6-12) | 177.0574
D(13-5-6-11)|  -47.509 D(13-5-6-10)| 177.3436

D(13-5-6-12)|  71.5971 D(13-5-6-11)| -62.3802

D(13-5-6-12)| 57.7333

Tabela 3: Comprimentos de ligacao R (em A), angulos 6 e angulos de diedro 7 entre os atomos da molécula de L-alanina em diferentes conformagoes.




2.1 Definicoes iniciais 61

Foi realizada a otimizacao da geometria de uma molécula de L-alanina neutra nas
conformacoes I, II e zwitterfon usando o algoritmo de Berny [160, 161] empregando o
método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) e a teoria
do funcional da densidade (funcional B3LYP [162]). Foi usado o software Gaussian03 com

trés critérios para convergencia:

1. Convergéncia no valor médio quadratico da matriz densidade: variagao inferior a

10~® unidades atomicas num limite de 128 ciclos em dois passos consecutivos.

2. Convergéncia no valor maximo da matriz densidade: variacao inferior a 1078

unidades atomicas em dois passos consecutivos.

3. Convergéncia no valor da energia: variacio inferior a 107 H em dois passos

consecutivos.

Nas proximas paginas serao apresentados os resultados dos calculos com comentarios

e discussoes.
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2.2 Conformacao |

2.2.1 Convergéncia

A Fig. 18 revela a convergéncia na energia e na forca média quadratica para trés
otimizacoes da conformacao I da L-alanina usando os métodos RHF e DFT. O primeiro
calculo efetuado partiu da configuragao inicial dada na tltima se¢ao e usou a aproximacgao
RHF na base 6-31++G(d,p). Como a configuragao inicial estava bem longe da confi-
guracao 6tima, foram necessarios mais passos (20, no total) para alcangar convergéncia.
Em seguida, usou-se esta configuracao convergida como ponto de partida para os calculos
RHF na base 6-311++G(3d,3p) e DFT na base 6-31++G(d,p). O ntmero de iteragoes em
cada um desses métodos caiu de 20 para 4 (RHF) e 6 (DFT), indicando que o resultado
RHF na base 6-31++G(d,p) é bastante razodvel. A tabela 4 apresenta as forcas sobre

cada dtomo na configuracao convergida pelos trés métodos.
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Figura 18: Convergéncia da energia e da forca média quadratica no calculo RHF para a L-alanina na conformacao I usando trés métodos distintos.
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RHF - Base 6-31G++(d,p)

Atomo F, (H/bohr) F, (H/bohr) F, (H/bohr)
o' -0.000035712 | 0.000010376 -0.000023139
0’ -0.000009424 | -0.000007501 -0.000015375
N3 -0.000006295 | -0.000000970 -0.000001006
ct 0.000029891 | -0.000015305 0.000060874
c? 0.000011691 0.000018320 -0.000020081
ct -0.000001675 | -0.000003472 -0.000004522
H’ -0.000006501 0.000001276 -0.000001091
He -0.000002862 | 0.000002196 0.000005606
H® 0.000004982 | -0.000001313 -0.000000792
H'o -0.000000158 | -0.000002400 0.000005020
H' 0.000002372 0.000003699 -0.000002358
H'? 0.000010168 | -0.000002388 0.000003220
H'3 0.000003523 | -0.000002517 -0.000006357

RHF - Base 6-311G++(3d,3p

)

Atomo F, (H/bohr) F, (H/bohr) F, (H/bohr)
o' 0.000002415 | -0.000000340 | 0.000000972
o -0.000004336 | 0.000004858 | -0.000007740
N -0.000008878 | -0.000001379 | -0.000002127
ct 0.000002870 | -0.000000926 | 0.000006137
5 0.000001581 | -0.000000538 | 0.000003882
6 -0.000001439 | -0.000002397 | -0.000000716
H’ 0.000001741 | -0.000000530 | -0.000000376
He 0.000003120 | 0.000000465 | -0.000000404
H 0.000002509 | 0.000001053 | 0.000001900
H10 0.000000959 | 0.000000749 | 0.000000170
! -0.000000173 | 0.000000803 | 0.000000286
H2 -0.000000635 | 0.000000294 | -0.000000409
i3 0.000000265 | -0.000002111 | -0.000001576

DFT - Base 6-31G++(d,p)

Atomo F, (H/bohr) F, (H/bohr) F, (H/bohr)
o' 0.000000457 | -0.000002439 | -0.000005295
0? -0.000002170 | -0.000004028 0.000001250
N3 -0.000000213 | -0.000000347 | -0.000001228
ct 0.000002916 | -0.000000131 0.000004851
c® 0.000000335 0.000005699 0.000002476
ct 0.000000504 | -0.000000132 | -0.000000140
H’ -0.000002171 | -0.000004465 0.000000313
H® -0.000003751 | -0.000001118 | -0.000000698
H? -0.000000174 0.000003840 | -0.000001546
H'o 0.000003211 0.000000748 0.000000060
H' 0.000002046 0.000000787 0.000000676
H'? 0.000000848 0.000002458 0.000000341
H" -0.000001838 | -0.000000873 | -0.000001059

Tabela 4: Forcas sobre cada atomo apds convergéncia.
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2.2.2 Geometria

A tabela 5 apresenta as coordenadas finais dos atomos da molécula de L-alanina na
conformacao I apds convergéncia usando os trés métodos ja mencionados, e as tabelas
6, 7 e 8 mostram as distancias entre todos os atomos da molécula. As tabelas 9, 10 e
11 contém os comprimentos de ligacao, angulos e torcoes obtidos pelos trés métodos. E
importante fazer uma comparacao desses resultados com outros trabalhos tedéricos e dados
experimentais. Cao et al. [130] otimizaram a geometria de 13 conformacoes da L-alanina
usando cdlculos de Hartree-Fock e MP2 nas bases 6-31G(d,p). Através da comparagao com
estruturas sem correlagao eletronica (HF) e com correlagao (MP2), foi possivel detectar
algumas diferencas. A magnitude desses efeitos é da ordem de 0.03 A nos comprimentos
de ligagao e 3° nos angulos (na seqiiéncia C-O > C-N > C-C e H-O-C > H-N-C >
H-C-C.

Uma comparagao com a referéncia [130] é apresentada para alguns comprimentos de
ligacao e angulos na tabela 12. Por exemplo, o comprimento da ligacao C-N ¢ igual a
1.4425 A na aproximacao RHF /6-31G(d,p) e 1.4548 A na aproximacio MP2/6-31G(d,p).
Para esta ligacao, a inclusao de efeitos de correlagao eletronica aumenta a distancia entre
o carbono e o nitrogénio em mais ou menos 0.85%. O resultado obtido na presente tese
é de 1.4419 A na aproximacio RHF/6-31++G(d,p) e 1.4552 A na aproximacao DFT/6-
314++4G(d,p), um aumento de 0.91%. Tais comprimentos sao menores que o valor ex-
perimental de 1.471 A [153]. A ligagdo entre os dtomos de carbono C* e C° possui
comprimento de 1.5219 A na aproximaciao RHF/6-31G(d,p) e 1.5205 A na aproximacio
MP2/6-31G(d,p) (uma diferenca relativa bem pequena, de 0.09%), enquanto o resultado
aqui obtido é de 1.5233 A na aproximaciao RHF /6-31++G(d,p) e 1.5325 A na aproximacao
DFT/6-314++G(d,p) (uma diferenga relativa de 0.6%). Para efeito de comparacao, o re-
sultado experimental para esse comprimento de ligacio é de 1.507 A [153] Aparentemente,
a ligacao entre C* e C® é um pouco menos afetada pela correlacio eletronica em com-
paracao com a ligacao entre C° e N3, A ligacao entre o dtomo C* e o 4tomo O? possui
comprimento de 1.1886 A na aproximacao RHF/6-31G(d,p) e 1.2194 A na aproximacio
MP2/6-31G(d,p), diferenca relativa de 2.5%, bem maior que as mencionadas nas duas
ligacoes anteriores. 1.192 A ¢é o valor experimental da ligacdo C=0 [153]. Para nossos
célculos, os comprimentos obtidos foram de 1.1898 A (RHF/6-31++C(d,p)) e 1.2134 A
(DFT/6-31++G(d,p)), diferenga relativa de 1.9%.

As ligacoes de hidrogénio entre o grupo carboxila e os dtomos H® e H® possuem,

respectivamente, comprimentos de 2.87233 A e 2.688954 A no cdlculo RHF simples. No
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cdlculo DFT, essas mesmas distancias, na mesma ordem, mudam para 2.939173 A e
2.680154 A.

O angulo A(1-4-2), envolvendo o atomo de carbono e os dois oxigénios do grupo
carboxila é de 122.2796" de acordo com o célculo RHF /6-31++G(d,p) e 122.4057° segundo
o resultado obtido via DFT/6-31++G(d,p). Na referéncia [130], os angulos obtidos foram
de 122.38" (RHF/6-31G(d,p)) e 122.92° (MP2/6-31G(d,p)). A correlagao eletronica tende
a aumentar a abertura do angulo O-C=0. J4 para o angulo A(8-3-9), os resultados obtidos
foram 106.9913" (RHF/6-31++G(d,p)), 106.3742° (DFT/6-31++G(d,p)) em comparagao
com 106.32° (RHF/6-31G(d.p)) e 104.66° (MP2/6-31G(d.p)).

A molécula de alanina é muito pequena para exibir as sutis tendéncias de comporta-
mento das distancias interatomicas que sao caracteristicas de sistemas nos quais varios
angulos de diedro entre dtomos pesados ocorrem em seqiiéncia [163]. Mesmo assim, a
comparagao entre estruturas sem correlacao eletronica e estruturas que incluem este efeito
permite detectar caracteristicas importantes da geometria que sao influenciadas pela cor-

relacao eletronica.

Comparando os resultados obtidos nas tabelas 9 e 11, podem ser observadas varias
tendéncias. Os comprimentos de ligacao calculados usando DFT sao, via de regra, maiores
que os obtidos de acordo com o método RHF, indicando que a correlagao eletronica
produz o alongamento dos comprimentos de ligagao, sendo tal efeito mais intenso nas
ligagoes entre o carbono e os oxigénios. No caso dos angulos entre as ligacoes nao existe
uma tendéncia tao nitida. Os angulos A(1-4-2) (O-C=0, diferenca de 0.1261°), A(3-5-
4) (C-C-N, diferenga de 0.259°) e A(4-5-13) (C-C-H, diferenga de 0.3249°) sdo maiores
com a inclusao de correlagao eletronica, enquanto os angulos A(8-3-9) (NHa, diferenca
de -0.6171%), A(4-5-6) (C-C-C, diferenca de -0.27°) e A(4-1-7) (C-O-H, diferenca de -
1.6928°%) sdo menores. O angulo C—-C-N é de 110.1° de acordo com dados experimentais
[153], enquanto o valor obtido usando DFT ¢ de 113.516°. Para o angulo C-C=0, o
resultado experimental é 125.6° [153] e o valor previsto de acordo com o cdlculo DFT do

presente trabalho é de 125.5083°.

Os angulos de diedro nao apresentam uma tendéncia clara, mas podem ser dividi-
dos em dois grupos: angulos que aumentam com a correlacao eletronica e angulos que
diminuem. A lista dos que se enquadram neste ultimo grupo é formada por D(7-1-4-5),
D(8-3-5-6), D(8-3-5-13), D(9-3-5-13), D(1-4-5-3), D(1-4-5-13), D(2-4-5-6), D(3-5-6-11),
D(3-5-6-12), D(4-5-6-10), D(13-5-6-10) e D(13-5-6-11). Todos esses angulos envolvem o

carbono de nimero 5, ou carbono «, com 7 ocorréncias para o carbono de nimero 6 e 6
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ocorréncias para o nitrogénio. A correlacao eletronica produz modifica¢oes nos angulos de
diedro por alguns graus (no méximo algo em torno de 4°). O angulo de diedro D(7-1-4-5)

tedrico (DFT) é de 178.2569°, enquanto o experimental [153] é de 180°.

Olhando agora para as tabelas 9 e 10, que apresentam dados usando o método RHF
com bases diferentes, observa-se que o refinamento da base tende, em geral, a reduzir ainda
mais os comprimentos de ligagao (a excegao é a ligagdo C-N, que aumenta um pouco).
O mesmo ocorre com os angulos, exceto aqueles que envolvem o atomo de nitrogénio, os
quais tendem a aumentar com o emprego de uma base maior. Os angulos de diedro nao

apresentam uma tendéncia nitida, ora aumentando, ora diminuindo.
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RHF - Base 6-31G++(d,p)

RHF - Base 6-311G++(3d,3p)

DFT - Base 6-31G++(d,p)

Atomo X (A) Y (A) Z A) Atomo X (R) Y (A) Z(A) Atomo X () Y (A) Z R)
o 1.608840 | 0.801656 | -0.390513 o' 1.613833 | 0.784067 | -0.408234 o' 1.640605 | 0.789500 | -0.437545
o? 1.158581 | -1.131293 | 0.576814 o2 1.144661 | -1.114953 | 0.599767 o’ 1.150249 | -1.131975 | 0.633773
N3 -1.522849 | -1.031899 | -0.286691 NE -1.523225 | -1.028295 | -0.301755 N? -1.543706 | -1.022917 | -0.331610
c* 0.781051 | -0.166733 | -0.008704 ct 0.779636 | -0.167017 | -0.004963 c 0.781392 | -0.167500 | -0.003490
5 -0.663592 | 0.120710 | -0.396889 s -0.661860 | 0.125108 | -0.398049 s -0.667531 | 0.136997 | -0.398762
6 -1.206099 | 1.271719 | 0.456518 ct -1.202600 | 1.267929 | 0.464800 I -1.212437 | 1.267245 | 0.492920
Y 2.488820 | 0.585200 | -0.110537 H 2.485715 | 0.563197 | -0.118737 H’ 2.529300 | 0.543984 | -0.127557
He -1.225758 | -1.770962 | -0.891535 He -1.206329 | -1.760422 | -0.901758 He -1.232973 | -1.748964 | -0.971939
H° -1.516393 | -1.396371 | 0.645502 H° -1.504425 | -1.398140 | 0.626069 H° -1.513053 | -1.430230 | 0.600729
H10 -1.230058 | 0.991669 | 1.506174 H10 -1.235447 | 0.973197 | 1.508050 H10 -1.243575 | 0.948521 | 1.541081
{1t -0.597685 | 2.161735 | 0.351954 {1t -0.586445 | 2.152043 | 0.377305 {1t -0.591058 | 2.163679 | 0.421806
H2 -2.218163 | 1.494282 | 0.143109 H'2 -2.208146 | 1.503879 | 0.147587 H2 -2.230686 | 1.508143 | 0.178215
H3 -0.648348 | 0.440652 | -1.433782 {3 -0.641350 | 0.455284 | -1.429221 {3 -0.647384 | 0.494628 | -1.434892

Tabela 5: Coordenadas finais (cartesianas) para os atomos da molécula de L-alanina na

conformagao 1.




2.2 Conformacao | 69

0 0’ N° ct c

o' 0.000000

0 2.207882 0.000000

N3 3.630452 2.818792 0.000000

! 1.329959 1.189847 2.476639 0.000000

c’ 2.372273 2.415766 1.441865 1.523255 0.000000

¢t 2.976962 3.373522 2.441177 2.496866 1.532136

H’ 0.948475 2.277791 4.328918 1.868756 3.199289

H® 3.860613 2.872333 1.000157 2.716656 2.034485

H? 3.958754 2.688954 1.000933 2.686679 2.028642

yie 3.419483 3.328103 2.719360 271517 2.168202

H! 2.696261 3.738858 3.385719 2. 729972 2.175061

H'2 3.925613 4.299319 2.655142 3.431807 2.143592

H'3 2.512695 3.127059 2.061304 2.107829 1.085238
c6 H7 H8 H9 H10

c6 0.000000

W 3.800696 | 0.000000

H® 3.327994 | 4.467611 0.000000

H°® 2.692713 | 4.532103 1.608500 0.000000

H'0 1.086636 | 4.075417 3.658026 2.554502 0.000000

H' 1.083157 | 3.496552 4.172151 3.686504 1.761015

H'Z 1.082605 | 4.800673 3.566115 3.016746 1.756963

H!3 2.138923 3.407888 2.349185 2.907160 3.047186
H1 1 H1 2 H1 3

H' 0.000000

L2 1.764953 | 0.000000

H'3 2.480634 2.461918 0.000000

Tabela 6: Distancias finais (em A) entre os 4tomos da molécula de L-alanina I apés convergéncia
empregando o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero)
na base 6-31++G(d,p).



70

2 Calculos ab initio para a molécula de L-alanina

(o} (o N? ¢t c’
o 0.000000
o 2.200560 | 0.000000
E 3.624517 | 2.817422 | 0.000000
c 1.327807 | 1.182170 | 2.476501 | 0.000000
c5 2.369200 | 2.407677 | 1.442761 | 1.522421 | 0.000000
c6 2.988077 | 3.347534 | 2.441937 | 2.491789 | 1.530670
o 0.944865 | 2.265141 | 4.317168 | 1.859264 | 3.190167
LB 3.830313 | 2.863278 | 0.998217 | 2.699488 | 2.026176
o 3.944026 | 2.664309 | 0.998998 | 2.670356 | 2.019658
y1o 3.438940 | 3.293973 | 2.713703 | 2.765838 | 2.163671
L 2.707333 | 3.703982 | 3.384262 | 2.718519 | 2.171481
H2 3.928688 | 4.278325 | 2.661378 | 3.426662 | 2.142365
y'3 2.497271 | 3.126064 | 2.061527 | 2.105937 | 1.082937
c6 H7 HB H9 H10
c6 0.000000
W 3.800110 | 0.000000
e 3.322409 | 4.432100 | 0.000000
o 2.687942 | 4.508081 | 1.598238 | 0.000000
y1o 1.084582 | 4.081860 | 3.644269 | 2.544303 | 0.000000
Yt 1.081184 | 3.494089 | 4.162648 | 3.675374 | 1.757688
Y2 1.080471 | 4.794595 | 3.572174 | 3.024216 | 1.754602
RE 2.136050 | 3.392278 | 2.346651 | 2.899017 | 3.041176
I_|11 H12 H13
y 0.000000
Y2 1.761477 | 0.000000
e 2.479020 | 2.457789 | 0.000000

Tabela 7: Distancias finais (em A) entre os 4tomos da molécula de L-alanina I apés convergéncia
empregando o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero)
na base 6-311++G(3d,3p).
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0 0’ N° ct c

o' 0.000000

0 2,253938 0.000000

N3 3.665503 2.863783 0.000000

! 1.357387 1.213413 2.499096 0.000000

c? 2.398907 | 2.445556 1.455196 1.532428 | 0.000000

¢t 3.038726 3.370220 2.456508 2.506047 1.539312

H’ 0.972702 | 2.300053 | 4.368775 1.891239 | 3.234025

H3 3.871282 | 2.939173 | 1.016721 2.737990 | 2.050636

H? 3.993841 2.680154 1.017890 2.687758 2.042080

yie 3.501249 3.298798 2.735621 2.780592 2.180227

H! 2.758110 3.733419 3.410216 2.738410 2.187835

H'2 3.985286 | 4.313754 | 2.671727 3.451580 | 2.157868

H'3 2.513273 3.186957 2.079319 2.128080 1.096298
c6 H7 HB H9 H10

c6 0.000000

H’ 3.861178 | 0.000000

He 3.353171 | 4.486122 | 0.000000

H°® 2.716315 4.557251 1.628903 0.000000

H'0 1.095992 4.145189 3.686708 2.572030 0.000000

H' 1.093052 3.558349 4.202780 3.714602 1.776278

H'Z 1.092658 4.866268 3.595418 3.054103 1.773406

H!3 2.152366 3.435532 2.364518 2.932271 3.068856
H1 1 H1 2 H1 3

Htt 0.000000

hiz 1.782539 | 0.000000

H'3 2.497245 | 2.477129 | 0.000000

Tabela 8: Distancias finais (em A) entre os 4tomos da molécula de L-alanina I apés convergéncia
empregando o método do funcional da densidade (DFT) de camada fechada (spin igual a zero)
na base 6-31++G(d,p).
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Atom.os R &) Atom‘os 8 (arais) Atom.os F{grans)
envolvidos envolvidos envolvidos

R(1-4) 1.33 A(4-1-7) 109.0598 | D(7-1-4-2) -0.7123
R(1-7) 0.9485 A(5-3-8) 111.5595 | D(7-1-4-5) 178.8019
R(2-4) 1.1898 A(5-3-9) 111.0031 | D(8-3-5-4) -61.1619
R(3-5) 1.4419 A(8-3-9) 106.9913 | D(8-3-5-6) 175.5742
R(3-8) 1.0002 A(1-4-2) 122.2796 | D(8-3-5-13) 56.9813
R(3-9) 1.0009 A(1-4-5) 112.3172 | D(9-3-5-4) 58.0647
R(4-5) 1.5233 A(2-4-5) 125.4012 | D(9-3-5-6) -65.1992
R(5-6) 1.5321 A(3-5-4) 113.257 | D(9-3-5-13) | 176.2079
R(5-13) 1.0852 A(3-5-6) 110.3011 | D(1-4-5-3) 166.0849
R(6-10) 1.0866 A(3-5-13) 108.4854 | D(1-4-5-6) -70.2717
R(6-11) 1.0832 A(4-5-6) 109.6107 | D(1-4-5-13) 46.8559
R(6-12) 1.0826 A(4-5-13) 106.6065 | D(2-4-5-3) -14.419
A(6-5-13) 108.4024 | D(2-4-5-6) 109.2244
A(5-6-10) 110.6246 | D(2-4-5-13) | -133.648
A(5-6-11) 111.3845 | D(3-5-6-10) 61.7699
A(5-6-12) 108.9174 | D(3-5-6-11) | -177.4602
A(10-6-11) | 108.5059 |D(3-5-6-12) | -57.0072
A(10-6-12) | 108.1807 | D(4-5-6-10) | -63.5919
A(11-6-12) | 109.1617 | D(4-5-6-11) 57.178
D(4-5-6-12) 177.631
D(13-5-6-10)| -179.5865
D(13-5-6-11)| -58.8166
D(13-5-6-12)| 61.6364

Tabela 9: Comprimentos de ligacdo R (em A), angulos 6 e angulos de diedro 7 entre os dtomos
da molécula de L-alanina I na configuracao apds convergéncia empregando o método de Hartree-
Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Atom.os R &) Atomf)s & @raus) Atom.os T(graus)
envolvidos envolvidos envolvidos
R(1-4) 1.3278 A(4-1-7) 108.6166 | D(7-1-4-2) -0.8367
R(1-7) 0.9449 A(5-3-8) 110.8969 | D(7-1-4-5) 178.5162
R(2-4) 1.1822 A(5-3-9) 110.2867 | D(8-3-5-4) -60.1772
R(3-5) 1.4428 A(8-3-9) 106.3049 | D(8-3-5-6) 176.7755
R(3-8) 0.9982 A(1-4-2) 122.3936 | D(8-3-5-13) 58.0674
R(3-9) 0.999 A(1-4-5) 112.2716 | D(9-3-5-4) 57.3081
R(4-5) 1.5224 A(2-4-5) 125.3313 | D(9-3-5-6) -65.7392
R(5-6) 1.5307 A(3-5-4) 113.2447 | D(9-3-5-13) | 175.5527
R(5-13) 1.0829 A(3-5-6) 110.3859 | D(1-4-5-3) 164.2613
R(6-10) 1.0846 A(3-5-13) 108.5784 | D(1-4-5-6) -72.1502
R(6-11) 1.0812 A(4-5-6) 109.4027 | D(1-4-5-13) 44,8998
R(6-12) 1.0805 A(4-5-13) 106.6441 | D(2-4-5-3) -16.4085
A(6-5-13) 108.4101 | D(2-4-5-6) 107.18
A(5-6-10) 110.4893 | D(2-4-5-13) | -135.77
A(5-6-11) 111.3205 | D(3-5-6-10) 61.3157
A(5-6-12) 109.0455 | D(3-5-6-11) | -178.0554
A(10-6-11) | 108.5007 |D(3-5-6-12) | -57.5734
A(10-6-12) | 108.2738 | D(4-5-6-10) | -63.9428
A(11-6-12) | 109.1498 | D(4-5-6-11) 56.6861
D(4-5-6-12) | 177.1681
D(13-5-6-10)| -179.8736
D(13-5-6-11)| -59.2448
D(13-5-6-12)| 61.2373

Tabela 10: Comprimentos de ligacao R (em A), angulos 6 e angulos de diedro T entre os dtomos
da molécula de L-alanina I na configuracao apds convergéncia empregando o método de Hartree-
Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-3114++G(3d,3p).
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Atom.os R A) Atom.os & (araus) Atom.os 7 (graus)
envolvidos envolvidos envolvidos

R(1-4) 1.3574 A(4-1-7) 107.3652 | D(7-1-4-2) -1.0044
R(1-7) 0.9727 A(5-3-8) 110.8624 | D(7-1-4-5) 178.2569
R(2-4) 1.2134 A(5-3-9) 110.0654 | D(8-3-5-4) -61.3732
R(3-5) 1.4552 A(8-3-9) 106.3742 | D(8-3-5-6) 175.6008
R(3-8) 1.0167 A(1-4-2) 122.4057 | D(8-3-5-13) 57.2388
R(3-9) 1.0179 A(1-4-5) 112.0815 | D(9-3-5-4) 56.0391
R(4-5) 1.5324 A(2-4-5) 125.5083 | D(9-3-5-6) -66.9869
R(5-6) 1.5393 A(3-5-4) 113.516 | D(9-3-5-13) | 174.6511
R(5-13) 1.0963 A(3-5-6) 110.2058 | D(1-4-5-3) 161.9457
R(6-10) 1.096 A(3-5-13) 108.3428 | D(1-4-5-6) -74.5543
R(6-11) 1.0931 A(4-5-6) 109.3407 | D(1-4-5-13) 42.5247
R(6-12) 1.0927 A(4-5-13) 106.9314 | D(2-4-5-3) -18.8206
A(6-5-13) 108.3282 | D(2-4-5-6) 104.6795
A(5-6-10) 110.5193 | D(2-4-5-13) | -138.2416
A(5-6-11) 111.3 D(3-5-6-10) 61.8907
A(5-6-12) 108.9611 | D(3-5-6-11) | -177.5079
A(10-6-11) | 108.4737 | D(3-5-6-12) | -56.9295
A(10-6-12) | 108.2454 | D(4-5-6-10) | -63.5444
A(11-6-12) | 109.2821 | D(4-5-6-11) 57.0569
D(4-5-6-12) | 177.6353
D(13-5-6-10)| -179.7383
D(13-5-6-11)| -59.1369
D(13-5-6-12)| 61.4415

Tabela 11: Comprimentos de ligacao R (em A), angulos 6 e angulos de diedro 7 entre os dtomos
da molécula de L-alanina I na configuragao apds convergéncia empregando o método do funcional
da densidade (DFT) de camada fechada (spin igual a zero) na base 6-314++G(d,p).
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e:\fgln\:i?:isos Rorr (A) Rur (A) Rup2 (A)
R(1-4) 1.3574 1.3297 1.3596
R(1-7) 0.9727 0.9482 0.9716
R(2-4) 1.2134 1.1886 1.2194
R(3-5) 1.4552 1.4425 1.4548
R(4-5) 1.5324 1.5219 1.5205
R(5-6) 1.5393 15317 1.5280
R(5-13) 1.0963 1.0857 1.0923

emvalvidos | 0077 87205 | Oue (graus) | urE

A(5-3-8) 110.8624 110.78 108.97
A(3-5-4) 113.516 112.99 113.05
A(3-5-6) 110.2058 110.30 109.94
A(4-5-6) 109.3407 109.89 109.42
A(3-5-13) 108.3428 108.59 108.53
A(1-4-2) 122.4057 122.38 122.92
A(2-4-5) | 1255083 | 125.21 125.34
A(1-4-5) | 112.0815 | 112.41 111.73

Tabela 12: Comprimentos de ligacdo R (em A) e angulos 6 entre dtomos selecionados da molécula
de L-alanina I na configuracao apds convergéncia empregando o método do funcional da densi-
dade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p). Os resultados sao
comparados com céalculos publicados na literatura usando a aproximagao de Hartree-Fock (HF)
e teoria da perturbagao MP2 [153].
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2.2.3 Propriedades eletronicas e vibracionais

Antes de iniciar esta andlise, vale a pena lembrar aqui que a conformacao I é a que pos-
sui energia total mais baixa. Um confronto com as energias calculadas para a conformagao

IT sera apresentado na segao 2.3.3.

As tabelas 13, 14 e 15 indicam as energias finais obtidas nos calculos HF e DFT
efetuados. Para comparar, usaremos os resultados obtidos por Blanco et al. [164], que
realizaram calculos para otimizagao das geometrias de mais baixa energia da alanina
usando teoria da perturbacao de Mgller-Plesset de segunda ordem (MP2) na aproximagao
de caroco congelado (frozen core), e um conjunto de base 6-311++G(d,p). No trabalho
desses autores, as energias foram calculadas via teoria de perturbacao de quarta ordem
(MP4) aplicada as geometrias ja convergidas. Na tabela 13, que apresenta o resultado
de calculo RHF simples (base 6-314++4G(d,p), a energia final foi de -321.898 H, sendo
a energia de interagao nucleo-nicleo igual a 251.011 H, a energia de interacao elétron-
nicleo, -1258.264 H e a energia cinética eletronica, 321.285 H. A energia vibracional de

ponto zero é igual a 305098.1 J/mol, o que equivale a 3.167 eV ou 0.1164 H.

Ja o célculo refinado (base 6-311++G(3d,3p)) apresentou uma energia de -321.989
H com contribuicoes de 251.544 H, -1260.313 H e 321.929 H oriundas, respectivamente,
das energias de interacao ntcleo-nicleo, elétron-nicleo e cinética eletronica. A energia
vibracional de ponto zero calculada foi de 303726.8 J/mol (3.153 eV ou 0.1159 H). O
célculo DFT (base 6-31++G(d,p), que inclui efeitos de correla¢do eletronica, forneceu
uma energia de valor mais baixo: -323.776 H, dos quais 248.066 H provéem da energia de
interacao nucleo-ntucleo, -1252.489 H da energia de interagao elétron-ntucleo e 320.764 H
da energia cinética dos elétrons. A energia do movimento vibracional para temperatura
zero é de 283245.4 J/mol (2.94 eV ou 0.108 H). Em comparagao, a energia calculada por
Blanco et al. [164] foi de -323.069 H. A diferenga entre os métodos DFT e RHF usando a
mesma base, atribuivel principalmente a correlacao eletronica, é de 1.878 H ou 51.1 eV.

A diferenca entre o calculo DFT e o célculo MP4 é de 0.707 H ou 19.24 V.

Godfrey [9] et al. realizaram um estudo do espectro vibracional da alanina na regiao
de comprimentos de onda milimétricos sem incluir a estrutura hiperfina de acoplamento de
quadrupolo do nitrogénio da molécula. Com o desenvolvimento de instrumentagao mais
avangada [164], o problema da vaporizagdo das amostras foi resolvido e o espectro rotaci-
onal foi medido com excelente resolucao. Os parametros de acoplamento de quadrupolo
nuclear sao bastante sensiveis tanto ao meio eletronico no qual o atomo de nitrogénio esta

imerso quanto a sua orientacao com respeito ao eixo inercial principal, e servem, portanto,
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para determinar sem ambigiiidade a identidade das conformagoes observadas. O espectro
rotacional da conformacao I é o de um piao assimétrico com transicoes de dipolo elétrico

{t, dominantes.

As constantes rotacionais calculadas para a L-alanina foram:

e Calculo RHF simples: 5.14955 GHz (A), 3.13075 GHz (B) e 2.27932 GHz (C).

Calculo RHF refinado: 5.17284 GHz (A), 3.12411 GHz (B) e 2.29867 GHz (C).

Célculo DFT: 5.03749 GHz (A), 3.02613 GHz (B) e 2.25712 GHz (C).

Resultados da referéncia [164] (MP2): 5.074 GHz (A), 3.051 GHz (B) e 2.298 GHz
(C).

Resultados experimentais [9]: A = 5.0661 GHz, B = 3.1009 GHz e C' = 2.264 GHz.

O momento de dipolo da molécula é dominado pela componente y e o médulo p € igual
a 1.4698 D no calculo RHF simples e 1.3455 D no célculo DFT, o que é significativamente
menor que o valor experimental de 1.8 D [9], mas bem préximo do valor calculado teori-
camente (1.41 D) na referéncia [164]. O momento calculado na aproximagao DFT, como
ja foi possivel perceber, é menor que o obtido na aproximacao RHF. Suas componentes
sao fi, = 0.7292 D, p, = 1.0331 D e p, = —0.4597 D. O resultado obtido por [164] é
fe = 0.64 D, p, = 1.19 D e pp, = —0.42 D, o qual se aproxima mais dos valores aqui
obtidos no calculo RHF.

Nao é possivel detectar uma tendéncia na variagao das componentes do momento de
quadrupolo quando se muda do método RHF para o método DFT. Ja as polarizabilidades
sao, em geral, maiores em intensidade no calculo DFT em comparacao com o calculo
RHF. As componentes obtidas usando DFT sao (em A3): Oz = 58.229, oy = 0.616,
ayy = 55.028, a,, = 0.550, oy, = —2.727 e o, = 45.156. As polarizabilidades zz e yy
sao mais intensas que a polarizabilidade zz. Ao longo do eixo z, a carga eletronica tende
a oscilar entre o grupo carboxila e os grupos amina e metila. Ja ao longo do eixo y, a
tendéncia de vibragao das cargas ¢ ir do oxigénio 2 e do grupo amina para o oxigénio 1 e
para o grupo metila. No eixo z, a oscilagao é entre o hidrogénio 13 que se liga ao carbono
a e os hidrogénios do grupo metila e um dos hidrogénios do grupo amina (dai o menor

valor).

Por fim, as propriedades termodinamicas para uma temperatura de 298.15 K e pressao

de 1 atm mostram valores maiores para as energias na aproximacao RHF, enquanto a
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aproximacgao DF'T produz valores maiores para o calor especifico a volume constante e a
entropia. A componente vibracional domina a energia térmica (70.277 kcal/mol em 72.055
kcal /mol no célculo DFT). O calor especifico a volume constante no célculo empregando
o funcional da densidade é de 24.139 cal/mol.K e a entropia é de 81.730 cal/mol.K, com
contribui¢do dominante dos graus de liberdade translacionais (39.372 cal/mol.K). Neste
caso, a entropia vibracional fornece a menor contribuicao (15.720 cal/mol.K), enquanto a

entropia rotacional fica num nivel intermediario (26.638 cal/mol.K).

. Momentos de dipolo e Propn?qad.e s
Energias dadrapalks (k. termodinamicas
quacrup . (T =298.15K, p = 1 atm)
L Q,, (D.A, Energia vibracional
Energia Final (H -321.898377445 0.0422 305098.1
8 = traco nulo) (T=0 K, J/Mol)
. Q,y (D.A,
Energia n-n (H) 251.0118172861 -1.1129 E(kcal/mol) 77.047
traco nulo)
: QR (D'AJ
Energia e-n (H) -1258.263675257 1.0707 Errans(kcal/mol) 0.889
traco nulo)
S Q,y (D.A,
Energia cinética (H) | 321.2848014818 1.9610 Egor(kcal/mol) 0.889
traco nulo)
A Q,, (D.A, kcal/me]
Constantes rotacionais -2.0868 Ey g(kcal/mol) 75.269
traco nulo)
D.A,
A (GHz) 5.14955 Qe ( 2.5706 Cy(cal/mol.K) 22.604
traco nulo)
B(GHz) 3.13075 Polarizabilidade Cy, trans(cal/mol.K)|  2.981
C(GHz) 2.27932 a,, (A% 48.719 | Cy,ror(cal/mol.K) | 2,981
Momentos de dipolo e quadrupolo o, &%) -0.112 | Cy yis(cal/mol.K) | 16.643
[ul (D) 1.4698 a,, (%) 48.816 S(cal/mol.K) 80.064
u, (D) 0.6642 a,, (A3) 0.618 Srrans(cal/mol.K) 39.372
By (D) 1.2169 a,, () -2.389 Sgor(cal/mol.K) | 26.573
1, (D) -0.4883 o, (A% 40.378 Syis(cal/mol.K) 14.119
Qux (D-A) -36.8827
Q,, (0-A) -38.0378
Q,, (D-A) -35.8542
Q,, (D.A) 1.9610
Q,, (D.A) -2.0868
Q,, (D.A) 2.5706

Tabela 13: Energia final, energias de interagao ntcleo-nicleo, elétron-nticleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinamicas. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-314++G(d,p).
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Propriedades
termodinamicas
(T =298.15K, p = 1 atm)

Momentos de dipolo e

Energias quadrupolo (cont.)

= Q,, (D.A, Energia vibracional
Energia Final (H) -321.988866820 o 0.1007 (T=0 K, J/Mol) 303726.8
. Q,, (D.A,
Energia n-n (H) 251.5439350882 -0.9836 E(kcal/mol) 76.735
traco nulo)
. Q. (D.A,
Energia e-n (H) -1260.313385885 0.8829 | Eqgans(kcal/mol) 0.889
traco nulo)
. Q,, (D.A,
Energia cinética (H) | 321.9286525663 1.8306 Egor(kcal/mol) 0.889
traco nulo)
N Q,, (D.A,
Constantes rotacionais -2.0379 Eyg(kcal/mol) 74.958
traco nulo)
D.A,
A (GHz) 5.17284 Qe ( 2.4668 Cy(cal/mol.K) 22.615
traco nulo)
B(GHz) 3.12411 Polarizabilidade Cy trans(cal/mol.K)| 2,981
C(GHz) 2.29867 o, (&%) 52.353 | Cy gor(cal/mol.K) | 2,981
Momentos de dipolo e quadrupolo a,, (R%) -0.120 | Cy vis(cal/mol.K) | 16.653
In| (D) 1.4512 o, (A3) 51.282 S(cal/mol.K) 80.241
Ky (D) 0.6117 a,, (A% 0.356 | Srrans(cal/mol.K) | 39,372
Ky (D) 1.2076 a,, (%) -1.677 | Sgor(cal/mol.K) | 26.562
K, (D) -0.5230 o, (A%) 42.896 Syig(cal/mol.K) | 14.307
Qi (D-A) -36.5251
Q,, (D.A) -37.6094
Q.. (D.A) -35.7429
Q,, (D.A) 1.8306
Q,, (D.A) -2.0379
Q,, (D.A) 2.4668

Tabela 14: Energia final, energias de interagao niucleo-ntcleo, elétron-nicleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinamicas. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-3114++4G(3d,3p).
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. Momentos de dipolo e PropnfedAad.e s
Energias dadrnale taont termodinamicas
q P ' (T =298.15K, p = 1 atm)
= Q,, (D.A, Energia vibracional
Energia Final (H) -323.776522531 traco nulo) -0.0369 (T=0 K, J/Mol) 283245.4
. Q,, (D.A,
Energia n-n (H) 248.0656872942 -0.7166 E(kcal/mol) 72.055
traco nulo)
. Q. (D.A,
Energia e-n (H) -1252.489267462 0.7534 | Eqpans(kcal/mol) | 0.889
traco nulo)
. Q,, (D.A,
Energia cinética (H) | 320.7643901557 1.6462 Eror(kcal/mol) 0.889
traco nulo)
N Q,, (D.A,
Constantes rotacionais -1.9967 Ey g(kcal/mol) 70.277
traco nulo)
D.A,
A (GHz) 5.03749 Qe ( 2.5846 Cy(cal/mol.K) 24.139
traco nulo)
B(GHz) 3.02613 Polarizabilidade Cy trans(cal/mol.K)[ 2,981
C(GHz) 2.25712 o, (&%) 58.229 | Cy gor(cal/mol.K) [ 2,981
Momentos de dipolo e quadrupolo a,, (R%) 0.616 Cy viglcal/mol.K) | 18.177
In| (D) 1.3455 o, (A3) 55.058 S(cal/mol.K) 81.730
Ky (D) 0.7292 a,, (A% 0.550 | Srrans(cal/mol.K) | 39.372
Ky (D) 1.0331 a,, (%) -2.727 | Spor(cal/mol.K) | 26.638
K, (D) -0.4597 o, (A%) 45.156 Syig(cal/mol.K) | 15.720
Qi (D-A) -37.1884
Q,, (D.A) -37.8681
Q.. (D.A) -36.3981
Q,, (D.A) 1.6462
Q,, (D.A) -1.9967
Q,, (D.A) 2.5846

Tabela 15: Energia final, energias de interagao nicleo-nicleo, elétron-nicleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinamicas. Resultados obtidos empregando o método do funcional da densidade (DFT)
de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.2.3.1 Anadlises de populacao

As tabelas 16, 17 e 18 apresentam as analises populacionais de Mulliken e APT para
a conformacao I da L-alanina. Na anélise de Mulliken para o calculo RHF simples os
dois atomos de oxigénio, o 4&tomo de nitrogénio e os carbonos 5 e 6 aparecem com carga

negativa, enquanto os demais atomos estao positivamente carregados.

Pode-se também contar a carga de um atomo incluindo as cargas dos atomos de
hidrogénio que lhe estao ligados. Neste caso, apenas os oxigénios e o carbono 5 ficam com

excesso de elétrons.

A analise APT revela um quadro um tanto diferente em comparacao com os dados da
analise de Mulliken: nenhum atomo de carbono fica carregado negativamente, mas quatro
atomos de hidrogénio, (10, 11, 12 e 13, respectivamente os trés hidrogénios do grupo metila
e o hidrogénio ligado diretamente ao carbono «) apresentam cargas ligeiramente negativas.
A incorporacao dos hidrogénios deixa apenas os oxigénios e o nitrogénio com excesso de
elétrons e os oxigénios aparecem mais fortemente carregados (-0.827999 e -0.884303, O! e
02, respectivamente) na anélise APT do que na anélise de Mulliken (-0.533587 e -0.545117,

O! e O, respectivamente).

Para o célculo RHF refinado as cargas APT e de Mulliken para os oxigénios sao mais
proximas, mas aparece uma sensivel diferenca entre as cargas atribuidas ao atomo de
nitrogénio (-0.979436 na andlise de Mulliken e -0.505231 na andlise APT). No caso da

andalise de Mulliken, apenas os oxigénios e o nitrogénio revelam-se com carga negativa.

Os resultados obtidos usando DFT sao mais similares aos do cdlculo RHF simples,
sendo que O, O% e N? apresentam cargas de Mulliken menos negativas, enquanto os
atomos C? e C% possuem cargas mais negativas. As cargas APT sao mais negativas para
os oxigenios, enquanto os carbonos apresentam sempre carga positiva. Dois hidrogénios,

10 e 13, aparecem negativamente carregados.

Pode-se, portanto, concluir que na conformagao I da L-alanina os oxigénios possuem
uma afinidade maior por elétrons, sendo seguidos pelo nitrogénio, que atrai mais forte-
mente os elétrons dos trés atomos de hidrogénio que o circundam, o que esta de acordo
com o que se esperaria a partir de uma breve andlise das eletronegatividades na tabela

periédica dos elementos.
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Carga de
: Carga de : Mulliken
Atomo Mulliken Ataino (hidrogénios
incorporados)
1 -0.533587 1 -0.126113
0 0
o? -0.545117 02 -0.545117
N3 -0.554957 N3 0.057361
ct 0.551523 ct 0.551523
5 -0.162532 ¢’ -0.023783
co -0.313673 c® 0.086128
7 0.407474
H
He 0.303619
H? 0.308699
H10 0.121651
yi 0.119171
ne 0.158978
H'3 0.138750
Carga APT
Atomo Carga APT Atomo (hidrogénios
incorporados)
o' -0.827999 o -0.493567
o? -0.884303 0? -0.884303
N -0.535813 N3 -0.192917
ct 1.214201 c? 1.214201
c? 0.331909 c? 0.301725
ct 0.094741 ct 0.054861
7 0.334432
H
H8 0.165868
H? 0.177027
H10 -0.024031
H! -0.006864
ne -0.008986
H3 -0.030185

Tabela 16: Analises populacionais de Mulliken e APT. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Carga de
. Carga de : Mulliken
Atolmo Mulliken Ataino (hidrogénios
incorporados)
1 -0.882616 1 -0.479166
0] 0
02 -0.900813 02 -0.900813
N3 -0.979436 N3 -0.530970
gt 1.567789 ct 1.567789
3 0.151222 ¢’ 0.196466
co 0.012715 c® 0.146694
7 0.403451
H
HE 0.209493
H? 0.238973
H10 0.034698
H1! 0.043034
12 0.056248
H13 0.045244
Carga APT
Atomo Carga APT Atomo (hidrogénios
incorporados)
o' -0.790438 o -0.469790
0* -0.869883 ol -0.869883
N3 -0.505231 N -0.185468
ct 1.189415 ct 1.189415
o 0.319762 c? 0.288734
ct 0.090911 ct 0.046992
7 0.320647
H
HE 0.153885
H® 0.165877
H10 -0.023563
H1! -0.008274
e -0.012083
H13 -0.031028

Tabela 17: Anélises populacionais de Mulliken e APT. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF') de camada fechada (spin igual a zero) na base 6-3114++G(3d,3p).
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Carga de
: Carga de : Mulliken
Atomo Mulliken Ataino (hidrogénios
incorporados)
1 -0.410277 1 -0.029810
0 0
0? -0.445994 0? -0.445994
N3 -0.453179 N3 0.172780
ct 0.421100 ct 0.421100
5 -0.354152 ¢’ -0.177044
ct -0.472150 5 0.058968
F 0.380467
H
He 0.311748
H’ 0.314211
K10 0.177343
R 0.155241
{12 0.198534
H'3 0.177108
Carga APT
Atomo Carga APT Atomo (hidrogénios
incorporados)
o' -0.715264 o -0.438637
o? -0.736857 0? -0.736857
N -0.472506 N3 -0.165359
ct 1.028905 c? 1.028905
c? 0.288240 c? 0.266003
ct 0.046423 ct 0.045945
7 0.276627
H
HE 0.144852
H? 0.162295
H10 -0.009249
K 0.006055
ne 0.002714
H3 -0.022236

Tabela 18: Analises populacionais de Mulliken e APT. Resultados obtidos empregando o método
do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.2.3.2 Modos normais de vibracao

Foram calculados ab initio os modos normais de vibracao para a conformacao I da
molécula de L-alanina, sendo elencados os resultados obtidos nas tabelas 19, 20 e 21, jun-
tamente com as atribuicoes dos modos. Comparando os resultados, observam-se algumas
diferencas nas atribuicoes entre os resultados DFT e RHF. Por exemplo, as atribuigoes
dos modos 2 e 3 aparecem trocadas, sendo o modo 2 um twisting do CHs de acordo com o
célculo RHF e um twisting do NH, no célculo DFT (alguns autores denotam a atribuigao
como sendo uma torgao dos grupos, por exemplo [165]). Resultados obtidos usando teoria
do funcional da densidade dependente do tempo [132] atribuem uma tor¢ao do CHs para o
segundo modo, o que coincide com o calculo HF de [165]. E necessario fazer uma correcao
das freqiiéncias calculadas através da aproximacao de HF. Aqui, usa-se o fator 0.9 base-

I apresentam atribuicoes de

ado na referéncia [166]. As freqiiéncias a partir de 300 cm™
stretching. O modo mais energético corresponde ao stretching da ligacao O-H no grupo
carboxila, precedido por modos nos quais aparecem stretchings simétricos ou assimétricos
dos grupos amina e metila. Os valores de freqiiéncia calculados segundo a aproximacao

DFT sao, em geral, maiores que os valores calculados na aproximacao RHF' corrigida.

A freqiiéncia mais baixa no cdlculo RHF na base 6-31++G(d,p) ¢ de 48.97899 cm™!
(comparar com os valores de 51 cm™! da referéncia [165] e 188 cm™! de [132]), e corres-
ponde a uma tor¢ao do grupo carboxila. No cédlculo RHF na base 6-3114++G(3d,3p), esta
freqiiéncia ¢ de 47.20743 cm™! e no célculo DFT, 46.3827 cm™!. J4 a freqiiéncia mais
alta ¢ de 3709.77264 cm™' no método RHF/6-31++G(d,p) em comparagao com 3605
cm ™t [165] e 3400 et [132], sendo que esta tltima referéncia atribui a vibragao a um
stretching assimétrico do grupo amina ao invés do stretching da ligacao O-H. Medidas
experimentais de espectroscopia no infravermelho [165] apontam uma freqiiéncia de 3555

cm~! para o modo mais energético.

As tabela 22 e 23 exibem as atribuicoes e freqiiéncias obtidas por outros autores, bem

como dados experimentais para efeito de comparagcao.
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NU d Freqiiéncia it NG d Freqgiiéncia b
umero do q ¢ corrigida Atribuicio Hmerokio 4 » corrigida Atribuicao
modo (cm™) 4 modo (cm™) .
(cm™) (cm ')
stCN; wCH,;
1 54.4211 43.97899 tC00 18 1385.6234 1247.06106 i
2
wCCH; wCH;;
2 242.3479 218.11311 twCH, 19 1412.6371 1271.37339
stCO; sCOH
t..CCC; rNH
3 246.8263 222.14367 twNH, 20 1495.6479 1346.08311 | S0 2
stCO; sCOH
263.1635 236.84715 CCC; rCC 21 1531.4187 3727683 | N CHy WNCH:
4 63.16 36.84 sCCC; rCCN 4 1378.2768 Sty
CH; st,.CCO;
WCCN; 5CCO; W3 St
5 329.7875 296.80875 A 2 1557.5924 1401.83316 | WCCH; StCN;
2 rNH,
6 410.4302 369.38718 Scc'i;tz“ccoo‘ 23 1618.7043 1456.83387 | WCH,; twCH,
7 536.2326 482.60934 SCCCS)t;é((:ZOO; 24 1621.6743 1459.50687 | WCH,; twCH,
8 625.0106 562.50954 twcc:?écstcc; 25 1818.5721 1636.71489 | WNH,; stCN
9 689.1528 620.23752 chr'é;C;tCO; 26 2000.1153 1800.10377 | st,.COO; sCOH
€00; st.CCC;
10 818.8933 737.00397 | tCSNS 27 3189.3640 2870.4276 st,CHy; stCH
S
st,CCN; wCOO;
1 866.7476 780.07284 , 28 3224.5373 2902.08357 | StCH; st,CH,
wCH;; WNH,
12 972.4257 875.18313 | st,.CCN; wNH, 29 3264.6905 2938.22145 | st,.CHy; StCH
1 1006.6972 906.0274 SECEC; SR 3289.9999 2960.99991 st,.CH
3 006.6 06.02748 wH, WCH, 30 89. 60. <CHy
stCC; rNH,;
14 1101.6029 991.44261 e 31 3752.9798 3377.68182 st.NH,
3
st,CCC; WNH,;
15 1174.7703 1057.29327 - 32 3837.3147 3453.58323 st NH,
3
st_.CCN; stCO;
16 1253.9155 1128.52395 =y 33 4121.9696 3709.77264 StOH
S
17 293.1512 He3gz0n | Y SO
i S sCOH; wCH;,

Tabela 19: Freqiiéncias dos modos normais de vibracao (calculadas e corrigidas) e atribui¢oes. A
notagao para os varios movimentos de a&tomos nos modos normais é definida do seguinte modo: t
- torcao, tw - twisting, s - scissors, w - wagging, r - rocking; st - stretching; indices: s - simétrico,
as - assimétrico. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base de fungoes 6-314++G(d,p).
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NG d Freqiiéncia it NU d Freqiiéncia b
Umero do q ! corrigida Atribuicio Plebalfei el q . corrigida Atribuicao
modo (cm™) 1 5 modo (cm™) -1 i
(cm’) (cm™)
stCN; wCH,;
1 52.4527 47.20743 tCo0 18 1388.5191 1249.66719 HE
2
wCCH; wCH;;
2 234.5225 211.07025 twCH, 19 1418.2620 1276.4358
stCO; sCOH
t,.CCC; rNH
3 239.9517 215.95653 twNH, 20 1497.7261 1347.95349 | S 2
stCO; sCOH
wCH;; wNCH;
4 263.3408 237.00672 sCCC; rCCN 21 1528.5329 1375.67961
st,CCC; INH,
CH,; st,.CCO;
WCCN; 5CCO; W3 St
5 328.5822 295.72398 S 2 1555.6972 1400.12748 | wCCH; StCN;
? NH,
6 407.5418 366.78762 sCCNS;tEJéZOO; 23 1617.5923 1455.83307 | wWCH,; twCH,
7 536.4173 482.77557 scccs)t;csgoo; 24 1620.6463 1458.58167 | WCH,; twCH,
8 622.0143 559.81287 twccs’?éc“cc" 25 1812.5632 1631.30688 | WNH,; stCN
9 692.5304 623.27736 WCC:(':;C;tCO; 26 1985.8769 1787.28921 | st,.COO; sCOH
€00; st.CCC;
10 823.7122 741.34008 | " téNs 27 3165.0803 2848.57227 st,CHy; stCH
S
st,CCN; wCOO;
11 866.9022 780.21198 , 28 3198.9355 2879.04195 | StCH; st CH,
WCH3; WNH,
12 986.2831 887.65479 | st,.CCN; WNH, 29 3234.6773 2911.20957 | st,.CHy; StCH
1 1006.4547 9 92 ShaCC; stel; 3257.1891 2931.47019 t,.CH
S
3 006. 05.80923 WiH; WCH, 30 57. 31.470 CH;
stCC; rNH,;
14 1102.2849 992.05641 e 31 3722.2497 3350.02473 st,NH,
3
st,CCC; WNH,;
15 1177.0253 1059.32277 - 32 3792.7982 3413.51838 st,,NH,
3
st_,CCN; stCO;
16 1247.7741 1122.99669 = 33 4105.2353 3694.71177 StOH
S
17 289.7787 1160.80083 | S SO
Lo Rl sCOH; wCH;

Tabela 20: Freqiiéncias dos modos normais de vibracao (calculadas e corrigidas) e atribui¢oes. A
notacao para os varios movimentos de a&tomos nos modos normais é definida do seguinte modo: t
- torcao, tw - twisting, s - scissors, w - wagging, r - rocking; st - stretching; indices: s - simétrico,
as - assimétrico. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-3114++G(3d,3p).
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Numero do | Freqiiéncia e Nimero do | Fregiiéncia o e
A Atribuicao 1 Atribuicao
modo (cm™) modo (cm™)
stCN; wCHs;
1 46.3827 tCO0 18 1273.8398
rNH,
CCH; wCH;;
2 222.9362 twNH, 19 1289.4573 | "W
stCO; sCOH
t_CCC; rNH
3 228.9468 twCH, 20 1355.5610 | S0 2
stCO; sCOH
4 238.2991 sCCC; rCCN 21 1400.9918 il
' ’ ’ st,.CCC; rNH,
CH,; st,.CCO;
WCCN; SCCO; i
5 300.8358 NH 2 1420.1267 WCCH; StCN:
. rNH,
6 377.5388 SCC'\'S‘t(‘;"CCOO; 23 1498.6191 WCH,; twCH,
7 495.7961 Scc‘zé 2500; 24 1504.2899 | WCH,; twCH,
8 600.4781 | EWCOH; stCC; 25 1677.5652 WNH,; StCN
sCCC
9 4342239 | WCCN; StCO; 2 1811.3365 | st,.COO; SCOH
rCCH
€00; st.CCC:
10 750.9520 | VoSt 27 3047.2280 | st,CHy; stCH
stCN
11 g0z | o weoO; 28 3065.8652 stCH; st,CH
R WCH;; WNH, B340 PR
12 887.1113 st ,CCN; wNH, 29 3122.9414 st,CH;; stCH
st,,CCC; stCN;
13 925.8384 30 3145.3537 st,.CH,
WCH,
stCC; rNH,;
14 1018.7770 . 31 3503.6800 st,NH,
wCH;
st,CCC; WNH,;
15 1082.5023 32 3586.2220 st NH,
wCH;
st_,CCC; stCN;
16 1135.1521 33 3747.2909 StOH
stCO; sCOH
17 P st.CCC; stCO;
1. stCN; wCH;

Tabela 21: Frequéncias dos modos normais de vibracao e atribuigoes. A notagao para os varios
movimentos de dtomos nos modos normais é definida do seguinte modo: t - torcao, tw - twisting,
S - scissors, w - wagging, r - rocking; st - stretching; indices: s - simétrico, as - assimétrico.
Resultados obtidos empregando o método do funcional da densidade (DFT) de camada fechada
(spin igual a zero) na base 6-31++G(d,p).
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Freqpencia iiencia | Freqiiéncia | Freqiiéncia
Numero do | Atribuicdo | Atribuicdo | Atribuicdo | Atribuicdo | Fregiiéncia RHF Fr':f“‘E;‘:;']a ref. [132] | exp. [363]
modo DFT RHF ref. [363] | ref.[132] | pFT(cm™") | corrigida T T y
(em™) 1 1
tm ) (cm ) (cm )
1 tC00 tC00 tCOOH tCOOH 46.3827 | 48.97899 51 188
2 twNH, twCH, tCH, tCH, 222.9362 | 218.11311 216 264
3 twCH, twNH, tNH, scce 228.9468 | 222.14367 227 278
4 sCCC; rCCN | sCCC; rCCN sCCC SCOH; SCNN | 238.2991 | 236.84715 238 385
wCCN; sCCO; |[wCCN; sCCO;
5 NH, NH, SCCN rNH, 300.8358 | 296.80875 297 433
sCCN; sCCN;
6 W, SECE | ofEE SCCN SCCN 377.5388 | 369.38718 367 438
7 SCC?;;EOO; SCC?EEOO; sCCO sCCO 495.7961 | 482.60934 477 529 493
twCOH; twCOH; ]
8 StCC; SCEC | stees scec tC-0 SCN; sCOH | 600.4781 | 562.50954 566 581 580, 562
9 chr'\é;cﬁco; WCCrNC;C;tCO; $C00 WwC00 | 634.2239 | 62023752 615 747 623
wCO00; wCOO0;
10 $6,CCC; tON|5t,CCC; StCN wCO00 stC-COOH | 750.9529 | 737.00397 730 804 741, 736
st,CCN; st,CCN;
11 wC00; wC0O0; stC-COOH SCN 788.3022 | 780.07284 777 879 805, 782
WCH;; wNH, | wCH;; wNH,
st CCN; st CCN;
12 W‘NH \::NH stC-CH, SCN 887.1113 | 875.18313 894 939 852, 826
74 2
st .CCC;
st, CCC; kS
13 SO e, [SECNG wiHg; | i, sOH 925.8384 | 906.02748 915 995 925,920
TUTE L weH,
stCC; rNH,; | stCC; rNH,;
14 wlH e rCH, sCCC 1018.7770 | 991.44261 990 1018 1037, 1002
3 3
st, .CCC; st .CCC,
as & rCH stCH5-CH ] .
15 WNHy; WCH, | WhHL: weH, 5 . 1082.5023 | 1057.29327 1060 1077 1064
st CCC;
st, CCN; ] :
16 stCN; stCO; g StCN StCN 1135.1521 | 1128.52395 1124 1128 Tz, 110
&L stCO; sCOH 1105
SL.CCes st,CCC;
17 StCO; stCN; | stCO; sCOH; sC-0 StCOH 1170.4887 | 1163.83608 1164 1180 1153
wCH; wCH;

Tabela 22: Quadro comparativo entre freqiiéncias dos modos normais de vibracao e atribuicoes -
primeira parte. Os calculos de Hartree-Fock e DFT usam a base 6-31++G(d,p). A notagao para
os varios movimentos de dtomos nos modos normais é definida do seguinte modo: t - torgao,
tw - twisting, s - scissors, W - wagging, r - rocking; st - stretching; indices: s - simétrico, as -
assimétrico.
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; e T Pl Pl Fragiiencia Freqiiéncia | Freqiiéncia | Freqiiéncia | Fregqiiéncia
N”me;" do Atr'l';:_:f” At":::f“ At;‘b";'z:c’ At;’b";';;" 5 . |RHF corrigida| ref. [363] | ref. [132] | exp.[363]
modo ref. [363] | ref. [132] | DFT (cm™) e ™) @) fem’)
StCN; wCH;; [ stCN; wCH5;
18 SCOH SCH,CH | 1273.8398 | 1247.06106 | 1247 1220 | 1215, 1206
rNH, rNH,
19 WCCH; wCHy; | WCCH; weHs; | N, SOH 1289.4573 | 1271.37339 | 1275 1285 nao
stCO; sCOH | stCO; sCOH observado
gp | TwCCC My (8,000 Ny oy tCN 1355.5610 | 1346.08311 | 1349 1362 | 1368, 1335
stCO; sCOH stCO; sCOH
21 Uik EDLI DRES WL stCCH 1400.9918 | 1378.27683 | 1378 1386 | 1386, 1376
st ,CCC; INH, | st,,.CCC; rNH, 4 3 : ’ !
WCH;; WCH;;
2 sta,CCO; StasCCO; SCH StC-0; rOH | 1420.1267 | 1401.83316 | 1401 1423 1408
WCCH; stCN; [ wCCH; stCN;
NH, rNH,
23 |WCH,; twCH, |WCH,; twCH,|  sasCH, s.CH; | 1498.6191 | 1456.83387 | 1459 1463 1454
24 |WCH,; twCH,|wCH,; twCH,|  sasCH, s.CH; | 1504.2899 | 1459.50687 | 1463 1471 1460
25 WNH,; StCN | wNH,; StCN | sNH, sNH, 1677.5652 | 1636.71489 | 1646 1635 | 1642, 1622
st,,C00; | st,COO; - . 1791, 1787,
3% i i stC=0 stC=0 | 1811.3365 | 1800.10377 | 1805 (- e g
27 [st,CHy; StCH|st,CHy; StCH|  st,CH, st,CHy | 3047.2280 | 2870.4276 | 2859 2969 nao
observado
stCH;
28 StCH st,CHy | > StCH st.CH, | 3065.8652 | 2902.08357 | 2886 2976 2886
as 3
t..CH,; t..CHy:
29 StasCHy; | 5tasCHy; st,.CH, st CH, | 3122.9414 |2938.22145 | 2925 3042 2940
stCH stCH
stsCH3;
30 st,.CH, st,.CH, st,.CH, g 3145.3537 | 2960.99991 | 2949 3069 | 2999, 2981
31 st.NH st,NH st,NH StasCH3 | 35036800 | 3377.68182 | 3321 3075 bl
sNH, sNH; sT2 StOH ) ' observado
nao
32 st, NH, st, NH, st, NH, st NH, | 3586.2220 | 3453.58323 | 3392 3315 1
5
33 stOH stOH stOH st NH, | 3747.2909 | 3709.77264 | 3605 3400 356(3"5: " o

Tabela 23: Quadro comparativo entre freqiiéncias dos modos normais de vibracao e atribuicoes -
segunda parte. Os cédlculos de Hartree-Fock e DFT usam a base 6-31++G(d,p). A notagao para
os varios movimentos de atomos nos modos normais é definida do seguinte modo: t - torcao,
tw - twisting, s - scissors, W - wagging, r - rocking; st - stretching; indices: s - simétrico, as -
assimétrico.
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2.2.3.3 Espectros Raman e IR

Na Fig. 19 sao descritos os espectros Raman e IR da L-alanina. O espectro IR no
célculo RHF simples apresenta picos de maior intensidade para o modo 26 (intensidade
de 421.862 km/mol, freqiiéncia de 2000.1153 cm™!), que corresponde ao stretching as-
simétrico das ligagoes O—C=0 e ao movimento em tesoura do grupo COH. O segundo
pico mais intenso é criado pelo modo 17 (200.933 km/mol, em 1293.1512 cm™!), o qual
consiste no stretching simétrico das ligagoes C-C-C, stretching da ligacao C=0, movi-
mento em tesoura do grupo COH e wagging do grupo metila. Os outros picos relevantes
ocorrem para os modos 12 (972.4257 cm™!), 8 (625.0106 cm™!), 33 (4121.9696 cm™!) e
16 (1253.9155 cm™1). Para o espectro Raman, os pico de maior intensidade ocorre para
o modo 27 (intensidade 135.666 A4/u.m.a., freqiiéncia de 3189.3640 cm™!), que corres-
ponde ao stretching simétrico do grupo metila e ao stretching da ligacao C—H envolvendo
o carbono a.. O segundo pico mais intenso é o do modo 33 (intensidade 87.033 A4/u.m.a.,
freqiiéncia de 4121.9696 cm™!), quase igual ao terceiro pico mais intenso, no modo 31 (in-
tensidade 86.6487 A‘*/u.m.a.7 freqiiéncia de 3752.9798 cm™!), que consiste no stretching
simétrico do grupo NH,. Picos menos intensos ocorrem para os modos 28 (3224.5373
em™'); 30 (3289.9999 cm™!) e 29 (3264.6905 cm™1).

Para o calculo RHF refinado, o espectro Raman repete os picos caracteristicos que
foram obtidos usando o cdlculo RHF simples, mas a intensidade do pico mais intenso é
visivelmente reduzida. O espectro IR também apresenta praticamente o mesmo padrao
na localizacao dos picos mais relevantes, com redugao do pico méaximo associado ao modo

26.

Finalmente, no célculo DFT, o espectro Raman tem méximo no modo 33 (3747.2909
cm™!, intensidade de 169.543 A* /u.m.a.), correspondendo ao stretching da ligacao O-H.
O segundo pico mais intenso é o do modo 27 (3047.2280 cm™!, intensidade de 161.414
A*/um.a.) e o terceiro pico no modo 31 (3503.6800 cm ™!, intensidade de 105.644 A*/u.m.a.).
J4 o espectro IR possui méximo no modo 26, com freqiiéncia de 1811.3365 cm ™! e inten-
sidade de 308.185 km/mol. O segundo pico mais relevante do espectro IR corresponde
ao modo 16, com freqiiéncia de 1135.1521 cm™! e intensidade de 273.915 km/mol, e o
terceiro pico é associado ao modo 12 (887.1113 cm™?, intensidade de 153.226 km/mol).

Picos menos intensos ocorrem para os modos 8 e 33.

Dados experimentais [165] mostram picos significativos nos modos 33, 30, 26, 25, 21,
20, 18, 16, 14, 13, 12, 11, 10 e 8, que coincidem razoavelmente bem com os picos calculados

neste trabalho.
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Figura 19: Espectros Raman e infravermelho (IR) para a L-alanina neutra na conformagao I.
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2.2.3.4 Depolarizacoes Raman

As depolarizagoes Raman foram obtidas para a L-alanina (Fig. 20) considerando luz

incidente plano-polarizada e nao-polarizada.

Fazendo um breve sumario, de acordo com o calculo RHF simples, a depolarizacao
nos casos plano-polarizado e nao-polarizado é mais intensa para os modos 2, 3 e 24. No
calculo RHF refinado, os modos 24, 2 e 3 também sao dominantes em ambos os tipos de

radiagao incidente, o mesmo ocorrendo no calculo DFT.



2 Calculos ab initio para a molécula de L-alanina

94

P-depolarizagédo Raman

N-depolarizagdo Raman

0 1000 2000

RHF - Base 6-31G++(d,p)

L R R RN E RN R

LI L B e e

3000 4000
Namero de onda (cm™)

RN AR

0 1000 2000 3000 4000
Numero de onda (cm™)

P-depolarizagédo Raman

N-depolarizagdo Raman

0 1000 2000
Numero de onda (cm’™)

RHF - Base 6-311G++(3d,3p)

T T T T T T T T T T T T T T T T T T T T

3000 4000

TTT v ETo "

0 1000 2000 3000 4000
Namero de onda (cm™)

Figura 20: Depolarizagbes Raman para radiagao plano-polarizada (P) e nao-polarizada
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(N) no caso da L-alanina neutra na conformagao I.
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2.2.3.5 Espectro VCD

O célculo do campo de for¢ga harmonico e dos tensores atomicos polar e axial é imple-
mentado no pacote ab initio Gaussian03 [159]. Aqui sdo apresentados resultados para o
espectro VCD da L-alanina na conformagao I usando tanto a abordagem HF (dois con-
juntos de base distintos, como temos feito até agora: 6-314++G(d,p) e 6-311++G(3d,3p))
como DFT (funcional hibrido B3LYP e base 6-31++G(d,p)).

A Fig. 21 apresenta os gréaficos do espectro VCD nesses trés casos. Observa-se em
todos eles que os picos mais significativos encontram-se abaixo do ntimero de onda 2000
cm™!, com destaque para os picos que correspondem aos modos 16, 17, 20, 8, 9 e 3.
No calculo RHF, o modo 16 corresponde ao stretching assimétrico das ligagoes C—C—
N, ao stretching da ligacao C—-O e ao movimento em tesoura das ligacoes C-O-H. Ja
no calculo DFT, a atribuicao muda para um stretching assimétrico das ligacoes C-C-C,
um stretching da ligagao C-N, mantendo o stretching da ligagao C-O e um movimento
tesoura das ligagoes do grupo C-O-H. O modo 17 no célculo DFT envolve o stretching
simétrico do grupo C-C-C, o stretching das ligagoes C-O e C—-N e o wagging do grupo CHs.
O modo 20 envolve o stretching assimétrico da ligagao C-C-C, rocking do grupo NHs,
stretching da ligagao C-O e o movimento em tesoura do grupo C-O-H. Com intensidade
menor, o modo 8 consiste no twisting do grupo C-O-H, no stretching da ligacao entre
o carbono « e o carbono do grupo CH3 e no movimento em tesoura das ligacoes C—
C-C. O modo 9 envolve o wagging das ligacoes C-C-N, o stretching da ligacao C-O e
o rocking das ligacoes C-C-H, onde o H faz parte do grupo metila. Por fim, o modo
3 corresponde ao twisting deste ultimo. Pode-se notar a tendéncia de os picos mais
intensos corresponderem a stretchings simétricos ou assimétricos ao longo das ligagoes C—
C-C-N, ou seja, tais vibragoes apresentam dicroismo mais acentuado (e, portanto, maior
diferenca de comportamento entre as geometrias levogira e dextrégira quanto a absorgao
de radiagao circularmente polarizada). Comparando os trés diferentes métodos entre si,
observa-se também que o célculo RHF com base 6-311++G(3d,3p) apresenta picos mais
intensos, enquanto o cdlculo RHF na base 6-31++G(d,p) apresenta picos com intensidades

da mesma ordem das obtidas usando o cdlculo DFT usando esta mesma base.
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Figura 21: Espectro VCD calculado para a L-alanina neutra na conformagao I.
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2.2.3.6 Niveis de energia e orbitais moleculares

Foram calculados os niveis de energia dos orbitais ocupados e de alguns orbitais vir-
tuais, sendo apresentados os resultados nas tabelas de 24 a 26. A molécula de L-alanina
possui 48 elétrons distribuidos em 24 orbitais moleculares, cada orbital contendo dois
elétrons com spins opostos. Em destaque, aparecem o orbital ocupado de mais alta ener-
gia (Highest Occupied Molecular Orbital — HOMO) e o orbital ndo-ocupado de mais baixa
energia (Lowest Unoccupied Molecular Orbital — LUMO). Para o cdlculo RHF simples,
a energia do orbital HOMO ¢é de -0.40587 H e a energia do orbital LUMO é de 0.04156
H, o que resulta num gap de energia HOMO-LUMO igual a 0.44743 H ou 12.1752 eV.
No cédlculo RHF refinado, os valores de energia para os orbitais HOMO e LUMO sao,
respectivamente, -0.40740 H e 0.03942 H, perfazendo um gap de 0.44682 H ou 12.1586
eV. Vé-se, portanto, que o aumento no tamanho da base para o calculo RHF promove

uma ligeira reducao no gap de energia entre os orbitais fronteira.

Pode-se constatar também que os niveis de energia dos orbitais virtuais mudam signi-
ficativamente quando o nivel de refinamento do cédlculo é maior. O tultimo orbital virtual
apresentado nas tabelas, de nimero 75, possui energia de 0.59571 H no céalculo efetuado
usando a base 6-311++G(3d,3p), e 1.01477 eV no calculo feito na base 6-31++G(d,p),
uma diferenca de 0.41906 H ou aproximadamente 11.4 eV.

Ja para o calculo DFT, o orbital HOMO apresenta energia igual a -0.26010 H e o
orbital LUMO, energia igual a -0.01814 H, o que leva a um gap de 0.24196 H ou 6.5841
eV. O gap obtido segundo a teoria do funcional da densidade é, portanto, quase metade
do gap previsto na aproximacao de Hartree-Fock, conseqiiéncia do efeito de correlagao

eletronica negligenciado na aproximacao HF.

A Fig. 22 apresenta isosuperficies de amplitude maxima representando a distribuicao
espacial dos orbitais HOMO e LUMO calculados. Pode-se notar em todos os casos que
a isosuperficie do orbital HOMO considerada envolve praticamente toda a molécula, com
destaque para as ligacoes de hidrogénio entre o grupo NHs e o oxigénio que nao esta ligado
ao atomo de hidrogénio do grupo carboxila. J& a isosuperficie correspondendo ao orbi-
tal LUMO encontra-se espacialmente afastada das vizinhancas dos atomos que formam
a molécula de L-alanina, formando uma espécie de nuvem em volta do grupo carboxila.
O calculo RHF simples é o que apresenta uma tendéncia mais forte nesse sentido. As
isosuperficies do orbital LUMO calculados pelo método DFT e pelo método RHF' refi-
nado apresentam-se mais préximas da molécula. Pode-se notar que, nesta configuracao

eletronica, a amplitude de probabilidade em volta do grupo amina é pequena. Numa
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eventual transigao HOMO-LUMO, um dos elétrons salta de um lado da molécula (grupo

amina) para o outro (grupo carboxila).
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Nivel Energia (H) Nivel Energia (H) Nivel Energia (H)
1 -20.63033 26 0.05412 51 0.35708
2 -20.56898 27 0.05860 52 0.37709
3 -15.55480 28 0.06429 53 0.38066
4 -11.38867 29 0.08561 54 0.39386
5 -11.28204 30 0.08929 55 0.39549
6 -11.23044 31 0.09676 56 0.41127
7 -1.48957 32 0.12204 57 0.41638
8 -1.38047 33 0.12619 58 0.43716
9 -1.20812 34 0.14720 59 0.44281
10 -1.02726 35 0.16319 60 0.45919
11 -0.91572 36 0.16522 61 0.48015
12 -0.81193 37 0.17156 62 0.49175
13 -0.71881 38 0.17929 63 0.50769
14 -0.71323 39 0.19275 64 0.53543
15 -0.68157 40 0.20152 65 0.53971
16 -0.64332 41 0.21763 66 0.57121
17 -0.61260 42 0.21995 67 0.62795
18 -0.60262 43 0.23168 68 0.75281
19 -0.55135 44 0.25166 69 0.88278
20 -0.53759 45 0.26225 70 0.89768
21 -0.51378 46 0.26940 71 0.93005
22 -0.49065 47 0.29683 72 0.95723
23 -0.46103 48 0.30976 73 0.98531
24 (HOMO) -0.40587 49 0.32410 74 1.00154
25 (LUMO) 0.04156 50 0.34055 75 1.01477
E(LUMO) - E(HOMO) = 0.44743 H = 12.175188 eV

Tabela 24: Energias dos orbitais moleculares da L-Alanina na conformacao 1. Estados ocupados
em verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando
o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-
31++G(d,p).
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Nivel Energia (H) Nivel Energia (H) Nivel Energia (H)
1 -20.61415 26 0.05239 51 0.31197
2 -20.55099 27 0.05507 52 0.31757
3 -15.54363 28 0.06189 53 0.33032
4 -11.37757 29 0.08288 54 0.33977
5 -11.27674 30 0.08631 55 0.35732
6 -11.22504 31 0.09393 56 0.36178
7 -1.48762 32 0.11731 57 0.36339
8 -1.37925 33 0.12204 58 0.37440
9 -1.20637 34 0.14260 59 0.37881
10 -1.02552 35 0.15510 60 0.38818
11 -0.91350 36 0.15903 61 0.40475
12 -0.80972 37 0.16500 62 0.40794
13 -0.71871 38 0.17011 63 0.42731
14 -0.71387 39 0.17575 64 0.44380
15 -0.68039 40 0.17812 65 0.45111
16 -0.64297 41 0.19285 66 0.47000
17 -0.61259 42 0.19969 67 0.48061
18 -0.60253 43 0.20559 68 0.49041
19 -0.55146 44 0.22240 69 0.49764
20 -0.53695 45 0.23611 70 0.52185
21 -0.51260 46 0.23905 71 0.53778
22 -0.49060 47 0.27375 72 0.56380
23 -0.46027 48 0.27799 73 0.57912
24 (HOMO) -0.40740 49 0.28955 74 0.58821
25 (LUMO) 0.03942 50 0.30471 75 0.59571
E(LUMO) - E(HOMO) = 0.44682 H = 12.158589 eV

Tabela 25: Energias dos orbitais moleculares da L-Alanina na conformagao I. Estados ocupados
em verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando
o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-
3114++G(3d,3p).
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Nivel Energia (H) Nivel Energia (H) Nivel Energia (H)
1 -19.21856 26 -0.01458 51 0.22926
2 -19.16332 27 0.00084 52 0.23625
3 -14.33263 28 0.01182 53 0.24515
4 -10.33395 29 0.01880 54 0.25183
5 -10.24532 30 0.04311 55 0.26322
6 -10.19491 31 0.04561 56 0.27636
7 -1.12407 32 0.05276 57 0.28474
8 -1.03489 33 0.06743 58 0.29707
9 -0.90525 34 0.07305 59 0.29946
10 -0.76372 35 0.08601 60 0.30540
11 -0.67924 36 0.10021 61 0.33299
12 -0.59989 37 0.10389 62 0.35089
13 -0.52706 38 0.11031 63 0.36034
14 -0.50360 39 0.11501 64 0.37366
15 -0.49714 40 0.12416 65 0.38207
16 -0.46256 41 0.13464 66 0.38894
17 -0.44449 42 0.14432 67 0.43853
18 -0.42554 43 0.15163 68 0.51582
19 -0.39238 44 0.15881 69 0.65862
20 -0.38693 45 0.16805 70 0.66766
21 -0.36822 46 0.17394 71 0.70951
22 -0.33950 47 0.19265 72 0.71903
23 -0.29676 48 0.19740 73 0.74185
24 (HOMO) -0.26010 49 0.21824 74 0.75969
25 (LUMO) -0.01814 50 0.22208 75 0.77853
E(LUMO) - E(HOMO) = 0.24196 H = 6.584066 eV

Tabela 26: Energias dos orbitais moleculares da L-Alanina na conformagao I. Estados ocupados
em verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando
o método do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base
6-31++G(d,p).
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RHF - Base 6-31G++(d,p)
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Figura 22: Isosuperficies de amplitude maxima para os orbitais HOMO (todos os que ficam a
esquerda) e LUMO (& direita) da molécula de L-Alanina na conformacao I.
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2.3 Conformacao Il

2.3.1 Convergéncia

Uma descrigao grafica da convergéncia para os diferentes calculos de otimizacao da
geometria é apresentada na Fig. 23. Para o cdlculo RHF simples, partindo de uma
configuracao inicial zwitterionica, foram necessarios 55 passos até a estabilizagao completa
da estrutura (que implica na transferéncia de um hidrogénio do grupo amonia para o grupo
COO). O output foi usado como entrada para o segundo calculo RHF, agora usando uma
base maior (calculo RHF refinado), o qual exigiu apenas cinco itera¢oes. Por fim, partindo
novamente da configuragao zwitterionica, a geometria foi otimizada no formalismo da
teoria do funcional da densidade em 40 passos. A tabela 27 mostra as forcas sobre os

atomos apds cada processamento.
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Figura 23: Convergéncia da energia e da forga média quadratica no cdlculo RHF para a L-alanina na conformagao II usando trés métodos distintos.
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RHF - Base 6-31G++(d,p)

Atomo F, (H/bohr) F, (H/bohr) F, (H/bohr)
o' 0.000136097 0.000036100 | -0.000032114
0? -0.000025208 0.000032273 0.000020307
N3 -0.000143619 | -0.000044108 0.000034996
ct 0.000058394 | -0.000065440 0.000002209
cs -0.000048515 | -0.000000267 | -0.000058432
ct 0.000002832 0.000026300 0.000024015
H’ -0.000051611 | -0.000010526 0.000012647
He 0.000032999 0.000004897 | -0.000000263
H® 0.000031148 0.000011690 | -0.000026684
H'° 0.000000889 0.000005502 | -0.000002003
H' -0.000002373 | -0.000005049 0.000005209
H'? 0.000004661 -0.000005437 | -0.000000154
H'3 0.000004307 0.000014064 0.000020266

RHF - Base 6-311G++(3d,3p

)

Atomo F, (H/bohr) F, (H/bohr) F, (H/bohr)
o' -0.000000043 | -0.000000092 0.000000102
0* 0.000001248 | -0.000000337 | -0.000002077
N3 -0.000001197 | -0.000000603 | -0.000001091
& -0.000001269 0.000000513 0.000001776
& 0.000000714 0.000000552 0.000000183
ct -0.000000072 | -0.000000169 0.000000271
H’ 0.000000021 -0.000000042 | -0.000000019
H® 0.000000251 -0.000000033 0.000000471
H? 0.000000228 0.000000186 0.000000546
H'® 0.000000005 0.000000026 | -0.000000027
H' 0.000000019 0.000000050 0.000000108
H'? 0.000000063 | -0.000000010 | -0.000000016
H'3 0.000000030 | -0.000000040 | -0.000000227

DFT - Base 6-31G++(d,p)

Atomo F, (H/bohr) F, (H/bohr) F, (H/bohr)
o' -0.000040207 0.000003389 | -0.000036879
0* -0.000014617 0.000002978 0.000013851
N3 -0.000036681 0.000010877 0.000008201
ct 0.000047433 0.000004252 | -0.000011547
c® 0.000032314 | -0.000003172 0.000010784
C6 -0.000003278 0.000009947 0.000007026
H’ -0.000004193 | -0.000018059 0.000011109
H® 0.000015662 0.000001011 0.000003559
H? 0.000016255 | -0.000015135 0.000002436
H'° 0.000000541 0.000000314 | -0.000005512
H" -0.000007971 0.000001159 | -0.000001356
H'? -0.000001556 | -0.000000764 | -0.000002387
H'3 -0.000003702 0.000003202 0.000000715

Tabela 27: Forgas sobre cada atomo apds convergéncia.
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2.3.2 Geometria

Blanco et al. [164] estudaram o espectro de rotacao de jatos resfriados de alanina
neutra através de espectroscopia de microondas. Os espectros das duas formas mais
estaveis da molécula foi medido no intervalo de freqiiéncias entre 6 ¢ 18 GHz. As estruturas
das conformacoes foram determinadas experimentalmente, revelando que a estrutura do
aminoacido nao é planar. Para a conformacao I, mais estavel, o grupo carboxila adota
uma configuracao cis e uma ligacao de hidrogénio bifurcada é formada entre o grupo amina
e um atomo de oxigénio do grupo carboxila. Para a conformacao II, o grupo COOH adota
uma configuragao trans e é estabilizado por uma ligacao de hidrogénio entre o hidrogénio

do grupo carboxila e o 4&tomo de nitrogenio.

As coordenadas finais obtidas nas trés modalidades de calculo seguidas no presente
capitulo estao indicadas na tabela 28, e as distancias entre os atomos encontram-se nas
tabelas 29, 30 e 31. As tabelas 32, 33 e 34 apresentam os comprimentos de ligacao, angulos

entre ligagoes e torgdes, que serao comparados com os medidos na referéncia [164].

Para o calculo RHF simples (base 6-31++G(d,p)), a distancia entre o carbono 4 e
o oxigénio 1 é de 1.3197 A, a qual diminui para 1.3175 A no célculo RHF refinado. O
comprimento desta mesma ligacio, no cdlculo DFT, aumenta para 1.3424 A. A medida
experimental é 1.372 A. Comparando a distancia obtida pelo método DFT para a con-
formacao I (1.3574 A), observa-se que o comprimento da conformacio I (1.3424 A) é um
pouco menor. Na conformacao II, a ligacdo entre os carbonos 4 e 5 é de 1.5337 A (RHF
simples), 1.5324 A (RHF refinado) e 1.5445 (DFT). Em comparacao com a medida expe-
rimental de 1.525 A, nota-se que os célculos ab initio fornecem comprimentos de ligacao
maiores. Comparando com a conformacao I, a distancia entre C* e C° é de 1.5324 A

(DFT), valor menor que o calculado para a conformagao II.

Para a ligacao entre o atomo de carbono e o a&tomo de nitrogénio, os comprimentos
sdo 1.459 A (calculo RHF simples), 1.4592 A (célculo RHF refinado) e 1.4756 A (célculo
DFT). Os valores obtidos usando o método de Hartree-Fock aproximam-se bastante do
valor experimental de 1.459 A. O comprimento da ligacdo entre os carbonos 5 e 6 é de
1.5267 A (RHF simples), 1.5249 A (RHF refinado) e 1.5341 A (DFT), com a medida
experimental igual a 1.5438 A. A distancia entre o carbono 5 e o hidrogénio 13 é de 1.087
A (RHF simples), 1.0848 A (RHF refinado), 1.0967 A (DFT) e 1.100 A (experimental).
Observa-se que a tendéncia, observada para a conformacao I, de aumento no comprimento
das ligacoes calculadas a partir da teoria do funcional da densidade em comparacao com

os céalculos que empregam a abordagem de Hartree-Fock é respeitada também no caso da



2.3 Conformacao Il 107

conformacao II.

A ligacao de hidrogénio entre o 4tomo H” e o 4&tomo de nitrogénio possui comprimento
igual a 2.031929 A no célculo RHF simples, diminuindo um pouco para 2.030465 A no
calculo RHF refinado e diminuindo mais ainda para 1.907412 A no célculo DFT. A medida
experimental é de 1.96 A [164].

O angulo formado pelas ligagoes dos dtomos C—C—C ¢ igual a 111.2238° (RHF sim-
ples), 111.2178" (RHF refinado), 109.2527° (DFT), 107.1° (experimental). A correlagio
eletronica, neste caso, tende a diminuir a abertura do angulo, aproximando-se melhor do
resultado experimental. Para o angulo entre os atomos C-C=0, os cédlculos atribuem os
valores 122.4665" (RHF simples), 122.6044° (RHF refinado) e 122.6269° (DFT), sendo o

valor experimental igual a 125°. Aqui a correlacio aumenta o angulo entre as ligacoes.

O angulo entre as ligagoes C*-C® e C*-N3 ¢ de 110.063° (RHF simples), 110.2294°
(RHF refinado), 109.3345° (DFT) e 111.7° (experimental). O erro em relagao ao valor
experimental aumenta com a introdugao da correlacao eletronica por conta da inexatidao

do funcional.

Para o angulo de diedro formado pelas ligagoes N-C—-C=0, os valores calculados foram
18.3421° (RHF simples), 18.9202° (RHF refinado) e 13.0512° (DFT). O valor medido é
13°, bem préximo do calculado usando a teoria do funcional da densidade. J4 o angulo
de diedro N-C-C-O ¢ de 163.9829° (RHF simples), 163.4075° (RHF refinado), 168.1831°
(DFT) e 168.5 (experimental). Os calculos DFT, nesses dois casos, aproximam bem
melhor os angulos de diedro que os calculos de Hartree-Fock. A conformacao I, para
a diedro N-C-C-0, apresenta um valor menor (161.1794°, DFT)que o obtido para a
conformagao IT (168.1831Y, DFT).
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RHF - Base 6-31G++(d,p)

RHF - Base 6-311G++(3d,3p)

DFT - Base 6-31G++(d,p)

Atomo X (R) Y (&) Z(A) Atomo X (A) Y (A) Z (A) Atomo X (A) Y (A) ZA)
o 1.526657 | 0.947411 | -0.148936 o 1.530319 | 0.941206 | -0.141056 o 1.211717 | -1.083779 | 0.551613
o? 1.366643 | -1.234574 | 0.026443 o? 1.359627 | -1.232200 | 0.019006 o? 1.676147 | 0.917959 | -0.354461
N3 -1.076285 | 1.350364 | -0.036847 NG -1.073637 | 1.353389 | -0.041394 N3 -1.272293 | -1.146659 | -0.235197
c 0.848776 | -0.167153 | 0.050458 ct 0.848617 | -0.169999 | 0.049741 c* 0.877217 | 0.049073 | -0.086214
s -0.639860 | 0.018724 | 0.369362 s -0.638049 | 0.022205 | 0.367899 5 -0.625263 | 0.165971 | -0.424615
8 -1.473696 | -1.128329 | -0.196266 8 -1.474497 | -1.124341 | -0.189803 6 -1.264642 | 1.232508 | 0.473802
H’ 0.926204 | 1.685278 | -0.118131 H’ 0.930239 | 1.674293 | -0.106923 Y 0.374647 | -1.604205 | 0.611243
He -1.419899 | 1.360638 | -0.977558 He -1.403423 | 1.352262 | -0.984532 He -2.203421 | -1.062510 | 0.160242
H? -1.797067 | 1.705923 | 0.556309 H? -1.817202 | 1.684846 | 0.533266 H° -1.346873 | -1.668435 | -1.103446
H1o -1.448765 | -1.122989 | -1.282499 H1o -1.447609 | -1.124900 | -1.274110 1O -1.250196 | 0.916404 | 1.522972
it -1.092417 | -2.082352 | 0.140982 it -1.097234 | -2.075333 | 0.153622 {1t -0.713849 | 2.171713 | 0.390622
12 -2.505980 | -1.026065 | 0.122616 2 -2.504944 | -1.016403 | 0.126338 H2 -2.303602 | 1.410122 | 0.176040
H3 -0.685796 | -0.015121 | 1.454826 K -0.680369 | -0.007722 | 1.451479 {3 -0.677434 | 0.504767 | -1.466349

Tabela 28: Coordenadas finais (cartesianas) para os atomos da molécula de L-alanina na

conformagao II.
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0 0’ N° ct c’

ol 0.000000

O 2.194863 0.000000

N3 2.636332 3.557219 0.000000

c 1.319672 1.186655 2.452823 0.000000

E 2.413481 2.390482 1.459019 1.533717 0.000000

ct 3.648706 2.851037 2.515406 2.525591 1.526745

HY 0.951810 2.956421 2.031929 1.861698 2.338291

H8 3.088618 3.938015 1.001555 2.921959 2.055088

H? 3.481358 4.351591 0.998891 3.280973 2.054438

He 3.797981 3.106816 2.794256 2.822958 2.164829

H! 4.015353 2.603616 3.437356 2.728444 2.161362

H'2 4.497834 3.879424 2.777925 3.463715 2.152875

H!3 2.897149 2.782059 2.059640 2.085732 1.086963
c6 H7 H8 H9 H10

ct 0.000000

H’ 3.698920 0.000000

H® 2.609266 2.519563 0.000000

H° 2.950241 2.805619 1.616856 0.000000

H'0 1.086533 3.857797 2.502444 3.391943 0.000000

H' 1.081328 4.282172 3.634908 3.875571 1.753186

H'Z 1.085243 4.380551 2.843643 2.855592 1.761093

H'3 2.141524 2.822073 2.889310 2.237017 3.049991
H1 1 H1 2 H1 3

H' 0.000000

H'2 1.764721 0.000000

n 2.482936 2.471813 0.000000

Tabela 29: Distancias finais (em A) entre os dtomos da molécula de L-alanina II apds con-
vergéncia usando o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a
zero) na base 6-314++G(d,p).
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o' o’ N® ct c

o' 0.000000

o? 2.185966 0.000000

N3 2.638260 3.551013 0.000000

c 1.317535 1.179130 2.454399 0.000000

i 2.409443 2.384528 1.459215 1.532430 0.000000

co 3.646612 2.843852 2.514331 2.522897 1.524875

B’ 0.947987 2.940738 2.030465 1.852733 2.326881

H8 3.080140 3.914203 0.999134 2.908382 2.045463

H? 3.494798 | 4.343486 0.996488 3.283419 2.045024

H'0 3.797454 3.092610 2.793091 2.817281 2.160424

H! 4.011281 2.600992 3.434345 2.725330 2.157877

H'2 4.493004 3.872080 2.773570 3.459572 2.149967

H"3 2.885096 2.777213 2.058143 2.080626 1.084819
c6 H7 H8 H9 H10

ct 0.000000

H’ 3.690796 0.000000

H2 2.601962 2.513937 0.000000

H° 2.920926 2.821061 1.607960 0.000000

H'0 1.084640 3.853825 2.494422 3.361232 0.000000

H' 1.079192 4.270624 3.624577 3.847263 1.750573

H12 1.083244 | 4.369753 2.838654 2.816971 1.758119

H'3 2.138056 2.802115 2.882103 2.236133 3.043941
R H12 H'3

H' 0.000000

H'2 1.761740 0.000000

H'3 2.476535 2.470326 0.000000

Tabela 30: Distancias finais (em A) entre os dtomos da molécula de L-alanina II apds con-
vergéncia usando o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a
zero) na base 6-3114++G(3d,3p).
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0 0’ N° ct c’

o' 0.000000

O 2.245801 0.000000

N3 2.606402 | 3.601412 | 0.000000

c 1.342411 1.210458 2.464216 0.000000

E 2.426807 2.422167 1.475644 1.544547 0.000000

ct 3.391695 3.071351 2.482575 2.510318 1.534099

HY 0.987464 2.997966 1.907412 1.863424 2.281742

H8 3.437556 4.386140 1.015112 3.284309 2.083700

H? 3.102809 4.048341 1.015711 2.988506 2.084845

He 3.317422 3.476815 2.710697 2.804930 2.178713

H! 3.785756 2.799844 3.422734 2.695267 2.166902

H'2 4.326438 4.045004 2.787444 3.469703 2.173826

H!3 3.188188 2.635596 2.144015 2.128231 1.096684
c6 H7 H8 H9 H10

c6 0.000000

H’ 3.279192 0.000000

H® 2.499347 2.672690 0.000000

H° 3.303021 2.430620 1.642476 0.000000

H'0 1.095851 3.134460 2.584913 3.686301 0.000000

H' 1.091970 3.935868 3.568207 4.168897 1.773608

H'Z 1.095284 4.055686 2.474711 3.468419 1.779789

H'3 2.153743 3.141819 2.725948 2.302750 3.071408
H1 1 H1 2 H1 3

H' 0.000000

H'2 1.775777 0.000000

n 2.495672 2.482244 0.000000

Tabela 31: Distancias finais (em A) entre os dtomos da molécula de L-alanina II apds con-
vergéncia empregando o método do funcional da densidade (DFT) de camada fechada (spin
igual a zero) na base 6-31++G(d,p).
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Atom.os R A) Atom.os & (araus) Atom.os 2 (geats)
envolvidos envolvidos envolvidos

R(1-4) 1.3197 A(5-3-7) 82.3446 | D(7-3-5-4) -15.0088
R(2-4) 1.1867 A(5-3-8) 111.9307 | D(7-3-5-6) | -141.3883
R(3-5) 1.459 A(5-3-9) 112.0487 | D(7-3-5-13) 97.6352
R(3-7) 2.0319 A(7-3-8) 107.3882 | D(8-3-5-4) 90.7112
R(3-8) 1.0016 A(7-3-9) 132.5483 | D(8-3-5-6) -35.6682
R(3-9) 0.9989 A(8-3-9) 107.8502 | D(8-3-5-13) | -156.6448
R(4-5) 1.5337 A(1-4-2) 122.1735 | D(9-3-5-4) | -147.9846
R(5-6) 1.5267 A(1-4-5) 115.3175 | D(9-3-5-6) 85.6359
R(5-13) 1.087 A(2-4-5) 122.4665 | D(9-3-5-13) | -35.3407
R(6-10) 1.0865 A(3-5-4) 110.063 D(1-4-5-3) 18.3421
R(6-11) 1.0813 A(3-5-6) 114.7842 | D(1-4-5-6) 146.7013
R(6-12) 1.0852 A(3-5-13) | 107.0859 |D(1-4-5-13) | -96.1681
A(4-5-6) 111.2238 | D(2-4-5-3) | -163.9829

A(4-5-13) | 104.1752 | D(2-4-5-6) -35.6237

A(6-5-13) | 108.8744 | D(2-4-5-13) 81.5069

A(5-6-10) | 110.7416 | D(3-5-6-10) 60.0083
A(5-6-11) | 110.7771 | D(3-5-6-11) | 179.7429

A(5-6-12) | 109.8674 |D(3-5-6-12) | -59.6696

A(10-6-11) | 107.9413 | D(4-5-6-10) -65.771

A(10-6-12) | 108.3679 | D(4-5-6-11) 53.9636

A(11-6-12) | 109.0802 | D(4-5-6-12) | 174.5511
D(13-5-6-10)| 179.9988

D(13-5-6-11)| -60.2666

D(13-5-6-12)| 60.3209

Tabela 32: Comprimentos de ligacdo R (em A), angulos 0 e angulos de diedro 7 entre os dtomos
da molécula de L-alanina II na configuracao apds convergéncia empregando o método de Hartree-
Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Atom.os R &) Atomf)s 6 (araus) Atom-os - {grats)
envolvidos envolvidos envolvidos

R(1-4) 1.3175 A(4-1-7) 108.631 D(7-1-4-2) 177.9686
R(1-7) 0.948 A(5-3-8) 111.2396 | D(7-1-4-5) -4,3468
R(2-4) 1.1791 A(5-3-9) 111.3725 | D(8-3-5-4) 89.9231
R(3-5) 1.4592 A(8-3-9) 107.3643 | D(8-3-5-6) -36.6087
R(3-8) 0.9991 A(1-4-2) 122.124 | D(8-3-5-13) | -157.5717
R(3-9) 0.9965 A(1-4-5) 115.2291 | D(9-3-5-4) | -150.3448
R(4-5) 1.5324 A(2-4-5) 122.6044 | D(9-3-5-6) 83.1233
R(5-6) 1.5249 A(3-5-4) 110.2294 | D(9-3-5-13) | -37.8396
R(5-13) 1.0848 A(3-5-6) 114.8091 | D(1-4-5-3) 18.9202
R(6-10) 1.0846 A(3-5-13) 107.079 D(1-4-5-6) 147.4386
R(6-11) 1.0792 A(4-5-6) 111.2178 | D(1-4-5-13) | -95.5603
R(6-12) 1.0832 A(4-5-13) 103.9908 | D(2-4-5-3) | -163.4075
A(6-5-13) 108.8552 | D(2-4-5-6) -34.8891

A(5-6-10) 110.635 | D(2-4-5-13) 82.112

A(5-6-11) 110.7587 | D(3-5-6-10) 60.337

A(5-6-12) 109.8854 | D(3-5-6-11) | -179.9372

A(10-6-11) | 107.9994 | D(3-5-6-12) | -59.3056

A(10-6-12) | 108.3843 | D(4-5-6-10) | -65.6853

A(11-6-12) | 109.1156 | D(4-5-6-11) 54.0405

D(4-5-6-12) 174.672

D(13-5-6-10)| -179.679

D(13-5-6-11)| -59.9532

D(13-5-6-12)| 60.6784

Tabela 33: Comprimentos de ligacao R (em A), angulos 0 e angulos de diedro 7 entre os &tomos
da molécula de L-alanina II na configuracao apds convergéncia empregando o método de Hartree-
Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Atom.os R A) Atom.os & (araus) Atom.os 2 (geats)
envolvidos envolvidos envolvidos

R(1-4) 1.3424 A(5-3-7) 83.7853 | D(7-3-5-4) 11.426
R(2-4) 1.2105 A(5-3-8) 112.2384 | D(7-3-5-6) | -109.254
R(3-5) 1.4756 A(5-3-9) 112.2981 | D(7-3-5-13) | 128.8124
R(3-7) 1.9074 A(7-3-8) 129.719 D(8-3-5-4) 141.9625
R(3-8) 1.0151 A(7-3-9) 108.6333 | D(8-3-5-6) 21.2825
R(3-9) 1.0157 A(8-3-9) 107.9525 | D(8-3-5-13) | -100.6511
R(4-5) 1.5445 A(1-4-2) 123.1334 | D(9-3-5-4) -96.1949
R(5-6) 1.5341 A(1-4-5) 114.2275 | D(9-3-5-6) 143.125
R(5-13) 1.0967 A(2-4-5) 122.6269 | D(9-3-5-13) 21.1915
R(6-10) 1.0959 A(3-5-4) 109.3345 | D(1-4-5-3) -13.0512
R(6-11) 1.092 A(3-5-6) 111.131 D(1-4-5-6) 108.7672
R(6-12) 1.0953 A(3-5-13) | 112.0783 | D(1-4-5-13) | -134.1231
A(4-5-6) 109.2527 | D(2-4-5-3) 168.1831
A(4-5-13) | 106.1273 | D(2-4-5-6) -69.9985
A(6-5-13) | 108.7651 | D(2-4-5-13) 47.1113
A(5-6-10) | 110.7721 | D(3-5-6-10) 54.8937
A(5-6-11) | 110.0675 |D(3-5-6-11) | 174.6645
A(5-6-12) | 110.4185 | D(3-5-6-12) | -65.4968
A(10-6-11) | 108.3234 | D(4-5-6-10) | -65.8345
A(10-6-12) | 108.6363 | D(4-5-6-11) 53.9363
A(11-6-12) | 108.559 | D(4-5-6-12) | 173.775
D(13-5-6-10)| 178.7354
D(13-5-6-11)| -61.4938
D(13-5-6-12)| 58.3449

Tabela 34: Comprimentos de ligacao R (em A), angulos 6 e angulos de diedro 7 entre os 4&tomos da
molécula de L-alanina II na configuracao apds convergéncia empregando o método do funcional
da densidade (DFT) de camada fechada (spin igual a zero) na base 6-314++G(d,p).
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2.3.3 Propriedades eletronicas e vibracionais

Na seqiiéncia de apresentacao de resultados temos, nas tabelas 35, 36 e 37, dados sobre
energias, constantes rotacionais, momentos de dipolo e quadrupolo, polarizabilidades e

propriedades termodinamicas da conformagcao II da L-alanina.

A energia final calculada foi de -321.8945 H (RHF simples), -321.9853 H (RHF re-
finado) e -323.7765 (DFT), valores em geral um pouco maiores que os obtidos para a
conformacao I, de mais baixa energia: -321.8984 H (RHF simples), -321.9889 H (RHF re-
finado) e-323.7765 H (DFT). A diferenga de energia entre a conformacao I e a conformagao
II no calculo RHF utilizando a base 6-31++G(d,p) é de 0.00384 H ou aproximadamente
104.6 meV. A mesma diferenca usando o calculo DFT passa a ser igual a -0.000013 H, ou
-0.347 meV. Em comparagao, a referéncia [167], usando teoria da perturbagao de segunda
ordem (MP2), obteve energias de -323.1030 H e -323.1028 H para as conformagoes I e
IT, respectivamente, com uma diferenca de 0.00022 H ou aproximadamente 6 meV. J4 a
referéncia [164], usando MP4, obteve energias de -323.06948 H (I) e -323.06897 H (II),
uma diferenca de 0.000506 H ou 13.76 meV. As duas conformacoes, portanto, apresentam
valores de energia extremamente préximos, indicando uma provavel coexisténcia na fase
gasosa a temperatura ambiente. Um célculo DFT refinado (base 6-3114++G(3d,3p)), ob-
teve energia de -323.8702 H para a conformacao I e -323.8699 H para a conformacao II,

uma variagao de 0.00034 H ou 9.24 meV entre as duas geometrias da L-alanina.

A energia de interacao ntcleo-ntcleo é de 251.6229 H de acordo com o calculo RHF
simples, 252.1412 H no calculo RHF refinado e 249.593 H no célculo DFT. Ja a energia
de interagao elétron-nticleo é igual a -1259.421 H (RHF simples), -1261.4481 H (RHF
refinado) e -1255.4853 (DFT). Por fim, a energia cinética total para os elétrons é igual a
321.2759 H (RHF simples), 321.9265 H (RHF refinado) e 320.7617 H (DFT). No calculo
DF'T, os elétrons se movem um pouco mais devagar que nos calculos RHF, passando menos
tempo nas vizinhangas dos ntcleos atomicos (ou seja, o tamanho da molécula no calculo
DFT é um pouco maior, o que, de fato, é demonstrado pelos maiores comprimentos de

ligacao obtidos segundo o método do funcional da densidade).

As constantes rotacionais calculadas foram: A = 4.97054 GHz (RHF simples), 4.99807
GHz (RHF refinado), 4.93183 GHz (DFT); B = 3.45241 GHz (RHF simples), 3.45952
GHz (RHF refinado), 3.21553 GHz (DFT); C' = 2.17077 GHz (RHF simples), 2.17656
GHz (RHF refinado), 2.27657 (DFT). Dados obtidos usando MP2 [164] atribuem valores
de 4.993 GHz, 3.197 GHz e 2.344 GHz para as constantes rotacionais A, B e C, respecti-
vamente. Os valores experimentais obtidos por Godfrey et al. [9] foram A =4.9731 GHz,



116 2 Calculos ab initio para a molécula de L-alanina

B = 3.2283 GHz e C' = 2.3078 GHz. Em geral, como se pode perceber, o calculo DFT
fornece um erro menor que os cdlculos RHF para as constantes rotacionais em comparagao

com o experimento.

O momento de dipolo da conformagao IT é de 5.1 D [9], menor que os valores obtidos
teoricamente (5.682 D no calculo DFT). A componente x do vetor é dominante sobre
as demais, e aponta ao longo do eixo que liga os carbonos 4 e 5, tendo num extremo
da molécula o grupo carboxila e no outro os grupos amina e metila. Isto contrasta
com o que ocorre na conformagao I, onde a componente dominante aponta ao longo do
eixo y, perpendicular a ligagdo entre os carbonos 4 e 5. Os momentos de quadrupolo
apresentam componentes xz e yy com intensidades proximas. Ja as polarizabilidades
calculadas usando DF'T sao mais intensas que as obtidas pelo método Hartree-Fock, com

termos zx e yy quase iguais.

A energia vibracional de ponto zero é de 306447.3 J/mol (aproximadamente 3.18 eV
ou 0.117 H, no calculo RHF simples), 305111.5 J/mol (aproximadamente 3.17 eV ou 0.116
H, no célculo RHF refinado) e 284505.8 J/mol (aproximadamente 2.95 eV ou 0.108 H,
DFT). A energia interna para o gés a temperatura de 298.15 K e pressdo de 1 atm é de
72.170 kecal/mol (DFT), com contribuigao dominante das vibragoes (70.393 kcal/mol). O
calor especifico a volume constante é de 23.376 cal/mol. K (DFT) e a entropia é de 80.169

cal/mol.K (DFT), com contribui¢ao dos graus de liberdade translacionais dominante.
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Propriedades
termodinamicas
(T =298.15K, p =1 atm)

Momentos de dipolo e

Energias quadrupolo (cont.)

= Q,, (D.A, Energia vibracional
Energia Final (H) 321.894534114 traco nulo) 2.9039 (T=0 K, J/Mol) 306447.3
. a (D.A,
Energia n-n (H) 251.6228935159 -0.8446 E(kcal/mol) 77.201
traco nulo)
. Q. (D.A,
Energia e-n (H) -1259.420963630 3.7484 | Eqgans(kcal/mol) | 0.889
traco nulo)
o Q,, (D.A,
Energia cinética (H) | 321.2759034113 1.1544 Egor(kcal/mol) 0.889
traco nulo)
Q,, (D.A,

Constantes rotacionais 0.3155 Ey p(kcal/mol) 75.424

traco nulo)

A (GHz) 4,97054 ti":ﬂjo) -0.1195 Cy(cal/mol.K) 22.039
B(GHz) 3.45241 Polarizabilidade Cy rans(cal/mol.K)|  2.981
C(GHz) 2.17077 o, (A% 47.902 | Cy rorlcal/mol.K) | 2.981

Momentos de dipolo e quadrupolo a,, (R%) -1.875 | Cy vis(cal/mol.K) | 16.077

[ul (D) 5.6853 a,, (A) 51.439 S(cal/mol.K) 78.775
Ky (D) -5.1053 a,, (A% -0.414 | Sreans(cal/mol.K) | 39,372
Ky (D) 2.4753 a,, (A) -0.264 Sgor(cal/mol.K) | 26.559
K (D) 0.3618 o, (A% 38.173 Syig(cal/mol.K) | 12,844

Qux (D-A) -40.4749

Q,, (D.A) -38.4156

Q. (D.A) -33.8226

Q,, (D.A) 1.1544

Q. (D.A) 0.3155

Q,, (0.A) -0.1195

Tabela 35: Energia final, energias de interagao nicleo-nicleo, elétron-nicleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinamicas. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-31++G(d,p).
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. Momentos de dipolo e PropnfedAad.e s
Energias aadrupolo (conk,) termodinamicas
q P : (T =298.15K, p = 1 atm)
= Q,, (D.A, Energia vibracional
Energia Final (H) -321.985270660 traco nulo) -2.5813 (T=0 K, J/Mol) 305111.5
. Q,, (D.A,
Energia n-n (H) 252.1411692700 -0.9697 E(kcal/mol) 76.891
traco nulo)
. Q. (D.A,
Energia e-n (H) -1261.448144943 3.5511 Erpans(kcal/mol) [ 0.889
traco nulo)
S Q,y (D.A,
Energia cinética (H) | 321.9264520554 1.1559 Egor(kcal/mol) 0.889
traco nulo)
R Q,, (D.A,
Constantes rotacionais 0.2889 Eyg(kcal/mol) 75.114
traco nulo)
D.A,
A (GHz) 4,99807 Qe ( -0.1918 Cy(cal/mol.K) 22.063
traco nulo)
B(GHz) 3.45952 Polarizabilidade Cy rans(cal/mol.K)| 2,981
C(GHz) 2.17656 o, (A% 51.358 | Cy gor(cal/mol.K) [ 2,981
Momentos de dipolo e quadrupolo a,, (R%) -1.147 | Cy vig(cal/mol.K) | 16,101
lul (D) 5.4106 a,, (A) 53.989 S(cal/mol.K) 78.816
1, (D) -4.8398 a,, (A% -0.203 | Srans(cal/mol.K) | 39.372
Ky (D) 2.3975 a,, (%) -0.108 Spor(cal/mol.K) | 26.549
K, (D) 0.3199 o, (A%) 40.526 Syig(cal/mol.K) | 12.895
Qux (D-A) -39.8226
Q,, (D.A) -38.2110
Q.. (D.A) -33.6903
Q,, (D.A) 1.1559
Q,, (D.A) 0.2889
Q, (0.A) -0.1918

Tabela 36: Energia final, energias de interagao nicleo-nicleo, elétron-nicleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinamicas. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-3114++G(3d,3p).
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. Momentos de dipolo e PropnfedAad.e s
Energias dndinnele ook termodinamicas
q P : (T=1298.15K, p = 1 atm)
= Q,, (D.A, Energia vibracional
Energia Final (H) -323.776535284 traco nulo) -3.2164 (T=0 K, J/Mol) 284505.8
. Q,, (D.A,
Energia n-n (H) 249.5929515408 0.8645 E(kcal/mol) 72.170
traco nulo)
. Q. (D.A,
Energia e-n (H) -1255.48532486 1 2.3519 | Eqpans(keal/mol) | 0.889
traco nulo)
. Q,y (D.A,
Energia cinética (H) | 320.7616959967 -0.6319 Egor(kcal/mol) 0.889
traco nulo)
R Q,, (D.A,
Constantes rotacionais 0.8015 Eyg(kcal/mol) 70.393
traco nulo)
D.A,
A (GHz) 4,93183 Qe ( 2.7131 Cy(cal/mol.K) 23.376
traco nulo)
B(GHz) 3.21553 Polarizabilidade Cy rans(cal/mol.K)|  2.981
C(GHz) 2.27657 o, (A% 56.991 | Cy gor(cal/mol.K) | 2.981
Momentos de dipolo e quadrupolo a,, (R%) 2.716 Cy viglcal/mol.K) | 17.415
lul (D) 5.6820 a,, (A) 55.440 S(cal/mol.K) 80.169
Ky (D) -5.4716 a,, (A% -0.082 | Srrans(cal/mol.K) | 39,372
Ky (D) -1.3884 a,, (%) -2.773 Spor(cal/mol.K) | 26.590
K, (D) -0.6468 o, (A%) 44.153 Syig(cal/mol.K) | 14.206
Qux (D-A) -40.8582
Q,, (D.A) -36.7772
Q.. (D.A) -35.2898
Q,, (D.A) -0.6319
Q,, (D.A) 0.8015
Q, (0.A) 2.7131

Tabela 37: Energia final, energias de interagao nicleo-nicleo, elétron-nicleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinamicas. Resultados obtidos empregando o método do funcional da densidade (DFT)
de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.3.3.1 Analises de populacao

Analises populacionais de Mulliken e APT sao apresentadas nas tabelas 38, 39 e 40.
Para o calculo RHF simples, os oxigénios 1 e 2 possuem, respectivamente, cargas de
Mulliken iguais a -0.542613 e -0.543457, enquanto o nitrogénio possui carga de -0.681818.
O carbono 6 também possui carga negativa (-0.370072). Os outros dtomos possuem certa
caréncia de elétrons, com destaque para o carbono 4 (0.525141), que se liga aos oxigénios.
Incorporando os dtomos de hidrogénio aos quais estd unido, a carga do oxigénio 1 passa
a ser -0.114034, e a carga do nitrogénio praticamente é nula (-0.062084). Ja as cargas
APT para O e O? sdo, respectivamente, -0.869883 e -0.890202, e a carga do dtomo de
nitrogénio passa a ser -0.578505. Trés atomos de hidrogeénio, 10, 12 e 13, adquirem ligeira
carga negativa. Incorporando os dtomos de hidrogénio, a carga do oxigénio 1 torna-se
-0.456403 e a carga do atomo de nitrogénio é -0.235622. Enquanto as cargas de Mulliken
calculadas apontam o nitrogénio como mais negativo que qualquer um dos atomos de

oxigeénio, a situacao se inverte no resultado para as cargas APT.

No calculo RHF refinado, as cargas de Mulliken dos oxigénios 1 e 2 indicam excesso de
elétrons (-0.932849 e -0.923756), bem como a carga do atomo de nitrogénio (-1.018464). O
atomo de carbono que faz parte do grupo carboxila possui maior carga positiva (1.617118)
seguido pelo hidrogénio 7 da ligacao O-H (0.505472), demonstrando a afinidade dos 4tomos
de oxigeénio por elétrons. Somando as cargas dos hidrogénios a carga dos atomos aos quais
eles se ligam, temos uma carga de -0.427377 para o oxigenio 1 e -0.634787 para o atomo
de nitrogénio, que seqiiestra carga eletronica nao s6 dos hidrogénios que o circundam
mas também do atomo de carbono 5 e um pouco do hidrogénio 13. Ja as cargas APT
apresentam o seguinte quadro: os oxigénios 1 e 2 possuem cargas um pouco menores em
modulo que as previstas pelo método de Mulliken: -0.828842 e -0.876402, respectivamente.
O nitrogénio possui carga de -0.542546 e o carbono 4 continua sendo o atomo com mais
caréncia de elétrons, 1.239597. Os hidrogénios 10, 12 e 13 aparecem novamente com um
pouco de carga negativa. Incorporando a carga do hidrogénio 7 a carga do oxigénio 1,
esta passa a ser de -0.431477, enquanto o nitrogenio passa a ter carga -0.228616 quando

lhe sao acrescentadas as cargas dos hidrogenios 10, 11 e 12.

As cargas de Mulliken de O! e O? calculadas usando DFT sdao menores em valor
absoluto que as obtidas no calculo RHF simples: -0.392111 e -0.450754. O mesmo ocorre
com o nitrogénio, -0.622593. O carbono 6 aparece negativamente carregado (-0.559932)
juntamente com o carbono 5 (-0.176299). O carbono 4 possui carga positiva de 0.434640,
seguido de perto pelo hidrogénio 7 (do grupo O-H), com carga 0.409317. Incorporando
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as cargas dos hidrogénios, o oxigénio 1 passa a ter um pouco de carga positiva (0.017206)
e os carbonos 5 e 6 ficam praticamente neutros, juntamente com o nitrogénio. Para as
cargas APT, os oxigénios possuem certo excedente de elétrons (-0.773961 para O! e -
0.751090 para O?) juntamente com o nitrogénio (-0.517777). Os carbonos possuem carga
positiva, especialmente o carbono 4 (1.073354), e os hidrogénios 10, 12 e 13 aparecem
negativamente carregados. Com os hidrogénios incorporados, a carga do oxigénio 1 passa
a ser -0.373885 e a carga do nitrogénio, -0.215180. Na conformacao I (célculo DFT) as
cargas APT dos oxigénios e do nitrogénio revelam uma menor quantidade de elétrons em

confronto com a conformacao II.
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Carga de
‘ Carga de : Mulliken
Atomo Mulliken Ataino (hidrogénios
incorporados)
1 -0.542613 1 -0.114034
0 0
o? -0.543457 02 -0.543457
N3 -0.681818 N3 -0.062084
ct 0.525141 ct 0.525141
5 0.021862 ¢’ 0.169590
ct -0.370072 5 0.024844
7 0.428578
H
He 0.303399
H’ 0.316335
K10 0.120858
R 0.157197
{12 0.116862
H'3 0.147728
Carga APT
Atomo Carga APT Atomo (hidrogénios
incorporados)
o' -0.869883 o -0.456403
o? -0.890202 0? -0.890202
N -0.578505 N3 -0.235622
ct 1.269573 ct 1.269573
c? 0.315177 c? 0.283015
ct 0.072186 ct 0.029639
7 0.413480
H
HE 0.171403
H? 0.171480
H10 -0.025913
K 0.015070
ne -0.031704
H3 -0.032162

Tabela 38: Analises populacionais de Mulliken e APT. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Carga de
. Carga de : Mulliken
Atolmo Mulliken Ataino (hidrogénios
incorporados)
1 -0.932849 1 -0.427377
0] 0
02 -0.923756 02 -0.923756
N3 -1.018464 N3 -0.634787
gt 1.617118 ct 1.617118
3 0.148812 ¢’ 0.210744
co 0.042680 c® 0.158058
7 0.505472
H
HE 0.205602
H? 0.178076
H10 0.037699
H1! 0.049573
12 0.028106
H13 0.061931
Carga APT
Atomo Carga APT Atomo (hidrogénios
incorporados)
o -0.828842 o -0.434177
o? -0.876402 0? -0.876402
N3 -0.542546 N3 -0.228616
ct 1.239597 ct 1.239597
cd 0.310979 c? 0.278706
ct 0.065889 ct 0.020893
7 0.394664
H
HE 0.157521
H® 0.156408
H10 -0.025400
H1! 0.010565
H12 -0.030161
H13 -0.032273

Tabela 39: Anilises populacionais de Mulliken e APT. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF') de camada fechada (spin igual a zero) na base 6-3114++G(3d,3p).
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Carga de
: Carga de : Mulliken
Atomo Mulliken Ataino (hidrogénios
incorporados)
1 -0.392111 1 0.017206
0 0
o? -0.450754 02 -0.450754
N3 -0.622593 N3 0.015287
ct 0.434640 ct 0.434640
¢’ -0.176299 ¢’ -0.001962
ct -0.559932 5 -0.014417
F 0.409317
H
H8 0.307682
H’ 0.330198
K10 0.182093
R 0.195430
H'2 0.167992
H'3 0.174337
Carga APT
Atomo Carga APT Atomo (hidrogénios
incorporados)
o' -0.773961 o -0.373885
o? -0.751090 0? -0.751090
N -0.517777 N3 -0.215180
ct 1.073354 c? 1.073354
c? 0.247604 c? 0.206220
ct 0.048708 ct 0.060582
7 0.400076
H
HE 0.149236
H? 0.153361
H10 -0.001526
K 0.032075
ne -0.018675
H3 -0.041385

Tabela 40: Analises populacionais de Mulliken e APT. Resultados obtidos empregando o método
do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.3.3.2 Modos normais de vibracao

Para o cdlculo RHF na base 6-31++G(d,p) (ver tabela 41), o modo normal de vi-
bragao de mais baixa energia ocorre para uma freqiiéncia (corrigida) de 54.83196 cm™?,
que corresponde a tor¢ao do grupo carboxila (como, alids, também ocorre para a con-

1

formagao I). Em seguida vem um modo para a freqiiéncia de 225.58941 cm ™', associado

ao twisting dos grupos metila e amina e o terceiro modo em 262.25298 cm™!, com as
mesmas atribui¢oes do segundo modo mais o wagging do grupo COH. No outro extremo
do espectro, o modo mais energético ocorre para uma freqiiéncia de 3631.11453 cm™!, as-
sociado ao stretching da ligagao O-H (outra semelhanca com a conformagao I). O segundo
modo mais energético ocorre na freqiiéncia de 3462.9622 cm™!, atribuido ao stretching as-

1

simétrico do grupo amina, e o terceiro modo ocorre para 3376.84923 cm™ ", com stretching

simétrico do grupo amina e stretching da ligacao O-H.

O céalculo RHF refinado (tabela 42) conserva as mesmas atribui¢oes vibracionais do

célculo RHF simples, mas a freqiiéncia de mais baixa energia sobe para 55.37736 cm™*.

J4 a segunda freqiiéncia diminui para 224.53965 cm™!

e a terceira cai para 255.63411
cm~!. O modo 33 possui freqiiéncia de 3620.54475 cm™! e os modos 32 e 31 ocorrem com

freqiiéncias de 3427.04637 cm™! e 3351.44961, mais baixas que as encontradas no calculo

RHF com base reduzida.

Os resultados do célculo DFT (tabela 43) manifestam algumas diferencas nas atri-
bui¢oes dos modos num comparativo com os resultados determinados via método de
Hartree-Fock. O modo 1 ocorre na freqiiéncia 57.1740 cm~! e o modo 2, para 234.2141
ecm™!. Neste tltimo caso, a atribuicao é um movimento em tesoura das ligacoes C—C—
C, e nao o twisting dos grupos metila e amina indicado pelos resultados HF. O modo
3 possui freqiiéncia igual a 253.4151 e consiste num twisting do grupo metila e um roc-
king dos dtomos C-O-0O. O modo 33 nao é o stretching da ligacdo O-H (HF), mas um
stretching assimétrico do grupo amina, com freqiiéncia de 3614.6483 cm™t, e o modo 32
é um stretching simétrico dos atomos de hidrogénio ligados ao nitrogénio com freqiiéncia
igual a 3527.4481 cm™!. O modo 31 ¢ atribuido ao stretching da ligacao O-H juntamente
com o stretching simétrico do grupo amina, e sua freqiiéncia é de 3455.3602 cm™!. As

freqiiéncias mais alta e mais baixa no calculo DFT sao, respectivamente, menor e maior

que as correspondentes no calculo RHF.
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N d Fregiiéncia Freq, ¥ d Fregiiéncia Fred.
umero do q - corrigida Atribuicio Numero do que ; corrigida Atribuicao
modo (cm™) 1 modo (cm™) ¢
(cm™) (cm™)
st,CCO; st, ,CCN;
1 60.9244 54.83196 tCo0 18 1340.7276 1206.65484 “ i
rNH,; wCH;
st,,CCC; wCCH;
2 250.6549 225.58941 twCH;; twNH, 19 1440.9097 1296.81873
WCH;; wNH,
EWNH. : twCH.: st CCN; rNH,;
3 291.3922 262.25298 . - 20 1512.1060 1360.8954 StCO; sCOH;
wCOH
WCH,
wCH;; sCOH;
sCCC; twNH ’ =
4 300.3643 270.32787 ) 21 1541.2597 1387.13373 §t..CCC; $tCO
wCH,; sCOH;
5 381.9593 343.76337 wCCN; wCOO0 22 1546.8389 1392.15501 St,.CON; st,.CCO
6 442.1220 397.9098 WCCN; wCOO 23 1613.2332 1451.90988 WCH,; twCH,
st,CCN; stCC;
7 573.3331 515.99979 24 1621.7080 1459.5372 WCH,
rC00
8 600.1597 540.14373 SIEEEL; SEOG; 25 1805.6323 1625.06907 NH
5 W
: : WCCN; wCH, : 2
st,CCC; wCOO; st,,CO0; st ,CCO;
9 803.5809 723.22281 26 2025.3372 1822.80348
wCOH sCOH
st.CCC; wCOO;
10 809.9913 728.99217 8 27 3185.7103 2867.13927 st,CH;; stCH
twCOH
t.CCC; wCHy;
1 881.0333 792.92997 Sts ? 28 3205.0508 2884.54572 stCH; st,CH;
wCOO0; stCN
12 945.9374 851.343 WNH;; StLCON; 29 3249.0765 2924.16885 st_CH,; stCH
: .34366 St.CON; st,.CCC 49.076 4.16: +CHys
13 013.8283 12.44547 stasCCC; st,CON; 30 3299.1262 2969.21358 | st,CH,; st CH
1013. 912.4454 £1.CC0; whH, 126 69.21 sCHy; st CH,
st CCN; wCH;;
14 1099.6386 989.67474 il 31 3752.0547 3376.84923 st,NH,; stOH
2
15 1178.8901 1061.00109 StasCON; SLCO; 32 3847.7358 3462.96222 st ,NH
’ ’ wCH,; rNH, ) ’ w2
st_CCN; stCO;
16 1252.8330 1127.5497 s 33 4034.5717 3631.11453 stOH
3
st,.CCO;
17 1326.2598 1193.63382 | st,CCN; rNH,;
WCH;

Tabela 41: Freqiiéncias dos modos normais de vibragao (calculadas e corrigidas) e respectivas
atribuicoes. A notagdo para os varios movimentos de d&tomos nos modos normais é definida do
seguinte modo: t - torcao, tw - twisting, s - scissors, w - wagging, r - rocking; st - stretching;
indices: s - simétrico, as - assimétrico. Resultados obtidos empregando o método de Hartree-Fock
restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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NU d Fregiiéncia Freq, ¥ d Fregiiéncia Ried.
umero do q ! corrigida Atribuicio s que : corrigida Atribuicéo
modo (cm™) o modo (cm™) "
(cm™) (cm™)
st,,CCO; st, ,CCN;
1 61.5304 55.37736 tCo0 18 1339.0494 1205.14446 “ i
rNH,; wCH;
st,,CCC; wCCH;
2 249.4885 224.53965 twCH;; twNH, 19 1445.7303 1301.15727
WCH;; wNH,
tWNH,; twCH; Sty CCN;
3 284.0379 255.63411 6. = 20 1514.6369 1363.17321 stCO; sCOH;
wCOH
wCH,
wCH;; sCOH;
sCCC; twNH s s
4 300.4492 270.40428 ) 21 1539.9816 1385.98344 §t..CCC; $tCO
wCH;; sCOH;
5 378.3265 340.49385 wCCN; wCO0 22 1545.5498 1390.99482 St,.CON; st,.CCO
6 440.3209 396.28881 wWCCN; wC00 23 1610.9765 1449.87885 wCH,; twCH,
st,.CCN; stCC;
7 572.1733 514.95597 24 1622.0350 1459.8315 wCH,
rC00
8 602.6106 542.34954 SLECE; SCO0; 25 1802.4638 1622.21742 NH
7 w
: : WCCN; wCH, : 2
st,CCC; wCOO; st,,COO; st,CCO;
9 794.1377 714.72393 26 2009.4177 1808.47593
wCOH sCOH
st.CCC; wCOO;
10 812.7422 731.46798 ® 27 3160.5093 2844.45837 st,CH;; stCH
twCOH
st CCC; wCH,;
11 881.6816 793.51344 . ? 28 3179.0163 2861.11467 stCH; st,CH;
wC0O; stCN
12 955.1593 859.64337 W, stCON; 29 3218.173 2896.35597 st CH,; stCH
A .64 St.CON; st CCC 1733 6. 2CHy;
13 1014.6496 913.18464 StasCCC; StCCN; 30 3267.6991 2940.92919 | st,CH,; st,.CH
. : st,CCO; wNH, i ) S SR
st CCN; wCH;;
14 1099.9501 989.95509 i 31 3723.8329 3351.44961 st,NH,; stOH
2
15 1179.2182 1061.29638 StasCCN; SLCO; 32 3807.8293 3427.04637 st,,NH
’ ’ wCH,; rNH, ’ ) w2
st,CCN; stCO;
16 1249.6813 1124.71317 —— 33 4022.8275 3620.54475 StOH
3s
st,.CCO;
17 1324.7706 1192.29354 | st,CCN; rNH,;
WCH;

Tabela 42: Freqiiéncias dos modos normais de vibragao (calculadas e corrigidas) e respectivas
atribuicoes. A notagdo para os varios movimentos de d&tomos nos modos normais é definida do
seguinte modo: t - torcao, tw - twisting, s - scissors, w - wagging, r - rocking; st - stretching;
indices: s - simétrico, as - assimétrico. Resultados obtidos empregando o método de Hartree-Fock
restrito (RHF) de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Numero do | Fregiiéncia s Numero do | Freqiiéncia L
A Atribuicao 4 Atribuicao
modo (cm™) modo (cm™)
st,CCO; rNH,;
1 57.1740 tCO0 18 1266.4257
wCH;
st,,CCC; wCCH;
2 234.2141 sCCC 19 1327.2610
rNH,
3 253.4151 twCH,; rCO0 20 1358.3679 StasCEN; F;
: B . stCO; wCH,
wCH,; sCOH;
twNH,; sCO0 :
4 273.4563 s 21 1409.7931 St..CCC stCO
5 sroges | oo oecl; 2 141,068 | o SO
’ SCCN ' st,,CCO
6 390.4092 sCCN; wC00 23 1501.3372 wCH,; twCH,
sCCN; stCC;
) CH
7 527.7874 <Cco 24 1506. 1646 wCH,
1.8764 BNy 2 1659.575 WNH
8 631.876 WCH, 5 659.5750 )
. : st..CO0; st CCO;
9 7348844 | SCG WCOG; 2 1842.2798 B LEN Bk
twCCH sCOH
NH,; st.CCO;
10 799.7842 | V23 27 3042.7113 st,CHs; stCH
wCCN
NH,; st.CCN;
11 gst.oozz | " P 28 3053.9611 StCH; st.CH;
twCOH
wCOH; st CCN; W ey
S ;S
12 886.4011 twhH, 29 3110.9457 2sCHy
wNH,; st,CCN;
13 941.2666 30 3148.0758 st,CH,; st,CH,
wCH,
st CCN; wCHs;
14 1011.7803 31 3455.3602 stOH; st.NH,
rNH,
st,,CCN; stCO;
15 1056.5676 wC00; WCH;; 32 3527.4481 st,NH,
rNH,
st_,CCN; stCO;
16 1129.9352 33 3614.6483 st NH,
wCH;;
- i st,,CCO; rNH,;
1208.1741 WCH,

Tabela 43: Freqiiéncias dos modos normais de vibragao e atribuigdes. A notagao para os varios
movimentos de atomos nos modos normais é definida do seguinte modo: t - torgao, tw - twisting,
S - scissors, w - wagging, r - rocking; st - stretching; indices: s - simétrico, as - assimétrico.
Resultados obtidos empregando o método do funcional da densidade (DFT) de camada fechada
(spin igual a zero) na base 6-31++G(d,p).
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2.3.3.3 Espectros Raman, IR, depolarizacées Raman e VCD

A Fig. 24 apresenta os espectros Raman e infravermelho para a conformacao II. No
calculo RHF simples, o pico Raman mais intenso corresponde ao modo normal de niimero
27 (140.724 A4/u.m.a., atribuicao: stretching simétrico do grupo metila e stretching da
ligacdo C-H envolvendo o carbono «), seguido pelos modos 31 (89.6513 A*/u.m.a., atri-
buigao: stretching simétrico do grupo amina e stretching da ligacao O-H), 28 (80.4356
A*/um.a., atribuicdo: stretching da ligacio C-H envolvendo o carbono a), 30 (59.6568
At Ju.m.a., atribuicao: stretching simétrico de duas ligagoes de hidrogénio do grupo metila
com stretching assimétrico da terceira ligacao), 29 (54.2893 At /u.m.a., atribuigao: stret-
ching assimétrico de duas ligagoes do grupo metila, stretching da ligacao entre o carbono
a e 0 4tomo de hidrogénio) e 32 (53.3683 A*/u.m.a., atribuicao: stretching assimétrico do
grupo amina). Somente os modos a partir de 3150 cm™1 contribuem significativamente
para o espectro Raman. Ja o espectro infravermelho apresenta pico maximo para o modo
26 (410.037 km/mol, atribuicao: stretching assimétrico das ligagoes O—C=0, stretching
simétrico das ligagoes C—C—O e movimento em tesoura do grupo C-O-H), com os picos
21 (247.701 km/mol, atribui¢do: wagging do grupo metila, movimento em tesoura do
grupo C-O-H, stretching assimétrico das ligagoes C—-C—C e stretching da ligacao C-0O), 33
(219.778 km/mol) e 20 (154.648 km/mol, atribuicao: stretching assimétrico das ligacoes
C—C-N, rocking do grupo amina, stretching da ligacao C-O, movimento em tesoura do
grupo C-O-H e wagging do grupo metila) sucedendo-se em intensidade. FExiste uma
espécie de janela no infravermelho entre os picos 26 e 33. O espectro de depolarizagao
Raman da Fig. 25, tanto para onda incidente plano-polarizada e nao-polarizada, possui
pico mais intenso no modo 20. Ja o espectro VCD (Fig. 26) exibe méximo para o modo
21 e minimo para o modo 20 (em comparacao, a conformagao I apresenta méximo no

modo 16 e minimo no modo 20 usando o mesmo método de célculo).

No célculo RHF refinado (base 6-311++G(3d,3p)), o pico mais significativo do es-
pectro Raman continua no modo 27 (intensidade 152.901 A*/u.m.a., um pouco maior),
seguido pelo pico no modo 31 (intensidade de 88.295 A4/u.m.a., um pouco menor). No
espectro infravermelho, o maximo permanece no modo 26, com intensidade de 399.458
km/mol (um pouco menor que o obtido no célculo RHF simples), enquanto o segundo pico
mais intenso corresponde ao modo 22 (intensidade 162.522 km/mol) e o terceiro ao modo
21 (intensidade de 151.863 km/mol). Qualitativamente ndo ha muita diferenca no aspecto
das depolarizacoes Raman em comparacao com o cdlculo RHF simples. O espectro VCD,

por sua vez, apresenta maximo no modo 22 e minimo no modo 20.
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Nos célculos feitos empregando a teoria do funcional da densidade, o pico Raman
mais intenso corresponde ao modo 27 (intensidade 162.595 A*/u.m.a., atribuicao: stret-
ching simétrico do grupo metila, stretching da ligacao entre o carbono « e o hidrogénio
13), seguido pelo pico do modo 32 (intensidade 128.15 A*/u.m.a., atribuicio: stretching
simétrico do grupo amina) e pelo pico do modo 28 (intensidade 78.137 A*/u.m.a., atri-
buicao: stretching da ligacao entre o carbono a e o hidrogeénio, stretching simétrico do
grupo metila). No espectro infravermelho, o pico mais intenso é o do modo 26, com in-
tensidade de 343.705 km/mol (atribuigao idéntica ao modo calculado usando o método de
Hartree-Fock). O segundo lugar pertence ao modo 31, com intensidade 278.876 km/mol
(atribuicdo: stretching da ligagao O-H, stretching simétrico do grupo amina), e o terceiro,
ao modo 22, com intensidade 217.487 km/mol (atribui¢do: wagging do grupo metila, mo-
vimento em tesoura das ligagoes do grupo C-O-H e stretching assimétrico das ligacoes
C-C-0). O espectro de depolarizagao para radiacao incidente plano-polarizada apresenta
um méximo nitido no modo 24 (atribui¢do: wagging envolvendo o grupo metila), en-
quanto o pico para radiacao nao-polarizada ocorre para o modo 23 (atribuicao: wagging e
twisting envolvendo ligagoes do grupo metila). J4 a intensidade VCD méxima ocorre para
o modo 8 (atribuigdo: movimento em tesoura das ligagoes C—C-N, C-C=0 e wagging do
grupo metila) e a minima para o modo 26 (em comparacdo, a conformagao I apresenta

méaximo e minimo nos modos 16 e 17, respectivamente).
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2.3.3.4 Niveis de energia e orbitais moleculares

Os niveis de energia moleculares calculados para a conformacao II sao apresentados
nas tabelas 44, 45 e 46. No caso do calculo RHF simples, as energias dos orbitais HOMO
e LUMO sao, nesta ordem, -0.41898 H e 0.02944 H, com um gap de 0.44842 H ou 12.20
eV. Para o calculo RHF refinado, a energia do orbital HOMO é de -0.41917 H e a energia
do orbital LUMO é igual a 0.02853 H, com um gap de 0.4477 H ou 12.18 eV. Finalmente,
no calculo DF'T, o orbital ocupado de mais alta energia possui energia igual a -0.26770
H, enquanto o orbital LUMO possui -0.02984 H, levando a um gap de 0.23786 H ou 6.47
eV. Mais uma vez, a correlacao eletronica contribui para diminuir a separacao entre os
niveis de energia dos orbitais fronteira. Em comparacao, para a conformacao I os gaps
calculados foram de 12.18 eV (RHF simples), 12.16 eV (RHF refinado) e 6.58 eV (DFT),

valores maiores que os equivalentes obtidos para a conformacao II.

A Fig. 27 apresenta as isosuperficies de maxima amplitude para os orbitais fron-
teira. Pode-se notar que a superficie associada ao orbital HOMO, como ocorreu com a
conformacao I, envolve toda a molécula. Nota-se nitidamente a existéncia de uma con-
figuracao anti-ligante na regiao da ligagao de hidrogénio entre o hidrogénio do grupo
carboxila e o nitrogénio do grupo amina. Ja a isosuperficie do orbital LUMO apresenta-se
um tanto afastada do corpo da molécula de L-alanina, perto do grupo amina, o que sugere
que a excitacao da molécula produz uma certa transferéncia de carga do grupo COOH

para o grupo NHs.
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Nivel Energia (H) Nivel Energia (H) Nivel Energia (H)
1 -20.61064 26 0.05098 51 0.36322
2 -20.54922 27 0.05419 52 0.36900
3 -15.58848 28 0.06506 53 0.37896
4 -11.37863 29 0.08458 54 0.38972
5 -11.29453 30 0.08741 55 0.39879
6 -11.23538 31 0.09417 56 0.40462
7 -1.47092 32 0.12658 57 0.41035
8 -1.37047 33 0.12869 58 0.43475
9 -1.23039 34 0.15249 59 0.44267
10 -1.03202 35 0.15713 60 0.46589
11 -0.90830 36 0.16652 61 0.47001
12 -0.82466 37 0.17288 62 0.48443
13 -0.74872 38 0.18100 63 0.50601
14 -0.69424 39 0.18489 64 0.51788
15 -0.66651 40 0.19413 65 0.53716
16 -0.63832 41 0.20912 66 0.58176
17 -0.62053 42 0.21612 67 0.66120
18 -0.59491 43 0.22708 68 0.72172
19 -0.57439 44 0.23289 69 0.88049
20 -0.53513 45 0.25103 70 0.89249
21 -0.52855 46 0.27060 71 0.92594
22 -0.47036 47 0.28712 72 0.95081
23 -0.46061 48 0.30831 73 0.97232
24 (HOMO) -0.41898 49 0.33946 74 0.99406
25 (LUMO) 0.02944 50 0.35268 75 1.01547
E(LUMO) - E(HOMO) = 0.44842 H = 12.202127 eV

Tabela 44: Energias dos orbitais moleculares da L-Alanina na conformacao II. Estados ocupados
em verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando
o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-
31++G(d,p).
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Nivel Energia (H) Nivel Energia (H) Nivel Energia (H)
1 -20.59614 26 0.04925 51 0.30735
2 -20.53257 27 0.05221 52 0.32555
3 -15.57528 28 0.06307 53 0.32997
4 -11.36840 29 0.08277 54 0.34578
5 -11.28827 30 0.08576 55 0.34789
6 -11.22874 31 0.09057 56 0.36292
7 -1.47047 32 0.12108 57 0.36947
8 -1.37059 33 0.12244 58 0.37444
9 -1.22768 34 0.14161 59 0.38468
10 -1.02924 35 0.15016 60 0.39756
11 -0.90555 36 0.16128 61 0.40474
12 -0.82453 37 0.16525 62 0.41149
13 -0.74752 38 0.16883 63 0.42422
14 -0.69213 39 0.17064 64 0.43128
15 -0.66744 40 0.17690 65 0.43449
16 -0.63834 41 0.18654 66 0.45084
17 -0.62097 42 0.19315 67 0.46124
18 -0.59465 43 0.20497 68 0.47707
19 -0.57445 44 0.20974 69 0.51643
20 -0.53510 45 0.22875 70 0.52383
21 -0.52734 46 0.24954 71 0.54148
22 -0.47184 47 0.26370 72 0.56073
23 -0.45919 48 0.27817 73 0.58197
24 (HOMO) -0.41917 49 0.29280 74 0.59106
25 (LUMO) 0.02853 50 0.29965 75 0.60823
E(LUMO) - E(HOMO) = 0.4477 H = 12.182535 eV

Tabela 45: Energias dos orbitais moleculares da L-Alanina na conformagao II. Estados ocupados
em verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando
o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-
3114++G(3d,3p).
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Nivel Energia (H) Nivel Energia (H) Nivel Energia (H)
1 -19.19560 26 -0.00804 51 0.22356
2 -19.14098 27 0.00214 52 0.24016
3 -14.36865 28 0.01450 53 0.24705
4 -10.31966 29 0.01731 54 0.26362
5 -10.25613 30 0.03642 55 0.26696
6 -10.20816 31 0.04467 56 0.28258
7 -1.10316 32 0.05020 57 0.29217
8 -1.02160 33 0.06742 58 0.30055
9 -0.92786 34 0.06997 59 0.31355
10 -0.77345 35 0.08623 60 0.31990
11 -0.67000 36 0.09726 61 0.32807
12 -0.60123 37 0.11082 62 0.33804
13 -0.53577 38 0.11390 63 0.35641
14 -0.53168 39 0.11758 64 0.38206
15 -0.49956 40 0.12074 65 0.39954
16 -0.45490 41 0.12920 66 0.42223
17 -0.44080 42 0.13473 67 0.43772
18 -0.42038 43 0.14818 68 0.49298
19 -0.40609 44 0.15390 69 0.64379
20 -0.38594 45 0.15715 70 0.66098
21 -0.37057 46 0.16692 71 0.69205
22 -0.31766 47 0.17677 72 0.71869
23 -0.30933 48 0.18611 73 0.73408
24 (HOMO) -0.26770 49 0.19511 74 0.75564
25 (LUMO) -0.02984 50 0.20476 75 0.77626
E(LUMO) - E(HOMO) = 0.23786 H = 6.472499 eV

Tabela 46: Energias dos orbitais moleculares da L-Alanina na conformagao II. Estados ocupados
em verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando
o método do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base
6-31++G(d,p).
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RHF - Base 6-31G++(d,p)

Figura 27: Isosuperficies de amplitude maxima para os orbitais HOMO (todos os que ficam a
esquerda) e LUMO (& direita) da molécula de L-Alanina na conformacao II.
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2.4 Conformacao zwitterion

2.4.1 Convergéncia

A convergéncia dos calculos para a conformagao zwitterion (Fig. 28) foi obtida obtida
com solvatacao IPCM em 4gua (ver Anexo A, se¢ao A.6.9). Para o célculo RHF simples,
a otimizagao demandou 21 iteragoes, enquanto o calculo RHF refinado convergiu com 22
iteragoes. Para o calculo DF'T, foram necesséarios 14 passos. Todos os calculos partiram
da mesma configuragao inicial, dada na tabela 1. A tabela 47 exibe as forcas residuais

sobre cada atomo quando foi alcangada a geometria étima.
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Figura 28: Convergéncia da energia e da forga média quadratica no célculo de Hartree-Fock para a L-alanina na conformacao zwitterion usando
trés métodos distintos.
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RHF - Base 6-31G++(d,p)

Atomo F, (H/bohr) F, (H/bohr) F, (H/bohr)
o' 0.000004191 -0.000085044 | -0.000062517
0* -0.000019033 | -0.000022686 | -0.000075889
N3 -0.000049826 | -0.000046523 0.000038419
ct 0.000033051 0.000088331 0.000161484
s -0.000041378 | -0.000007214 0.000017077
ct 0.000028029 0.000034919 | -0.000052666
H’ 0.000024190 0.000046372 0.000021674
H8 -0.000008987 | -0.000023892 0.000008173
H® -0.000002441 0.000012876 | -0.000027551
H'° -0.000004532 0.000002334 0.000010117
H' -0.000001469 0.000002167 0.000001679
H'? -0.000003962 | -0.000001182 0.000002948
H3 0.000042168 | -0.000000457 | -0.000042948

RHF - Base 6-311G++(3d,3p

)

Atomo F, (H/bohr) F, (H/bohr) F, (H/bohr)
o' -0.000053364 0.000001495 | -0.000126401
0* -0.000022496 | -0.000067573 | -0.000020012
N3 0.000060355 0.000152739 | -0.000029364
¢ 0.000062604 0.000059615 0.000163329
& 0.000024511 -0.000021322 | -0.000005126
cé -0.000004125 0.000011107 0.000024376
H’ -0.000005689 0.000014465 0.000001071
H® -0.000054339 0.000014614 | -0.000003773
H? 0.000006408 | -0.000174675 | -0.000033226
H'® 0.000000479 0.000000540 0.000010778
H' 0.000005539 | -0.000004269 | -0.000008060
H'? -0.000002838 | -0.000001376 0.000011150
Hs3 -0.000017045 0.000014639 0.000015257

DFT - Base 6-31G++(d,p)

Atomo F, (H/bohr) F, (H/bohr) F, (H/bohr)
o' 0.000003895 | -0.000011065 | -0.000005502
0* 0.000002870 | -0.000006467 | -0.000002050
N3 0.000001959 0.000000263 0.000003320
ct 0.000002800 | -0.000005539 0.000003358
c® 0.000000114 0.000000834 0.000001970
ct -0.000008288 0.000003825 | -0.000003536
H’ 0.000005294 | -0.000005557 0.000001332
H® 0.000005140 0.000005477 0.000003310
H? 0.000009419 0.000000768 0.000005783
H'° -0.000008541 | -0.000000651 -0.000005288
H" -0.000009505 0.000003885 -0.000004292
H'? -0.000007707 0.000008699 | -0.000001699
H'3 0.000002550 0.000005528 0.000003295

Tabela 47: Forgas sobre cada atomo apds convergéncia.
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2.4.2 Geometria

Selvarengan e Kolandaivel [168] usaram o método DFT para estudar a estabilidade
conformacional de moléculas de glicina e alanina. As geometrias moleculares foram otimi-
zadas usando os funcionais BSLYP, B3PW91 e B3P86 na base 6-311++G(d,p). Mapas da
superficie de potencial em trés dimensoes foram obtidos variando variando trés angulos
de diedro. O calculo B3LYP foi capaz de prever a estrutura estavel correta, mas outros
funcionais testados nao produziram a resposta esperada. Os funcionais adotados foram
capazes de prever o nimero méaximo de 6 conformagbes minimas para a glicina (de 8
conformagoes conhecidas) e 11 conformagdes minimas para a alanina (de 13 conformagoes
conhecidas). Muito embora existam diferengas na ordem das conformagoes calculadas por
diferentes métodos, os dados obtidos sao relevantes. Noébrega et al. [169] estudaram as
formas zwitterionica, neutra e transicionais da alanina usando o funcional hibrido B3LYP
e a base 6-31++G(d,p). A transferéncia protonica intramolecular do oxigénio para o
nitrogénio e o espectro vibracional foram analisados em diferentes meios dielétricos: ace-
tonitrila, etanol, tetracloreto de carbono e no vacuo. A geometria adquirida pelas formas
neutra, zwitterion e transicional foi parecida na acetonitrila e no etanol. O espectro vibra-
cional obtido para a forma zwitterionica também foi similar no caso destes dois solventes.
Sambrano et al. [170] estudaram a transferéncia protonica na a-alanina usando métodos
HF e MP2 incluindo efeitos de solvente via teoria de campo de reagao autoconsistente.
Uma analise dos seus resultados mostra que a estrutura transicional apresenta um dese-
quilibrio no sentido de que o deslocamento de elétrons se atrasa em relacao a transferéncia
protonica, fazendo com que a formagao da nova ligacao se dé antes mesmo do desfazi-
mento da ligacao antiga. Jalkanen et al. [23] usaram o funcional B3LYP na base 6-31G(d)
para determinar as geometrias e Hessianos da L-alanina em solucao aquosa e calcular os

espectros VCD, obtendo bom acordo com uma série de dados experimentais.

A tabela 48 apresenta as coordenadas convergidas da molécula de L-alanina. As
tabelas de 49 a 51 exibem as distancias entre todos os atomos e as tabelas de 52 a 54, os
comprimentos de ligacao, angulos e diedros. Para o calculo RHF simples, o comprimento
da ligacio C-O é de 1.2342 A (valor experimental: 1.249 A [23]), e a ligacio C=0 possui
comprimento igual a 1.2374 A (valor experimental: 1.266 A [23]). A distancia entre o
carbono 5 e o 4tomo de nitrogénio é de 1.4957 A (comparar com o valor experimental
de 1.495 A [23]) e a distancia entre os carbonos 5 e 6 ¢ de 1.5239 A (valor experimental:
1.534 A [23]). No céalculo RHF refinado essas mesmas ligagoes passam a ter comprimentos
de 1.2275 A (C-0), 1.2311 A (C=0), 1.4945 A (C-N) e 1.5221 A (C-C), diminuindo
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um pouco. J4 os angulos principais sdo, no cdlculo RHF simples: 128.1367° (O=C-0),
108.943" (C*-C5-N), 116.6972° (C—C=0, valor experimental: 118.30° [23]) e 115.1652°
(C-C-0, valor experimental: 116.00° [23]). No calculo RHF refinado, tais valores mudam
para: 128.3006° (O=C-O, ligeiro aumento em comparagao com o cdlculo RHF simples),
108.954° (C*-C5-N, ligeiro aumento), 116.5417° (C-C=0, ligeira diminui¢ao) e 115.1566°
(C-C-0, ligeiro aumento). Por fim, os angulos de diedro O=C-C-N e O-C-C-N sao
de -7.4834° e 172.8314° no calculo RHF simples, e -8.9776" ¢ 171.3726° no calculo RHF

refinado.

O funcional B3LYP incorpora efeitos de correlacao. Os comprimentos de ligagao
calculados sio de 1.2561 A (C-0), 1.2631 A (C=0), 1.5108 A (C-N) e 1.5284 A (C5-C9),
maiores que os obtidos nos calculos RHF. J& os angulos sao: 128.2259° (O=C-0, ligeiro
aumento em comparacao com o calculo RHF simples), 107.8879° (C*-C°-N, diminuicao),
116.2119° (C-C=0, ligeira diminuigao) e 115.5421° (C-C-0O, ligeiro aumento). Os angulos
de diedro envolvendo os 4tomos O=C-C-N e O-C-C-N sao, respectivamente, -18.199°
(valor experimental: -18.60°) e 163.2949° (valor experimental: 161.50°).
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RHF - Base 6-31G++(d,p)

RHF - Base 6-311G++(3d,3p)

DFT - Base 6-31G++(d,p)

Atomo X (R) Y (&) Z(A) Atomo X (A) Y (A) Z (A) Atomo X (R) Y (&) Z(A)
o' 1.608840 | 0.801656 | -0.390513 o 1.177740 | -1.139127 | 0.507597 o' 1.123662 | -1.126110 | 0.630152
o? 1.158581 | -1.131293 | 0.576814 o? 1.701452 | 0.845420 | -0.318780 o? 1.767323 | 0.783789 | -0.406359
N? -1.522849 | -1.031899 | -0.286691 NG -1.325493 | -1.063436 | -0.194428 N? -1.340512 | -1.045995 | -0.271645
c 0.781051 | -0.166733 | -0.008704 ct 0.926202 | -0.062906 | -0.034694 ct 0.925098 | -0.070807 | -0.034887
s -0.663592 | 0.120710 | -0.396889 s -0.546065 | 0.194672 | -0.401886 s -0.550881 | 0.234070 | -0.414143
8 -1.206099 | 1.271719 | 0.456518 8 -1.162641 | 1.319162 | 0.417985 ct -1.156430 | 1.315516 | 0.480126
H’ 2.488820 | 0.585200 | -0.110537 H’ -1.281940 | -1.364722 | 0.770253 H’ -1.066533 | -1.511192 | 0.609969
He -1.225758 | -1.770962 | -0.891535 He -2.297570 | -0.950343 | -0.453680 He -2.361345 | -0.896521 | -0.285573
H° -1.516393 | -1.396371 | 0.645502 H° -0.941335 | -1.817604 | -0.747892 H° -1.113141 | -1.707156 | -1.030571
{10 -1.230058 | 0.991669 | 1.506174 H10 -1.119949 | 1.095790 | 1.478339 {10 -1.129644 | 1.018638 | 1.534606
{1t -0.597685 | 2.161735 | 0.351954 {1t -0.612545 | 2.229619 | 0.236123 {1t -0.575688 | 2.233631 | 0.366663
H2 -2.218163 | 1.494282 | 0.143109 2 -2.197087 | 1.478861 | 0.138341 H2 -2.193495 | 1.528581 | 0.199024
H3 -0.648348 | 0.440652 | -1.433782 H3 -0.609637 | 0.416543 | -1.459463 H3 -0.611170 | 0.521875 | -1.469521

Tabela 48: Coordenadas finais

(cartesianas) para os dtomos da molécula de L-alanina na conformagao zwitterion.
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0 0’ N° ct c’

o' 0.000000

O 2. 222739 0.000000

N3 2.604219 | 3.589543 | 0.000000

c 1.237387 1.234199 2.469948 0.000000

c? 2.368738 | 2.346761 1.495673 1.539031 0.000000

ct 3.416397 2.988481 2.468622 2.548103 1.523913

H’ 2.490757 | 3.875178 | 1.014681 2.688872 | 2.092111

H8 3.617328 4.398358 1.015316 3.374357 2.098221

H? 2.557706 3.798877 1.014604 2.669408 2.085488

He 3.381941 3.347099 2.744369 2.804164 2.167376

H! 3.844655 2.740814 3.401519 2.776806 2.136698

H'2 4.308034 3.972811 2.714141 3.491413 2.163421

H!3 3.079142 2.626260 2.077092 2.149866 1.084921
c6 H7 H8 H9 H10

c6 0.000000

H’ 2.723761 0.000000

H® 2.684469 1.646177 | 0.000000

H° 3.361001 1.623309 1.638869 0.000000

H'0 1.086241 2.581668 3.049837 3.683306 0.000000

H!! 1.081318 3.709434 | 3.669566 | 4.186864 1.759250

H'Z 1.085282 3.072812 2.505394 3.643398 1.764432

H'3 2.158111 2.939944 2.403081 2.369967 3.064147
H1 1 H1 2 H1 3

H' 0.000000

yi2 1.758209 | 0.000000

n 2.486276 2.491979 0.000000

Tabela 49: Distancias finais (em A) entre os dtomos da molécula de L-alanina na conformacio
zwitterfon apés convergéncia empregando o método de Hartree-Fock restrito (RHF) de camada
fechada (spin igual a zero) na base 6-31++G(d,p).
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o' o’ N® ct c

o' 0.000000

o? 2.212601 0.000000

N3 2.600912 3.580726 0.000000

c 1.231098 1.227508 2.469151 0.000000

i 2.361711 2.341306 1.494451 1.539073 0.000000

co 3.395379 2.995043 2.465430 2.545249 1.522114

B’ 2.483930 3.869283 1.011573 2.686737 2.084977

H8 3.610743 4.385789 1.012391 3.369836 2.093206

H? 2.554812 3.776263 1.011271 2.659946 2.079715

H'0 3.349114 3.354494 2.,7139097 2.796172 2.162545

H! 3.824561 2.752909 3.396746 2.774303 2.133655

H'2 4.287151 3.976030 2.708078 3.487395 2.160292

H"3 3.079635 2.612705 2.074392 2.149102 1.082468
c6 H7 H8 H9 H10

ct 0.000000

H’ 2.709531 0.000000

H2 2.683005 1.643540 0.000000

H° 3.353737 1.620457 1.636482 0.000000

H'0 1.084467 2.565491 3.050598 3.670950 0.000000

H' 1.079172 3.694952 3.664328 | 4.178087 1.756739

H12 1.083413 3.053321 2.502323 3.637170 1.761410

H'3 2.155306 2.931984 2,393552 2.368073 3.058181
R H12 H'3

H' 0.000000

H'2 1.756125 0.000000

H'3 2.482391 2.490280 0.000000

Tabela 50: Distancias finais (em A) entre os dtomos da molécula de L-alanina na conformacio
zwitterfon apés convergéncia empregando o método de Hartree-Fock restrito (RHF) de camada
fechada (spin igual a zero) na base 6-311++G(3d,3p).
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0 0’ N° ct c’

o' 0.000000

O 2.266355 0.000000

N3 2.625226 | 3.609002 | 0.000000

c 1.263079 1.256053 2.477909 0.000000

c? 2.396818 | 2.382503 1.510758 1.554123 | 0.000000

ct 3.344079 3.101115 2.485112 2.553407 1.528376

HY 2.223882 3.785578 1.033787 2.541091 2.088215

H8 3.610615 4.459140 1.031812 3.397846 2.138351

H? 2.845857 3.858953 1.031891 2.797041 2.112931

He 3.239655 3.494984 2.751312 2.805737 2.179022

H! 3.774265 2.861696 3.427585 2. 779215 2.146746

H'2 4.270454 | 4.075448 | 2.752735 3.512602 | 2.179429

H!3 3.183414 2.618423 2.103584 2.183933 1.095577
c6 H7 H8 H9 H10

c6 0.000000

H’ 2.831116 0.000000

H® 2.632722 1.690075 | 0.000000

H° 3.379441 1.652859 1.664381 0.000000

H'0 1.095802 2.694249 2.915128 3.743041 0.000000

H' 1.092277 3.784683 3.662217 4.215557 1.774025

H'Z 1.095408 3.267895 2.478735 3.626163 1.782021

H'3 2.174465 2.943637 2.544936 2.326635 3.088749
H1 1 H1 2 H1 3

H' 0.000000

H'2 1.772709 0.000000

H13 2.510565 | 2.510230 | 0.000000

Tabela 51: Distancias finais (em A) entre os dtomos da molécula de L-alanina na conformacio
zwitterion apds convergéncia empregando o método do funcional da densidade (DFT) de camada
fechada (spin igual a zero) na base 6-31++G(d,p).
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Atom.os R &) Atom-os 6 (graus) Atom.os 7 (graus)
envolvidos envolvidos envolvidos

R(1-4) 1.2374 A(5-3-7) 111.4571 | D(7-3-5-4) 59.8344
R(2-4) 1.2342 A(5-3-8) 111.9367 | D(7-3-5-6) -63.8139
R(3-5) 1.4957 A(5-3-9) 110.9019 | D(7-3-5-13) | 176.8219
R(3-7) 1.0147 A(7-3-8) 108.3729 | D(8-3-5-4) | -178.6048
R(3-8) 1.0153 A(7-3-9) 106.249 D(8-3-5-6) 57.7469
R(3-9) 1.0146 A(8-3-9) 107.6769 | D(8-3-5-13) | -61.6173
R(4-5) 1.539 A(1-4-2) 128.1367 | D(9-3-5-4) -58.3255
R(5-6) 1.5239 A(1-4-5) 116.6972 | D(9-3-5-6) 178.0262
R(5-13) 1.0849 A(2-4-5) 115.1652 | D(9-3-5-13) 58.662
R(6-10) 1.0862 A(3-5-4) 108.9493 | D(1-4-5-3) -7.4834
R(6-11) 1.0813 A(3-5-6) 109.6743 | D(1-4-5-6) 114.4138

R(6-12) 1.0853 A(3-5-13) | 106.1042 | D(1-4-5-13) | -122.7416
A(4-5-6) 112.5906 | D(2-4-5-3) 172.8314

A(4-5-13) | 108.8012 | D(2-4-5-6) -65.2714

A(6-5-13) | 110.5011 | D(2-4-5-13) 57.5731

A(5-6-10) | 111.1641 | D(3-5-6-10) 62.1551

A(5-6-11) | 109.0175 | D(3-5-6-11) | -178.2719

A(5-6-12) | 110.9045 | D(3-5-6-12) | -58.8875

A(10-6-11) | 108.5103 | D(4-5-6-10) | -59.3306

A(10-6-12) | 108.6881 | D(4-5-6-11) 60.2424

A(11-6-12) | 108.4865 | D(4-5-6-12) | 179.6268

D(13-5-6-10)| 178.7828

D(13-5-6-11)| -61.6443

D(13-5-6-12)| 57.7401

Tabela 52: Comprimentos de ligacdo R (em A), angulos 0 e angulos de diedro 7 entre os atomos
da molécula de L-alanina zwitterion na configuragao apds convergéncia empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Atom.os R A) Atom-os 6 (graus) Atom.os 7 (graus)
envolvidos envolvidos envolvidos

R(1-4) 1.2311 A(5-3-7) 111.1411 | D(7-3-5-4) 60.398
R(2-4) 1.2275 A(5-3-8) 111.789 D(7-3-5-6) -63.1091
R(3-5) 1.4945 A(5-3-9) 110.7152 | D(7-3-5-13) | 177.4872
R(3-7) 1.0116 A(7-3-8) 108.5916 | D(8-3-5-4) | -178.0882
R(3-8) 1.0124 A(7-3-9) 106.4664 | D(8-3-5-6) 58.4047
R(3-9) 1.0113 A(8-3-9) 107.9331 | D(8-3-5-13) | -60.9989
R(4-5) 1.5391 A(1-4-2) 128.3006 | D(9-3-5-4) -57.711
R(5-6) 1.5221 A(1-4-5) 116.5417 | D(9-3-5-6) 178.7819
R(5-13) 1.0825 A(2-4-5) 115.1566 | D(9-3-5-13) 59.3782
R(6-10) 1.0845 A(3-5-4) 108.9594 | D(1-4-5-3) -8.9776
R(6-11) 1.0792 A(3-5-6) 109.6269 | D(1-4-5-6) 112.8042
R(6-12) 1.0834 A(3-5-13) 106.114 | D(1-4-5-13) | -124.2953
A(4-5-6) 112.4965 | D(2-4-5-3) 171.3726

A(4-5-13) | 108.8794 | D(2-4-5-6) -66.8455

A(6-5-13) | 110.5509 | D(2-4-5-13) 56.055

A(5-6-10) | 111.0111 | D(3-5-6-10) 62.2771
A(5-6-11) | 109.0271 | D(3-5-6-11) | -178.1629

A(5-6-12) | 110.8938 | D(3-5-6-12) | -58.6476

A(10-6-11) | 108.571 | D(4-5-6-10) | -59.1248

A(10-6-12) | 108.6825 | D(4-5-6-11) 60.4352
A(11-6-12) | 108.593 | D(4-5-6-12) | 179.9505
D(13-5-6-10)| 178.9175

D(13-5-6-11)| -61.5225

D(13-5-6-12)| 57.9928

Tabela 53: Comprimentos de ligacdo R (em A), angulos 0 e angulos de diedro 7 entre os d4tomos
da molécula de L-alanina zwitterion na configuracao apds convergéncia empregando o método de
Hartree-Fock restrito (RHF') de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Atom.os R &) Atom-os 6 (graus) Atom.os 7 (graus)
envolvidos envolvidos envolvidos

R(1-4) 1.2631 A(5-3-7) 108.8563 | D(7-3-5-4) 44.043
R(2-4) 1.2561 A(5-3-8) 113.1471 | D(7-3-5-6) -78.0429
R(3-5) 1.5108 A(5-3-9) 110.9988 | D(7-3-5-13) | 161.9027
R(3-7) 1.0338 A(7-3-8) 109.8101 | D(8-3-5-4) 166.4196
R(3-8) 1.0318 A(7-3-9) 106.2895 | D(8-3-5-6) 44,3337
R(3-9) 1.0319 A(8-3-9) 107.5111 | D(8-3-5-13) | -75.7207
R(4-5) 1.5541 A(1-4-2) 128.2259 | D(9-3-5-4) -72.6092
R(5-6) 1.5284 A(1-4-5) 116.2119 | D(9-3-5-6) 165.3049
R(5-13) 1.0956 A(2-4-5) 115.5421 | D(9-3-5-13) 45.2505
R(6-10) 1.0958 A(3-5-4) 107.8879 | D(1-4-5-3) -18.1999
R(6-11) 1.0923 A(3-5-6) 109.7099 | D(1-4-5-6) 102.5513
R(6-12) 1.0954 A(3-5-13) | 106.5399 |D(1-4-5-13) | -133.935
A(4-5-6) 111.8578 | D(2-4-5-3) 163.2949
A(4-5-13) | 109.8083 | D(2-4-5-6) -75.9539
A(6-5-13) | 110.8523 | D(2-4-5-13) 47.5599
A(5-6-10) | 111.2023 | D(3-5-6-10) 60.7007
A(5-6-11) 108.864 | D(3-5-6-11) | 179.9912
A(5-6-12) | 111.2587 | D(3-5-6-12) | -60.7939
A(10-6-11) | 108.342 | D(4-5-6-10) | -58.9857
A(10-6-12) | 108.8311 | D(4-5-6-11) 60.3049
A(11-6-12) | 108.2529 | D(4-5-6-12) | 179.5198
D(13-5-6-10)| 178.0913
D(13-5-6-11)| -62.6182
D(13-5-6-12)| 56.5967

Tabela 54: Comprimentos de ligacdo R (em A), angulos 0 e angulos de diedro 7 entre os atomos
da molécula de L-alanina zwitterion na configuragao apds convergéncia empregando o método
do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.4.3 Propriedades eletronicas e vibracionais

A energia final calculada no célculo RHF simples, indicada na tabela 55, é de -321.918
H, com contribuicoes de 251.0845 H da interacao entre os nucleos, -1258.8229 H das
interagoes entre os elétrons e os nucleos e 321.1178 H da energia cinética eletronica. No
célculo RHF refinado (tabela 56) esses valores mudam para -322.0058 H (energia total),
251.6993 H (energia de interagao entre os nucleos), -1261.0571 H (energia de interagao
entre elétrons e nucleos) e 321.7718 H (energia cinética eletronica). O célculo DFT (tabela
57), que inclui efeitos de correlagao eletronica, apresenta uma energia total mais baixa,
igual a-323.7991 H, com contribuigoes de 248.4322 H da energia de repulsao internuclear, -
1253.6337 H da energia de interagao entre os elétrons e os nicleos atomicos e 320.6115 H de
energia cinética dos elétrons. A energia total no calculo DFT simples para a conformagao
I foi de -323.7765 H e, para a conformagao 11, -323.7765 H, valores menores que a energia

da conformagao zwitterion obtida pelo mesmo método.

As constantes rotacionais sao:

e Calculo RHF simples: A =5.01044 GHz, B = 3.30472 GHz, C' = 2.26727 GHz.
e Calculo RHF refinado: A =5.04258 GHz, B = 3.30163 GHz e C' = 2.28435 GHz.

e Calculo DFT usando o funcional hibrido B3LYP: A = 491794 GHz, B = 3.15443
GHz e C = 2.28643 GHz.

O médulo do momento de dipolo da molécula é igual a: 14. 8770 D (calculo RHF
simples), 14.6227 D (célculo RHF refinado) e 14.3398 D (célculo DFT), com a maior
componente apontando ao longo do eixo z, que é quase paralelo a direcao da ligagao
entre os carbonos 4 e 5, ficando os grupos NHF e COO~ em lados opostos. Tal momento
de dipolo é bem maior que o determinado para a conformacao I e quase o triplo do
momento de dipolo da conformacao II. A componente zz do momento de quadrupolo é a

que apresenta maior valor absoluto.

O elemento zz do tensor de polarizabilidade domina, sendo igual a: 59.165 A3 (célculo
RHF simples), 64.543 A? (célculo RHF refinado) e 73.143 A? (célculo DFT). Em segundo
lugar vem a componente yy e em terceiro a componente zz. Como esperado, a forma

zwitterion é mais polarizavel que as conformacoes I e II.

Quanto as propriedades termodinamicas, a energia de ponto zero é de 305369.3 J/mol

(cdlculo RHF simples, valor equivalente a 3.17 eV ou 0.1165 H), 304371 J/mol (cdlculo
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RHF refinado, equivalente a 3.16 eV ou 0.1161 H) e 283267.3 J/mol (cdlculo DFT, equi-
valente a 2.94 eV ou 0.1080 H). A maior parte da energia térmica do gas a temperatura
de 298.15 K e pressao de 1 atm é de origem vibracional, sendo a energia térmica total
igual a: 77.048 kcal/mol (cédlculo RHF simples), 76.794 kcal/mol (calculo RHF refinado)
e 72.028 kcal/mol (cdlculo DFT). O calor especifico a volume constante no célculo DFT
¢ igual a 23.128 cal/mol.K e é de origem principalmente vibracional. A entropia, por sua
vez, é igual a 81.803 cal/mol.K (célculo DFT), com componente dominante translacional,
seguida das componentes rotacional e vibracional, nesta ordem. A energia térmica total
calculada usando a teoria do funcional da densidade para a conformagao zwitterion é

maior que a obtida para as conformacoes I e II.
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Propriedades
termodinamicas
(T =298.15K, p =1 atm)

Momentos de dipolo e

Energias quadrupolo (cont.)

e Q,, (D.A, Energia vibracional
Energia Final (H) 321.918012745 traco nulo) 3.7704 (T=0 K, J/Mol) 305369.3
. Q,, (D.A,
Energia n-n (H) 251.0845169435 0.9655 E(kcal/mol) 77.048
traco nulo)
. Q. (D.A,
Energia e-n (H) -1258.822897325 2.8049 | Eqrans(kecal/mol) | 0.889
traco nulo)
N Q, (D.A,
Energia cinética (H) | 321.1177780102 5.4041 Egor(kcal/mol) 0.889
traco nulo)
Q,, (D.A,

Constantes rotacionais 0.7219 Ey p(kcal/mol) 75.270

traco nulo)

A (GHz) 5.01044 ti":ﬂjo) 4.4089 Cy(cal/mol.K) 21.588
B(GHz) 3.30472 Polarizabilidade Cy rans(cal/mol.K)|  2.981
C(GHz) 2.26727 o, (A% 59.165 | Cy,gor(cal/mol.K) | 2.981

Momentos de dipolo e quadrupolo a,, (R%) 1.836 Cy viglcal/mol.K} | 15,627

[ul (D) 14.8770 a,, (A%) 63.349 S(cal/mol.K) 80.134
Ky (D) -14.4094 a,, (A% 0.099 | Srrans(cal/mol.K) | 39,372
Ky (D) -3.1955 a,, (A) -5.127 Sgor(cal/mol.K) | 26.551
K (D) -1.8660 o, (A% 50.611 Syig(cal/mol.K) | 14.211

Qux (D-A) -40.9612

Q,, (D.A) -36.2253

Q. (D.A) -34.3859

Q,, (D.A) 5.4041

Q. (D.A) 0.7219

Q,, (D.A) 4.4089

Tabela 55: Energia final, energias de interagao nicleo-nicleo, elétron-nicleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinamicas. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-31++G(d,p).
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. Momentos de dipolo e PropnfedAad.e s
Energias aadrupolo (conk,) termodinamicas
q P : (T =298.15K, p = 1 atm)
= Q,, (D.A, Energia vibracional
Energia Final (H) -322.005765659 traco nulo) -3.6146 (T=0 K, J/Mol) 304371.0
. Q,, (D.A,
Energia n-n (H) 251.6993217911 1.0586 E(kcal/mol) 76.794
traco nulo)
. Q. (D.A,
Energia e-n (H) -1261.057066583 2.5560 | Eqpans(keal/mol) | 0.889
traco nulo)
S Q,y (D.A,
Energia cinética (H) | 321.7717878644 5.2882 Egor(kcal/mol) 0.889
traco nulo)
R Q,, (D.A,
Constantes rotacionais 0.8530 Eyg(kcal/mol) 75.016
traco nulo)
D.A,
A (GHz) 5.04258 Qe ( 4.4631 Cy(cal/mol.K) 21.622
traco nulo)
B(GHz) 3.30163 Polarizabilidade Cy rans(cal/mol.K)| 2,981
C(GHz) 2.28435 o, (A% 64.543 | Cy gor(cal/mol.K) | 2,981
Momentos de dipolo e quadrupolo a,, (R%) 1.587 Cy viglcal/mol.K) | 15.660
In| (D) 14.6227 o, (A3) 66.949 S(cal/mol.K) 79.405
Ky (D) -14.1561 a,, (A% 0.037 | Syrans(cal/mol.K) | 39,372
Ky (D) -3.1594 a,, (%) -4.243 Spor(cal/mol.K) | 26.538
K, (D) -1.8563 o, (A%) 54.888 Syig(cal/mol.K) | 13.494
Qux (D-A) -40.4393
Q,, (D.A) -35.7661
Q.. (D.A) -34.2687
Q. (D.A) 5.2882
Q,, (D.A) 0.8530
Q,, (D.A) 4.4631

Tabela 56: Energia final, energias de interagao nicleo-nicleo, elétron-nicleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinamicas. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-3114++G(3d,3p).
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Propriedades
termodinamicas
(T =298.15K, p =1 atm)

Momentos de dipolo e

Energias quadrupolo (cont.)

= Q,, (D.A, Energia vibracional
Energia Final (H) -323.799111755 traco nulo) -3.5452 (T=0 K, J/Mol) 283267.3
. Q,, (D.A,
Energia n-n (H) 248.4322071012 1.7940 E(kcal/mol) 72.028
traco nulo)
. Q. (D.A,
Energia e-n (H) -1253.633736651 1.7512 Erpans(kcal/mol) | 0.889
traco nulo)
. Q,y (D.A,
Energia cinética (H) | 320.6114711094 5.1663 Egor(kcal/mol) 0.889
traco nulo)
R Q,, (D.A,
Constantes rotacionais 1.5314 Eyg(kcal/mol) 70.250
traco nulo)
D.A,
A (GHz) 4,91794 Qe ( 5.5024 Cy(cal/mol.K) 23.128
traco nulo)
B(GHz) 3.15443 Polarizabilidade Cy rans(cal/mol.K)|  2.981
C(GHz) 2.28643 o, (A% 73.143 | Cy porlcal/mol.K) | 2.981
Momentos de dipolo e quadrupolo a,, (R%) 3.026 Cy viglcal/mol.K} | 17.166
In| (D) 14,3398 o, (A3) 72.625 S(cal/mol.K) 81.803
Ky (D) -13.8696 a,, (A% -0.370 | Srrans(cal/mol.K) | 39,372
Ky (D) -2.8863 a,, (%) -7.813 Sror(cal/mol.K) | 26.608
K, (D) -2.2211 o, (A%) 59.411 Syig(cal/mol.K) | 15.823
Qux (D-A) -40.8249
Q,, (D.A) -35.4856
Q.. (D.A) -35.5285
Q,, (D.A) 5.1663
Q,, (D.A) 1.5314
Q,, (D.A) 5.5024

Tabela 57: Energia final, energias de interagao nicleo-nicleo, elétron-nicleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinamicas. Resultados obtidos empregando o método do funcional da densidade (DFT)
de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.4.3.1 Analises de populacao

Os resultados da andlise de Mulliken na aproximagao de Hartree-Fock usando a base
6-31++G(d,p) (ver tabela 58) revelam uma concentracao de carga negativa em volta dos
dois atomos de oxigénio, com valores de -0.80545 (O') e -0.81091 (O?) e de (analise APT)
-1.45251 (O') e -1.44863 (O?). O nitrogénio apresenta carga de Mulliken igual a -0.56272
e carga APT de -0.498345. Incorporando os hidrogénios, a carga de Mulliken do dtomo
de nitrogénio passa a ser de 0.736322 e a carga APT, 0.57767. O grupo COO™~ apresenta,
na analise de Mulliken, carga igual a -0.94896. O carbono de nimero 6 (grupo metila)
aparece com um ligeiro excesso de elétrons (-0.356353). Ja a carga APT do grupo COO~ é
igual a -1.0008 e do grupo NH3 é de 0.5777. Os hidrogénios de ntimeros 10 e 12 aparecem

com pequenas quantidades de carga APT negativa.

O célculo RHF refinado (tabela 59) apresenta cargas de Mulliken de -1.07175, -1.12403
e -0.73464 para os atomos de oxigénio 1 e 2 e o nitrogénio, nesta ordem. A carga do grupo
amonia é de 0.2149 e a carga do grupo COO™ é de -0.496645. Ja as cargas APT sao de
-1.43583 (O1), -1.4418 (0?%) e -0.43824 (N7). O grupo NHj apresenta carga de 0.59835 e
o grupo COO™, carga de -1.020326, valores maiores em modulo que os calculados usando

o método de Hartree-Fock na base reduzida.

No calculo DFT (tabela 60), os dtomos de oxigénio 1 e 2 apresentam cargas de Mulliken
iguais a -0.67171 e -0.68626, respectivamente, e o nitrogénio aparece com carga de -
0.51731. O carbono 4 possui carga de 0.5425, resultando numa carga liquida de -0.8155
para o grupo COO~. A carga de Mulliken do grupo NHj é igual a 0.77436. A carga
APT calculada para os principais atomos foi: -1.29376 (O'), -1.29308 (0?), -0.4192 (N3),
1.61903 (C*). Para o grupo COO~, -0.9676 e para o grupo NHy, 0.6286. Fica nitido,
em comparacao com as conformacoes I e II, que a conformagao zwitterion possui carga
positiva em volta do grupo NHZ (como esperado) e uma carga negativa em torno do grupo
COO™, sendo que a carga negativa em um desses grupos ¢ maior em modulo que a carga

positiva do outro grupo em todos os casos.
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Carga de
. Carga de : Mulliken
Atolmo Mulliken Ataino (hidrogénios
incorporados)
1 -0.805450 1 -0.805450
0] 0
02 -0.810907 02 -0.810907
N3 -0.562716 N3 0.736322
gt 0.667400 ct 0.667400
3 -0.075640 ¢’ 0.136258
c® -0.356353 co 0.076377
7 0.444977
H
HE 0.415828
H? 0.438233
H10 0.140738
H1! 0.154572
12 0.137419
H13 0.211898
Carga APT
Atomo Carga APT Atomo (hidrogénios
incorporados)
o -1.452508 o -1.452508
0* -1.448632 ol -1.448632
N3 -0.498345 N3 0.577673
ct 1.900359 ct 1.900359
cd 0.350967 c? 0.390503
ct 0.090420 ct 0.090525
7 0.362673
H
HE 0.350616
H® 0.362728
H10 -0.010267
H1! 0.027262
H12 -0.016890
H13 0.039537

Tabela 58: Anilises populacionais de Mulliken e APT. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Carga de
: Carga de : Mulliken
Atomo Mulliken Ataino (hidrogénios
incorporados)
1 -1.071753 1 -1.071753
0 0
0? -1.124029 0? -1.124029
N3 -0.734641 N3 0.214913
ct 1.699137 ct 1.699137
5 0.078843 ¢’ 0.132206
ct -0.006453 co 0.149527
¥ 0.344966
H
He 0.284691
H? 0.319897
K10 0.059063
R 0.053667
{12 0.043249
H'3 0.053362
Carga APT
Atomo Carga APT Atomo (hidrogénios
incorporados)
o' -1.435831 o -1.435831
o? -1.441804 0? -1.441804
N -0.438236 N3 0.598349
ct 1.857309 c? 1.857309
c? 0.364116 c? 0.395131
ct 0.082197 ct 0.074023
7 0.348708
H
H8 0.338606
H? 0.349271
H10 -0.012815
K 0.023614
ne -0.018973
H3 0.031015

Tabela 59: Analises populacionais de Mulliken e APT. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF') de camada fechada (spin igual a zero) na base 6-3114++G(3d,3p).
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Carga de
. Carga de : Mulliken
Atolmo Mulliken Ataino (hidrogénios
incorporados)
1 -0.671710 1 -0.671710
0] 0
02 -0.686257 02 -0.686257
N3 -0.517310 N3 0.774357
gt 0.542502 ct 0.542502
3 -0.234369 ¢’ 0.008285
c® -0.525781 5 0.032824
7 0.432398
H
HE 0.411794
H? 0.447475
H10 0.190926
H1! 0.186051
12 0.181628
H13 0.242654
Carga APT
Atomo Carga APT Atomo (hidrogénios
incorporados)
o -1.293756 o -1.293756
o? -1.293079 0? -1.293079
N3 -0.419185 N3 0.628610
ct 1.619026 ct 1.619026
cd 0.303304 c? 0.347920
ct 0.023670 ct 0.068324
7 0.384881
H
HE 0.326163
H® 0.336751
H10 0.009096
H1! 0.041129
H12 -0.005571
H13 0.044616

Tabela 60: Anilises populacionais de Mulliken e APT. Resultados obtidos empregando o método
do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p).



160 2 Calculos ab initio para a molécula de L-alanina

2.4.3.2 Modos normais de vibracao

Para os zwitterions, as fortes interacoes intermoleculares presentes nas fases crista-
lina e solvatada sao responsaveis por sua estabilizacao. As estruturas moleculares zwit-
terionicas caracterizam-se por possuirem um espectro vibracional modificado de um modo
que depende do solvente. Logo, uma caracterizagao apropriada dessas estruturas mole-
culares e de seus espectros infravermelhos em célculos ab initio deve levar em conta os
efeitos da imersao em diversos meios dielétricos. Tal andlise foi feita em varios estudos
sobre zwitterions em solugoes aquosas [25, 170, 171].H& vérios estudos da interacao da
L-alanina com uma, duas, trés ou quatro moléculas de dgua [25, 172, 173, 174]. Em geral,
tal aproximagcao exige um custo computacional muito mais elevado que as aproximacoes

de meio continuo.

Cao e Fischer [175] obtiveram o espectro infravermelho de zwitterions da L-alanina
em uma matriz de KBr. A estrutura molecular e o espectro vibracional da L-alanina
zwitterionica foram determinados de modo autoconsistente usando célculos ab initio e o

modelo de Onsager.

As tabelas 61, 62 e 63 apresentam os modos normais de vibracao e atribuicoes para
a conformacao zwitterion. Os resultados do célculo RHF simples mostram os modos 1,
2 e 3 nas freqiiéncias (corrigidas) de 42.3867 ecm~1, 181.7282 cm™1 e 219.9618 cm™1,
respectivamente, com as seguintes atribuicoes: modo 1 - torcao do grupo COO; modo
2 - tunsting do grupo NHs; modo 3 - twisting do grupo metila. J& os modos de mais
alta energia, 31, 32 e 33, ocorrem nas freqiiéncias (também corrigidas) 3170.7227 cm™1,
3241.7329 cm™1 e 3244.0068 cm~ 1. As atribuigoes sao: stretching simétrico das ligagoes
do grupo NH3 (modo 31), stretching assimétrico das ligagoes do grupo NH3 (modos 32 e
33). No célculo RHF refinado as freqiiéncias corrigidas (em cm™ 1) associadas aos modos 1,
2, 3, 31, 32 e 33 sao, respectivamente, 65.25405, 176.0533, 218.3214, 3167.5503, 3226.854
e 3229.1545. Em comparagao, os resultados experimentais (em cm™1) apresentados na

referéncia [23] sdo, na mesma ordem, 184, 219, 283, 3020, 3060 e 3080.

As atribuicoes dos modos de energia mais baixa e mais alta no calculo DFT coinci-
dem com os valores calculados pelo método de Hartree-Fock. A freqiiéncia do modo 1
é de 59.7591 cm~1. Para os modos 2 e 3 as freqiiéncias sao, respectivamente, 116.7319
cm~1 e 229.1123 cm~1. Para o modo 31, obteve-se uma freqiiéncia de 3274.4144 cm™1.
O modo 32 corresponde a freqiiéncia de 3338.0776 cm™1 e o modo 33, em 3355.5891
cm~1. Em comparacdo, os resultados da referéncia [175] sd@o: modo 31 - freqiiéncias
de 3201 em~1 (HF/6-311++G(d,p)), 3141 ecm~1 (DFT/6-311++G(d,p) B3LYP) e 3143
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cm~ 1 (experimental); modo 32 - freqiiéncias (em cm™1) de 3284 (HF/6-311++G(d,p)),
3317 (DFT/6-311++G(d,p) B3LYP), 3249 (experimental); modo 33 - freqiiéncias (em
cm™ 1) de 3312 (HF/6-3114++G(d,p)), 3352 (DFT/6-311++G(d,p) BSLYP) e 3314 (expe-
rimental). As atribuigdes calculadas teoricamente [175] coincidem com as apresentadas

no presente trabalho.



162 2 Calculos ab initio para a molécula de L-alanina

NG d Freqgiiéncia Breg, NG d Freqgiiéncia e,
umero do q ! corrigida Atribuicso Smeroeo q P corrigida Atribuicao
modo (cm™) 5 modo (cm™) >
(cm™) (cm™’)
1 47.0963 2.38667 €00 18 2.3015 343.07135 $asCCC; 5, CCO;
.096 42.3866 tco 1492. 1343.071 5£.C00; WCCH
2 201.9202 181.7281 twNH 19 1536.7774 1383.09966 WCRy; st CCO;
W
01.920 81.72818 3 536. 383.0996 $t,00; st .CCC
3 244.4020 19.9618 twCH 20 1570.4587 413.41283 WCHy; st,CCG
.40 219.96 5 4 1413.41 5£,C00; whH,
4 274.5990 247.1391 sCCC 21 1608.9919 1448.09271 WNH;; stCN
5 335.9734 302.37606 WCCN; sCCO 22 1616.9693 1455.27237 WCH,; twCH,
6 404.0684 363.66156 SCCN 23 1633.3940 1470.0546 WNH,; stCN
tCC; sCCO;
7 550.9675 49587075 | T 24 1729.1379 1556.22411 | WNH,; st,.C00
3
WCCN; stCC; twNH,; WNH,;
8 673.7970 606.4173 e 25 1743.4845 1569.13605 .00
sCCC; stCC;
! 4 wNH;; st,,CO0
9 848.4032 763.56288 WC00; rCCH 26 1766.4503 1589.80527 33 Stas
t,CCC; st CCN;
10 893.0561 803.75049 |° 0 ° 27 3184.6303 2866.16727 | st,CHy; stCH
wC00
t_.CCC; stCN;
11 985.0645 886.55805 | - scocS) 28 3209.7435 2888.76915 StCH; st,CHy
st,CCC; WNH;;
12 1034.4068 930.96612 Pl 29 3251,4720 2926.3248 st,,CH,; stCH
3
st,;CCN; WNH3;
13 1048.8590 943.9731 - 30 3297.6550 2967.8895 st,,CH;; stCH
3
st,CCN; sCCH;
14 1195.3898 1075.85082 31 3523.0252 3170.72268 St,NH;
wNH3; wCH;
st,.CCN; WNH;;
15 1208.2613 1087.43517 B 32 3601.9255 3241.73295 st,NH;
3
st,CCN; WNH;;
16 1299.0796 1169.17164 il 33 3604.4520 3244.0068 st NH;
3
st ,CCO; stCC;
17 1437.5508 1293.79572 | st,CO0; WCCN;
sCCH

Tabela 61: Freqiiéncias dos modos normais de vibragao (calculadas e corrigidas) e respectivas
atribuicoes. A notacdo para os varios movimentos de dtomos nos modos normais é definida do
seguinte modo: t - torcao, tw - twisting, s - scissors, w - wagging, r - rocking; st - stretching;
indices: s - simétrico, as - assimétrico. Resultados obtidos empregando o método de Hartree-Fock
restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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NU d Freqiiéncia bren, NG d Freqgiiéncia Freq.
umero do q ! corrigida Atribuicso SIEroico q P corrigida Atribuicao
modo (cm™) 1 modo (cm™) >
(cm) (cm’)
1 72.5045 5.25405 Co0 18 3.543 344.18 asCCC; 51,CCO;
.504 65.254 tCco 1493.5434 1344.18906 5t.C00; wCCH
2 195.614 176.05332 twNH 19 1531.6414 1378.47726 WCRy; st CCO;
W
5.6148 .0533 3 531. 378. 5,C00; st,.CCC
3 242.5793 218.32137 twCH 20 1564.8980 408.4082 WCHy; st.CCC;
) 3. s 64. 1408. 5t,C00; whH,
4 272.4019 245.16171 sCCC 21 1608.5774 1447.71966 WNH;; stCN
5 330.8341 297.75069 WCCN; sCCO 72 1616.2867 1454.65803 WCH,; twCH,
6 397.8528 358.06752 SCCN 23 1630.0442 1467.03978 WNH,; stCN
tCC; sCCO;
7 548.3443 493.50987 | 24 1732.9803 1559.68227 | WNH; st,,COO
3
WCCN; stCC; twNH,; WNH,;
8 676.9530 609.2577 o 25 1743.4395 1569.09555 St..C00
sCCC; stCC;
) ) NH,; st,.COO
9 856.4647 770.81823 WC00; rCCH 26 1761.5871 1585.42839 | WNHg; st
t.CCC; st CCN;
10 890.5641 go1.50769 |°c 0 27 3158.1569 2842.34121 st,CH;; stCH
wC00
t_.CCC; stCN;
11 980.7260 882.6534 Stes scocS) 28 3186.0519 2867.44671 StCH; st CHy
st CCC; WNH;;
12 1032.1876 928.96884 Pl 29 3219.1547 2897.23923 st,,CH,; stCH
3
st,CCN; WNH;;
13 1045.6556 941.09004 e 30 3266.4058 2939.76522 st CHy; stCH
3
st,,CCN; sCCH;
14 1193,9569 1074.56121 31 3519.5003 3167.55027 st.;NH;
WNH3; wCH;
st CCN; WNH;;
15 1207.9405 1087.14645 e 32 3585.3933 3226.85397 st,NH;
3
st,CCN; WNH;;
16 1298.2802 1168.45218 R 33 3587.9495 3229.15455 st NH;
3
st ,CCO; stCC;
17 1438.3926 1294.55334 | st.,CO0; wCCN;
sCCH

Tabela 62: Freqiiéncias dos modos normais de vibragao (calculadas e corrigidas) e atribuigdes. A
notacao para os varios movimentos de atomos nos modos normais é definida do seguinte modo: t
- torgao, tw - twisting, s - scissors, w - wagging, r - rocking; st - stretching; indices: s - simétrico,
as - assimétrico. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-3114++4G(3d,3p).
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Numero do Fregiiéncia L Numero do Freqiiéncia L
A Atribuicao A Atribuicao
modo (cm™) modo (cm™)
59.759 coo 8 364.8839 SEPAEL Sty
1 2 . ! B 5t,C00; WCCH
2 116.7319 twNH 19 1386.6951 L0
y ’ ’ st,C00; st CCC
3 229.1123 twCH 20 419.347 WCHs; st,CCC
i 2 TR st,CO0; wNH,
wNH;; stCN;
4 249.5876 sCCC 21 1470.0239 B
stCO
5 310.4811 wCCN; sCCO 22 1491.5738 twCH,; wCH,
6 367.9928 sCCN 23 1495.0299 wCH,; stCC
tCC; sCCO;
s 506.8938 i e 24 1578.8351 | WNH,; st,.COO
wCH,
wCCN; stCC; twNH,; wNH,;
8 633.5872 B 25 1625.7902 St..C00
sCCC; stCC;
’ ’ NH;; st,.COO
9 764.6855 WCOO: recH 26 1633.2930 WNH,; st
t,CCC; st,CCN;
10 grE5a | 27 3039.4170 st,CHs; stCH
sCO0
st..CCC; stCN;
11 887.8196 = 28 3054.9895 stCH; st.CH,
sCO0
st,.CCC; WNH,;
12 959.2320 29 3109.0130 st,.CH,; stCH
wCH;
st,.CCN; wNH;;
13 971.7227 30 3141.5750 st,sCH3; stCH
wCH;
wCCN; stCC;
14 1095.4900 sCCH; wNH;; 31 3274.4144 st,NH;
wCH;
st CCN; wNH;;
15 1099.1679 32 3338.0776 st NH,
wCH;
st,CCN; wNH;;
16 1197.0266 WCH, 33 3355.5891 st,.NH,
i7 1309.1986 st,CCO; st,CO0;
’ wCCN; sCCH

Tabela 63: Freqiiéncias dos modos normais de vibragao e atribuigdes. A notagao para os varios
movimentos de atomos nos modos normais ¢é definida do seguinte modo: t - torcao, tw - twisting,
S - scissors, w - wagging, r - rocking; st - stretching; indices: s - simétrico, as - assimétrico.
Resultados obtidos empregando o método do funcional da densidade (DFT) de camada fechada
(spin igual a zero) na base 6-31++G(d,p).
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2.4.3.3 Espectros Raman, IR, depolarizacées Raman e VCD

A molécula de L-alanina na conformacao zwitterion nao é estavel no vacuo. Neste
meio ocorre a transferéncia de um préton do grupo amonia para o grupo carboxilato.
A solvatagao desses grupos em um meio aquoso, no entanto, é capaz de estabilizar a

estrutura zwitterionica.

Os aminoacidos possuem os grupos amonia e carboxilato carregados positiva e ne-
gativamente, nesta ordem. Barron et al. [176] e Yu et al. [171] fizeram um modelo da
espécie zwitterion da L-alanina sem considerar explicitamente as moléculas de agua no
nivel de calculo RHF. Também foi observado que a forma zwitterion da L-alanina é estavel
quando se usa o funcional B3LYP e a base 6-31G(d). Yu et al. [171] ndo modelaram acu-
radamente as interagoes especificas devidas a formagao de ligagoes de hidrogénio entre a
primeira camada de solvatacao e o soluto, mas foram capazes de tratar os efeitos oriundos

da agua em bulk usando o tratamento continuo de Onsager.

A Fig. 29 apresenta os espectros Raman e infravermelho da L-alanina zwitterion.
No célculo RHF simples, o pico Raman mais intenso é associado ao modo 27 (322.873
A4/u.m.a., atribuicao: stretching simétrico do grupo metila, stretching do hidrogeénio
ligado ao carbono ), seguido pelo pico do modo 28 (186.971 A*/u.m.a., atribuicdo:
stretching da ligagao entre o carbono « e o atomo de hidrogénio, stretching assimétrico do
grupo metila) e pelo pico do modo 31 (168.274 A* /u.m.a., atribuicdo: stretching simétrico
do grupo amonia). Os modos de vibragdo que precedem o modo 27 apresentam picos
Raman de pequena intensidade. J& o espectro infravermelho apresenta pico mais intenso
no modo 26 (1108.6 km/mol, atribuicao: wagging do grupo amonia, stretching assimétrico
do grupo O=C-0), seguido pelo modo 25 (260.207 km/mol, atribuicao: twisting de dois
hidrogénios do grupo amonia, wagging de dois hidrogénios do grupo amonia, stretching
assimétrico das ligagoes O=C-0) e pelo modo 33 (244.51 km/mol, stretching assimétrico
do grupo amonia). Os modos entre o 26 e o 31 apresentam picos muito pequenos. No
célculo RHF refinado o pico Raman méximo também coincide com o modo 27 (intensidade
347.753 A4/u.m.a., um tanto maior que o pico do cédlculo simples), seguido pelo pico
do modo 31 (intensidade 189.883 A*/u.m.a.) e pelo do modo 28 (intensidade 180.873
At /u.m.a.). No espectro infravermelho, trés picos bem préximos, 24, 25 e 26, apresentam
intensidades semelhantes (em km/mol): 466.996, 487.752 e 483.707. Neste caso o pico
mais intenso é o do modo 25, seguido pelo modo 26 (o contrario, portanto, do que acontece
no calculo RHF simples, onde o pico do modo 26 é mais intenso que o do modo 25) e

depois pelo modo 24 (atribui¢ao: wagging de dois hidrogénios do grupo amonia, stretching
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assimétrico das ligagoes O=C-0).

A depolarizacao Raman no cdlculo RHF simples para o caso da radiacao incidente
plano-polarizada exibe um pico méximo no modo 33 (0.7483), seguido do modo 32 (0.7421,
atribuigao: stretching assimétrico do grupo amonia). O mesmo padrao se repete para a
radiagdo ndo-polarizada, com intensidades 0.856 (modo 33) e 0.852 (modo 32). No calculo
RHF refinado, estes dois picos mais intensos nao mudam, mas diminuem um pouco de

intensidade.

Ja o espectro VCD no célculo RHF simples tem um pico maximo para o modo 25
(150.504 10~%* esu? cm?) e minimo para o modo 24 (-171.042 10~** esu? cm?), com auséncia
de picos significativos a partir do modo 26. No calculo RHF refinado, o maximo no modo
25 possui intensidade de 293.634 10~ esu? cm? e o minimo, no modo 24, -334.009 10~

esu? cm?.

Os resultados do calculo DFT para o espectro Raman revelam um sinal mais intenso
no modo 31 (intensidade 344.815 A*/u.m.a., atribuicdo idéntica & dos célculos RHF),
seguido pelo pico 32 (intensidade 198.265 A*/u.m.a., mesma atribuicao do caso RHF) e
pelo pico 33 (intensidade 136.31 A*/u.m.a., mesma atribuicdo encontrada no célculo de
Hartree-Fock). A intensidade méxima no infravermelho ocorre para o modo 26 (intensi-
dade 410.467 km/mol, atribuicao: wagging do grupo amonia, stretching assimétrico das
ligagoes O=C-0), seguido do modo 21 (intensidade 222.296 km/mol, atribuicao: wagging
do grupo amonia, stretching da ligagdo C-N, stretching da ligagao C-O) e do modo 18
(intensidade 121.706 km/mol, atribuicao: stretching assimétrico das ligagoes C-C-C, C—
C-0, stretching simétrico das ligagoes O=C-0, wagging das ligagoes C—C-H, sendo o H

do grupo metila).

A depolarizacao mais intensa para radiagao incidente plano-polarizada ocorre para
o modo 13 (atribuicdo: stretching assimétrico das ligagdes C—C—N, wagging do grupo
amonia, wagging do grupo metila), com intensidade igual a 0.7344. Para o modo 12
(atribuicao: stretching assimétrico das ligagoes C-C—C, wagging do grupo amoénia, wag-
ging do grupo metila), a intensidade cai um pouco, ficando igual a 0.6541. No caso
da radiacao incidente nao-polarizada, os maximos principais sao os mesmos da radiagao
plano-polarizada, com intensidades de 0.8469 (modo 13) e 0.7909 (modo 12). O pico
méximo do espectro VCD ocorre, no calculo DFT, para o modo 1 (intensidade de 122.243
10~* esu? cm?, atribuicao: tor¢ao do grupo O=C-0), e o minimo para o modo 24 (in-
tensidade de -153.249 10~** esu? cm?, atribuicao: wagging de dois hidrogénios do grupo

amonia, stretching assimétrico das ligagbes O=C-0), com auséncia de picos relevantes
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entre os modos 24 e 33.

Os insets da Fig. 32 apresentam resultados experimentais obtidos por Jalkanen et al.
[23] para os espectros Raman e VCD da L-alanina zwitterion, os quais sdo comparados
diretamente com os resultados aqui obtidos usando o funcional B3LYP. De um modo geral,
h&a acordo entre as intensidades dos picos calculados e as intensidades medidas. No caso
do espectro Raman, pode-se notar que as freqiiéncias calculadas sao um pouco maiores

que as obtidas dos dados experimentais.
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Figura 29: Espectros Raman e infravermelho (IR) para a L-alanina na conformacao zwitterion.
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2.4.3.4 Niveis de energia e orbitais moleculares

As tabelas de 64 a 66 apresentam os niveis de energia dos orbitais moleculares da
conformacao zwitterion. No cdlculo RHF simples, a energia dos orbitais HOMO e LUMO
ficou em -0.41509 H e 0.04506 H, respectivamente, com um gap de 0.46015 H ou 12.52 eV.
No caso do célculo RHF refinado, a energia do orbital HOMO ¢é de -0.41347 H e a energia
do orbital LUMO ¢ igual a 0.04247 H, com um gap de 0.45594 H ou 12.41 eV. No calculo
DFT, as energias obtidas foram -0.25847 H (orbital HOMO) e -0.01435 (orbital LUMO),
com um gap de 0.24412 H ou 6.64 eV. Em comparacao com as conformagoes I e II, o gap
da conformacao zwitterion solvatada em agua é maior no calculo RHF e no calculo DFT,

que incorpora efeitos de correlacao eletronica.

As isosuperficies de maxima amplitude para os orbitais HOMO e LUMO (Figs. 33,
34 e 35) revelam, para o orbital HOMO, uma distribuigao espalhada por toda a molécula.
Ocorre concentragao de carga positiva em volta do grupo amonia e concentracao de carga
negativa em volta do grupo COO (ver Fig. 34), ao passo que o orbital LUMO retine seus
elétrons do lado do grupo amonia (o oposto do que acontece nas conformagdes I e 11, onde
a nuvem eletronica excitada estd mais préxima do grupo carboxila). A Fig. 36 ilustra de

diversos angulos isosuperficies de densidade eletronica.
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Nivel Energia (H) Nivel Energia (H) Nivel Energia (H)
1 -20.52343 26 0.06141 51 0.35150
2 -20.51885 27 0.06423 52 0.35801
3 -15.68773 28 0.07412 53 0.37128
4 -11.35263 29 0.09212 54 0.37594
5 -11.29655 30 0.09741 55 0.38129
6 -11.23741 31 0.09982 56 0.40102
7 -1.40699 32 0.10549 57 0.40806
8 -1.31535 33 0.12784 58 0.41317
9 -1.29447 34 0.14968 59 0.41781
10 -1.05120 35 0.15768 60 0.44399
11 -0.90208 36 0.16447 61 0.47170
12 -0.78398 37 0.17550 62 0.50172
13 -0.75901 38 0.18367 63 0.50628
14 -0.72593 39 0.20035 64 0.52291
15 -0.67404 40 0.21020 65 0.54186
16 -0.63955 41 0.22179 66 0.60910
17 -0.61344 42 0.22763 67 0.71502
18 -0.59521 43 0.23484 68 0.75869
19 -0.55768 44 0.23743 69 0.88123
20 -0.55278 45 0.26419 70 0.88738
21 -0.52275 46 0.27666 71 0.91772
22 -0.42981 47 0.28509 72 0.97111
23 -0.41586 48 0.30247 73 0.97569
24 (HOMO) -0.41509 49 0.33389 74 0.99511
25 (LUMO) 0.04506 50 0.34024 75 1.01495
E(LUMO) - E(HOMO) = 0.46015 H = 12.521317 eV

Tabela 64: Energias dos orbitais moleculares da L-Alanina zwitterion. Estados ocupados em
verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Nivel Energia (H) Nivel Energia (H) Nivel Energia (H)
1 -20.50558 26 0.05832 51 0.30386
2 -20.50104 27 0.06114 52 0.32031
3 -15.67704 28 0.07175 53 0.32532
4 -11.34039 29 0.08963 54 0.33324
5 -11.29070 30 0.09412 55 0.34565
6 -11.23153 31 0.09648 56 0.34802
7 -1.40624 32 0.10157 57 0.35365
8 -1.31381 33 0.12289 58 0.37044
9 -1.29335 34 0.14459 59 0.38157
10 -1.04854 35 0.15079 60 0.38339
11 -0.89935 36 0.15719 61 0.39404
12 -0.78325 37 0.16820 62 0.39458
13 -0.75903 38 0.17099 63 0.41756
14 -0.72480 39 0.17906 64 0.43103
15 -0.67360 40 0.18899 65 0.44704
16 -0.63953 41 0.19722 66 0.46088
17 -0.61446 42 0.19986 67 0.47269
18 -0.59562 43 0.21092 68 0.48521
19 -0.55756 44 0.22523 69 0.50991
20 -0.55219 45 0.23791 70 0.51689
21 -0.52212 46 0.25301 71 0.53762
22 -0.42907 47 0.25752 72 0.55187
23 -0.41487 48 0.27488 73 0.58164
24 (HOMO) -0.41347 49 0.29545 74 0.58833
25 (LUMO) 0.04247 50 0.29959 75 0.60731
E(LUMO) - E(HOMO) = 0.45594 H = 12.406757 eV

Tabela 65: Energias dos orbitais moleculares da L-Alanina zwitterion. FEstados ocupados em
verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF') de camada fechada (spin igual a zero) na base 6-3114++G(3d,3p).
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Nivel Energia (H) Nivel Energia (H) Nivel Energia (H)
1 -19.12053 26 0.00966 51 0.22285
2 -19.11647 27 0.01653 52 0.23232
3 -14.45361 28 0.02020 53 0.23860
4 -10.29658 29 0.03043 54 0.25092
5 -10.25660 30 0.04538 55 0.25563
6 -10.20119 31 0.05403 56 0.26753
7 -1.04910 32 0.05508 57 0.28303
8 -0.99563 33 0.05931 58 0.29447
9 -0.95841 34 0.07009 59 0.29839
10 -0.78293 35 0.08886 60 0.30837
11 -0.66542 36 0.09472 61 0.31538
12 -0.58655 37 0.09752 62 0.33568
13 -0.57062 38 0.11044 63 0.35702
14 -0.53150 39 0.11729 64 0.38324
15 -0.48941 40 0.13019 65 0.40397
16 -0.45504 41 0.13662 66 0.44071
17 -0.43032 42 0.14303 67 0.47725
18 -0.42117 43 0.14800 68 0.52236
19 -0.40330 44 0.15058 69 0.64947
20 -0.39269 45 0.16066 70 0.66213
21 -0.37298 46 0.17315 71 0.69828
22 -0.27406 47 0.18242 72 0.72991
23 -0.26534 48 0.18980 73 0.74366
24 (HOMO) -0.25847 49 0.19574 74 0.75205
25 (LUMO) -0.01435 50 0.20764 75 0.77236
E(LUMO) - E(HOMO) = 0.24412 H = 6.642842 eV

Tabela 66: Energias dos orbitais moleculares da L-Alanina zwitterion. Estados ocupados em
verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando o método
do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Figura 33: Isosuperficies de méxima amplitude para os orbitais HOMO (todos os que ficam a
esquerda) e LUMO (& direita) da molécula de L-Alanina na conformacao zwitterion.
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Figura 34: Orbital HOMO da L-alanina zwitterion sob outra perspectiva. Na parte superior sao
indicadas uma isosuperficie simples (lado esquerdo) e a superposigao de vérias isosuperficies (lado
direito). Na parte inferior, a esquerda, a densidade eletronica é mapeada no orbital (quanto mais
azul, maior a densidade), enquanto do lado direito é mapeado o potencial eletrostético (quanto
mais azul, mais positivo o potencial, quanto mais vermelho, mais negativo). Resultados obtidos
empregando o método RHF de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Figura 35: Orbital LUMO da L-alanina zwitterion sob outra perspectiva. Na parte superior sao
indicadas uma isosuperficie simples (lado esquerdo) e a superposicao de varias isosuperficies (lado
direito). Na parte inferior, & esquerda, a densidade eletronica é mapeada no orbital (quanto mais
azul, maior a densidade), enquanto do lado direito é mapeado o potencial eletrostatico (quanto
mais azul, mais positivo o potencial, quanto mais vermelho, mais negativo). Resultados obtidos
empregando o método RHF de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Figura 36: Diferentes perspectivas para a densidade eletronica da molécula de L-alanina zwit-
terfon. Resultados obtidos empregando o método RHF de camada fechada (spin igual a zero)
na base 6-3114++G(3d,3p).
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2.5 Sumario do capitulo

No presente capitulo foram apresentados resultados de calculos ab initio para otimi-
zacao de geometria e determinacao de propriedades vibracionais e eletronicas da molécula
de L-alanina nas conformacgoes de mais baixa energia (I e II), e zwitterfon. Um sumédrio

¢é apresentado a seguir.

2.5.1 Conformacao |

Para a conformacio I otimizada, o comprimento da ligacdo C-N é igual a 1.4425 A
na aproximacio RHF/6-31G(d,p) e 1.4548 A na aproximacgao MP2/6-31G(d,p). No caso
desta ligacao, a inclusao de efeitos de correlacao eletronica aumenta a distancia entre o
carbono e o nitrogénio em mais ou menos 0.85%. O resultado obtido na presente tese
é de 1.4419 A na aproximacdo RHF/6-31++C(d,p) e 1.4552 A na aproximacio DFT/6-
31++G(d,p), um aumento de 0.91%. Tais dimensoes sao menores que o valor experimental
de 1.471 A [153].

As distancias entre atomos ligados calculadas usando DFT sao, via de regra, maiores
que as obtidas de acordo com o método RHF, o que sugere o alongamento das ligagoes
como efeito da correlacao eletronica, sendo esta mais intensa nas ligagoes entre o carbono
e os dois atomos de oxigénio. O refinamento da base tende, nos calculos RHF, a reduzir
ainda mais os comprimentos de ligagdo (a excecdo é a ligagao C-N, que aumenta um
pouco). O mesmo ocorre com os angulos, exceto aqueles que envolvem o dtomo de ni-
trogénio, os quais tendem a aumentar com o emprego de uma base maior. Os angulos de
diedro nao apresentam uma tendéncia nitida, ora aumentando, ora diminuindo conforme

o nivel de célculo.

O céalculo DFT (base 6-314++G(d,p), que inclui efeitos de correlagao, forneceu uma
energia total para a molécula no valor de -323.776 H, dos quais 248.066 H provém da
interacao nucleo-ntcleo, -1252.489 H da energia de interagao elétron-nucleo e 320.764 H
da energia cinética dos elétrons. A energia do movimento vibracional para temperatura
zero ¢ de 283245.4 J/mol (2.94 eV ou 0.108 H). Em comparacao, a energia calculada por
Blanco et al. [164] foi de -323.069 H. A diferenga entre os métodos DFT e RHF usando a
mesma base, atribuivel principalmente a correlagao eletronica, é de 1.878 H ou 51.1 eV.
A diferenca entre o calculo DFT e o célculo MP4 é de 0.707 H ou 19.24 €V.

As constantes rotacionais calculadas para a L-alanina na aproximacao de RHF simples
sdo iguais a 5.14955 GHz (A), 3.13075 GHz (B) e 2.27932 GHz (C). No célculo RHF
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refinado, os resultados obtidos foram 5.17284 GHz (A), 3.12411 GHz (B) e 2.29867 GHz
(C). Por fim, os resultados do célculo DFT foram 5.03749 GHz (A), 3.02613 GHz (B) e
2.25712 GHz (C). Os resultados da referéncia [164] sao 5.074 GHz (A), 3.051 GHz (B)
e 2.298 GHz (C). Dados experimentais [9] registram A = 5.0661 GHz, B = 3.1009 GHz
e C' = 2.264 GHz. Ja4 o momento de dipolo da molécula é dominado pela componente y
e o modulo p é igual a 1.4698 D no calculo RHF simples e 1.3455 D no calculo DFT, o
que ¢é significativamente menor que o valor esperimental de 1.8 D [9], mas bem préximo

do valor calculado teoricamente (1.41 D) na referéncia [164].

As propriedades termodinamicas para uma temperatura de 298.15 K e pressao de 1
atm mostram valores maiores para as energias na aproximacao RHF, enquanto a apro-
ximagao DF'T produz valores maiores para o calor especifico a volume constante e para a

entropia.

Na conformacao I da L-alanina os oxigénios possuem uma afinidade maior por elétrons,
retendo mais carga negativa, sendo seguidos pelo nitrogénio, que atrai mais fortemente
os elétrons dos trés atomos de hidrogénio que o circundam, o que respeita a ordem das

eletronegatividades da tabela periédica.

Comparando as atribuicoes calculadas usando os métodos RHF e DF'T, observam-se
algumas diferencas. Por exemplo, as atribui¢oes dos modos 2 e 3 aparecem trocadas, sendo
o modo 2 um twisting do CH3 de acordo com o calculo RHF e um twisting do NHs no
célculo DFT (alguns autores denotam a atribuigao como sendo uma torg¢ao dos grupos, por
exemplo [165]). Resultados obtidos usando teoria do funcional da densidade dependente
do tempo [132] atribuem uma torgdo do CHjz para o segundo modo, o que coincide com
o célculo HF da referéncia [165]. E necessario fazer a correcio das freqgiiéncias calculadas
através da aproximacao de HF. Empregou-se aqui o fator 0.9, recomendado na referéncia
[166]. As freqiiéncias a partir de 300 cm™! apresentam atribuigoes de stretching. O modo
mais energético corresponde ao stretching da ligagao O-H no grupo carboxila, precedido
por modos nos quais aparecem stretchings simétricos ou assimétricos dos grupos amina e
metila. Os valores de freqiiéncia calculados segundo a aproximacao DFT sao, em geral,

maiores que os valores calculados na aproximacao RHF corrigida.

No célculo DFT, o espectro Raman apresenta maximo no modo 33 (3747.2909 cm™,
intensidade de 169.543 A4/u.m.a.), correspondendo ao stretching da ligagao O-H. O
segundo pico mais intenso é o do modo 27 (3047.2280 cm™!, intensidade de 161.414
A*/um.a.) e o terceiro pico associa-se ao modo 31 (3503.6800 cm~!, intensidade de

105.644 A*/um.a.). J& o espectro IR possui méximo no modo 26, com freqiiéncia de
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1811.3365 cm™! e intensidade de 308.185 km/mol. O segundo pico mais relevante do

I ¢ intensidade de

espectro IR corresponde ao modo 16, com freqiiéncia de 1135.1521 cm™
273.915 km/mol, e o terceiro pico é associado ao modo 12 (887.1113 cm™!, intensidade
de 153.226 km/mol). Picos menos intensos ocorrem para os modos 8 e 33. Dados expe-
rimentais [165] mostram picos significativos nos modos 33, 30, 26, 25, 21, 20, 18, 16, 14,

13, 12, 11, 10 e 8, que quase coincidem com os picos aqui calculados.

No calculo RHF simples, a depolarizagao nos casos plano-polarizado e nao-polarizado
¢ mais intensa para os modos 2, 3 e 24. No calculo RHF refinado, os modos 24, 2 e 3
também sao dominantes em ambos os tipos de radiacao incidente. O mesmo ocorre no
calculo DFT. No espectro VCD, comparando os trés diferentes métodos de calculo entre si,
observa-se que o cdlculo RHF com base 6-311++G(3d,3p) apresenta picos mais intensos,
enquanto o calculo RHF na base 6-314++G(d,p) exibe picos com intensidades da mesma

ordem das obtidas no cdlculo DFT usando esta mesma base.

O orbital HOMO calculado no nivel DF'T apresenta energia igual a -0.26010 H e o
orbital LUMO, energia igual a -0.01814, o que leva a um gap de 0.24196 H ou 6.584066
eV. O gap obtido segundo a teoria do funcional da densidade é quase metade do gap
previsto na aproximacao de Hartree-Fock, conseqiiéncia do efeito de correlagao eletronica

negligenciado na aproximacao HF.

O orbital HOMO se espalha praticamente por toda a molécula, com destaque para as
ligacoes de hidrogénio entre o grupo NHy e o oxigénio que nao esta ligado ao atomo de
hidrogénio do grupo carboxila. J& o orbital LUMO encontra-se espacialmente menos con-
centrado nas vizinhancas dos atomos que formam a molécula de L-alanina, formando uma
espécie de nuvem em volta do grupo carboxila. Os orbitais LUMO calculados pelo método
DFT e pelo método RHF refinado apresentam maior presenca nas vizinhancgas imediatas
da molécula. Pode-se notar que a amplitude de probabilidade do LUMO em volta do
grupo amina é pequena. Numa eventual transicaco HOMO-LUMO, um dos elétrons salta

de um lado da molécula (grupo amina) para o outro (grupo carboxila).

2.5.2 Conformacao Il

Nos célculos de otimizagao de geometria para a conformagao II, a ligacdo entre o
dtomo de carbono e o 4tomo de nitrogénio apresenta comprimentos de 1.459 A (célculo
RHF simples), 1.4592 A (célculo RHF refinado) e 1.4756 A (célculo DFT). Os valores
obtidos usando o método de Hartree-Fock aproximam-se bastante do valor experimental,

que é 1.459 A. O comprimento da ligacio entre os carbonos 5 e 6 é de 1.5267 A (RHF
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simples), 1.5249 A (RHF refinado) e 1.5341 A (DFT), com a medida experimental igual
a 1.5438 A. A distancia entre o carbono 5 e o hidrogénio 13 é de 1.087 A (RHF simples),
1.0848 A (RHF refinado), 1.0967 A (DFT) e 1.100 A (valor experimental). Observa-se
que a tendéncia de aumento no comprimento das ligacoes calculadas a partir da teoria
do funcional da densidade em comparacao com os calculos Hartree-Fock é respeitada
também no caso da conformacao II. A ligacao de hidrogénio entre o 4&tomo H” e o 4tomo
de nitrogénio possui comprimento igual a 2.032 A no calculo RHF simples, diminuindo
um pouco para 2.03 A no célculo RHF refinado e diminuindo mais ainda para 1.91 A no

célculo DFT. A medida experimental ¢ 1.96 A [164].

A energia final calculada para a conformacao foi de -321.8945 H (RHF simples), -
321.9853 H (RHF refinado) e -323.7765 (DFT), valores em geral um pouco maiores que
os obtidos para a conformagao I, de mais baixa energia: -321.8984 H (RHF simples),
-321.9889 H (RHF refinado) e -323.7765 H (DFT). A diferenga de energia entre a con-
formagao I e a conformagao II no cdlculo RHF utilizando a base 6-31++G(d,p) é de
0.00384 H ou aproximadamente 104.6 meV. A mesma diferenga usando o calculo DFT
passa a ser igual a -0.000013 H, ou -0.347 meV. Em comparacao, a referéncia [167], usando
teoria da perturbacao de segunda ordem (MP2), obteve energias de -323.103 H e -323.1028
H para as conformagoes I e II, respectivamente, com uma diferenca de 0.00022 H ou apro-
ximadamente 6 meV. J4 a referéncia [164], usando MP4, obteve energias de -323.06948 H
(I) e -323.06897 H (II), uma diferenca de 0.0005 H ou 13.76 meV. As duas conformagdes,
portanto, apresentam valores tao proximos de energia que pode-se esperar a coexisténcia
de ambas as geometrias na fase gasosa da L-alanina a temperatura ambiente. Um célculo
DFT refinado (base 6-311++G(3d,3p)), obteve energia de -323.8702 H para a conformagao
[ e-323.8699 H para a conformagao II, uma diferenca de 0.00034 H ou 9.24 meV entre as

duas geometrias da L-alanina.

O momento de dipolo da conformagao II é de 5.1 D [9], menor que os valores obtidos
teoricamente (5.682 D no cdlculo DFT). A componente x do vetor é dominante sobre
as demais, e aponta ao longo do eixo que liga os carbonos 4 e 5, tendo num extremo
da molécula o grupo carboxila e no outro os grupos amina e metila (contrastar com o
que ocorre na conformacao I, onde a componente dominante aponta ao longo do eixo v,
perpendicular & ligacdo entre os carbonos 4 e 5). Os momentos de quadrupolo apresen-
tam componentes xzx e yy com intensidades préximas. Ja as polarizabilidades calculadas
usando DFT sao mais intensas que as obtidas pelo método Hartree-Fock, com termos xx

e Yy quase iguais.
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As cargas de Mulliken de O! e O? calculadas usando DFT sido menores em médulo
que as obtidas no cdlculo RHF simples: -0.392111 e -0.450754. O mesmo ocorre com o ni-
trogénio, -0.622593. O carbono 6 aparece com excesso de elétrons (-0.559932) juntamente
com o carbono 5 (-0.176299). O carbono 4 possui carga positiva de 0.434640, seguido
de perto pelo hidrogénio 7 (do grupo O-H), com carga 0.409317. Incorporando as cargas
dos hidrogénios, o oxigénio 1 passa a ter um pouco de carga positiva (0.017206) e os
carbonos 5 e 6 ficam praticamente neutros, juntamente com o nitrogénio. Para as cargas
APT, os oxigénios possuem carga mais negativa (-0.773961 para O' e -0.751090 para O?%)
e 0 nitrogénio apresenta carga menos intensa (-0.517777). Os carbonos possuem carga
positiva, com destaque para o carbono 4 (1.073354) e os hidrogénios 10, 12 e 13 aparecem
negativamente carregados. Com os hidrogénios incorporados, a carga do oxigénio 1 passa
a ser -0.373885 e a carga do nitrogénio, -0.215180. Na conformacao I (cdlculo DFT) as
cargas APT dos oxigénios e do nitrogénio sao menores em médulo do que na conformacgao

2.

No calculo DFT, aparecem algumas diferencas nas atribui¢oes dos modos de vibragao
em comparacao com os dados resultantes da aplicacao do método de Hartree-Fock. O
modo 1 ocorre na freqiiéncia 57.1740 cm~! e o modo 2, para 234.2141 cm™!. Neste tltimo
caso, a atribuicao é um movimento em tesoura das ligacoes C—C—C, e nao um twisting dos
grupos metila e amina (HF). O modo 3 possui freqiiéncia igual a 253.4151 e consiste num
twisting do grupo metila e um rocking dos atomos C-O-0O. O modo 33 nao é o stretching
da ligacio O-H (HF), mas um stretching assimétrico do grupo amina, com freqiiéncia
de 3614.6483 cm™!, e o modo 32 é um stretching simétrico dos dtomos de hidrogénio
ligados ao nitrogénio com freqiiéncia igual a 3527.4481 cm™. O modo 31 ¢ atribuido ao
stretching da ligacao O—-H juntamente com o stretching simétrico do grupo amina, e sua
freqiiéncia é de 3455.3602 cm~!. As freqiiéncias mais alta e mais baixa no calculo DFT

sao, respectivamente, menor e maior que as correspondentes no calculo RHF.

De acordo com os célculos feitos empregando a teoria do funcional da densidade, o
pico Raman mais intenso da conformacao II corresponde ao modo 27 (intensidade 162.595
Al /u.m.a., atribuigao: stretching simétrico do grupo metila, stretching da ligagao entre o
carbono « e o hidrogénio 13), seguido pelo pico do modo 32 (intensidade 128.15 A*/u.m.a.,
atribuicao: stretching simétrico do grupo amina) e pelo pico do modo 28 (intensidade
78.137 A* Jum.a., atribuicao: stretching da ligacao entre o carbono a e o hidrogénio,
stretching simétrico do grupo metila). No espectro infravermelho, o pico mais intenso
¢ o do modo 26, com intensidade de 343.705 km/mol (atribuigdo idéntica ao modo cal-

culado usando o método de Hartree-Fock). O segundo lugar pertence ao modo 31, com
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intensidade 278.876 km/mol (atribuigao: stretching da ligacao O-H, stretching simétrico
do grupo amina), e o terceiro, ao modo 22, com intensidade 217.487 km/mol (atribuigao:
wagging do grupo metila, movimento em tesoura das ligagoes do grupo C—O—H e stretching
assimétrico das ligagoes C—C-0). O espectro de depolarizacao para radiagao incidente
plano-polarizada apresenta um maximo nitido no modo 24 (atribuigao: wagging envol-
vendo o grupo metila), enquanto o pico para radiagdo nao-polarizada ocorre para o modo
23 (atribuigao: wagging e twisting envolvendo ligagdes do grupo metila). Ja a intensidade
VCD méxima ocorre para o modo 8 (atribuigdo: movimento em tesoura das ligagoes C—
C-N, C-C=0 e wagging do grupo metila) e a minima para o modo 26 (em comparagao,

a conformacao I apresenta maximo e minimo nos modos 16 e 17, respectivamente).

No célculo DF'T, o orbital ocupado de mais alta energia possui energia igual a -0.26770
H, enquanto o orbital LUMO possui -0.02984 H, levando a um gap de 0.23786 H ou 6.47
eV. Mais uma vez, a correlacao eletronica contribui para diminuir a separacao entre os
niveis de energia dos orbitais fronteira. Em comparacao, para a conformacao I os gaps
calculados foram de 12.175 eV (RHF simples), 12.16 eV (RHF refinado) e 6.58 eV (DFT),
valores maiores que os equivalentes obtidos para a conformacao I. Pode-se notar que
o orbital HOMO, como ocorreu na conformacao I, acha-se difuso por toda a molécula.
Quanto a ligacao de hidrogénio entre o hidrogénio do grupo carboxila e o nitrogénio do
grupo amina, a contribuicao do orbital HOMO aparenta ser anti-ligante. J& o orbital
LUMO apresenta-se como uma nuvem um tanto afastada do corpo da molécula de L-
alanina, em volta do grupo amina, o que sugere que a excitacao da molécula produz uma

certa transferéncia de carga do grupo COOH para o grupo NH,.

2.5.3 Conformacao zwitterion

A terceira conformacao estudada foi a conformacao zwitterionica. Para o nivel RHF
simples, o comprimento calculado da ligacdo C-O é de 1.2342 A (valor experimental:
1.249 A [23]), e a ligacio C=0 possui comprimento igual a 1.2374 A (valor experimen-
tal: 1.266 A [23]). A distancia entre o carbono 5 e o dtomo de nitrogénio é de 1.4957
A (comparar com o valor medido de 1.495 A [23]) e a distancia entre os carbonos 5 e
6 6 de 1.5239 A (valor experimental: 1.534 A). No calculo RHF refinado essas mesmas
ligacoes passam a ter comprimentos de 1.2275 A (C-0), 1.2311 A (C=0), 1.4945 A (C-N)
e 1.5221 A (C—C), diminuindo um pouco. J& os angulos principais s@o, no célculo RHF
simples: 128.1367° (O=C-0), 108.943° (C*-C5-N), 116.6972° (C-C=0, valor experimen-
tal: 118.30° [23]) e 115.1652° (C—C-O, valor experimental: 116.00° [23]). No calculo RHF



186 2 Calculos ab initio para a molécula de L-alanina

refinado, esses valores mudam para: 128.3006° (O=C-0, ligeiro aumento em comparacio
com o calculo RHF simples), 108.954° (C*-C®-N, ligeiro aumento), 116.5417° (C-C=0,
ligeira diminuigao) e 115.1566° (C—C-0O, ligeiro aumento). Por fim, os angulos de diedro
O=C-C-N e O-C-C-N sao de -7.4834% e 172.8314° no calculo RHF simples, e -8.9776° ¢
171.3726° no calculo RHF refinado.

Usando o funcional B3LYP, incluem-se efeitos de correlacao eletronica. Os compri-
mentos de ligacdo calculados neste nivel sao 1.2561 A (C-0), 1.2631 (C=0), 1.5108 A
(C-N) e 1.5284 A (C°-CF), maiores que os obtidos nos calculos RHF. J4 os angulos
sao: 128.2259° (O=C-O, ligeiro aumento em comparacio com o calculo RHF simples),
107.8879° (C*-C°-N, diminui¢ao), 116.2119° (C-C=0, ligeira diminuigao) e 115.5421°
(C-C-0, ligeiro aumento). As tor¢oes para os atomos O=C-C-N e O-C—-C-N sao, res-
pectivamente, -18.199° (valor experimental: -18.60°) e 163.2949° (valor experimental:
161.50°).

A energia final calculada no calculo RHF simples é de -321.918 H, com contribuicoes
de 251.0845 H da interacao entre os nicleos, -1258.8229 H das interagoes entre os elétrons
e os nucleos e 321.1178 H da energia cinética eletronica. No calculo RHF refinado esses
valores mudam para -322.0058 H (energia total), 251.6993 H (energia de interagao entre os
ntcleos), -1261.057 H (energia de interagao entre elétrons e nticleos) e 321.772 H (energia
cinética eletronica). O calculo DET, que inclui efeitos de correlac@o eletronica, apresenta
uma energia total mais baixa, igual a -323.799 H, com contribuicoes de 248.4322 H da
energia de repulsao internuclear, -1253.6337 H da energia de interacao entre os elétrons
e os nucleos atomicos e 320.6115 H de energia cinética dos elétrons. A energia total no
calculo DFT simples para a conformacao I foi de -323.7765 H e, para a conformagao II,
-323.7765 H, valores menores que a energia da conformacao zwitterion obtida pelo mesmo

método.

As constantes rotacionais no calculo RHF simples sao: A = 5.01044 GHz, B = 3.30472
GHz, C' = 2.26727 GHz. No célculo RHF refinado, esses valores mudam para: A =
5.04258 GHz, B = 3.30163 GHz e C' = 2.28435 GHz. Finalmente, no calculo DFT usando
o funcional hibrido BSLYP, A = 4.91794 GHz, B = 3.15443 GHz e C' = 2.28643 GHz. O
modulo do momento de dipolo da molécula é igual a: 14. 8770 D (célculo RHF simples),
14.6227 D (calculo RHF refinado) e 14.3398 D (cédlculo DFT), com a maior componente
apontando ao longo do eixo x, que é quase paralelo a direcao da ligacao entre os carbonos
4 e 5, ficando os grupos NHS e COO~ em lados opostos. Tal momento de dipolo é bem

maior que o determinado para a conformagao I e quase o triplo do momento de dipolo da
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conformacao II. A componente zx do momento de quadrupolo é a que apresenta maior
valor absoluto. O elemento xx do tensor de polarizabilidade é dominante e igual a: 59.165
A3 (calculo RHF simples), 64.543 A3 (célculo RHF refinado) e 73.143 A® (calculo DFT).
Em segundo lugar vem a componente yy e em terceiro a componente zz. Como esperado,

a forma zwitterion é mais polarizavel que as conformacoes I e II.

Para as andlises de populacao temos que, no calculo DFT, os atomos de oxigénio
1 e 2 apresentam cargas de Mulliken iguais a -0.671710 e -0.686257, respectivamente, e
o nitrogénio aparece com carga de -0.517310. O carbono 4 possui carga de 0.542502,
resultando numa carga liquida de -0.815465 para o grupo COO~. A carga de Mulliken
do grupo NHj é igual a 0.774357. A carga APT calculada para os principais atomos foi:
-1.293756 (O'), -1.293079 (0O?), -0.419185 (N3), 1.619026 (C*). Para o grupo COO~, -
0.967575 e para o grupo NH; , 0.628610. Fica nitido, em comparacao com as conformagoes
['e II, que a conformagao zwitterion apresenta-se, como esperado, com uma carga positiva
em volta do grupo NH7 e uma carga negativa em torno do grupo COO~, sendo que a
carga negativa em um desses grupos é maior em modulo que a carga positiva do outro

grupo em todos os casos.

No o céalculo RHF simples, os modos normais de vibracao 1, 2 e 3 surgem com
freqiiéncias (corrigidas) de 42.38667 cm~1, 181.72818 cm™1 e 219.9618 cm™ 1, respecti-
vamente, adotando as seguintes atribuicoes: modo 1 - tor¢ao do grupo COO; modo 2
- twisting do grupo NHj; modo 3 - twisting do grupo metila. J& os modos de mais
alta energia, 31, 32 e 33, ocorrem nas freqiiéncias (também corrigidas) 3170.72268 cm™ 1,
3241.73295 cm ™1 e 3244.0068 cm~ 1. As atribuigoes sao: stretching simétrico das ligacoes
do grupo NHj (modo 31), stretching assimétrico das ligagoes do grupo NH3 (modos 32 e
33). No calculo RHF refinado as freqiiéncias corrigidas (em cm™1) associadas aos modos
1, 2, 3, 31, 32 e 33 sao, respectivamente, 65.25405, 176.05332, 218.32137, 3167.55027,
3226.85397 e 3229.15455. Em comparacao, os resultados experimentais (em cm™1) apre-
sentados na referéncia [23| sdo, na mesma ordem, 184, 219, 283, 3020, 3060 e 3080.

As atribuicoes dos modos de energia mais baixa e mais alta no calculo DFT coincidem
com os valores calculados pelo método de Hartree-Fock. A freqiiéncia do modo 1 é de
59.7591 cm™1. Para os modos 2 e 3 as freqiiéncias sao, respectivamente, 116.7319 cm™1
e 229.1123 ecm~1. Para o modo 31, obteve-se uma freqiiéncia de 3274.4144 cm~1. O
modo 32 ocorre na freqiiéncia de 3338.0776 cm™1 e o modo 33, em 3355.5891 cm~1. Em
comparagao, os resultados da referéncia [175] sdo: modo 31 - freqiiéncias de 3201 cm™1
(HF/6-311++G(d,p)), 3141 cm~1 (DFT/6-3114++4G(d,p) B3LYP) e 3143 cm™~1 (experi-
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mental); modo 32 - freqiiéncias (em cm™1) de 3284 (HF/6-311++G(d,p)), 3317 (DFT/6-
311++G(d,p) B3LYP), 3249 (experimental); modo 33 - freqiiéncias (em cm~1) de 3312
(HF/6-311++G(d,p)), 3352 (DFT/6-311++G(d,p) B3LYP) e 3314 (experimental). As
atribuigoes calculadas teoricamente em [175] coincidem com as apresentadas no presente

trabalho.

Os resultados do calculo DFT para o espectro Raman revelam o pico mais intenso
no modo 31 (intensidade 344.815 A*/u.m.a., atribuicao idéntica & dos cédlculos RHF),
seguido pelo pico 32 (intensidade 198.265 A*/u.m.a., mesma atribuicio do caso RHF)
e pelo pico 33 (intensidade 136.31 A*/u.m.a., mesma atribuicio RHF). A intensidade
méxima no infravermelho ocorre para o modo 26 (intensidade 410.467 km/mol, atribuicao:
wagging do grupo aménia, stretching assimétrico das ligagoes O=C-0), seguido do modo
21 (intensidade 222.296 km/mol, atribuigao: wagging do grupo amonia, stretching da
ligacdo C-N, stretching da ligagdo C-O) e do modo 18 (intensidade 121.706 km/mol,
atribuicao: stretching assimétrico das ligagoes C—C—C, C-C-0, stretching simétrico das

ligagoes O=C-0, wagging das ligagoes C—C—H, sendo o H do grupo metila).

A depolarizacao mais intensa para radiagao incidente plano-polarizada ocorre para
o modo 13 (atribuigao: stretching assimétrico das ligagoes C—C-N, wagging do grupo
amonia, wagging do grupo metila), com intensidade igual a 0.7344. Para o modo 12
(atribuicao: stretching assimétrico das ligagoes C-C—C, wagging do grupo amoénia, wag-
ging do grupo metila), a intensidade cai um pouco, ficando igual a 0.6541. No caso
da radiagao incidente nao-polarizada, os maximos principais sao os mesmos da radiacao
plano-polarizada, com intensidades de 0.8469 (modo 13) e 0.7909 (modo 12). O pico
méximo do espectro VCD ocorre, no calculo DFT, para o modo 1 (intensidade de 122.243
10~* esu? cm?, atribuicao: tor¢ao do grupo O=C-0), e o minimo para o modo 24 (in-
tensidade de -153.249 10~%* esu? cm?, atribuicao: wagging de dois hidrogénios do grupo
amonia, stretching assimétrico das ligagoes O=C-0), com auséncia de picos relevantes

entre os modos 24 e 33.

Os insets da Fig. 32 apresentam resultados experimentais obtidos por Jalkanen et
al. [23] para os espectros Raman e VCD da L-alanina zwitterion, em comparagao com os
resultados aqui obtidos usando o funcional BSLYP. De um modo geral, ha acordo entre as
intensidades dos picos calculados e as intensidades medidas. No caso do espectro Raman,
pode-se notar que as freqiiéncias calculadas sao um pouco maiores que as determinadas

experimentalmente.

Quanto aos niveis de energia dos orbitais moleculares da conformagao zwitterion, no
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calculo RHF simples, a energia dos orbitais HOMO e LUMO ficou em -0.41509 H e 0.04506
H, respectivamente, com um gap de 0.46015 H ou 12.52 eV. No caso do célculo RHF
refinado, a energia do orbital HOMO ¢ de -0.41347 H e a energia do orbital LUMO ¢ igual
a 0.04247 H, com um gap de 0.45594 H ou 12.41 eV. No calculo DF'T, as energias obtidas
foram -0.25847 H (orbital HOMO) e -0.01435 (orbital LUMO), gap de 0.24412 H ou 6.64
eV. Em comparacao com as conformacoes I e II, o gap da conformacao zwitterion solvatada
em agua ¢ maior no calculo RHF e no calculo DFT, que incorpora correlagao eletronica.
O orbital HOMO apresenta uma distribuicao difusa por toda a molécula, revelando uma
concentracao de carga positiva em volta do grupo amonia e uma concentragao de carga
negativa em volta do grupo COO, ao passo que o orbital LUMO concentra-se do lado do
grupo amonia (o oposto do que acontece nas conformagdes I e II, onde a nuvem eletronica

excitada estd mais préxima do grupo carboxila).
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3 Calculos ab initio para o cristal de
L-alanina

No presente capitulo sao apresentadas diversas propriedades épticas e eletronicas do
cristal de L-alanina determinadas ab initio dentro do formalismo da teoria do funcional
da densidade nas aproximagoes LDA e GGA. Foram usados nos célculos os softwares
ABINIT [177] e CASTEP. Os calculos tedricos sao comparados com resultados experi-
mentais de luminescéncia e absorcao. A andlise dos picos de luminescéncia observados
experimentalmente sugere que transicoes eletronicas moleculares sao importantes para sua
interpretacao e que existem fortes efeitos relacionados com o acoplamento dos elétrons as
vibragoes da rede (polarons). Para investigar a primeira possibilidade, foram calculadas
as transicoes vertical e adiabatica da molécula usando o método de Hartree-Fock na apro-
ximagao de excitacao simples CI na base 6-31G(d). J& a relevancia dos polarons para
a compreensao das propriedades épticas do cristal é estudada através da analise da con-
figuragao espacial dos orbitais HOMO e LUMO em sistemas formados por duas e trés

moléculas de L-alanina em série.

A partir da estrutura de bandas da L-alanina, sao feitas estimativas para o band gap e
as massas efetivas de elétrons e buracos neste material. Um estudo usando duas moléculas
de L-alanina e um atomo de manganés procura esclarecer a questao do modo como atomos

desse metal podem se inserir nos intersticios de um cristal de L-alanina dopado.

3.1 Estrutura cristalina da L-alanina

Dois fatores importantes na determinacao das estruturas secundaria e terciaria de
polipeptideos e cadeias de nucleotideos sao as ligagoes de hidrogénio e forgas de van der
Waals entre atomos de hidrogénio. As posicoes precisas dos dtomos de hidrogénio nesses

compostos e em seus monomeros sao desconhecidas em geral, sendo possivel, entretanto,
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sua determinacao através da difracao de néutrons. Técnicas atuais permitem obter as
posicoes atomicas e as amplitudes médias quadraticas de vibragao com precisao igual
ou melhor que 0.01 A. Estudos de difracdo de néutrons dos aminodcidos mais comuns,
pequenos peptideos, nucleosideos e nucleotideos podem fornecer informacoes preciosas
sobre sobre sua estereoquimica e geometria, superando técnicas convencionais de raios X.
Tais informacoes sao de grande relevancia para a investigagao da energética e morfologia

de macromoléculas bioldgicas.

A estrutura cristalina e molecular da L-alanina foi estabelecida via difracao de raios X
por Simpson e Marsh [134] e por Dunitz e Ryan [178]. Lehmann et al. [135] efetuaram um
estudo de difracao de néutrons da L-alanina. No seu trabalho, cristais de L-alanina foram
crescidos com relativa facilidade através da evaporagao de solugoes aquosas a temperatura
ambiente. Os cristais apresentaram caracteristica prismatica apresentando faces principais
[120] e [011]. O volume do cristal usado nas medidas era de 7.8 mm?®. Os dados de difragao
de néutrons foram coletados usando difratometros, obtendo-se dois conjuntos de dados.
Em um dos difratometros, as intensidades foram medidas para reflexoes com senf < 0.54
e néutrons com comprimento de onda de 1.248 A. Em outro difratometro, as intensidades
para angulos satisfazendo 0.48 < senfl < 0.70 foram obtidas. Em ambas as séries de
medidas, o cristal foi montado com o eixo ¢ praticamente alinhado com o eixo ¢ do
equipamento. A orientacao do cristal, bem como as constantes de rede da célula unitaria
foram determinadas usando um refinamento de minimos quadrados dos angulos do arranjo
para 27 reflexoes intensas uniformemente distribuidas no espago reciproco. Para checar a
estabilidade do cristal e do detector, duas reflexoes padrao foram registrada para cada 30

reflexoes. Nao houve deterioracao na qualidade do cristal durante a coleta de dados.

Os resultados de difracao de néutrons confirmaram que o cristal de L-alanina possui
quatro moléculas em uma célula ortorrombica com grupo espacial P2;2,2; (numero 19),
o qual apresenta as operagoes de simetria (z,y, z) (identidade), (—z + 1/2, —y, 2z + 1/2)
(eixo de screw), (—z,y+1/2,—z+1/2) (eixo de screw) e (x+1/2, —y+1/2, —z) (eixo de
screw). Os parametros obtidos por Simpson e Marsh [134] sdo: a = 6.032 A, b = 12.343
A ec =578 A J4 os resultados de difracdo de néutrons de Lehmann et al. [135] sao
a=6.025 A, b =12324 A e ¢ = 5783 A. A densidade calculada é de 1.37 g/cm?®, e
o coeficiente de absorgao de néutrons resultou em 2.63 cm™! (assumindo uma segao de
choque de néutrons incoerente para o hidrogénio de 40 barns). As coordenadas fracionarias
dos atomos de uma tinica molécula acham-se indicadas na Tabela 67. Através da aplicagao
das operagoes de simetria do grupo espacial P2,2,2;, sao determinadas as coordenadas

dos atomos das outras trés moléculas dentro da célula unitaria. As identificagoes dos
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atomos por meio de niimeros sao as mesmas que aparecem na Fig. 37. A Fig. 38 mostra
varias perspectivas da célula unitaria da L-alanina e a célula primitiva no espago reciproco
(zona de Brillouin) com os pontos de alta simetria usados para o célculo das estruturas

de bandas no presente trabalho. A Fig. 39 mostra varias perspectivas a partir do interior

do cristal.
Atomo X y yA
o' 0.72829(21) 0.08451(10) 0.62814(22)
0% 0.45007 (22) 0.18505(11) 0.76089(18)
N 0.65566(11) 0.13796(6) 0.18570(11)
] 0.56049(16) 0.14145(7) 0.60153(14)
c? 0.47674(14) 0.16143(7) 0.35533(14)
c? 0.27468(18) 0.09160(10) 0.30245(19)
H' 0.43571(38) 0.24726(16) 0.33760(37)
HZ 0.71070(42) 0.05934(19) 0.20033(41)
H° 0.59477(36) 0.14894(19) 0.01777(34)
H 0.78421(37) 0.19174(21) 0.21106(38)
H° 0.31887(52) 0.00671(22) 0.30574(57)
He 0.14588 (44) 0.10501(29) 0.42954(48)
H’ 0.21002(49) 0.11058(29) 0.13293(49)

Tabela 67: Coordenadas fracionérias dos dtomos na célula unitaria da L-alanina obtidas através

de difracao de néutrons [135].




194 3 Calculos ab initio para o cristal de L-alanina

Figura 38: Acima: perspectivas da célula unitaria do cristal de L-alanina. Abaixo: zona de
Brillouin para o cristal de L-alanina.
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Figura 39: Mais perspectivas do cristal de L-alanina. De cima para baixo, vistas ao longo das

direcoes definidas pelos eixos a, b e ¢, nesta ordem.
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3.2 Otimizacao da geometria

Foram realizadas trés otimizacoes de geometria para o cristal de L-alanina. A pri-
meira otimizacao utilizou o software ABINIT. Os célculos foram realizados usando a
aproximagao de densidade local (LDA) [179, 180] com uma base de ondas planas e pseudo-
potenciais de Troullier-Martins construidos pelo programa thi98PP [181]. A amostragem
da zona de Brillouin foi feita com um conjunto de pontos k (2 3 2) de Monkhorst-Pack
[182]. Para determinar a estrutura cristalina de equilibrio, a energia total foi minimi-
zada em funcao dos parametros de rede e das coordenadas internas dos atomos na célula
unitaria através da técnica do gradiente conjugado [183], sendo obtida a convergéncia
para uma energia de 70 H (aproximadamente 1900 eV). Foi efetuada uma comparacao
entre os padroes de difracao de raios X para o resultado calculado e para os resultados

experimentais [134, 178] usando o software Atoms 6.0 [184], com excelente acordo.

A segunda e a terceira otimizagoes foram feitas usando o software CASTEP (Cam-
bridge Sequential Total Energy Package), desenvolvido originalmente pelo Grupo de Ma-
téria Condensada da Universidade de Cambridge, o qual utiliza a teoria do funcional da
densidade para simular propriedades de sélidos, interfaces e superficies em uma grande
variedade de materiais. Baseado em métodos de pseudopotencial, o programa CASTEP
prevé propriedades como parametros de rede, geometria molecular, propriedades estrutu-
rais, estruturas de bandas, densidades de estados, densidades de carga, funcoes de onda
e propriedades Opticas. Versoes eficientes do cédigo para computacao em paralelo sao

disponibilizadas para simular sistemas com centenas de atomos.

Para a segunda otimizacao, foi empregada a aproximagcao de densidade local (LDA).
Pseudopotenciais de norma conservada de Hamann [185] sdo utilizados no esquema pro-
posto por Lee [186]. Outros parametros relevantes para o célculo foram uma base de
ondas planas com energia de corte igual a 800 eV e uma amostragem de Monkhorst-Pack
[182](4 2 4) da zona de Brillouin.

A terceira otimizagao envolveu o uso da aproximagao do gradiente generalizado (GGA)
com o funcional PBE (Perdew-Burke-Ernzerhof) [187] e pseudopotenciais de norma-
conservada de Hamann [185]. A amostragem da zona de Brillouin é a mesma adotada na

segunda otimizacao, bem como o valor da energia de corte.

Através do pacote ABINIT foram obtidas a estrutura de bandas e a densidade de
estados total. Ja os calculos empregando o software CASTEP incluiram a obtencao

de estrutura de bandas, densidades de estados parcial e total e diversas propriedades
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optoeletronicas. A convergéncia do calculo ABINIT envolveu aproximacgoes sucessivas
nas quais a energia de corte das ondas planas era aumentada de 5 em 5 H a partir do
valor inicial de 30 H usando como ponto de partida os dados da referéncia [135], que
também serviu como ponto de partida para os calculos no CASTEP. A tolerancia para
a variacao na energia no cdlculo ABINIT foi de 107¢ H. O célculo CASTEP-LDA levou
28 iteragoes para convergir (ver Fig. 40), enquanto o cédlculo CASTEP-GGA tomou 72
iteragoes (ver Fig. 41). As Figs. 40 e 41 apresentam também as tolerancias usadas para
os parametros de controle de convergéncia (variacdo na energia, deslocamento atémico

méximo, forga maxima e tensao méaxima).

As energias por célula unitaria para a L-alanina apés convergéncia no calculo ABINIT
foram de -252.773 H (energia total, aproximadamente -6878.302 eV), 184.386 H (energia
cinética), -68.315 H (energia de troca e correlagao), -130.639 H (energia de Ewald), 1.121
H (corregao de carogo para o pseudopotencial), -376.973 H (energia do pseudopotencial
local) e 28.922 H (energia do pseudopotencial nao-local). Os parametros de rede calculados
foram a = 5.855 A, b = 11.977 A e ¢ = 5.614 A, os quais sdo menores que os valores
experimentais como esperado para um célculo na aproximacao de densidade local: a =
6.032 A, b =12343 Aec = 5784 A 134 ea = 6.025 A, b = 12.324 A e ¢ = 5.783
A [135]. O volume da célula unitéria é de 393.701 A% (ABINIT-LDA), menor que os
volumes obtidos a partir dos dados experimentais: 430.636 A% [134] e 429.4 A3 [135]. A
este volume tedrico corresponde uma densidade de 1.5 g/cm?® (comparar com os valores

experimentais de 1.37 g/cm?® [135] e 1.38 g/cm? [134]).

Para o calculo CASTEP-LDA, a energia total obtida foi de -6819.03 eV, valor maior
(diferenga de pouco mais que 59 eV ou aproximadamente 2.2 H) que o obtido no célculo
ABINIT, provavelmente por conta do menor nimero de ondas planas. Os parametros de
rede encontrados foram: ¢ = 5.710 A, b = 11.47 A ¢ 5.672 A, levando a um volume de
371.514 A3 (densidade de 1.59 g/cm?). O valor reduzido para a energia de corte leva a

um erro maior para menos em comparacao com o resultado do calculo ABINIT.

No célculo CASTEP-GGA, a energia total por célula unitaria convergiu para o valor
de -6849.692 eV, valor menor que o obtido no cdlculo CASTEP-LDA, mas ainda assim
maior que o obtido no calculo ABINIT. Os parametros de rede apds o término dos calculos
convergiram para: a = 6.683 A, b = 11.557 A e 5.748 A, resultando num volume de
443.911 A3 (maior que os valores experimentais, como se espera de um cdalculo que inclui
o gradiente da densidade eletronica) e densidade de 1.33 g/cm?®). Em comparagao com os

valores experimentais, o parametro a é o que possui maior erro percentual (=~ 10%, para
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mais). O parametro b é menor que o medido experimentalmente, maior que o obtido no
calculo CASTEP-LDA e menor que o obtido no calculo ABINIT-LDA. O parametro ¢ do

calculo GGA é o que mais se aproxima do valor experimental dentre as trés otimizacoes.

A Tabela 68 compara as coordenadas fraciondrias internas dos atomos nas trés oti-
mizagoes com os valores medidos por Lehmann et al. [135], juntamente com os desvios
quadraticos totais das coordenadas z, y e z calculadas em comparacao com os dados
experimentais (o que d4 uma idéia do erro cometido em cada aproximagao). Percebe-se
claramente que a maior varia¢do (ou erro) em comparacao com o experimento ocorre para
o calculo CASTEP-GGA, seguido do calculo CASTEP-LDA e, por tultimo, do calculo
ABINIT-LDA. A Fig. 42 ilustra-o de modo eloqiiente. O desvio quadratico médio do
calculo ABINIT-LDA ¢é de 0.0015, enquanto o desvio do calculo CASTEP-LDA é de
0.00236, e o do cédlculo GGA é de 0.00452. O desvio quadratico da aproximacao GGA na
coordenada x é o mais alto, atingindo 0.0121, em comparacao com o resultado 0.00405
do calculo ABINIT-LDA.

Alguns comprimentos de ligacao significativos, bem como angulos de abertura en-
tre ligacoes sdo indicados na Tabela 69. Para a ligacao entre os atomos C' e O!, o
calculo usando o programa ABINIT apresenta uma melhor estimativa em comparacao
com o experimento, o mesmo ocorrendo para a ligacao C!-O?. Para a ligacio C?-N,
o calculo CASTEP-GGA fornece resultado mais proximo do experimental, seguido do
calculo CASTEP-LDA e do calculo ABINIT-LDA. O comprimento da ligacao entre os
carbonos 2 e 3 é melhor estimado no célculo ABINIT, enquanto o comprimento da ligacao
entre os carbonos 2 e 1 é mais préximo do valor experimental no célculo GGA. As trés
ligagoes de hidrogénio responsaveis pela estabilizagao da rede aproximam-se melhor dos
resultados experimentais, em todos os casos, na aproximacgao do gradiente generalizado.
O angulo entre as ligagoes O—C—0O é obtido com maior acuracia na otimizacao CASTEP-
GGA, bem como o angulo entre as ligacoes O'-C1-C2. Para os angulos entre as ligacoes
C-C-C, C-C2-N e O%-C!'-C?, o calculo ABINIT-LDA d4 melhores resultados.
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Experimental ABINIT-LDA

Atomo X y z X y %
o' 0.72829(21) 0.08451(10) 0.62814(22) 0.73148 0.08547 0.63629
0° 0.45007(22) 0.18505(11) 0.76089(18) 0.43678 0.18502 0.77342
N 0.65566(11) 0.13796(6) 0.18570(11) 0.64585 0.13669 0.18360
c! 0.56049(16) 0.14145(7) 0.60153(14) 0.55338 0.14136 0.60686
c? 0.47674(14) 0.16143(7) 0.35533(14) 0.46577 0.16022 0.35732
c’ 0.27468(18) 0.09160(10) 0.30245(19) 0.25684 0.09010 0.30753
H! 0.43571(38) 0.24726(16) 0.33760(37) 0.42254 0.24963 0.34102
H? 0.71070(42) 0.05934(19) 0.20033(41) 0.70416 0.05376 0.19332
H3 0.59477(36) 0.14894(19) 0.01777(34) 0.57613 0.15095 0.00930
H* 0.78421(37) 0.19174(21) 0.21106(38) 0.78053 0.1939%4 0.20979
H° 0.31887(52) 0.00671(22) 0.30574(57) 0.29855 0.00051 0.31234
He 0.14588(44) 0.10501(29) 0.42954(48) 0.12185 0.10586 0.43949
H’ 0.21002(49) 0.11058(29) 0.13293(49) 0.18936 0.10990 0.12978

Desvio quadratico: 0.0015 (total),
0.00405 (x), 0.000735876 (y), 0.00187 (z)
CASTEP-LDA CASTEP -GGA

Atomo X y 2 x y z
o' 0.71924 0.07899 0.63645 0.72802 0.08804 0.65219
02 0.45030 0.18184 0.77645 0.49678 0.19401 0.77394
N 0.64388 0.14174 0.19433 0.67529 0.14540 0.20238
c! 0.55415 0.13831 0.61692 0.58941 0.14769 0.62514
> 0.46067 0.16260 0.37139 0.51457 0.16718 0.37606
c3 0.24972 0.08811 0.32086 0.33887 0.08924 0.32535
H! 0.41371 0.25630 0.36168 0.46957 0.25776 0.35685
H? 0.70909 0.05483 0.20314 0.72239 0.05903 0.20684
H? 0.57133 0.1539%4 0.01849 0.61728 0.16111 0.03323
H* 0.78142 0.20443 0.21738 0.79861 0.20028 0.22834
H° 0.29593 -0.0056 0.32139 0.38297 -0.00175 0.33695
He 0.10980 0.10136 0.45289 0.21840 0.10428 0.44970
H’ 0.17674 0.10946 0.14565 0.27983 0.10495 0.15111

Desvio quadratico: 0.00236 (total), Desvio quadratico: 0.00452 (total),

0.0055 (x), 0.00178 (y), 0.0038 (z) 0.01221 (x), 0.00198 (y), 0.00421 (z)

Tabela 68: Comparacao entre coordenadas convergidas nas trés otimizacoes e resultados experi-

mentais [135].
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Energia (eV)
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Figura 40: Acima: convergéncia na energia para o cdlculo LDA. Abaixo: convergéncias lo-
garftmicas na variacio da energia (eV/dtomo, em azul), deslocamento atémico maximo (A, em
laranja), forca méxima (eV/A, em violeta) e tensdo maxima (GPa, em verde).
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Figura 41: Acima: convergéncia na energia para o cilculo GGA. Abaixo: convergéncias lo-
garftmicas na variacio da energia (eV/4tomo, em azul), deslocamento atémico méximo (A, em
laranja), forca méxima (eV/A, em violeta) e tensdo maxima (GPa, em verde).



202

3 Calculos ab initio para o cristal de L-alanina

Variacao relativa da coordenada

Figura 42: Variagao das coordenadas fracionarias calculadas x, iy e z dos atomos da molécula de
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L-alanina no cristal em comparagao com resultados experimentais [135].
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Atomos envolvidos R (&)

Experimental | ABINIT-LDA | CASTEP-LDA CASTEP -GGA

¢l 1.2402 1.2501 1.1679 1.1651
cl-o? 1.2572 1.2704 1.1916 1.1837
C2-N 1.4859 1.4636 1.4698 1.4878
! 1.5219 1.5100 1.5044 1.5083
¢t 1.5305 1.5088 1.5173 1.5331
4 2
H O L 1.8250 1.7169 1.6226 1.8018
(ponte de hidrogenio)
2 i
H O . 1.8580 1.7394 1.6329 1.7600
(ponte de hidrogénio)
3t o2
L 1.7790 1.6080 1.5700 1.7361
(ponte de hidrogenio)
Atomos envolvidos @ (graus)
0-C-0 125.61 124.85 125.02 125.94
C-C-C 111.08 111.35 110.63 110.28
c'-c*N 110.10 110.17 110.30 111.48
G e ok 118.37 119.11 118.56 118.09
cro o2 116.02 116.04 116.43 115.95

Tabela 69: Comparagao entre comprimentos de ligagao e angulos convergidos nas trés otimizagoes
e resultados experimentais [135].
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3.3 Propriedades optoeletronicas na aproximacao LDA

A estrutura de bandas de um cristal de Li-alanina ortorrombico para o calculo ABINIT-
LDA e a correspondente densidade de estados (total e integrada) aparecem na Fig. 43
(apenas as bandas perto da regiao do gap foram desenhadas). Vale lembrar aqui que
uma célula unitaria de L-alanina possui quatro moléculas, totalizando 52 atomos e 192
elétrons, com 144 elétrons de valéncia e 48 elétrons de carogo. A densidade de estados

apresentada envolve apenas elétrons de valéncia.

No curso da realizagao deste trabalho foram feitas varias medidas experimentais de
absorcao e fotoluminescéncia de cristais de L-alanina pura. Os cristais foram crescidos
através da lenta evaporagao de L-alanina comercial (99% de pureza) em solugoes aquosas
a temperatura ambiente. Experimentos de fotoluminescéncia foram realizados nas ins-
talagoes da Universidade de Sao Paulo (USP), variando a temperatura das amostras de 4
K até 400 K, usando a linha de 325 nm de um laser He-Cd focalizado em um spot com 500
pm de didmetro. As amostras foram montadas em um criostato de temperatura variavel e
a luz foi coletada através de um monocromador de 0.5 m acoplado a um fotomultiplicador
de arsenieto de gélio e analisada em um amplificador lock-in profissional. O percentual de
absorgao foi medido por um fotoespectrometro Carry 500 scan-Varian UV-Vis-Nir, com
tolerancia de 0.1 nm na regiao do espectro entre o ultravioleta e o visivel. A Fig. 44
apresenta o resultado desta medida. Nota-se que a absorbancia cresce muito em torno de

5.10 eV, o que indica que o gap de energia da L-alanina fica préximo deste valor.

O coeficiente de absor¢ao pode ser obtido a partir da absorbancia, a qual é definida
como o logaritmo na base 10 da razao entre a intensidade da radiagao incidente e a
intensidade da radiacao transmitida. Para transigoes diretas, o coeficiente de absorcao é

relacionado a energia fotonica através de:

QGAP DIRETo(w) = A\/ hw — Eg7 (3-1)

onde A é uma constante. Usando esta forma, o comportamento linear assimptético da

absorbancia aponta para um gap direto igual a 5.05 eV.

De acordo com o calculo ABINIT-LDA, o cristal de L-alanina possui gap direto igual
a 4.54 eV e um gap indireto (nao mostrado na Fig. 43) de 4.62 eV bem préximo do ponto
U, sugerindo que ambos os vales devem ser efetivos nos processos de luminescéncia (a

separagao entre os gaps é de 80 meV, o suficiente para ser percebido nos picos do espectro



3.3 Propriedades optoeletronicas na aproximacao LDA 205

de luminescéncia). No ponto U, as bandas sao bastante planas e assimétricas, indicando
que processos de polaron possivelmente devem afetar as propriedades épticas do material.
Sabe-se que os calculos ab initio subestimam os valores de energia dos estados da banda
de condugao, o que é o caso aqui, uma vez que o gap de energia direto calculado (4.54
eV) é aproximadamente 9% menor que o gap experimental determinado via absorgao
Optica. Este acordo entre a teoria e o experimento no presente trabalho é, no entanto,
surpreendentemente melhor que o erro tipico de 20 a 30% nos célculos de band gap usando

teoria do funcional da densidade.

A partir da estrutura de bandas estimaram-se os valores das massas efetivas de elétrons
e buracos no ponto I'. Os resultados obtidos foram, para os buracos: ml,:’X = 0.320,
m; Y = 0.315 e m; ¢ = 1.340; para os elétrons: m!=%X = 13.914, mI™Y = 12.916
e ml=Z = 12.944. Note-se que as massas efetivas no minimo da banda de condugao
sao relativamente bem proximas e grandes. Ja as massas para a banda de valéncia sao
menores, com uma diferenga significativa da massa ao longo de I'— Z em relagao as massas

ao longode ' =Y e ' — X.

Véem-se na Fig. 45 varios planos de corte para a densidade eletronica obtida no
calculo LDA-CASTEP. Podem ser percebidas claramente as ligagoes de hidrogénio que
estabilizam a estrutura do cristal. O mesmo pode ser observado em trés dimensoes na

Fig. 46.

A estrutura de bandas e a densidade de estados total para o cdlculo LDA-CASTEP
sao exibidas na Fig. 47. A Fig. 48 mostra em detalhe o topo da banda de valéncia, que
apresenta maximos nos pontos I'; Z e U, juntamente com a densidade de estados total.
Ja a Fig. 49 faz o mesmo com a banda de condugao, que possui minimos nos pontos I', T,
X e R. A Fig. 50 coloca as duas bandas num mesmo grafico, o que permite notar que os
gaps principais ocorrem entre os pontos ['-I" e U-I'. O gap direto é de 5.02 eV, enquanto
gap U-I' é de 5.017, uma diferenga de apenas 3 meV entre ambos. A diferenca entre o
gap I'-I" tedrico e o valor experimental, neste caso, é de apenas 10 meV, o que indica a
necessidade de refinamento do calculo CASTEP-LDA através do aumento do tamanho da
base, tendo em vista que tal método sempre estima gaps significativamente menores que

os valores experimentais.
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Figura 44: Absorbancia e transmissao obtidas experimentalmente para o cristal de L-alanina a
300 K. A reta pontilhada no grafico superior intercepta o eixo horizontal no valor de energia que
corresponde ao band gap estimado para o cristal.
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Figura 45: Planos de corte de densidade eletronica.
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Figura 47: Estrutura de bandas e densidade de estados total.
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Figura 49: Estrutura de bandas - banda de conducao e DOS total.
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3.3.1 Densidade de estados parcial

A densidade de estados parcial para os atomos de hidrogénio (Fig. 51, acima) e
carbono (Fig. 51, abaixo) na aproximagao LDA foi obtida usando o programa CASTEP.
A contribuicao dos atomos de hidrogénio para a densidade de estados é exclusivamente
do tipo s e é relativamente pequena para o topo da banda de valéncia, mas significativa
na base da banda de conducao. Ja os atomos de carbono possuem densidades de elétrons
s e p, sendo que os elétrons s contribuem principalmente para niveis profundos dentro da
banda de valéncia, ao passo que os elétrons p contribuem mais para a DOS nas bandas

de conducao e um pouco abaixo do maximo da banda de valéncia.

Na Fig. 52, temos a DOS parcial para os atomos de nitrogénio e oxigénio. Os
elétrons do tipo s no nitrogénio fornecem contribuicoes relevantes apenas para energias
menores que -10 eV, ao passo que os elétrons p exibem picos no intervalo entre -10 e 0
eV, com uma contribuicao bastante pequena para a DOS na banda de conducao. Ja os
oxigenios apresentam contribuicoes do tipo s relevantes em dois picos perto de -20 eV, e

contribui¢oes dominantes do tipo p para o topo da banda de valéncia.

Considerando a densidade de estados total (Fig. 53), vé-se que o topo da banda de
valéncia é dominado pelo carater dos elétrons p, o mesmo ocorrendo logo na base da banda
de conducao. Um pouco acima do minimo desta banda, no entanto, o carater s torna-se
um pouco mais intenso que o carater p. Os niveis mais profundos, como esperado, sao

predominantemente marcados com o carater s.

Tomando agora os atomos de carbono 1, 2 e 3 isoladamente (Fig. 54), temos, para o
carbono 1, uma contribuicao mais relevante de carater p perto do minimo da banda de
condugao e para niveis entre -10 e -2 eV na banda de valéncia (vale lembrar que o carbono
1 esta ligado aos oxigénios 1 e 2, que tendem a “roubar” seus elétrons mais externos, o
que provavelmente explica a pequena contribuicao de elétrons tipo p desse atomo para
o topo da banda de valéncia). Também existe um pico do tipo p em um nivel profundo
por volta de -20 eV. Ja o carbono 2 apresenta contribuicoes relevantes do tipo p para a
faixa entre -10 eV e 0 eV, e para a faixa entre 7 e 10 eV (banda de condu¢ao). Por fim,
o carbono 3 possui um pico mais intenso de elétrons do tipo p entre -7 e -2 eV, e uma
contribuicao menor no intervalo entre 6 e 10 eV na banda de conducao. Os elétrons s

apresentam dois picos significativos em torno de -10 eV e -13 eV.

Para os oxigénios 1 e 2, a Fig. 55 indica a DOS parcial. A forma da densidade de

estados para os dois oxigénios é bem parecida, com um pico bem definido do tipo p no
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topo da banda de valéncia, uma regiao com contribui¢ao p predominante entre -2 e -8 eV,

e contribuicoes significativas do tipo s em dois picos proximos de -20 eV.
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Figura 51: Densidade de estados parcial para dtomos de hidrogénio e carbono da L-alanina.
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Figura 52: Densidade de estados parcial para nitrogénios e oxigénios da molécula de L-alanina.
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Figura 53: Densidade de estados parcial e total no cristal de L-alanina.
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Figura 54: Densidade de estados parcial para atomos de carbono individuais.
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Figura 55: Densidade de estados parcial para atomos de oxigénio individuais.
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3.3.2 Propriedades 6pticas

A fungao dielétrica foi calculada (Fig. 56) para trés diferentes polarizagoes de radiagao
incidente (tomadas em relagdo aos trés eixos ortogonais da célula unitéria da L-alanina)
e para uma amostra policristalina. O valor da parte real da funcao dielétrica para um
comprimento de onda de 543 nm (verde) é igual a 2.104. Existe uma anisotropia no
tamanho dos picos da parte real e da parte imaginaria em funcao da polarizacao da
radiacao incidente. Por exemplo, o segundo pico da esquerda para a direita na parte real
da funcao dielétrica para polarizacao 100 é bem mais definido que na polarizacao 010,
mas é menos intenso que o pico correspondente para radiacao incidente com polarizagao
001. A Fig. 57 apresenta o indice de refracao igual a 1.45 para comprimento de onda

igual a 543 nm no caso da amostra policristalina (comparar com o valor experimental de

1.54 [138].

Para a polarizagao 100, aparecem 3 picos nitidos de absorcao (Fig. 58) em energias
de aproximadamente 8, 11 e 13 eV. Quando se passa para a polarizagao 010, dois desses
picos sao atenuados. A absorcao, em todos os casos, é significativa apenas na faixa de
energias entre 5 e 20 eV (a L-alanina praticamente nao absorve no visivel). Na Fig. 59
é apresentada a refletividade, que em geral é pequena, chegando a um maximo de apro-
ximadamente 0.23 (polarizagdo ao longo do eixo 010). Existe uma maior anisotropia da
intensidade do maximo desse parametro em funcao da polarizacao da radiacao incidente.
Para o comprimento de onda de 543 nm (verde) a refletividade é igual a 0.0338, o que

revela o grau de transparéncia do cristal.

As Figs. 60 e 61 exibem a condutividade optica e a fungao perda, respectivamente.
A parte real da condutividade Optica apresenta algumas diferencas nas intensidades dos
picos para diferentes polarizagoes. Ela é méaxima para um valor em torno de 12 eV no caso
da amostra policristalina. A funcao perda, pos sua vez, é sensivel a polarizacao incidente,
tendo maximo mais intenso ao longo das direcoes 100 e 010. Para energias menores que

5 eV e maiores que 23 eV, sua intensidade é desprezivel.
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Figura 56: Propriedades épticas: funcao dielétrica. No canto superior direito de cada gréafico acha-se indicada a direcao de polarizagao da radiacao
incidente em termos das dire¢oes da célula unitaria. No gréafico do canto inferior direito é apresentado o resultado para uma amostra policristalina

de L-alanina.
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Figura 58: Propriedades opticas: absorgao.
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incidente em termos das dire¢oes da célula unitaria. No gréafico do canto inferior direito é apresentado o resultado para uma amostra policristalina

de L-alanina.
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Figura 59: Propriedades épticas: refletividade. No canto superior direito de cada grafico acha-se indicada a direcao de polarizagdo da radiagao
incidente em termos das dire¢oes da célula unitaria. No grafico do canto inferior direito é apresentado o resultado para uma amostra policristalina.
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Figura 60: Propriedades épticas: condutividade 6ptica. No canto superior direito de cada grafico acha-se indicada a direcdo de polarizacao da
radiagao incidente em termos das direcoes da célula unitaria. No grafico do canto inferior direito é apresentado o resultado para uma amostra

policristalina de L-alanina.
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Figura 61: Propriedades épticas: funcao perda. No canto superior direito de cada grafico acha-se indicada a direcdo de polarizacao da radiacao
incidente em termos das dire¢oes da célula unitaria. No grafico do canto inferior direito é apresentado o resultado para uma amostra policristalina.
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3.4 Propriedades optoeletronicas na aproximacao GGA

Passamos agora aos resultados obtidos usando a aproximac¢ao GGA. Como foi feito na
secao anterior, temos algumas figuras representando a densidade eletronica, com destaque
para as ligages de hidrogénio que estabilizam a estrutura cristalina do aminoacido (Figs.
62 e 63). A Fig. 64 exibe a estrutura de bandas completa, juntamente com a densidade de
estados total. Na Fig. 65, ha o detalhamento da banda de valéncia, que agora apresenta
dois maximos, um no ponto I' e outro no ponto X. E nitido que o maximo no ponto I" se
sobressai entre os demais. Os pontos U e Z, diferente do que ocorre no calculo LDA, nao
sao maximos locais. O ponto Z é um minimo local e o ponto U nao é critico (a derivada
da banda mais alta neste ponto é diferente de zero). J4 a banda de condugao (Fig. 66)
apresenta minimos em I'; X, R e nas vizinhancas do ponto T. O gap ¢é direto, como no
célculo LDA, e igual a 5.10 eV, enquanto o gap entre os pontos X (banda de valéncia) e T’
(banda de condugao) é de 5.14 eV, uma diferenga de 40 eV, aproximadamente. A diferenca
entre os gaps diretos tedrico e experimental é de 50 meV, sendo o gap tedrico maior que
o experimental, contrariando o que se esperaria de um calculo DFT convergido. Por fim,
a Fig. 67 coloca num mesmo grafico as bandas de valéncia e conducao num intervalo de

energia que corresponde ao topo da banda de valéncia e a base da banda de conducao.
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Figura 65: Estrutura de bandas - banda de valéncia e DOS total.
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Figura 67: Estrutura de bandas - bandas de valéncia e condugao.
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3.4.1 Densidade de estados parcial

A densidade de estados parcial para os atomos de hidrogénio e carbono é mostrada
na Fig. 68. A densidade de estados para os atomos de hidrogénio (que inclui apenas
termos tipo s) apresenta regides de maior intensidade entre as energias de -8 e -2.5 eV
e entre 5 e 10 eV, ou seja, um pouco abaixo do topo da banda de valéncia e na base da
banda de conducgao. Para os atomos de carbono, o mesmo padrao se repete, s6 que agora
envolvendo estados do tipo p. Os estados s sao mais intensos apenas em niveis profundos,
abaixo de -10 eV. A seguir, na Fig. 69, acham-se indicadas as densidades parciais para o
nitrogénio e os atomos de oxigeénio. No caso do nitrogénio, existe um pico de intensidade
na DOS do tipo p perto de -7 €V, e uma pequena contribuicao do tipo p para a banda
de valéncia. Um pico intenso do tipo s aparece em torno de -17 eV. Para os atomos de
oxigenio, existe uma forte contribuicao de elétrons p para a DOS no topo da banda de

valéncia, como ocorreu também no calculo CASTEP-LDA.

A Fig. 70 apresenta a DOS total, que deixa evidente o cardter dominante p dos
elétrons no topo da banda de valéncia. A contribuicao do tipo p no caso da base da
banda de conducao é da mesma ordem que a contribuicao do tipo s. Na Fig. 71, as
DOS para cada atomo de carbono revelam, no caso do carbono 1 (o qual se liga aos
atomos de oxigénio) uma contribuicao reduzida de carater p para o topo da banda de
valéncia (uma vez que os elétrons desse dtomo s@o transferidos, em boa parte, para os
atomos de oxigénio, repetindo o que foi observado no cdlculo LDA). Existe também uma
contribuicao p relevante para um nivel profundo, em torno de -17 eV. Ja o carbono de
nimero 2 apresenta um pico do tipo p mais intenso no topo da banda de valéncia, embora
boa parte da contribuicao com esse tipo de carater esteja localizada em niveis mais baixos
e em niveis um pouco acima do minimo da banda de conducao. Por fim, o carbono de
nimero 3 possui pico associado a elétrons do tipo p perto de -5 eV, e pouca contribuigao
no topo da banda de valéncia (ao que parece, seus elétrons sdo em parte seqiiestrados

para o carbono 2).

Nota-se nas densidades de estado parciais dos atomos de oxigénio 1 e 2 (Fig. 72)
como, novamente, as densidades sao parecidas em forma, com o caracteristico pico no

topo da banda de valéncia associado a elétrons tipo p.
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Figura 68: Densidade de estados parcial para atomos de hidrogénio e carbono da L-alanina.
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Figura 69: Densidade de estados parcial para nitrogénios e oxigénios da molécula de L-alanina.
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Figura 70: Densidade de estados parcial e total no cristal de L-alanina.
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Figura 71: Densidade de estados parcial para atomos de carbono individuais.
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Figura 72: Densidade de estados parcial para atomos de oxigénio individuais.
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3.4.2 Propriedades dpticas

A funcgao dielétrica foi determinada para quatro situacoes de incidéncia (Fig. 73): em
trés a radiacao incidente é polarizada e em uma simula-se uma amostra policristalina. A
parte real da funcao dielétrica possui trés picos caracteristicos, que variam em intensidade
conforme o estado de polarizacao. Ja a parte imagindria, associada a absorcao, possui
valores significativos apenas no intervalo entre 5 e 18 eV. Para um comprimento de onda
igual a 543 nm, a parte real da funcao dielétrica é 1.784, valor menor que o obtido no
calculo CASTEP-LDA. Na Fig. 74, sao descritas as partes real e imagindria do indice
de refracao do cristal. A parte real atinge um minimo perto de 17 eV independente da
polarizacao da luz. Aparecem trés maximos caracteristicos tanto na parte real como na

parte imagindaria, quase nas mesmas posicoes, e um quarto pico.

Vale lembrar aqui que tal estrutura de picos em todos os espectros aqui calculados,
tanto via LDA como GGA, depende do smearing de energia escolhido. No caso dos
resultados apresentados na presente tese, o valor adotado para o smearing de energia foi
de 0.5 eV. Um smearing menor revelaria uma estrutura mais detalhada, considerando
o numero enorme de transicoes possiveis entre as bandas de valéncia e conducao. De
qualquer maneira, os picos que aparecem visivelmente nos graficos aqui desenhados sao

certamente os mais relevantes.

O indice de refracao para uma amostra policristalina considerando um comprimento
de onda de 543 nm é igual a 1.34, valor também menor que o calculado através da

aproximacao LDA, e bem menor que o valor experimental (igual a 1.54 [138]).

A Fig. 75 contém o espectro de absorcao, que apresenta 5 picos principais de inten-
sidades dependentes do tipo de polarizacao da radiacao incidente. A absorcao é menos
intensa para luz polarizada ao longo da direcao 001. Na amostra policristalina, os picos
caracteristicos aparecem em 7, 10, 13 e 14 eV. Como no célculo LDA, a intensidade de
absorcao sé é significativa entre as energias de 5 e 20 eV. A refletividade, pos sua vez,
¢ indicada na Fig. 76, e atinge valores menores que os do calculo CASTEP-LDA, mal
passando de 0.10, especialmente na amostra policristalina. 5 picos caracteristicos variam
de intensidade conforme a polarizacao. Por exemplo, para luz incidente com polarizacao
100, o pico mais bem definido possui energia mais baixa, e os dois picos mais intensos sao
bem préximos. Ja para a luz que incide com polarizagao 001, o segundo pico é mais bem

definido e mais intenso.

A condutividade 6ptica e a fungao perda (Figs. 77 e 78) comportam-se como se segue.
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Para a parte real da condutividade 6ptica, existem 4 picos caracteristicos que variam em
intensidade e largura conforme o estado de polarizacao da radiagao incidente. A parte
imagindria assume valor negativo para energias até 11 eV, tornando-se positiva a partir
deste valor. O maximo da parte real fica por volta de 12 eV. Para a funcao perda existe
uma anisotropia, com a dire¢ao de polarizacao 001 exibindo um pico menos intenso que

o observado para as outras diregoes.
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Figura 73: Propriedades 6pticas: funcao dielétrica. No canto superior direito de cada grafico acha-se indicada a direcao de polarizacao da radiacao
incidente em termos das direcoes da célula unitaria. No grafico do canto inferior direito é apresentado o resultado para uma amostra policristalina
de L-alanina.
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Figura 74: Propriedades 6pticas: indice de refracdo. No canto superior direito de cada grafico acha-se indicada a direcao de polarizacao da radiagao
incidente em termos das direcoes da célula unitaria. No grafico do canto inferior direito é apresentado o resultado para uma amostra policristalina

de L-alanina.
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Figura 75: Propriedades épticas: absorcao. No canto superior direito de cada grafico acha-se indicada a diregao de polarizacao da radiagao incidente
em termos das direcoes da célula unitaria. No grafico do canto inferior direito é apresentado o resultado para uma amostra policristalina.
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Figura 76: Propriedades épticas: refletividade. No canto superior direito de cada grafico acha-se indicada a diregao de polarizagdo da radiagao
incidente em termos das diregbes da célula unitaria. No grafico do canto inferior direito é apresentado o resultado para uma amostra policristalina.
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Figura 77: Propriedades épticas: condutividade Optica. No canto superior direito de cada grafico acha-se indicada a diregdo de polarizacao da
radiagao incidente em termos das direcoes da célula unitaria. No grafico do canto inferior direito é apresentado o resultado para uma amostra
policristalina de L-alanina.
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Figura 78: Propriedades épticas: funcao perda. No canto superior direito de cada gréafico acha-se indicada a direcdo de polarizacao da radiagao
incidente em termos das dire¢oes da célula unitaria. No grafico do canto inferior direito é apresentado o resultado para uma amostra policristalina.
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3.5 Luminescéncia do cristal de L-alanina

O espectro de fotoluminescéncia tipico da L-alanina num intervalo de temperaturas
entre 4 e 300 K é indicado na Fig. 79. Os picos sao largos e compreendem a regiao entre o
laranja e o ultravioleta (2.05 eV a 3.60 ¢V). Ao invés de uma linha espectral caracteristica
bem suave, aparece certo grau de estruturagao. O pico mais intenso ocorre para a energia
de 3.10 eV, e se torna mais pronunciado sem mudar de posicao quando a temperatura
diminui. Podem ser detectados também picos mais fracos em torno de 3.43 eV, 2.75 eV
e 2.50 eV, com os picos situados no espectro visivel obedecendo a uma dependéncia com
a temperatura similar a do pico mais intenso. O pico em 3.43 eV continua bem estreito
quando a temperatura cai, indicando que nao ha fonons envolvidos na formacao desta
linha. Nota-se que por volta de 50 K existe uma mudanca na relaxacao dos estados
eletronicos que se deve a mudancas no acoplamento dos elétrons aos diferentes modos da
rede. Os modos de vibracao dos cristais de L-alanina possuem baixa energia (desvios de
Raman menores que 500 cm™!), mas os modos moleculares possuem energias maiores (o
desvio de Raman dos modos de stretching envolvendo atomos de hidrogénio é de cerca
de 3000 cm™! [188]. Ver também resultados do capitulo 2). Isto sugere que os picos na
regiao visivel do espectro podem ser associados a processos ligados a rede, enquanto o

pico no ultravioleta pode ser devido a relaxacao de estados moleculares excitados.

Os picos de luminescéncia em 2.50 eV, 2.75 eV e 3.10 eV sao bem largos e possuem
energias menores que o band gap medido através de absor¢ao (5.05 eV). A luminescéncia
no visivel pode ser associada a processos de natureza excitonica envolvendo fonons ligados
a estados cujos niveis de energia (E; para os niveis préximos da banda de valéncia, Ey
para os préximos da banda de condugao) encontram-se dentro do gap, tais como niveis
de polaron e defeitos que aprisionam portadores [189]. F; + E; = 1.96 eV para o pico
de luminescéncia mais intenso a 3.10 eV (niveis rasos); E; + F4 = 2.31 eV para o pico
de luminescéncia em 2.75 eV e E; + E4 = 2.56 eV para o pico em 2.50 eV (niveis mais
profundos). O mecanismo relacionado a polarons é sugerido pelo fato de as bandas de
conducao em U e I' no calculo ABINIT-LDA serem planas, enquanto o mecanismo de
impurezas aprisionadoras é uma conseqiiéncia do controle limitado do crescimento do
cristal via evaporagao. Para esses mecanismos, os fonons da rede devem contribuir com o
alargamento das linhas espectrais (o qual aparece claramente na Fig. 79), suavizando os

picos na regiao do visivel quando aumenta a temperatura.

Para reforgar a hipotese do mecanismo polaronico de emissao, foram feitos varios

célculos ab initio (funcional LDA PWC [190]) usando o programa DMOL3 [191, 192, 193],
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usando como ponto de partida seqiiéncias de zwitterions em série obtidas a partir da
estrutura cristalina convergida no calculo ABINIT-LDA. Os resultados aparecem nas Figs.
80 e 81. Percebe-se que a transicao HOMO-LUMO envolve transferéncia eletronica de
um extremo para o outro da cadeia de aminoacidos. Durante tal transicao, o elétron deve
perturbar toda a extensao da cadeia, deslocando moléculas e transferindo energia para a

rede cristalina.

O pico estreito em 3.43 eV pode ser associado a transicoes LUMO — HOMO de
estados quanticos das moléculas de L-alanina fracamente interagentes. Os cristais de L-
alanina sao mantidos por seis ligacoes de hidrogénio entre os fons amonia e carboxilato.
Observando atentamente a figura do cristal, e considerando a posicao do band gap no
espago reciproco, para o ponto U na zona de Brillouin, a ligagao de hidrogénio entre os ions
amonia e carboxilato aponta ao longo da diregao [101], ou seja, ao longo da dire¢ao que fica
exatamente no meio entre os eixos ¢ e a. Configuracoes de estado fundamental e excitado
associadas com moléculas de L-alanina que interagem fracamentede modo pouco intenso
sao, ao que parece, responsaveis pelas transicoes intramoleculares de natureza excitonica
responsaveis pelo pico estreito da luminescéncia [189]. Para checar tal atribuicdo, foram
feitos calculos ab initio para as transicoes vertical e adiabatica entre o estado fundamental
e estados excitados de uma molécula de L-alanina simples na conformagcao zwitterion,
usando o método de Hartree-Fock juntamente com célculos de excitacao simples CIS
e o conjunto de base 6-31G(d) por meio do pacote Gaussian03 [159]. Os resultados
revelaram duas importantes excitagoes verticais a partir do estado fundamental (GS)
para um tripleto A em 6.36 eV, e para um singleto 'A em 7.41 eV. Apéds a relaxacao
dos dois estados excitados, encontraram-se as excitagoes adiabaticas relacionadas com os
resultados de fotoluminescéncia: a energia de excitacao 3A — GS cai para 4.83 eV e a
energia 'A — GS diminui para 5.01 eV em tais transicoes. Nota-se que o estado tripleto
corresponde a uma transi¢cao do estado HOMO para os dois estados virtuais de energia
mais baixa, enquanto o singleto corresponde a uma transicao dos dois estados de energia

mais alta ocupados.

Existe uma contribuicao de 54% do orbital HOMO para os estados virtuais de menor
energia. Considerando que as interacoes via ligacao de hidrogénio entre varias cadeias
de zwitterions mencionadas anteriormente nao foram levadas em conta no calculo e que
célculos de Hartree-Fock tendem a superestimar as energias de excitagao (por conta da
falta de correlacao eletronica), pode-se inferir que o pico de luminescéncia observado em
3.43 eV ¢ atribuivel a essas duas transicoes, e também parte do pico de luminescéncia em
3.10 eV.
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Os calculos com seqiiéncias do aminoéacido L-alanina aqui realizados revelam que existe
uma tendéncia de diminuicao do gap HOMO-LUMO a medida que aumenta o ntimero
de moléculas (2.55 eV para uma tnica molécula, 0.87 eV para duas moléculas em série,
0.73 eV para trés moléculas e 0.69 eV para quatro moléculas). E também digno de
nota que ramificagoes e interacoes entre cadeias foram recentemente consideradas muito

importantes na determinagao das propriedades eletronicas de cristais de polimeros [194].
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Figura 79: Fotoluminescéncia do cristal de L-alanina ortorréombico medida a 4 K, 20 K, 90
K, 180 K e 300 K. O inset mostra a dependéncia com a temperatura do pico maximo de
fotoluminescéncia (normalizado), que se localiza em 3.1 eV.
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Figura 80: Isosuperficies de amplitude méxima dos orbitais HOMO (acima) e LUMO (abaixo)
para uma e duas moléculas de L-alanina em série.
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Figura 81: Trés e quatro moléculas de L-alanina em série com respectivos orbitais HOMO e
LUMO (de cima para baixo, a seqiiéncia ¢ HOMO-LUMO, HOMO-LUMO).
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3.6 Dopagem do cristal com Mn?*

A emissao de luz a partir de materiais organicos e inorganicos é um aspecto fundamen-
tal para inumeras aplicacoes tecnoldgicas, notavelmente no caso da optoeletronica baseada
em semicondutores e em marcadores biologicos 6pticos. Reduzir ou aumentar a fotolumi-
nescéncia ¢ crucial para o projeto de dispositivos emissores de luz. Sabe-se que a inclusao
de dopantes pode modificar consideravelmente as propriedades de fotoluminescéncia de
um material. Por exemplo, foi observada a diminuicao da fotoluminescéncia de filmes
finos do oligbmero vinileno fenileno em até 30%-50% quando ocorre o depdsito de dtomos
de Ca ou quando ha aumento na temperatura e na desordem estrutural [195, 196]. A lu-
minescéncia de semicondutores magnéticos diluidos para aplicagdes em spintronica [197]
pode ser aumentada ou diminuida dependendo dos niveis de dopagem de Mn [198, 199].
Aminoécidos aromaticos sao responsaveis pela fluorescéncia em proteinas, e podem ser
seletivamente introduzidos como marcadores através de métodos quimicos ou genéticos.
A interacao dos aminodcidos com ifons metalicos pode produzir uma forte atenuacao da

fluorescéncia [200].

Por outro lado, fons metalicos sao importantes para a funcionalidade e o dobramento
de metaloproteinas. Sua disponibilidade bioldgica é controlada no nivel celular a fim de
evitar excessos prejudiciais. A pesquisa sobre os principios que governam a ligacao de ions
a sitios de proteinas ainda esta no inicio [34], e um passo bésico para a sua compreensao é
estudar cristais de aminoacidos dopados com metais. Experimentos de espectroscopia de
ressonancia paramagnética de elétrons (Electron Paramagnetic Resonance - EPR) mos-
traram que o manganés ¢ incorporado em cristais de L-alanina na forma de fons Mn?*
[36, 41]. Recentemente, foi demonstrado que existe um limiar na concentragao de dopagem
com manganés (MnCly 23% na solugado-mae de crescimento), apés o qual a formagcao de
clusters de Mn?T se torna possivel [201]. Além disso, o espectro de fotoluminescéncia de
cristais de L-alanina nao-dopados, visto na secao anterior, apresenta amplo e estruturado,
com picos associados a processos de natureza excitonica envolvendo interagoes com a rede
cristalina (polarons, defeitos operando como centros de aprisionamento de portadores), o
que torna interessante considerar os efeitos de impurezas metalicas sobre suas principais

caracteristicas.

Diversos efeitos fisicos da dopagem de cristais de L-alanina com manganés foram
estudados por Pinheiro [140] em sua dissertagao de mestrado. Cristais de L-alanina fo-
ram crescidos através da lenta evaporagao de solucoes-mae aquosas com concentragoes

de MnCl, variando entre 1% e 10%. Medidas de fotoluminescéncia foram efetuadas a
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300 K em amostras sem e com dopagem usando a linha de 325 nm de um laser He-Cd
focalizado num spot de 500 um de diametro, usando o mesmo equipamento usado para a
fotoluminescéncia da L-alanina pura (ver secao anterior). Também foram feitas medidas
de difragao de raio-X usando p6 das amostras por meio de um difratometro RIGAKU
DMAXB (A = 1.54056 A) para correlacionar o inicio de uma forte reducao na intensidade
da fotoluminescéncia com a ocupacao de multiplos sitios intersticiais de uma mesma célula

unitdria por fons Mn?*, que provoca alguma deformacao na rede cristalina.

O espectro de luminescéncia das amostras sem e com dopagem aparece na parte
superior da Fig. 82. Um baixo nivel de dopagem (< 3.0%) ndo modifica o padrao de
luminescéncia como um todo, uma vez que os picos de luminescéncia em torno de 3.43
eV, 3.10 eV, 2.75 eV e 2.50 eV permanecem. No entanto, ocorre diminui¢ao na intensidade

desses picos. Ao se aumentar a dopagem, os principais efeitos sao enumerados a seguir.

A taxa de diminuicao da intensidade da luminescéncia reduz-se com o aumento na

concentracao do dopante.

A intensidade do pico estreito de luminescéncia em 3.43 eV (associado a transi¢oes
intramoleculares) é reduzida apreciavelmente, quase desaparecendo para um nivel

de dopagem de 10%.

e Os picos em torno de 3.10 €V e 2.75 eV apresentam melhor resolucdo (menor largura)
e desviam para direcoes opostas, o primeiro para energias menores e o segundo para

energias maiores.

e O pico em 2.50 eV ¢ eliminado para niveis de dopagem mais elevados.

Na parte inferior da Fig. 82, vé-se que a intensidade integrada de fotoluminescéncia
¢ dramaticamente reduzida (quenching) — notem-se os circulos. Uma redugao maior que
65% na intensidade de fotoluminescéncia é obtida com 5% de dopagem (quadrados). Esta
redugao € maior que a observada para filmes finos do oligomero fenileno vinileno devido
a deposicao de célcio [195], e a desordem estrutural ou a diminuigao de temperatura
[196]. Existem dois regimes de quenching da luminescéncia nos cristais de L-alanina
dopados com Mn: o primeiro, para concentracoes de MnCly, < 3%, no qual a taxa de
aumento do quenching é mais rapida (ver as linhas guia tracejadas na parte inferior da
Fig. 82); o segundo, para concentragoes de MnCly > 3%, situacdo na qual a taxa de
aumento do quenching é pequena (ver linhas pontilhadas da Fig. 82). Esta mudanca de

comportamento é associada ao momento em que varios sitios intersticiais numa mesma
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célula unitaria de L-alanina sao ocupados por um atomo de Mn para concentracoes de
MnCl, maiores que 3%, o que pode ser notado também através da variacao percentual da
deformagao do volume da célula unitaria obtida a partir de medidas de difracao de raios
X (ver Tabela 70). O onset desta ocupacao multipla foi demonstrado através de medidas
EPR [201].

MnCl, 1% 2% 3% 5% 7% 10%
e (%) 0.07868 0.19093 0.24761 0.60975 1.0380 1.7490

Tabela 70: Deformacao percentual no volume da célula unitdria € provocada pela dopagem da
L-alanina com Mn em funcao da concentracao percentual de MnCly na solugao-mae.

O quenching da luminescéncia é atribuido a canais nao-radiativos criados pelo man-
ganés intersticial [195], e a redistribuicao das energias de ligacao excitonicas relacionada
com o aumento da deformacao estrutural provocada pela dopagem [196]. O fator que
contribui para a existéncia de canais nao-radiativos é a redistribuicao de carga induzida
pelos fons Mn?*, que pode mudar a taxa de formacao de polarons atuando como centros
de dissociagao para os éxcitons [195]. Para estudar esse efeito, foi feita uma simulacao
de mecanica molecular usando mecéanica classica (campo de for¢a universal) para uma
supercélula de L-alanina (2 x 2 x 2 células unitdrias) com um dtomo de Mn isolado em
seu centro (ver Fig. 83), visando estimar aproximadamente a localiza¢ao do dopante num
dos intersticios. Apods a convergéncia desta simulagao classica, foi isolada a camada de
moléculas de L-alanina em volta do atomo de Mn e efetuado um célculo ab initio usando
a teoria do funcional da densidade (funcional LDA [190], orbitais irrestritos, configuragao
de spin sexteto) por meio do pacote DMOL3 [191, 192, 193] para a camada de atomos
sem e com o atomo de Mn. Os orbitais HOMO e LUMO obtidos acham-se indicados nas
Figs. 84 (sem dopagem) e 85 (com dopagem). Para a configuracao sem dopante, o orbital
HOMO concentra-se em volta dos grupos carboxilato de duas moléculas de L-alanina,
enquanto o orbital LUMO fica no lado oposto da estrutura, em torno dos grupos amonia
de outras duas moléculas, o que significa que, numa eventual transicao, os elétrons devem
saltar de um lado para outro da estrutura, provocando perturbagoes vibracionais (pola-
ron). Olhando agora para a Fig. 85, percebe-se claramente como o d&tomo de Mn modifica
este quadro, deixando os orbitais HOMO e LUMO mais ou menos na mesma regiao da
estrutura de quatro moléculas de L-alanina, ou seja, entre os grupos carboxilato e o &tomo
de Mn. O gap HOMO-LUMO calculado sem o 4&tomo de Mn foi de 1.31 eV e, com o dtomo
de Mn, 0.58 eV, mostrando que a dopagem tende a reduzir a energia de excitacao. A Fig.

86 apresenta, por fim, a densidade de spin mapeada sobre a densidade eletronica (acima)
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e o mapeamento da densidade eletronica (abaixo) sobre o orbital HOMO na configuracao

de camada dopada. E nitido um excesso de elétrons com spin up em torno do atomo de

Mn.

Dois fons Mn?* serao menos efetivos para a atenuacao da luminescéncia do que um
unico fon, uma vez que a redistribuicao de carga sera menor. O raio de quenching do
Mn [196] é definido como a distancia média entre dois fons Mn?* que reduz a taxa de
quenching. Tal valor pode ser estimado em torno de 3 A [201], e determina o inicio do
segundo regime de atenuagao da luminescéncia apds o inicio da formacao de clusters de
atomos de Mn. Com o aumento no nivel de dopagem, os sitios intersticiais ocupados se
tornam proximos o bastante para permitir a formacao de clusters, que sao agrupamentos
de fons Mn?T onde cada um dos fons é localizado em sitios distintos mas préximos [201].
Esta descricao é reforcada pelo argumento de que tanto a repulsao coulombiana de fons
Mn?* préximos como seu raio ionico relativamente grande impedem uma ocupacao maior
do que um para o mesmo intersticio. Céalculos diretos mostram que devido ao raio idénico do
Mn?*, os sitios intersticiais nos cristais de L-alanina ortorrombicos s6 podem ser ocupados

por um tnico fon [201].

Para o caso de um baixo nivel de dopagem com Mn, os sitios intersticiais nao ocu-
pados continuam a favorecer a existéncia de defeitos, dando sustentacao ao espectro de
luminesceéncia estruturado no visivel do cristal puro. Quando a dopagem com manganés
aumenta além de 3%, mais de um sitio intersticial em cada célula unitdria pode ser ocu-
pado, tornando menos provavel a existéncia de defeitos na rede. Conseqiientemente, a
tendéncia global do aumento da dopagem nos cristais de L-alanina é diminuir o alarga-
mento das estruturas de luminescéncia na regiao visivel do espectro, uma vez que o niimero
de estados associados a defeitos se reduz. Os desvios em direcoes opostas dos picos em
torno de 3.10 eV e 2.75 eV é relacionado ao desaparecimento de centros de aprisionamento
associados a defeitos cujos estados possuem energias: 1. um pouco maiores que 3.1 eV
(mas menores que 3.4 eV), o que deixa mais abrupta a regiao de energia mais alta do
pico de luminescéncia em 3.1 eV (sem dopagem), uma vez que a deformagao estrutural
provocada pela dopagem com manganés modifica a distribuicao das energias excitonicas,
eliminando alguns niveis que contribuem para um padrao mais suave; 2. um pouco meno-
res que 2.75 eV, dando um carater mais abrupto para a regiao de baixa energia da linha
de luminescéncia em 2.75 eV (sem dopagem). Finalmente, a presenca de fons Mn?** nos
intersticios altera a configuracao de carga das moléculas de L-alanina zwitterion proximas,
e pode eliminar transicoes intramoleculares entre alguns de seus estados. Um aumento na

dopagem de Mn leva ao enfraquecimento do pico em 3.43 eV modificando a configuracao
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de carga da maioria das moléculas de L-alanina zwitterionicas que formam o cristal.
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Figura 82: Acima: fotoluminescéncia do cristal de L-alanina ortorrémbico medida a 300 K sem
dopagem (linha sélida), e com dopagens de Mn com percentuais de 1% (linha tracejada), 2%
(linha pontilhada), 3% (linha tracejada-pontilhada), 5% (linha com tracos pequenos), 7% (linha
com pontos bem préximos) e 10% (tracejado pequeno-pontilhado). Abaixo: dependéncia da
fotoluminescéncia integrada (circulos) e da fotoluminescéncia integrada acumulada (quadrados)
a 300 K em funcao da concentracao de MnCly na solugdo-mae aquosa. As curvas sélidas suaves
sdo apenas linhas de referéncia. As linhas tracejada e pontilhada indicam os dois regimes do

quenching da luminescéncia.



Figura 83: Supercélula de L-alanina com um &tomo de Mn inserido. As duas retas indicam a camada da supercélula que serd analisada.
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Figura 84: Agrupamento de quatro moléculas de L-alanina em camada da supercélula, com os orbitais HOMO (esquerda) e LUMO (direita)
desenhados.



Figura 85: Agrupamento de quatro moléculas de L-alanina em camada da supercélula com dtomo de Mn inserido com os orbitais HOMO (esquerda)
e LUMO (direita) desenhados.
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Figura 86: Acima: isosuperficie de densidade eletrénica com mapeamento da densidade de spin.
Quanto mais vermelho, maior a densidade de spin. Abaixo: projecdo da densidade eletrénica
sobre o orbital HOMO. Quanto mais vermelho, maior a densidade eletronica.
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3.7 Sumario do capitulo

Neste capitulo foram apresentados resultados de calculos ab initio para o cristal de
L-alanina usando a teoria do funcional da densidade e as aproximagoes LDA e GGA.

Segue um sumario dos principais resultados.

3.7.1 Otimizacoes de geometria

Foram realizadas trés otimizacoes de geometria distintas para o cristal de L-alanina,
duas na aproximagao de densidade local (softwares ABINIT e CASTEP), e uma na apro-
ximagao do gradiente generalizado (CASTEP). E bom o acordo entre o padrao de difragao

de raios X tedrico obtido com o programa ABINIT e as medidas experimentais [134, 178|.

Nos célculos usando o programa CASTEP, pseudopotenciais de norma conservada
de Hamann [185] no esquema proposto por Lee [186] sdao adotados, juntamente com
uma base de ondas planas com energia de corte igual a 800 eV e uma amostragem de
Monkhorst-Pack [182](4 2 4) da zona de Brillouin. A otimizagao na aproximagao do gra-
diente generalizado (GGA) foi feita com o funcional PBE (Perdew-Burke-Ernzerhof) [187]

e pseudopotenciais de norma-conservada de Hamann [185].

O calculo realizado através do pacote ABINIT envolveu amostragem da zona de Bril-
louin com um conjunto de pontos k (2 3 2) de Monkhorst-Pack [182]. Para determinar a
estrutura cristalina de equilibrio, a energia total foi minimizada em fun¢ao dos parametros
de rede e das coordenadas internas dos atomos na célula unitaria através da técnica do
gradiente conjugado [183], sendo obtida a convergéncia para uma energia de 70 H (apro-
ximadamente 1900 eV). Foram calculadas a estrutura de bandas e a densidade de estados

total.

Os resultados obtidos do software CASTEP incluiram a obtencao de estrutura de
bandas, densidades de estados parcial e total e varias propriedades optoeletronicas. As
energias por célula unitaria para a L-alanina apds convergéncia no calculo ABINIT foram
de -252.773 H (energia total, aproximadamente -6878.302 eV), 184.386 H (energia ciné-
tica), -68.316 H (energia de troca e correlagao), -130.639 H (energia de Ewald), 1.121
H (corregao de carogo para o pseudopotencial), -376.973 H (energia do pseudopotencial
local) e 28.92 H (energia do pseudopotencial nao-local). Os parametros de rede calculados
foram a = 5.855 A, b = 11.977 A e ¢ = 5.614 A, os quais sdo menores que os valores
experimentais (como esperado para o método de calculo): a = 6.032 A b=12343 A e
c=>5784 A [134] e a = 6.025 A, b =12.324 A e ¢ = 5.783 A [135]. O volume da célula
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unitaria é de 393.7 A3 (ABINIT-LDA), menor que os volumes obtidos a partir dos dados
experimentais: 430.636 A® [134] e 429.4 A3 [135]. A este volume tedrico corresponde uma
densidade de 1.5 g/cm® (comparar com os valores experimentais de 1.37 g/cm?® [135] e
1.38 g/cm?® [134]).

Para o calculo CASTEP-LDA, a energia total obtida foi de -6819.03 eV, valor maior
(diferenga de pouco mais que 59 eV ou aproximadamente 2.2 H) que o obtido no célculo
ABINIT, provavelmente por conta do menor nimero de ondas planas empregadas. Os
parametros de rede encontrados foram: a = 5.71 A, b = 11.47 A ¢ 5.67 A, levando a um
volume de 371.51 A® (densidade de 1.59 g/cm?). O valor reduzido para a energia de corte
leva a um erro maior para menos em comparacao com o resultado do calculo ABINIT. Por
fim, no cdlculo CASTEP-GGA, a energia total por célula unitaria convergiu para o valor
de -6849.692 eV, abaixo do obtido no calculo CASTEP-GGA, mas ainda assim maior que
o do célculo ABINIT. Os parametros de rede apds o término dos cédlculos convergiram
para: a = 6.683 A, b= 11.557 A e 5.748 A, resultando num volume de 443.91 A3 (maior
que os valores experimentais, como se espera de um calculo na aproximagao GGA) e
densidade de 1.33 g/cm?®). Em comparagao com os valores experimentais, o parametro a
¢ o que possui maior erro percentual (=~ 10%, para mais). O parametro b é menor que
o experimental, maior que o obtido no calculo CASTEP-LDA e menor que o do célculo
ABINIT-LDA. O parametro ¢ da aproximacao GGA é o que mais se aproxima do valor

experimental nas trés otimizacoes.

Dentre as metodologias utilizadas, a aproximagao GGA apresentou maior variagao
nas coordenadas internas dos atomos em comparacao com os dados experimentais, se-
guida, nesta ordem, do calculo CASTEP-LDA e do calculo ABINIT-LDA. Tal erro deve
ser atribuido a uma insuficiente convergéncia na otimizacao da geometria, e nao a um

problema intrinseco ao método adotado.

O desvio quadratico médio nas coordenadas internas é, para o calculo ABINIT-LDA,
0.0015. Nos calculos CASTEP-LDA e CASTEP-GGA este valor muda para 0.00236 e
0.00452, respectivamente. O desvio quadratico da aproximacao GGA na coordenada
x é mais pronunciado, atingindo 0.0121 (comparar com o resultado 0.00405 do célculo
ABINIT-LDA). Para o comprimento da ligagao entre os dtomos C! e O, o cdlculo usando
o programa ABINIT apresenta uma melhor estimativa em comparacao com resultados de
medidas, o mesmo ocorrendo para a ligacao C'-O2. No caso da ligacao C2-N, o calculo
CASTEP-GGA fornece melhor resultado quando confrontado com o experimento, seguido
do célculo CASTEP-LDA e do célculo ABINIT-LDA. O comprimento da ligagao entre
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os carbonos 2 e 3 é melhor estimado no calculo ABINIT, enquanto o comprimento da
ligacao entre os carbonos 2 e 1 é mais proximo do valor experimental no calculo GGA. As
trés ligagoes de hidrogénio responsaveis pela estabilizacao do cristal aproximam-se melhor
dos resultados experimentais, em todos os casos, no método do gradiente generalizado.
O angulo entre as ligagoes O—C-0O ¢ obtido com maior acuracia na otimizacao CASTEP-
GGA, bem como o angulo entre as ligacoes O'-C!-C2. Para os angulos entre as ligacoes

C-C-C, C-C2-N e O%-C!-C?, o calculo ABINIT-LDA produz melhores resultados.

3.7.2 Estrutura de bandas e propriedades optoeletronicas

De acordo com o calculo ABINIT-LDA o cristal de L-alanina possui gap direto igual
a 4.54 eV e um gap indireto de 4.62 eV bem préximo do ponto U, sugerindo que ambos
os vales devem ser efetivos nos processos de luminescéncia (a separagao entre os gaps é
de 80 meV, o suficiente para ser percebido nos picos do espectro de luminescéncia). No
ponto U, as bandas sao bastante planas e assimétricas, indicando que processos envol-
vendo polarons devem contribuir para as propriedades Opticas. Sabe-se que os calculos
ab initio subestimam os valores de energia dos estados da banda de condugao. Tal regra
¢ confirmada no presente trabalho, uma vez que o gap de energia direto teérico (4.54 eV)
¢ aproximadamente 9% menor que o gap experimental determinado via absorcao dptica.
O acordo entre a teoria e o experimento no presente trabalho, entretanto, é melhor que o

erro tipico de 20 a 30% nos calculos de band gap usando teoria do funcional da densidade.

Foram feitas estimativas para os valores das massas efetivas de elétrons e buracos
no ponto I'. Para os buracos: mg_X = 0.320, mg_y = 0315 e mg—z = 1.340; para
os elétrons: ml =% = 13.914, mI=Y = 12.916 e mL=Z = 12.944. Note-se que as massas
efetivas de conducao sao consideraveis e quase iguais entre si. Ja as massas para a banda
de valéncia sao menores, com uma diferenca significativa (anisotropia) da massa ao longo

de I' — Z em relagao as massas ao longode I' =Y e I' — X.

A estrutura de bandas para o calculo CASTEP-LDA mostra que o topo da banda de
valéncia apresenta maximos nos pontos I', Z e U. A banda de condugao possui minimos
nos pontos I', T, X e R. Os gaps principais ocorrem entre os pontos I'-I' e U-I'. O
gap direto é de 5.02 eV, enquanto gap U-I" é de 5.017, uma diferenca de apenas 3 meV
entre ambos. A diferenca entre o gap I'-I" tedrico e o valor experimental, neste caso, é
de apenas 10 meV, o que indica a necessidade de refinamento do calculo CASTEP-LDA
através do aumento do tamanho da base, tendo em vista que tal método sempre estima

gaps significativamente menores que os valores experimentais.
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No célculo CASTEP-GGA, a banda de valéncia apresenta dois maximos, um no ponto
I' e outro no ponto X. O maximo no ponto I' se sobressai em relacao aos demais. Os pontos
U e Z, diferente do que ocorre no cdlculo LDA, nao sao pontos de maximo. O ponto Z é
um minimo local e a banda de valéncia mais alta no ponto U apresenta derivada diferente
de zero. Ja a banda de conducao exibe minimos em I'; X, R e nas vizinhangas do ponto
T. O gap é direto, como no calculo LDA, e igual a 5.1 eV, enquanto gap entre os pontos
X (banda de valéncia) e I' (banda de condugao) é de 5.14 eV, uma diferenca de 40 eV,
aproximadamente. A diferenca entre os gaps diretos tedrico e experimental é de 50 meV,
sendo o gap tedrico maior que o medido, contrariando o que se esperaria de um calculo

DFT completamente otimizado.

A densidade de estados parcial para os dtomos de hidrogénio e carbono no célculo
CASTEP-LDA possui as seguintes caracteristicas: a contribui¢ao dos atomos de hi-
drogénio para a densidade de estados é exclusivamente do tipo s e é relativamente pequena
para o topo da banda de valéncia, mas significativa para a base da banda de conducao.
Ja os atomos de carbono possuem densidades de elétrons s e p assim distribuidas: os
elétrons s contribuem principalmente para niveis profundos dentro da banda de valéncia,
a0 passo que os elétrons p contribuem mais para a DOS nas bandas de conducgao e um

pouco abaixo do topo da banda de valéncia.

A DOS parcial para os atomos de nitrogénio e oxigénio mostra que os elétrons do
tipo s no nitrogénio fornecem contribui¢oes mais significativas para a DOS em energias
menores que -10 eV, ao passo que os elétrons p sao mais importantes no intervalo entre
-10 e 0 eV, com uma contribuicao bastante pequena para a DOS na banda de conducao.
J& os oxigenios apresentam contribuigoes do tipo s relevantes em dois picos perto de -20

eV, e contribuicoes dominantes do tipo p para o topo da banda de valéncia.

Considerando a densidade de estados total, o topo da banda de valéncia é dominado
pelo carater dos elétrons p, o mesmo ocorrendo logo na base da banda de conducao. Um
pouco acima do minimo desta banda, no entanto, o carater s torna-se um pouco mais mar-
cante que o carater p. Os niveis mais profundos, como esperado, sao predominantemente

dominados pelo carater s.

Tomando os atomos de carbono 1, 2 e 3 isoladamente, temos, para o carbono 1,
uma contribuicao mais relevante de cardter p para a regiao de menor energia da banda de
condugao e para niveis entre -10 e -2 eV na banda de valéncia (vale lembrar que o carbono
1 esta ligado aos oxigénios 1 e 2, que tendem a “roubar” seus elétrons mais externos, o

que provavelmente explica a pequena contribuicao de elétrons tipo p desse atomo para
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o topo da banda de valéncia). Também existe um pico do tipo p em um nivel profundo
por volta de -20 eV. Ja o carbono 2 apresenta contribuigoes relevantes do tipo p para a
faixa entre -10 eV e 0 eV, e para a faixa entre 7 e 10 eV (banda de condugao). Por fim, o
carbono 3 possui um pico mais intenso associado a elétrons do tipo p entre -7 e -2 eV, e
uma contribuigdo menor no intervalo entre 6 e 10 eV na banda de condugao. Os elétrons
s apresentam dois picos significativos em torno de -10 eV e -13 eV. A forma da densidade
de estados para os dois oxigénios é similar, com um pico bem definido do tipo p no topo
da banda de valéncia, uma regiao com contribuicao p predominante entre -2 e -8 eV, e

contribuigoes significativas do tipo s em dois picos préximos de -20 eV.

A densidade de estados parcial do calculo CASTEP-GGA inclui, no caso da densi-
dade de estados para os atomos de hidrogénio (contribui¢ao exclusivamente do tipo s)
contribuigoes significativas entre as energias de -8 e -2.5 eV e entre 5 e 10 eV, ou seja,
um pouco abaixo do topo da banda de valéncia e na base da banda de conducao. Para
os atomos de carbono, o mesmo padrao se repete, sé que agora envolvendo estados do
tipo p. Os estados s sao mais intensos apenas em niveis profundos, abaixo de -10 eV. No
caso do nitrogénio, existe um pico de intensidade na DOS do tipo p perto de -7 eV, e
uma pequena contribuicao do tipo p para a banda de valéncia. Um pico intenso do tipo
s aparece em torno de -17 eV. Para os atomos de oxigénio, existe uma forte contribuicao

de elétrons p para a DOS no topo da banda de valéncia, como ocorreu também no calculo
CASTEP-LDA.

A DOS total no calculo CASTEP-GGA deixa evidente o carater dominante p dos
elétrons no topo da banda de valéncia. A contribuicao do tipo p no caso da base da
banda de conducao é da mesma ordem que a contribuicao do tipo s. No caso do carbono
1, que ¢ ligado aos atomos de oxigénio, a contribuicao p para o topo da banda de valéncia é
reduzida, repetindo o que foi observado no calculo LDA. Existe também uma contribuicao
p relevante para um nivel profundo, em torno de -17 eV. Ja o carbono de niimero 2
apresenta pico do tipo p mais intenso no topo da banda de valéncia, embora boa parte da
contribuicao com esse tipo de carater esteja localizada em niveis mais baixos desta banda
e um pouco além do minimo da banda de condugao. Por fim, o carbono de ntimero 3
possui pico associado a elétrons do tipo p perto de -5 eV, e pouca contribui¢ao no topo da

banda de valéncia (ao que parece, seus elétrons sdo em parte seqiiestrados para o carbono
2).

Pode-se notar como as densidades de estado dos oxigénios 1 e 2 sao parecidas em

forma, com o caracteristico pico no topo da banda de valéncia associado a elétrons tipo
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O valor da parte real da funcao dielétrica no calculo CASTEP-LDA para um compri-
mento de onda de 543 nm (verde) é igual a 2.104. Existe uma anisotropia no tamanho dos
picos da parte real e da parte imaginaria da funcao dielétrica em funcao da polarizacao da
radiacao incidente. O indice de refracao é igual a 1.45 para comprimento de onda de 543
nm no caso da amostra policristalina (comparar com o valor experimental de 1.54 [138].
Para a radiacao incidente com polarizacao 100, aparecem 3 picos nitidos de absorcao para
energias de aproximadamente 8, 11 e 13 eV. No caso da polarizacao 010, dois desses picos
sao atenuados. A absorcao, em todos os casos, ¢ significativa apenas na faixa de energias
entre 5 e 20 eV (a L-alanina praticamente nao absorve no visivel). A refletividade é pe-
quena, chegando a um méximo de aproximadamente 0.23 (polarizagao ao longo do eixo
010). Existe uma maior anisotropia da intensidade do maximo desse parametro em fungao
da polarizagao da radiacao incidente. Para o comprimento de onda de 543 nm (verde) a
refletividade é igual a 0.0338, o que revela o grau de transparéncia do cristal. A parte real
da condutividade 6ptica apresenta algumas diferencas nas intensidades dos picos para di-
ferentes polarizacoes. Ela é maxima para um valor em torno de 12 eV no caso da amostra
policristalina. A funcao perda, pos sua vez, é sensivel a polarizacao da radiagao incidente,
tendo maximo mais intenso ao longo das direcoes 100 e 010. Para energias menores que

5 eV e maiores que 23 €V, a intensidade desta propriedade é desprezivel.

Passando aos resultados na aproximacao do gradiente generalizado, temos que a parte
real da funcao dielétrica possui trés picos caracteristicos, os quais variam em intensidade
conforme o estado de polarizagao da luz incidente. Quanto a parte imaginaria, associada
a absor¢ao, aparece uma estrutura de picos significativos apenas no intervalo entre 5 e
18 eV. Para um comprimento de onda igual a 543 nm, a parte real da funcao dielétrica
é 1.784, valor menor que o obtido no calculo CASTEP-LDA. A parte real do indice de
refracao atinge um minimo perto de 17 eV independente da polarizacao da luz. Aparecem
trés maximos caracteristicos tanto na parte real como na parte imaginaria do indice de
refracao, aproximadamente nas mesmas posicoes, e um quarto pico. O indice de refragao
para uma amostra policristalina considerando um comprimento de onda de 543 nm ¢ igual
a 1.336, valor também menor que o calculado através da aproximacao LDA, e bem menor

que o valor experimental (1.54 [138]).

O espectro de absorcao apresenta 5 picos principais de intensidade variavel conforme
muda a polarizacao da radiacao incidente. A absorgao é menos intensa para luz incidente

polarizada ao longo da direcao 001. Para a amostra policristalina, os picos caracteristicos
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aparecem em 7, 10, 13 e 14 eV. Como no calculo LDA, a intensidade de absor¢ao so é
significativa entre as energias de 5 e 20 eV. A refletividade, pos sua vez, atinge valores me-
nores que os do calculo CASTEP-LDA, mal passando de 0.10, especialmente na amostra
policristalina. 5 picos caracteristicos variam de intensidade conforme a polarizagao. Por
exemplo, para luz incidente com polarizacao 100, o pico mais bem definido ocorre num
valor de energia mais baixo, e os dois picos mais intensos sao bem préximos. Ja para a
luz que incide com polarizacao 001, o segundo pico a partir da direcao de menor energia é
mais bem definido e mais intenso. Na parte real da condutividade 6ptica, existem 4 picos
caracteristicos que variam em definicao dependendo do modo como se polariza a radiagao
que incide sobre a amostra. A parte imagindria assume valor negativo para energias até 11
eV, tornando-se positiva dai por diante. O maximo da parte real fica por volta de 12 eV.
Para a funcao perda existe uma anisotropia, coma funcao para a direcao de polarizagao

001 com um pico menos intenso que o observado para as outras direcoes.

3.7.3 Luminescéncia do cristal de L-alanina puro

O espectro de fotoluminescéncia da L-alanina foi medido num intervalo de tempera-
turas entre 4 e 300 K. As bandas sao largas e compreendem a regiao entre o laranja e
o ultravioleta (2.05 eV a 3.60 eV), com um pico mais intenso em torno de 3.10 eV que
aumenta em intensidade e nao se desloca quando a temperatura diminui. Puderam ser
detectados também picos mais fracos em torno de 3.43 eV, 2.75 eV e 2.50 eV, com os
picos situados no espectro visivel exibindo uma dependéncia em funcao da temperatura

similar a do pico mais intenso.

O pico em 3.43 eV continua bem estreito quando a temperatura é reduzida, o que
permite inferir o nao envolvimento de fonons no processo responsavel por esta linha.
Por volta de 50 K existe uma mudanca na relaxacao dos estados eletronicos que se deve
a mudangas no acoplamento dos elétrons aos diferentes modos da rede. Os modos de
vibragao dos cristais de L-alanina possuem baixa energia (desvios de Raman menores que
500 cm™!), mas os modos moleculares possuem energias maiores (o desvio de Raman dos
modos de stretching envolvendo dtomos de hidrogénio é de cerca de 3000 cm™! [188]. Ver
também resultados do capitulo 3). Isto sugere que os picos na regiao visivel do espectro
podem ser associados a processos ligados a rede, enquanto o pico no ultravioleta pode ser

devido a relaxacao de estados moleculares excitados.

Os picos de luminescéncia em 2.50 eV, 2.75 eV e 3.10 eV sao bem largos e possuem

energias menores que o band gap medido através de absorcao (5.05 eV). A luminescéncia
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no visivel pode ser associada a processos de natureza excitonica (e envolvendo féonons)
relacionados a estados cujos niveis de energia (£, para os niveis préximos da banda de
valéncia, Fy para os préximos da banda de condugao) encontram-se dentro do gap, tais
como niveis de polaron e de defeitos que funcionam como centros de aprisionamento de
portadores [189]. O mecanismo relacionado a polarons é sugerido pelo fato de as bandas
de conducao em U e I' no calculo ABINIT-LDA serem bastante planas, enquanto o meca-
nismo de impurezas que funcionam como centros de aprisionamento é uma conseqiiéncia
do controle limitado do crescimento do cristal via evaporacao. Para esses mecanismos, os
fonons da rede devem contribuir significativamente para o alargamento das linhas espec-

trais.

Com o fito de reforcar teoricamente a hipétese do mecanismo de polaron, foram fei-
tos vérios calculos ab initio (funcional LDA PWC [190]) usando o programa DMOL3
[191, 192, 193], tomando como ponto de partida seqiiéncias de zwitterions em série ob-
tidas a partir da estrutura cristalina convergida no calculo ABINIT-LDA. Os resultados
mostram claramente que a transicao HOMO-LUMO envolve a transferéncia eletronica de
um extremo para o outro da cadeia de aminodcidos. Durante tal transicao, o elétron deve
percorrer a extensao da cadeia, perturbando as moléculas e perdendo energia sob a forma

de vibracao da rede.

O pico estreito em 3.43 eV pode ser associado a transicoes LUMO — HOMO de es-
tados moleculares em moléculas de L-alanina fracamente interagentes cujos cristais sao
mantidos por pontes de hidrogénio entre os ions amonia e carboxilato. Observando aten-
tamente a estrutura do cristal, e considerando a posicao do band gap no espaco reciproco,
para o ponto U na zona de Brillouin, a ponte de hidrogénio entre os ions amonia e carbo-
xilato aponta ao longo da diregao [101], ou seja, ao longo da dire¢ao que fica exatamente
no meio entre os eixos ¢ e a. Configuracoes de estado fundamental e excitado associadas
com moléculas de L-alanina que interagem de modo fraco aparentemente sao responsaveis
pelas transi¢oes intramoleculares de natureza excitonica por tras do estreito pico de lu-
minescéncia [189]. Para checar esta atribuigao, foram feitos calculos ab initio para as
transicoes vertical e adiabatica entre o estado fundamental e estados excitados de uma
molécula de L-alanina simples na conformagao zwitterion, usando o método de Hartree-
Fock com célculos de excitacao simples CIS e o conjunto de base 6-31G(d) usando o
pacote Gaussian03 [159]. Os resultados mostraram duas importantes excitagoes verticais
a partir do estado fundamental (GS) para um tripleto A em 6.36 ¢V, e para um singleto
A em 7.41 eV. Apds a relaxacao dos dois estados excitados, encontram-se as excitacoes

adiabaticas relacionadas aos resultados de fotoluminescéncia: a energia de excitacao 3A
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— GS cai para 4.83 eV e a energia ' A — diminui para 5.01 eV em tais transicoes. Note-se
que o estado tripleto corresponde a uma transicao do estado HOMO para os dois estados
virtuais de energia mais baixa, enquanto o singleto corresponde a uma transicao dos dois
estados de energia mais alta ocupados. Considerando que as interagoes via ligacao de
hidrogénio entre varias cadeias de zwitterions mencionadas anteriormente nao foram leva-
das em conta no calculo e que calculos de Hartree-Fock tendem a superestimar as energias
de excitacao (por conta da falta de correlacdo eletronica), pode-se inferir que o pico de
luminesceéncia observado em 3.43 eV é atribuivel a essas duas transigoes, e também parte

do pico de luminescéncia em 3.10 eV.

Os calculos com seqiiéncias do aminoacido L-alanina aqui realizados revelam que
existe uma tendéncia de diminuicao do gap HOMO-LUMO a medida que aumenta o
numero de moléculas (2.55 eV para uma unica molécula, 0.87 eV para duas moléculas
em série, 0.73 eV para trés moléculas e 0.69 eV para quatro moléculas). E digno de
nota que ramificagoes e interagoes entre cadeias foram recentemente consideradas muito

importantes na determinagao das propriedades eletronicas de cristais de polimeros [194].

3.7.4 Quenching da luminescéncia no cristal de L-alanina dopado
com Mn

O efeito da dopagem com manganés sobre as propriedades épticas do cristal de L-
alanina foi estudado por Pinheiro [140] em sua dissertacdo de mestrado. Cristais de
L-alanina foram crescidos através da lenta evaporacao de solugoes-mae aquosas com con-
centracoes de MnCl,y variando entre 1% e 10%. Foram feitas medidas de luminescéncia
e medidas de difracao de raio-X usando p6 das amostras para correlacionar o inicio de
uma forte redugao na intensidade da fotoluminescéncia com a ocupacao de multiplos sitios

intersticiais de uma mesma célula unitaria por fons Mn?*.

Um baixo nivel de dopagem (< 3.0%) nao modifica o padrao de luminescéncia como
um todo, uma vez que os picos em torno de 3.43 eV, 3.10 eV, 2.75 eV e 2.50 €V do cristal

puro permanecem. No entanto, ocorre diminui¢cao na intensidade desses picos.

Ao se aumentar a dopagem, os principais efeitos sao: 1. a taxa de diminuicao da
intensidade da luminescéncia cai; 2. a intensidade do pico estreito em 3.43 eV (associado
a transigoes intramoleculares) é reduzida apreciavelmente, quase desaparecendo para um
nivel de dopagem de 10%; 3. os picos em torno de 3.10 eV e 2.75 eV apresentam me-
lhor resolugao (menor largura) e desviam para dire¢oes opostas, o primeiro para energias

menores e o segundo para energias maiores; 4. o pico em 2.50 eV ¢é eliminado quando os
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niveis de dopagem sao elevados. Uma redugao maior que 65% na intensidade de fotolu-
minescéncia é obtida com 5% de dopagem. Esta reducao é maior que a observada para
filmes finos do oligomero fenileno vinileno devido a deposigao de célcio [195] e a desordem
estrutural ou a diminui¢ao de temperatura [196]. Existem dois regimes de quenching da
luminescéncia nos cristais de L-alanina dopados com Mn: o primeiro, para concentragoes
de MnCl, < 3%, para as quais a taxa de aumento do quenching é mais réapida; o segundo,
para concentracoes de MnCly, > 3%, situacdo na qual a taxa de aumento do quenching é
pequena. Esta mudanca de comportamento é associada ao inicio da ocupacao de multiplos
sitios intersticiais nas células unitarias de L-alanina para concentragoes de MnCl, maiores
que 3%, o que pode ser notado também através da variacao percentual da deformagao
do volume da célula unitaria obtida a partir de medidas de difracao de raios X. O onset

desta ocupagao multipla foi demonstrado através de medidas EPR [201].

O quenching da luminescéncia é atribuido a canais nao-radiativos criados pelo man-
ganés intersticial [195] e a redistribuigdo das energias de ligagao excitonicas relacionada
com o aumento da deformacao estrutural provocada pela dopagem [196]. O fator que
contribui para a existéncia de canais nao-radiativos é a redistribuicao de carga induzida
pelos fons Mn?*, que pode mudar a taxa de formacao de polarons atuando como centros
de dissociagao para os éxcitons [195]. Com o objetivo de estudar esse efeito, foi feita uma
simulagdo de mecanica molecular usando mecanica cléssica (campo de forga universal)
para uma supercélula de L-alanina (2 x 2 x 2 células unitarias) com um dtomo de Mn
isolado em seu centro, tendo em vista estimar aproximadamente a localizagao do dopante
num dos intersticios. Apds a convergéncia, foi isolada a camada de moléculas de L-alanina
em volta do dtomo de Mn e efetuado um calculo ab initio usando a teoria do funcional
da densidade (funcional LDA [190], orbitais irrestritos, configuracao de spin sexteto) por
meio do pacote DMOL3 [191, 192, 193] para a camada sem e com o atomo de Mn. Na con-
figuragao sem dopante, o orbital HOMO concentra-se em volta dos grupos carboxilato de
duas moléculas de L-alanina, enquanto o orbital LUMO fica no lado oposto da estrutura,
em torno dos grupos amonia de outras duas moléculas, o que significa que, numa eventual
transicao, os elétrons devem saltar de um lado para outro da estrutura, acoplando-se as
vibragoes da rede (polaron). Quando existe Mn na camada, percebe-se claramente como
o a transicao do elétron do grupo carboxilato para o grupo amoénia ¢é eliminada, deixando
os orbitais HOMO e LUMO mais ou menos na mesma regiao da estrutura de quatro
moléculas de L-alanina, ou seja, entre os grupos carboxilato e o atomo de Mn. O gap
HOMO-LUMO calculado sem o atomo de Mn foi de 1.31 eV e, com o atomo de Mn, 0.58

eV, o que prova que a dopagem tende a reduzir a energia de excitacao. Um excesso de
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elétrons com spin up se concentra em torno do atomo de Mn.

Dois fons Mn?* serdo menos efetivos para a atenuacao da luminescéncia do que um
Unico fon, uma vez que a redistribuicao de carga serd menor. O raio de quenching do
Mn [196] é definido como a distancia média entre dois fons Mn?* na concentragao a
partir da qual a taxa de quenching diminui. Tal valor é estimado em torno de 3 A
[201], e determina o inicio do segundo regime de atenuagao da luminescéncia apds o inicio
da formagao de clusters de Mn. Com o aumento no nivel de dopagem de Mn, os sitios
intersticiais ocupados se tornam proximos o bastante para permitir a formacao de clusters,
que sao agrupamentos de fons Mn?* onde cada um dos fons é localizado em sitios distintos
mas proximos [201]. Esta descri¢ao é refor¢ada pelo argumento de que tanto a repulsao
coulombiana de fons Mn?* préximos como seu raio i6nico relativamente grande impedem
uma ocupagao maior do que um para o mesmo intersticio. Célculos diretos mostram que
devido ao raio idnico do Mn?*, os sitios intersticiais nos cristais de L-alanina ortorrombicos

sé podem ser ocupados por um tnico fon [201].

Para o caso de um baixo nivel de dopagem com Mn, os sitios intersticiais nao ocupados
continuam a favorecer a existéncia de defeitos, preservando as estruturas do espectro de
luminesceéncia do cristal puro no visivel. Quando a dopagem com manganés aumenta
além de 3%, mais de um sitio intersticial em cada célula unitaria pode ser ocupado,
tornando menos provavel a existéncia de defeitos na rede. Conseqlientemente, a tendéncia
global do aumento da dopagem nos cristais de L-alanina é diminuir o alargamento das
estruturas de luminescéncia na regiao visivel do espectro, uma vez que o ntumero de
estados associados a defeitos se reduz. Os desvios em diregoes opostas dos picos em torno
de 3.10 eV e 2.75 €V sao relacionados ao desaparecimento de centros de aprisionamento
associados a defeitos cujos estados possuem energias: 1. um pouco maiores que 3.1 eV
(mas menores que 3.4 €V), o que deixa mais abrupta a regiao de energia mais alta do
pico de luminescéncia em 3.1 eV (sem dopagem); 2. um pouco menores que 2.75 eV,
dando um carater mais abrupto para o lado de baixa energia da linha de luminescéncia
em 2.75 eV (sem dopagem). Finalmente, a presenca de fons Mn?* nos intersticios altera
a configuracao de carga das moléculas de L-alanina préximas, e pode eliminar transigoes
intramoleculares entre alguns de seus estados. Um aumento na dopagem de Mn leva ao
enfraquecimento do pico em 3.43 eV modificando a configuracao de carga da maioria das

moléculas de L-alanina zwitterionicas que formam o cristal.
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4 Conclusoes e Perspectivas

A investigacao das propriedades da L-alanina incluiu calculos de propriedades ele-
tronicas e vibracionais (molécula) e propriedades optoeletronicas (cristal). Seguem-se as

principais conclusoes do presente trabalho no que concerne aos calculos para a molécula:

e Os comprimentos de ligacao calculados usando o formalismo DF'T sao, via de regra,
maiores que os obtidos de acordo com o método de Hartree-Fock restrito, indicando
que a correlacao eletronica produz o alongamento das ligacoes, sendo tal efeito mais
intenso nas ligagoes entre o carbono e os oxigénios. O aumento no tamanho da base
tende, nos calculos RHF, a reduzir ainda mais as distancias entre atomos ligados
(excegao aberta para o comprimento C-N, que aumenta um pouco). O mesmo ocorre
com os angulos entre ligacoes, exceto aqueles que envolvem o atomo de nitrogénio.
Os angulos de torsao nao apresentam uma tendéncia de comportamento nitida,
ora aumentando, ora diminuindo conforme o nivel de refinamento e a aproximacao

tedrica empregada.

e Nas diversas conformacoes da L-alanina os oxigénios possuem uma afinidade maior
por elétrons, retendo mais carga negativa, sendo seguidos pelo nitrogénio, que atrai
mais fortemente os elétrons dos trés atomos de hidrogénio que o circundam, o que

confirma as previsoes de eletronegatividade da tabela periddica.

e Comparando as atribuicoes calculadas usando os métodos RHF e DFT, observam-se
algumas diferencas. Por exemplo, para a conformacao I as atribuigoes dos modos 2
e 3 aparecem trocadas, sendo o modo 2 um twisting do CHs de acordo com o calculo
RHF e um twisting do NHy no célculo DFT. Resultados obtidos usando teoria do
funcional da densidade dependente do tempo [132] atribuem uma tor¢ao do CHj
para o segundo modo, o que coincide com o célculo HF de [165]. Os valores de
freqiiéncia calculados segundo a aproximacao DFT sao, em geral, maiores que os

valores calculados na aproximacao RHF corrigida.
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e O orbital HOMO espalha-se praticamente por toda a molécula, concentrando-se

um pouco no grupo amina (ou amodnia, no caso da conformagao zwitterion). Ja o
orbital LUMO encontra-se espacialmente menos concentrado nas vizinhancas dos
atomos que formam a molécula de L-alanina, produzindo uma espécie de nuvem em
volta do grupo COO. Os orbitais LUMO calculados pelo método DF'T e pelo método
RHF refinado apresentam maior intensidade nas vizinhancas imediatas da molécula.
Pode-se notar que a amplitude de probabilidade em volta do grupo do nitrogénio é
pequena. Numa eventual transicao HOMO-LUMO, um dos elétrons salta de um lado

da molécula (grupo amina ou amoénia) para o outro (grupo carboxila ou carboxilato).

De um modo geral, ha acordo entre as intensidades dos picos calculados e as in-
tensidades medidas para os espectros Raman e VCD. No caso do espectro Raman,
pode-se notar que as freqiiéncias calculadas sao um pouco maiores que as medidas

experimentalmente.

Quanto aos niveis de energia dos orbitais moleculares da conformacao zwitterion,
no calculo RHF simples, a energia dos orbitais HOMO e LUMO ficou em -0.415 H
e 0.045 H, respectivamente, com um gap de 0.46 H ou 12.52 eV. No caso do calculo
RHF refinado, a energia do orbital HOMO ¢é de -0.413 H e a energia do orbital
LUMO ¢ igual a 0.0425 H, com um gap de 0.456 H ou 12.41 eV. No célculo DFT,
as energias obtidas foram -0.258 H (orbital HOMO) e -0.01435 H (orbital LUMO),
com um gap de 0.244 H ou 6.64 eV. Em comparacao com as conformacoes I e II,
o gap da conformacao zwitterion solvatada em dgua é maior no calculo RHF e no

calculo DFT, que incorpora efeitos de correlagao eletronica.

As principais conclusées que podem ser enumeradas a partir do céalculo das proprie-

dades optoeletronicas do cristal sao:

e Os parametros de rede calculados usando o programa ABINIT e a aproximacao de

densidade local foram a = 5.855 A, b = 11.977 A e ¢ = 5.614 A, os quais sdo menores
(como esperado para um calculo na aproximacao LDA) que os valores experimen-
tais: @ = 6.032 A, b =12343 A e c=5784 A [134 e a = 6.025 A, b = 12.324 A
e ¢ = 5.783 A [135]. O volume da célula unitéria é de 393.70 A3 (ABINIT-LDA),
menor que os volumes obtidos a partir dos dados experimentais: 430.64 A% [134]
e 429.4 A3 [135]. A este volume tedrico corresponde uma densidade de 1.5 g/cm?
(comparar com os valores experimentais de 1.37 g/cm?® [135] e 1.38 g/cm? [134]).

No célculo CASTEP-LDA, os parametros de rede encontrados foram: a = 5.71 A,
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b=1147 A e 5.67 A, o que produz um volume igual a 371.51 A3 (densidade de 1.59
g/cm?). O valor reduzido para a energia de corte nos cédlculos feitos usando o pro-
grama CASTEP-LDA leva a um erro maior nos parametros de rede em comparagao
com o resultado do célculo ABINIT. Por fim, no cédlculo CASTEP-GGA, a energia
total por célula unitaria convergiu para o valor de -6849.69 eV, valor abaixo do
obtido no calculo CASTEP-LDA, mas ainda assim maior que o do calculo ABINIT.
Os parametros de rede apds o término dos calculos na aproximacgao do gradiente
generalizado convergiram para: a = 6.68 A, b = 11.56 A e 5.75 A, resultando
num volume de 443.91 A® (maior que as medidas experimentais, como ocorre com
todo célculo GGA) e densidade de 1.33 g/cm?®). Em comparagao com os valores
experimentais, o parametro a é o que possui maior erro percentual (= 10%, para
mais). O parametro b é menor que o medido experimentalmente, maior que o ob-
tido no calculo CASTEP-LDA e menor que o obtido no célculo ABINIT-LDA. O
parametro ¢ no método GGA é o que mais se aproxima do valor experimental nas

trés otimizacgoes.

e A maior variagao (ou erro) para as coordenadas internas dos atomos em comparagao
com os dados experimentais aparece no célculo CASTEP-GGA, seguido do célculo
CASTEP-LDA e, por ultimo, do calculo ABINIT-LDA.

e De acordo com o céalculo na aproximacao de densidade local usando o pacote ABI-
NIT, o cristal de L-alanina possui gap direto igual a 4.54 eV e um gap indireto de
4.62 eV bem proximo do ponto U, o que indica a participagao de ambos os vales
nos processos de luminescéncia (a separacao entre os gaps é de 80 meV, o suficiente
para ser perceptivel nos picos do espectro de luminescéncia). No ponto U, as bandas
sao bastante planas e assimétricas, indicando que processos de polaron devem con-
tribuir para as propriedades opticas. Sabe-se que os calculos ab initio subestimam
os valores de energia dos estados da banda de condugao, o que é o caso aqui, uma
vez que o gap de energia direto calculado (4.54 eV) é aproximadamente 9% menor
que o gap experimental determinado via absorgao 6ptica. Este acordo entre a teoria
e o experimento ¢ melhor que o erro tipico de 20 a 30% nos cdlculos de band gap
usando teoria do funcional da densidade. Foram feitas estimativas para os valores
das massas efetivas de elétrons e buracos no ponto I'. Os resultados obtidos foram,
para os buracos: ml,:_X = 0.320, mg_y =0.315e ml,;_Z = 1.340; para os elétrons:
ml=X =13.914, mL =Y = 12.916 e mI % = 12.944. E facil ver que as massas efetivas
dos elétrons de conducao sao bem proximas entre si e grandes. Ja as massas para

portadores na banda de valéncia sao menores, com uma anisotropia significativa da
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massa ao longo de I' — Z em relagao as massas ao longo de I' =Y e I' — X. As
estruturas de bandas obtidas usando o software CASTEP, tanto LDA como GGA,
apresentaram valores proximos do gap experimental, indicando a necessidade de

uma base maior para melhorar a consisténcia da otimizacao.

Considerando a densidade de estados total, o topo da banda de valéncia é dominado
pelo carater dos elétrons do tipo p, o mesmo ocorrendo logo na base da banda de
condugao. Um pouco acima do minimo desta banda, no entanto, o carater s torna-se
ligeiramente mais intenso que o carater p. Os niveis mais profundos, como esperado,

sao predominantemente marcados pelo carater s.

No calculo CASTEP-LDA, tomando os atomos de carbono 1, 2 e 3 isoladamente,
temos, para o carbono 1, uma contribuicao mais relevante de carater p para a base
da banda de condugao e para niveis entre -10 e -2 ¢V na banda de valéncia (vale
lembrar que o carbono 1 estd ligado aos oxigénios 1 e 2, que tendem a “roubar”
seus elétrons mais externos, o que explica a pequena contribuicao de elétrons tipo
p desse atomo para o carater do topo da banda de valéncia). Também existe um
pico do tipo p em um nivel profundo por volta de -20 eV. Ja o carbono 2 apresenta
contribuigoes relevantes do tipo p para a faixa entre -10 eV e 0 eV, e para a faixa
entre 7 e 10 eV (banda de condugdo). Por fim, o carbono 3 possui um pico mais
intenso de elétrons do tipo p entre -7 e -2 eV, e uma contribuicao menor no inter-
valo entre 6 e 10 eV na banda de conducao. Os elétrons s apresentam dois picos
significativos em torno de -10 eV e -13 eV. A forma da densidade de estados para
os dois oxigénios é bem parecida, com um pico bem definido do tipo p no topo da
banda de valéncia, uma regiao com contribuicao p predominante entre -2 e -8 eV, e

contribuicgoes significativas do tipo s em dois picos proximos de -20 eV.

O valor da parte real da funcao dielétrica para um comprimento de onda de 543
nm (verde) no cédlculo CASTEP-LDA ¢ igual a 2.104. Existe uma anisotropia no
tamanho dos picos da parte real e da parte imaginaria em funcao da polarizacao da
radiagao incidente. O indice de refragao é igual a 1.45 para comprimento de onda
de 543 nm no caso da amostra policristalina (comparar com o valor experimental
de 1.54 [138]. Para a polarizacao 100, aparecem 3 picos nitidos de absor¢ao em
energias de aproximadamente 8, 11 e 13 eV. No caso da polarizagao 010, dois desses
picos sao atenuados. A absorcao, em todos os casos, ¢é significativa apenas na faixa
de energias entre 5 e 20 eV (a L-alanina praticamente nao absorve no visivel). A

refletividade é pequena, chegando a um maximo de aproximadamente 0.23, no caso
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de polarizacao ao longo do eixo 010. Existe uma maior anisotropia da intensidade
do méaximo desse parametro em fun¢ao da polarizagao da radiacao incidente. Para o
comprimento de onda de 543 nm (verde) a refletividade é igual a 0.0338, o que revela
o grau de transparéncia do cristal. A parte real da condutividade éptica apresenta
algumas diferencas nas intensidades dos picos para diferentes polarizagoes. Ela é
maxima para um valor em torno de 12 eV no caso da amostra policristalina. A
funcao perda, pos sua vez, é sensivel a polarizacao incidente, tendo maximo mais
intenso ao longo das diregoes 100 e 010. Para energias menores que 5 €V e maiores

que 23 €V, sua intensidade ¢ desprezivel.

e Os picos do espectro de luminescéncia da alanina pura em 2.35 eV, 2.75 eV e 3.10
eV sao bem largos e possuem energias menores que o band gap medido através
de absorcao (5.05 eV). A luminescéncia no visivel pode ser associada a processos
de natureza excitonica (e envolvendo fonons) relacionados a estados cujos niveis
de energia (FE; para os niveis proximos da banda de valéncia, FEy; para os niveis
proximos da banda de condugao) encontram-se dentro do gap, tais como niveis de
polaron e defeitos que funcionam como centros de aprisionamento de portadores
[189]. O mecanismo relacionado a polarons é sugerido pelo fato de as bandas de
conducao em U e I' no calculo ABINIT-LDA serem planas, enquanto o mecanismo
de impurezas aprisionadoras de portadores é uma conseqiiencia do controle limitado
do crescimento do cristal via evaporacao. Para esses mecanismos, os fonons da rede

devem contribuir significativamente para o alargamento das linhas.

e Para reforgar a hipétese do mecanismo de luminescéncia envolvendo polarons, fo-
ram feitos vérios calculos ab initio (funcional LDA PWC [190]) usando o programa
DMOL3 [191, 192, 193], partindo de seqiiéncias de zwitterions em série obtidas a par-
tir da estrutura cristalina convergida no célculo ABINIT-LDA. Os resultados mos-
tram claramente que a transicao HOMO-LUMO envolve a transferéncia eletronica
de um extremo para o outro da cadeia de aminoacidos. Durante tal transi¢ao, o
elétron deve perturbar as moléculas da cadeia e perder energia, transferida para as

vibracoes da rede cristalina.

e Um pico estreito de luminescéncia em 3.43 eV pode ser associado a transicoes
LUMO — HOMO em moléculas de L-alanina fracamente interagentes (os cristais
de L-alanina sao estabilizados por ligagoes de hidrogénio entre os fons amonia e
carboxilato). Para checar esta atribuigao, foram feitos célculos ab initio para as

transicoes vertical e adiabatica entre o estado fundamental e estados excitados de
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uma molécula de L-alanina simples na conformagao zwitterion, usando o método de
Hartree-Fock com excitagao simples CIS e o conjunto de base 6-31G(d) usando o
pacote Gaussian03 [159]. Os resultados mostraram duas importantes excitagoes ver-
ticais a partir do estado fundamental (GS) para um tripleto A em 6.36 eV, e para
um singleto A em 7.41 eV. Apds a relaxacao dos dois estados excitados, encontram-
se as excitagoes adiabaticas, relacionadas com os resultados de fotoluminescéncia: a
energia de excitacao A — GS cai para 4.83 eV e a energia 'A — diminui para 5.01
eV em tais transicoes. Nota-se que o estado tripleto corresponde a uma transicao
do estado HOMO para os dois estados virtuais de energia mais baixa, enquanto o
singleto corresponde a uma transicao dos dois estados de energia mais alta ocupados
(contribuicao de 54% do orbital HOMO para os mesmos estados virtuais de energia
mais baixa). Considerando que as interagoes via ponte de hidrogénio entre as varias
cadeias de zwitterions nao foram levadas em conta no calculo e que calculos de
Hartree-Fock tendem a superestimar as energias de excitagao (por conta da falta de
correlagao eletronica), pode-se inferir que o pico de luminescéncia observado em 3.43
eV é atribuivel a essas duas transicoes, e também parte do pico de luminescéncia
em 3.10 eV.

Calculos com seqiiéncias seriais do aminoacido L-alanina revelam que existe uma
tendeéncia de diminui¢ao do gap HOMO-LUMO a medida que aumenta o nimero de
moléculas (2.55 eV para uma tinica molécula, 0.87 eV para duas moléculas em série,
0.73 eV para trés moléculas e 0.69 eV para quatro moléculas). E digno de nota
que ramificagoes e interagoes entre cadeias foram recentemente consideradas muito

importantes na determinacao das propriedades eletronicas de cristais de polimeros

[194).

Um baixo nivel de dopagem do cristal de L-alanina com Mn (< 3.0%) nao modifica
o padrao de luminescéncia como um todo uma vez que os picos de luminescéncia
observados em torno de 3.43 eV, 3.10 eV, 2.75 eV e 2.50 eV continuam a aparecer. No
entanto, ocorre uma diminuicao na intensidade da luminescéncia. Ao se aumentar
a dopagem, os principais efeitos sao: 1. a taxa de variacao da intensidade da
luminescéncia em funcao da dopagem fica menor; 2. a intensidade do pico estreito
de luminescéncia em 3.43 eV (associado a transi¢oes intramoleculares) é reduzida
apreciavelmente, quase desaparecendo para um nivel de dopagem de 10%; 3. os
picos em torno de 3.10 eV e 2.75 eV apresentam melhor resolu¢do (menor largura)
e desviam para diregoes opostas, o primeiro para energias menores e o segundo

para energias maiores; 4. o pico em 2.50 eV ¢é eliminado para maiores niveis de
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dopagem. Uma reducao maior que 65% na intensidade de fotoluminescéncia é obtida
com 5% de MnCl,, fator bem maior que o observado em filmes finos do oligomero
fenileno vinileno com deposic¢ao de cdlcio [195], desordem estrutural ou diminuigao

de temperatura [196].

e Existem dois regimes de quenching da luminescéncia nos cristais de L-alanina do-
pados com Mn: o primeiro, para concentracoes de MnCl, < 3%, no qual a taxa
de aumento do quenching é mais rapida; o segundo, para concentracoes de MnCl,
> 3%, situagao na qual a taxa de aumento do quenching é pequena. Esta mudanca
de comportamento é associada ao inicio da ocupacao de varios sitios intersticiais
nas células unitarias de L-alanina para concentracoes de MnCly, maiores que 3%.
Tal ocupagao multipla pode ser notada também através da variacao percentual da
deformagao do volume da célula unitaria obtida a partir de medidas de difracao de
raios X. O onset desta ocupagao multipla foi demonstrado através de medidas EPR
[201].

e O quenching da luminescéncia deve ser atribuido a canais nao-radiativos criados
pelo manganés intersticial [195], e & redistribuicao das energias de ligacao excitonicas
relacionada com o aumento da deformacao estrutural provocada pela dopagem [196].
O fator que contribui para a existéncia de canais nao-radiativos é a redistribuicao
de carga induzida pelos fons Mn?*, que pode mudar a taxa de formacao de polarons
atuando como centros de dissociacao para os éxcitons [195]. Para estudar esse efeito,
foi feita uma simulagdo de mecanica molecular usando mecanica classica (campo de
forga universal) para uma supercélula de L-alanina (2 x 2 x 2 células unitarias) com
um atomo de Mn isolado em seu centro, com a intencao de estimar aproximadamente
a localizacao do dopante num dos intersticios. Apds a convergéncia, foi isolada
a camada de moléculas de L-alanina em volta do atomo de Mn e efetuado um
célculo ab initio usando a teoria do funcional da densidade (funcional LDA PWC
[190], orbitais irrestritos, configuragao de spin sexteto) por meio do pacote DMOL3
[191, 192, 193] para a camada sem e com o &tomo de Mn. Na configuracao sem
dopante, o orbital HOMO concentra-se em volta dos grupos carboxilato de duas
moléculas de L-alanina, enquanto o orbital LUMO fica no lado oposto da estrutura,
em torno dos grupos amonia de outras duas moléculas. Isto significa que, numa
eventual transicao, os elétrons devem saltar de um lado para outro da estrutura,
acoplando-se a perturbagoes vibracionais (polarons). Quando existe Mn na camada,
percebe-se nitidamente como a transicao do elétron do grupo carboxilato para o

grupo amonia € eliminada, deixando os orbitais HOMO e LUMO mais ou menos
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na mesma regiao da estrutura de quatro moléculas de L-alanina, ou seja, entre os
grupos carboxilato e o 4&tomo de Mn. O gap HOMO-LUMO calculado sem o atomo
de Mn foi de 1.31 €V e, com o atomo de Mn, 0.58 eV, provando que a dopagem tende
a reduzir a energia de excitacao. Um excesso de elétrons com spin up se concentra

em torno do atomo de Mn.

As principais perspectivas para futuro desenvolvimento do trabalho apresentado aqui

incluem:

Calculo de propriedades moleculares usando a teoria do funcional da densidade e
uma base maior (6-3114++G(3d,3p)) para aprimoramento dos resultados ja obtidos

na base 6-31++G(d,p).

Aumento no tamanho da base usada nos célculos CASTEP-LDA e CASTEP-GGA
para convergir melhor a célula unitaria e calculo mais confidvel da estrutura de

bandas e das propriedades optoeletronicas.

Implementagao da correcao de troca exata (EXX) para determinar com maior pre-

cisao o band gap do cristal de L-alanina.

Célculo dos fonons para o cristal de L-alanina: relacao de dispersao e densidade de

estados.

Calculo ab initio da otimizacao de uma supercélula de L-alanina dopada com Mn
em um ou mais intersticios. Repetir o mesmo estudo para outros tipos de dopagem

com metalis.

Aplicar os métodos de primeiros principios a outros sistemas fisicos de interesse fisico
ou biolégico: farmacos, pontos quanticos, novos compostos cristalinos inorganicos,

nanoestruturas de carbono.

Boa parte dessas melhorias depende da aquisicao de computadores capazes de atender

as altas exigéncias em termos de processamento e memoria para os calculos. O estudo

de aminoacidos, polipeptideos e proteinas é uma area que evolui rapidamente e atrai o

interesse de diversas disciplinas do conhecimento cientifico. Os avancos sao rapidos e

podem produzir resultados significativos em relativamente pouco tempo. A presente tese

revela algumas das propriedades moleculares e cristalinas do aminoacido L-alanina e abre

as portas para novas e interessantes linhas de investigagao tedrica.
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ANEXO A - Fundamentos teoricos

No decorrer deste anexo utilizaremos o sistema de unidades atomicas. Os fatores de
conversao deste sistema para o SI sdo apresentados no Apéndice. As principais referéncias
bibliograficas deste anexo (e também para parte da introducao desta tese) sao [202, 203,
204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214].

A.1 Aproximacao de Born-Oppenheimer

O hamiltoniano de um sistema formado por N, elétrons e INV,, niicleos atomicos pode

ser escrito como:

Ne

. 1 Ne Np
H:__; __Z Z;,Z;hfz RI|
+Ze Z Z NZ 412 (A.1)
zlgz—l—l’rz_r]‘ I=1 J=I+1 I_RJl

onde os elétrons sao numerados com indices e coordenadas grafados em letras minusculas
e os nucleos atomicos, com letras maiusculas. Tal hamiltoniano inclui termos de interagao
elétron-nicleo, elétron-elétron e elétron-nticleo. O termo de energia cinética nuclear pode
ser considerado relativamente pequeno em comparacao com a energia cinética eletronica
(o operador energia cinética inclui o inverso da massa). E possivel, portanto, tratar tal
termo como uma perturbagao dependendo dos parametros 1/M;. Podemos escrever o

operador H como a soma de varios termos:

~ ~

H =T.(r) + To(R) + Ven(r,R) + Ve (r) + Vo n(R), (A2)

onde temos, nesta ordem, a energia cinética dos elétrons, a energia cinética dos ntcleos, e
as energias potenciais coulombianas de interagao elétron-nticleo, elétron-elétron e ntcleo-

nucleo:
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N,
. 1
Te<r) = _5 vaa (AS)
i=1
N
. 1 <~ V?
=1
Veon(r,R) = ) P A5
e—nl(r, )__ZZM’ (A.5)
=1 I=1
Ne N
. € € 1
Ve—e(r) = Z Z | (A.6)
i=1 j=i+1 " J
N. N,
5 S 7.7,
VieaR) =D > R, - R, (A7)
I=1 J=I+1

Seja U(r,R) = Vo_pn(r,R) + Vi_o(r) + V,_n(R) 0 termo de energia potencial referente
a todas as interacoes entre elétrons e nucleos. Aqui r e R denotam, respectivamente, co-
ordenadas eletronicas e nucleares. Consideraremos o operador 7., como uma perturbagao
do hamiltoniano H' = H — Tn, no qual os ntcleos sao mantidos fixos em suas posicoes.
Calculam-se entao os autovalores e autofungoes F;(R) e WU,;g(r) para os elétrons em funcao
das posicoes nucleares representadas pelo vetor R. O indice i = 0,1,2, 3, ... enumera o
conjunto completo de estados para cada R. As solugoes completas para o sistema acoplado

de nucleos e elétrons sao obtidas através de:

~

AV, (r,R) = E,U,(r, R), (A.8)

onde s =0, 1,2, 3, ... enumera os estados do sistema acoplado. Podemos expandir ¥4(r, R)

na base dos W,g(r):

\Ijs<r7 R) = Z ﬁsz(R)‘I]ZR(r) (Ag)

Os estados do sistema eletronico-nuclear acoplado sao especificados agora pelas funcoes
¥4, que dependem das coordenadas nucleares e multiplicam os estados W;r na expansao
de U (r,R). Para encontrar as equagoes que esses coeficientes devem satisfazer, inserimos

a Eq. (A.9) na Eq. (A.8), multiplicamos tudo por Wig(r) e calculamos a integral da



A.1 Aproximacao de Born-Oppenheimer 287

equacao resultante sobre as coordenadas r, obtendo:

Tu(R) + En — B.] 0u(R) = — 3 C(R)0, (R, (A10)

onde Ci_j (R) = A”(R) -+ BZ](R), com:

A(R) =3 4 (Uim(0)| Vi [ Un (1)) V. (A11)
By(R) = 5> 20 (W) V3 [ Wn (). (A12)

Aqui, (T;g(r)| O |¥,g(r)) envolve integracao somente sobre as coordenadas eletronicas

r para o operador O.

A aproximacao adiabatica ou aproximacgao de Born-Oppenheimer consiste em igno-
rar os coeficientes Cj;(R) quando i # j (termos nao-diagonais), ou seja, desprezam-se
transicoes eletronicas ¢ — j, com ¢ # j, provocadas pelo movimento nuclear. Em outras
palavras, ignora-se qualquer transferéncia de energia dos graus de liberdade associados
ao vetor R para os graus de liberdade associados ao vetor r. Pode-se mostrar que os
coeficientes A;(R) sao nulos a partir da condi¢ao de normalizagao da fungao de onda W.
O termo By;(R) pode ser agrupado com FE;r para formar um potencial efetivo para os
ntcleos, U;(R) = E;r+ B;;(R). Por conseguinte, na aproximagao adiabética o movimento
nuclear é descrito por uma equacao que depende apenas de R e dos estados eletronicos

associados a R:

—E%V—%jLU(R)—E- 94(R) =0 (A.13)
2 I: MI 1 nt S1 - ? *

onde n = 0,1,2,3,... ¢ um indice para contar os estados nucleares. Na aproximagao
adiabdtica, o conjunto completo de estados é um produto direto de estados nucleares e

eletronicos.

Enquanto for possivel desprezar os termos Cj;(R) com i # j, é aceitavel resolver o
problema do movimento dos nicleos através da Eq. (A.13), sendo dadas as fungoes U;(R)
para o estado eletronico ¢ que evolui adiabaticamente. E digno de nota que o termo

Bi;(R) é tipicamente muito pequeno por conta da consideravel massa dos nucleos em
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comparacao com a massa do elétron. Em geral, a aproximacao adiabética funciona muito
bem, exceto nos casos em que existe degenerescéncia ou quase degenerescéncia dos estados
eletronicos (0 que aumenta em muito a probabilidade de transigoes eletronicas induzidas
por vibragoes nucleares). Se existe um gap no espectro de excitagdo bem maior que as
energias cinéticas nucleares tipicas, as excitagoes nucleares ficam bem determinadas na
aproximacao adiabatica. E necessério, porém, ter cuidado com transigoes entre estados
em moléculas onde ocorre degenerescéncia eletronica, ou em metais, onde a falta de um

gap de energia produz efeitos qualitativos importantes.

Os termos C;j;(R) nao-diagonais podem ser interpretados como interacoes elétron-
fonon, descrevendo transicoes entre diferentes estados eletronicos provocadas pelo movi-
mento dos nicleos. Os termos dominantes sdo dados pela Eq. (A.11), que envolve um
gradiente atuando sobre as fungoes de onda eletronicas e um gradiente atuando sobre a
fungao de onda de fonon ¥, (R). A combinacdo desses operadores produz uma transigao

eletronica entre os estados ¢ e j juntamente com a emissao ou absorcao de um fonon.

E ttil escrever o operador energia cinética nuclear empregando operadores de criacao e
aniquilacao de fonons, e obter uma expansao perturbativa para o elemento C;;(R). E f4cil
notar que a variagao na funcao de onda eletronica provocada pelo deslocamento do nticleo
I ¢é efeito da mudanca que este deslocamento provoca na energia potencial elétron-ntcleo.

Considerando tal mudanca como uma perturbagao de primeira ordem, temos:

W@V Wir(r)) = =

Que é a forma usual para os elementos da matriz elétron-fonon.

A.2 O método autoconsistente de Hartree-Fock

A.2.1 Orbitais de spin

Dentro da aproximacao de Born-Oppenheimer, vista na secao anterior, podemos es-

crever um hamiltoniano apenas para os elétrons, o qual é dado por:

:__ZVQ Zezn|r _RI‘_'_Ze Zﬁ z—rj| (A.15)

i=1 I=1 i=1 j=i+1
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Negligenciamos aqui a energia de interacao nicleo-ntcleo, que é facilmente calculada
para uma configuracao fixa das coordenadas R. Tal energia deve ser acrescentada se
quisermos obter valores de F;g consistentes com as defini¢oes da se¢ao anterior. De agora

em diante, no entanto, usaremos F;r para indicar as autoenergias satisfazendo:

H,Ug(r) = EgUg(r). (A.16)

O hamiltoniano da Eq. (A.15) depende apenas das coordenadas espaciais dos elétrons,

r. Para descrever completamente um elétron, contudo, é necessario especificar também
seu spin. Em uma abordagem nao-relativistica, podemos fazer isto introduzindo duas
fungoes, a(w) (representando um spin up,T), e G(w) (representando um spin down,)),
onde w é uma variavel de identificacao eletronica. As fungoes de spin formam uma base

ortonormal:

(a]a)y=(818)=1, (A.17)
(a|B)=(B|a)=0. (A.18)

Nesta convencao, um elétron i é descrito nao apenas pelas trés coordenadas espaciais
r;, mas também pela coordenada de spin w;. Denotaremos o conjunto de quatro coorde-
nadas usando a notagao x;. A fungao de onda de um sistema de N elétrons passa a ser,

entdo, uma funcao de x = {x;}.

Elétrons obedecem a estatistica de Fermi e, portanto, estao sujeitos ao principio da

exclusao de Pauli, o qual pode ser enunciado da seguinte forma:

“A funcao de onda de um sistema de muitos elétrons deve ser anti-simétrica com

respeito a permutacao da coordenada x entre quaisquer dois elétrons”.

Em forma algébrica:

U(X1, X,y Xy e Xy e X)) = =V (X, X, o, Xy o, Xy oo, XN (A.19)

Definimos aqui orbital como sendo uma funcao de onda dependente das coordenadas
de um tnico elétron. No caso de estruturas eletronicas moleculares, usa-se comumente o

termo orbital molecular (Molecular Orbital - MO) para designar uma combinagao de orbi-
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tais atomicos que determinam coletivamente parte da densidade eletronica numa molécula.
Um orbital espacial ¢;(r) é uma funcao do vetor posigao r e descreve a distribuigao es-
pacial de um elétron de modo que |¢;(r)|* dr é a probabilidade de encontrar o elétron em
um pequeno elemento de volume dr em torno de r (vale lembrar aqui que o orbital em si
mesmo nao possui significado fisico, mas representa uma amplitude de probabilidade que
sempre pode ser multiplicada por um fator de fase constante). Iremos assumir, salvo dito
em contrario, que os orbitais espaciais formam uma base ortonormal. O nimero de orbi-
tais numa base é, em geral, infinito, o que significa que qualquer calculo com nimero finito
de orbitais produzira apenas resultados aproximados. No espaco dos spins, entretanto,
bastam duas fungdes (a(w) e f(w), como ja definimos) para expressar completamente o
estado do elétron. Para cada orbital espacial é possivel formar dois diferentes orbitais de

Spin:

o) — { o(r)a(w) A

Dado um conjunto com P orbitais espaciais é possivel formar um conjunto de 2P

orbitais de spin.

Consideremos o caso de um géas de elétrons nao interagentes. O hamiltoniano de tal

sistema pode ser escrito como:

H= Z {—%V? + V(ri)] = Z h(r;), (A.21)

onde h(r;) = — (V2/2) + V(r;) é um operador que atua somente sobre o elétron indicado
pelas coordenadas r;. Este operador possui um conjunto de autofuncoes que formam uma

base de orbitais de spin:

B(Ti)%‘(xi) = Eji; (xi). (A.22)

A.2.2 Produtos de Hartree e determinantes de Slater

Como o hamiltoniano dado pela Eq. (A.21) é um somatdério de hamiltonianos de um

unico elétron, uma funcao de onda do tipo:
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U (%) = ) (x1) Pue) (X2) us) (X3) - - - Y, (Xn,), (A.23)

deve satisfazer a equacao:

HU (x) = EF ol (x). (A.24)

Na Eq. (A.23), w: N — N. O autovalor £} ¢ dado por:

Ef =B +Ey+ FEs+...+ Ey,. (A.25)

A funcdo de onda dada pela Eq. (A.23) é conhecida como produto de Hartree. Tal
produto nao exibe correlacao eletronica, uma vez que a probabilidade de encontrar qual-
quer elétron num dado volume independe da presenca de outros elétrons por perto. O
produto de Hartree ndo leva em conta que os elétrons sao indistinguiveis (atribui a cada
elétron ¢ um orbital bem definido 1,(;)) e a anti-simetria da fungao de onda do sistema
(principio da exclusao). E possivel satisfazer esta ultima condigao se a funcao de onda do

sistema de N, elétrons for dada por um determinante de Slater:

Yoy (X1)  Ywe)(X1) o Y (x1)
1| Yum(X2)  Yue(X2) o Y (X2)

(A.26)

V) (XN,) Ywe)(XN.) o Yw (Xn,)

O fator v/N! é uma constante de normalizacdo. No determinante existem N, elétrons
ocupando N, orbitais de spin {ww(l),ww(g),ww(g), e ,ww(NE)} de tal maneira que cada
elétron pode ocupar igualmente todos os orbitais (todos os elétrons sao indistinguiveis)
respeitando a anti-simetria da funcao de onda do sistema (permutar dois elétrons equivale
a permutar duas linhas do determinante, o que faz a fungao de onda trocar de sinal). Se
pelo menos dois elétrons, i e j, ocuparem um mesmo orbital (se w(i) = w(j), ao menos
duas colunas da matriz se tornam iguais, e o determinante é zero), a fun¢ao de onda
se anula (ou seja, a probabilidade de encontrar dois ou mais elétrons no mesmo estado

quantico é zero), respeitando o principio da exclusdo de Pauli.

E conveniente introduzir aqui uma notacao para o determinante de Slater normali-
zado que deixe subentendida a inclusao do fator de normalizacao e apresente apenas os

elementos da diagonal do determinante:
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U (%)) = |thu) (%)) (X2) - - - Ywng (Xn,)) - (A.27)

Se pusermos sempre os indices das coordenadas eletronicas (ou os indices dos elétrons)

em ordem crescente, podemos encurtar mais ainda a notacao:

[T (%)) = [y Pu - Puiv)) - (A.28)

A anti-simetria da funcao de onda pode ser escrita como:

|Yu)Puw@) - Yt - Yui) - - Yuv) = = [P Pu) - - Pul) - Yol - - Duve)) -
(A.29)

A menos de um sinal, os determinantes de Slater sao completamente especificados pe-
los orbitais de spin a partir dos quais sdo construidos (ou seja, orbitais de spin ocupados).
Determinantes de Slater construidos a partir de orbitais de spin ortonormais e que in-
cluem o fator de normalizacao ja sao automaticamente normalizados. Dois determinantes

de N, elétrons com diferentes orbitais de spin ortonormais ocupados sao ortogonais.

Ao introduzir a anti-simetria na funcao de onda eletronica, o determinante de Slater
cria efeitos de troca e correlacao de troca (troca, porque a densidade de probabilidade
deve ser invariante sob permutas de coordenadas espaciais e de spin, correlacao de troca
por conta do modo como os movimentos de elétrons com mesmo spin afetam-se mutu-
amente, sendo nula a probabilidade desses elétrons possuirem as mesmas coordenadas
espaciais, formando-se um “buraco de Fermi” em volta do elétron). Porém, como nao
existe correlagao do movimento de elétrons com spins opostos, é usual dizer que a funcao

de onda dada pelo determinante de Slater nao embute efeitos de correlagao.

A.2.3 As equacoes de Hartree-Fock

O principio variacional afirma que uma funcao de onda normalizada para o estado

fundamental de um sistema descrito pelo hamiltoniano H minimiza o funcional:

E[U] = (U| H |0) . (A.30)

Seja |V) = Ww(l)ww(z) .. -ww(Ne)> um determinante de Slater normalizado. A idéia do
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método autoconsistente de Hartree-Fock é obter o conjunto de orbitais:

{Yw), Vw@)r Yu@)s - - - Pwvg

capaz de minimizar o funcional E[V¥], determinando uma aproximacao para o verdadeiro
\IIGS >

estado fundamental,

Podemos escrever a Eq. (A.15) como:

A Ne . 1 Ne Ne
H= h(ri)+§ZZV(ri,rj), (A.31)
i=1 i=1 j=1
J#i
onde:
N,
. 1, ~=~ Z
hr;) = —5V; _Z—\ri—Rﬂ’ (A.32)
I=
1
V(ri, ;) P— (A.33)
? J

Inserindo este hamiltoniano juntamente com o determinante de Slater normalizado

na Eq. (A.30), temos:

N Ne N,
e " 1 e e

B[] = (YuyWu@ - - Cuvg] D hl(r:) + 5 DD V) [Yu e - o) =
i=1 i=1 j=1
i

ﬁ(ri) |¢w(1)¢w(2) . -¢w(Ne)>+

Ne
= Z () Vw(@) - - - Yuw(n.)
=1

Ne Ne

1
+5 25 2 (Yutue) Yo

i=1 j=1
J#

V(i 1)) [Yw@yue) - - Yun) ) - (A.34)

O funcional resultante possui dois termos, um dependendo dos operadores de um
elétron h(r;), e outro dependendo dos operadores de dois elétrons V(r;,r;). Pode-se

mostrar, usando as propriedades dos determinantes, que:
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N.
Z (1) Vu() - - - hEs) [ u)Yu) - - - Yup)) =
=1

(A.35)
= Z i(x)] h(r) [1:(x)),

Y Zﬁ Zc <ww ¢w . ww(Ne) V
1

11]
JF#i

S S 0 V) W)+ (4.30)

i=1 j=1
Jséz

——ZZ i)y ()| V (r, 1) [hi ()45 (%))

(3, 15) |[w)Vu() - - Puin) =

O funcional energia passa a ser uma func¢ao dos orbitais de spin ¥;(x):

Bl ] = Y (001 ) i)+
1 e N - (A.37)
5 2 D i) () V (e, x) [ ()5 () +
A

S o V) ) ). (A.38)

=1 j=1
JF

Vamos agora minimizar o funcional com respeito aos orbitais de spin obedecendo ao

vinculo de ortonormalizacao:

(¥i(x) | ¥;(x)) = 0y (A.39)

Tal vinculo pode ser incluido mais facilmente através da técnica dos multiplicadores

de Lagrange, definindo um novo funcional:

Alns o ] = Bl ] = 33 Ay (660 | 95(0)) — ). (A40)

i=1 j=1
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Nesta equagao, os \;; formam um conjunto de multiplicadores de Lagrange. Como

Ay, g, ..., hn,] € Teal e (P;(x) | ¥j(x)) = (¥;(x) | ¥i(x))", os multiplicadores de La-

grange devem ser elementos de uma matriz hermiteana:

Calculando a variagao de Afi1, s, ..., Y. ], temos:

DTS Z (OG0 ) [ (0)+

+ZZ (00 ()3 ()| V/ (1, 1') a6 ()aby (X)) +

= (A.42)
=3 eI )V ) ) )+

=1 j=1

N. N.
- Z Z Aji (0¢(x) | ©j(x)) + complexo conjugado.

i=1 j=1

Definimos os operadores de Coulomb e de troca, respectivamente J; e IC;:

[/w rr%()fymw=

Y

[/w rr%()f}sz
U ] weo

O operador de Coulomb representa o potencial médio local em x criado pela presenga

(A.44)

de um elétron no estado v;. A origem do termo de troca é o carater anti-simétrico dos
determinantes de Slater. Tal termo possui cardter nao-local e é puramente quantico (sem
analogo classico), pois nao existe um potencial simples IQ(X) definido de modo tnico em
um ponto x. A aplicagao deste operador sobre um estado v¢; depende do valor de 1; em

todo o espaco. E interessante notar que K;(x)h;(x) = J;(x)thi(x).

Em funcdo desses operadores, a Eq. (A.42) pode ser escrita como:
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N, Ne Ne
> [oui [h<r>wz<x> £ 30 (500 = K0)) ) — 3 Ayt x) | et
i=1 j=1 =1 (A.45)
+complexo conjugado = 0.
Definindo o operador de Fock como:
A ~ Ne A A
Fx) = h(r) + Y (50 = K5(x)). (A.46)
j=1

E interessante introduzir aqui também a definicao do potencial de Hartree-Fock:

V() = 3 () — G500 (A47)
de modo que:
F(x) = h(r) + VI (r). (A.48)

A Eq. (A.42) pode ser escrita na forma:

5A[w1,¢2,---7¢Ne] =

Ne
17 (%)
A

~+complexo conjugado = 0.

FOi) = D0 At 0| (A.49)

Como 977 é arbitrario, a expressao entre colchetes deve ser zero para todos os valores

de i. Logo:

F(x)hi(x) = Z Njith; (). (A.50)

Que ¢ a equacao de Hartree-Fock nao-canonica. Pode-se mostrar que qualquer funcao
de onda de Slater formada a partir do conjunto de orbitais {¢;} possui certo grau de
flexibilidade. Os orbitais de spin podem ser misturados sem alterar o valor de E[Y]

através de uma transformacgao unitaria. O conjunto de orbitais que minimizam o funcional
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energia nao é unico, e nao se pode atribuir significado fisico especifico a um conjunto
particular de orbitais de spin. Orbitais de spin localizados nao sao mais “reais” que

orbitais deslocalizados, do ponto de vista fisico.

Em particular, é possivel provar a existéncia de uma transformacao unitaria que pro-

duz novos orbitais {1;} nos quais a Eq. (A.50) torna-se diagonal (forma canonica):

Fx)i(x) = eihi(x). (A.51)

Esta é a equagao de Hartree-Fock candnica. Os orbitais de spin canonicos, que sao
as solucoes desta equacao, sao em geral deslocalizados e formam uma base para a re-
presentagao irredutivel do grupo de simetria pontual da molécula estudada. Uma vez
calculados os orbitais de spin canonicos, é possivel obter um niimero infinito de conjuntos
de orbitais equivalentes através de uma transformagao unitaria. Em particular, ha vérios
critérios para escolha de transformacoes unitarias que levam a conjuntos de orbitais de

spin localizados e, portanto, mais de acordo com a natureza das ligacoes quimicas.

A.2.4 Teoremas de Koopman e Brillouin

Cada solucao da Eq. (A.51) possui energia ;. Os N, orbitais de spin com energias
mais baixas sao precisamente os orbitais de spin ocupados em W, para os quais usamos
os indices 1,2,..., N.. O restante dos orbitais de spin nao ocupados ou virtuais (um

conjunto infinito de orbitais) sera indicado usando os indices uy, ug, ..., uj, . . ..

A representacao matricial do operador de Fock na base das autofungoes canonicas é
diagonal, e seus elementos sao as energias dos orbitais. O teorema de Koopman assegura
que, dado um determinante Hartree-Fock de NN, elétrons, com energias de orbitais ocupa-
dos e nao ocupados dadas por {¢;} e {€,}, 0 potencial de ionizacao (igual a energia da
configuragao com N, — 1 elétrons menos a energia da configuragao com N, elétrons) para
produzir um determinante com N,—1 elétrons ‘N e_l\I/l-> com orbitais de spin idénticos, ex-
ceto pela remocao de um elétron do orbital de spin 1);, é igual a —¢; e a afinidade eletronica
(igual a energia da configuragdo com N, elétrons menos a energia da configuracao com
N, +1 elétrons) para produzir um determinante com N, + 1 elétrons ‘NeHII/“J‘ > com orbi-
tais de spin idénticos, exceto pelo acréscimo de um elétron no orbital de spin ¢, ¢ dada

por —&y;.

O teorema de Koopman permite estimar os potenciais de ionizacao e as afinidades

eletronicas. Nesta aproximacao, conhecida como aproximacao de “orbital congelado”,
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supoe-se que os orbitais de spin nos estados N, &£ 1, ou seja, os ions positivo e negativo se
|N \IJ> é uma espécie neutra, sao idénticos aos orbitais para o estado com N, elétrons. Tal
aproximagao ignora a relaxacao dos orbitais nos estados N, £ 1, ou seja, que os orbitais
de spin de |N\IJ> nao sao os orbitais otimizados para ‘Ne_l\Di> e |N€+1\IJ“J'>. Otimizar os
orbitais de spin dos determinantes com N, + 1 elétrons em dois calculos de Hartree-Fock
separados reduz o potencial de ionizacao e a afinidade. Portanto, deve-se concluir que
o teorema de Koopman tende a superestimar os valores dessas energias. Além do mais,
a aproximacao de um unico determinante para a funcao de onda produz certo erro, e
efeitos de correlagao obtidos quando se vai além da aproximacao de Hartree-Fock trarao
novas corregoes aos resultados obtidos através do teorema de Koopman. Em particular,
as energias de correlacao sao maiores para sistemas com mais elétrons. Logo, efeitos de
correlacao tendem a cancelar o erro de relaxamento para os potenciais de ionizacao, mas
o reforcam no céalculo de afinidade eletronica. Em geral, os potenciais de ionizacao de
Koopman sao boas aproximagoes de primeira ordem, mas as afinidades calculadas se-
gundo este teorema nao sao boas e diferem bastante dos resultados experimentais. Por
exemplo, muitas moléculas neutras ganham um elétron a fim de formar fons negativos
estaveis. Célculos de Hartree-Fock nesses casos, porém, quase sempre resultam em ener-
gias positivas para os orbitais virtuais, ou seja, prevéem que o acréscimo de um elétron é

energeticamente desfavoravel.

Tendo em vista que o conjunto de todos os determinantes de Slater construidos a partir
de todos os orbitais de spin forma uma base para a representacao do estado fundamental

exato, podemos escrever:

Ne oo
’\IJGS> =co|Y1...Yn) + Z Z ci |¢1 o Yim1 Wy Yigr - ¢Ne>+
i=1 j=1

Ne Ne o0 o0 (A52)
D DD bbb bt n)

i=1 j=1 k=1 I=1

J# l#k
Esta expansao é a base para o método de interagdo de configuracao (Configuration
Interaction - CI) para o célculo do estado fundamental (e também para estados excita-
dos). Temos, portanto, corregoes de determinantes com excitagdo simples, dupla, etc.
O teorema de Brillouin afirma que determinantes de excitacao simples nao interagem

diretamente com o determinante do estado fundamental:
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W N H 1 iathuigs ) = 0. (A.53)

E correto dizer, portanto, que resolver a equacao de autovalores de Hartree-Fock equi-
vale a garantir que |¥) nao incluird misturas envolvendo determinantes com um tnico
estado excitado. Neste sentido, o estado fundamental de Hartree-Fock é estavel até pri-
meira ordem. Correcoes mais relevantes para o estado fundamental sao fornecidas por

termos de segunda ordem, ou seja, envolvendo determinantes duplamente excitados.

A.2.5 Orbitais espaciais

Os orbitais de spin sao divididos em restritos e irrestritos. No método de Hartree-
Fock restrito (Restricted Hartree-Fock Method, RHF) os orbitais possuem a mesma funcao
espacial para as duas fungoes de spin a(w) e f(w). Num modelo de camada fechada, todos

os orbitais de mais baixa energia sao completamente ocupados:

W) = [t ) = |6lod . 6L, pdk e (A.54)

PR I S T S s 2l L)
s g
g g
L g0
s g H®

Figura 87: Diagrama representando a ocupacao de orbitais nos métodos de Hartree-Fock restrito
(esquerda) e irrestrito (direita). Note-se que no modelo irrestrito as camadas sdo naturalmente
abertas, ou seja, hd no maximo um elétron por orbital espacial.

O operador de Fock para coordenadas espaciais é dado por:

N./2
Fr) = hr) + Y [25(r) - K,(0)]. (A.55)

onde J;(r) e KC;(r) sdo, respectivamente, os operadores de Coulomb e de troca no modelo
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de camada fechada:

/ ?j(r ’r ) r,| , (A.56)

G = | [ Z ] o0 (A57)

O valor esperado para a energia de Hartree-Fock é:

Ne/2 Ne/2 Ne/2
= (V| H|D) _2Zhu+zz (A.58)
=1 j=1
onde:
his = ($i(x)| h(r) [6i(r)) (A.59)
Ty = (0:(0)| T5(x) |6:(x)) , (A.60)
Ky = (6:(0)] K, (x) 04(r)) (A.61)
A energia dos orbitais é dada por:
N./2
j=1

Como nem todos os sistemas sao de camada fechada, é necessario generalizar o for-
malismo para acomodar situacoes nas quais uma molécula possui um ou mais elétrons
nao emparelhados. As abordagens mais usadas em sistemas de camada aberta empregam
orbitais restritos ou irrestritos. No método restrito (Open-Shell Restricted Hartree-Fock
Method - ORHF), todos os elétrons menos os explicitamente necessarios para formar as
camadas abertas, encontram-se em camadas fechadas. A vantagem deste procedimento é
que a funcao de onda obtida é autofuncao do operador de spin S2. A desvantagem é que
a exigencia de ocupagao de orbitais em pares aumenta a energia calculada em relagao ao
valor exato. Além disso, as equagoes que devem ser resolvidas sao mais complicadas que
as usadas no método irrestrito. A descri¢ao restrita de Hartree-Fock é imprépria para
descrever estados de camada aberta como estados excitados (dupletos, tripletos, etc.) e

moléculas com comprimentos de ligagdo grandes (por exemplo, a molécula de hidrogénio,
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H,, que se dissocia em espécies de camada aberta).

006
004 - 004

002 |- 0.02
06 10 14 18 22 26 30 34 R(u.a.)
1 A 1 1 i L A A
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<
s -002f i— -0.02
= T
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Figura 88: Energia potencial para a molécula de Hy usando dois conjuntos de base (ver a subsegao
A.2.7 mais adiante): STO-3G (esquerda), 6-31G** (direita), segundo os métodos de Hartree-
Fock restrito (RHF) e irrestrito (UHF). Diagrama representando a ocupagao de orbitais nos
métodos de Hartree-Fock restrito (esquerda) e irrestrito (direita). O resultado exato foi obtido
por Kolos e Wolniewicz [215]. Unidades atéomicas sao utilizadas. Figura retirada de [214].

O método de Hartree-Fock irrestrito (Unrestricted Hartree-Fock Method - UHF) ga-
rante maior liberdade a forma dos orbitais, tornando a parte espacial do orbital depen-
dente do spin. E um método que forma necessariamente camadas abertas (cada orbital
espacial comporta apenas um unico elétron). A funcao de onda UHF fornece uma ener-
gia ligeiramente mais baixa que a obtida pelo método ORHF e é mais 1til para prever
o espectro de ressonancia eletronica de spin. O maior problema com a funcao de onda
UHF é que ela nao é uma autofuncgao do operador de spin S2 (pior: é impossivel construir
uma autofuncao de S? através de uma combinagao linear de fungées UHF), enquanto a
verdadeira funcao de onda e a funcao de onda RHF de camada aberta sao autofuncoes
deste operador. Quando uma funcao de onda UHF é encontrada, é necessario calcular
<§2> e comparar com S(S + 1). Se a diferenga for significativa, a fun¢ao de onda UHF

deve ser vista com desconfianca.

A.2.6 Equacoes de Roothaan

Apoés a eliminacao da variavel de spin, temos de resolver a equacao integral-diferencial

de Hartree-Fock:
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F(r)ei(r) = £igi(r). (A.63)

Clemens Roothaan propos resolver este problema através da introducao de um con-
junto de fungoes de base conhecidas {£,(r)} com v = 1,2,3, ..., K, expandindo os orbitais

moleculares linearmente nesta base:

K
= Ci&(r), i=1,23,.. . K. (A.64)

Em geral, a expansao é exata somente se o nimero de func¢oes de base for infinito.
A otimizacao do custo computacional exige que se escolha um conjunto finito de vetores
de base adequado para a obtencao de orbitais moleculares aproximados. O nimero de
orbitais linearmente independentes sera sempre no maximo igual ao nimero de fungoes
de base. Substituindo a expansao dos orbitais em uma base com nimero finito de fungoes

na equacao de Hartree-Fock, temos:

1)) Cuib(r) =2 Y Cuibi(r). (A.65)

Multiplicando ambos os lados por £*(r) e integrando, obtemos a equagao matricial:

Zom [smFwe r—s,ZOW [ met (A.66)

Definimos agora as matrizes de overlap (ou métrica) e de Fock, respectivamente:
Sy = /§Z(r)§,,(r)dr, (A.67)

B = [ GFwg x)ar (A68)

Ambas as matrizes sdo hermiteanas. As fungoes de base {£,(r)} s@o linearmente
independentes e normalizadas, embora nao sejam em geral ortogonais. Logo, 0 < |S,,| <
1. Os elementos da diagonal principal de S sao iguais a 1 e os elementos fora da diagonal
principal tem moédulo menor do que 1. S pode ser diagonalizada empregando-se uma
matriz unitaria e é possivel provar que seus autovalores sdo necessariamente positivos (a

matriz S é positiva-definida). Quando os autovalores se aproximam de zero ou o overlap é
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proximo de 1 para fungoes de base distintas, temos o limite no qual as fungoes se tornam

linearmente dependentes.

Usando as Eqgs. (A.67) e (A.68), podemos escrever a equacao de Hartree-Fock inte-

grada como:

K K
> FuCui=¢Y SuCu i=123. K (A.69)

v=1 v=1

Tais sao as equagoes de Roothaan, que podem ser escritas de modo mais simplificado

usando matrizes:

FC =SCe . (A.70)
Aqui, € é uma matriz diagonal contendo as energias dos orbitais. As colunas da matriz
C contém os orbitais moleculares procurados.

A densidade de carga eletronica no modelo de camada fechada é dada por:

Ne/2

plr) = =23 [i(r)l’, (A.71)

e depende da probabilidade de encontrar um elétron numa certa regiao do espaco. E
comum representar tal densidade através de mapas de contorno para varios planos de

corte moleculares.

Substituindo a autofuncao ¢; por sua expansao na base {,(r)} e efetuando algumas

manipulacoes algébricas, temos:

p(r) =D Puu(r)&(r), (A.72)

p=1 rv=1
onde:
Ne/2
P =-2) CuCy, (A.73)
i=1

é a matriz densidade, ou matriz de densidade de carga. Dado um conjunto de base {&,(r)},

a matriz P especifica completamente a densidade de carga p(r). O operador de Fock para
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o problema de camada fechada pode ser escrito em termos desta matriz:

& (r 2 - rr’)gu(r/) /
/ - dr] : (A.74)

O operador P, permuta as coordenadas r e r’ de todas as funcoes a sua direita.

F(r) = h(r +§ZZ

p=1 v=1

Da Eq. (A.74), o potencial de Hartree-Fock é dado por:

1
VHF (¢ = Z Z P,

p=1 v=1

/g 2 Prr)fu( )dr]. (A.75)

— 1/

A representacao matricial do operador de Fock pode ser escrita como:

Fu, = HOMOC 1 G, (A.76)

onde:

e [ i e -

- &0 |57 Zw R,

1 o Z
- / £ (r') [—§Vf,}§y(r’)dr’+ / 5 (r') [—Z m
< N I=1

'
Tuv

gu( ) -

& (r)dr' .

(A.77)

w
Vnuclear
ny

As integrais T),, e Vlf‘l}‘dear envolvem operadores que atuam sobre um tnico elétron e
necessitam ser calculadas somente uma vez no método autoconsistente. A matriz G, ¢

dada por:

ZP [ uv|oX) — L (u)\|ay) (A.78)

1 o0=1

|
]~

>
Il

sendo:

(uv|Ao) = / ulr £V|r - r)e(r )dr "dr (A.79)
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o termo resultante da interacao de dois elétrons via potencial de Hartree-Fock. Para a
matriz que representa o operador de Fock, portanto, temos um termo de elétron simples,
HEAROCO "o yum termo de dois elétrons, G, que depende da matriz densidade P e de um

conjunto de integrais nas coordenadas espaciais de duas dessas particulas (Eq. A.79).

As equagoes de Roothaan sao nao-lineares:

F(C)C = SCe . (A.80)

Para resolvé-las, primeiramente se faz a ortogonalizacao dos orbitais. Encontra-se
uma matriz X a partir da matriz S (por ortogonaliza¢do simétrica ou ortogonalizacao

canodnica) tal que:

XISX = I, (A.81)

onde | é a matriz identidade. Define-se entdo uma matriz de coeficientes modificada C’

tal que:

C'=X"'C, C=XC. (A.82)

Multiplicadas & esquerda por X', as equacdes de Roothaan se transformam em:

(XTFX)C' = F'C' = (X'SX)C'e =Ce. (A.83)
&7:7—/ &\r—/

Que sao as equagoes de Roothaan modificadas, as quais podem ser resolvidas para os

coeficientes de C" através da diagonalizacao de F'. Dado C', C pode ser obtido a partir da
Eq. (A.82).

O procedimento autoconsistente pode ser resumido nos passos apresentados na Fig.
89.

Um dos critérios de convergéncia mais adotados é observar a energia eletronica total
em cada iteracao e exigir que dois valores sucessivos desta energia difiram por no méaximo
um pequeno valor ¢ (usualmente da ordem de 107° eV). Outra maneira de definir a
convergéncia é olhar para os elementos da matriz densidade e exigir que o desvio padrao da
distribuicao formada por todos os seus elementos em duas iteragoes sucessivas seja menor

que uma tolerancia estabelecida. Um valor de § = 10~ para o critério de convergéncia
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Especificacdo da molécula (coordenadas nucleares,
nameros atémicos dos elementos, nimero de
elétrons, conjunto de base).

Calculo das integrais moleculares necessarias

S;[y? H:;?ROCO > ()LlV | 2’0-)

Calculo da matriz de Fock transformada F'=XTF X

Diagonalizar F' para obter C' e ¢'

Formar uma nova matriz densidade P a partir de C

Diagonalizacao da matriz de overlap S
para o calculo de X

Determinacao de um "chute" inicial para a matriz
densidade P

Calculo da matriz G a partir da matriz densidade P.

Convergéncia?

Calculo de propriedades e valores esperados

Figura 89: Fluxograma do método autoconsistente de Hartree-Fock restrito

via matriz densidade equivale, em geral, a um ¢ no critério de convergéncia por energia

da ordem de 107° eV.

Dentro da aproximacao de Born-Oppenheimer, o método de Hartree-Fock determina
um valor aproximado para o estado fundamental do sistema a partir das particulas que
o constituem (dai ser considerado um método ab initio). Com o acréscimo da energia
repulsiva entre os niicleos a energia de Hartree-Fock determina-se a energia total (EoT)
do sistema (a menos de termos relacionados com a energia cinética nuclear, em geral

despreziveis) em fungao das coordenadas nucleares, {R;}.

Variando as coordenadas nucleares, é possivel descobrir um minimo local para Epq

que otimiza a geometria da molécula. Para isto um algoritmo usado comumente é o do
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gradiente conjugado, que utiliza o gradiente da fun¢ao de n variaveis que se deseja mini-
mizar. Tal método emprega direcoes conjugadas a direcao definida pelo gradiente local
para “descer as ladeiras” na hipersuperficie que representa a energia total do sistema em
fungao de {R;}. Se a conformagao da hipersuperficie assemelha-se a um vale longo e
estreito nas vizinhancas do minimo desejado, este é encontrado mais rapidamente. Re-
sumindo em poucas palavras o procedimento numérico, efetuam-se varias iteragoes nas
quais sao geradas seqiiéncias de vetores que sucessivamente aproximam a solucao dese-
jada valendo-se dos residuos e das direcoes de busca de iteragoes anteriores. Como as
direcoes sao linearmente independentes, a minimizacao caminha numa trajetoria que au-
menta a eficiéncia da exploragao do espaco n-dimensional, evitando que a cada iteragao
seja desperdicado o trabalho de minimizacao ja realizado. Este algoritmo funciona bem

em sistemas positivo-definidos simétricos, como é o caso de EpoT.

Uma analise semelhante a que foi feita aqui para o método restrito de camada fechada
pode ser estendida ao método irrestrito de camada aberta. Neste caso as equagoes de
Roothaan sao substituidas pelas equagoes de Pople-Nesbet, que distinguem os orbitais
espaciais com diferentes spins. No lugar de uma densidade de carga simples, sao obtidas
duas densidades de carga dependentes do spin eletronico e uma densidade de spin positiva
ou negativa conforme existam mais spins up ou down numa regiao do espaco. Para o caso
em que o numero de elétrons com os dois tipos de spin € igual, as equagoes de Pople-Nesbet
podem apresentar duas solugoes distintas: uma que coincide com a solucao restrita dada
pelas equagoes de Roothaan e outra solugao, irrestrita e de energia mais baixa (portanto,
mais desejavel). Para se chegar a esta ultima solugao, é necessario atribuir densidades de

carga iniciais diferentes para os dois tipos de spin.

A.2.7 Bases de funcoes

Crucial para a realizacao de calculos ab initio é a escolha de uma base adequada em
termos de custo-beneficio computacional. Os tipos de fungoes de base mais empregados

em moléculas sao fungoes de Slater:

558(1. - RI: C) = N#Plt('r - Xf7y =Y,z ZI) eXp[_C |I‘ - R‘IH <A84)

e fungoes gaussianas:
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&% r—Ry,a) = N,P,(x — X1,y — Y1,z — Zp) exp[—a|r — Rq|?]. (A.85)

A funcao P,(z,y,z) é um polinomio que especifica o carater da funcao de base (s,
p, d, f, etc.). Para representar as caracteristicas dos diversos tipos de orbital, é possivel
escrever estes polinomios em forma pura ou cartesiana. Por exemplo, uma representacao
pura do orbital d exige cinco funcées (5D): dyy, dy.,dy., dy2—y2,d,2.  Na representacao
cartesiana empregam-se seis funcoes (6D): dyy, dyz, dyz, dy2, dy2, d 2, que ndo representam
um orbital d puro, mas exibem contaminagao de orbital do tipo s. Cada conjunto de base
padrao incluido nos programas para calculos ab initio em moléculas é geralmente definido

em uma dessas duas representacoes.

dxy

(@)

>

dxz -2 d22 fxyz
() (e) (f)

Figura 90: Orbitais do tipo d e um orbital f.

As funcoes de base sao centradas no nucleo de coordenada R;. Os expoentes ( e «
relacionam-se ao “tamanho” das funcoes. A maior diferenca entre os dois tipos de base
ocorre em 7 = 0 e para grandes valores de r. Em r = 0, a derivada da fungao de Slater
¢ finita e a derivada da funcao gaussiana ¢é zero. Para r grande, a gaussiana decai bem

mais rapido que a funcao de Slater.

Bases de Slater sao mais adequadas para o célculo de funcgoes de onda eletronicas. As
caracteristicas qualitativas de um orbital molecular sao capturadas com maior precisao

pelas funcoes de Slater que pelas fungoes gaussianas, sendo necessarias menos funcoes do
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primeiro tipo para uma boa expansao. Contudo, as integrais necessarias ao calculo de
Hartree-Fock tornam-se mais simples de resolver numa base gaussiana. Tendo em mente
que o custo computacional do método Hartree-Fock cresce com o tamanho da base de
acordo com a quarta poténcia de K (mais precisamente da ordem de K*/8), tal vantagem

¢ extremamente valiosa para ser ignorada.

A fim de reduzir a incompatibilidade das fungoes gaussianas com a natureza dos orbi-
tais moleculares, empregam-se combinacoes lineares dessas fungoes, as quais sao chamadas

de contragoes:

L
G —Ry) =Y dil(r — Ry, ). (A.86)
=1

L,d;, e «;, sao, respectivamente, o comprimento, os coeficientes e os expoentes da
contracao. Escolhendo corretamente esses parametros é possivel aproximar satisfatoria-
mente os orbitais atomicos e moleculares de Hartree-Fock. Um procedimento que é muito
observado é ajustar um orbital de Slater (Slater Type Orbital - STO) a uma combinagao
linear de L = 1,2,3, ... funcoes gaussianas primitivas. O procedimento STO-NG ajusta

N primitivas gaussianas para cada funcao de Slater.

LATER

0.5} S
L\ e STO-16
04k — — == §T0-26

—— —— ST0-36

0 B 1o 5 20 28 30 35 40
r(u.a.)

Figura 91: Comparacao da qualidade do ajuste de um orbital de Slater 1s usando combinagoes

lineares de uma, duas e trés gaussianas. Unidades atomicas sao utilizadas. Figura retirada de
[214].

Conjuntos de base minimos contém o menor nimero de fungoes de base necessarias

para descrever cada dtomo (um STO para cada orbital atomico de cada dtomo). Por
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exemplo:
H: 1s
C: 1s, 2s, 2ps, 2py, 2p.

Estes conjuntos minimos empregam orbitais atomicos de tamanho fixo. O conjunto de
base STO-3G ¢é um conjunto minimo (embora nédo o menor) que usa trés primitivas gaus-
sianas (3G) por func¢do. Pode-se aumentar um conjunto de base aumentando o nimero de
funcoes de base por atomo. Conjuntos de base com split de valéncia, como 3-21G e 6-31G,
possuem duas (ou mais) fungoes de Slater aproximadas para cada orbital de valéncia, cada
uma delas com tamanho (¢) préprio. Por exemplo, o hidrogénio e o carbono podem ser

representados nesse tipo de base como:
H: 1s, 15
C: 1s, 25, 28, 2p,, 2py, 2p., 20, 2p,, 20,

onde os orbitais com e sem ' diferem apenas no tamanho. Similarmente, conjuntos de base
com split triplo de valéncia, como o 6-311G, usam trés fungoes contraidas de tamanhos

distintos para cada tipo de orbital de valéncia.

Cabe aqui um esclarecimento sobre a notacao adotada usualmente para represen-
tar conjuntos de base com primitivas gaussianas. Quando se tem conjunto de base N-
IJKL...G, N indica o nimero de primitivas usadas para construir cada funcao de Slater
representando um tnico orbital interno (um unico valor de ¢) e I, J, K, L, . .. sdo nimeros
indicando em seqiiéncia a quantidade de primitivas que definem as varias funcoes de Sla-
ter (com diferentes valores de () que representam cada orbital de valéncia. O nimero de
indices I, J, K, L, ... conta a quantidade de fungoes de Slater usadas para descrever esses

mesmos orbitais.

Os conjuntos de base zeta duplo (double zeta - DZ) sao obtidos substituindo cada
STO de um conjunto de base minimo por dois STOs que diferem no parametro ¢ para
todas as camadas, tanto internas como de valéncia. Acrescentando mais STOs, temos

conjuntos de base zeta triplos (TZ), zeta quadruplos (QZ), etc.

Os conjuntos de base com split de valéncia duplo ou triplo por vezes sao chamados

de conjuntos de base zeta duplo ou triplo de valéncia.

Quando ocorre formacao de uma molécula, os orbitais atomicos sofrem deformacao
e seus centros de carga sao deslocados, produzindo certa polarizacao. Com o fito de

descrever este fenomeno, acrescentam-se STOs com ntimeros quanticos azimutais / maiores
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que o valor maximo de [ na camada de valéncia do atomo no estado fundamental. Diz-se

que qualquer base com esta caracteristica é uma base polarizada.

Conjuntos de base com polarizacao acrescentam fungoes tipo d aos STOs do atomos
de carbono e f aos metais de transicao. Em alguns casos, somam-se fungoes p aos atomos
de hidrogénio. Dois conjuntos bastante utilizados sao o 6-31G* (ou 6-31G(d), apontando
o acréscimo de fungdes tipo d para descrever atomos mais pesados que o hidrogénio) e
0 6-31G** (ou 6-31G(d,p), que adiciona fungoes p aos atomos de hidrogénio, além de

fungoes d aos atomos pesados).

Funcoes de base difusas sao versoes aumentadas das fungoes do tipo s e p que permi-
tem aos orbitais ocupar uma regiao maior do espago. Conjuntos de base desse tipo sao
importantes no caso de sistemas onde os elétrons se encontram relativamente longe do
nucleo: moléculas com pares solitarios, anions e outros sistemas com carga negativa nao
desprezivel, sistemas em estados excitados, sistemas com baixos potenciais de ionizacao,

etc.

O conjunto de base 6-31+G(d) é equivalente ao conjunto 6-31G(d) para atomos pe-
sados, diferindo apenas pela presenga de fungoes difusas. A versao 6-31++G(d) também
acrescenta fungoes difusas aos atomos de hidrogénio, o que poucas vezes faz alguma dife-

renca nos calculos.

Com o avanco na capacidade de processamento dos computadores, trabalhar com
conjuntos de base cada vez maiores tornou-se viavel. Vérias bases agora incluem multiplas
funcoes de polarizagao por atomo e trés ou mais valores de (. Por exemplo, o conjunto
6-31G(2d) soma duas fungoes d por atomo pesado ao invés de apenas uma, enquanto o
conjunto 6-31++G(3df,3pd) possui trés conjuntos de fungoes de valéncia, fungoes difusas
tanto para atomos pesados como para os hidrogénios e miltiplas funcoes de polarizagao:
trés fungoes d e uma funcao f para atomos pesados e trés fungoes p e uma fungao d para
atomos de hidrogénio. Tais conjuntos sao apropriados para estudar as interagoes entre
elétrons em métodos de correlagao, mas nao sao necessarios em calculos de Hartree-Fock

corriqueiros.

Alguns conjuntos de base especificam diferentes conjuntos de fungoes de polarizagao
para atomos pesados, dependendo da linha da tabela periddica na qual estes se localizam.
O conjunto de base 6-311+(3df,2df,p) aloca trés orbitais d e um f para dtomos a partir
da segunda linha da tabela peridédica, dois orbitais d e um orbital f para dtomos pesados
na primeira coluna e um orbital p para os atomos de hidrogénio. Note-se que os quimicos

quanticos ignoram os elementos H e He na numeracgao das linhas da tabela periddica.
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A Tabela 71 apresenta as bases mais usadas juntamente com as recomendagoes de

uso.

A.2.8 Erro de superposicao de conjuntos de base

Suponhamos o calculo da energia de dimerizagao de A e B usando um conjunto de base
qualquer. O procedimento natural a seguir seria calcular a energia do dimero AB nesta
base para cada um dos atomos do dimero, e calcular a energia de cada monomero usando
o mesmo conjunto de base para cada um dos atomos do monomero, obtendo a energia
de dimerizagio AE = BB, ({64} + {66}) — Eor(1a}) — Blo({€)): {€4} designa
o conjunto de base contrado nos dtomos de A. E{jo; ({€4}) é a energia na geometria de
equilibrio de A calculada com o conjunto de base {4}. As mesmas consideragoes aplicam-
se a B. A quantidade E{JB; ({€a} + {€B}) é a energia de AB calculada no conjunto de
base aumentado {4} + {&p}. Tal procedimento revela uma inconsisténcia, pois a base
usada para descrever o dimero é maior (contém mais fungdes de base) que as bases usadas
para descrever os monomeros, o que reduz de modo artificioso a energia de dimerizacao.
Esta reducao postiga é chamada de erro de superposicao de conjuntos de base (Basis-Set
Superposition Error - BSSE). O BSSE desaparece no limite em que se usa um conjunto
completo para cada monomero. O procedimento mais utilizado para corrigir o BSSE ¢
usar o mesmo conjunto de base tanto para os dimeros como para os monomeros. Este
método, chamado de correcao de contrapeso, sofreu criticas no inicio, mas é reconhecido

atualmente como o melhor método para reduzir o erro BSSE.

A.2.9 Anadlises de populacao e valores esperados

Nao hd modo univoco de determinar o nimero de elétrons associados a um certo
nicleo em uma molécula, mas é interessante por vezes fazer um estudo populacional. No

modelo de camada fechada, existem dois elétrons em cada orbital molecular:

Ne/2

N=2Y / 64(r) 2 (A87)

temos, substituindo a expansao de ¢;(r) na base &,(r):

K

K K
Ne=>"Y PuSuu =Y _(PS), =trPS. (A.88)

p=1 v=1 n=1
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Conjunto de base

[Atomos aplicaveis]

Descricao

Atomos da
Primeira
linha

Numero de fungées de

Atomos de
hidrogénio

Tipos de
funcao
padrao

[H-Br]

para os hidrogénios, bem como funcaes
difusas em ambos.

STO-3G Conjunto minimo: uso para resultados
e ) i 5 1 6D
[H-Xe] qualitativos em sistemas muito grandes.
Split de valéncia: dois conjuntos de
funcoes na regiao de valéncia garantem
3-21G = :
uma representacao mais adequada dos 9 2 6D
[H-Xe] o ; ;
orbitais. Usa-se em moléculas muito
grandes para a base 6-31G(d).
6-31G(d) ou 6-31G* ’Acrescenta fungoes.de polanzac;.ao Ipara
[H-C(] atomos pesados. Aplica-se na maioria dos 15 2 6D, 7F
casos até sistemas de tamanho médio.
Acrescenta funcoes de polarizacao para
o hidrogénio e atomos pesados. Aplica-se
6-31G(d,p) ou 6-31G** quando os hidrogénios sao sitios de
; 15 5 6D, 7F
[H-CL] interesse (por exemplo, para calcular
energias de ligacao) e para calculos de
energia definitivos em precisao.
6-31+G(d) ou 6-31+G* Acrescen.ta funcées difusas. In'!p’or.tante
[H-CL] para sistemas com pares solitarios, 19 2 6D, 7F
anions, estados excitados.
Acrescenta funcoes tipo p aos
6-31+G(d,p) ou 6-31+G** hidrogénios. Usa-se quando func¢des
. 4 T 19 5 6D, 7F
[H-CL] difusas e correcoes deste tipo sao
necessarias.
Zeta triplo: acrescenta funcoes de
valéncia extras (trés tamanhos de
6-311+G(d,p) ou 6-311+G** | funcdes s e p) ao conjunto 6-31+G(d). 2 6 5D. 7F
[H-Br] Funcodes difusas podem também ser !
acrescentadas aos atomos de hidrogénio
via um segundo +.
Coloca 2 funcdes d nos atomos pesados
g-211:6124,p) (mais fungées difusas), e 1 funcao p para 27 6 5D, 7F
[H-Br] : e
o hidrogénio.
Coloca 2 funcdes d e 1 funcao f nos
Sl ) atomos pesados (mais funcoes difusas), e 34 9 5D, 7F
[H-Br] o ; : %
2 funcées p nos atomos de hidrogénio.
Poe 3 funcdes d e 1 funcao f nos atomos
6-311++G(3df,2pd) pesados, e 2 funcées p mais 1 funcao d 39 15 5D 7F

Tabela 71: Alguns conjuntos de base recomendados [206].
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Podemos interpretar (PS),,, como o nimero de elétrons associados a &,(r). Tal inter-
pretagao é chamada de andlise de populagao de Mulliken. Supondo que as fungoes de base
estao centradas nos ntcleos atomicos, o nimero correspondente de elétrons associados a
um dado atomo em uma molécula é obtido somando-se os elétrons para todas as fungoes

de base centradas no atomo. A carga liquida associada ao atomo A fica dada por:

ga=Za+ Y (PS)u (A.89)

nEA

onde Z,4 ¢é a carga do nicleo atomico A. O indice da soma indica que s6 somamos sobre

funcoes de base com centro em A.

Tal definicao nao é tunica, uma vez que trAB = trBA. Logo, podemos escrever em

geral:

K
Ne=> (S"PS"™),. (A.90)
pn=1
Com k = 1/2, temos:
K
N.=> (S'/?Ps'?),, (A.91)
pn=1

Esta expressao define uma anélise de populagao de Lowdin:

qa=Za+ Y (SY°PS'?),,. (A.92)
nEA
Nenhum desses esquemas de andlise populacional é tinico, mas eles sao muitas vezes

uteis para comparar diferentes moléculas usando o mesmo tipo de base.

E facil ver porque é necessario ter cautela com andlises de populagao. Pode-se, por
exemplo, colocar todos os vetores da base centrados em um tinico atomo, o que, numa
analise populacional, resultaria erroneamente na pertenca de todos os elétrons a este

atomo singular.

Uma maneira mais razoavel de determinar as cargas atomicas é o ajuste do poten-
cial eletrostatico da molécula. Primeiramente é determinada uma densidade eletronica
molecular que permite o calculo do potencial eletrostatico em um conjunto de pontos

selecionados fora da superficie de van der Waals. A seguir, atribuem-se valores de carga
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a cada nucleo e calcula-se o potencial eletrostatico que a combinacao de todas as cargas
nucleares atribuidas produz nos pontos selecionados. Variam-se os valores dessas car-
gas nucleares (mantendo a neutralidade molecular como vinculo) de modo a minimizar o
desvio quadratico entre o valor do potencial calculado via funcao de onda e o potencial
obtido via cargas nucleares. Ha diversas formas de se escolher os pontos fora da molécula
e podem ser incluidos vérios refinamentos adicionais, existindo varios esquemas para cal-
cular as cargas atribuidas aos nicleos na técnica do potencial eletrostatico (FElectrostatic
Potential - ESP).

O particionamento do momento de dipolo em contribui¢oes atomicas e de ligacao tem
sido explorado hd um bom tempo [216, 217, 218, 219, 220, 221]. O momento de dipolo p
de uma molécula neutra é invariante sob translacoes, mas a magnitude de sua contribuicao
¢ modificada pela escolha da origem. As derivadas do momento de dipolo em relacao as
coordenadas cartesianas dos atomos estao diretamente ligadas as intensidades infraverme-
lhas por um método conhecido como formalismo do tensor atémico polar (Atomic Polar
Tensor - APT) [222, 223]. Neste formalismo, para cada dtomo «a na molécula existe uma

matriz 3 x 3 P cujos elementos sdo:

pe) - P (A.93)

T

onde p, ¢ uma das componentes do momento de dipolo e 2y ¢ a coordenada z, do atomo
«. Tais derivadas foram interpretadas em termos de cargas atomicas por varios autores
[224, 225, 226]. De acordo com o modelo proposto por Cioslowski [226], a carga atomica

APT do 4tomo « é igual a 1/3 do traco do tensor T(®).

A energia eletronica total é o valor esperado de H , expresso na Eq. (A.30). O valor

esperado para qualquer observavel @ para o sistema no estado fundamental é dado por:

(V[O|). (A.94)

A maior parte das propriedades das moléculas (momento de dipolo, momento de qua-
drupolo, gradiente de campo no nicleo, suscetibilidade diamagnética, etc.) sao descritas

por somas de operadores de um elétron na forma geral:

Ne
Or =) i), (A.95)
=1
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onde 7); é qualquer operador dependendo apenas das coordenadas de um tnico elétron.

Os valores esperados para tais operadores terao sempre a forma:

(6.) = OM =33 R [ €t (A.96)

p=1 v=1

Por exemplo, o momento de dipolo de uma molécula é dado por:

o= (=Y + S 2R, (A.97)

onde o primeiro termo é a contribui¢do (quantica) dos elétrons de carga -1 e o segundo
termo é a contribuicao (cldssica) dos nicleos de carga Z; para o momento de dipolo. O

operador de dipolo eletronico é uma soma de operadores de um elétron. Portanto:

po==Y > Pu / x(r)ré, (r)dr + ; ZiR;. (A.98)

p=1 v=1

Para calcular o momento de dipolo precisamos, além de P, das integrais de dipolo:

/f;‘(r)mfu(r)dr,/f;ﬁ(r)yfu(r)dr,/fﬁ(r)zfu(r)dr. (A.99)

Raciocinio semelhante pode ser aplicado no célculo dos tensores de momento quadru-

polar e octupolar.

A.3 Propriedades moleculares e interacoes de moléculas
com radiacao

A.3.1 Cadlculo de propriedades vibracionais e termodinamicas em
moléculas

A otimizagao da geometria de uma molécula leva a uma estimativa de minimo local
da energia molecular Ep7(R;). Infelizmente sao desconsiderados os movimentos nu-
cleares em torno do minimo exato (energia de ponto zero) que podem causar problemas
na acuracia dos calculos. O célculo da energia de ponto zero requer o conhecimento das
freqiiéncias naturais de vibragao moleculares. O calculo tedrico de freqiiéncias vibracio-

nais também ajuda na anélise do espectro infravermelho (vale lembrar que é praticamente
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impossivel entender corretamente as assinaturas do espectro infravermelho de moléculas

sem o uso da mecanica quantica).

O calculo de freqiiéncias vibracionais permite classificar um ponto estacionario da
energia como um minimo local (todas as freqiiéncias vibracionais sao reais) ou um ponto

de sela de ordem n (n freqiiéncias imaginarias).

A Eq. (A.13) pode ser considerada como a equagao de Schrodinger para o movimento
nuclear em uma molécula. A energia molecular total Eyjo1, ¢ aproximadamente a soma
das energias translacionais, rotacionais, vibracionais e eletronicas. Usando o oscilador
harmonico como modelo, a energia vibracional de uma molécula com N,, niicleos é a soma
das energias vibracionais dos seus modos normais (total de 3N,, — 6 modos, ou 3N,, — 5

para moléculas lineares):

3N, —6 1

EVIB = Z (TLZ + 5) Wi, (AlOO)
i=1

onde w; é a freqiiéncia harmonica ou vibracional para o i-ésimo modo normal. Cada

nimero quantico n; pode assumir os valores 0,1,2,..., independentemente dos demais

numeros quanticos vibracionais. Para o estado fundamental, cada um dos nimeros

quanticos € igual a zero, e a energia do ponto zero na aprozimacao do oscilador harmonico
, . 3N, —6
¢ Epz = (1/2) 300 wi.

O procedimento para calcular as freqiiéncias normais de uma molécula consiste em,
primeiramente, resolver a equacao de Schrodinger (Eq. (A.13)) para véarias geometrias
moleculares até encontrar um minimo de energia. Em seguida, calcula-se o conjunto de

derivadas parciais segundas para formar a matriz Hessiana:

92Eror 02Eror | .. 92EtoT
oX? 9X,0Y: 0X10Z3n,
9°BEror  9%Eror .., _9’Eror.
8Y18X1 8Y12 8Y1(9Z3N€ (A 101)
0’Eror  0%Eror ..,  92Eror
8Z3N68X1 8ZgNan1 BZf)?Ne

Aqui, (X7,Yr, Z;) sao as coordenadas do I-ésimo nucleo da molécula no sistema centro
de massa (CM). As derivadas s@o calculadas para a configuracao de coordenadas nucleares
que minimiza Eror. Tais derivadas segundas podem ser calculadas analiticamente a partir

das fungoes de onda determinadas ab initio (ou por outros métodos).

Apés a determinagao da matriz Hessiana, forma-se uma matriz de constantes de forga:
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. 1 82ETOT
V MIMJ anaQJ MIN’

onde (); pode representar coordenadas X,Y ou Z. A partir da diagonalizacao desta

/{ij

(A.102)

matriz, sao obtidos os modos normais de vibracao:

det(k — Al) = 0. (A.103)

Os autovalores sao os quadrados das freqiiéncias normais de vibracao, w? = \;. Seis
desses valores serao iguais a zero, correspondendo aos trés graus de liberdade translacionais
mais trés graus de liberdade rotacionais (na prética, como a geometria de equilibrio nunca
é encontrada com perfeita acurdcia, é possivel encontrar seis freqiiéncias vibracionais com
valores bem préximos de zero: |w;|/c < 300cm™. As 3N, — 6 freqiiéncias vibracionais

restantes sao freqiiéncias vibracionais moleculares harmonicas.

E importante frisar que um céalculo de freqiiéncia vibracional deve ser precedido por
uma otimizacao de geometria usando o mesmo método e o mesmo conjunto de base que
serd empregado no calculo das freqiiéncias. Sao falsas todas as “freqiiéncias” calculadas

em um ponto que nao ¢ um minimo local da energia Eror.

As autofuncoes calculadas resolvendo o sistema:

3N,
E (Ki]‘ - 5lj>‘k) A = 0 (A.104)
=1
fornecem as componentes aj; do k-ésimo autovetor associado ao autovalor A\;. A quan-
tidade /ms/m;(a;i/as;) fornece a razdo entre as amplitudes vibracionais classicas das

coordenadas (); e Q)5 para o k-ésimo modo normal.

A freqiiéncia de absorcao de luz para a transicao na qual o nuimero quantico vi-
bracional nj; passa de 0 a 1 sem mudanca nos demais niimeros quanticos vibracionais é
chamada de freqiiéncia fundamental do k-ésimo modo normal. Efeitos anarmonicos fazem
com que a freqiiéncia vibracional seja menor que a freqiiéncia harmonica correspondente.
Frequéncias vibracionais sao convertidas em ntimeros de onda dividindo seus valores pela
velocidade da luz c. Valores experimentais das freqiiéncias harmonicas sao obtidos a par-
tir da andlise dos espectros infravermelho e Raman. Para moléculas médias e grandes,
muitas vezes apenas as freqiiéncias fundamentais sao conhecidas. Para calcular a ener-

gia do ponto zero, é preferivei usar as freqiiéncias fundamentais, uma vez que estas ja
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incorporam correcoes de anarmonicidade.

As freqiiéncias vibracionais harmonicas calculadas através do método de Hartree-
Fock sao usualmente maiores que as freqiiéncias harmonicas observadas. Podem ser feitas
boas estimativas das freqiiéncias fundamentais multiplicando as freqiiéncias harmonicas
obtidas de modo autoconsistente a partir de calculos ab initio usando um fator de escala
empirico. Para a base 6-31G* no método HF, tal fator é 0.895 [166]. A referéncia [166]
fornece fatores de escala para diversos métodos e conjuntos de base, incluindo fatores
de escala separados para freqiiéncias vibracionais, energias de ponto zero e propriedades

termodinamicas).

Os resultados de uma analise vibracional ou do célculo de uma matriz Hessiana podem
ser usados para estimar a entalpia (H), entropia (S5), energia de Gibbs (G) e calores
especificos a pressao constante (C,) e volume constante (Cy). em fungao da temperatura.

Na aproximacao do gas ideal, a entalpia é dada por:

H(T) = Errans(T) + Eror(T) + Evis(T) + NakgT, (A.105)
onde:
3
Errans(T) = §NA/€BT, (A.106)
3
Eror(T) = §NA/€BT7 (A.107)

| 36 3N, —6
w; exp (—w; /kgT)
EVIB( E w; + E y (AlOS)
1 —exp (—w;/kgT)
sao, respectivamente, as energias vibracional, rotacional e translacional da molécula. Para
o caso em que a molécula € linear, os somatérios na energia vibracional sao feitos de 1 = 1
até 1 = 3N,, — 5, e a energia rotacional deve ser substituida por N kgT. N4 é o ntimero

de Avogrado e kp é a constante de Boltzmann. As contribui¢bes para a entropia S(T)

sao dadas por:

3/2
Strans(T) = Nakp {ln [(mMO—LkBT) kT
27’(’ p

4 g} , (A.109)
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p 3 1/2
ston(r) = ko (| (S D) 43
3N, —6 wi kT
Svis(T) = Nakg Z {exp(wi/kBT) 1 In (1 - eXP(—Wz‘/kBT))]; (A.111)

onde ©g = 1/2[¢ é a temperatura rotacional associada ao giro da molécula em torno
do eixo S. Ig é o momento de inércia molecular em torno desse eixo. o é o numero de
simetria. Se a molécula nao possui centro de simetria, o = 1. Caso contrario, ¢ = 2. Para

moléculas lineares, a entropia rotacional é substituida por:
T
SROT(T) = NAk‘B {ln |:—:| + 1} s (All?)
O'@R

e o somatorio na entropia vibracional é realizado de i = 1 até ¢ = 3N, — 5. O calor

especifico sob pressao constante é:

5)
Op,TRANS = §NAkBy (All?))
5)
Op’ROT = §NAkBy (A114)

3N, —6

Cpvis = Nakp Z

=1

(u),-/lfBT)2 exp(—w;/kpT)
T~ exp(—wi/ksT)

(A.115)

Para moléculas lineares, C), ror = Nakp e o somatério nos modos normais no calor
especifico vibracional é tomado de ¢ = 1 até + = 3N,, — 5. O calor especifico a pressao

constante total é:

Cp = Cprrans + Cpror + Cpvis, (A.116)

onde sao desprezadas contribuicoes de excitagoes eletronicas.
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A.3.2 Estados atdomicos, regras de Hund, hibridizacao de orbitais,
orbitais HOMO e LUMO

Uma configuragao eletronica produz, em geral, diversos estados atomicos, alguns com

a mesma energia e alguns com energias diferentes, dependendo da natureza das repulsoes
entre os elétrons nesses estados. Por exemplo, a configuragao 1s2s do hélio da lugar a
quatro estados, formando um tripleto (trés estados distintos com mesma energia) e um
singleto. A configuracao 1s2p produz doze estados: um nonupleto e um tripleto. Estados
atomicos que surgem a partir de uma configuracao eletronica dada podem ser agrupados
em conjuntos de estados com mesma energia. Pode-se mostrar que estados que se originam
da mesma configuragao de elétrons e que possuem a mesma energia (ignorando interagoes
spin-6rbita) terdo valores iguais de L e S. Um conjunto de estados atomicos com a mesma
energia, mesmo L e mesmo S é o que se chama de termo atomico. Para um valor fixo de L,
o numero quantico M}, (que d4 a componente do momento angular orbital total ao longo
de uma diregao qualquer) assume 2L + 1 valores distintos, variando de —L a +L. Para
um valor fixo de S, Mg assume 2S5 + 1 valores. A energia atomica nao depende de My,
ou Mg, e cada termo consiste de (2L + 1)(25 + 1) estados atémicos com energia idéntica.
A degenerescéncia de um termo atémico é, portanto, (2L + 1)(2S + 1), desconsiderando
a interagao spin-orbita. Cada termo de um atomo é designado por um simbolo de termo
formado escrevendo o valor numérico da quantidade 2S5 + 1 (multiplicidade) como um
indice sobrescrito a esquerda de uma letra que da o valor de L e inserindo um subscrito
a direita indicando o numero quantico J. Por exemplo, um termo com L =2, S =1 e
= 1 é simbolizado por >D;, uma vez que 25 + 1 = 3 (tripleto). Existem regras para
derivacao de termos atomicos. Em configuracoes de camada fechada, ha apenas um termo:
1Sy. Para configuracoes misturando camadas fechadas e abertas, as camadas fechadas nao
contribuem para L ou S, e podem ser ignoradas. Os elétrons que existem em diferentes
subcamadas sao chamados de nao-equivalentes e nao sofrem as restrigoes do principio de
exclusao. Elétrons em uma mesma subcamada sao chamados de equivalentes, e neste caso

deve-se evitar que dois elétrons tenham o mesmo spin.

As regras criadas por Friedrich Hund fornecem uma maneira simples de prever que

termo de uma dada configuragao atomica possuird menor energia:

— O termo com maior multiplicidade (ou, o que é equivalente, o maior valor de spin

total S) possuird menor energia.

— Para uma dada multiplicidade, o termo com momento angular orbital mais elevado

L possuird menor energia.
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— Para uma dada multiplicidade e um dado momento angular orbital, o termo com
maior (menor) valor do momento angular total J terd menor energia se a camada de

valéncia estiver com ocupagao menor (maior) que 50%.

A mudanga da ordem dos niveis com mesmo J quando uma camada possui ocupagao
superior a 50% ¢é chamada de inversdo de niveis. As regras de Hund sao razoavelmente
confidveis para estimar o termo de energia mais baixa, mas nao o sao para estabelecer a

ordem relativa dos estados excitados.

A explicacao da primeira regra (multiplicidade méxima) remonta aos efeitos do princi-
pio da exclusao de Pauli. Para alcancar o méaximo valor de S, o maior niimero de elétrons
possivel deve ocupar orbitais diferentes. Nesta condicao, existird a maior quantidade
possivel de elétrons com spins paralelos. Como esses elétrons ocupam tantos orbitais
distintos quanto possivel, os elétrons de um termo com alta multiplicidade alcancam uma
separacao espacial maxima, diminuindo a intensidade da repulsao coulombiana. Apesar
de plausivel, tal explicagao nao é correta. Célculos detalhados feitos para o atomo de hélio
mostram que a repulsao entre elétrons é maior em estados de tripleto do que em singleto, e
que a reducao da energia se deve, na verdade, ao aumento na atracao elétron-nticleo. Se os
elétrons possuem spins paralelos, a nuvem eletronica se contrai, intensificando a repulsao
eletronica e a atragao entre os elétrons e o niicleo. Os dois efeitos combinados resultam em
uma pequena vantagem para a atracio nuclear. E razodvel presumir que a formagao de
um buraco de Fermi também ajuda a impedir que a repulsao elétron-elétron cresca mais
rapido que a forca atrativa exercida pelo nicleo. Quando ocorre emparelhamento de spin,
nao ha buraco de Fermi para “proteger” os elétrons, e assim os orbitais eletronicos nao
conseguem diminuir de tamanho. De fato, nesta circunstancia, os orbitais se expandem
ligeiramente para compensar o efeito dos “anti-buracos” de Fermi, e assim a interagao

favoravel dos elétrons com o ntcleo é enfraquecida.

A segunda regra (L elevado) reflete a tendéncia dos elétrons manterem-se afasta-
dos se seus momentos angulares orbitais os levam a girar na mesma direcao. Elétrons
circulando num mesmo sentido, ou seja, com momento angular orbital total mais alto,
podem conservar-se relativamente distantes uns dos outros. Elétrons orbitando em sen-
tidos opostos, por outro lado, encontrar-se-ao préximos freqiientes vezes, intensificando

sua interacao repulsiva.

Para explicar a terceira regra é preciso considerar o acoplamento spin-érbita. A
energia € menor quando os momentos magnético orbital e de spin de um elétron em

um atomo apontam em sentidos opostos. Contudo, tal arranjo de momentos magnéticos
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implica que os dois momentos angulares também se opoem, o que corresponde a um
momento angular mais baixo. A inversao dos niveis quando a camada esta com mais de
50% de ocupacao reflete a mudanca correspondente no sinal da constante do acoplamento
spin-orbita em tais casos.

Hibridizacao

Um orbital hibrido é uma combinagao linear de orbitais atomicos centrados em um
unico atomo. Um hibrido sp, por exemplo, é uma funcao de onda atomica composta de
proporgoes iguais de orbitais s e p de um mesmo atomo, e um elétron que ocupa tal orbital
possui 50% de carater s e 50% de cardter p. Um hibrido sp? possui 25% de carater s e 75%
de caréter p (a razao das contribuigoes ¢ 1:3). Um hibrido sp*d? é um orbital formado
a partir da mistura de orbitais atomicos s,p e d na razao 1:3:2. Se n orbitais atomicos
contribuem para a hibridizagao, n hibridos ortogonais podem ser formados. Logo, existem
dois hibridos sp, quatro hibridos sp? e seis hibridos sp®d?. A hibridizacao capaz de explicar
a forma de uma molécula é especificada geometricamente, ajustando os orbitais hibridos
do atomo central de modo que apontem ao longo das direcoes de ligacao. A configuragao

que fornecer menor energia é a correta.

180° 129/3\ 109.5° O,

Figura 92: Hibridizagao de orbitais s e p [207].

O conceito de hibridizagao é por vezes adotado em discussoes sobre a teoria dos
orbitais moleculares, e estes sao por vezes representados como resultantes do overlap de
orbitais hibridos. Entretanto, muitas vezes ¢ melhor tratar os orbitais moleculares como
se fossem construidos a partir de combinacoes lineares adaptadas de todos os orbitais
atomicos, evitando recorrer ao conceito de hibridizagao. Tal conceito, porém, pode ser
util na discussao de moléculas em termos de orbitais localizados, onde cada ligacao é

descrita a partir do overlap de pares de orbitais vizinhos, como na teoria das ligacoes de



324 Anexo A - Fundamentos tedricos

valéncia. Por exemplo, na descricao da molécula de benzeno é conveniente considerar os
orbitais ¢ como formados a partir de hibridos sp? entre os 4tomos de carbono e tratar os

orbitais m como orbitais deslocalizados.
Orbitais HOMO e LUMO

Os orbitais fronteira de uma molécula sao o orbital molecular ocupado de maior energia
(Highest Occupied Molecular Orbital - HOMO) e o orbital molecular nao-ocupado de
menor energia (Lowest Unoccupied Molecular Orbital - LUMO). A importancia desses
orbitais fronteira reside no modo como determinam certas propriedades moleculares, por
exemplo, reatividade, eletronegatividade, dureza e aromaticidade. A diferenca de energia
entre esses orbitais determina a energia necesséaria para produzir um rearranjo de elétrons
na molécula: o gap HOMO-LUMO ¢ a energia minima de excitacao eletronica. HOMO
e LUMO também sao importantes na formacao de ligagdes quimicas, particularmente
quando uma molécula é formada a partir de uma combinagao de dois fragmentos. O
fragmento que age como uma base de Lewis (doador de um par de elétrons) fornece os
elétrons do seu orbital HOMO, e o fragmento que atua como acido de Lewis (ou seja,

receptor de um par de elétrons) acomoda os elétrons em seu orbital LUMO.

Figura 93: Orbitais HOMO (esquerda) e LUMO (direita) para uma molécula de butano.

Se relaxarmos a definicao de orbital de fronteira para incluir qualquer orbital préximo
do orbital HOMO, podem ser considerados os orbitais moleculares formados primaria-
mente a partir de orbitais d, responsaveis pelos complexos metélicos do bloco d da tabela
periédica. Afirma-se entao que os orbitais moleculares de um complexo sao formados a
partir do overlap de orbitais d nao completamente preenchidos do fon metalico central com

orbitais de fronteira do atomo metalico e combinacoes lineares simetrizadas de orbitais
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dos dtomos ligantes mais proximos. As transicoes de campo ligante do complexo podem,

do mesmo modo, ser tratadas como transi¢oes entre orbitais fronteira do complexo.

A importancia tedrica dos orbitais fronteira deve-se a regra geral que dita serem mais
fortes os efeitos de ligacao originados pelo overlap de orbitais com energias proximas.
Tipicamente, o orbital HOMO de um fragmento tem uma energia bastante parecida com
a do orbital LUMO de outro fragmento (pelo menos nos casos de combinagoes de interesse
quimico). A separacao dos orbitais de fronteira é adotada na defini¢ao de dureza quimica,
e a energia média dos dois orbitais de fronteira é uma definicao de eletronegatividade.
Mais recentemente foi proposto que a separacao dos orbitais fronteira em uma molécula
pode ser usada como definicao de aromaticidade independente da escolha do estado de

referéncia.

Em célculos autoconsistentes normais para célculo do estado fundamental, os orbitais
de mais baixa energia sao preenchidos com nimeros de ocupacao inteiros. No entanto,
pode ser necessario empregar nimeros de ocupagao nao-inteiros (ocupacao fracionaria),
o que efetivamente mistura alguns orbitais virtuais com orbitais ocupados. Isto é feito
quando o gap HOMO-LUMO ¢é pequeno e existe uma densidade de estados significativa
nas vizinhancas do nivel de Fermi. Em tais situacgoes, é possivel alcancar convergéncia
autoconsistente usando técnicas de smearing (espalhamento) [227], deslocando para cima
orbitais virtuais ou fixando (congelando) a ocupagdo. Tipicamente sdo encontrados pro-
blemas com a convergéncia autoconsistente para sistemas de alta simetria, camada aberta

ou metalicos.

A técnica de Ewald [228, 229] é um método para o célculo de energias nao-ligantes
em sistemas periddicos. Soélidos cristalinos sao os candidatos mais apropriados para a
soma de Ewald, em parte porque o erro associado a métodos de corte é muito maior em
uma rede infinita. No entanto, a técnica também pode ser aplicada a solidos amorfos e

solugoes.

A.3.3 Principio de Franck-Condon

Considerando que as massas nucleares sao bem maiores que as massas eletronicas,
uma transicao eletronica deve ocorrer enquanto os nticleos em uma molécula se encontram
efetivamente iméveis. Tal é o principio de Franck-Condon, que governa as probabilidades

de transicao entre niveis vibracionais de diferentes estados eletronicos moleculares.

Suponhamos que ocorra uma transicao eletronica a partir de um estado no qual os
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nucleos estao parados em suas posicoes de equilibrio. Como resultado, a densidade de
elétrons aumenta ou diminui em certas regioes da molécula, e os nicleos inicialmente
imoveis sofrem a acao de forcgas elétricas criadas pela reconfiguragao eletronica. Tais forcas
irao tirar os nucleos do repouso, fazendo-os vibrar em torno de suas antigas posicoes de
equilibrio. A transicao eletronica inicial, que sé perturbou os nicleos apds ser completada,

¢ chamada de transicao vertical.

A versao quantica do principio de Franck-Condon usa as fungoes de onda da molécula.
Veja-se, por exemplo, o caso em que a transicao eletronica acontece quando a molécula
estd no estado fundamental de energia vibracional no estado de energia eletronica mais
baixa. A forma da funcao de onda vibracional mostra que a localizagao mais provavel dos
nucleos ¢ a configuracao de equilibrio Rgq. Conseqiientemente, a transigao eletronica mais
provavel ocorrerd quando os nucleos estiverem nas vizinhancas de Rgq. Quando ocorre a
transicao vertical, ela atravessa varios niveis vibracionais do novo estado eletronico (ver
Fig. 94). O nivel indicado com * é aquele em que a probabilidade de os niicleos estarem
proximos da configuracao Rgq ¢ maxima e deve ser, portanto, o nivel mais provavel
como destino da transicao. Mesmo assim, varios niveis préximos também possuem uma
probabilidade aprecidvel de os ntcleos se encontrarem nas imediacoes de Rgq. Portanto,
ocorrem transicoes para todos os niveis vibracionais na regiao, mas mais intensamente

para o nivel com funcao de onda vibracional que possui pico mais intenso perto de Rgq.

Pode-se dar ainda uma interpretacao mais consistente com o espirito da mecanica
quantica. A funcao de onda do estado vibracional final mais provavel é a que mais se
assemelha ao estado vibracional inicial. Portanto, deve-se procurar pela funcao de onda
vibracional do estado eletronico de destino que possui a maior semelhanca possivel com
a funcao de onda de partida. Como o overlap das fungoes de onda mede sua semelhanga,
devemos procurar por uma funcao de onda vibracional excitada que possua picos em
posicoes similares as dadas por Rgq, o que equivale a selecionar preferencialmente uma

transicao vertical.

A estrutura do espectro de vibragao depende do deslocamento relativo das duas cur-
vas de energia potencial. Uma longa série de vibracoes ¢ observada se os dois estados
sao bastante deslocados. A curva superior na Fig. 94 é freqiientemente deslocada para
comprimentos de ligacao maiores porque estados excitados usualmente possuem carater

ligante reduzido em comparacao com o estado eletronico fundamental.



A.3 Propriedades moleculares e interacoes de moléculas com radiacao 327

)(‘/J\IV
<

HiaNa

/
/

T
|
|
I
f
!
|
I
|
|

Figura 94: Principio de Franck-Condon quéntico. A transi¢do mais provéavel ocorre partindo do
estado quantico fundamental de vibracao para o estado vibracional excitado * mais semelhante
dentre os vdrios possiveis dentro da configuracao eletronica de maior energia [207].

A.3.4 Fluorescéncia e fosforescéncia

A energia da radiagao eletromagnética absorvida por uma molécula pode ser conver-
tida em movimento térmico ou radiagao eletromagnética. A luz que é emitida por uma
molécula excitada é chamada de fluorescéncia se o mecanismo de emissao nao envolve a
transicao entre estados com diferentes multiplicidades de spin. A fluorescéncia geralmente

cessa quase que imediatamente apds a remocao da radiacao excitante.

A Fig. 95 ilustra o mecanismo fluorescente. A radiagao que incide sobre a molécula
estimula o estado fundamental singleto (denotado Sy, onde todos os spins acham-se em-
parelhados) para um estado excitado singleto S;. Durante a transigdo, ocorre também a
excitagao vibracional da molécula. Colisoes e interacoes com o meio induzem transicoes
vibracionais nao-radiativas (por exemplo, outras moléculas interagindo com a molécula

excitada podem remover quanta vibracionais).

Sao dois os processos possiveis quando a molécula solvatada atinge seu estado vibraci-
onal minimo em S;. Num caso, o solvente remove a energia de excitagao eletronica, o que

¢ mais provavel quando os niveis de energia moleculares do solvente se ajustam ao gap
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de energia da molécula excitada. O outro modo de decaimento é via emissao de radiagao
(féton), quando o estado eletronico excitado decai para um estado eletronico de energia

mais baixa irradiando luz, a qual é medida como fluorescéncia.

O que decide se vai ou nao ocorrer fluorescéncia é o resultado da competicao entre os
mecanismos de emissao radiativa e nao-radiativa. Se a interacao entre a molécula exci-
tada e suas companheiras é forte, o decaimento nao-radiativo prevalece. Se a interacao
é pouco efetiva para realizar a transferéncia de energia que devolve a molécula ao estado
eletronico fundamental, ainda é possivel a remocao de energia vibracional mantendo o
estado eletronico excitado até que a molécula alcance um valor minimo de energia de vi-
bragao. Nestas circunstancias, a molécula pode livrar-se da energia de excitacao eletronica

fluorescendo, ou seja, emitindo um féton e retornando ao estado eletronico de mais baixa

energia.
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Figura 95: Esquerda: mecanismo da fluorescéncia. A transicao de excitacdo acontece entre esta-
dos com mesma multiplicidade e obedece ao principio de Franck-Condon. O estado vibracional
excitado perde energia para o meio e efetua uma transicdao radiativa de volta para o estado
eletronico fundamental. A figura menor mostra a simetria de reflexdo entre os espectros de
fluorescéncia e absorcao. Direita: mecanismo da fosforescéncia. A absorcao de radiagao excita
a molécula para um estado de singleto. A medida que a energia vibracional é transferida para
0 meio, ocorre a passagem para um estado tripleto (intersystem crossing). A relaxacao vibraci-
onal nao-radiativa prossegue, deixando a molécula aprisionada no estado tripleto. Pode ocorrer
uma transicao radiativa fraca para o estado fundamental de singleto por causa da quebra das
regras de selecao promovida pela interacao spin-érbita [207] (a qual também é responsével pelo
intersystem crossing).

So

Duas caracteristicas da fluorescéncia devem ser ressaltadas. A primeira é que a energia
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do féton irradiado é menor que a energia do féton absorvido. A segunda é que ocorrem
pequenas variagoes na energia do féton irradiado provocadas por transigoes entre o nivel de
energia vibracional mais baixo do estado eletronico excitado e diferentes niveis vibracionais
do estado eletronico fundamental. Examinando estas pequenas variagoes é possivel obter
alguma informagao sobre as constantes de forga da molécula no estado eletronico de
mais baixa energia (analogamente, o espectro de absorcao eletronica informa algo das
constantes de forca das ligagoes no estado eletronico excitado). Os espectros de absorgao
e o espectro de fluorescéncia de uma molécula devem ser correlacionados, ou melhor, numa
primeira aproximagcao devem ser a imagem refletida um do outro (deve-se ter cautela com
esta descricao, no entanto, pois as separacoes de modos vibracionais e suas intensidades

nao sdo exatamente as mesmas).

Algums detalhes merecem ser mencionados além desta descri¢ao basica. O primeiro
é que a absorcao inicial pode levar a molécula a um estado singleto excitado de energia
mais elevada que Sp, por exemplo, Sy e S3. Em tais circunstancias, ocorre uma conversao
interna para S; (colisdes fazem com que os singletos mais altos Sy, S3, etc. efetuem uma
transicdo sem emissao de fétons para o estado singleto excitado de mais baixa energia),
que fluoresce. Tal processo é conhecido como lei de Kasha: o nivel fluorescente é o nivel

mais baixo dentro da multiplicidade de spin especificada.

A intensidade da fluorescéncia depende sensivelmente do estado fisico da amostra.
Liquidos puros e nao-diluidos geralmente possuem fluorescéncia muito baixa porque uma
excitacdo pode pular de uma molécula para outra via processo ressonante (o que seria

uma espécie de éxciton para o estado liquido).

Por outro lado, é possivel aumentar a fluorescéncia fazendo com que uma molécula
absorva a energia da radiacao incidente e a transfira para outra molécula que irradia um

féton (fluorescéncia induzida).

Na chamada fluorescéncia de ressonancia, a radiagao emitida possui a mesma freqiiéncia
da radiacao incidente. Esta espécie de fluorescéncia é mais intensa que a ordindria porque
o processo de emissao é estimulado pela radiacao incidente. Na fluorescéncia normal, a
emissao ocorre de forma espontanea. Radiacao com exatamente a mesma freqiiéncia é
rara em moléculas fluorescentes porque as interagoes entre a molécula e o solvente deslo-
cam ligeiramente os niveis de energia moleculares. Por exemplo, o solvente pode solvatar
a molécula de modos distintos quando esta se encontra no estados fundamental e exci-
tado (o estado excitado deve durar tempo suficiente para que as moléculas do solvente

se organizem em um diferente arranjo de solvatagao). Como resultado, as freqiiéncias de
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absorcao e fluorescéncia podem ser diferentes muito embora as transigoes sejam entre os

mesmos estados.

Tao logo a luz deixa de incidir sobre a amostra, cessa o fendmeno de fluorescéncia.
Tal ocorre porque todas as transi¢oes de interesse sao permitidas e, por conseguinte,
processam-se bastante rapidamente. A despeito deste fato, existe também um fenémeno
conhecido como fluorescéncia retardada (que nao deve ser confundida com a fosforecéncia),
na qual a emissao de fotons persiste por varios milissegundos. Um dos mecanismos de
fluorescéncia retardada conhecidos envolve a excitacao de Sy para S; e a subseqiiente
migracao da molécula excitada para junto de outra molécula. Quando as duas moléculas
estao em contato, formam um dimero excitado que é chamado de excimero (5757)* se as
moléculas sao idénticas, ou exciplexo, se elas sao diferentes. O excimero/exciplexo rapi-
damente se dissocia com a emissao de luz. Outro mecanismo de fluorescéncia retardada
é conhecido como aniquilagao tripleto-tripleto, onde a excitacao de varias moléculas as
coloca em um estado tripleto (7). Duas dessas moléculas excitadas migram juntas, e sua
energia de excitacao conjunta é suficiente para fazer com que uma delas transite para um
estado singleto excitado e a outra para o estado fundamental: 7'+ T — S; + Sy. O sin-
gleto excitado, por sua vez, decai emitindo radiacao. Neste caso, o atraso na fluorescéncia
resulta do tempo necessario para as moléculas no estado excitado de tripleto difundirem

juntas e combinarem suas energias.

No fenomeno da fosforescéncia, um material emite radiacao que persiste por um tempo
apreciavel apds o desaparecimento do estimulo luminoso. Tal persisténcia é o trago dis-
tintivo entre a fosforescéncia e a fluorescéncia, mas a principal diferenca fisica entre os
dois processos reside no fato de o primeiro envolver uma mudanca na multiplicidade do

estado excitado.

Pode-se entender o mecanismo de fosforescéncia considerando a excitacao de uma
molécula do seu estado singleto fundamental, Sy, para um estado singleto excitado, S;.
A excitacao eletronica é acompanhada de excitacao vibracional, e o excesso de energia
vibracional é perdido de modo nao-radiativo para o meio. Se a desativagao vibracional
nao é suficientemente rapida e existe um estado de tripleto préximo (77), a molécula pode
passar para este estado sob a influéncia do acoplamento spin-érbita (o acoplamento spin-
orbita experimentado por dois elétrons pode diferir se eles se encontram em diferentes
partes de uma molécula, e os diferentes campos magnéticos experimentados localmente
podem alinhar os spins). Depois que tal transigao é completada (intersystem crossing),

a desativacao vibracional continua descendo a “ladeira” energética de niveis do estado
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tripleto.

No final da “ladeira” a molécula fica aprisionada. Nao é possivel irradiar sua ener-
gia eletronica e decair diretamente para o estado fundamental porque isto implica numa
transicao singleto-tripleto, proibida por regra de selecao de primeira ordem. A molécula
também nao pode voltar atras, para o estado excitado de singleto, porque as colisdes com
moléculas vizinhas nao conseguem fornecer a energia necessaria para tal retorno. Também
nao ¢ possivel ceder sua energia eletronica para as moléculas vizinhas via transigao nao-
radiativa porque supomos que mesmo a desativacao vibracional é fraca, removendo ener-

gias pequenas demais para cruzar o gap 1) — Sp.

Apesar de todos esses fatos, a transicao singleto-tripleto nao é completamente proi-
bida. O acoplamento spin-érbita é suficientemente intenso para violar a regra de selecao
singleto-tripleto, e a transigao torna-se fracamente permitida (o que se traduz em tempos
de permanéncia longos no estado T}). E possivel prever, a partir da Fig. 95, que o com-
primento de onda da luz emitida deve ser maior que o da emissao fluorescente por conta

do nivel vibracional mais baixo do estado de tripleto.

A fosforescéncia pode ocorrer se existe um estado de tripleto adequado na vizinhanga
dos estados excitados de singleto da molécula e se existir um acoplamento spin-orbita
forte o bastante para induzir transicoes S — T. Deve também haver tempo suficiente
para a molécula passar de uma curva para outra, o que significa que o mecanismo de
desativagao nao deve ocorrer numa velocidade rapida a ponto de impedir a molécula de
alcancar o cruzamento das duas curvas na Fig. 95. E por esta razao que muitas moléculas
que fluorescem em uma solucao liquida fosforescem quando sao aprisionadas em uma rede

solida.

A.3.5 Espectros infravermelho e Raman

A excitagao de um modo normal pela absor¢ao de radiacao eletromagnética é go-
vernada por regras de selecao. Em particular, um modo sé pode ser excitado por uma
transicao de dipolo elétrico se o deslocamento ao longo da coordenada normal resulta
numa mudanca desse momento de dipolo. Se isto ocorre, o modo ¢ ativo no infraverme-
lho, porquanto modos com esta caracteristica sao responsaveis pela absorcao de radiagao

infravermelha em moléculas.

O processo de Raman consiste no espalhamento inelastico de um féton por uma

molécula. No processo ineldstico ocorre transferéncia de energia para modos internos
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dos sistemas colidentes. No caso do espalhamento Raman, o féton incidente é destruido
e parte de sua energia é convertida em energia rotacional ou vibracional da molécula que
recebe o impacto. O restante é usado para criar um novo féton com energia menor que
a energia do foton incidente. E possivel também que o foton criado seja mais energético
que o foton incidente. A energia extra é obtida as custas do decaimento do estado vibra-
cional ou rotacional da molécula para um nivel mais baixo. Como as energias rotacionais
e vibracionais sao quantizadas, a transferéncia de energia s6 pode ocorrer em pacotes, e
assim a luz espalhada contém componentes de freqiiéncia que sao deslocadas da freqiiéncia
incidente por quantidades discretas relacionadas com a estrutura de niveis rotacionais e
vibracionais. A composigao de freqiiéncias da radiacao espalhada é o espectro Raman da
molécula. O efeito foi descoberto em 1928 pelo fisico indiano Chandrasekhar Raman e

previsto teoricamente alguns anos antes por Werner Heisenberg na Alemanha.

Num experimento de espectroscopia Raman, um feixe intenso e monocromético de
radiacao LASER passa através da amostra e a radiacao espalhada perpendicularmente
a direcao de propagacao é detectada e analisada. O espectro consiste em uma intensa
componente de Rayleigh na freqiiéncia incidente, que se origina de colisoes elasticas entre
os fotons e a amostra, e uma série de linhas com freqiiéncias maiores ou menores que a
freqiiéncia da radiagao incidente. As linhas de freqiiéncia mais baixa que a freqiiéncia
do LASER sao chamadas de linhas de Stokes, resultantes de colisbes nas quais os fétons
perdem energia para a molécula. As linhas de alta freqiiéncia sao linhas anti-Stokes,
produzidas quando os fétons tiram energia da molécula com que colidem. As linhas de
Stokes sao geralmente mais intensas que as anti-Stokes, porque estas exigem a presenca

de uma certa populacao de moléculas excitadas.

W S

Figura 96: Diagramas de Feynman para o espalhamento Raman. (1) Processo que produz linhas
de Stokes. (2) Processo de espalhamento que produz linhas anti-Stokes [207].

O espectro Raman é determinado pela polarizabilidade da molécula. A radiacao
incidente induz um momento de dipolo na molécula, que atua como fonte da radiagao

espalhada. A eficiéncia do processo depende da facilidade com que a molécula pode ser
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distorcida pela radiagao incidente e, portanto, de sua polarizabilidade.

Uma descricao classica do efeito Raman focaliza a freqiiéncia na qual o dipolo mole-
cular induzido oscila quando exposto a um campo eletromagnético oscilante de freqiiéncia
angular w. Se a polarizabilidade nao varia na presenca do estimulo externo, o dipolo oscila
na mesma freqiiéncia que a radiacao incidente. No entanto, se o movimento da molécula
produz uma oscilacao de sua polarizabilidade com freqiiéncia angular w’, tal componente
de freqiiéncia fica registrada na radiacao espalhada, que apresenta agora, além da compo-
nente w, duas componentes com freqiiéncias w — w’ e w + w’. A intensidade dos picos do
espectro Raman é proporcional ao quadrado da variagao da polarizabilidade da molécula

com a variagao da coordenada associada ao modo normal correspondente.

Para que uma molécula exiba um espectro Raman rotacional, no qual a transferéncia
de energia envolva graus de liberdade rotacionais da molécula, sua polarizabilidade pre-
cisa ser anisotrépica e variavel a medida que a molécula gira. Se tomarmos como exemplo
uma molécula de Hy, veremos que esta é Raman-ativa porque possui diferentes polarizabi-
lidades ao longo das direcoes paralela e perpendicular a direcao da ligacao dos atomos de
hidrogénio. Ja uma molécula de CH, é inativa porque sua polarizabilidade é praticamente

a mesma em todas diregoes.

A condigao de existéncia para o espectro Raman vibracional é que a polarizabilidade
molecular varie a medida que a molécula vibra. Uma molécula de Hy possui assinatura
Raman vibracional porque sua polarizabilidade depende do estiramento da ligagao entre
os atomos. Ja a vibracao anti-simétrica do CO4 nao afeta a polarizabilidade da molécula,

e nao deixa assinatura Raman vibracional.

Existe uma regra, conhecida como regra de exclusao, segundo a qual se uma molécula
possui centro de inversao, nenhum modo de movimento pode ser ao mesmo tempo ativo
nos espectros Raman e infravermelho. Dai decorre a grande utilidade do efeito Raman no

estudo de vibracoes e rotagoes inacessiveis a espectroscopia de absor¢ao convencional.

A absorcao e emissao de fétons por um elétron ligado ocorre entre os niveis de energia
permitidos de acordo com certas regras de selecao, que descrevem as mudancas permitidas
(observadas) nos varios nimeros quanticos. Uma regra de selecao de primeira ordem (ou
seja, que envolve apenas a interacdo de duas particulas) importante é que a variagao de
[ nao pode exceder +1 durante uma transicao. Na auséncia de interacao entre spin e
movimentos orbitais, a regra de sele¢ao para o nimero quantico S (associado ao momento
angular total de spin em um dtomo) é AS = 0, e a regra de sele¢ao para o nimero

quantico L (associado ao momento angular orbital total em um dtomo) é AL = 0 ou %1,
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exceto para transicoes L = 0 — L = 0, que sao proibidas. O momento angular total J é a
soma dos vetores L e S; J = L+S e o niimero quantico J é tal que |[L — S| < J < L+S5. A
regra de selecao para J é AJ = 0, £1 exceto para as transicoes proibidas J =0 — J = 0.
Para cristais a regra de selecao é que somente transicoes em que o “numero” quantico
k é conservado sao permitidas. Como o momentum de um féton éptico é pequeno, isto
significa que a conservagao do momentum durante transicoes eletronicas num sélido é
garantida principalmente por trocas de momentum entre elétrons e a&tomos, ou seja, entre
elétrons e fonons. Um elétron verdadeiramente livre nao pode absorver nem emitir um
foton. Tal proibicao ocorre porque, no momento da destruicao ou criacao do féton, o
vetor k do elétron seria modificado, transgredindo a regra de selecao. Quando o elétron
estd preso a uma terceira particula, no entanto, esta pode preservar o momentum do
sistema assegurando que pelo menos duas particulas compartilhem o momentum total
antes e depois da emissao de um foton. Um elétron num cristal nao é completamente

livre, porque mesmo na banda de conducao esta sujeito ao campo periddico do cristal.

E importante notar também que nas vizinhancas de imperfeicoes em cristais reais, os
fonons podem ter momenta locais distintos dos permitidos em cristais perfeitos. Nas vizi-
nhancas de imperfeigoes, portanto, transicoes 6pticas proibidas nas regides mais perfeitas

do cristal podem ocorrer.

As regras de selecao de Raman sao Av = +1 para transicoes vibracionais e AJ = 0, 1
ou +2 para rotagoes. A possibilidade de mudar o momento angular total em até duas
unidades esta ligada ao fato de a polarizabilidade da molécula poder voltar ao estado
inicial apds meio periodo de rotacao. Ja a permissao de transicoes vibracionais com
variagoes de +1 ocorre porque a molécula s6 pode retornar ao estado de polarizabilidade
inicial apos um periodo de vibragao completo. Logo, a polarizabilidade varia com o mesmo
periodo da vibragao, mas com metade do periodo de uma rotagdao. A explicacao quantica
deste fenomeno em termos do spin unitario do féton é mais complicada, mas baseia-se no
fato de que dois fétons estao envolvidos no processo de espalhamento (o féton incidente
e o féton espalhado), sendo que suas diregoes relativas de movimento permitem que o

momento angular da molécula possa mudar em até duas unidades.

As transigoes rotacionais que acompanham uma transicao vibracional de uma molécula

dao lugar a linhas no espectro que podem ser agrupadas em ramos:
— Ramo O: linhas produzidas por transigoes J — J — 2 (espectro Raman).

— Ramo P: linhas produzidas por transigoes J — J — 1 (espectros Raman e infraver-
melho).
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— Ramo Q: linhas produzidas por transicoes J — J, se permitidas.

— Ramo R: linhas produzidas por transi¢oes J — J 4+ 1 (espectros Raman e infraver-

melho).
— Ramo S: linhas produzidas por transi¢oes J — J + 2 (espectro Raman).

O ramo Q é permitido apenas para moléculas lineares que possuem uma componente
de momento angular em torno do eixo internuclear, uma vez que somente entao o momento
angular do féton incidente pode ser transferido para a molécula sem alterar seu estado
rotacional. Sao raras as moléculas diatomicas que produzem um ramo Q. Uma excecao

conhecida é o NO.

Uma analogia classica que mostra porque transicoes rotacionais sao esperadas junta-
mente com excitacoes vibracionais é o mecanismo pelo qual patinadores no gelo mudam
de velocidade angular. Se eles abrem os bragos, giram mais devagar; se os aproximam,
giram mais rapido. Da mesma forma, o rapido aumento ou diminuicao de um compri-
mento de ligacao quando ocorre uma transicao vibracional modifica o estado de rotagao

da molécula. Transicoes Raman vibracionais sao acompanhadas por estrutura rotacional.

No espectro Raman ressonante, a excitacao eletromagnética leva a molécula para
perto de um nivel de excitacao eletronica, ao invés de conduzir a um estado virtual tran-
siente antes da conversao da energia eletromagnética em energias vibracional, rotacional

e fotonica (como ocorre no espectro Raman nao-ressonante).

Se o elipsoide de polarizabilidade de uma molécula é uma esfera, a dire¢ao do dipolo
induzido coincide com a orientacao do campo aplicado nao importando a orientacao da
molécula. Quando, portanto, a irradiagao de um gas formado por moléculas desse tipo
é feita com luz de freqiiéncia v, a luz espalhada com a mesma freqiiéncia (espalhamento
de Rayleigh), quando observada ao longo de angulos perpendiculares ao feixe incidente,
apresentara polarizagao completa no plano perpendicular ao raio que incidiu sobre o gas,
mesmo que a luz incidente nao seja polarizada. No entanto, no caso em que o elipsdide
de polarizabilidade do sistema espalhador nao é uma esfera, a direcao do momento de
dipolo induzido coincide com a dire¢ao do campo somente se este coincide com um dos
eixos do elipsdide de polarizabilidade. De outro modo, o momento de dipolo induzido
apontarda numa dire¢do diferente da diregdo do campo aplicado. Se um gas (ou liquido)
contendo tais moléculas com todas as orientagoes possiveis ¢ irradiado, o momento de
dipolo induzido nao estda mais restrito ao plano que forma angulos retos com o feixe,

muito embora nao possa assumir todas as orientacoes possiveis em relagao ao feixe com
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a mesma probabilidade. Portanto, a luz espalhada observada ao longo de angulos per-
pendiculares ao feixe incidente sera, neste caso, parcialmente polarizada, com o grau de
polarizacao dependente, entre outras coisas, do nivel de polarizacao do feixe que incide

sobre a amostra.

A taxa de depolarizagao é definida como a razao entre a intensidade da luz espalhada
polarizada perpendicularmente ao plano zy, I, e a intensidade da luz espalhada parale-
lamente a este mesmo plano /). Aqui o eixo z é tomado na direcao de propagacao do raio

incidente, e a direcao de observacao ¢é perpendicular ao eixo z.

As constantes vibracionais estao ligadas aos momentos de inércia principais de uma
molécula assimétrica, em ordem crescente de magnitude: 14, Ig e . Temos, em unidades

atomicas:

1 1 1

- B=—"_ (= —__ A.117
Arady’ Aralp’ drals’ ( )

onde « é a constante de estrutura fina. Calculos elaborados sao necesséarios para obter
uma representacao quantitativa dos niveis de energia de uma molécula assimétrica. Tais
célculos foram feitos por vérios autores [230, 231, 232, 233, 234, 235, 236]. Uma das

férmulas utilizadas, devida a Wang [231], é:

B(J.) = %(B+C)J(J+1)+ A—%(BJF(J)WT | (A.118)

Nesta expressao, W, é uma quantidade que depende de uma maneira complicada de
A, B, C e J, e que para um dado J assume 2J + 1 valores distintos correspondendo
a 2J + 1 subniveis. Os 2J + 1 valores de W, para um dado J sao as raizes de um
determinante secular de grau 2J + 1. Contudo, felizmente tal determinante pode ser
fatorado em determinantes de grau menor, o que leva a um certo nimero de equagoes
algébricas. Mesmo assim, o grau dessas equagoes aumenta linearmente com .J, de modo
que se torna cada vez mais dificil determinar os niveis de energia quando os momentos
de inércia sao conhecidos. Para se ter uma idéia do nivel de complicacao ao qual se pode

chegar, uma das equacoes para J = 6 é:

W2 — 56W2 4+ W2(784 — 1176b%) — W, (2304 — 53.664b)+ (A.110)
—483.840b + 55.440b" = 0, |

onde:
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C-B
b= A IB O] (A.120)

A.4 Espectro VCD

Moléculas quirais exibem dicroismo vibracional circular (Vibrational Circular Dich-
roism - VCD) [237, 238]. O espectro VCD de uma molécula com quiralidade é uma
funcao que depende de modo bastante sensivel de sua estrutura tridimensional e, no caso
de moléculas flexiveis, da conformacao. Em principio, portanto, o espectro VCD permite

a determinacao da estrutura de uma molécula quiral.

Espectros VCD foram medidos pela primeira vez nos anos 70 [239, 240, 241]. Poste-
riormente, os equipamentos de medida evoluiram bastante tanto no intervalo de compri-
mentos de onda como na sensibilidade [242, 243]. Atualmente, o espectro VCD de liquidos
e solugoes pode ser medido para a maior parte do intervalo espectral infravermelho com

1

alta sensibilidade e boa resoluc¢ao (1 a 5 cm™', usando instrumentagao VCD dispersiva ou

de transformada de Fourier.

Durante um bom tempo, o dicroismo vibracional foi pouco usado para a determinacao
das estruturas de moléculas pela falta de um algoritmo capaz de obter as coordenadas
atomicas a partir das medidas VCD. Embora vérios procedimentos tenham sido propostos
(variando desde correlagbes empiricas até célculos ab initio quanticos), até muito pouco
tempo atras era impossivel obter simultaneamente resultados gerais, confidveis e passiveis
de aplicagao a um nimero grande de moléculas. Conseqiientemente, embora a medida de
espectros VCD seja comum hé mais de uma década, a analise de espectros VCD é algo

raro.

Recentemente, no entanto, um novo algoritmo para obter a estrutura a partir dos
espectros VCD foi desenvolvido [244] empregando a teoria do funcional da densidade, o
qual permite pela primeira vez a analise confiavel do espectro VCD de moléculas qui-
rais com ampla variacao no tamanho molecular. Dado um espectro experimental de uma
molécula quiral cuja configuracao absoluta e/ou conformagao é desconhecida, o procedi-
mento geral é o seguinte: 1) todas as estruturas possiveis sdo definidas; 2) os espectros
dessas estruturas sao calculados; 3) os espectros calculados sdo comparados com o espectro

experimental.

A chave para a implementacao bem sucedida desta estratégia é a capacidade de prever

acuradamente os espectros VCD. Metodologias imprecisas tornam o procedimento nao-
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confidvel e inutil.

O espectro VCD é quase sempre obtido simultaneamente com o espectro de absorcao
vibracional nao-polarizado (espectro infravermelho) e os dois espectros vibracionais juntos
fornecem mais informacao que o espectro VCD isoladamente. Em acréscimo, o espectro
de absorcao vibracional nao-polarizada é previsto simultaneamente com o espectro VCD

sem a necessidade de calculos adicionais.

A determinacao do espectro de dicroismo vibracional circular exige o calculo do campo

de for¢a harmonico:

0*Uq

Y
oz, Ox,, ,

(A.121)

onde Ug ¢ a energia do estado fundamental e x, ¢ a coordenada a = z,y, z do ntcleo \.

Também é necessario conhecer o tensor atomico polar:

g,
Py = 50 A122
af ax ) ( )

Aa 10

sendo g5 o valor esperado do momento de dipolo elétrico no estado fundamental para
a molécula (incluindo contribuiges de elétrons e niicleos. Além disso, é necessério cal-
cular também uma contribuicao relacionada com a interagao entre a molécula e o campo
magnético da radiacao incidente, que depende da variacao da fungao de onda do estado
fundamental com o campo magnético (tal contribuigao inclui, como a contribuigao de di-
polo elétrico, termos oriundos da interagdo com elétrons e nicleos separadamente). Esta
contribuicao depende de um tensor analogo ao tensor atomico polar, chamado de tensor
atomico axial. O campo de forca harmonico e os tensores polar e axial sao calculados
ab initio com maior eficiéncia usando métodos de derivadas analiticas [245, 246, 247,
juntamente com fungoes de base dependentes de perturbacao. No caso de derivadas com
respeito as coordenadas cartesianas dos nucleos, a escolha das funcoes de base recai so-
bre orbitais atomicos centrados nos niicleos mesmo durante o seu deslocamento. Para
derivadas com respeito ao campo magnético, a escolha mais seguida é empregar orbi-
tais atomicos com invariancia de calibre, ou orbitais de London [248, 249]. No presente,
exceto para moléculas muito pequenas, as opcoes praticas para o calculo ab initio sao:
1) método de Hartree-Fock (HF) autoconsistente; 2) teoria da perturbacgao de segunda

ordem de Mgller-Plesset (MP2); 3) teoria do funcional da densidade (DFT).

O método de Hartree-Fock é o mais simples, negligenciando efeitos de correlacao
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eletronica. MP2 e DFT incluem alguma correlagao eletronica, sendo a teoria MP2 uma
extensao do método de Hartree-Fock na qual a correlacao ¢ incluida de modo perturbativo.
A abordagem DF'T, por outro lado, é completamente distinta, possuindo a mesma simpli-
cidade da abordagem autoconsistente HF' e incluindo efeitos de correlagao eletronica. Em
termos de custo computacional e precisao, portanto, a teoria do funcional da densidade é

a escolha mais adequada.

A.5 Meétodos derivados da aproximacao de Hartree-Fock

Apesar do sucesso do método de Hartree-Fock em muitas aplicagoes, 0 mesmo possui
limites. Por exemplo, a ordem prevista para os potenciais de ionizacao do Ny é incorreta e
a abordagem restrita é incapaz de descrever a dissociacao de moléculas em fragmentos de
camada aberta. Embora o método de Hartree-Fock irrestrito produza melhores resultados
para tais dissociagoes, as curvas de energia potencial obtidas nao sao acuradas. Para
melhorar o método Hartree-Fock é necessario obter a energia de correlacao Ecorr, definida
como a diferenca entre a energia nao-relativistica exata Fjy e a energia de Hartree-Fock

no limite em que a base usada atinge completeza (energia de Hartree-Fock, Eyg:

Ecorr = Eo — Enr. (A.123)

Como a energia de Hartree-Fock é um limite superior para a energia exata, a energia

de correlagao é negativa.

A fim de obter a energia de correlagao, varios aperfeicoamentos do método Hartree-
Fock foram desenvolvidos. O primeiro deles, e o conceitualmente mais simples, é o método
de interagao de configuragao (Configuration Interaction - CI) [250], cuja idéia bésica é
diagonalizar o hamiltoniano de N, elétrons numa base de determinantes de Slater usando

o método variacional. A partir de um conjunto de 2K orbitais de spin é possivel cons-
truir ( ) determinantes de Slater de IV, elétrons distintos. Infelizmente, mesmo para
e

moléculas pequenas e tamanhos moderados para a base de orbitais, o nimero de determi-
nantes de Slater que podem ser construidos é gigantesco. E necessario truncar a fungao
de onda tentativa de alguma maneira e usar apenas uma fracao de todos os possiveis

determinantes de N, elétrons.

E conveniente descrever as funcoes de N, elétrons especificando como elas diferem da

fungao de onda de Hartree-Fock para o estado fundamental, |¥) . Fungoes que diferem



340 Anexo A - Fundamentos tedricos

de |¥) por n orbitais de spin sao chamadas de determinantes n-uplamente excitados. A
matriz CI completa (full CI)é a matriz do hamiltoniano na base de todas as possiveis
fungoes de N, elétrons formadas substituindo de nenhum até todos os orbitais de spin
em |U). Podem ser consideradas véarias aproximagoes para a matriz CI completa, obti-
das truncando as fungoes de onda eletronicas até certo nivel de excitacao. Por exemplo,
na aproximacao de CI duplamente excitada (Doubly-excited Configuration Interaction -
DCI) [251, 252, 253], a truncagem ¢ feita até excitagoes duplas, enquanto que na apro-
ximacao de CI simples [254], a truncagem vai até excitagbes que substituem apenas um
orbital. No método de campo de multiconfiguragdo autoconsistente (Multiconfiguration
Self-Consistent Field - MCSCF) [255, 256, 257, 258, 259, 260], usa-se o principio varia-
cional para determinar quais orbitais serao usados na expansao CI. E considerada uma
funcao de onda contendo relativamente poucos determinantes, a qual é otimizada nao sé
nos coeficientes da expansao mas também na forma dos orbitais. Infelizmente todas as
formas de CI truncadas sao inaplicaveis a sistemas grandes (o conhecido problema da
inconsisténcia de tamanho: a energia de correlacao total deve ser proporcional ao niimero
de elétrons. Na aproximacao CI truncada isto nao acontece, e a energia de correlagao por
elétron tende a zero se o numero de elétrons tende a infinito). O método MCSCF mais
usadoo é o método SCF no espago ativo completo (Complete Active Space SCF - CASS-
SCF, ver aplicagoes em [261, 262, 263, 264, 265, 266, 267]), no qual os orbitais utilizados
sao divididos em ativos e inativos. Os orbitais inativos sao mantidos com ocupacao dupla.
Os elétrons em orbitais ativos (com ocupagao simples) sao chamados de elétrons ativos.
A funcao de onda é uma combinagao de todos os determinantes de Slater que podem
ser formados distribuindo os elétrons ativos entre os orbitais ativos de todos os modos
possiveis, respeitando o spin e a simetria do estado que se deseja obter. O método de
multirreferéncia CI (Multireference CI - MRCI) combina o método MCSCF com o método

CI [268]. Métodos CI também sao usados para o célculo de estados excitados moleculares.

Uma maneira de contornar o problema da consisténcia de tamanho é empregar métodos
de pares e pares acoplados. O preco que se paga nesses métodos é a nao utilizacao de
técnicas variacionais, ou seja, a energia calculada por tais métodos pode ser menor que
a energia verdadeira do sistema. A aproximagcao de pares de elétrons independentes (In-
dependent Electron Pair Approxzimation - TEPA)[269, 270] calcula a energia de correlagao
associada com um par de elétrons nos orbitais de spin a e b negligenciando todos os demais
elétrons. Apenas os elétrons nesses dois orbitais se correlacionam através da excitagao
em orbitais virtuais. E construida entdao uma funcao de onda de correlacao para o par

ab através de interacoes da funcao de onda de Hartree-Fock com determinantes formados
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pela excitacao deste tunico par. A energia desta funcao de onda é a soma da energia de

Hartree-Fock com a energia de correlacao do par:

Eab = EHF + Eab- (A124)

A fim de obter o melhor valor de ¢, utiliza-se o método variacional linear. Embora
o valor de g4 calculado nesta aproximacao seja variacional, a soma das energias dos
pares nao ¢é necessariamente maior que a energia de correlacao exata. O método IEPA
é, computacionalmente, idéntico a um calculo DCI efetuado para cada par de elétrons

separadamente.

Em um sistema de muitos elétrons real, dois pares quaisquer de elétrons ab e cd nao
sao independentes. Mesmo assim ¢é interessante aproximar os coeficientes de excitagoes
quadruplas através de produtos de coeficientes de excitacoes duplas. Esta abordagem
¢ conhecida como teoria de muitos elétrons acoplados em pares (Coupled-Pair Many
FElectron Theory - CPMET) ou aproximagao de cluster acoplado (Coupled-Cluster Ap-
proximation - CCA) [271, 272, 273]. Converter as equagoes desta aproximagao em uma
forma computacionalmente adequada exige bastante trabalho. O método CCA incluindo
apenas excitagoes duplas recebeu o nome de CCD (Coupled-Clusters Doubles)[272] para
diferenciar-se de outras versoes da teoria que também incorporam excitacoes simples ou
de ordem superior. As equacoes da aproximacao CCD nao sao lineares, o que aumenta o
nivel de complicagao de suas solugoes (existe inclusive uma aproximagao linear, conhecida
CCA linear, bem como uma aproximacao de pares de elétrons acoplados, Coupled-FElectron
Pair Approzimation - CEPA [274], que reduz o custo computacional do método CCD).
Sua vantagem ¢ que, em contraste com o método DCI, apresenta consisténcia de tamanho,
além de nao sofrer dos mesmos problemas de invariancia apresentados pelo método IEPA
(a aproximagao CCD é invariante sob transformagoes unitérias de orbitais degenerados).
Ja a desvantagem é que, por tratar-se de um método nao-variacional, pode resultar numa
energia de correlacao menor que a energia de correlacao real. A diferenca entre a energia
calculada em uma dessas aproximacoes que vao além de Hartree-Fock e a energia exata

do sistema é chamada de energia de relaxacao.

Uma outra abordagem para determinar a energia de correlacao, que nao é varia-
cional mas possui consisténcia de tamanho em cada passo é a teoria de perturbacao.
Existem varias expansoes perturbativas para a energia de correlagao (por exemplo, a
teoria de perturbacao de Mgller-Plesset, Mgller-Plesset Perturbation Theory - MPPT
ou teoria de perturbacao de muitos corpos - Many-Body Perturbation Theory - MBTE,
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[251, 275, 276, 277, 278, 279, 280, 281, 282, 283]). Quando se olham para as expressoes
padrao para as energias MBPT de ordem mais alta (como ocorre com sistemas com muitos
elétrons), verifica-se que estas apresentam termos proporcionais ao quadrado do niimero
de particulas, os quais sao representados por diagramas de Feynman com pedagos des-
conectados. Felizmente foi provado que esses termos desconectados sempre se cancelam,
nao importando a ordem com que sdo somados (teorema do linked-cluster), garantindo a

consisténcia de tamanho do método perturbativo.

Na teoria da fun¢ao de Green de muitos corpos para uma particula (Many-Body Green
Function - MBGF) a informagao sobre as afinidades eletronicas e potenciais de ionizagao

é mais confiavel que a calculada na aproximagao de Hartree-Fock simples.

Além dos métodos apresentados nesta secao e do método de Hartree-Fock, outra
abordagem para o problema da energia de correlacao é a teoria do funcional da densidade

(Density Functional Theory - DFT), que serd descrita nas proximas segoes.

A.6 Teoria do funcional da densidade

A.6.1 Funcionais da densidade eletronica

O modo convencional de tratar sistemas com muitos elétrons, visto nas se¢oes anteri-
ores, utiliza a fun¢ao de onda |¥) como ponto de partida. De fato, uma vez determinada
a funcao de onda, é possivel obter toda a informacao fisica sobre o sistema em estudo.
O problema desta abordagem, porém, é que a funcao de onda de um sistema de N,
elétrons depende de 4N, variaveis, 3N, coordenadas espaciais e [N, coordenadas de spin.
Os sistemas de interesse em fisica, quimica, biologia e ciéncia dos materiais possuem mui-
tos atomos e, portanto, grande quantidade de elétrons. Logo, qualquer tratamento que
lida diretamente com a funcao de onda em tais sistemas é bastante dificil, quando nao
inviavel, e rapidamente impede o acesso a qualquer interpretacao intuitiva dos processos
fisicos subjacentes ao seu comportamento. Por outro lado, o operador hamiltoniano H
contém apenas operadores que atuam sobre uma T o, ‘A/e_n, ou duas (V,_.) particulas simul-
taneamente, independente do tamanho do sistema, o que sugere a possibilidade de uma
abordagem menos dispendiosa capaz de prescindir do célculo da fungao de onda (pode-se,
de fato, mostrar que a equacao de Schrodinger pode ser escrita em termos de matrizes
densidade de uma e duas particulas, reduzindo o nimero de varidveis de 4N, para 8). A
idéia dos funcionais de densidade é empregar uma densidade eletronica p°(r) (ndo confun-

dir com a densidade de carga eletronica definida anteriormente. A densidade eletronica
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no método funcional da densidade quer significar o nimero de elétrons que podem ser
encontrados em um certo volume. Por certo é possivel calcular a densidade de carga
eletronica a partir da densidade eletronica, bastando para isso multiplicar esta tltima
quantidade pela carga do elétron) dependendo apenas das trés coordenadas espaciais a
fim de obter uma solugao para a equagao de Schrodinger. De fato, a densidade eletronica
do estado fundamental possui todos os ingredientes necessarios para a representagao do
hamiltoniano do sistema: sua integral em todo o espaco fornece o niimero de elétrons
presentes, a localizacao de seus picos revela as coordenadas nucleares e a forma de cada

um desses picos indica a magnitude da carga nuclear presente.

Tentativas preliminares de usar a densidade eletronica no lugar da fungao de onda
sao quase tao velhas quanto a mecanica quantica. No cerne do modelo mais antigo,
conhecido como modelo de Thomas-Fermi (formulado perto do fim dos anos 20), reside um
modelo estatistico dos elétrons que, na formulagao original, s6 considera a energia cinética
eletronica, analisando as contribuicoes elétron-ntcleo e elétron-elétron classicamente. A
energia cinética de Thomas-Fermi em funcao da densidade eletronica para um gas de

elétrons uniforme é dada por:

Toslpf(0)] = 1532 [ 15 o) . (A.125)

Combinando esta expressao com as expressoes classicas para o potencial atrativo
elétron-nicleo e o potencial repulsivo elétron-elétron, temos a energia de Thomas-Fermi

para um atomo com numero atomico Z:

Erelp(r)] = %(37r2)2/3 / ¢ () 2dr — Z / peﬁr)drqté / %drdr'. (A.126)

A importancia desta equagao nao consiste tanto na precisao com que descreve a energia
de um atomo, mas sim no fato de a energia ser funcao apenas da densidade eletronica. Este
é, portanto, o primeiro exemplo de um funcional da densidade genuino para a energia,
ou seja, a Eq. (A.119) é uma receita para calcular a energia em termos da densidade
eletronica, sem qualquer calculo de fungoes de onda. Para achar a densidade eletronica
correta, o modelo de Thomas-Fermi usa o principio variacional, assumindo que o estado

fundamental do sistema minimiza o funcional acima, imposto o vinculo [ p*(r)dr = N.,.

Em 1951, Slater propos uma aproximacao para a energia de troca nao-local de Hartree-

Fock baseada na densidade eletronica. A contribuicao de troca oriunda da anti-simetria
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da fungao de onda pode ser escrita como a interacao entre a densidade de carga com spin

o e o buraco de Fermi de mesmo spin:

1 [ pe(t)hxo(r,r)
Exlps ()] = 5 / pa(rﬁr f’r(,r Y) drar’, (A.127)

onde hx , ¢ uma densidade de buracos de troca associados ao spin o. A idéia de Slater foi
supor que o buraco de troca é esfericamente simétrico e centrado em torno do elétron de
referéncia em r. Supondo que dentro da esfera a densidade do buraco de troca é constante,

sendo nula na regiao exterior, o raio do buraco de Fermi ¢ dado por:

4z

i) = (7 )1/3 5 () (A.128)

O raio 7, é algumas vezes chamado de raio de Wigner-Seitz e pode ser interpretado
como uma primeira aproximacao para a distancia média entre dois elétrons no sistema.
Regioes de alta densidade sao caracterizadas por valores pequenos de r,. Usando ele-
trostatica simples, é facil mostrar que o potencial de uma esfera uniformemente carregada

-1/3

de raio 7, é proporcional a 1/r, ou, o que é equivalente, a [pS(r)] Logo, temos a

seguinte expressao aproximada para Fx:

Bl ()]  Cx / ()], (A.129)

onde Cx é uma constante numérica. Desta forma substituimos o trabalhoso termo de
troca nao-local de Hartree-Fock por uma expressao simples que depende somente dos
valores locais da densidade eletronica. Logo, esta expressao representa um funcional da
densidade para a energia de troca. Para melhorar a qualidade desta aproximagao, um
parametro ajustavel, semi-empirico, «, foi introduzido no fator Cx, no que é chamado de

método Hartree-Fock-Slater:

Bxalp ] = (2) T [ (A.130)

™

Valores tipicos de a variam entre 2/3 e 1. A lei de poténcia 4/3 que aparece nesta
equacao pode ser obtida usando outra abordagem, usando o conceito do gas de elétrons
uniforme introduzido por Bloch, em 1929, e por Dirac, em 1930. Se o valor de Cx
for ligeiramente modificado na Eq. (A.129) e combinado com a energia de Thomas-

Fermi dada pela Eq. (A.126), chega-se ao modelo de Thomas-Fermi-Dirac, o qual inclui
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contribuigoes cinéticas e de Coulomb classicas além dos efeitos quanticos de troca. Mais

uma vez o fato relevante é que todas as partes sao escritas como funcionais puros da

densidade.

A.6.2 O teorema de Hellmann-Feynman

Antes de chegar na moderna teoria DF'T, sera provado aqui um teorema que apresenta
grande utilidade para o cdlculo de propriedades de sistemas com muitos elétrons (como

forgas, por exemplo). Trata-se do teorema de Hellmann-Feynman.

Seja um sistema com hamiltoniano independente do tempo H que envolve varios
parametros, representados aqui genericamente pela letra A\. A equagao de Schrodinger é

dada por:

Hi,, = Epthn, (A.131)

onde os 1, sao autofungoes estacionarias normalizadas. Temos entao que:

E, - / o B,

OE, 0 [ .:
= 5y / Wt H by dr.

(A.132)

A integral para o calculo do valor esperado da energia é efetuada sobre todo o espaco, e
seu valor depende parametricamente de A. Desde que o integrando seja bem comportado,

podemos colocar o operador 1 para dentro da integral, obtendo:

e / (st de = [ 2o iy an + / g Hwn - (A.133)
Temos entao:
J (gf» _ 0 <§f”> " 0 <gf”> , (A.134)
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Oy,
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Logo:
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Temos entao:

OE, [0V} - OH
I _/ ) Hwndr—i-/ na)\wndr—l—/w

A primeira integral é facilmente simplificada:

oy, 1 _ oy,
/ 5 Hy,dr = E, 3 ndr.

Tendo em vista que o operador H é hermiteano, a dltima integral na Eq.

pode ser escrita como:

Jnpae [ ) - [

Logo:

/% ) @Zzndr—l—E w*@bnd + E, /wn 01#;

De onde se segue que:

6)\ /d’"ﬁ%dHE / oo Unr + En "8)\

~ [ e, [ g [ ey, m/w e =
Lo

1

/@/}n B ¢ndr+E /wn 2 wndr

(A.135)

(A.136)

(A.137)

(A.138)

(A.137)

(A.139)

(A.140)

(A.141)



A.6 Teoria do funcional da densidade 347

Esse é o teorema de Hellmann-Feynman generalizado. Aplicando esta equacao a
moléculas e tomando A como sendo a coordenada de um dos ntcleos, Helmann e Feynman
provaram que a forca efetiva atuando sobre um nicleo em uma molécula pode ser deter-
minada usando apenas eletrostatica simples, somando as forcas coulombianas exercidas
pelos outros nicleos e por uma nuvem eletronica cuja densidade de carga é obtida resol-
vendo a equacao de Schrodinger ou minimizando um funcional da densidade eletronica.
Este teorema é conhecido como teorema eletrostatico de Hellmann-Feynman. Quando se
usam funcgoes de base incompletas centralizadas nos ntucleos, um erro é introduzido nas
forcas obtidas a partir deste teorema (as chamadas forgas de Pulay [284]). Este erro pode
ser eliminado se for utilizado um conjunto de base formado por ondas planas, desde que
o sistema eletronico seja convergido para o estado fundamental. Para sistemas periddicos
onde a forma da célula unitaria varia, também surgem erros (conhecidos como tensoes de

Pulay [285]).

A.6.3 Os teoremas de Hohenberg-Kohn

No ano de 1964, Hohenberg e Kohn publicaram um artigo [117] no qual demonstravam

dois teoremas fundamentais para a moderna teoria do funcional da densidade.

O primeiro teorema de Hohenberg-Kohn prova que a densidade eletronica de fato
determina de um modo tinico o operador hamiltoniano e, portanto, todas as propriedades
do sistema. A demonstragao original dada por Hohenberg e Kohn no artigo de 1964
¢ extremamente simples, quase trivial, e é legitimo perguntar porque foram necessarios
quase 40 anos desde o modelo de Thomas-Fermi para se chegar a ela. O primeiro teorema,

conforme enunciado por Hohenberg e Kohn, é:

Primeiro teorema de Hohenberg-Kohn: O potencial externo Vexr(r) € (a menos
de uma constante) wm funcional unico de p°(r); uma vez que Vixr(r) determina H, vemos

que o estado fundamental completo de muitas particulas € um funcional inico de p°(r).

Vale lembrar que uma condigao necessaria para a densidade de elétrons é que sua
integral em todo o espaco deve resultar igual ao nimero do elétrons do sistema. A prova
do primeiro teorema é feita como se segue e é baseada numa reductio ad absurdum. Sejam
dois potenciais externos Vexr e Viixr que diferem entre si por um fator que nao ¢ constante
(explica-se: como a fungao de onda e, por conseguinte, a densidade de carga, nao muda
se uma constante é adicionada ao potencial, deve-se exigir desde o inicio que os dois
potenciais externos difiram por um termo que nao é constante) mas produzem a mesma

densidade de elétrons p®(r) associada aos estados fundamentais nao-degenerados de N,
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particulas (a limitacao a estados nao-degenerados do argumento original de Hohenberg-
Kohn serd removida posteriormente). Esses dois potenciais externos sao parte de dois

hamiltonianos que diferem apenas no potencial externo:

(A.142)

Obviamente, os dois hamiltonianos HeH possuem duas fungoes de onda distin-
tas para o estado fundamental, ¥ e U’ e energias de estado fundamental Ey e Ej, com
Ey # E|. No entanto, supoe-se que ambas as fungoes de onda dao lugar a mesma densi-
dade eletronica (o que é bem plausivel, uma vez que a receita de como uma densidade é
construida a partir de uma funcdo de onda nao é tnica). Podemos espressar isto esque-

maticamente:

Vixr(r) = H= U = p°(r) « V < H < Vigo(r) (A.143)

Como V¥ e ¥’ sdo diferentes, podemos usar ¥ como uma fungao variacional tentativa

para H. Logo, em virtude do principio variacional:

Ey < (V| H |V = (V| H' |V + (V| H — H |0, (A.144)

ou ainda:

Ey < Ey+ (V| To + Veee + Vixr — To — Veee = Vi [ V') =
(A.145)
= B+ (W Vixr = Vi |¥) = By + [ 5°(5) {Viocr = Vir b

Permutando as quantidades com e sem ’, e repetindo o mesmo procedimento, temos:

E6 < FEy+ /pe(r) {V}éXT — VEXT}dr- (A146)

Somando as Egs. (A.145) e (A.146), temos uma contradigao:

Ey+ Ey < Ey+ Ej. (A.147)
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Isto conclui a prova de que nao podem existir dois potenciais externos Vgxr capazes
de criar a mesma densidade eletronica para o estado fundamental, ou seja, a densidade
eletronica do estado fundamental especifica de modo tinico o potencial externo Vgxr. Uma
vez que a energia completa do estado fundamental é um funcional da densidade eletronica
neste estado, seus componentes tambem devem sé-lo (aqui para um potencial externo

produzido por cargas nucleares):

E[p*(r)] = Te[pf(x)] + Veeelp®(r)] + Veon[p®(r)]. (A.148)
E conveniente separar esta expressao em partes que dependem do sistema especifico
e partes que sdo comuns a todos os sistemas (independentes do nimero de elétrons, das

coordenadas e das cargas nucleares):

Bl (1) = T (@0)] + Vool )]+ Vomnl ()] - (A.149)
Termo co_n:;rn a todos Termo d;rpendente
os sistemas do sistema

Reunindo os termos que sao independentes do sistema utilizado, temos a definicao do

funcional de Hohenberg-Kohn Fyk:

Fuk[p®(r)] = Te[p®(r)] + Vee[p(r)]. (A.150)

E a Eq. (A.148) se transforma em:

Elp*(r)] = Fuk[p®(r)] + Ven[p®(r)]. (A.151)

Em outras palavras, se o funcional de Hohenberg-Kohn recebe uma densidade de
carga arbitraria p°(r) como input, ele devolve o valor esperado (¥|7T, + V._. |¥). Esta
é a soma da energia cinética com o operador repulsao elétron-elétron para a fungao de
onda do estado fundamental ¥ conectada & densidade p(r) (ou seja, ¥ é, dentre todas
as fungoes de onda que produzem p°(r), aquela que devolve o valor mais baixo para a

energia). Temos:

Fux[p®(r)] = T.[p°(x)] + Vie[p* ()] = (U| T, + Voo |¥) . (A.152)

Determinar o funcional exato Fyk € crucial para a teoria do funcional da densidade.
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Se este potencial fosse conhecido exatamente, seria possivel resolver exatamente a equagao
de Schrodinger. E, uma vez que tal funcional é completamente independente do sistema,
o mesmo poderia ser usado para resolver sistemas simples, com poucos componentes, ou
sistemas mais complexos com nimeros gigantescos de dtomos (uma protéina ou seqiiéncia
de DNA). Infelizmente, no entanto, a forma exata de Fyx ainda nao foi descoberta.
Podemos, no entanto, extrair o termo de Coulomb classico J[p¢(r)] da energia potencial

resultante da interacao elétron-elétron:

Vieelp ) = / %dd Bnelpt ()] = JIot ()] + Bxclp(r)].  (A153)
J[ot (v)] ’

Exclpt(r)] é a contribuigao nao-cléssica para a interagao elétron-elétron, que incorpora
todos os efeitos da correcao de auto-interacao, troca e correlacao de Coulomb. Determinar
Enc[p®(r)] juntamente com T, [p°(r)] representa o maior desafio da teoria do funcional da

densidade.

Deve-se notar neste momento que a densidade do estado fundamental determina de
modo o tnico o Hamiltoniano, o qual por sua vez determina todos os estados possiveis do
sistema, tanto o fundamental como os excitados. Logo, todas as propriedades de todos
os estados sao formalmente determinadas a partir da densidade no estado fundamental
(apesar de os funcionais da Eq. (A.151) nao serem adequados para determinar proprieda-
des desses estados excitados). Logo mais veremos que a teoria do funcional da densidade
¢ usualmente considerada uma teoria apenas para o estado fundamental por causa do
segundo teorema de Hohenberg-Kohn. Por outro lado, é apenas a densidade eletronica
do estado fundamental que contém a informacao sobre posi¢oes e cargas nucleares, per-
mitindo a traducao da informagcao contida na densidade para um potencial externo. A

densidade de um estado excitado nao se presta a esse mesmo fim.

O segundo teorema de Hohenberg-Kohn afirma que Fyk[p®(r)], o funcional que devolve
a energia do estado fundamental do sistema, retorna a energia mais baixa se e somente

se a densidade de input ¢ a densidade do estado fundamental verdadeira pf.

Segundo teorema de Hohenberg-Kohn: O funcional da energia do estado fun-
damental E[p°¢] € minimizado se e somente se p° é a densidade exata para o estado fun-

damental.

Trata-se de um principio variacional, o qual pode ser escrito como:



A.6 Teoria do funcional da densidade 351

Ey < E[p(r)] = Te[p(r)] + Ve—e[p®(r)] + Veon[p®(1)]- (A.154)

Qualquer densidade de carga tentativa p'*(r) satisfazendo as condi¢oes de contorno
do problema de muitos elétrons e que é associada a algum potencial externo Vi -
determinado a partir da Eq. (A.148), por exemplo - ird fornece uma valor maximo para a
energia do estado fundamental verdadeiro Ey. A energia sé sera igual a Ejy se e somente
se a densidade correta para o estado fundamental é inserida na Eq. (A.151). A prova
deste teorema é simples. Basta lembrar que qualquer densidade eletronica tentativa p®(r)
define seu préprio hamiltoniano H' e sua propria funcao de onda ¥'. Esta funcao de onda
pode ser inserida como tentativa no hamiltoniano gerado a partir do potencial externo

verdadeiro Vixr, resultando em:

(U H V') = To[p*(r)] + Veeelo“(r)] + Ve [p*(r)] =

] (A.155)
= Blp"“(r)] > Elpg(r)] = (Wol H W),

que é o0 que queriamos provar.

E interessante considerar uma definicao alternativa do funcional densidade criada por
Mel Levy e Elliott Lieb que estende o alcance da definicao do funcional de uma maneira
que é formalmente mais tratavel e esclarece seu significado fisico, além de fornecer uma
maneira de determinar o funcional exato em principio, produzir as mesmas densidade
e energia para o estado fundamental (minimizadas variacionalmente, como no caso do

funcional de Hohenberg-Kohn) e ser aplicavel a estados fundamentais degenerados.

A idéia de Levy e Lieb (LL) é definir um procedimento de minimizagao em dois passos
comecando com a expressao geral usual para a energia em termos da funcao de onda de
muitos corpos W. O estado fundamental pode ser calculado, em principio, minimizando
a energia com respeito a todas as variaveis de W. Entretanto, suponhamos que se quer
considerar a energia somente para a classe de funcoes de muitos corpos ¥ que produzem
a mesma densidade eletronica, p¢(r). Para qualquer funcao de onda, a energia total pode

ser escrita como:

EI0] = (8|7, |9) + (0] Veee [9) + [ Vi 1) (@) (A.156)

Minimizando a energia dada pela Eq. (A.156) sobre a classe de fungoes de onda que

produzem a mesma densidade p°(r), é possivel determinar uma densidade que minimiza



352 Anexo A - Fundamentos tedricos

a energia:
Eii[p*(x)] = min (O[T, |0) + (O] Voo [0) +/v; n(r)p* (r)dr + Eyy =
—r) (A.157)
= Fulp' @) + [ Veoale)pr i,
onde o funcional da densidade de Levy-Lieb é definido por:
Fiolp' ()] = min (U7, [0) + (] Vi |9)] (A.158)

Nesta forma, Fyp[p®(r)] é um funcional da densidade e o estado fundamental é de-
terminado minimizando Epp[p®(r)]. A formulagdo de Levy-Lieb é bem mais que uma
reafirmagao do funcional de Hohenberg-Kohn. Primeiramente, a Eq. (A.158) esclarece
o significado do funcional e fornece um meio de construir uma definicao operacional: o
minimo da soma da energia cinética com as energias de interacao para todas as fungoes
de onda possiveis com a densidade eletronica p°(r). O funcional LL também é formal-
mente diferente do funcional HK; em particular, o funcional LL é definido para qualquer
densidade p°(r) derivavel de uma funcdo de onda W para N, elétrons. Tal caracteristica é
chamada de N-representabilidade, e sabe-se que sempre existe uma funcao de onda desse
tipo para qualquer densidade satisfazendo certas condigoes. Por outro lado, o funcional
HK ¢ definido apenas para densidades que podem ser geradas por algum potencial ex-
terno, o que é chamado de V-representabilidade, e as condicoes para a existéncia de tais
densidades nao sao conhecidas em geral. No minimo da energia total do sistema em um
dado potencial externo, o funcional Fyp[p¢(r)] deve ser igual ao funcional Fyk[p®(r)], uma
vez que o minimo é uma densidade que pode ser gerada por um potencial externo. Além
disso, o formalismo LL elimina a restricao na prova original de Hohenberg-Kohn a estados
fundamentais nao-degenerados. Agora é possivel efetuar uma busca num espago contendo

também degenerescéncias.

Logo, fica estabelecido que um funcional pode ser definido para qualquer densidade
(sujeita a certas condigbes), e que minimizando este funcional é possivel encontrar as
energias e densidades exatas para o sistema de muitos corpos real. Assim como no caso
das provas de Hohenberg-Kohn, no entanto, persiste o fato de que nenhum método foi
capaz de encontrar outro funcional que nao o originalmente definido em termos de fungoes
de onda. A despeito disso, a dependéncia do funcional com as energias cinética e potencial

da funcao de onda completa de muitos corpos aponta o caminho para a construcao de
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funcionais aproximados que sao de grande utilidade em calculos praticos e na interpretacao

dos efeitos de troca e correlagao entre os elétrons.

A anélise que acaba de ser feita também mostra como os teoremas de Hohenberg-
Kohn podem ser estendidos a véarios tipos de particulas. A razao para o papel especial da
densidade e do potencial externo nos teoremas de Hohenberg-Kohn se deve ao fato dessas
quantidades entrarem no calculo da energia total de modo explicito apenas através do
termo integral bilinear simples [ V._,(r)p%(r)dr. Se existirem outros termos no hamilto-
niano com esta forma, entao cada par potencial externo-densidade de particulas obedecera
a um teorema de Hohenberg-Kohn. Por exemplo, ha problemas em que existem interagoes
diferentes para particulas com spins distintos, levando a definicao de uma teoria do fun-
cional de densidade de spin, importante na descricao de atomos e moléculas com spin

liquido, ou de sélidos com ordem magnética.

David Mermin [286] estendeu o raciocinio de Hohenberg-Kohn a ensembles gra-cano-
nicos e mostrou que, para sistemas em equilibrio térmico, nao sé a energia, mas também
a entropia, calor especifico, etc. sao funcionais da densidade de equilibrio. Subsiste, no
entanto, grande dificuldade em definir funcionais apropriados para a entropia (que envolve
somas sobre estados excitados). Por exemplo, na descri¢ao do liquido de Fermi para um
metal o coeficiente do calor especifico a baixa temperatura é diretamente relacionado
com a massa efetiva na superficie de Fermi. O funcional de Mermin para a energia livre
pretende descrever corretamente a massa efetiva (com toda a renormalizagao de muitos
corpos) bem como o estado fundamental, enquanto somente o dltimo pode ser calculado

a partir do funcional HK.

Estendendo os teoremas de Hohenberg-Kohn para o dominio temporal, foi provado
que dada a fungao de onda num instante inicial, a evolucao posterior é um funcional
tnico da densidade dependente do tempo ( Time-Dependent Density Functional Theory -
TDDFT). A demonstracao dessa extensao dos teoremas HK sao quase tao simples quanto
as provas originais sem dependéncia temporal, e isto pode ser considerado como uma
etapa formal na construcao de uma teoria do funcional da densidade para excitacoes.
Evidentemente o funcional da densidade dependente do tempo deve ser bastante compli-
cado, com ressonancias para as energias de excitagao corretas. Mesmo assim, tem havido
consideravel progresso ao longo desta linha de investigacao. Recentemente mostrou-se
que em um sistema sem fronteiras a evolucao nao é um funcional apenas da densidade.
Um contra-exemplo simples para ilustrar este fato é um anel uniforme de carga que pode

se mover ao longo do anel. Como a densidade é sempre uniforme, o estado completo
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do sistema é determinado somente se uma condicao adicional, a densidade de corrente

eletronica, é especificada.

Os teoremas de Hohenberg-Kohn lancam o desafio de reformular a teoria de muitos
corpos em termos de funcionais da densidade. Os teoremas sao provados em termos de
funcionais desconhecidos da densidade, e é facil mostrar que esses funcionais devem ser
nao-locais, dependendo simultaneamente de p®(r) em diferentes posigoes r. Existe certo
nimero de questoes relacionadas com a natureza das densidades possiveis que os elétrons
podem possuir, dado somente o fato de que sua integral deve fornecer o niimero correto de
particulas. Foi provada a existéncia, por exemplo, de densidades aparentemente razoaveis
que nao podem ser o estado fundamental de nenhum potencial externo (densidades nao-

V-representdveis).

A teoria do funcional da densidade nao fornece uma maneira de entender as proprieda-
des de um material simplesmente olhando para a forma da densidade eletronica. Embora
esta em principio seja suficiente, a relacao com as propriedades é quase sempre muito
sutil e ndo foi encontrada (ainda) uma maneira geral de extrai-las (por exemplo, saber
imediatamente se o material é metal ou isolante). Nao existe forma conhecida de escrever
o funcional da energia cinética a nao ser através de derivadas que atuam sobre funcoes de
ondas descontinuas em termos dos numeros de ocupagao (que sdo sempre inteiros). Do
teorema do virial, que relaciona as energias cinética e potencial, segue-se imediatamente
que todas as partes do funcional exato irao variar de modo nao-analitico em fungao do

numero de elétrons.

No caso de materiais sélidos, a densidade é notavelmente similar a somatorios de
densidades atomicas sobrepostas. A ligacao covalente, de fato, é dificil de discernir na
densidade total. Um cristal ionico é muitas vezes considerado como uma soma de ions,
mas também pode ser tratado como uma soma de atomos neutros. Isto é possivel porque
o anion negativo é tao grande que sua densidade se estende em volta do cation positivo,
tornando a densidade parecida com aquela dos atomos neutros. Logo, mesmo para cris-
tais ionicos bem conhecidos, nao é 6bvio como obter informacao pertinente a partir da

densidade de elétrons. E ainda é mais dificil distinguir metais de isolantes.

Todas essas consideracoes nos levam a abordagem de Kohn-Sham, cujo sucesso se ba-
seia no fato da mesma incluir a energia cinética dos elétrons nao-interagentes em termos
de fungoes de onda de particulas independentes, além dos termos de interacao explicita-
mente modelados como funcionais da densidade. Como a energia cinética é tratada em

termos de orbitais - e nao como um funcional explicito - ela se baseia em propriedades
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quanticas que nao possuem uma relagao trivial com a densidade. No exemplo de um cris-
tal idnico, o ponto principal é que a densidade é construida a partir de estados fermionicos
que obedecem ao principio da exclusao. E este fato que leva ao preenchimento de quatro
bandas por célula e a um gap isolante, que é a esséncia de um cristal desse tipo. Tao logo
a solucao de muitos corpos esteja suficientemente préoxima da formulagao de particulas
independentes, por exemplo, os estados devem ter a mesma simetria, e a abordagem de

Kohn-Sham fornece pistas titeis e métodos poderosos para a teoria de estrutura eletronica.

A.6.4 O método de Kohn-Sham

Se a densidade eletronica para o estado fundamental p§(r) é conhecida, o teorema
de Hohenberg-Kohn afirma que é possivel em principio calcular todas as propriedades
eletronicas do estado fundamental a partir de p§(r) sem ter de determinar a fungao de
onda molecular. O teorema de Hohenberg-Kohn nao diz como calcular F, a partir de
p6(r) (uma vez que o funcional Fp g é desconhecido), nem informa como encontrar p§(r)
sem primeiro determinar a funcao de onda. Um passo importante para alcancar tais
resultados foi dado em 1965, quando Kohn e Sham divisaram um método para calcular
p5(r) e, depois, Ey a partir de p§(r) [118]. O método por eles desenvolvido é capaz,
em principio, de fornecer resultados exatos, mas como as equacoes do método de Kohn-
Sham (KS) contém um funcional desconhecido, os resultados, na prética, sao apenas

aproximados.

Kohn e Sham consideraram um sistema de referéncia ficticio (denotado pelo subscrito
s e chamado de sistema nao-interagente) de N, elétrons que se comportam de modo
totalmente independente e que experimentam a mesma energia potencial Vi(r;), onde
Vs(r;) é definida de modo que a densidade eletronica para o estado fundamental pS(r;) do
sistema de referéncia ¢ igual a densidade exata para o estado fundamental pf(r;) do sistema
real, p§(r;) = pS(r;). Como Hohenberg e Kohn provaram que a densidade eletronica do
estado fundamental determina o potencial externo de modo completo, uma vez definida a
densidade p¢(r;) para o sistema de referéncia, o potencial externo Vi(r;) é tinico, embora

nao se possa de fato calcula-lo.

Os elétrons nao interagem uns com os outros no sistema s. Logo, em tal sistema o

hamiltoniano é dado por:

N,
N = 1 ~
H, = E {—Evﬁ +vs(rz~)] => HS, (A.159)
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onde:

. 1
HES = —§v3 + Vi(r;). (A.160)

HXS ¢ 0 hamiltoniano de um elétron de Kohn-Sham. O uso de um sistema ficticio
de elétrons nao-interagentes nao constitui um problema, pois é possivel relacionar o sis-
tema ﬁCthlZOV de referéncia de Kohn-Sham com o sistema real escrevendo o hamiltoniano
H \= T + Z Vi(r;) + AVe ¢, onde o parametro A varia de 0 (sem repulsoes inter-elétron,

=1
que é o sistema de referéncia) até 1 (o sistema real), e V) é definido como o potencial
externo que determinara a densidade eletronica para o estado fundamental do sistema

com hamiltoniano H igual a densidade para o estado fundamental do sistema real.

Como o sistema de referéncia s consiste de particulas nao-interagentes, os resultados
ja obtidos para o método Hartree-Fock mostram que a funcao de onda para o estado fun-
damental do sistema s ¢ o produto anti-simetrizado (determinante de Slater) dos orbitais
de spin de Kohn-Sham de mais baixa energia, uX5, do sistema de referéncia, onde a parte

espacial X5(r;) de cada orbital de spin é uma autofuncio do operador de um elétron 7:(ZKS,

ou seja:
Uso = |urSusS - uly) (A.161)
onde:
u® = 65 (ri) o, (A.162)
e:
HESOKS (r;) = X5085 (). (A.163)

KS

o; ¢ uma fungao de spin (« ou ) e os €;°° sao as energias dos orbitais de Kohn-Sham.

Para um estado fundamental de camada fechada, os elétrons estao emparelhados em
orbitais de Kohn-Sham, com dois elétrons de spins opostos ocupando o mesmo orbital

espacial (tal como acontece no método RHF).

Kohn e Sham reescreveram a equacao de Hohenberg-Kohn como descrito a seguir.

Define-se uma quantidade AT&S:
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AT.s[ph(r)] = Telpf(r)] — Ts[p5(r)]. (A.164)

AT, s é a diferenca na energia cinética média do estado fundamental entre o sistema
real e o sistema formado por elétrons nao-interagentes com densidade eletronica igual a

densidade do sistema real. Seja ainda:

AV gt = Ve lte)) - 5 [ BB g (A.165)

2 r —r/|

onde |r — 1’| é a distancia entre os pontos (z,y,z) e (z,y/,2'). A quantidade 3 [ p0(|: pﬁ,| =)
drdr’ é a expressao classica para a energia de repulsao eletrostdtica entre dois elétrons
cujas cargas foram espalhadas de acordo com uma densidade de carga proporcional a
densidade eletronica. A carga dg em um pequeno elemento de volume dr da distribuigao
é —pi(r)dr e a energia potencial de repulsdo entre dg e a carga no elemento de volume
dr’ localizado em 1’ é ’)‘)(‘Ldrdr Integrando em dr’ encontra-se a energia de repulsao
entre dq e a distribui¢ao de carga; integrando sobre dr e multiplicando por 1/2 (evitando
contar duas vezes cada repulsao) chega-se a energia total. Com essas definigdes, podemos

e (1)) = / Ve (£)6(x)dr + T [ () 1+
s [ PO gyt 4 AT, o5 (0)] + AVl )] (A.166)

2 lr — 1’|

Os funcionais AT, es € AV,_. sao desconhecidos. Definindo o funcional de energia de

troca e correlacio Exc[p®(r)] como:

Exclp®(r)] = AT s[p"(r)] + AVe—c[p(x)], (A.167)

temos:

Po(r)p5(r’)

|I‘—I‘| drdr’ +EXC[pO( )]

(A.168)

B = Bre 600 = [ Voxa@i(e)ar + ..l + 5 [

A razao por tras de todas essas definigoes é expressar E,[p¢(r)] em fungao de trés
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quantidades, os trés primeiros termos do lado direito da Eq. (A.168), que sao faceis de
calcular através de p® e que incluem a principal contribuicao para a energia do estado
fundamental, mais uma quarta quantidade Exc que, embora nao seja facil de determinar
com acuracia, é um termo relativamente pequeno. A chave para calculos de Kohn-Sham

bem sucedidos é encontrar uma boa aproximagao para Fxc.

Antes de determinar os termos na Eq. (A.168), é necessario calcular a densidade
eletronica para o estado fundamental. E preciso lembrar que o sistema ficticio de elétrons
nao-interagentes é definido de modo a ter a mesma densidade eletronica que o estado

fundamental do sistema real: p$ = pf. E possivel mostrar que:

pi(r) = ps(r Z\GKS r)|" (A.169)

Para os termos da Eq. (A.168):

/VEXT r)pf(r)dr = — ZZI lr_RI|dr (A.170)

Tes[p5(r)] = wsolzvz ¥s0) = ——Z(HKS )| V2]655(x)). (A.171)
Logo, a Eq. (A.168) se transforma em:

ZZ /|r—R1]d ——Z<9KS )| V2 [655 (r) )+

1 po(r)p5(r') ' e
_,_é/Wdrdr + Exclpg(r)].

(A.172)

Podemos entao calcular £ a partir de pj se pudermos determinar os orbitais de
Kohn-Sham X5 e se soubermos qual é o funcional Exc. A energia eletronica incluindo a

repulsao nuclear é encontrada adicionando o termo de repulsao V,,_,,.

Para calcular os orbitais de Kohn-Sham, o procedimento a tomar é o seguinte. O
segundo teorema de Hohenberg-Kohn diz que é possivel achar a energia do estado funda-

mental variando p¢ (sujeito ao vinculo [ p°(r)dr = N,) de modo a minimizar o funcional
E,[p¢]. De modo equivalente, ao invés de variar p°, é possivel variar os orbitais KS X5,

que determinam p¢ (Eq. (A.169)) (ao fazer isto é necessdrio impor que os orbitais 6X°
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sejam ortonormais, uma vez que foi assumida ortonormalidade no cdlculo de T,,). Da
mesma forma como foi provado que os orbitais ortonormais que minimizam a expressao
de Hartree-Fock para a energia satisfazem a equacao de Fock, pode-se mostrar que os or-
bitais de Kohn-Sham que minimizam a Eq. (A.172) para a energia do estado fundamental

satisfazem:

= p°(r) KS KSKS
dr' + Vxe 0;°(r) =¢;70,"(r), A173
onde a funcao V¢ é dada por:
dExc[pt(r)]
= ——— = A.174
Vxc(r) 5p° (1) (A.174)

Vxc € o potencial de troca e correlagao obtido a partir da derivada funcional da energia
de troca e correlacao. A definicdo precisa da derivada funcional nao é dada aqui, mas
a seguinte férmula permite encontrar a derivada funcional na maior parte dos casos que

ocorrem no método DFT. Para um funcional definido por:

of of of

F )
1= [ ozt 550 S ey (A175)
onde f é uma funcao de x, y e z que se anula nos limites de integracao, a derivada funcional

¢ dada por:

GF_0g 0 9 0 0 0 0 s

6f Of 0x0(0f/0xr) 0yo(df/dy) 0z0(0f]0z) '

A Eq. (A.173) também pode ser escrita como:
1

[—§V2 + Vs(r)} 055 (r) = ef59K5 (1), (A.177)

ou como na Eq. (A.163). Se se conhece Fxc, sua derivada funcional é prontamente
calculada e determina-se a funcao Vxc. O funcional Exc é um numero, enquanto a
derivada funcional de Fx¢ ¢ uma funcao de p°, e como p® é uma funcao de r, Vxc também

é fungao de r, ou seja, de z,y e z. Algumas vezes se escreve Vxe como vxc(p®(r)).

O operador de Kohn-Sham de um elétron 7:(5(8 ¢ quase igual ao operador de Fock
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Fi que aparece nas equagoes de Hartree-Fock exceto pelo fato de os operadores de troca
K; serem substituidos por Vxa, o termo DFT que leva em conta os efeitos de troca e

correlacao eletronica.

O tnico problema no método de Kohn-Sham para calcular p® e Ey é que nao se
conhece o funcional correto Exc[p®(r)]. Portanto, tanto Exc[p®(r)] como vxc[p®(r)] sdo

desconhecidos. Varias aproximagoes para Exc[p®(r)] serdo discutidas aqui brevemente.

Os orbitais de Kohn-Sham 6X5(r) sdo orbitais do sistema de referéncia ficticio de
elétrons nao-interagentes. Logo, estritamente falando, esses orbitais nao possuem signifi-
cado fisico outro que nao o de permitirem calcular o estado fundamental exato. A funcao
de onda no método do funcional da densidade nao é um um determinante de Slater de or-
bitais de spin. De fato, nao existe funcao de onda do funcional da densidade. No entanto,
em calculos praticos verifica-se que os orbitais de Kohn-Sham ocupados assemelham-se
aos orbitais moleculares calculados através do método de Hartree-Fock, e os orbitais de
Kohn-Sham podem ser usados (da mesma maneira que os orbitais moleculares de Hartree-
Fock) em discussoes qualitativas sobre propriedades moleculares e reatividades [287, 288|
(note-se que, estritamente falando, também os orbitais de Hartree-Fock néao sao fisica-
mente reais, uma vez que eles se referem a um sistema modelo ficticio no qual cada

elétron experimenta algum tipo de campo médio produzido pelos demais elétrons).

Para uma molécula de camada fechada, cada energia de Hartree-Fock de cada orbital
ocupado é uma boa aproximacao para o negativo da energia necessaria para remover um
elétron daquele orbital (teorema de Koopman). O mesmo nao é verdade para as energias
dos orbitais de Kohn-Sham. A tinica excecdo é a energia eX® para o orbital HOMO que,
pode-se provar, é igual a menos a energia de ionizagdo molecular (mesmo assim, usando
as aproximagcoes atuais para Fxc, as energias de ionizacao calculadas a partir de orbitais

de KS HOMO nao estdo muito de acordo com os dados experimentais).

Varios funcionais aproximados Fxc sao usados em céalculos moleculares no método
do funcional da densidade. Para estudar a acuracia de um Ex¢ aproximado, é necessaria
a comparagao com o dado experimental. A falta de um procedimento sistematico para
melhorar Fx¢ e, portanto, melhorar as propriedades moleculares calculadas é a principal

desvantagem do método DFT.

Em uma teoria DFT rigorosa, apenas densidades eletronicas deveriam entrar como
imput dos calculos, sem necessidade do calculo de orbitais, e seria feita uma busca da
densidade eletronica p© capaz de minimizar E[p¢]. Como o funcional exato é desconhecido,

utiliza-se o método de Kohn-Sham, que é uma espécie de concessao que vai contra os
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objetivos iniciais da teoria do funcional da densidade.

A energia de troca e correlacdo Fxc dada pela Eq. (A.167) contém como componen-
tes: a energia cinética de correlacio AT, (a diferenca entre a energia cinética real e a
energia cinética no sistema de referéncia); a energia de troca (que surge da anti-simetria
da fungao de onda eletronica), a energia de correlagao coulombiana (associada a repulsoes
entre os elétrons) e uma corre¢ao de auto-interagdo. A auto-interacao origina-se do fato

de que a expresséo classica para energia de repulsao eletrostatica de uma nuvem eletronica
f Po(r p5(r

- ) drdr’ erroneamente permite que a porgao de pf em dr interaja com a distri-
S 0

buicao de carga do mesmo elétron em todo o espaco. Na verdade, um elétron nao interage
consigo mesmo. A energia cinética AT, ; do sistema de referéncia em geral é proxima da
energia cinética real T,, e a razao AT, /T, fica pequena. No entanto, a contribuigao de

AT, , para Exc nio é negligenciavel.

A.6.5 A aproximacao de densidade local (Local Density Approxima-
tion - LDA)

Hohenberg e Kohn mostraram que se p¢ varia extremamente devagar com a posigao,

entdo Exclp?] é dado por:

EYRApe(r)] = / o ()exc (o (), (A178)

onde a integral é efetuada em todo o espaco, e exc(p®) é a energia de troca e correlagdo
por elétron em um gas de elétrons homogéneo com densidade eletronica p®. O jellium é
um meio hipotético eletricamente neutro, de volume infinito, consistindo de um niimero
infinito de elétrons interagentes movendo-se em um espaco no qual uma carga positiva é
distribuida de modo continuo e uniforme. O numero de elétrons por unidade de volume
tem um valor diferente de zero e constante igual a p®. Os elétrons no jellium formam

LDA

um gas de elétrons homogéneo (ou uniforme). Tomando a derivada funcional de Ex3®,

temos:

LDA e
VADA _ 0By e agxc(? (r)) (A.179)

S = = exc(p(r)) + p°(r) (1)
Kohn e Sham sugeriram o uso das Eqs. (A.178) e (A.179) como aproximagoes para
FExc e Vxc nas Egs. (A.172) e (A.173), um procedimento que é chamado de aproximagao

de densidade local (Local Density Approzimation - LDA). Pode-se mostrar que exc pode
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ser escrito como a soma de duas partes, um termo de troca e outro de correlagao:

exc(p’(r)) = ex(p°(r)) + ec(p*(r)), (A.180)

onde:

1/3
el (1)) = -2 (5) . (A181)

4 \7w

A parte de correlagao ¢ foi calculada e os resultados expressos como uma fungao
extremamente complicada eg(p®(r)) = 4"~ (p°(r)) por Vosko, Wilk e Nusair (VWN)
[289]. Temos, por fim:

VDY = VAP 4 VA, (152
onde:
VP = —[(3/m)p*(x)]'?, (A.183)
VEPA = VYWN (A.184)
e:

BN = [ (o e)dr = - (§)1/3 [ 1w (A.185)

™

Para determinar as quantidades ex e £¢, é necessario considerar um gas de elétrons
uniforme (GEU) com p°(r) = k, onde k é um valor constante. Como Vxc = Vxc(p®(r)),
e uma vez que p°(r) é constante para um GEU particular, também V¢ o serd (V¢ é
diferente para dois GEUs com densidades eletronicas k; e ky). De acordo com a equagao
de Kohn-Sham para o sistema de referéncia que corresponde ao GEU, a constante Vxc
pode ser omitida sem afetar as autofungoes. Além do mais, no caso do GEU o segundo
termo entre os colchetes da Eq. (A.173) (o potencial externo) deve ser substituido pela
atracao entre um elétron e a densidade de carga positiva que equilibra a densidade de
carga negativa do gas de elétrons. Por causa deste balanceamento, o segundo e o terceiro

termos entre colchetes da Eq. (A.173) se cancelam. Logo o termo de energia cinética
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é o0 unico a sobreviver em 7:@{3 para o gas. Os orbitais de Kohn-Sham podem, entao,
ser tomados como ondas planas com amplitudes ajustadas para fornecer a densidade de
elétrons de acordo com a Eq. (A.169). Como o GEU é eletricamente neutro em cada
regiao do espaco, a soma das repulsoes eletrostaticas entre os elétrons espalhados com a
soma das atragoes entre a distribuicao de carga positiva uniforme e a densidade eletronica
mais a repulsao entre os elementos da distribuicao de carga positiva deve resultar em
zero. Isto deixa o lado direito da Eq. (A.172) somente o termo Exc e o termo de energia
cinética T, 4, que é prontamente calculado a partir dos orbitais KS conhecidos. Separando
Exc como a soma de Fx com Eg, calculam-se Ex e os orbitais de Kohn-Sham, com o
resultado mostrado na Eq. (A.185), deixando apenas E¢ como incégnita. E feito entdo
um calculo numérico acurado da equagao de Schrodinger para encontrar a energia para a
densidade particular p® = k. Combinando esta energia com a energia de Kohn-Sham ja
calculada encontra-se E¢ para a densidade p°. A repeticao desse procedimento para varias
densidades fornece a energia de correlacao para o gas de elétrons uniforme em funcao da

densidade p®. A partir de Fx e E¢, determinam-se ex e ec.

A energia Ex é definida pela mesma férmula usada para a energia de troca na teoria
de Hartree-Fock, apenas substituindo os orbitais de Hartree-Fock pelos orbitais de Kohn-
Sham. A energia de troca de Hartree-Fock para uma molécula de camada fechada é dada
pelo termo envolvendo a matriz K na Eq. (A.58). Substituindo os orbitais HF pelos

orbitais KS, temos:

drdr’. (A.186)

Ne QKS* QKS* )QKS(I‘)QzKS(r')
:“Z /

=1 j=1 |I‘—I"|

Aqui o fator 1/4 surge do fato de somarmos na Eq. (A.58) sobre orbitais, enquanto na
Eq. (A.186) a soma é sobre elétrons, o que da quatro vezes mais termos que o somatério
da Eq. (A.58). Como, na pratica, os orbitais de Kohn-Sham sao bem parecidos com os
orbitais de Hartree-Fock, a energia de troca DFT é semelhante a energia de troca HF.
Tendo definido Fx, o funcional de correlagao E¢ é definido pela diferenca entre Exc e
FEx, ou seja, B¢ = Exc — Ex. Quando Ex é calculado de acordo com a defini¢ao (A.186),
e E¢ é calculado usando algum dos modelos atualmente adotados (como o modelo LDA),
sao obtidos resultados pobres para as propriedades moleculares. Na pratica, é melhor
modelar tanto Ex como E¢, porque isto produz um cancelamento de erros e melhores

resultados. Deve-se usar a abordagem LDA para encontrar tanto Ex como F.

Tanto Fx como E¢ s@o negativos, com |Ex| muito maior que |E¢|. A definigao de E¢
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na teoria do funcional da densidade difere da definicao da energia de correlagao na teoria
de Hartree-Fock dada pela Eq. (A.123), mas varias anédlises e cdlculos mostram que essas

duas quantidades sdo quase iguais [290].

No método Xa (que ja comentamos anteriormente sob o nome de método de Hartree-
Fock-Slater), a contribui¢do E¢ é omitida (por ser substancialmente menor em magnitude

que a contribui¢ao de troca) e:

9/3 1/3
EXC ~ EXa = —g (;) Od/ [pe(r)]4/3dr. (A187)

A diferenciagao funcional da Eq. (A.187) leva ao potencial de troca Vxc xa = (—3/2)
(3p°/7)Y/3. Note-se que com a = 2/3, a Eq. (A.187) torna-se igual a parte de troca na
aproximacao LDA (Eq. (A.185)). O método X« fornece resultados de qualidade varidvel

em célculos moleculares e foi superado por melhores aproximagoes para Exc.

Num célculo de funcional densidade de Kohn-Sham na aproximacao LDA (e nao s6
na aproximagdo LDA, mas com outros funcionais) o primeiro passo é escolher um valor
inicial para p°(r), o que é feito na maioria das vezes através de superposigoes de densi-
dades eletronicas para atomos individuais na geometria estudada. A partir da densidade
eletronica, estima-se a energia de troca e correlacdo Vxc(r) usando as Egs. (A.179),
(A.182), (A.183) e (A.184). Em seguida, insere-se Vxc(r) na Eq. (A.173) (equagao de
Kohn-Sham), que é resolvida, gerando uma estimativa inicial para os orbitais KS 6X5(r),
0s quais sdo expandidos em um conjunto de fungoes de base &;(r) (055(r) = Zjil c;i&(r))
que leva a um conjunto de equacgoes parecido com as equa(;ées de Roothaan, exceto pela
substitui¢do dos elementos da matriz de Fock F;; = [ & (r /(r)dr pelos elementos
da matriz de Kohn-Shan H}® = [ & (r YHES (1)€; (r)dr. Logo, na teoria DFT é necessério

resolver o sistema de equagoes:

K
> ci(H—e98) =0, k=1,2,3,... K. (A.188)
j=1

As fungoes de base usuais em calculos moleculares no método do funcional densidade
de Kohn-Sham sao gaussianas contraidas, mas alguns programas usam orbitais do tipo

Slater ou ainda outros conjuntos de fungoes de base. A equagao de Kohn-Sham também

pode ser resolvida numericamente, sem usar uma expansao numa base de fungoes. Tal

escolha, porém, sé é feita bastante raramente.

Os orbitais &;(r) calculados inicialmente sao usados na Eq. (A.169) fornecendo uma
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nova densidade eletronica, que permite calcular um novo potencial de troca e correlagao,
que por sua vez vai gerar um novo conjunto de orbitais de Kohn-Sham, que geram uma
nova densidade eletronica, e assim por diante. O céalculo termina quando nao ocorrem
mais mudancas significativas na densidade eletronica e nos orbitais. Célculos DFT KS
envolvem iteracoes até atingir a autoconsisténcia entre o potencial de troca e correlacao e

os orbitais KS. Trata-se, portanto, de uma espécie de calculo de campo autoconsistente.

Apoés a convergéncia dos cédlculos, a energia do estado fundamental Ey é determinada
a partir da densidade eletronica convergida e do funcional EX24. O momento de dipolo
pode ser calculado usando a densidade eletronica, bem como outras propriedades de um
sO elétron, conforme delineado na subsecao A.2.9. Gradientes analiticos da energia foram
desenvolvidos para célculos DFT KS, de modo que a geometria de equilibrio pode ser
encontrada como indicado na subsegao A.2.6. Derivadas segundas da energia de Kohn-

Sham sao calculdveis, permitindo a determinacao de propriedades vibracionais.

Uma diferenga significativa entre o método DFT de Kohn-Sham e os cédlculos de

V%gA e versoes de Vxc mais acuradas sao sempre

Hartree-Fock surge do fato de que
funcoes intrincadas das coordenadas, o que torna impossivel calcular analiticamente as
integrais (&(r)| Vxc(r)|€;(r)), que aparecem em H[SS. Ao invés, (&(r)| Vxe(r)[€;(r)) é
obtido numericamente calculando o integrando em cada ponto de um grid que cobre o
sistema estudado e efetuando um somatério (uma abordagem alternativa é expandir Ve
usando um conjunto auxiliar de fungoes de base - ndao o mesmo conjunto usado para

expandir os orbitais -, onde os coeficientes de expansao sao escolhidos de modo a dar um

bom ajuste pelo método dos minimos quadrados para Vxc no grid).

Calculos de funcional da densidade que usam uma expansao dos orbitais de Kohn-
Sham em uma base devem lidar com os mesmos elementos da matriz de Coulomb J;;
que ocorrem nos calculos de Hartree-Fock (Eq. (A.60)). Portanto, tais cdlculos DFT
podem ser acelerados pelos mesmos métodos usados na aproximacao HF, a saber, métodos
diretos e semidiretos, negligéncia de integrais menores que um valor limitrofe, método de
multipolo continuo rapido, métodos de arvore, motor matriz J, etc. Também o método do
gradiente conjugado de busca pode ser empregado para evitar a diagonalizacao da matriz
de Kohn-Sham.

Desvios dos resultados calculados pelo método KS em relacao aos valores reais sao
devidos ao emprego de expressoes aproximadas para Fxc e Vxc, e a limites dos conjuntos
de base. As técnicas para calculos DFT ainda nao sao maduras como as do método

HF, e por conta da variedade de procedimentos utilizados, calculos DF'T feitos com dois



366 Anexo A - Fundamentos tedricos

programas diferentes usando o mesmo funcional de troca e correlagao e o mesmo conjunto

de base podem produzir resultados ligeiramente diferentes.

A.6.6 A aproximacao de densidade de spin local (Local-Spin-Density
Approximation - LSDA)

Para moléculas de camada aberta e geometrias moleculares proximas da dissociacao, a
aproximagao de densidade de spin local [289] (Local-Spin-Density Approzimazion - LSDA)
produz melhores resultados que a aproximacao LDA. Enquanto nesta os elétrons com spins
opostos se emparelham na ocupagao dos mesmos orbitais de Kohn-Sham, a aproximagao
LSDA permite que os elétrons ocupem diferentes orbitais espaciais dependentes do spin,
010 (r), 055 (r). A aproximacdo LSDA, portanto, é andloga ao método de Hartree-Fock
irrestrito (UHF), j4 comentado na subsegao A.2.5. Os teoremas de Hohenberg, Kohn
e Sham nao exigem o uso de orbitais diferentes para elétrons com spins distintos (a
nao ser na presenga de um campo magnético externo), e se o funcional exato de troca
e correlacao fosse conhecido, tal consideracao nao seria necessaria. Com os funcionais
de troca e correlacao aproximados usados nos calculos DFT KS, é vantajoso permitir a
possibilidade de diferentes orbitais espaciais para elétrons com spins diferentes, de modo
a melhorar as propriedades calculadas para espécies de camada aberta e espécies com

geometria proxima da dissociacao.

A generalizacao da teoria do funcional densidade que permite diferentes orbitais para
elétrons com diferentes spins é chamada de teoria do funcional densidade de spin. Na
aproximacao DFT com spin, as densidades eletronicas p¢! (r) e p° (r) sdo tratadas separa-
damente, e o funcional se torna dependente dessas duas fungoes. Disto resultam equagoes
de autovalores de Kohn-Sham separadas para orbitais « e § com potenciais de troca e

correlacao dependentes do spin:

Vi = 6Exclp®(x), p™ (r)]/6p° (r),

(A.189)
Ve = 0Bxclp!(r), p™ (r)] /0" (x).

Para sistemas como o CHjz ou o estado fundamental tripleto do Oy, o nimero de
elétrons com spin « difere do ntimero de elétrons com spin 3, de modo que p¢'(r) # p°(r),

e a teoria DF'T com spin apresentara orbitais diferentes para elétrons com spins distintos.

Como ocorre no método Hartree-Fock irrestrito, admitir orbitais espaciais de Kohn-

Sham diferenciados para os dois valores de spin produz uma funcao de onda para o



A.6 Teoria do funcional da densidade 367

sistema de referéncia s que nao é autofuncao do operador S?. Esta contaminacao de
spin, entretanto, ¢ um problema menor na teoria DF'T KS, ao contrario do que ocorre no

método UHF.

Para espécies com todos os elétrons emparelhados e geometrias moleculares na regiao
de equilibrio, pode-se esperar que p°'(r) = p°(r) e a aproximagao DFT com spin deve

dar resultados iguais aos obtidos pela aproximacao DF'T comum.

Apesar de p® nao ser, numa molécula, uma funcao que varia lentamente com a posigao,
o método LSDA funciona bastante bem para o calculo de geometrias moleculares de
equilibrio, freqiiéncias vibracionais e momentos de dipolo, mesmo para compostos com
metais de transicao, onde calculos de Hartree-Fock muitas vezes dao resultados fracos.
No entanto, as energias de atomizacao na aproximacao LSDA sao muito ruins. Para
refinar o calculo de energias de dissociacao sao necesséarios funcionais capazes de ir além

da aproximagao LSDA.

A.6.7 Funcionais corrigidos pelo gradiente e funcionais hibridos

As aproximacoes LDA e LSDA se baseiam no modelo do gas eletronico homogéneo,
que é apropriado para um sistema no qual a densidade eletronica varia suavemente com
a posigao. O integrando na Eq. (A.178) para a energia de troca e correlagao LDA é uma
funcao apenas da densidade eletronica, e o integrando equivalente na aproximacao LSDA
depende apenas das densidades de elétrons com spins « e (3. Funcionais que vao além da
aproximagao LSDA tém como objetivo incorporar no funcional a variagao da densidade
eletronica com a posigao. Para tanto, utilizam gradientes das densidades p°!(r) e p®(r)

no integrando, de modo que:

ESSA [ (r / £ (1), 07 (2), VT (x), VL (1), (A.190)

onde f é alguma funcao das densidades de spin e seus gradientes. A sigla GGA significa
Generalized-Gradient Approximation, aproximacao do gradiente generalizado. O termo
Gradient-Corrected Functional (funcional corrigido pelo gradiente) também ¢é usado. Nao
poucas vezes os funcionais corrigidos pelo gradiente sao chamados de “nao-locais” mas,
estritamente falando, tal denominacao nao é apropriada. A energia de troca e correlagao

ESEA ¢ comumente dividida em partes de troca e correlagao, tratadas separadamente:

ESEH = BSCA + EGOA. (A.191)



368 Anexo A - Fundamentos tedricos

Palpite inicial

P (r), p=t(r)

Calcular potencial efetivo

Vg (€)= Vier (€) + Vs (F) + Ve [Pd‘T(r)e PUJ(")]

Resolver a equacao de Kohn-Sham

Vi () =Fogr (1) + Viaprpee () +V&-[Pc‘?(r)» Pe'i(r)]

Calcular a densidade eletrénica

P =3 £l

Autoconsisténcia?

Sim

Saida

Energia, forcas, autovalores

Figura 97: Representacao esquematica do algoritmo autoconsistente para resolver a equagao de
Kohn-Sham. Em geral é necessario fazer duas iteragoes simultaneamente, uma para cada spin.
f{ é a fungao que define a probabilidade de ocupacao de um estado na estatistica de Fermi-Dirac.
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Funcionais de troca e correlacado GGA aproximados sao desenvolvidos usando consi-
deragoes tedricas tais como o comportamento que se espera dos funcionais verdadeiros
(mas desconhecidos) Ex e F¢ em vérias situagoes limites, juntamente com algumas con-

sideragoes empiricas.
Alguns funcionais de troca GGA mais usados sao:

— O funcional de Perdew e Wang de 1986 (sem parametros empiricos) designado por

PW86 ou PWx86 [291];
— o funcional de Becke de 1988, denotado por B88, Bx88m Becke88 ou B [292];
— o funcional de Perdew e Wang de 1991, PWx91 [293, 294, 295].

A forma explicita do funcional de troca B8S é:

B88 LSDA

Ve (x)* / [p= (r)] (A.192)
—b dr.
Zﬁ/ 1460 Ve (o) [pem ()] s (192 (0)]/ ()]

b é um parametro empirico com valor igual a 0.0042 unidades atomicas, determinado
a partir do ajuste de energias de troca conhecidas de Hartree-Fock (préximas das energias

de troca KS) para vérios atomos, e:
376\ . 4/3 B 4/3
BEPA = 2 (;> / { 1] + [ r)] }dr. (A.103)

O funcional PWx86 (sem parametros empiricos) e o funcional B88 funcionam igual-

mente bem na predicao de propriedades moleculares.
Funcionais de correlagao corrigidos pelo gradiente muito usados incluem:
— O funcional de Lee-Yang-Parr (LYP) [296, 297];
— o funcional de correlagao de Perdew 1986 (P86 ou Pc86) [298];

— o funcional de correlagao livre de parametros de Perdew-Wang de 1991 (PW91 ou
PWe91) [293, 294, 295];

— o funcional de Becke denominado Bc95 ou B96 [299].

Existe ainda o funcional de troca e correlagao de Perdew-Burke-Ernzerhof (PBE), sem

parametros empiricos [187].
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Pode-se combinar qualquer funcional de troca com qualquer funcional de correlacao.
Por exemplo, a notacao BLYP6/6-31G* indica um cédlculo na teoria do funcional da
densidade usando o funcional de troca de Becke de 1988 [292] juntamente com o funcional
de correlagao de Lee-Yang-Parr [296, 297], e uma base 6-31G* para a expansao dos orbitais
de Kohn-Sham. A letra S (em reconhecimento ao método X« de Slater) indica o funcional
de troca LSDA. VWN denota a expressao de Vosko-Wilk-Nusair para o funcional de
correlagao LSDA [289] (na verdade esses autores deram duas expressoes diferentes para o
funcional de correlagao LSDA, que s@o algumas vezes indicadas como VWN3 e VWN5).
Logo, um célculo LSDA pode ser indicado pelas letras LSDA ou SVWN.

Funcionais de troca e correlagao hibridos também sao muito usados. Um funcional
hibrido mistura varias férmulas extraidas de varios autores para os funcionais de troca e
correlagdo. Por exemplo, o famoso funcional hibrido B3LYP (ou Becke3LYP) é definido
por [162]:

EESYP — (1— ag— a,) ESPA 4 gy EEXATO 1 q BB | (1 g ) EY™N 4 0 EEYP, (A.194)

EEXATO (algumas vezes denotado EXY, por usar uma definicio de Hartree-Fock para

onde
Ex) é dado pela Eq. (A.186), e os parametros ag = 0.20, a, = 0.72, e a. = 0.81 foram
escolhidos de modo a proporcionar bons ajustes para energias de atomizacao moleculares.
O funcional hibrido B3PW91 substitui EEY por EEWV9) e usa os mesmos valores de a. O

funcional hibrido de Becke com um parametro, B1B96 (ou B1B95) é dado por [299]:

E)P{)éBQ(S — )]?88 + EEBG + CLQ(E)E(XATO o E)]?SS), (A195)

onde o parametro empirico ay = 0.28 foi determinado por ajuste de energias de ato-

mizacao.

Para melhorar ainda mais os funcionais hibridos BSLYP, B3PW91 e B1B96, Becke e
Schmider [300, 301] propuseram o funcional hibrido:

Bxc = BSCM + ¢, BEXATO 4 BECA, (A.196)

onde ¢, é um parametro e E¢* e ESYA sdo certos funcionais GGA que contém trés e seis
parametros, respectivamente. Os valores dos 10 parametros em Fxc foram determinados

como o conjunto com melhor ajuste aos dados experimentais no conjunto de testes G2 (ta-
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bela de dados termoquimicos experimentais obtidos com extrema precisao). Usando um
método numérico para resolver a equagao de Kohn-Sham (de modo a evitar erros de trun-
cagem de base), Becke mostrou que o funcional da equagdo acima apresentou erro médio
absoluto de apenas 1.8 kcal/mol em uma amostra com 55 energias de atomizagao, um
avango significativo sobre o funcional BSPWO91, o qual nas mesmas condigoes apresentou
um erro médio absoluto de 2.4 kcal/mol. No entanto, Becke concluiu que a grande flexi-
bilidade do funcional acima “implica que os limites de acurdcia dos métodos GGA /troca
exata foi atingido... Parece que [futuros progressos na acurdcial] nao serao ganhos através
de experimentagao continua com GGAs particulares, mas irao exigir novos insights basicos

e talvez derivadas da densidade de ordens mais elevadas”.

Muitos outros funcionais contendo ajustes de parametros experimentais foram pro-
postos. O funcional de troca e correlacdo de Van Voorhis-Scuseria (VSXC), com 21
parametros, nao possui mistura de troca exata e funciona ligeiramente melhor que o
B3LYP para o calculo de energias de atomizacao, mas ligeiramente pior para compri-
mentos de ligagdo [302]. Os nove parametros no funcional EDF1 (Empirical Density
Functional Version 1) foram otimizados especificamente para o uso do pequeno conjunto
de base 6-31G* [303]. O funcional EDF1 funciona bem para o célculo de energias de

atomizacao e a inclusao de mistura com o termo de troca exato nao o melhora muito.

Kafafi propos o funcional de troca e correlagao hibrido K2-BVWN (Kafafi 2-parameter,
Becke, Vosko-Wilk-Nusair,[304]). Célculos da entalpia de formagao usando este funcional
e a base 6-3114+G(2df) apresentaram resultados para 350 espécies com erro médio absoluto
de 1.4 kcal/mol, comparével aos resultados obtidos usando o método G2 (que usa grandes
conjuntos de base e teoria da perturbagao de segunda ordem MP2), computacionalmente

muito mais dispendioso.

Indo além da abordagem GGA, Becke introduziu um funcional de troca e correlagao
com 10 parametros onde f na Eq. (A.190) é uma fun¢do nao somente das densidades
e seus gradientes, mas também de V?p'(r) e V?p(r) e dos gradientes dos orbitais de
Kohn-Sham [305, 306]. Este funcional apresentou um desvio médio absoluto de 1.54
kcal/mol para 55 energias de atomizagao, em comparac¢ao com o valor de 1.79 kcal/mol
para o funcional de Becke com 10 parametros, mas o uso de derivadas mais elevadas da
densidade eletronica aumentou consideravelmente o tempo computacional para o calculo,
o que fez Becke declarar: “ainda estar por ser visto se a teoria do funcional da densidade

de ordem elevada ira oferecer vantagens suficientes para suplantar a aproximagao GGA”.

Funcionais corrigidos pelo gradiente e funcionais hibridos nao fornecem somente boas
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geometrias de equilibrio, freqiiéncias vibracionais e momentos de dipolo, mas geralmente
também dao energias de atomizacao moleculares acuradas. Por exemplo, o funcional
hibrido BLYP/6-311+G(2d,p) e o funcional B3LYP/6-311+G(2d,p) forneceram erros mé-
dios absolutos de 3.9 e 3.1 kcal/mol no conjunto de teste G2. Em resumo, os funcionais

hibridos parecem oferecer a melhor performance nesse tipo de calculo.

Ao usar funcionais da densidade que vao além da abordagem LSDA, algumas vezes
se resolve a equagao de Kohn-Sham para os orbitais usando apenas a forma LSDA para
a energia potencial de troca e correlagdo. Calcula-se entao a energia (e seu gradiente,
no caso de uma otimizacao da geometria) usando os orbitais de Kohn-Sham, a densidade
eletronica e o funcional GGA ou hibrido para Fxc. Tal procedimento (denominado de
perturbativo, por semelhanca com o cédlculo da energia na teoria de perturbacao usando
o verdadeiro hamiltoniano com a func¢ao de onda de ordem zero) economiza tempo de
computacao ao preco de pequenos erros na energia DFT e nas propriedades moleculares.
Ainda assim, é preferivel que os orbitais de Kohn-Sham sejam determinados usando o
mesmo funcional empregado para calcular a energia. Quando isto é feito, diz-se que o

calculo foi realizado de modo autoconsistente.

A teoria do funcional da densidade tem como vantagem o permitir que efeitos de
correlacao sejam incluidos nos célculos sem tornar o custo computacional muito alto
(o tempo de cédlculo é semelhante ao de um célculo de Hartree-Fock, que nédo inclui a
correlagao eletronica). Num artigo de revisao de 1996 [307], foram feitas estimativas
para o numero maximo de atomos que diversos métodos ab initio poderiam suportar,
dada a capacidade de processamento de uma workstation de alto nivel naquele ano. Uma
molécula sem simetria foi utilizada para efetuar os testes e s6 foram considerados elementos
da primeira linha da tabela periddica, excluidos os hidrogénios. Um conjunto de base zeta

duplo polarizado foi empregado em todos os célculos. A Tabela 72 registra os resultados.

FCI CCSD(T) CCsD MP2 HF KS - DFT
2 8a12 10a15 15 a 50 50 a 200 50 a 200

Tabela 72: Numero maximo de atomos da primeira linha da tabela periédica suportados por
uma workstation para diferentes métodos ab initio. Hidrogénios excluidos. Ano de referéncia:
1996. FCI - Full Configuration Interaction; CCSD(T) - forma aproximada do método Coupled
Cluster Singles, Doubles and Triples; CCSD - Coupled Cluster Singles and Doubles; MP2 -
Mgller-Plesset Second Order Perturbation Theory; HF - Hartree Fock; KS-DFT - Kohn-Sham
Density Functional Theory.

Persiste o debate sobre se a teoria do funcional de densidade de Kohn-Sham deve
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ou nao ser considerada como um método ab initio. Se o funcional de troca e correlagao
correto fosse conhecido, nao haveria duvidas sobre o carater ab initio da abordagem KS.
Infelizmente, dada a ignorancia da expressao exata para Exc, € necessario fazer varias
aproximagcoes guiadas por resultados obtidos experimentalmente, como ja vimos. Alguns
pesquisadores consideram isto suficiente para desacreditar qualquer tentativa de definir
o tratamento de Kohn-Sham como sendo um tratamento de primeiros principios. Mas é
preciso notar que o nimero de parametros empiricos empregados nos diversos funcionais
hibridos é muito menor que o niimero de parametros em teorias semi-empiricas, que usam
varios parametros diferentes para cada espécie de atomo. Por conta disso, o método de
Kohn-Sham ¢ tido como uma categoria a parte, distinto de métodos ab initio tais como

Hartree-Fock, interacao de configuracao, Mgller-Plesset e Coupled Cluster.

A despeito de seu sucesso, a teoria do funcional densidade nao opera milagres. Suas
principais limitagoes ja foram esbogadas no presente anexo. Primeiramente, aplica-se de
modo confidvel apenas ao estado fundamental. Versoes para estados excitados ja foram
desenvolvidas, mas ainda deixam algo a desejar. Além disso, por nao ser conhecida a
forma exata do funcional de troca e correlacao, a teoria DFT leva por vezes a energias
menores que a energia do estado fundamental correta. Os funcionais aproximados, além
disso, nao efetuam direito a correcao de auto-interacao, levando a curvas erroneas de ener-
gia para distancias internucleares grandes. Os funcionais DFT KS disponiveis também
nao fornecem bons resultados para as energias de ativagao em reagoes quimicas, e nao
conseguem superar a acurdcia de outros métodos, como CCSD(T) (forma aproximada do
método Coupled Cluster Singles, Doubles and Triples) e QCISD(T) (Quadratic Configu-
ration Interaction Singles, Doubles and Triples). Com métodos como CC, CI e MP, fica
claro o caminho para obter resultados mais precisos: usar conjuntos de base maiores e
atingir ordens mais elevadas de correlacao, apesar dos limites computacionais. Ja no caso
da teoria do funcional da densidade KS, nao ha meio claro de construir funcionais de troca

e correlagao mais precisos. O processo de aperfeicoamento é feito por tentativa e erro.

Muitos dos funcionais Exc falham para moléculas de van der Waals. Por exemplo, os
funcionais BLYP, B3LYP e BPW91 nao conseguem prever a formacao de ligagoes no He,
e no Ney (excecoes feitas aos funcionais PBE e K2-BVWN, que apresentam resultados
aceitdveis). Todos os funcionais disponiveis atualmente violam uma ou mais restrigoes
impostas pela teoria DFT. H& resultados provando que os potenciais Vxc mais usados

estao substancialmente incorretos [308].

Atualmente muito trabalho estéd sendo realizado na tentativa de desenvolver melhores
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funcionais de troca e correlagao. Uma forma alternativa de tentar resolver o problema,
a teoria do potencial efetivo otimizado (Optimized Effective Potential - OEP), toma Exc
como um funcional dos orbitais de Kohn-Sham ocupados, na esperanca de que isto torne
mais facil desenvolver funcionais menos imperfeitos. O método OEP produz, no entanto,
equagoes bastante dificeis de se resolver. Kreiger, Li e Iafrate (KLI) [309] desenvolveram
posteriormente uma aproximacao das equacoes OEP computacionalmente mais tratével,
e o assim chamado método KLI tem fornecido bons resultados. A abordagem na qual
se escreve o funcional de troca de Hartree-Fock em termos de orbitais é conhecida como
EXX [123] (Ezact Exchange).

Muitos advogados da teoria do funcional da densidade acreditam que a DFT subs-
tituird os métodos de Hartree-Fock e suas derivagoes, tornando-se a forma dominante
de fazer calculos quanticos para sistemas de muitos elétrons e a principal maneira de

interpretar teoricamente conceitos nesses sistemas.

A.6.8 Efeitos relativisticos em moléculas

Para um atomo hidrogendide nao-relativistico, a velocidade média quadratica de um
elétron num orbital 1s é Z¢/137, onde Z ¢é a carga nuclear e ¢ é a velocidade da luz.
Logo, para atomos com niumero atomico grande, a velocidade média dos elétrons nas
camadas mais internas é proxima de ¢ e corregoes se fazem necessarias. De fato, os
orbitais internos sofrem mudancas substanciais no seu tamanho e energia quanto sao
incluidos efeitos relativisticos. Ja os elétrons de valéncia em um atomo ou molécula estao
bem protegidos do nicleo pela blindagem dos elétrons mais internos, e suas velocidades
médias sao bem menores que ¢, mesmo para atomos pesados. Por conta disso, é natural
achar que nao é necessario incluir correcoes relativisticas em moléculas com atomos de
Z grande. Sabe-se, porém, que efeitos relativisticos em espécies moleculares com atomos

pesados nao podem ser desprezados.

O raio médio de um atomo hidrogendide é proporcional ao raio de Bohr ag, o qual, por
sua vez, varia com o inverso do momentum do elétron na orbita que corresponde ao estado
fundamental. Com o aumento relativistico do momentum com a velocidade, os orbitais
internos do tipo s num atomo pesado encolhem e os orbitais externos do mesmo tipo,
para continuarem ortogonais aos primeiros, também diminuem de tamanho. Em menor
medida, a mesma coisa acontece com os orbitais p, e o resultado liquido deste efeito é que
a blindagem do ntcleo pelos elétrons em orbitais s e p aumenta, permitindo a expansao

dos orbitais d e f mais externos. Contracoes relativisticas para orbitais 6s para alguns
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elementos pesados foram calculadas: 4% para o Cs (Z = 55), 7% para o Yb (Z = 70),
12% para o Re (Z = 75), 18% para o Au (Z = 55) e 12% para o Rn (Z = 86) [310].
Por causa de contragoes relativisticas, o raio atomico do Fr é menor que o do Cs, que fica

acima na tabela periddica.

A forma relativistica da equacao de Schrodinger é a equacao de Dirac. E possivel
fazer calculos de Hartree-Fock relativisticos usando a equacao de Dirac para modificar o
operador de Fock, dando lugar a um célculo Dirac-Hartree-Fock (DHF'). Do mesmo modo,
é possivel usar uma forma relativistica da equacao de Kohn-Sham para efetuar calculos
DFT relativisticos. Por causa da estrutura complicada das equagoes relativisticas de

Kohn-Sham, no entanto, poucos trabalhos foram publicados empregando esta abordagem
[311].

Calculos relativisticos DHF em moléculas com elementos pesados como Au ou U sao
muito demorados. Uma maneira de cortar caminho é efetuar um calculo DHF para cada
tipo de atomo na molécula e usar o resultado para derivar um potencial relativistico efe-
tivo de caroco (Relativistic Effective Core Potential - RECP) ou pseudopotencial (sobre
pseudopotenciais teremos mais a ver adiante) para aquele dtomo (como os termos rela-
tivisticos menos relevantes sao descartados na determinacao dos RECPs, eles sao chama-
dos algumas vezes de ECPs quase relativisticos). E efetuado entdao um célculo molecular
de Hartree-Fock em que apenas os elétrons de valéncia sao tratados explicitamente e sem
corregoes de relatividade. Os efeitos dos elétrons de caroco sao incluidos na expressao do
operador de Fock através da adicao dos ECPs para cada atomo. Assume-se neste modelo
que os orbitais atomicos das camadas mais internas nao mudam muito quando os dtomos
unem-se e formam uma molécula. Pode-se melhorar os resultados usando técnicas como

CI ou MPPT. RECPs também podem ser usados em céalculos DFT KS.

Também ¢ possivel fazer um célculo nao-relativistico e em seguida incluir efeitos rela-
tivisticos como perturbacoes usando os métodos de Hartree-Fock e a teoria do funcional
da densidade de Kohn-Sham [312, 313, 314].

A.6.9 Solvatacao

Consideremos uma solucao diluida de uma molécula polar M em um solvente polar
S. Para dar um exemplo concreto, digamos que se trate de uma solucao de CH3Br em
agua. As moléculas do solvente proximas dos atomos de carbono e bromo tendem a se
orientar com seus hidrogénios positivamente carregados apontando para o atomo de Br

com carga negativa, enquanto as moléculas de agua perto do grupo H3C preferem uma
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orientagao na qual seus dtomos de oxigénio (carga negativa) estejam voltados na diregao
do grupo metil (carga positiva). Além disso, o0 momento de dipolo de uma molécula de
soluto induzirda um momento de dipolo em cada molécula de solvente nas vizinhancas,
o qual se soma ao momento permanente de dipolo. O resultado liquido desses efeitos
de orientacao e inducao de dipolo é que o solvente adquire uma polarizacao volumétrica
na regiao de cada molécula de soluto. O solvente polarizado gera um campo elétrico,
chamado de campo de reacao, sobre cada molécula de soluto, o qual distorce a func¢ao
de onda molecular do soluto em relagao ao que ela seria na fase gasosa. O momento de

dipolo aumentado de M polariza ainda mais o solvente, e o loop recomega.

Por causa do momento de dipolo adicional induzido pelo campo de reacao do sol-
vente, uma molécula polar tera um momento de dipolo maior quando dissolvida do que
na fase gasosa. Além disso, o momento de dipolo de uma molécula do soluto sofrera
flutuacoes com o tempo a medida que as orientagoes das moléculas de solvente préximas
se modificam. Por exemplo, para uma molécula de dgua diluida em dgua, uma simulacao
de dinamica molecular na qual as interacoes intermoleculares sao modeladas através da
colocagao de cargas flutuantes, incluindo um potencial de Lennard-Jones 6-12 entre cada
par de atomos de oxigénio, resulta num momento de dipolo elétrico médio aumentado em

mais de 40% [315].

A forma rigorosa de lidar com efeitos de solvente sobre as propriedades moleculares é
efetuar calculos para um sistema quantico consistindo em uma molécula de soluto cercada
por muitas moléculas de solvente; repetem-se os calculos para varias orientacoes a fim de
encontrar propriedades médias sob certas condigoes de temperatura e pressao. Tal calculo,

percebe-se logo, é na maioria das vezes impraticavel.

A aproximacao mais simples que se pode seguir é adotar um modelo de solvente
continuo no qual a estrutura molecular do solvente ¢ ignorada e o solvente ¢ tratado como
um meio dielétrico continuo e infinito, com uma cavidade dentro da qual se enconttra a
molécula do soluto. Utiliza-se a constante dielétrica experimental do meio solvente nas
condicoes de temperatura e pressao estudadas. A molécula de soluto pode ser tratada
classicamente como uma cole¢ao de cargas que interagem com o meio dielétrico. Num
tratamento quantico, a interacao entre uma molécula de soluto M e o dielétrico continuo

que a envolve é modelado por um termo que é acrescentado ao hamiltoniano molecular.

Na implementacao usual do modelo de solvatacao continuo, a funcao de onda e a
densidade de probabilidade eletronica da molécula de soluto M podem mudar de modo a

refletir a diferenca entre a fase gasosa e a fase de solucao, de modo a atingir a autocon-
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sisténcia entre a distribuicao de carga de M e o campo de reacao do solvente. Qualquer
tratamento no qual tal autoconsisténcia é alcancada é chamado de modelo autoconsistente
de campo de reacao (Self-Consistent Reaction-Field - SCRF). Existem muitas versoes de
modelos SCRF que diferem na escolha do tamanho e da forma da cavidade que contém a

molécula de soluto e no modo de calcular a interacao soluto-solvente.

No método do dipolo numa esfera, (ou Onsager quantico, ou Born-Kirkwood-Onsager)
[316, 317, 318, 319, 320, 321], a cavidade molecular é uma esfera de raio a e a interagao
entre a distribuicao de carga molecular e o campo de reacao é calculado aproximando
a distribuicao de carga molecular como um dipolo elétrico localizado no centro da cavi-
dade com momento de dipolo elétrico g . Lars Onsager calculou, em 1936 [317], o campo
elétrico (campo de reacao) na cavidade. Em um calculo SCRF Onsager quantico, parte-se
de um método ab initio (HF, DFT, MP2, etc.), para calcular a densidade de probabi-
lidade eletronica da molécula isolada, preferencialmente numa geometria otimizada. E
calculado entao o momento de dipolo no vacuo, que é usado para produzir uma estima-
tiva do campo de reacao. Do campo de reacao, estima-se o operador que representa a
interagao solvente-soluto, que é acrescentado as equacoes do método quantico empregado
para obter uma nova densidade de probabilidade eletronica. Os calculos prosseguem até
que a autoconsisténcia é atingida. A geometria molecular deve ser otimizada novamente
na presenca do campo de reagao, mas algumas vezes tal passo é omitido, uma vez que

mudancas na geometria da fase gasosa para a fase em solugao sao usualmente pequenas.

No modelo de Onsager quantico, uma molécula de soluto nao carregada e sem mo-
mento de dipolo permanente nao é afetada pelo solvente. Neste caso, somente momentos
de quadrupolo ou de ordens superiores do soluto irao interagir com o solvente produzindo

um campo de reacao.

Pode-se ainda calcular a energia de Gibbs de solvatagao, que inclui uma componente
eletrostatica resultante da interacao dessa natureza entre o soluto e o solvente, uma com-
ponente de cavitagao (trabalho necessario para formar as cavidades no solvente que sao
ocupadas por moléculas do soluto), uma contribuigao de repulsao que resulta das atragoes
de dispersao de London entre soluto e solvente, uma contribuicao de repulsao, que procede
das repulsoes quanticas entre moléculas de soluto e solvente, e a contribuicao térmica ou
molecular, que resulta de mudangas nos movimentos moleculares ao ocorrer a transi¢cao

da fase gasosa para a fase de solucao.

Indo além de Onsager, é possivel fazer uma expansao multipolar, escrevendo a ener-

gia potencial de interagao entre uma distribuicao de carga molecular e o meio dielétrico
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continuo como um somatorio de contribuigoes de monopolo, dipolo, quadrupolo, octupolo,
etc. O nimero de termos incluidos é decidido por quem vai fazer o calculo. O que se
verifica é que os termos além do dipolo de Onsager produzem contribuicoes substanciais, e
a negligéncia desses termos nao pode ser justificada. O fato de que o modelo do dipolo em
uma esfera na aproximacao autoconsistente fornega resultados corretos pode ser atribuido

a um cancelamento parcial de erros [322].

Uma melhoria em relacao a forma esférica da molécula é uma forma molecular elip-
soidal. Célculos de Onsager quanticos e expansoes multipolares usando uma cavidade
elipsoidal fornecem melhores resultados que os obtidos no modelo mais simples de cavi-

dade esférica, mas a melhora nao é muito grande.

Calculos acurados de efeitos de solvente exigem o uso de uma forma molecular mais re-
alista que as formas esférica ou de elipséide. No modelo do continuo polarizavel [323, 324,
325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340] (Polarizable-
Continuum Model - PCM), cada nicleo atomico na molécula M é cercado por uma esfera
de raio 1.2 vezes maior que o raio de van der Waals do atomo. A regiao da cavidade é
considerada como o volume ocupado pelas esferas atomicas sobrepostas. Dada a forma
complicada da cavidade PCM, expressoes analiticas para os coeficientes de expansao em
uma série de multipolos nao podem ser encontradas. Ao invés, um método numérico é

usado para encontrar a energia de interacao soluto solvente.

Um passo adiante do método PCM original é o modelo do continuo polarizavel com
isodensidade (Isodensity Polarizable Continuum Model - IPCM), que difere do PCM por
definir a superficie da cavidade molecular como uma superficie de densidade de probabi-
lidade eletronica constante [322]. Um valor de isodensidade de 0.0004 elétrons por bohr
cubico é recomendado, por resultar em volumes moleculares que estao de acordo com
valores experimentais [341]. Neste modelo o tamanho da molécula muda a cada passo do
célculo. O método IPCM autoconsistente [322] (Self-Consistent IPCM - SCICPM) é um
refinamento adicional, que incorpora otimizacao de geometria e calculos de freqiiéncias
de vibracao para a molécula de soluto. O método de atomo unido de Hartree Fock PCM
(United-Atom Hartree-Fock PCM - UAHFPCM) usa esferas atomicas para definir a ca-
vidade molecular, mas a atribuicao dos raios das esferas é mais cuidadosa que no método
PCM original. Por exemplo, nao sao associadas esferas aos atomos de hidrogénio, mas
estes sao incluidos dentro da esfera definida pelo atomo ao qual estao ligados (daf o nome

“4tomo unido”).

O método PCM foi reformulado de modo a eliminar calculos iterativos da funcao de
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onda do soluto na solucao. Nesta reformulacao, a funcao de onda e o operador mutua-
mente autoconsistentes sao determinados diretamente em um tnico ciclo, acelerando os
célculos [325]. A formulagdo PCM de equagdo integral é uma generalizagdo do método
PCM que permite lidar com solventes anisotropicos como os cristais liquidos. Finalmente,
o modelo de solvatagao do tipo condutor [342] (Conductorlike Solvation Model - COSMO)
se assemelha ao método PCM no uso de uma forma realista para a molécula de soluto e na
consideracao de cargas superficiais sobre a cavidade em torno da molécula de soluto. Mas
essas cargas sao calculadas inicialmente usando uma condi¢ao apropriada para um meio
solvente que € eletricamente condutor ao invés de dielétrico. O procedimento simplificado
para determinacao das cargas torna o COSMO computacionalmente rapido. A apro-
ximac¢do COSMO-RS (COSMO for Real Solvents, para solventes reais) é uma extensao

da técnica COSMO que vai além da aproximagao do dielétrico continuo [343].

A.7 Cristais

A.7.1 Definicoes basicas e teorema de Bloch

No estado cristalino os nicleos atomicos (e, por conseguinte, como veremos, todas
as propriedades espaciais) se encontram distribuidos periodicamente no espago. O cris-
tal é completamente especificado pelos tipos e posicoes dos nicleos em uma unidade
bésica (célula unitaria primitiva) e pelas regras que descrevem a repetigao desta unidade
(translagoes). As posicoes e tipos de dtomos na célula primitiva formam o que se chama
de base. O conjunto de translagoes que gera a estrutura peridédica é uma rede de pontos
no espaco chamada de rede de Bravais. Tal conjunto de translagoes forma um grupo,
que deve ser somado ao grupo das operacoes pontuais que deixam invariante o cristal

(rotagoes, reflexdes, inversoes).

Os pontos da rede de Bravais sao dados por:

T(?’Ll, Nna, n3) = nya; + ngas + nsas, (A197)

onde os vetores a; sdo vetores primitivos (ndo tdnicos, o mesmo valendo para a célula
primitiva) da rede e os n; sdo numeros inteiros. A célula de Wigner-Seitz de um cristal
¢ o conjunto de todos os pontos mais proximos de um dado ponto da rede e possui o
tamanho mais compacto dentre todas as células unitarias (embora ndo seja a unica). A

célula de Wigner-Seitz também possui exatamente a mesma simetria simetria da rede de
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Bravais. A partir da origem pode-se construir esta célula tracando segmentos ligando a
origem a todos os pontos da rede, e em seguida desenhando planos perpendiculares que
dividem esses segmentos em duas partes iguais. A célula de Wigner-Seitz é o poliedro
com centro na origem formado por um subconjunto desses planos e que possui o menor
volume possivel. A Fig. 98 mostra alguns exemplos mais comuns de células primitivas e

células de Wigner-Seitz.

A ordem interna do cristal é descrita por suas operagoes de grupo de simetria. Existem
32 combinagoes diferentes de elementos de simetria resultando em 32 grupos de simetria
pontual. Esses grupos pontuais estao distribuidos entre 7 sistemas cristalinos e 14 redes

de Bravais:

1. Sistema ctibico: contém as redes de Bravais cujo grupo pontual é o grupo de simetria
de um cubo. Trés redes de Bravais com grupos espaciais nao-equivalentes possuem o
mesmo grupo pontual de simetria ciibica. Sao as redes cubica simples, ciibica de corpo

centrado e cubica de face centrada.

2. Sistema tetragonal: construido através do afastamento de duas faces opostas da
rede cibica simples, formando um prisma retangular com base quadrada com altura di-
ferente das arestas da base. Aplicando o mesmo processo a uma rede cibica simples,

obtém-se o sistema tetragonal centrado. Duas redes no total.

3. Sistema ortorrombico: obtido pela deformacao das bases quadradas do sistema
tetragonal em retangulos, produzindo um objeto com lados perpendiculares desiguais. A
rede ortorrombica de base centrada é obtida acrescentando um ponto da rede em dois
lados opostos da face do objeto. A rede ortorrombica de corpo centrado é obtida pelo
acréscima de um ponto da rede no centro do objeto, e a rede ortorrombica de face centrada
é obtida pela adicao de um ponto da rede nos centros das faces do objeto. Quatro redes

no total.

4. Sistema monoclinico: a rede monoclinica simples resulta quando se distorcem
as faces retangulares perpendiculares a um dos eixos ortorrombicos de modo que estas
passam a ter a forma de paralelogramos. Fazendo a mesma coisa com a rede ortorrombica

de base centrada é produzida a rede monoclinica de base centrada. Duas redes no total.

5. Sistema triclinico: a destruicao da simetria do cubo é completada movendo os
paralelogramos da rede ortorrombica simples de modo que nenhum eixo fica perpendicular
aos outros dois. A rede triclinica simples nao possui qualquer restri¢ao, a nao ser que faces

opostas sejam paralelas. Ha apenas uma rede desse tipo.
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6. Sistema trigonal: o sistema trigonal simples (ou romboédrico) é obtido esticando

um cubo ao longo de um de seus eixos diagonais. Apenas uma rede.

7. Sistema hexagonal:o grupo pontual hexagonal é o grupo de simetria de um prisma
com um hexdgono regular como base. A rede hexagonal simples tem o grupo pontual

hexagonal como grupo de simetria e é a tinica rede de Bravais no sistema hexagonal.

O grupo espacial é a soma dos grupos de translacao e pontual. Existem 230 grupos
espaciais que sao reduzidos a 219 se tipos diferindo apenas pelo carater enantiomorfo
sao incluidos num mesmo grupo. KEsses grupos espaciais descrevem todos os diferentes

arranjos possiveis de simetria nos cristais.

Figura 98: Acima: rede cubica de corpo centrado (body centered cubic - bee). Indicados trés
vetores primitivos. A direita, célula de Wigner-Seitz para esta rede, na qual ha oito vizinhos
mais préximos de um dado ponto. Abaixo: rede ciibica de face centrada (face centered cubic -
fce), com célula de Wigner-Seitz a direita e vetores primitivos delimitando uma célula primitiva
em forma de paralelepipedo, a qual ndo possui simetria menor que a da rede [211].

O volume de qualquer célula primitiva é sempre o mesmo. Pode-se expressar o volume

da célula primitiva definindo-o a partir dos vetores primitivos da rede de Bravais:

Qcp = ]al . (a2 X a3)| (A198)
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A base descreve as posicoes dos atomos dentro de cada célula unitaria em relacao a
origem escolhida. Se existem S dtomos por célula primitiva, entao a base é especificada
pelos vetores de posicao atomica b;, com i = 1,2,...,5. NaCl e ZnS sao dois exemplos
de cristais com rede de Bravais fcc e uma base de dois dtomos por célula. As magnitudes
dos vetores de translagao primitivos sao fungoes da aresta da célula cibica. Um segundo
exemplo que podemos mencionar é a estrutura zincoblenda, que ¢é a estrutura de muitos
cristais do grupo III-V e II-VI tais como o GaAs e o ZnS. Esta rede também é fcc com
dois atomos por célula unitaria, mas nao possui centro de inversao. Se os dois atomos
numa estrutura zincoblenda sao idénticos, obtém-se a rede cristalina do diamante. Outras

estruturas muito comuns sao a estrutura hexagonal e a perovskita.

Em cristais de empacotamento fechado (close-packed) os dtomos ocupam a maior
quantidade de espaco possivel. A estrutura fcc é a estrutura de empacotamento fechado
ctibica. J& a estrutura hexagonal de empacotamento fechado (hexagonal close-packed -
hep) consiste de planos de empacotamento empilhados em seqiiéncia alternada. E uma
rede de Bravais hexagonal com uma base de dois dtomos que nao sao equivalentes via
translagdo. A razdo de empacotamento é c/a = \/8/_3, onde ¢ é a altura do prisma
hexagonal e a o apoétema do hexdgono. Existe uma infinidade de empilhamentos possiveis
de planos formados com atomos em empacotamento fechado, o que da origem a um
numero infinito de politipos, especialmente em cristais com ligagoes tetraédricas, como o
ZnS. As estruturas mais simples sao a ja citada zincoblenda (simetria cibica) e a wurtzita

(simetria hexagonal), baseadas em redes fcc e hep.

Consideremos qualquer funcao f(r) definida para um cristal (a densidade eletronica,

por exemplo), que possui a mesma periodicidade da rede cristalina:

f(r+ T(ny,na,n3)) = f(r). (A.199)

E possivel escrever tal fungao através de transformadas de Fourier com componentes

q definidas no espaco reciproco:

1

QCRISTAL

f(a) / f(r)exp(iq - r)dr. (A.200)

QCRISTAL

Escrevendo a funcgao periddica usando componentes discretas de Fourier para um
cristal com N7 X Ny X N3 células unitarias e condicoes de contorno de Born-Von Karman

em cada dimensao, podemos restringir os vetores q ao conjunto de vetores que obedece a
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seguinte expressao:

q-a = 27?%, (A.201)

e a expansao de f(r) pode ser escrita como:

Ni N2 N3

1
flaq) = NN, Z Z Z exp [iq - T'(ny, ng, n3)] on /f r)exp(iq - r)dr. (A.202)

ni1=1ng9=1n3=1

O conjunto de vetores que satisfazem a Eq. (A.201) forma uma base de vetores
primitivos para a rede reciproca. Vetores da rede reciproca serao denotados por b;, e

relacionam-se com os vetores primitivos da rede real através de:

Um sitio na rede reciproca sera obtido através do vetor (G) dado por:

G(?’Ll, No, 713) = n1b1 -+ ngbg + n3b3, (A204)

onde os n; sio ndmeros inteiros. I ficil mostrar que a rede reciproca de uma rede cibica
simples é também uma rede ciibica simples. As redes bec e fcc sao mutuamente reciprocas.
Define-se a primeira zona de Brillouin (ou simplesmente zona de Brillouin, ZB) como sendo
a célula de Wigner-Seitz da rede reciproca. Os planos bissetores usados na construgao da
7B sao os mesmos planos para os quais a condi¢ao de Bragg para espalhamento elastico
é satisfeita. Para particulas incidentes com vetores de onda dentro da ZB nao ocorre
espalhamento de Bragg. A Fig. 99 ilustra algumas zonas de Brillouin com pontos de alta

simetria para alguns cristais.

Existe uma importante relacao entre os vetores da rede reciproca e os planos da rede
cristalina real. Cada plano da rede cristalina contém um ntimero infinito de sitios. Cada
vetor G da rede reciproca é perpendicular a algum conjunto de planos na rede direta, e
o comprimento de G é inversamente proporcional ao espacamento entre os planos desse
conjunto. Reduzindo os indices (n;, ng, ng) a indices sem fatores comuns (h, k, [) é possivel
fazer uma associacdo entre conjuntos de planos cristalinos e tripletos inteiros (h,k,1)

que representam vetores G no espaco reciproco. Tal método para designacao de planos
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Figura 99: Zonas de Brillouin para vérias redes comuns: (a) rede cubica simples; (b) fcc; (c)
bee; (d) hexagonal. Pontos e diregoes de alta simetria apresentados. O centro da zona (k = 0) é
indicado pela letra grega I'. Pontos no interior da ZB sao indicados com letras gregas e pontos
na sua superficie externa sao indicados com letras do alfabeto latino. No caso da rede fcc, um
pedaco de uma célula vizinha é representado por linhas pontilhadas, o que revela a orientagao
de células vizinhas. Por exemplo, a linha 3 que vai de I' até K prolonga-se para fora da primeira
ZB alcangando um ponto na célula vizinha que equivale ao ponto X [211].

equivale aos indices de Miller usados em cristalografia. A notacao usada para vetores
da rede reciproca e conjuntos de planos cristalinos especificos é (hkl). Se um plano nao
intercepta um vetor da rede direta, o indice de Miller correspondente é zero. Se um plano
intercepta um vetor que aponta no sentido negativo, o indice de Miller correspondente
tem uma linha desenhada sobre si. Para evitar confusao com planos na rede direta e
dire¢oes na rede reciproca, colchetes [hkl] sdo usados para diregoes na rede direta e planos
na rede reciproca. Existe também uma notagao especifica para indicar familias de planos
ou de vetores na rede reciproca que sao equivalentes por causa da simetria da rede. Por
exemplo, {100} indica os planos (100), (010) e (001). A notagao equivalente para diregoes
(incluindo sentidos negativos) é (hkl). Redes hexagonais usam quatro indices de Miller
(hklm): um para cada um dos trés vetores coplanares, espagados de 120° entre si, e outro

indice na dire¢ao normal a este plano.

Consideremos agora os autoestados de qualquer operador O definido para o cris-

tal peridédico. Qualquer operador desse tipo é invariante se submetido a translacoes

T(n1,n9,n3). Podemos definir operadores de translacao T(ni,ng,n3) que deslocam os
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argumentos de uma funcao de r:

A

T(nl,ng,ng)w(r) = w(r—l—T(nl,nQ,ng)). (A205)

O hamiltoniano de um cristal periddico é invariante sob a aplicacado do operador
T(nl,n27n3) e, portanto, comuta com este operador. Logo os autoestados H devem ser
autoestados de todos os T(nl, na,n3). O teorema de Bloch assegura que autoestados dos
operadores de translagao apenas mudam de fase quando se passa de uma célula para outra

do cristal:

A

T (n1,ng,n3)(r) = exp(ik - T(nq, ng, ng))(r). (A.206)

Os autoestados de qualquer operador periddico, como o hamiltoniano, podem ser
escolhidos com valores definidos de k que podem ser usados para classificar qualquer
excitacdo de um cristal periédico. Da Eq. (A.206) segue-se que as autofungdes com um

valor de k definido podem ser escritas também como:

i (r) = exp(ik - r)uy(r), (A.207)

onde ug(r + T(ny,na,n3)) = uk(r). No limite de um cristal macroscépico grande, o
espacamento entre os vetores k tende a zero e k pode ser considerada uma variavel
continua. Os autoestados do hamiltoniano podem ser encontrados separadamente para
cada k em uma célula primitiva da rede reciproca. Para cada k existe um conjunto dis-
creto de autovalores que podem ser rotulados por um indice ¢, o que leva a bandas de
autovalores €; e a gaps de energia nos quais nao podem existir autoestados para quaisquer

valores de k.

Em um cristal perfeito o vetor de onda k é conservado médulo qualquer vetor da rede
reciproca G, sendo tal vetor, portanto, andlogo ao momento ordinario no espago livre,
com a restricao adicional de que ele é conservado somente dentro de uma célula primitiva,
usualmente escolhida como sendo a zona de Brillouin. Logo, duas excitacoes com vetores
ki e ko podem ter momentum total k; + ks fora da zona de Brillouin na origem, mas seu
momentum cristalino deve ser reduzido a um ponto interno da zona de Brillouin através
da adicao de um vetor da rede reciproca. O processo fisico de espalhamento de duas

excitagoes por alguma perturbacao é chamado de espalhamento “Umklapp”.

Todos os autoestados possiveis sao especificados por k dentro de qualquer célula pri-
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mitiva da rede periddica no espaco reciproco, mas a ZB ¢é a célula convencional de escolha
para representar as excitagoes eletronicas em cristais. Suas fronteiras sao os planos bisse-
tores onde ocorre, como ja vimos, o espalhamento de Bragg. Logo, as bandas ;. devem
ser fungoes analiticas de k dentro da ZB e s6 podem se tornar nao-analiticas nas suas

fronteiras.

Para muitas propriedades, tais como a populagao de elétrons nas bandas, energias
totais, etc. € essencial efetuar uma soma sobre estados com nimero quantico k. Se forem
escolhidas autofungoes que obedecem condi¢oes de contorno periddicas em um cristal
macroscépico de volume 2cristar, composto de Ny Ny N3 células, entao existe exatamente
um valor de k para cada célula. Logo, em uma soma sobre estados feita para determinar
uma propriedade intrinseca de um cristal por célula unitaria, basta fazer uma soma sobre
os valores de k divididos por N;NyN3. Para uma funcao geral f;(k), onde i denota

qualquer um dos estados discretos em cada valor de k, o valor médio por célula é:

fi(k) = NIN;QN?’ > filk). (A.208)

Se tomarmos o limite em que os k se tornam muito proximos (ou seja, se fizermos
todas as dimensoes do cristal tenderem a infinito), podemos converter o somatério em

uma integral:

709 = o~ [ £k - gj)’g [ rac (A.209)

7ZB

As fungoes periddicas de Bloch uy(r) obedecem a equacao:

A

H(k)uy(r) = {—%(V +ik)? + V(r)] Uik (r) = e (r). (A.210)

Em sistemas sem campos magnéticos, existe uma simetria adicional para os estados
eletronicos, que decorre da invariancia da equacao de Schrodinger sob reversoes temporais,
Vi —k(r) = i (r). Isto significa que ndo hé necessidade de calcular os estados para k e
—k. Se o cristal também possui simetria de inversao, entao a Eq. (A.210) é a mesma para
k e —k, de modo que a parte periddica da funcao de Bloch pode ser escolhida satisfazendo
u; —x(r) = up(r). Logo é sempre possivel escolher u;(r) real para todos os valores de k
para cristais com simetria de inversao. A inclusao de efeitos do acoplamento spin-orbita

implica na simetria @bj k() = @Di{ik(r), a qual é um exemplo concreto do teorema de
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Kramers da mecanica quantica: todos os estados devem ocorrer em pares degenerados

num sistema com simetria de reversao temporal.

E possivel definir ainda a zona de Brillouin irredutivel (ZBI) como a menor fragao da
7B que é suficiente para determinar toda a informagao sobre as excitacoes do cristal. Em
pontos k de alta simetria, os estados eletronicos podem ser classificados de acordo com

as representacoes de grupo pontual.

A.7.2 Integracao sobre a zona de Brillouin

O célculo de muitas quantidades, tais como a energia ou a densidade eletronica, exige

integracao de fungoes no volume da ZB. H& dois aspectos distintos nesse problema:

— A integracao deve ser acurada usando um conjunto discreto de pontos sobre a ZB. O
método escolhido deve ser especifico para o problema considerado e depende da existéncia
de um numero suficiente de pontos em regices onde o integrando varia rapidamente. Neste
aspecto, existe uma importante diferenca entre metais e isolantes. Estes tltimos possuem
bandas preenchidas que podem ser integradas usando apenas um pequeno conjunto de
pontos na ZB. Em contraste, os metais exigem uma integracao cuidadosa para aquelas

bandas que cruzam a superficie de Fermi, em cujas vizinhancas ocorrem rapidas variagoes.

— Pode-se usar a simetria da ZB para reduzir o niimero de calculos. Toda a informacao
necessaria pode ser obtida a partir de estados com k na zona de Brillouin irredutivel. Isto

¢ muito 1util em sistemas de alta simetria, sejam metais ou isolantes.

Para materiais isolantes, as integrais necessérias possuem a forma da Eq. (A.208),
onde a soma ¢ efetuada sobre bandas preenchidas na zona de Brillouin completa. Como o
integrando f;(k) é alguma fungao das autofungoes 1;(r) com autovalores €, conclui-se
que sua variacao é suave e periddica em k. Logo é possivel expandir f;(k) em componentes

de Fourier:

fik) = > fi(T(n1,n2,n3)) exp(ik - T(ny, n2,n3)). (A.211)

ni,n2,n3
O fato mais importante é que a contribuicao dos termos que variam rapidamente para
T(n1,ng,n3) grande decrescem exponencialmente, de modo que a soma infinita pode ser
truncada. A prova disto esta relacionada a transformacoes das expressoes em tracos sobre
fungdes de Wannier e a observagao de que o alcance de f(T(ni,ng,n3)) é determinado

pelo alcance das funcoes de Wannier.
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Pontos especiais sao escolhidos para a integracao eficiente de fungoes periédicas suaves.
O método mais simples é o do ponto de Baldereschi [344], no qual apenas um ponto é
usado para integracao. A escolha é baseada no fato de que existe sempre um ponto de valor
médio onde o integrando ¢ igual a integral e no uso da simetria do cristal para determinar
aproximadamente a localizacao deste ponto. Para redes cubicas, as coordenadas do ponto

de valor médio sao:
— rede cubica simples: k = (7/a)(1/2,1/2,1/2);
— rede cibica de corpo centrado: k = (27/a)(1/6,1/6,1/2);
— rede cibica de face centrada: k = (27/a)(0.6223, 0.6223, 1/2).

O método geral proposto por Monkhorst e Pack [182] é atualmente muito utilizado
porque usa um conjunto uniforme de pontos determinados por uma férmula simples que

vale para qualquer cristal:

3

2n; — N; — 1

knhnz,n:s = Z #Gh (A.212)
i=1 2N

onde os G; sao vetores primitivos da rede reciproca. As principais caracteristicas dos

pontos de Monkhorst-Pack sao:

— Uma soma sobre o conjunto uniforme de pontos na Eq. (A.212) comn; =1,2,..., N;
integra exatamente uma funcao periédica com componentes de Fourier que se estendem

somente até N;T; em cada direcao.

— O conjunto de pontos definidos pela Eq. (A.212) é um g¢rid uniforme em k que
é uma versao escalonada da rede reciproca deslocada em relacao a k = 0. Para muitas
redes, especialmente as cubicas, é preferivel escolher N; par. Logo o conjunto nao envolve

os pontos de mais alta simetria, omitindo o ponto I' e pontos sobre a fronteira da ZB.

— O conjunto N; = 2 é o ponto de Baldereschi para um cristal ctibico simples (levando
em conta a simetria). Os conjuntos para todas as redes ctbicas sdo os mesmos do mesh
de Gilat-Raubenheimer [345].

Uma tabulacao informativa sobre grids e suas eficiéncias, junto com descri¢oes tteis,
é apresentada por Moreno e Soler [346], que enfatizaram a geracao de diferentes conjuntos

de grids regulares usando uma combinacao de deslocamentos e simetria.

Integrais sobre a zona de Brillouin podem ser substituidas por integrais somente sobre

a zona de Brillouin irredutivel. Operacoes de simetria podem ser usadas para reduzir o
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namero de calculos. Exemplos excelentes sao as redes de Monkhorst-Pack aplicadas a
cristais ctbicos, onde existem 48 operacoes de simetria, de modo que a zona de Brillouin
irredutivel possui 1/48 do volume da zona de Brillouin total. O conjunto definido por
N; = 2 possui 2% = 8 pontos na Zona de Brillouin, que se reduzem a um tnico ponto na
zona de Brillouin irredutivel. Similarmente, N; = 4 produz 64 pontos na zona de Brillouin
que sao reduzidos a dois. IN; = 6 leva a 216 pontos, que na zona irredutivel se convertem
em 10 pontos. O conjunto de 10 pontos é suficiente para quase todos os calculos feitos

em materiais semicondutores.

No caso dos metais, existem questoes importantes sobre a amostragem eficiente dos
estados desejados na ZB. A superficie de Fermi desempenha papel especial em todas as
propriedades e a integracao sobre estados deve ter em conta a rapida variagao da funcgao
de Fermi-Dirac de um a zero quando k muda. Esta variagao desempenha papel decisivo
em todos os calculos de somatorios sobre estados ocupados para quantidades totais (por
exemplo, densidade eletronica total, energia, forga, etc.), e somas sobre estados ocupados

e vazios para funcoes resposta e funcoes espectrais.

O método do tetraedro [347, 348, 349, 350] é bastante usado para representar a su-
perficie de Fermi. Se os autovalores e vetores sao conhecidos em um conjunto de pontos de
grid, a variacao entre os pontos de grid pode ser sempre aproximada por uma interpolacao
usando tetraedros. Isto é particularmente 1util porque podem ser usados tetraedros para
preencher todo o espaco em qualquer grid. O procedimento mais simples é uma inter-
polacao linear entre os valores conhecidos nos vértices, mas esquemas de ordem mais
elevada podem ser usados para grids especiais. Métodos de tetraedro sao muito impor-
tantes no céalculo de propriedades de metais de transicao, terras raras, etc., para os quais

as superficies de Fermi sao intrincadas.

A.7.3 Densidade de estados

Uma quantidade importante para muitos propdsitos é a densidade de estados (Density
Of States - DOS) por unidade de energia E (e por unidade de volume 2 em materiais
bulk):

1 Qcp /
F)= ——— Olen — F) = (e — B)dk. A.213
HE) = R 3o~ B) = [ ew= B (A213)

(2m)”

No caso de estados de particulas independentes, onde ¢; indica a energia de um
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elétron (ou fonon), a Eq. (A.213) d4 o ntimero de estados de particula independentes por
unidade de energia. Quantidades como o calor especifico envolvem excitagoes de elétrons
que nao mudam o numero de particulas. Para suscetibilidades de particula independente,
a parte imaginaria ¢ dada por elementos de uma matriz vezes uma densidade de estados
conjunta, ou seja, um somatério duplo sobre bandas i e j e uma soma simples sobre k

por causa da conservacao do momentum, em fungao da diferenca de energias £ = ¢; —¢;.

E facil mostrar que a DOS possui pontos criticos, ou singularidades de van Hove,
onde p(F) possui formas analiticas que dependem apenas da dimensao espacial. Em trés
dimensoes, cada banda deve possuir singularidades do tipo inverso da raiz quadrada nos

seus maximos, minimos e pontos de sela.

A densidade de estados é um conceito matematico 1util que permite substituir uma
integracao sobre a zona de Brillouin por uma integragao na energia. Também serve para
analisar visualmente a estrutura eletronica. Caracteristicas tais como a largura da banda
de valéncia, o gap de energia em materiais isolantes e o nimero e intensidade das principais
caracteristicas sao valiosos para a interpretacao qualitativa de dados espectroscopicos.
A analise da DOS pode ajudar também na compreensao das mudangas na estrutura

eletronica causadas, por exemplo, por uma pressao externa.

Existe uma variedade de técnicas numéricas para o calculo da densidade de esta-
dos. A mais simples se baseia num alargamento gaussiano dos niveis de energia de cada
banda, seguido por uma amostragem de histograma. Este método nao reproduz tragos
caracteristicos como singularidades de van-Hove, mas produz geralmente uma forma sa-

tisfatoria para a densidade de estados mesmo quando sao usados poucos pontos na ZB.

Métodos mais precisos sao baseados em interpolagoes lineares ou quadraticas das
bandas de energia entre os pontos de referéncia na zona de Brillouin. A técnica mais
popular e confiavel, baseada na interpolagao do tetraedro, nao é muito apropriada para
o grid de Monkhorst-Pack. Um esquema de interpolacao linear simplificado foi desen-
volvido por Ackland [351], utilizando paralelepipedos formados pelos pontos do conjunto
de Monkhorst-Pack, seguido pela amostragem de histograma do conjunto resultante de

energias de banda.

Densidades de estado locais (Local Density of States - LDOS) e parciais (Partial
Density of States - PDOS) podem fornecer dados qualitativos para a andlise da estru-
tura eletronica. A LDOS mostra quais atomos no sistema contribuem para os estados
eletronicos nas varias regioes do espectro de energia. A densidade de estados parcial,

por sua vez, melhora mais ainda esses resultados separando essas contribuicoes de acordo
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com o momento angular dos estados. E muitas vezes ttil saber se os principais picos na
densidade de estados possuem carater s, p ou d. As analises LDOS e PDOS dao uma
indicacao da natureza da hibridizacao eletronica do sistema, da origem das principais
caracteristicas nos espectros 6ptico e de fotoelétrons por raios X (X-ray Photoelectron

Spectroscopy - XPS), etc.

Calculos de densidade de estados parcial sao baseados em andlises populacionais de
Mulliken, as quais permitem calcular a contribuicao para cada banda de energia oriunda
de um dado orbital atomico. A soma dessas contribui¢oes sobre todas as bandas produz

uma densidade parcial ponderada.

A.8 Pseudopotenciais

A.8.1 Ondas planas ortogonalizadas e pseudopotenciais

As propriedades de espalhamento de um potencial esférico localizado para qualquer
energia ¢ podem ser formuladas em termos do desvio de fase da fungao de onda, 7(e),
o qual determina a secao de choque e todas as propriedades da funcao de onda fora
da regiao de interacao, as quais sao invariantes sob desvios de fase que sao multiplos
inteiros de 27. A idéia béasica dos pseudopotenciais é escolher um potencial simples que
reproduza a interacao de uma onda plana com um potencial produzindo desvios de fase
desse tipo. Nos anos 50, Antoncik, Phillips e Kleinman [352, 353, 354] ressuscitaram a
idéia de pseudopotencial langada por Hellmann nos anos 30 [102, 103], mostrando que o
método de ondas planas ortogonalizadas (Orthogonalized Plane Wave - OPW) pode ser
posto na forma de equagoes somente para os estados de valéncia envolvendo um fraco
potencial efetivo. Ao concluirem que as estruturas de bandas de metais e semicondutores
com ligacoes sp pode ser descrita acuradamente por uns poucos coeficientes empiricos,
Antoncik, Phillips e Kleinman abriram as portas para o entendimento bésico de um

enorme conjunto de propriedades de metais e semicondutores com esse tipo de ligacao.

A maior parte dos céalculos de pseudopotenciais atualmente feitos baseia-se em po-
tenciais ab initio de norma conservada (Norm-Conserving), que sao, em larga medida,
um retorno aos potenciais de Fermi e Hellmann com diferengas importantes. Exigir a
conservacao da norma é o passo chave para se construir bons pseudopotenciais, capazes
de operar nos mais diversos ambientes (dtomo, fon, molécula, cristais, etc.). Quando um
pseudopotencial satisfaz esta condicao, diz-se que o mesmo é transferivel. Tal abordagem

foi estendida por Blochl [355] e Vanderbilt [356], que mostraram ser possivel o uso de



392 Anexo A - Fundamentos tedricos

fungoes auxiliares localizadas para definir pseudopotenciais ultramacios (Ultrasoft Pseu-
dopotentials). Ao expressar a pseudofuncdo como a soma de uma parte suave com uma
parte que varia rapidamente em torno do caroco, a precisao dos pseudopotenciais de norma
conservada pode ser aumentada enquanto, ao mesmo tempo, os calculos tornam-se menos

onerosos (as custas de um aumento na complexidade computacional dos programas).

Em tempos recentes, surgiu o método da onda aumentada projetora (Projector Aug-
mented Wave - PAW), que é uma reformula¢ao do método da onda plana ortogonalizada
(OPW) numa forma que é particularmente apropriada para calculos DFT de energias
totais e forcas. As funcoes de onda de valéncia sao escritas como uma soma de fungoes
suaves mais fungoes de carogo, as quais levam a uma equacgao de autovalores generalizada
como acontece na abordagem OPW. Diferente dos pseudopotenciais, no entanto, o método
PAW retém o conjunto completo de fungoes de carogo eletronicas juntamente com as par-
tes suaves das fungoes de valéncia. Elementos de matriz envolvendo fungoes de carogo sao
tratados usando esferas muffin-tin como nos demais métodos de onda aumentada, mas

sem a desvantagem no que se refere ao calculo de forcas.

O conceito de pseudopotencial nao se limita a reproduzir calculos considerando todos
os elétrons dentro da aproximagao de particulas independentes, como ocorre na apro-
ximacao DFT de Kohn-Sham. De fato, o problema original de substituir os efeitos dos
elétrons de caroco por um potencial efetivo apresenta um desafio maior, pois nao se vislum-
bra como tal aproximagao pode ser feita numa verdadeira teoria de muitos corpos levando
em conta o fato de que todos os elétrons sao indistinguiveis. E necessdrio um novo imsight

para descrever os efeitos dos carocos além da aproximacao dos elétrons independentes.

A formula¢ao OPW original [100] é uma abordagem geral para a construgao de fungoes

de base para estados de valéncia com a forma:

xg "V (r) = % exp(iq-T) — Z {/ [ue(r")]" exp(iq - r')dr'| u.(r) p . (A.214)

C

OPW
q

carogo) nao sao especificadas aqui, mas devem ser localizadas em torno de cada nucleo

E facil ver que y é ortogonal a cada fungdo u.. As fungoes u.(r) (fungdes de
atomico do sistema estudado. Escolhendo bem essas fungoes, a Eq. (A.214) divide a
funcao em uma parte suave mais uma parte localizada. Em um cristal, uma funcgao
suave pode ser representada convenientemente através de ondas planas, o que sugere que

pode ser pratico tentar aproximar a autofuncao em um sistema periodico através de uma
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combinagao linear de umas poucas ondas planas com uma combinacao linear de poucas

funcoes centradas em torno de cada nticleo e obedecendo a equagoes de onda do tipo:

ST () - B ) =0, (A215)

O potencial V, e as fungoes u. sao escolhidos de modo a otimizar a resolu¢ao do pro-
blema. Com esta ampla defini¢cao presente em sua formulacao original, a abordagem OPW
é precursora de todos os métodos de pseudopotencial e PAW. Esses novos métodos envol-
vem novas idéias e escolhas adequadas para as fungoes e suas operacoes, o que produziu
importantes avancos no estudo moderno de estruturas eletronicas. E interessante consi-
derar a forma ortogonalizada para os estados de valéncia em um atomo, onde o estado é

indicado pelos nimeros quanticos Im, bem como as funcoes que lhe sao adicionadas:

Vi (1) = iy (1 Z Be(tm)te(tm) (T). (A.216)

onde v\ ¢ a funcio de valéncia, 1, ¢ a parte suave. O somatdrio sobre as funcoes de
carogo inclui apenas fungoes com niimeros quanticos m (o que é denotado pelo indice
¢(l,m)). Todas essas quantidades podem ser escritas em termos das ondas planas ortogo-

nalizadas através de transformadas de Fourier:

Gy () = / (@)X Vg, (A.217)

Vi (1 =70 / am(q) exp(iq - r)dq, (A.218)

Bem) = %/clm(q) {/ [uc(l,m)(r’)r exp(iq - r’)dr’} dq. (A.219)

A forma mais simples de resolver o problema da escolha dos () ¢ fazer estas funcoes
coincidirem com os orbitais de carogo te(,m)(r) = te@m)(r), de modo que 08 Y m)(r) sdo
os autoestados de mais baixa energia do hamiltoniano. Como os estados de valéncia v, (r)
devem ser ortogonais aos estados de carogo, 1y (r), a parte radial da fungao v, (r) deve
possuir um numero de nés igual ao nimero de orbitais de caroco com o mesmo momento
angular. Pode-se mostrar que a escolha ucm) = PC leva a fungdes suaves 1, (r) que

niao possuem nés radiais, ou seja, sio mais suaves ainda que v, (r). Além disso, muitas
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vezes os estados de carogo podem ser escolhidos de modo a serem os mesmos em atomos,

moléculas e sélidos.

O conjunto de OPWs nao é ortonormal e cada onda possui uma norma menor que a
unidade, o que significa que as equacoes para os OPWs possuem a forma de um problema

de autovalores generalizado com uma matriz de overlap.

A transformacao de pseudopotencial de Phillips e Kleinman [354], e Antoncik (PKA)

[352, 353] é obtida a partir da equagao original para autofuncoes de valéncia:

Ay () = [—— n v<r>] Y () = eV (o) (A.220)

onde V' é o potencial efetivo total, que leva a uma equacao para as fungoes suaves &Xn (r):

AN ) = |-+ 7 ) = i, (A.221)

onde:

VPRA — () + VR, (A.222)

VR ¢ um operador nao-local que atua sobre Y (r):

Vi, (r) = Z (&2 = ectm)) (Vem) () | i (1)) W51 (¥ (A.223)

c(l,m)

VR é repulsivo, uma vez que a Eq. (A.223) é escrita em termos das energias 5}’—5%77”),
que sao sempre positivas. Além disso, um potencial nuclear atrativo mais forte leva a
estados de carogo mais profundos, de modo que a Eq. (A.223) se torna mais repulsiva.
Esta tendéncia foi apontada por Phillips, Kleinman e Antoncik e derivada em uma forma
muito geral como o teorema do cancelamento por Cohen e Heine [357]. Logo VKA ¢
muito mais fraco que o potencial original V', mas assume a forma de um complicado
operador nao-local. Além disso, as pseudofuncdes suaves 1), (r) ndo sdo ortonormais
porque a fungao completa ¢ (r) também inclui uma soma sobre orbitais de carogo. Logo
a solugao da equacao para o pseudopotencial é um problema de autovalores generalizado.
Mais ainda, como os estados de carogo ainda estao presentes na definicao dada pela Eq.

(A.223), esta transformacao ndo produz um pseudopotencial suave.
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Todas as vantagens da transformagao de pseudopotencial sao realizadas usando ao

VPKA ¢ o fato de que as mes-

mesmo tempo as propriedades formais do pseudopotencial
mas propriedades de espalhamento podem ser obtidas com diferentes potenciais. Logo o
pseudopotencial pode ser escolhido de modo a se tornar muito mais suave e fraco que o

potencial original V' tirando vantagem da nao-unicidade dos pseudopotenciais.

Muito embora o operador de potencial seja um ente matemético mais complicado que
um potencial local simples, o fato dele ser mais fraco e suave (o que significa que pode
ser expandido em poucas componentes de Fourier) possui grandes vantagens, conceitual e
computacionalmente. Em particular, este operador resolve a aparente contradicao entre o
fato de as bandas de valéncia €Y, possuirem uma variagao com k parecida com a existente
para elétrons livres e o fato das funcdes de onda 1Y) possuirem caracteristicas bastante
distintas das dos elétrons livres em virtude de sua ortogonalidade em relagao aos estados
de caroco. A solucao do problema é que as bandas sao determinadas pela equacao secular

para as fungoes ¥, (suaves, quase de elétron livre) que envolvem o pseudopotencial fraco
VPKA

Baseada na teoria do espalhamento, na transformacao das equagoes OPW e no teo-
rema do cancelamento, a teoria dos pseudopotenciais tornou-se um campo fértil para a
criacao de novos métodos e insights sobre a estrutura eletronica de moléculas e sélidos.
Existem duas abordagens principais no método: (1) definir pseudopotenciais i6nicos, que
levam a uma situagao na qual apenas os elétrons de valéncia interagem; (2) definir um
pseudopotencial total que inclui efeitos dos demais elétrons de valéncia. A primeira abor-
dagem é a mais geral, uma vez que os pseudopotenciais ionicos sao mais transferiveis. A
segunda é muito util para descrever acuradamente as bandas se estas sao tratadas como
potenciais empiricos ajustaveis; pseudopotenciais empiricos desempenharam um impor-
tante papel na compreensao das estruturas eletronicas [358, 359] e sdo tteis para ajudar

a compreender as bandas em uma base de ondas planas.

No caso de um potencial idnico, o nticleo e os elétrons de caroco sao substituidos por
um potencial esfericamente simétrico, e os momentos angulares [ e m podem ser tratados
separadamente, o que leva a pseudopotenciais modelo [-dependentes nao locais V(r). Fora
da regiao de caroco, o potencial possui a forma Z;,/r, ou seja, o potencial de Coulomb
resultante da superposicao dos potenciais nuclear e eletronico de caroco. Na regiao de
carogo, o potencial deve ser repulsivo [357] em um grau que depende do momento angular
[, como fica claro da Eq. (A.223). A dependéncia em [ significa que, em geral, um

pseudopotencial é um operador nao-local que pode ser escrito numa forma “semilocal”:
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VSL = Z |Ylm> VZ(T) <Y2m|a (A'224)
im

onde Y}, = Py,(cosf)exp(imy). Esse termo é chamado de semilocal (SL) por ser nao-
local nas varidveis angulares mas local na variavel r. Quando atua sobre uma funcao

f(r,0',¢"), o efeito de Ve, é:

VaLf(r, 0, &) ZYlm )/Ylm(@',go’)f(r, 0, ¢ )d(cos0")dy'. (A.225)

Toda a informagao se encontra nas fungoes radiais V() ou em suas transformadas de
Fourier. O céalculo de uma estrutura eletronica envolve o calculo dos elementos da matriz

associada ao operador Vgi, entre os estados 9y, € Yy

i) Vor, [y = /Wm(rﬁ, ©) [%Lwl/m/(rﬁ,gp) dr. (A.226)

.0,

H&a duas maneiras de definir os potenciais:

- Potenciais empiricos ajustados através de dados atomicos ou de estado solido. As
formas simples sdao os modelos de carogo vazio [360] e pogo quadrado [361, 362, 363].
Neste 1ltimo caso, os parametros sao ajustados a dados atomicos para cada [ e tabulados

para varios elementos por Animalu e Heine [362, 363].

- Potenciais ab initio construidos para ajustar as propriedades de valéncia calculadas
para o atomo. O surgimento dos pseudopotenciais de norma conservada forneceu uma

maneira direta de criar tais potenciais transferiveis para calculos em moléculas e solidos.

A.8.2 Pseudopotenciais de norma conservada

Pseudopotenciais gerados através de célculos atomicos sao chamados de ab initio por
nao serem obtidos a partir de ajuste experimental. O conceito de conservacao de norma
tem lugar especial no desenvolvimento de pseudopotenciais ab initio. De uma vez sé ele
simplifica a aplicacao dos pseudopotenciais e os torna mais acurados e transferiveis. Em
contraste com a aproximacao PKA (onde as equagoes foram formuladas em termos da
parte suave da funcio de valéncia 1, (r), a qual deve receber a adicio de uma outra
fungao, ver Eq. (A.222)), pseudofungoes norma conservada 15 (r) sdo normalizadas e sdo

solucoes de um potencial modelo escolhido para reproduzir as propriedades de valéncia
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de um célculo para todos os elétrons do sistema. Para aplicagoes de pseudopotenciais a
sistemas complexos, como moléculas, clusters, solidos, etc., as pseudofuncoes de valéncia

devem satisfazer as condigoes de ortonormalidade:

< o,PS ) wa’,PS> — 51O Oorot (A.227)

Im U'm/

de modo que a equacao de Kohn-Sham conserva sua forma:

(g™ — 7 )ui, "(x) =0, (A.228)

lm

onde:

. 1 “ €,0 I./
HYS®S = —§V2 + Vaxr(r) + / '|0r _(r)dr' + Vi&o(r), (A.229)

4
com V7. dado pelas Egs. (A.189). Vaxr ¢ dado pelo pseudopotencial.

Existe uma divisao tradicional de pseudopotenciais entre pseudopotenciais de forma
consistente [364, 365] e pseudopotenciais de norma conservada [185]. O ponto de partida
para definir pseudopotenciais de norma conservada é a lista de exigéncias para um bom

pseudopotencial ab initio, dada por Hamann, Schluter e Chiang (HSC) [185]:

1. Os autovalores de energia determinados a partir de pseudopotenciais e a partir de
um céalculo para todos os elétrons (doravante calculo exato. As fungoes de onda obtidas
desta forma também serao chamadas aqui de fungoes de onda exatas) devem ser os mesmos

para uma dada configuracao atomica de referéncia.

2. Funcgoes de onda determinadas a partir de pseudopotenciais e a partir de calculos

exatos devem ser praticamente iguais para raios maiores que um certo raio de caroco R..

3. As derivadas logaritmicas das pseudofuncoes e das fungoes de onda calculadas de

modo exato devem ser (por construc¢ao) iguais para um raio maior que R..

4. A carga integrada de r = 0 até r = R, deve ser a mesma tanto para fungoes de

onda exatas como para pseudofungoes (conservagao da norma).

5. As derivadas primeiras em relacao a energia das derivadas logaritmicas das funcoes

de onda exatas e das pseudofungoes devem ser praticamente iguais para r = R,.

De 1 e 2 segue-se que os pseudopotenciais de norma conservada reproduzem o potencial

atomico fora da regiao de carogo de raio R.. Isto porque o potencial é determinado
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de modo tnico (exceto por uma constante que é determinada se o potencial é zero no
infinito) pela funcao de onda e pela energia €, que nao precisa ser uma autoenergia. O
ponto 3 ¢é necessario uma vez que a fun¢ao de onda ;(r) e sua derivada radial ¥(r)
sao continuas em R, para qualquer potencial suave, e se deseja reproduzir do modo mais
fiel possivel as condigoes de contorno da fungao de onda exata sobre a esfera de raio R.,
assegurando a semelhanca entre a pseudofuncao de onda e a funcao de onda exata. A

derivada logaritmica adimensional D; é definida por:

Di(e,r) =rii(e,r) /e, r) = rd% In (e, r). (A.230)

Dentro da esfera de raio R, o pseudopotencial e o pseudo-orbital radial M”PS (r) dife-
rem de seus contrapartes obtidos através de calculos para todos os elétrons. No entanto,

o ponto 4 impoe a restricao:

R, R
Q= |1Z)l(r)|2 r’dr = WZPS(T) ‘2 r2dr. (A.231)
[

A conservagao de Q; assegura que: (a) a carga total na regiao de carogo esta correta e
(b) o pseudo-orbital normalizado ¢ igual ao verdadeiro orbital para r > R. (em contraste
com o orbital suave ¥, (r)) que é igual ao verdadeiro orbital para r > R, somente se nao
for normalizado). Aplicadas a uma molécula ou a um sélido, essas condigoes garantem
que o pseudo-orbital é correto na regiao r > R, entre os &tomos, onde ocorrem as ligagoes,
e também que o potencial para r > R, é igual ao obtido via célculo para todos os elétrons,
uma vez que o potencial fora de uma distribuicao de carga esfericamente simétrica depende

somente da carga total no interior da esfera.

O ponto 5 é uma etapa crucial na direcao de construir um bom pseudopotencial, ou
seja, um pseudopotencial que possa ser gerado em um ambiente simples como o de um
atomo esférico e usado em um outro ambiente mais complicado. Em uma molécula ou
solido, as funcoes de onda e autovalores mudam e um pseudopotencial satisfazendo o
ponto 5 reproduzird as alteragoes nos autovalores até termos de primeira ordem (lineares)
na mudanga do potencial autoconsistente. A primeira vista, porém, nao é ébvio como
satisfazer a condicao que as primeiras derivadas em relagao a energia das derivadas lo-
garitmicas, dD,(e,r)/de, sejam iguais para as fungoes e pseudofungoes de onda eletronicas
para r = R, e para a energia ¢; escolhida para a construcao do pseudopotencial de mo-

mento angular /.
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O avango devido a HSC [185] e outros [364, 365] foi mostrar que o ponto 5 estd
implicito no ponto 4. Esta condi¢ao de conservagao de norma pode ser derivada de modo

direto. A equagao radial para um atomo esférico ou fon pode ser escrita como:

1 d?*(ri(e, 7)) (I+1)  Vig(r)—e
— dlﬂ + |5t f g (e, r) = 0. (A.232)

Definindo a varidvel z;(e,r):

er) = % In [rdu(e, r)] = % D) + 1], (A.233)

pode-se mostrar, a partir da Eq. (A.232), que, para um dado raio R:

0 1
axl(&“, R) = _—[Rwl(g’ R)]QQZ(R>, (A234)
0 R

Isto prova imediatamente que se r;(g, ) possui a mesma magnitude que a fungao de
onda para um célculo incluindo todos os elétrons em r = R, e obedece a conservagao da
norma (mesmo @);), entao a primeira derivada em rela¢ao a energia da derivada logaritmica
D, (g, R) é igual tanto para a pseudofuncao como para a fun¢ao de onda verdadeira. Isto
também significa que o pseudopotencial que conserva a norma possui o mesmo desvio
de fase para espalhamento que a funcao de onda calculada para todos os elétrons possui
até termos de primeira ordem na energia. Logo, as propriedades de espalhamento do
pseudopotencial e do potencial real possuem a mesma variacao até termos lineares na

energia quando transferidos para outro sistema.

A geracao de um pseudopotencial se inicia com o cédlculo usual para todos os elétrons
em um atomo. Cada estado Im é tratado independentemente exceto pelo fato de o po-
tencial total ser calculado de modo autoconsistente para uma certa aproximacao de troca
e correlagao e para a configuracao atomica considerada. O préximo passo é identificar
os estados de valéncia e gerar os pseudopotenciais V;(r) e os pseudo-orbitais ¢S (e, r).
O procedimento varia conforme a abordagem, mas em cada caso a primeira coisa feita
¢ determinar um pseudopotencial total blindado atuando sobre os elétrons de valéncia

no atomo. A blindagem deste pseudopotencial é entao removida subtraindo do potencial
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total a soma dos potenciais de troca e correlagao e de Hartree (este tltimo definido como
pe’a(r/)dr’).

r—r’|

E til separar os pseudopotenciais ionicos em uma parte local (independente de )

mais termos nao locais:

Vi(r) = Viocar(r) + 0Vi(r). (A.236)

Como os autovalores e os orbitais sao os mesmos para os “pseudo-elétrons” e para
os elétrons reais quando r > R., cada potencial V;(r) iguala (se » > R.) o potencial
local (independente de 1) calculado incluindo todos os elétrons explicitamente, sendo que
Vi(r) — —Zion/r para r — oo. Logo, dVi(r) = 0 para r > R, e todos os efeitos de longo
alcance do potencial coulombiano sao incluidos no potencial local Vi,ocar(r). Finalmente,

o operador semilocal (Eq. (A.224)) pode ser escrito como:

Var = Viocar(r) + Y [Yim) 6Vi(r) (Y. (A.237)

Im
Mesmo satisfazendo a exigéncia da conservacao da norma, ainda ha liberdade de es-
colha na forma de V;(r) para a construcao de pseudopotenciais. Nao existe um pseudopo-
tencial mais apropriado para qualquer elemento dado, mas podem haver muitas escolhas
mais adequadas conforme o uso particular do pseudopotencial. Em geral, existem dois

fatores a se levar em conta:

— Se o interesse é acuricia e capacidade de transferéncia, devem ser preferidos pequenos
S t dadedet f ,d ferid
raios de corte R, e potenciais “duros”, uma vez que se quer descrever a funcao de onda

tao bem quanto possivel nas vizinhancas do atomo.

— Quando se quer descrever a funcao de onda com o menor niimero possivel de funcoes
de base (por exemplo, ondas planas), a suavidade dos pseudopotenciais é prioridade, o

que implica em escolher um raio de corte R, maior, e potenciais mais “macios”.

Existem dois significados para a palavra “dureza”. Um é a medida da variagao no
espaco real, que é quantificada pela extensao do potencial no espago de Fourier. Em geral,
potenciais “duros” descrevem as propriedades dos ions rigidos e localizados, e sao mais
transferiveis de um material para outro. Tentativas de tornar o potencial “macio” tendem
a deixar o pseudopotencial menos transferivel. No entanto, existe um esforco consideravel

para criar pseudopotenciais acurados e transferiveis com pouca extensao no espago de

Fourier [366].
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O segundo significado é uma medida da capacidade dos pseudoelétrons descreverem
a resposta do sistema a uma mudanga do meio [367, 368, 369]. A conservac¢ao da norma
garante que os estados eletronicos do atomo possuem a primeira derivada com respeito
a mudancas na energia correta. Este significado de “dureza” é uma medida da fideli-
dade da resposta a uma mudanga no potencial. Potenciais podem ser testados usando
perturbagoes esféricas (mudanga de carga, estado, potencial radial). Goedecker e Mas-
chke [367] realizaram uma anélise interessante em termos da resposta da densidade de
carga na regiao de caroco, o que ¢ relevante para calculos DFT e para a condicao de con-
servagao da norma. Também foram feitos testes com perturbagdes nao-esféricas (como a

polarizabilidade em um campo elétrico, cfr. [369]).

Apos a escolha do tipo de pseudopotencial que sera utilizado, devem ser ajustados os
parametros de raio de corte (R.) para cada orbital de valéncia do elemento estudado, o
que ira depender da aplicagao que se tem em vista. Por exemplo, se o objetivo for realizar
um calculo para o cristal de Si puro, é mais adequado escolher um valor relativamente
grande para R.. Quanto maior for R., menor serd o nimero de ondas planas necessarias
para representar a pseudofuncao de onda no calculo autoconsistente. Se o objetivo for
misturar Si com outro tipo de dtomo, como o oxigénio (o oxigénio possui um potencial
que varia rapidamente perto do seu carogo atomico, o que torna mais apropriado usar em
sua descri¢ao fungoes reais gaussianas do que conjuntos de ondas planas), é recomendével
adotar um pseudopotencial mais “duro”, ou com valor menor de R.. Dessa forma, o
pseudopotencial se aproximara mais do potencial real. O fato de ser necessaria uma
expansao com um numero maior de ondas planas nao é problema, uma vez que o oxigénio

ja exige, normalmente, um nimero grande de ondas planas para ser bem descrito.

Exemplos de pseudopotenciais [185] para o d&tomo de Mo sao mostrados na Fig. 100.
Uma abordagem similar foi adotada por Bachelet, Hamann e Schliiter [370] (BHS) para
construir pseudopotenciais para todos os elementos do H ao Po na forma de uma expansao
de gaussianas com coeficientes tabulados. Esses potenciais foram calculados a partir de
uma forma inicial do potencial e variando varios parametros até que a fungao de onda
apresentasse as propriedades desejadas, uma abordagem também seguida por Vanderbilt
[371]. Um procedimento mais simples foi desenvolvido por Christiansen et al. [364] e
Kerker [372], os quais definem uma pseudo-fungao de onda com as propriedades desejadas

para cada [ e invertem numericamente a equacao de Schrédinger para encontrar o potencial

Vi(r).

Uma das consideracoes importantes para vérias circunstancias é fazer a funcao de
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Figura 100: Exemplos de pseudopotenciais de norma conservada, pseudofungoes e derivadas
logaritimicas para o Mo. A esquerda, embaixo: Vj(r) em Rydbergs para [ = 0,1,2 em com-
paragdo com Zj,y /7 (tracejado). Acima, a esquerda: fungdes de onda radiais para estados de
valéncia resultantes de um célculo incluindo explicitamente todos os elétrons, ¢;(r) = ri;(r),
e pseudofuncoes de norma conservada. Lado direito: derivada logaritmica do pseudopotencial
em comparagao com o calculo atéomico full; os pontos indicam as energias, €, para as quais é
feito ajuste. A derivada com respeito a energia também é correta por causa da condicao de
conservagao da norma [185].
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onda tao suave quanto possivel, o que permite reduzir o nimero de fungoes de base (por
exemplo, o nimero de componentes de Fourier). Os potenciais BHS [370] geralmente sdo
usados como padrao comparativo, mas infelizmente sao “duros”, exigindo mais compo-
nentes de Fourier que outros potenciais. Troullier e Martins [373] estenderam o método de
Kerker usando um polinémio de ordem elevada e ajustando mais derivadas da funcao de
onda, tornando os pseudopotenciais mais suaves. A Fig. 101 mostra uma comparagao de
diferentes pseudopotenciais para o carbono, com as formas tanto no espago real como no
espago reciproco. Os fatores de forma V;(g) entram diretamente nos calculos de ondas pla-
nas e sua extensao no espaco de Fourier determina o niimero de ondas planas necessarias
para que haja convergéncia. Alguns autores propuseram formas de tornar os potenciais
mais suaves para reduzir o tempo de célculo. Uma das abordagens [366, 374] é minimizar

a energia cinética da pseudofungao explicitamente para o raio de caroco escolhido.

5~

—5-

-15

vitr) (Ry)

—25 4

~35 -

q2V(q) (Ry/a?)

Figura 101: Comparagao de pseudopotenciais para o carbono (linha pontilhada para orbital s e
linha sélida para orbital p) no espago real e no espago reciproco, ilustrando as grandes variagoes
nos potenciais de norma conservada que possuem os mesmos desvios de fase para as energias
escolhidas. Da esquerda para a direita, pseudopotenciais gerados usando os procedimentos de:
Troullier e Martins [373]; Kerker [372]; Hamann, Schliiter e Chiang [185]; Vanderbilt [371].
Retirado de Troullier e Martins [373].

Efeitos relativisticos importantes nas regides mais profundas no interior do dtomo,
perto do nicleo, podem ser incorporados aos pseudopotenciais. As conseqiiéncias desses
efeitos (desvios por causa de efeitos relativisticos escalares, interagoes spin-érbita) para
os elétrons de valéncia podem ser facilmente incorporadas aos calculos moleculares ou de

estado sélido. O primeiro passo é a geracao de um pseudopotencial a partir de um célculo
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relativistico para todos os elétrons do dtomo tanto para j = [41/2 como para j =1 —1/2.

A partir dos dois potenciais pode-se definir [370, 375]:

l
Vi = N1 [+ 1)Viap + Vit

2
V0 = A1 [Vigy2 + Viciye] -

(A.238)

Efeitos relativisticos escalares sao incluindos no primeiro termo e efeitos de spin-érbita

sao incluidos em um termo nao-local de curto alcance [376, 377):

VG2 = Vi) 6V (r)L - S (Yiml. (A.239)
lm

Na construcao de pseudopotenciais ab initio existe uma relacao univoca entre a pseu-
dofuncao de valéncia e o pseudopotencial total. E necessario remover a blindagem para
derivar o pseudopotencial do ifon a fim de garantir a transferibilidade. Infelizmente o
processo de remocao da blindagem nao ¢é facil por causa da nao-linearidade do funcional
de troca e correlagao. Corregoes de carogo neste funcional podem aumentar significativa-
mente a capacidade de transferéncia do pseudopotencial, mas ao preco de maior tempo de
processamento. A complicagdo aumenta mais ainda no caso em que o funcional de troca
e correlacao nao ¢ local, como acontece no método de Hartree-Fock a no método EXX.
Em geral, nao ¢é possivel construir um potencial que mantenha a funcao de onda fora do
raio de caroco igual a funcao de onda verdadeira porque efeitos nao-locais se estendem
para r > R, [378].

Kleinman e Bylander [379] (KB) mostraram que ¢ possivel construir um operador

pseudopotencial separavel, ou seja:

SV (r,r') = Z fi(r)gi(x). (A.240)

O efeito do potencial semilocal 6V;(r) pode ser substituido na Eq. (A.236), numa boa
aproximacao, por um operador separavel (5VNL, de modo que o pseudopotencial total fica

na forma:

ooVi(r)) (SVi(r)ps

WES|Vi(r) [UES)y (A.241)

Var = ViocaL(r) + Z W}
Im

onde o segundo termo escrito explicitamente nas coordenadas é dVir(r,r’), que estd na
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forma separdvel desejada. Quando opera sobre os estados atomicos de referéncia ¢,
OVaL(r,r") atua da mesma forma que 6V;(r) e pode ser considerado uma excelente apro-

ximagcao do pseudopotencial sobre os estados de valéncia em uma molécula ou sélido.

As funcoes <5V](7’)¢lpn§} sao operadores de projegao (projetores) que atuam sobre a

funcao de onda:

(Vi) | 0) = [ BV)ets] v (A242)

Os operadores de projecao sao localizados no espago, uma vez que cada operador é
diferente de zero somente dentro do raio de corte R., onde 6Vj(r) ndo se anula. Isto
independe da extensao da fungdo de onda ¥F5(r) = (1) Py, (cos 0) exp(imep), que possui
o tamanho dos orbitais de valéncia ou pode mesmo representar estados nao-ligados. A
vantagem da forma separavel é que elementos da matriz associada a 6V;(r) utilizam apenas

produtos de projetores dados pela Eq. (A.242):

~ <wlm ’ ¢l// //5V” > <(5V// l” " | wl/ />
m| OV /) A.243
<1/Jl | NL |¢l ZNZ l” //‘ (SV//( ) ‘wl// ”> ( )

Pode-se contrastar esta equagao com a Eq. (A.226), que envolve uma integral radial
para cada par de funcoes v, e Yy,,. O que se consegue, portanto, ¢ uma economia
computacional que pode ser importante para sistemas com muitos elétrons. O preco que
se paga ¢ o acréscimo de um passo que pode aumentar o erro dos calculos. Embora a
operacao sobre o estado atomico nao seja modificada, as operagoes sobre outros estados
com energias diferentes pode, e deve-se tomar cuidado para assegurar que nao sejam

introduzidos estados fantasma [380].

Tais estados fantasma surgem quando existem solugoes inesperadas e indesejadas da
equagao pseudosecular. Usualmente, os autovalores fantasmas possuem baixas energias
(entre -30 e -2 Ry), de modo que o estado fundamental resultante é, na verdade, o primeiro
estado excitado. H&a duas formas de checagem para estados fantasma. A primeira é
analizar o grafico do logaritmo da derivada cuidadosamente, pois um estado indesejavel
pode ser revelado com uma ressonancia estreita nas derivadas logaritmicas para o valor da
energia fantasma. Ha sempre o risco, contudo, de nao ser possivel observar tal ressonancia
se a mesma ocorrer em uma escala de energia pequena em comparacao com o AFE usado

para desenhar o grafico, ou mesmo se a energia de ressonancia estiver fora de escala.



406 Anexo A - Fundamentos tedricos

O segundo método é bem mais robusto, e consiste em analisar a solugdo na base
de Bessel. O pseudo-Hamiltoniano é diagonalizado em uma base de funcoes de Bessel
esféricas de um modo que imita a solucao que seria encontrada caso se empregassem
ondas planas. Comparando as energias obtidas com os valores esperados em um célculo

exato, qualquer autovalor de energia extra correspondera a um estado fantasma.

A remocgao desses estados indesejaveis pode ser bem dificil. Por exemplo, o caso mais
comum e problematico é quando existe um estado de semicarogo raso que nao esta sendo
incluido na camada de valéncia. Em tal caso, escolher um tnico operador de projecao
pode nao resultar em boas propriedades de espalhamento, e a escolha de dois projetores
pode produzir estados fantasmas (de fato, o estado fantasma usualmente se encontra
bem perto da energia do estado de semicarogo). A melhor solugao é, portanto, incluir o
estado de semicaroco entre os estados de valéncia, o que infelizmente aumenta o custo de

processamento e memoria em calculos de estado sélido.

Duas abordagens gerais foram propostas para estender o intervalo de energias sobre
os quais os desvios de fase do potencial eletronico original sao descritos. Shirley e cola-
boradores [381] obtiveram expressoes gerais que devem ser satisfeitas para que os desvios
de fase estejam corretos até uma ordem arbitraria em uma expansao em poténcias de
R

(e —&0)" em torno da energia escolhida &g.

A segunda abordagem é mais facil de implementar e é a base para posteriores ge-
neralizacoes que sao consideradas uma promessa para trabalhos futuros sobre estrutura
eletronica. A construcao dos projetores pode ser feita para qualquer energia €, e o pro-
cedimento pode ser generalizado de modo a satisfazer a equagao de Schrodinger para
mais de uma energia dados [, m [355, 356]. Se pseudofungoes 1) sao construidas a partir

de célculos para todos os elétrons com diferentes energias ¢, pode-se formar a matriz
_ [.,PS | PS :
B,y = <w8 | X5 >, onde:

Xso(r) = {es — {—%W + VLOCAL(T’):| zpfs(r)} . (A.244)

Em termos das fungoes:

BYS =[BT xS (A.245)

s/

o operador potencial nao-local generalizado pode ser escrito como:
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5VNL = Z Z ZBSS/

Im

PS\ / qPS
lm

E facil mostrar que cada s é uma solucao de Hiys = €,1s. Com esta modificagao,
o pseudopotencial nao-local separavel pode ser generalizado de modo a concordar com o
calculo feito considerando todos os elétrons dentro de uma acuracia arbitraria sobre um

intervalo de energia desejado.

A.8.3 Pseudopotenciais ultramacios

Um dos objetivos dos pseudopotenciais é criar pseudofuncoes tao suaves quanto pos-
sivel sem perder muita acuracia. Por exemplo, em céalculos de ondas planas as fungoes
de valéncia sao expandidas em componentes de Fourier, e o custo do calculo aumenta
conforme uma poténcia do nimero de componentes necessarias. Logo, uma defini¢ao
adequada de maximizacao da suavidade é minimizar no espaco de Fourier o intervalo
necessario para descrever as propriedades de valéncia dentro de certa precisao. Pseudopo-
tenciais de norma conservada alcancam o objetivo de acuracia, mas as custas de alguma

suavidade.

Uma abordagem diferente conhecida como “pseudopotenciais ultramacios” atinge o
objetivo de calculos acurados por meio de uma transformacao que reformula o problema
em termos de uma fungao suave e uma funcao auxiliar que varia rapidamente em volta de
cada caroco ionico. Embora as equagoes sejam formalmente relacionadas com as equagoes
OPW e a construcao de Phillips-Kleinman-Antoncik da subsecao A.8.1, pseudopotenciais
ultramacios sao uma abordagem pratica para resolver equagoes além da aplicabilidade
dessas metodologias. Daremos énfase aqui em exemplos de estados que apresentam os
maiores desafios para a criacao de pseudofuncoes acuradas e suaves: trata-se dos estados
de valéncia no inicio de uma camada atomica, 1s, 2p, 3d, etc. Para esses estados, a
aproximacao OPW nao possui efeito algum, uma vez que nao existem estados de carocgo
com o mesmo momento angular. Logo as fungoes de onda nao possuem noés e se estendem
para dentro da regiao de caroco. A representacao acurada por pseudofuncoes de norma
conservada requer que elas sejam pelo menos moderadamente mais suaves que as fungoes

exatas.

A transformacao proposta por Blochl [355] e Vanderbilt [356] reescreve o potencial
nio local dado pela Eq. (A.246) em uma forma que envolve uma funcio suave ¢ = r¢ que

nao possui norma conservada (por simplicidade, serdo omitidos aqui os rétulos PS, I,m e
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o). A diferenca na equagao de norma (A.231) em relagao a fungao de norma conservada
¢ = ri é dada por:

R
AQuw = / AQu . (r)dr, (A.247)
0
onde:
AQS,S/(T) = ¢: (T)¢S’ (7‘) - (E:Oa)&s/ (T) (A'248)

Um novo potencial ndo-local que atua sobre ¥y pode ser agora definido como:

SV = "D, 18:) (B, (A.249)
onde:
Dy = Bsy + 5 AQs,. (A.250)

Para cada estado atomico de referéncia s, é facil mostrar que as fungoes suaves ¥y

sao solugoes do problema de autovalor generalizado:

[FI _ 555‘} Be =0, (A.251)
com:
A 1 N
H = —§V2 + Viocar + (SVI\IIJLM, (A.252)
definindo o operador de overlap S:
S=14> AQ.vIB) (Bl (A.253)

)

o qual é diferente de um somente dentro do raio de carogo. Os autovalores e, sao iguais aos
obtidos de modo exato para tantos valores de s quanto se queira. A densidade completa
pode ser construida a partir das fung¢des AQ; ¢ (7), que podem ser substituidas por uma

versao suave da densidade exata.
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A vantagem em se relaxar a condi¢ao de conservacao da norma AQ), ¢ = 0 é que cada

pseudofuncao suave 1y pode ser formada de modo independente, com o tinico vinculo de

ajustar-se ao valor da funcao ¢y para r = R.. Logo, torna-se possivel escolher R. muito

maior do que valores usuais para pseudopotenciais de norma conservada, mantendo ao

mesmo tempo a acurdcia desejada ao acrescentar a fungao auxiliar AQs ¢ (r) e o operador

de overlap S.

Em um calculo que emprega um pseudopotencial ultramacio, as solugoes para as

fungoes suaves ;(r) sdo ortonormalizadas de acordo com:

(Wil S |ib5) = 615,
e a densidade de valéncia é definida por:

ocup.

o) = 3 B ) + 3 40 AQu ),

s,s’

onde:

ocup.

Pow = D (Wi | B} (B | ).

)

A solugao é encontrada minimizando a energia total:

ocup. 1 ) ) -
Bror = 3 (3] { -7+ Wsto + 32 0L 130 (31 6+

8,8’

+Euarrree[pV (1)) + Eun + Exclpy(r)],

Se definirmos o pseudopotencial i6nico sem blindagem através de:

foN _
Viocar, = Viocar — Vaxce,

onde:

Virxe = Viarrree + Vxe,

(A.254)

(A.255)

(A.256)

(A.257)

(A.258)

(A.259)
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D9 =D, , — D¢, (A.260)

além de:

D3¢ :/VHXC(r)AQS,S/<r>dr7 (A.261)

somos levados ao problema de autovalor generalizado:

1 . N
{—§V2 + Viocar + 6Vapt — eis} Y; = 0. (A.262)

Aqui, sVIM ¢é dado através da soma sobre fons da Eq. (A.249). Felizmente, tal
problema de autovalor generalizado nao é muito complicado de se resolver com métodos

iterativos.

A.8.4 Ondas aumentadas projetoras

O método de onda plana aumentada projetora [382, 383, 384] (Projector Augmented
Wave - PAW) é uma abordagem geral para a solu¢ao do problema da estrutura eletronica
que reformula o método OPW, adaptando-o a técnicas modernas para célculos de energia
total, forcas e stresses. Como o método do pseudopotencial ultramacio, introduz opera-
dores de projegao (projetores) e fungoes auxiliares. A abordagem PAW também define
um funcional para a energia total que envolve fungoes auxiliares e usa avancos em algo-
ritmos para a solugao eficiente do problema de autovalor generalizado (Eq. (A.262)). A
diferenca do método PAW ¢é que este conserva a func¢ao de onda para todos os elétrons
de uma forma parecida com a expressao geral OPW dada pela Eq. (A.214). Como a
funcao de onda exata varia rapidamente perto do nticleo, todas as integrais sao calculadas
como uma combinacao de integrais de fungoes suaves que se espalham pelo espago mais
contribuigoes localizadas obtidas via integracao radial sobre esferas muffin-tin, como na

abordagem de onda plana aumentada (Augmented Plane Wave - APW).

Assim como acontece na formulagao OPW, pode-se definir uma parte suave da funcgao
de onda de valéncia 1Y (r) (uma onda plana ou orbital atémico) e uma transformagao
linear ¢V = T4V que relaciona o conjunto de funcoes de valéncia exato ¢ (r) com as

funcoes suaves @’ (r). Supoe-se que a transformacao seja uma identidade exceto para
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uma esfera centrada no nucleo, 7 = 1 + 7;. Para efeito de simplificagao, o indice V
serd omitido (as fungoes v representam estados de valéncia), bem como os indices i, j.
Seguindo a notacao de Dirac, cada funcao suave |¢> pode ser expandida em ondas parciais

m dentro das esferas em torno de cada nucleo de acordo com:

[0) = D cm[tm), (A.263)

com a funcao exata correspondente:

) =T [¢) = m [tm). (A.264)

Logo, a fun¢ao de onda exata em todo o espaco é dada por:

) =) + > cm {[tom) — [¥m)}, (A.265)

que possui a mesma forma das Eq. (A.216). Se se impoe que a transformacao 7 é linear,

entao os coeficientes devem ser dados por uma projecao em cada esfera:

em = {Pm | V), (A.266)

para algum conjunto de operadores de projecao p. Se os operadores de projecao satisfazem

a condicao de dupla ortogonalidade:

<ﬁm | J]m’> = 5m,m/ (A267)

entdo a expansao em torno de um centro ) wm> <]§m ‘ 1@ da funcio suave v é igual &

prépria funcao .

A similaridade entre os operadores de projecao para a forma separavel dos operadores
de pseudopotencial é evidente. Assim como acontece com os pseudopotenciais, existem
muitas escolhas possiveis para os projetores com exemplos dados em [382] de fungoes
suaves para p(r) intimamente relacionadas com os operadores de proje¢ao dos pseudopo-
tenciais. A diferenca em relagao aos pseudopotenciais, no entanto, é que a transformagao

T ainda envolve a funcao de onda incluindo todos os elétrons:
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T=1+Y {[tm) = |thm)} (Bl - (A.268)

Além disso, as expressoes se aplicam igualmente bem aos estados de valéncia e de
caroco, de modo que é possivel derivar resultados exatos aplicando as expressoes para

todos os estados eletronicos.

A forma geral das equagoes PAW pode ser posta em termos da transformacao dada
pela Eq. (A.268). Para qualquer operador Ano problema exato, é possivel introduzir um

operador transformado A que atua sobre a parte suave das funcoes de onda:

A=TIAT = A+ Y |pn) { (Wl Alows) = (Gin| Al o) } B (A.269)

mm/

que é muito similar ao operador de pseudopotencial dado pela Eq. (A.241). E possivel

também adicionar ao lado direito da Eq. (A.269) qualquer operador da forma:

B- Z ’ﬁm> <@Em‘ B |&m’> <pm/‘> (A'270)

mm/

sem mudanga nos valores esperados. Por exemplo, pode-se remover a singularidade cou-
lombiana nuclear das equagoes para a funcao suave, deixando um termo que pode ser

considerado nas equacoes radiais em torno de cada ntcleo.

As expressoes para quantidades fisicas na abordagem PAW seguem das Eqgs. (A.268)

e (A.269). Por exemplo, a densidade eletronica é dada por:

p(x) = 5°(x) + oL (r) — 7 (), (A271)

que pode ser escrita em termos de autoestados ¢ com ocupacgoes f;:
pe(r) = Z Ji ‘@Ei(l‘)ﬁ (A.272)
) = D01 ([ ) () (1) (D | ), (A.273)

P = 3 3 (i | ) 00 1) (1) (D | ). (A.274)
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As duas tultimas expressoes sao localizadas em torno de cada dtomo e as integrais

podem ser resolvidas em coordenadas esféricas.

Em um calculo de pseudopotencial, somente a pseudofuncao de onda é determinada
diretamente. Entretanto, a fungao de onda completa é necessaria para descrever muitas
propriedades fisicas importantes, por exemplo o desvio de Knight e o desvio quimico
medido em experimentos de ressonancia nuclear [385, 386]. Esses exemplos fornecem
dados relevantes do ambiente nuclear e dos estados de valéncia, mas a informacao depende
de modo critico das perturbagoes sobre estados de carogo. Outros experimentos, tais como

fotoemissao e absorcao de niveis de carogo, envolvem diretamente esses estados.

Os métodos OPW e PAW fornecem as fungoes de onda de carogo. E possivel também
reconstruir a funcao de onda de caroco a partir de um célculo de pseudopotencial, ainda
que de modo aproximado. Para cada esquema de geragao de pseudopotenciais ab initio,
¢é possivel formular uma maneira explicita de reconstruir as fungoes de onda completas

dadas a pseudofuncao suave calculada na molécula ou sélido [386, 387].

Indo além dos pseudopotenciais, é possivel definir pseudohamiltonianos, nos quais
a massa varia de modo a se alcancarem as propriedades desejadas para os estados de
valéncia. Como o pseudohamiltoniano é escolhido de modo a representar um caroco
esférico, o operador de pseudo-energia cinética pode admitir massas radiais e tangenciais
varidveis com o raio [388]. Os pseudohamiltonianos usados até agora supéem um potencial

local [388, 389, 390], e nao foi possivel derivar pseudohamiltonianos para aplicagoes gerais.

E possivel também definir pseudopotenciais que descrevem os efeitos de caroco além
da aproximagao de elétrons independentes [364, 391, 392, 393]. Em um primeiro momento,
parece impossivel definir um hamiltoniano somente para elétrons de valéncia, omitindo
os carocos, quando todos os elétrons sao idénticos. No entanto, uma teoria apropriada
pode ser construida baseada no fato de que todas as excitacoes de baixa energia podem ser
mapeadas de modo tinivoco em um problema de valéncia simples. Em esséncia, os elétrons
de valéncia externos podem ser vistos como quase-particulas que sao renormalizadas pela

presenca dos elétrons de carogo [391, 392].

A.8.5 Algumas diretrizes para a geracao de pseudopotenciais

Na geracao de um pseudopotencial para um dado dtomo, a lista de passos a seguir é:

1. Escolher um funcional da densidade adequado.
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2. Escolher quais serao os estados de valéncia e de caroco.

3. Escolher uma configuragao atomica de referéncia.

4. Gerar as fungoes de onda usando um célculo exato (incluindo todos os elétrons).
5. Escolher R,.

6. Decidir se devem ou nao ser incluidas correcoes de caroco.

7. Gerar o pseudopotencial.

8. Verificar se o pseudopotencial é transferivel.

9. Obter a energia de corte que o pseudopotencial impoe para as ondas planas.

10. Verificar a forma separavel do pseudopotencial.

Para o ponto 1, existe um grande nimero de funcionais da densidade implementados.
Muitos foram intensivamente testados, mas é necessario ter alguns cuidados, pois alguns
funcionais da densidade que nunca foram usados podem apresentar erros. Os pseudopo-
tenciais devem ser gerados com o mesmo funcional que serd usado posteriormente nos
calculos. O uso, por exemplo, de funcionais GGA com funcionais LDA pode apresentar
problemas numéricos quando a densidade de carga vai para zero. A correcao GGA de
Becke para o funcional de troca pode divergir quando a densidade eletronica tende a zero,
0 que nao acontece em um atomo livre no qual a densidade se comporta como deveria.
Num pseudoatomo, porém, comportamentos estranhos podem surgir em torno da regiao
de carogo por conta da pequena quantidade de pseudocarga naquela regiao (por vezes
nula, caso nao existam estados s ndo-preenchidos). Como resultados, picos espirios apa-
recem no pseudopotencial nao-blindado perto do ntcleo. Isto nao é bom, mas usualmente
nao causa problemas, porque a regiao afetada é bem pequena. No entanto, em alguns
raros casos podem aparecer problemas de convergéncia. Para evitar tais picos, podem ser
usadas correcoes GGA mais bem comportadas, como PBE, e também correcoes de carogo
(de modo a garantir que exista carga suficiente perto do nicleo), e também a remocao da

correcao pelo gradiente para pequenos valores de 7.

A escolha dos estados de valéncia e de carogo (ponto 2) parece trivial, e na maioria das
vezes € 0 que ocorre: os estados de valéncia sao aqueles que contribuem para a ligacao, e os
estados de carogo sao os que nao contribuem. Ha excegoes a regra, contudo. Por exemplo,
em metais de transigao, cuja configuragio eletronica externa tipica é nd‘(n+1)s/(n+1)p*,
nao fica sempre claro que os estados ns e np podem ser postos no caroco. O problema é que

os estados nd se localizam na mesma regiao que os estados ns e np, a uma profundidade
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maior que a atingida pelos estados (n+1)s e (n+1)p, o que pode tornar o pseudopotencial

intransferivel.

Metais alcalinos pesados (Rb, Cs, e talvez K) possuem um carogo bastante polarizavel.
Pseudopotenciais com apenas um elétron podem nao funcionar apropriadamente (mesmo
com corregao de carogo). Estados 3d no GaAs podem ser postos com seguranga no carogo
(talvez com uma correcao de carogo para o Ga), mas a mesma coisa nao pode ser feita com
o GaN. Para o ZnSe e outros compostos II-VI o estado d do cétion d4 uma contribuicao
significativa para a ligacao. Em todos esses casos, promover os estados de carogo ns
e np mais elevados, ou nd (estados de semicaro¢o) para estados de valéncia pode ser
algo computacionalmente oneroso, mas necessario para garantir a transferibilidade dos

pseudopotenciais.

Pode acontecer também de o mesmo atomo funcionar de modo 6timo sob condicoes
de valéncia natural em um sélido com ligacoes fracas ou metélicas, e funcionar mal com
um tipo diferente de ligagao. Isto ocorre para muitos metais de transicao e muitos metais

nobres.

Note-se que incluindo estados de semicaroco entre os estados de valéncia pode deixar
o pseudopotencial mais “duro”, aumentando o nimero de elétrons e deixando o pseudo-

potencial um pouco pior para situagoes em que esta inclusao nao é necessaria.

A escolha de uma configuragao de referéncia (ponto 3) pode envolver qualquer con-
figuragao razoavel que nao seja muito diferente da configuracao esperada em sélidos ou
moléculas. E recomendavel usar o estado fundamental se nao existir uma boa razao para

proceder de outro modo. Uma lista ilustrativa dessas boas razoes é feita a seguir:

— Usar uma tunica configuracao para todos os momentos angulares. Muitas vezes
estados com momento angular elevado [ ndo sao ligados no atomo (por exemplo, o estado
3d no Si nao é ligado no estado fundamental 3s?3p?, pelo menos na aproximacao LDA).
Em tal caso pode-se escolher entre usar duas configuracoes diferentes [370] ou escolher

uma configuracao simples, mais ionica.

— Os resultados sao sensiveis a configuracao escolhida. Em semicondutores III-V
zincoblenda, o parametro de rede de equilibrio é bastante sensivel a forma do potencial d
do cation (por causa da presenca de acoplamento p — d entre estados anidnicos p e estados
d do cétion [394]). Variando a configuracao de referéncia pode-se mudar o parametro de
rede entre 1 e 2%, o que nao seria um problema (encontra-se ainda dentro da margem

de erro tipica para o método LDA com ondas planas e pseudopotenciais). Infelizmente,
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para propriedades de ligas GaAs/AlAs e super-redes, é necessario forgar o parametro de
rede do GaAs a se ajustar de modo praticamente exato ao parametro de rede do AlAs
(como acontece na realidade), o que causa sérios problemas. A corregao de carogo reduz

parcialmente a dificuldade.

— A configuragao esperada é conhecida para o sistema de interesse e é necessario ser
fiel a ela. Em metais de transicdo, com estados de semicaroco, é provavelmente melhor
escolher uma configuracao razoavel para os estados d e nao usa-la para sistemas com

configuragoes d muito diferentes.

E possivel calcular pseudopotenciais para valores de [ tao grandes quanto se queira,
mas nao é necessario sempre. A regra geral é que se o atomo possui estados até [ = [,
no carogo, é necessario um pseudopotencial com momentos angulares até [ = [. + 1.
Momentos angulares [ > [. + 1 sentirao o mesmo potencial da escolha [ = [, + 1 porque
para todos eles nao existe ortogonalizacao de estados de carogo. Como conseqiiéncia, um
pseudopotencial deve ter projetores sobre momentos angulares até [, e | = [. + 1 deve
ser o estado local de referéncia para calculos de ondas planas. Esta regra nao é rigida
e pode ser relaxada: momentos angulares altos sao raramente importantes. Além disso,
pseudopotenciais separaveis colocam sérias restrigoes sobre o valor de referéncia local de
[ e a escolha ¢é algumas vezes compulséria. Note-se também que quanto maior o [ no

pseudopotencial, mais oneroso serd o calculo de ondas planas.

Uma configuragao completamente vazia (s°p°d’) ou uma configuragao com ntimeros de
ocupagao fracionarios é algo perfeitamente aceitavel, porquanto apesar de ocupagao fra-
ciondrios nao correspondem a um estado fisico, sao um objeto matematico perfeitamente

definido e podem ajudar no refinamento dos célculos.

Na abordagem de Troullier-Martins [373], um pseudopotencial é gerado para cada
l sobre o estado de valéncia com numero quantico principal mais baixo. Se existirem

estados com o mesmo [ e niimero n maior, eles devem estar vazios.

Pseudopotenciais podem em principio ser gerados em uma configuracao com pola-
rizacao de spin, mas o uso comum € uma configuracao sem polarizacao. Como os pseu-
dopotenciais sao construidos de modo a serem transferiveis, eles podem descrever confi-
guragoes com polarizacao de spin tendo o cuidado de lembrar que em tais circunstancias
correcoes de caroco sao quase sempre necessarias. Aplicam-se pseudopotenciais desse tipo
a sistemas magnéticos. O célculo da energia pode ser perturbativo: orbitais espaciais up
e down idénticos, com a energia total calculada usando um funcional com polarizacao de

spin, assumindo a regra de Hund para as ocupacoes. A energia calculada desta forma é



A.8 Pseudopotenciais 417

em geral uma boa aproximacao.

A geragao de resultados exatos (célculo incluindo todos os elétrons, ponto 4) exige
a especificacao do atomo, funcional da densidade e configuragao eletronica de referéncia.
Para atomos pesados, pode ser necessério especificar um grid mais denso no espagco real.
E possivel fazer comparagdes com bases de dados de referéncia (por exemplo, no enderego
eletronico indicado em [395] ha dados obtidos usando o funcional de Vosko-Wilk-Nusair
[289]).

A escolha do raio R, (ponto 5) é muito importante e deve ser guiada pelos seguintes

critérios:

— R, deve ser maior que o raio do n6é mais externo da funcao de onda para qualquer
[ dado

— Um valor de R, tipico é o do pico mais externo, ou mais além, se necessario.
— Quanto maior R., mais macio é o potencial, mas também menos transferivel.

— Muitas vezes existe um valor de [ mais dificil que os demais (em metais de transigao,
o estado d, e em elementos da segunda linha, N, O, F, o estado p). Tal estado deve ser

focalizado e forcado ao valor maximo aceitavel para R..

— Este ponto nao é muito importante, e muitas vezes impossivel de respeitar: deve-se

evitar usar valores de R, muito diferentes para valores distintos de momento angular.

Um valor tipico de maximo de funcao de onda para atomos “duros” é 0.7 ou 0.8
bohrs (em geral, o pico mais externo, mas atomos duros sdao aqueles com estados de
valéncia 2p, 3d, 4f sem ortogonalizacao para estados de carogo com mesmo [ e sem noés).
R. = 0.8 bohr produzira pseudopotenciais extremamente “duros”. Com algum esforco e
experiéncia, pode-se dizer que os elementos da segunda linha, 2p, R, = 1.1 — 1.2 bohr
produzira resultados bons para ondas planas com energia de corte entre 50-70 Rydbergs.
Para metais de transicao 3d, o mesmo R, ird exigir energias de corte superiores a 80
Rydbergs. E o 4tomo mais “duro” que determina a energia de corte das ondas planas em

um soélido ou molécula.

A correcao de carogo (ponto 6) leva em conta, ao menos parcialmente, a nao-linearidade
no potencial de troca e correlacao. Na geracao de um pseudopotencial primeiramente é
produzido um potencial com as pseudofuncoes de onda e pseudo-energias desejadas. Para
separar um pseudopotencial “nu” da parte de blindagem, é necessario remover o poten-

cial de blindagem gerado apenas pelas cargas de valéncia, o que produz um erro porque



418 Anexo A - Fundamentos tedricos

o potencial de troca e correlagao nao é linear com a densidade de carga. Com a corregao
de caroco, é mantida uma carga de caroco suavizada que ¢é adicionada a carga de valéncia
tanto no passo de remogao da blindagem como no momento em que se usa o pseudopo-
tencial. A correcao de caroco é necessaria para haletos alcalinos e para pseudopotenciais
usados em sistemas magnéticos (com polarizacao de spin). Recomenda-se a correcao de
carogo onde quer que exista um grande overlap entre as cargas de valéncia e carogo (metais

de transigao se estados de semicarogo sao mantidos no caroco).

O passo de geracao do pseudopotencial (7) é feito em um programa que exige, tipica-
mente, a funcao de onda exata, o nimero de elétrons de valéncia, se se deseja correcao de
carogo, o numero de estados de valéncia que devem ser usados na geragao (apenas um para
cada momento angular) e o rétulo para cada estado de momento angular (s,p,d, f,...).
Por vezes o programa sugere um valor para R., o qual pode ser modificado. Se existe mais
de um estado com o mesmo valor de [ na camada de valéncia, o pseudopotencial deve ser

construido sobre o estado de menor energia, deixando o de maior energia vazio.

Para checar se o pseudopotencial é transferivel nao ha um critério tinico. Uma maneira
6bvia de averiguar a correcao do pseudopotencial é comparar com resultados exatos para
configuracoes atomicas distintas da configuracao inicial. Uma diferenca de energias da
ordem de 0.001 Rydberg ¢ muito boa, e algo da ordem de 0.01 Rydberg pode ser aceitavel.
E fundamental checar se a pseudofuncao de onda coincide com a funcao de onda atomica
tao acuradamente quanto possivel para r > R.. Outra forma de checagem é comparar
as derivadas logaritmicas das pseudofuncoes e das fungoes exatas em relagao a energia (o
intervalo de energia deve cobrir o intervalo de variacao tipico das energias dos elétrons de
valéncia nas circunstancias em que o pseudopotencial serd utilizado) para um raio r da

ordem do raio ionico ou covalente, e maior que qualquer um dos valores de R, adotados.

A checagem da energia de corte para as ondas planas leva em conta o valor de R, e
a forma da transformada de Fourier V;(¢). Um célculo atomico usando um conjunto de
base de fungoes de Bessel esféricas j;(gr) (o que equivale a projetar as ondas planas sobre

estados com um dado valor de ) pode ser ttil.

A forma separdvel dos pseudopotenciais (10) é bastante conveniente em calculos de
estrutura eletronica, a ndo ser que sejam estudados sistemas extremamente simples (silicio
cristalino, por exemplo). No formalismo KB [379], os pseudopotenciais BHS [370] sao
reescritos como projetores. Uma funcao arbitraria pode ser adicionada a parte local
(independente de [) do pseudopotencial e subtraida para todas as componentes de [.

Geralmente se explora esta arbitrariedade para remover uma componente [ usando-a como
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parte local. Infelizmente a projecao KB pode levar a perda de capacidade de transferéncia
(na maior parte das vezes pequena) ou mesmo ao aparecimento de estados fantasma -
estados com o nimero errado de nés que estao ausentes no atomo exato - que tornam
o pseudopotencial completamente inutil. Na pratica, é necessario explorar a liberdade
na escolha da parte local para evitar estados fantasma. Para calculos de onda plana é
conveniente escolher como parte local o valor de [ mais alto, pois com isto sao removidos

mais projetores (2{ + 1 por dtomo) em comparac¢ao com um valor de [ reduzido.

A.9 Calculos ab initio em sistemas periddicos

Existem basicamente trés abordagens para o calculo de estados eletronicos de particula

independente:

1. Métodos de ondas planas e grids. Como ondas planas sao autofuncoes da equacao
de Schrodinger com potencial constante, elas se tornam uma escolha natural para a des-
cricao de bandas na aproximagao do elétron quase livre. Pseudopotenciais sao usados em
métodos de ondas planas porque permitem céalculos com ntimero reduzido de componentes
de Fourier. Grids no espago real fornecem uma forma alternativa de resolver as equacoes

em sistemas finitos.

2. Orbitais atomicos localizados. Pode-se usar uma base que captura a esséncia das

caracteristicas atomicas em soélidos e moléculas.

3. Métodos de esfera atomica. Sao os métodos mais gerais para solucao precisa da
equacao de Kohn-Sham. A idéia basica é dividir o problema de estrutura eletronica,
com uma representacao eficiente das caracteristicas atomicas que variam rapidamente
perto de cada nucleo, e do comportamento suave das fungoes de onda entre os atomos.
As funcoes de onda podem ser aumentadas perto de cada nicleo resolvendo a equagao de
Schrodinger na esfera para cada energia e ajustando a fungao de onda externa. Os métodos
APW (Augmented Planewave) e KKR [396, 397] (Korringa-Kohn-Rostocker) sdo muito
poderosos, mas exigem a solugado de equagoes nao-lineares. Os métodos L (Linearized
Augmented Planewave - LAPW, Linearized Muffin Tin Orbital - LMTO) fazem uso da
linearizacao das equagOes em torno de energias de referéncia, o que permite a escrita
dos métodos aumentados na forma de uma equagao secular linear na energia envolvendo
um hamiltoniano e uma matriz de overlap. Esta simplificacao levou a novos avancos,
por exemplo, o desenvolvimento de métodos de potencial completos, fazendo do método

LAPW o mais preciso atualmente para a obtencao de solugoes da equacao de Kohn-Sham.
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A equacgao de Schrodinger para um elétron que se move sob a acao de um potencial
efetivo Ve(r) é:
-
—§V + Ver(r) — &5 | i(r) = 0. (A.275)

Para um sélido (ou qualquer estado de matéria condensada), é conveniente impor que
os estados sejam normalizados e obedecam condicoes de contorno periddicas dentro de
um volume grande €2 o qual pode tender a infinito. Como fungoes periddicas podem ser

expandidas em componentes de Fourier, temos:

1 .
Yi(r) = 7o zq: Ciqexp(iq-T) = zq: CiqlQ), (A.276)

onde os ¢; 4 sao coeficientes de expansao da funcao de onda na base ortonormal de ondas

planas:

Wl =g [elita=a) rd = (A7)

Substituindo (A.276) na Eq. (A.275), multiplicando & esquerda por (q'| e integrando
como na Eq. (A.277), temos:

(d| {—%VQ + Ver(r) — 81} Z Ciqld) =
= Z (d] {—%VQ + Ver(r) — 51‘] Cig Q) = (A.278)

1
~Y e {—— (| 7 \q>} + 3 i (] Varlr) fa) = 3 i o @) = 0.
qa : q d Saaf

q,

Mas:

(d|V?|q) =

el

/exp [—iq -] V?exp [iq - 1] dr, (A.279)
Q



A.9 Calculos ab initio em sistemas periddicos

421

VZexpliq-r] =V -Vexpliq-r] =V -iqexp[iq-r] =iq- Vexpliq 1] =

=iq-iqexpliq-r] = —¢*exp[iq - 1].

Logo:

(d|V?a) = —¢*(d' | @) = —¢°0qq-

Donde:

> i { {%2 - 51} dqq + (d'] Ver(r) Iq>} = 0.

q

(A.280)

(A.281)

(A.282)

Para um cristal, o potencial Vi(r) é periddico e pode ser expresso como uma soma de

componentes de Fourier:

- S VG expliGa -]

onde os G, sdo vetores da rede reciproca. Ve(G) é dado por:

VA(G) = QLCP V() exp [—iG - 1] dr.

Qcp

Temos, entao:

(d| Ver(r (d] Z Ver(Gi) exp [1Gr - 1] |q) =

= Vel G (| exp [iGr - 1] [ ).

Mas:

2l =

(d|exp [iGy, - 1] |q) =
Q

/exp[ (Gm+a—d) r]dr =dg,, q—q-

(A.283)

(A.284)

(A.285)

(A.286)
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(d| Veg(x ZV;f w)0G o (A.287)

Por fim, a equacao de Schrodinger se transforma em:

chq{[ 51] w +Zvef m)0G o q}zo. (A.288)

Se definirmos q = k + G,,,,d' = k + G, (0s quais diferem por um vetor da rede

reciproca), teremos:

S

k+G
—) ai] Scnmc,, T Vef(Gmu)(SGm,/,Gm,Gm} =0. (A.289)

m/’

Simplificando e separando os somatdérios:

DI

k+G
+—) 5i] 6Gm,Gm/ -+ ‘/Qf(Gm/ — Gm>} =0. (A290)

A Eq. (A.290) é verdadeira se, considerando um valor fixo de mathbfk, tivermos:

E Cik,m/
m/

Ou ainda, lancando o termo na energia para o segundo membro:

2
% — Ei] 6m,m’ + %f(Gm/ — Gm)} =0. (A291)

k )?
S o {%m V(G — Gm>} - (A.292)

m/

Definindo a matriz H,,/ ,(k):

(k+ G, )

(&) = (K + G| He [k + Gin) = =

St + Vet(Gor — G, (A.293)

temos a equacao de Schrodinger no espago reciproco:
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Z Cik,m/ Hm’,TrL(k) = Cik,mgi(k)' (A294)

m/

Os autovalores e autofuncoes sao indicados pelos indices de banda 7 e pelo vetor k.
Resolvendo a Eq. (A.294) e usando o teorema de Bloch (subsecao A.7.1), a estrutura

eletronica do cristal pode ser calculada.

Um conceito importante na andlise de Fourier de cristais é a divisao em fatores de
estrutura e fatores de forma. Para manter a generalidade, consideremos um cristal com-
posto de diferentes tipos de atomos indicados por k = 1,2,...,n, e para cada x existem
n" dtomos idénticos nas posicoes dadas pelos vetores t, ;, com j = 1,2,...,n" na célula
unitaria. Qualquer propriedade do cristal como, por exemplo, o potencial, pode ser escrita

CO1mo.

V) =) > > V-t —T), (A.295)

onde T indica o conjunto de vetores de translacao. E facil mostrar que a transformada

de Fourier do potencial pode ser escrita como:

1

Qcp
Qcp

V(G)

Vi) exp [iG - rdr = 3 2 §5(G)VH(G), (A.296)

— Qcp
onde o fator de estrutura para cada tipo de atomo x é dado por:

Nk

SHG) =) expiG - o), (A.297)
j=1
e o fator de forma:
1
V@) = o / V% (x) exp [iG - 1] dr. (A.208)
TODO O
ESPACO

Os fatores nas Egs. (A.296) a (A.297) foram escolhidos de modo que V* (|G]) é
definido em termos de um volume tipico 2% para cada espécie de atomo k, de modo
que V" (|G|) é independente do cristal. Além disso, o fator de estrutura é definido de
modo que S*(G = 0) = n”. Todas estas escolhas sao arbitrdrias mas convenientes. A

Eq. (A.296) é particularmente 1til em casos onde o potencial é uma soma de potenciais
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esféricos no espaco real:

VE(r —to; —T) = V*(Jr — t,; — T|). (A.299)

Isto sempre se aplica a potenciais nucleares e pseudopotenciais ionicos sem blindagem.
Muitas vezes também é razoavel considerar que o potencial total do cristal é uma soma
de potenciais esféricos em torno de cada nicleo. Usando a expansao de ondas planas em

harmonicos esféricos, a Eq. (A.298) pode ser escrita como [398, 399, 400]:

o0

/r2j0 (|IG|r) V=(r)dr. (A.300)

0

4

Q-

VAG) = V*(IG]) =

Para um potencial nuclear, temos:

K 4 — 25
fia (61 = R0, 6 40

= 0, G=0. (A.301)

onde o termo divergente G = 0 é tratado separadamente. Para um pseudopotencial sem
blindagem, o fator de forma do potencial (Eq. (A.300)) é a transformada do pseudo-
potencial Vj(r), e novamente o termo G = 0 precisa ser considerado com cuidado. Um
procedimento é calcular o potencial e a energia total de ions pontuais de carga Z* em um
fundo de carga para balanceamento que representa a componente G = 0 da densidade
eletronica. Neste caso, existe uma contribuicao adicional que surge do fato de que o fon

nao é uma carga puntiforme [401]:

af = / 4 [V;OCAL(r) - <—£)} dr. (A.302)

Cada ion contribui com um termo constante na energia total que é igual a (N, /Q)a”,

onde N,/ é a densidade eletronica média.

A generalizacao da Eq. (A.296) para pseudopotenciais nao locais Vi (r, r') é obtida de
modo direto. Para cada k e vetores de base G,,, ¢ G,/ é conveniente definir K,, = k+G,,
e K, = k+G,,. O fator de estrutura S(G) ainda depende apenas de G = K,,, — K, =
G,, — G,,/, mas os elementos da matriz do fator de forma semilocal sao mais complicados,

uma vez que dependem de dois argumentos. Usando o fato de que o operador de simetria
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nao-local possui simetria esférica, é possivel escrevé-lo em termos dos médulos |K,,| , | K|

e do angulo € entre K, e K,/

4 o0
VR (Ko K) = o0 S (204 )P (cos ) / P2, (Kol 7) 1 (1Ko 1) SV (). (A.303)
! 0

Esta formula tem a desvantagem de precisar ser calculada para cada combinacao de
|K..|, |K.| e 8. Para resolver computacionalmente o problema, é necessario discretizar

esta funcao em um grid e interpolar.

A forma separdvel de Kleinman-Bylander (ver Eq. (A.241)) é mais simples porque
¢ uma soma de produtos de transformadas de Fourier. Cada transformada de Fourier é
uma fun¢do unidimensional de |K,,| (e a mesma fungao de |K,,|), o que torna o proces-
samento mais rapido. A forma no espaco reciproco é semelhante a forma no espacgo real
[379, 399](aqui usamos a notac¢ao m; para indicar o nimero quantico azimutal, evitando

confusao com o indice m das fungdes de base G, ):

. Vit (o) T ([Ko) X T3 (1K) Yin, (Ko)
(Ko o) = 3= (Vs oV !lwl 5) l |

Imy

(A.304)

onde T;(q) é a transformada de Fourier da fungao radial ¢)FS(r)dV;(r). A simplicidade desta
forma tornou-a amplamente usada em calculos reais e facilita a extensao para potenciais

ultramacios que envolvem projetores adicionais.

Fundamental para a aplicacao da teoria do funcional da densidade a sistemas periédicos

¢ a densidade eletronica por célula unitaria, dada por:

0= Ny /G0N (.305)

que é uma média tomada sobre os pontos k. i indica a banda para cada valor de k e f(¢)

é a funcao de Fermi:

fle) = ————, (A.306)
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pE(r) = [ix(r) [ (A.307)

Para uma base de ondas planas, usando o teorema de Bloch, temos:

Pix(r =0 Z Ci m(K)Cii (k) exp [i(G — Giypy) - 1], (A.308)
c:
1 *
Pin(G) =5 > ¢ (K)cime(k), (A.309)

onde m” indica o vetor G para o qual:

G = G+ G. (A.310)

As N, operagoes de simetria (denotadas por R,) do cristal podem ser usadas para

encontrar a densidade tomando pontos k apenas na zona de Brillouin irredutivel (ZBI):

ZBI

F0) = o, ) = 303 w3 R +ta)
ki
(A.311)
1 ZBI
P°(G) = N Zexp [iR,G - t,) Zwka (ei(k))pS (R, G). (A.312)

an

O fator de fase devido ao movimento de translagao, exp [iR,,G - t,], decorre da Eq.
(A.308).

Apesar de simples, a Eq. (A.309) nao é a forma mais eficiente de calcular a densidade
eletronica p(r) ou p°(G). Encontrar todas as componentes de Fourier usando a Eq.
(A.309) envolve um duplo somatério, ou seja, uma convolugao no espago de Fourier que
requer N2 operagoes, onde Ng é o niimero de vetores G necessdrios para descrever a
densidade. Para sistemas grandes, o custo computacional é elevado. Por outro lado, se os

estados de Bloch sao conhecidos em um g¢rid de Ni pontos no espago real, a densidade



A.9 Calculos ab initio em sistemas periédicos 427

Figura 102: Célculo da densidade eletronica usando transformadas de Fourier e grids. A notagao
{G} e {R} denota os conjuntos de N G vetores e N R pontos de grid. Como o custo computaci-
onal da transformada de Fourier rédpida (FFT) cresce com NlogN, o algoritmo é mais rapido que
o duplo somatério necessario para calcular p°{G} (o qual aumenta com N?). Como vantagem
adicional, o resultado ¢é obtido tanto no espaco real como no reciproco, o que é importante para
o céalculo dos termos de Hartree e de troca e correlagao.
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pode ser determinada simplesmente tomando os quadrados das amplitudes de cada ponto,
em Ny operagoes. O truque é usar uma transformada de Fourier rapida (Fast Fourier
Transform - FFT) que permite mudar de espaco em NlogN operagoes, onde N = N =
Ng. O diagrama (Fig. 102) ilustra o algoritmo. Uma vantagem é que p®(r) é necessario
para encontrar a energia e o potencial de troca e correlacao. A transformada inversa pode
ser usada para calcular p°(G), que pode ser usada para resolver a equagao de Poisson no

espaco de Fourier.

E importante notar que a densidade p® requer componentes de Fourier que se estendem
por uma distancia duas vezes maior que a necessaria para a funcao de onda i porque
p° \1/1|2. A transformada de Fourier rapida precisa de um grid regular na forma de
um paralelepipedo, enquanto a energia de corte para a funcao de onda é geralmente uma
esfera com (1/2)(k + G)*> < Ecorre. Logo, o nimero de pontos no grid FFT para a
densidade N = N = Ng é aproximadamente uma ordem de magnitude maior que o
ntimero NE© de vetores G na base para as fungoes de onda. Apesar disso, a abordagem
FFT é muito mais eficiente para sistemas grandes uma vez que o numero de operagoes

cresce com NlogN.

Como as equagoes de Kohn-Sham sao um conjunto de equacoes diferenciais de segunda
ordem acopladas, é natural procurar usar métodos como diferencas finitas, elementos
finitos, multigrids, ondeletas ou outras abordagens comuns para problemas similares. De
fato, tais métodos sao usados para o estudo de pontos quanticos em semicondutores e estao
sendo desenvolvidos para outras areas de estrutura eletronica. Em um recente artigo de

revisdo [402], Becke analisa vérias dessas opgoes.

A expressao variacional para a energia de Kohn-Sham em termos de fungoes de onda

e densidade eletronica é dada por [398, 399, 401, 403]:

!

1 1
Eror[p®(r)] = m Zwk,i {Z C;m(k) {5 |Km|2 Omm' + VEXT (Ko, Km’):| Ci,m’(k>}+

k,i m,m
e (G Ne
+ ZG: exc(G)p*(G) + 27 (;Z;so o2 + YEWALD + ; U |

(A.313)

Como Erot € a energia total por célula, a média sobre k e sobre as bandas é a mesma
usada para a densidade na Eq. (A.305). As somas também podem ser restringidas a zona

de Brilloin irredutivel. Os termos de potencial envolvem K,,, = k+ G,,,. O termo em exc¢
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¢ a energia de troca e correlagao total. Os trés tltimos termos serao considerados logo

adiante.

O tratamento correto dos termos coulombianos é obtido separando de modo consis-
tente as componentes em G = 0 no potencial e na energia total. O termo de Hartree na
Eq. (A.313) é a interacdo coulombiana dos elétrons consigo mesmos excluindo o termo
divergente devido a densidade média eletronica. Similarmente, a componente de Fourier
G = 0 do potencial local é definida como sendo igual a zero em (A.313). Ambos os termos
sao incluidos no termo de Ewald, ygwarp, que é a energia dos fons puntiformes em um
fundo compensador, ou seja, este termo inclui os termos de interagao ion-ion bem como as
interacoes da densidade média eletronica com os fons e consigo mesma. Somente combi-
nando os termos juntos a expressao é bem definida. O termo final é uma contribuicao que
vem da parte nao-coulombiana do pseudopotencial local, e N,/ é a densidade eletronica
média.

Pode-se definir um funcional:

Brorlp'(0)] = 53 2 wesK) + 3 xcl @) ~ Viel @) H(G)+
- © N (A.314)
e

onde todos os termos envolvem a densidade eletronica de entrada pf, . Esta expressao nao

e 2
YEWALD — 27 Z %
G#0

¢ variacional mas sim um ponto de sela em torno da solucao consistente pf, = p¢ .. Ela é
muito 1til porque muitas vezes converge mais rapido para a energia consistente final de
modo que se torna bastante util a cada passo do céalculo autoconsistente. Além disso, é o

ponto de partida para aproximagoes tteis [404, 405, 406, 407, 408|.

A forga sobre qualquer dtomo F% pode ser obtida pelo teorema de Hellmann-Feynman

usando componentes de Fourier:

OF 0 . : K e
Fi = Tot.. ngvA,LD -t Z G exp [iGo, - b ] Viocar (Gm) p°(Gm)+
H?] K?] m

[ « . K
AT ; wiiei(k) m; ¢t (1) K 3D (K ] OVEL, (Ko Kor)] €500 (K).
(A.315)

Aqui o pseudopotencial externo foi separado na parte local, que contém os termos de
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longo alcange, e no operador nao-local de curto alcance 0Vifxp (K, Ky, com Ko, =
K, — K, .

A.10 Calculo de propriedades épticas em cristais

Em geral, a diferenga na propagacao de uma onda eletromagnética através do vacuo

e através de um meio material pode ser descrita por um indice de refracao complexo N:

N =n + ik. (A.316)

No vacuo, N é real e igual a 1. Para materiais transparentes tal indice é real, sendo

a parte imagindria relacionada ao coeficiente de absorcao através de:

a(w) = 2kw/c. (A.317)

O coeficiente de absorcao indica a fragdo de energia perdida pela onda quando esta
passa através de uma unidade de espessura do material. Ela é derivada levando em conta

a taxa de producao de calor na amostra.

O coeficiente de reflexao pode ser obtido para o caso simples de incidéncia normal

sobre uma superficie plana igualando os campos elétrico e magnético na superficie:

2
(n—1)%+ k?

1-N
1+ N

No entanto, ao se efetuar calculos de propriedades opticas é comum calcular a cons-
tante dielétrica complexa e expressar outras propriedades em termos desta constante. A

constante dielétrica complexa (w) é dada por:

£ =g, +igy = N2 (A.319)

Logo, a relagao entre as partes real e imaginéria do indice de refracao com a constante

dielétrica é:

g1 = n? — k?sy = 2nk. (A.320)
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Outra quantidade usada muitas vezes para expressar as propriedades Opticas é a

condutividade 6ptica, o(w), dada por:

. LW
o =01+ 109 = —zﬂ(s —1). (A.321)

A condutividade Optica é usualmente empregada na caracterizacao de metais. A
principal diferenca entre a condutividade de metais e a condutividade de isolantes e se-
micondutores é que transicoes intrabanda desempenham um papel importante na regiao
infravermelha do espectro éptico de metais (tais transi¢oes nao sao consideradas pelo

pacote CASTEP, usado na presente tese para efetuar tais célculos).

Uma propriedade adicional que pode ser obtida a partir da constante dielétrica com-
plexa é a funcao perda de energia. Tal funcao descreve a energia perdida por um elétron

que passa através de um meio dielétrico homogéneo, e é dada por:

L(w) =Im (—L) . (A.322)

e(w)

Experimentalmente, os parametros 6pticos mais acessiveis sao os coeficientes de ab-
sorgao, a(w), e reflexdo, R(w). Em principio, dado o conhecimento de ambos, as partes
real e imaginaria de N podem ser determinadas. No entanto, na prética, os experimentos
sao mais complicados que a situagao de incidéncia normal subjacente a todas as equagoes
apresentadas até aqui. Efeitos de polarizacao devem ser incluidos, e a geometria da amos-
tra pode se tornar bastante complicada (por exemplo, a transmissao através de filmes de

vérias camadas com incidéncia num angulo arbitréario).

A interacao de um féton com os elétrons no sistema é descrita através de perturbagoes
dependentes do tempo do estado fundamental eletronico. Transicoes entre estados ocu-
pados e virtuais sao causadas pelo campo elétrico do féton (o efeito do campo magnético
é menor por um fator v/c). Quando essas excitagoes sdo coletivas, sdo conhecidas como
plasmons (os quais s@o mais facilmente observados quando da passagem de um elétron
rapido através do sistema ao invés de um foton, técnica conhecida como espectrosco-
pia de perda de energia eletronica, Electron Energy Loss Spectroscopy - EELS), uma vez
que fétons transversais nao sao capazes de excitar plasmons longitudinais). Quando as
transicoes sao independentes, sao conhecidas como excitagoes de particula simples. Os
espectros resultantes dessas excitagoes podem ser vistos como uma espécie de densidade
de estados entre as bandas de valéncia e conducao, ponderado pelos elementos de matriz

apropriados (introduzindo regras de selegao).
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A parte imaginaria da constante dielétrica é dada por:

2

i) = o Skl x I OB — By, (4323

k,v,c

onde €2 é o volume da célula unitaria, @1 é o vetor que define a polarizagao do campo elétrico
incidente, e os indices v e ¢ denotam estados de valéncia e conducao, respectivamente.
Tal expressao é parecida com a regra de ouro de Fermi para perturbacoes dependentes
do tempo, e ey(hiw) pode ser interpretado como um detalhamento das transi¢oes entre
estados ocupados e virtuais. Uma vez que a constante dielétrica descreve uma resposta
causal, as partes real e imaginaria estao conectadas através de uma transformacao de

Kramers-Kronig:

T w2 — w2

er(w) = 2 / weal) b (A.324)

0

Tal equacao permite obter a parte real da funcao dielétrica a partir da parte ima-
ginaria.

Os elementos da matriz envolvendo o operador posi¢ao que aparece na Eq. (A.323)
podem normalmente ser escritos como elementos de uma matriz associada ao operador
momentum, permitindo o calculo direto no espaco reciproco. No entanto, isto depende do
uso de potenciais locais [409] (o que é um problema para o software CASTEP, que emprega
potenciais nao locais na maior parte dos casos). A forma corrigida para o elemento da
matriz é dada por:

(& v 1 (& v 1 (& v
(el T |) = o (il P ) + " (Vi Ve [¢hy) - (A.325)
Pseudopotenciais ultramacios produzem uma contribuicao adicional aos elementos da

matriz optica.

A contribuicao intrabanda para as propriedades Opticas afeta principalmente a parte
infravermelha do espectro. Ela pode ser descrita de modo suficientemente acurado através

de um termo de Drude empirico incluido na condutividade optica:

o
O'D(u)) = ﬁ7 (A326)
D
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onde a condutividade DC o( e o amortecimento de Drude 7 dependem de muitos de-
talhes do material e sao usualmente obtidos experimentalmente. Combinando as Egs.
(4.12) e (4.7), é possivel derivar a contribui¢ao de Drude para a funcao dielétrica e con-
seqiientemente todas as demais constantes épticas. O amortecimento de Drude descreve o
alargamento do espectro devido a efeitos nao incluidos nos calculos. Exemplos de proces-
sos que contribuem para esse alargamento sao espalhamentos elétron-elétron (incluindo
processos de Auger), espalhamento elétron-fonon e espalhamento elétrons por defeitos.
Esta ultima contribuicao é usualmente a mais relevante. Conseqlientemente, uma deter-
minacao a priori do alargamento exige conhecimento das concentracoes e tipos de defeitos

presentes na amostra estudada.

Para materiais que nao apresentam simetria ciibica completa, as propriedades épticas
apresentarao alguma anisotropia, a qual pode ser incluida nos calculos levando em con-
sideracao a polarizacao da radiacao eletromagnética. Como ja foi mencionado, o vetor
unitario 0 define a direcao de polarizacao do campo elétrico. Ao calcular a constante

dielétrica, podem ser consideradas trés opgoes:

1. Radiagao incidente polarizada: requer um vetor para definir a direcao do campo

elétrico para a luz incidindo perpendicularmente ao cristal.

2. Radiacao nao polarizada: requer um vetor para definir a direcado de propagacao
da luz incidente em relagao a normal da superficie cristalina. O vetor campo elétrico é

tomado como uma média sobre o plano perpendicular a esta direcao.

3. Amostra policristalina (policristal): nenhuma dire¢ao precisa ser especificada. O

campo elétrico é tomado como uma média totalmente isotrépica.

O nivel de aproximagao utilizado aqui nao leva em conta quaisquer efeitos de campo
local. Estes efeitos resultam do fato de o campo elétrico sentido em um dado ponto
do sistema estudado ser parcialmente blindado pela polarizabilidade do préprio sistema.
Logo, o campo local é diferente do campo externo aplicado (ou seja, o campo elétrico
fotonico). Isto pode afetar de modo significativo os espectros calculados, mas exige um

custo computacional muito alto para a maioria dos sistemas no presente.

Para calcular quaisquer propriedades espectrais, é necessario identificar os autovalores
de Kohn-Sham com as energias de quase-particulas. Embora nao exista nenhuma conexao
formal entre as duas coisas, as semelhancas entre a equacao do tipo Schrédinger para as
quase-particulas e as equacoes de Kohn-Sham permitem que as duas sejam identificadas.

Para semicondutores, foi demonstrado computacionalmente (comparando estruturas de
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banda DFT e GW) que a maior parte da diferenga entre os autovalores de Kohn-Sham e
as verdadeiras energias de excitagao pode ser corrigida através de um deslocamento rigido
da banda de condugdo para cima em relacao a banda de valéncia [410]. Isto é atribuido
a descontinuidade do potencial de troca e correlacao quando o sistema passa de N, para
N, + 1 elétrons durante o processo de excitacao. E possivel ocorrer, em alguns sistemas,
significativa dispersao desse desvio ao longo da zona de Brillouin, e o deslocamento rigido

pode ser insuficiente.

Juntamente com a auséncia de efeitos de campo local, efeitos excitonicos nao sao
tratados pelo programa CASTEP, o que é de particular importancia em cristais ionicos

(como o cloreto de sédio, por exemplo), nos quais tais efeitos sdo bem conhecidos.
Outras limitacoes do pacote sao:

— A natureza nao-local dos funcionais de troca e correlagio GGA nao é levada em
conta no calculo dos elementos de matriz, mas espera-se que isto tenha um pequeno efeito

sobre os espectros calculados.
— Fonons e seus efeitos 6pticos sao negligenciados.

— Existe um erro intrinseco nos elementos de matriz para transicao éptica devida ao
fato de pseudofuncoes de onda serem utilizadas (ou seja, elas se desviam do comporta-
mento da verdadeira funcao de onda no carogo). No entanto, as regras de sele¢do nao

serao modificadas na transicao entre pseudofuncoes e fungoes reais.

A.11 Sumario

No presente anexo foram apresentados os fundamentos tedricos para o estudo de siste-
mas com muitos elétrons (moléculas, cristais) na aproximagao de elétrons independentes.
Primeiramente foi vista a aproximacao de Hartree-Fock para o calculo da energia total em
moléculas usando fungoes de base gaussianas e com énfase em sistemas de camada fechada.
Vérias defini¢bes basicas de quimica quantica foram apresentadas (orbitais moleculares,
hibridizacao de orbitais, orbitais HOMO e LUMO, andlises populacionais), bem como bre-
ves resumos sobre o calculo de propriedades vibracionais e termodinamicas, fluorescéncia,
fosforescéncia e espectros Raman e infravermelho. Extensoes do método de Hartree-Fock
visando a inclusao de efeitos de correlagao eletronica (interagao de configuragao, teoria da

perturbagao, métodos coupled-cluster) foram sucintamente expostas.

Prosseguindo, foi efetuada uma apresentacao da teoria do funcional da densidade,
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precedida de uma demonstragao simples do teorema de Hellmann-Feynman. Os teoremas
de Hohenberg-Kohn foram provados e o método de Kohn-Sham para a realizagao de
calculos DFT introduzido. Vérias aproximacoes para o funcional de troca e correlagao
foram vistas: a aproximacao de densidade local, LDA, a aproximagcao de densidade de spin
local (LSDA), funcionais corrigidos pelo gradiente (GGA) e funcionais hibridos. Teceram-
se comentarios sobre a inclusao de efeitos relativisticos em moléculas e efeitos de solvatacao

na abordagem de Onsager.

Seguiu-se uma breve revisao de conceitos basicos sobre estruturas cristalinas e o teo-
rema de Bloch, métodos de integracao sobre a zona de Brillouin e a defini¢ao e o calculo
da densidade de estados (DOS). Uma introdugao aos pseudopotenciais e suas normas de
geracao e uso também foi realizada. Por fim, uma sintese sobre como sao feitos célculos

ab initio em sistemas periddicos encerra o anexo.
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O sistema de unidades atomicas baseia-se no sistema gaussiano e usa a massa do

elétron, m,, como unidade de massa. A unidade de carga é a carga do proéton, e e a

unidade de momento angular é h. Nao se deve confundir a unidade de massa do sistema

de unidades atomicas com a unidade de massa atomica (1/12 da massa do dtomo de '2C).

A unidade de comprimento é igual ao raio de Bohr, ag e a unidade de energia é o hartree,

que equivale a —1/2 da energia do d4tomo de hidrogénio do estado fundamental, Ef' (—1

vezes esta energia fornece outra unidade, o Rydberg: Ry). A tabela a seguir apresenta

alguns fatores de conversao do sistema de unidades atomicas para o sistema internacional.

Quantidade fisica Fator de conversao Valor no SI
Comprimento a, 5.2918 x 10" m
Massa m, 9.1095 x 107" kg
Carga e 1.6022x 10" C
Energia —2E{? 4.3598 x 107"% J
Momento angular h 1.0546 x 107* J.s
Momento de dipolo elétrico ed, 8.4784 x 10°°° C.m
Polarizabilidade —ZQQG{?E{I}{ 1.6488 x 107" ¢*.m".J"
Campo elétrico —ZE{?Q_la{II 5.1423x 10" V.m"”
Fungao de onda a,”? 2.5978 x 10" m "2

Tabela 73: Conversao de unidades atomicas para o SI.

Alguns fatores adicionais: uma unidade de comprimento é igual a 0.52918 A. Uma

unidade atomica de momento de dipolo é igual a 2.5418 Debyes (D) e uma unidade atomica
de energia é igual a 27.21138 eV, ou 627.5095 kcal/mol. A unidade atomica de tempo é
igual a 2.418884 x 10717 s.

A Eq. de Schrodinger (dependente do tempo) mais simples para o atomo de hi-

drogénio, que no SI é dada por:
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h? e? oV
—— VU — U = ih—
2me, 4degr BT
passa a ser escrita como:
1 1 ov
— VA — S0 =,
2 r ! ot

Note-se que ﬁ = 1 hartree.bohr/ (carga protonica)”.

(1)

Para finalizar, temos uma pequena tabela com fatores de conversao para energia:

J -1

cm Hz K

eV

hartree

5.034117 x 10%* | 1.509190 x 10** | 7.242963 x 107

6.241509 x 10"

2.293713 x 10"

cm 1.986446 x 10 1 2.997925x 100 | 1.438775

1.239842 x 10™

4556335 x 10

Hz | 6.626069 x 10> 3.335641 x 10" 1 4.799237 x 10"

4.135667 x 10°"°

1.519830 x 10°'®

K 1.380651 x 1072 | 6.950356 x 10" | 2.083664 x 10'"° 1

8.617343x 107

3.166815 x 10°®

eV | 1.602177x 10" | 8.065544 x 10°

2.417989 x 10" | 1.160451 x 10°

1

3.674932 x 102

hartree | 4 359744 x 10"

2.194746 x 10° | 6.579684 x 10"° | 3.157747 x 10°

2.721138 x 10'

1

Tabela 74: Fatores de conversao para energia.




