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Júnior, e o vice-coordenador, Professor Doutor Josué Mendes Filho.
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“Ne la profonda e chiara sussistenza \ de l’alto lume parvermi tre giri

\ di tre colori e d’una contenenza;

e l’un da l’altro come iri da iri \ parea reflesso, e ’l terzo parea foco

\ che quinci e quindi igualmente si spiri.

Oh quanto è corto il dire e come fioco \ al mio concetto! e questo, a quel ch’i’ vidi,

\ è tanto, che non basta a dicer ‘poco’.

O luce etterna che sola in te sidi, \ sola t’intendi, e da te intelletta

\ e intendente te ami e arridi!

Quella circulazion che s̀ı concetta \ pareva in te come lume reflesso,

\ da li occhi miei alquanto circunspetta,

dentro da sé, del suo colore stesso, \ mi parve pinta de la nostra effige:

\ per che ’l mio viso in lei tutto era messo.

Qual è ’l geomètra che tutto s’affige \ per misurar lo cerchio, e non ritrova,

\ pensando, quel principio ond’ elli indige,

tal era io a quella vista nova: \ veder voleva come si convenne

\ l’imago al cerchio e come vi s’indova;

ma non eran da ciò le proprie penne: \ se non che la mia mente fu percossa

\ da un fulgore in che sua voglia venne.

A l’alta fantasia qui mancò possa; \ ma già volgeva il mio disio e ’l velle,

\ s̀ı come rota ch’igualmente è mossa,

l’amor che move il sole e l’altre stelle.”

Paradiso XXXIII, 145, Dante Alighieri

“Qu’est-ce que cela fait? Tout est grâce”

Journal d’un curé de campagne, Georges Bernanos



Resumo

São apresentados aqui cálculos de primeiros prinćıpios realizados para a obtenção de
propriedades ópticas e eletrônicas da molécula e do cristal de L-alanina. No caso da
molécula, foi efetuada a otimização da geometria para três conformações e usando três
métodos diferentes: aproximação de Hartree-Fock na base 6-31++G(d,p), aproximação
de Hartree-Fock na base 6-311++G(3d,3p) e teoria do funcional da densidade (funcional
de troca e correlação B3LYP) na base 6-31++G(d,p). A partir da otimização das geome-
trias para diferentes conformações, foram obtidas a energia total, momentos de dipolo e
quadrupolo, polarizabilidades, propriedades termodinâmicas, modos normais de vibração,
espectros Raman, infravermelho e VCD, ńıveis de energia eletrônicos e orbitais HOMO
e LUMO, com comparações com resultados experimentais ao longo do trabalho. Para
o cristal de L-alanina, a geometria dos átomos na célula unitária foi otimizada usando
as aproximações LDA e GGA, determinando-se a estrutura de bandas, massas efetivas,
função dielétrica, absorção, refletividade e ı́ndice de refração. Estes dados são usados na
investigação do espectro de luminescência do cristal de L-alanina puro e dopado com man-
ganês. Os cálculos ab initio permitem associar os picos de fotoluminescência no viśıvel a
processos de natureza excitônica relacionados a ńıveis de polaron e impurezas aprisionado-
ras de portadores. Calculando as transições vertical e adiabática entre os estados excitados
e o estado fundamental de uma molécula de L-alanina simples na forma zwitteriônica, o
pico estreito da fotoluminescência no ultravioleta é atribúıdo a transições intramolecu-
lares nas moléculas de L-alanina fracamente interagentes dentro do cristal, o que deixa
uma assinatura molecular espećıfica do aminoácido. Já o estudo da fotoluminescência
integrada do cristal dopado com Mn2+ revela um forte quenching da luminescência pro-
vocado pela presença do ı́on metálico nos interst́ıcios da célula unitária. Resultados de
cálculos ab initio preliminares indicam que tal quenching está relacionado ao modo como
a distribuição de energias excitônicas muda quando o ı́on é inserido num interst́ıcio da
célula unitária.





Abstract

Ab initio calculations for the molecule and crystal of L-alanine are presented. Geo-
metry optimizations were performed for three L-alanine molecular conformers using three
different methods: Hartree-Fock approximation with a 6-31++G(d,p) basis, Hartree-Fock
approximation with a 6-311++G(3d,3p) basis and Density Functional Theory (B3LYP
exchange-correlation functional) with a 6-31++G(d,p) basis. From the geometry optimi-
zations, total energies, dipole and quadrupole moments, polarizabilities, thermodynamical
properties, normal modes, Raman, infrared and VCD spectra, energy levels and frontier
molecular orbitals were obtained and comparisons with experimental results were car-
ried out. For the L-alanine crystal, geometry optimization was performed within the
framework of DFT (LDA and GGA), and band structures, effective masses, dielectric
function, absorption, reflectivity and refraction index were calculated. Those results were
employed to investigate the photoluminescence spectra of undoped and Mn-doped L-
alanine crystals. The ab initio results allow assignment of the photoluminescence peaks
in the visible region to lattice-related processes of exciton nature associated with polaron
levels and defect trapping centers for carriers. By evaluating the vertical and adiabatic
transitions between the ground state and excited states of a single L-alanine molecule
in the zwitterion form, the very thin photoluminescence peak in the ultraviolet region
is assigned to intramolecular transitions in the weakly interacting L-alanine molecules
forming the crystals, being a signature of the type of the crystalline amino acid. In the
case of Mn-doped alanine crystal, the integrated photoluminescence intensity is shown
to be dramatically quenched by the intersticial manganese, with a decrease greater than
65% for higher doping. Preliminar ab initio calculations indicate that this quenching is
related to the change of exciton energy levels due to the charge redistribution in the unit
cell when manganese ions are present.
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1 Introdução

1.1 Do genoma ao proteoma

Iniciado oficialmente nos anos 90, o projeto Genoma Humano [1] tinha como objetivos

identificar todos os genes (entre vinte e vinte e cinco mil) e seqüenciar os (aproximada-

mente) três bilhões de pares de bases nitrogenadas do ADN (ácido desoxirribonucléico,

em inglês, DNA - DeoxyriboNucleic Acid) humano. Para analisar a enorme quantidade

de dados obtida, foi necessário o desenvolvimento de novas ferramentas de análise bioin-

formática, motivando o intercâmbio de recursos e tecnologias entre os setores público e

privado.

O genoma é todo o ADN de um organismo, incluindo seus genes. Estes últimos

contêm a informação para fabricar as protéınas de que o organismo vivo necessita. Tais

protéınas determinam, entre muitas outras coisas, a aparência do ser vivo, a eficiência de

seu metabolismo, e o modo como responde a infecções. O genoma também traz profundas

implicações sobre a resposta do organismo ao meio.

O ADN é feito basicamente a partir de quatro bases nitrogenadas: adenina (A), timina

(T), citosina (C) e guanina (G), e de um açúcar, a desoxirribose (ver Fig. 1). A ordem

dessas quatro letras no DNA determina a transcrição de protéınas que irão construir e

governar o metabolismo de um ser vivo.

Uma seqüência rascunho e a análise preliminar do genoma humano foram publicadas

em fevereiro de 2001 e em abril de 2003 em várias edições das revistas Nature e Science [2].

O conhecimento dos efeitos das variações de ADN entre indiv́ıduos pode levar a maneiras

novas e revolucionárias de diagnosticar, tratar e prevenir milhares de desordens. O estudo

do ADN de organismos não-humanos pode ajudar no desenvolvimento de medicamentos,

plantas e animais geneticamente modificados para a agricultura e a pecuária, novas for-

mas de produção de energia, processamento de informação e gerenciamento racional dos
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recursos naturais (interação homem - meio ambiente).

Figura 1: Padrões de ligações de hidrogênio nos pares de base do ADN e tamanhos caracteŕısticos
[3].

Seguindo o projeto do Genoma Humano, o projeto Proteoma Humano [4] pretende

deslindar os segredos das protéınas, porquanto as pistas para a cura de muitas doenças

pode não estar nos genes, mas nas protéınas que estes codificam (para se ter uma idéia,

existem cerca de 2000 medicamentos desenvolvidos pelo homem, os quais se baseiam em

aproximadamente 500 protéınas conhecidas).

A estrutura tridimensional das protéınas é bastante complexa e pode ser caracteri-

zada em quatro ńıveis de organização estrutural: ńıveis primário, secundário, terciário e

quaternário:

1. A estrutura primária representa o arranjo linear dos aminoácidos individuais na

seqüência protéica. Protéınas são, basicamente, poĺımeros de aminoácidos ligados por

ligações pept́ıdicas.

2. A estrutura secundária descreve a arquitetura local dos segmentos lineares da cadeia

polipept́ıdica (por exemplo, hélice α, folha β) sem considerar a conformação das cadeias

laterais. Outro ńıvel de organização estrutural, recentemente introduzido, é a estrutura
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supersecundária, que descreve a associação de elementos estruturais secundários através

de interações de cadeia lateral, os assim chamados “motivos”.

3. A estrutura terciária revela a topologia global da cadeia polipept́ıdica dobrada.

4. A estrutura quaternária descreve o arranjo de subunidades separadas ou monômeros

dentro da protéına funcional.

Devido a notável capacidade das cadéıas polipept́ıdicas se dobrarem in vivo e in vitro,

é fato atualmente aceito que a maior parte dos aspectos que envolvem a arquitetura das

protéınas e sua estabilização derivam diretamente das propriedades da seqüência particu-

lar de aminoácidos que compõem a cadeia polipept́ıdica (ou seja, a estrutura primária).

Essas propriedades incluem as caracteŕısticas individuais das cadeias laterais de cada

reśıduo e a influência da espinha dorsal polipept́ıdica na conformação da protéına. So-

mente com base nesta informação a estrutura tridimensional de uma protéına pode ser

compreendida.

Em geral, apenas 20 aminoácidos são encontrados nas protéınas obtidas da natureza

(ver Fig. 2), embora existam mais de 100 aminoácidos conhecidos e algumas protéınas

apresentem aminoácidos raros.

As propriedades f́ısico-qúımicas das cadeias laterais, tais como tamanho, forma, hidro-

fobia, carga e capacidade de formar ligações tipo ligação de hidrogênio, variam muito. A

estrutura de um aminoácido t́ıpico é mostrada na Fig. 3. Pode-se distinguir na estrutura

o chamado carbono α, que se liga de modo covalente aos grupos amina e carboxila. Estes

são grupos fracamente ácidos ionizáveis (com a amina protonada), os quais existem sob

equiĺıbrio protônico em solução, com pK 2 ou 10, respectivamente. Também ligado ao

carbono α está um átomo de hidrogênio e uma cadeia lateral de tamanho variável. É esta

cadeia lateral, chamada também de grupo R, que diferencia os aminoácidos entre si. Con-

forme varia o pH do meio, um aminoácido pode ser carregado positiva ou negativamente,

ou ainda assumir uma forma neutra.

Partindo de uma solução fortemente ácida, o próton do ácido carbox́ılico sofrerá io-

nização, e o aminoácido terá a sua carga efetiva variando de +1 a 0 se o pH for aumentando

aos poucos. Entrando na região de pH básico, o próton do grupo -NH+

3 passa a sofrer

ionização, e a carga efetiva do aminoácido tende para -1. Em solução neutra (pH 7), o

grupo carboxila existe na forma COO− e o grupo amina como NH+

3 . Como o aminoácido

neutro forma, em tais condições, um dipolo elétrico, ele é chamado de zwitteŕıon (́ıon

dipolar, betáına). A existência de um zwitteŕıon depende do meio (em solução há três
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Figura 2: Os 20 aminoácidos que formam os blocos de construção da maior parte das protéınas
podem ser classificados como (a) apolares, (b) polares ou neutros, (c) básicos e (d) ácidos.
Destaque para as cadeias laterais [3].
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formas zwitteriônicas, dependendo da acidez ou alcalinidade do meio). Há evidências su-

gerindo que em geral os aminoácidos em fase gasosa não existem na forma zwitteriônica.

Tal configuração é estável apenas apenas em soluções e sólidos [5, 6].

A flexibilidade conformacional dos aminoácidos é um fato agora bem estabelecido

tanto experimental [7, 8, 9, 10, 11, 12] como teoricamente [13, 14]. Tal liberdade, no caso

da glicina, fez com que por 15 anos existisse uma contradição entre os experimentos [7, 8] e

cálculos ab initio na aproximação de Hartree-Fock [15] para a conformação de mais baixa

energia da glicina neutra. A disputa que surgiu [10] foi rapidamente resolvida [11, 16] em

favor da teoria, o que reforçou a utilidade de cálculos ab initio.

A glicina na fase gasosa não é zwitteriônica, como provaram medidas de pressão de

sublimação, espectroscopia de massa e microscopia de microondas [7, 8, 11, 17, 18, 19, 20].

Zwitteŕıons formam ligações de hidrogênio na forma N−H+−−−O−−C, as quais desem-

penham um papel importante na determinação das estruturas de cristais de aminoácidos.

Pontes de hidrogênio t́ıpicas em sistemas de aminoácidos dilúıdos em água são −COO−−

−−H+

3 −N−, −COO− −−−H2O e −NH+

3 −−−OH2. Como as ligações de hidrogênio

criadas entre zwitteŕıons são muito fortes, suas posśıveis conformações estruturais são

limitadas apenas a configurações energeticamente estáveis [6, 21, 22].

A presença dos grupos amina e carboxila deixa as protéınas em solução resistentes a

mudanças de pH, tornando-as importantes tampões biológicos.

Figura 3: Estrutura geral de um α-aminoácido. Esta estrutura é comum a todos os aminoácidos
comumente encontrados nos seres vivos, excetuando-se a prolina. O grupo R ou cadeia lateral
(em vermelho) ligado ao carbono α (em azul) é diferente para cada aminoácido.

Os aminoácidos também são moléculas quirais (exceto pela glicina). Por possuir

quatro grupos diferentes conectados, o carbono α é assimétrico. As duas posśıveis con-

figurações para o carbono α formam isômeros que são a imagem um do outro refletida

em um espelho (enantiômeros). A propriedade f́ısica que diferencia os enantiômeros é a

direção na qual eles giram a luz plano-polarizada. Os dois enantiômeros são diferencia-

dos em dextrógiros (D, R, +) caso a polarização da luz seja girada no sentido horário, e

levógiros (L, S, −) se o giro for oposto. Soluções contendo um excesso de uma das duas for-
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mas enantiomórficas são opticamente ativas. Uma solução contendo concentrações iguais

dos enantiômeros é chamada de mistura racêmica e é opticamente inativa.

Caracteŕıstica fundamental dos aminoácidos é sua capacidade de polimerização em

pept́ıdeos e protéınas. Os grupos carboxila e amina podem interagir, formando uma

ligação covalente e liberando uma molécula de água (ligação pept́ıdica). Em solução

aquosa, o equiĺıbrio da reação de formação de ligações pept́ıdicas favorece a hidrólise das

ligações. Por esta razão, sistemas biológicos devem formar as ligações pept́ıdicas de modo

indireto e com gasto de energia.

As estruturas e abreviações dos 20 aminoácidos encontrados comumente nas protéınas

aparecem na Fig. 2. Todos os aminoácidos, menos a prolina, possuem grupos amina e

carboxila livres. Dentre as várias maneiras usadas para classificar os aminoácidos, a

mais útil é baseada na polaridade das cadeias laterais. Temos então aminoácidos com

cadeias apolares ou hidrofóbicas, aminoácidos neutros, mas polares, aminoácidos ácidos

(que possuem carga ĺıquida negativa em água) e aminoácidos básicos (com carga ĺıquida

positiva em meio com pH neutro). Os aminoácidos apolares incluem todos os que pos-

suem cadeia lateral alquila (alanina, valina, leucina e isoleucina), bem como a prolina

(com sua estrutura ćıclica pouco usual), metionina (um dos dois aminoácidos com enxo-

fre) e dois aminoácidos aromáticos, fenilalanina e triptofano. Já os aminoácidos polares

eletricamente neutros (glicina, serina, asparagina, glutamina, treonina, tirosina, cistéına)

apresentam grupos R que podem formar ligações de hidrogênio com a água, sendo mais

hidrossolúveis que os aminoácidos apolares em geral (há exceções, por exemplo, a tirosina

é o aminoácido menos solúvel em água entre os 20 aminoácidos, enquanto a prolina é

bastante solúvel. A alanina é tão solúvel em água como a arginina e a serina). Os dois

aminoácidos ácidos são o ácido aspártico e o ácido glutâmico, que apresentam cada um

grupo carboxila na cadeia lateral. Esses aminoácidos carregados negativamente desempe-

nham papéis importantes nas protéınas. Muitas protéınas que ligam ı́ons metálicos com

propósitos funcionais ou estruturais possuem śıtios de ligação metálico contendo uma ou

mais cadeias laterais de aspartato e glutamato. Os grupos carboxila também podem agir

como nucleófilos em certas reações enzimáticas e podem participar em uma variedade

de interações de ligação eletrostáticas. Por fim, três aminoácidos possuem cadeia lateral

com carga ĺıquida positiva. São os aminoácidos básicos, histidina, arginina e lisina. As

cadeias laterais da arginina e da lisina, protonadas em condições fisiológicas, participam

de interações eletrostáticas em protéınas.

Foram realizados diversos trabalhos usando modelos cont́ınuos para representar a
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solvatação de aminoácidos em água. As limitações desta abordagem são várias: a estru-

tura molecular do solvente é ignorada e o solvente é modelado como um meio dielétrico

cont́ınuo infinito que envolve uma cavidade contendo uma molécula do soluto. O dielétrico

cont́ınuo é caracterizado por sua constante dielétrica (também chamada de permissividade

relativa), cujo valor é obtido experimentalmente a partir do solvente colocado à mesma

temperatura e pressão da solução, e efeitos quânticos são ignorados. Mais recentemente,

cálculos ab initio feitos com base em um tratamento mais detalhado das interações com

as moléculas de água procuraram esclarecer os efeitos do solvente sobre a estrutura e o

espectro vibracional desses aminoácidos. Especificamente para a L-alanina, existem os

trabalhos de Jalkanen et al. [23], Frimand et al. [24] e Tajkhorshid et al. [25].

As estruturas cristalinas dos aminoácidos preservam caracteŕısticas moleculares, e

podem ser empregadas para o estudo de interações entre moléculas. Tal caracteŕıstica

é relevante especialmente para a biologia, onde as macromoléculas de interesse formam

sistemas fechados com grupos polares a apolares [26]. Além disso, a maior parte (90%)

dos fármacos produzidos possuem formulação particulada, em geral na forma de cristais

[27]. A produção desses particulados, por conseguinte, implica na cristalização a partir

de soluções do fármaco. No processo de cristalização são definidas várias caracteŕısticas

f́ısico-qúımicas da substância cristalizada, tais como forma, tamanho, pureza qúımica,

estabilidade, biodisponibilidade, solubilidade, dopagem e taxa de dissolução. Dáı a re-

levância, tanto do ponto de vista experimental como do teórico, da caracterização de

cristais de aminoácidos. A forma dos cristais e sua pureza ainda não conseguem ser con-

troladas de modo satisfatório, e os processos de crescimento e nucleação ainda não são

bem entendidos [28]. Quando se lembra que os processos bioqúımicos se desenrolam em

meio aquoso, o modo distinto como as moléculas biológicas se comportam nos estados

cristalino e dilúıdo em água não pode ser ignorado.

1.2 Metaloprotéınas e atividade biológica

A presença de pequenas concentrações de metais em biomoléculas desempenha um

papel fundamental. Vários ı́ons metálicos são essenciais para o metabolismo de seres vi-

vos (Zn, Cu, Fe, Na, K, Mg, Ca). Alguns desses ı́ons ativam cascatas de enzimas e se

responsabilizam pelo equiĺıbrio dinâmico celular, equilibrando cargas elétricas de macro-

moléculas orgânicas no meio celular e equilibrando a pressão osmótica, impedindo o co-

lapso da célula [29, 30]. Muitas protéınas retêm ı́ons metálicos em caráter permanente ou

transitório. Esses ı́ons desempenham uma variedade de papéis nas metaloprotéınas: trans-
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Figura 4: Representação da lectina extráıda de sementes de Canavalia brasiliensis complexada
com Mn (esferas rosadas) e cálcio [31]. Da esquerda para a direita: Ribbons do tetrâmero da
lectina com indicação dos śıtios de Mn; ampliação do śıtio de ligação ao Mn em uma das cadeias
da lectina; ligação dos aminoácidos glutamato-8, aspartato-10, aspartato-19 e histidina-24 ao
manganês.

ferência de elétrons, conservação da estrutura protéica, retenção de oxigênio, formação de

radicais hidróxido coordenados, fixação de substratos, e catálise eletrof́ılica. Nos últimos

anos tornou-se evidente que as metaloprotéınas também desempenham papel importante

no controle de expressão da informação genética. Tais protéınas retiram quantidades

estequiométricas de traços de ı́ons metálicos e sofrem mudanças conformacionais que pro-

duzem notáveis diferenças em suas habilidades de se ligarem a śıtios espećıficos do ADN

ou do ARN (ácido ribonucléico) de um organismo. Os efeitos fisiológicos da ligação de

metaloprotéınas a, ou sua liberação por, ácidos nucléicos incluem resistência aumentada

a metais pesados, controle de caminhos de absorção e armazenamento de ferro, reconheci-

mento de sinais bioqúımicos no ARN de retrov́ırus, controle de eventos no desenvolvimento

de vertebrados e reconhecimento de hormônios esteróides. Minerais presentes em altas

concentrações, como Na+, K+ e Mg+ podem desempenhar importantes papéis na estabi-
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lização de ácidos nucléicos, mas é improvável seu uso amplo na regulação dos genes. As

metaloprotéınas ilustram o ńıvel de complicação das interações entre metais e aminoácidos

[32]. O modo como o oxigênio se liga de modo reverśıvel ao grupo heme da mioglobina e

da hemoglobina é um exemplo disso [29, 30]. Metais atuam como co-fatores (compostos

qúımicos essenciais para a ação de uma enzima, mas não fazem parte do śıtio onde se dá a

catálise) de diversas enzimas, as quais se dividem geralmente em classes cujas atividades

estão relacionadas a presença de metais. A Fig. 4 ilustra como um metal fica ligado a um

aminoácido em uma protéına. Em tempos recentes, protéınas que transportam metais do

meio extracelular para o interior das células têm recebido considerável atenção [30].

Através da ressonância paramagnética nuclear e ressonância dupla nuclear eletrônica,

vem sendo posśıvel investigar śıtios iônicos de metais paramagnéticos em cristais de

protéınas [33]. No caso espećıfico do Mn, cuja interação com a l-alanina é estudada na pre-

sente tese, as protéınas Smf1 e Smf2 efetuam o seu transporte na espécie Saccharomyces

cerevisae. A enzima PMR1, da famı́lia ATPase do tipo P, localiza-se no complexo de Golgi

onde acumula altas concentrações de ı́ons de Mn. Nos mamı́feros, as protéınas Nramp1

e Nramp2 possuem elevado grau de homologia com as Smf1 e Smf2, respectivamente.

Sabe-se agora que a Nramp2 complementa a função da Smf em leveduras mutantes, ao

mesmo tempo em que a Nramp1 é incapaz de exercer esse papel. Por esta razão foi su-

gerido que a Nramp2 pode estar envolvida no transporte de Mn celular [30]. Entre as

metaloprotéınas encontradas na natureza, as que possuem Mg(II), Ca(II) e Zn(II) são as

de maior abundância e com maior número de trabalhos publicados a respeito [34].

Questões relevantes para o entendimento de como agem as metaloprotéınas é o modo

como são capazes de selecionar um cátion espećıfico de metal na mistura iônica em que

estão dissolvidas, e porque os ı́ons metálicos preferem ligar-se nas protéınas tipicamente

em meios esféricos internos em centros de alto contraste hidrofóbico. A resposta para

essas questões pode depender de estudos da interação de ı́ons metálicos com aminoácidos

[35]. Pesquisas em cristais de aminoácidos com dopagens diversas (Fe, Cu e Zn) fo-

ram realizadas tendo como objetivo a compreensão das diferentes funções desses ı́ons

nos complexos metal-aminoácidos, e suas diferentes interações. Usando ressonância pa-

ramagnética eletrônica (Electronic Paramagnetic Ressonance - EPR) e ressonância dupla

nuclear eletrônica (Electronic Nuclear Double Ressonance - ENDOR), foram feitos estu-

dos da L-alanina dopada com cobre, os quais revelaram detalhes sobre a ocupação de

śıtios por impurezas no cristal [36, 37, 38, 39, 40].

Também foi efetuado um estudo da L-alanina dopada com ferro, combinando EPR,
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Figura 5: Esquerda: Medidas de luminescência normalizada para cristais de de L-alanina dopados
com 1% de Fe, obtidas a 77 K e 295 K [41]. Direita: Espectro Raman na configuração a(b, b)ā
para um cristal de L-alanina não-irradiado a temperatura ambiente [41]. Modos em torno
de 2900 cm−1 originam-se do estiramento intra-molecular dos átomos de hidrogênio do grupo
metila. Já os modos em torno de 100 cm−1 são oriundos das vibrações da rede devido a ligações
de hidrogênio entre moléculas através do grupo amônia.

luminescência e espalhamento Raman ressonante (Ressonant Raman Scattering - RRS)

[41] (ver Fig. 5). Os resultados indicaram que os ı́ons metálicos nos cristais de L-alanina

parecem localizar-se em śıtios intersticiais, como propuseram Takeda et al. [37].

1.3 Protéınas, aminoácidos e aplicações em biotecnolo-

gia e ciências dos materiais

Com os avanços no domı́nio da nanotecnologia, aproximamo-nos cada vez mais das

escalas naturais de tempo e espaço em que ocorrem os fenômenos fundamentais que cons-

tituem os processos biológicos. Começam, então, a aparecer espontaneamente pontes

ligando as mais diversas disciplinas: f́ısica, qúımica, bioqúımica, biologia, bioinformática,

etc. As ferramentas teóricas e experimentais dos mais diversos ramos do conhecimento

começam a ser usadas para ajudar no progresso da investigação desses fenômenos.

Existe uma notável convergência entre as tecnologias sintéticas e f́ısicas e o mundo

da biologia molecular que abrirá oportunidades sem precedentes para a criação novas

biomoléculas funcionais. Os sistemas biológicos apresentam uma complexidade de ar-

quitetura com ordem hierárquica em escalas de distância maiores que as que podem ser

alcançadas atualmente em sistemas sintéticos. As estruturas complexas da biologia são

formadas através do auto-arranjo de componentes moleculares, intermediada através de

interações supramoleculares espećıficas programadas na própria estrutura desses compo-
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nentes. O ápice desse processo é o crescimento e a diferenciação de células vivas e sua

integração em tecidos, orgãos, sistemas e organismos biológicos.

Nas últimas décadas, a pesquisa básica sobre a estrutura de macromoléculas começou

a esclarecer os prinćıpios estruturais subjacentes à especificidade única dos sistemas

orgânicos. Embora tal processo esteja longe de completar-se, a informação obtida a par-

tir desses estudos fez com que a comunidade cient́ıfica adquirisse uma compreensão dos

prinćıpios f́ısicos relevantes que conduzem o auto-arranjo de estruturas biológicas. Pode-

se prever a utilização dos mesmos prinćıpios para o projeto e construção de materiais

que apresentam a especificidade e funcionalidade única das biomoléculas que ocorrem na

natureza.

Um exemplo ilustrativo deste crossover entre biologia e a ciência de novos materiais é o

uso de nanopart́ıculas metálicas ou semicondutoras com tamanho da ordem de 10 a 100 Å

juntamente com macromoléculas biológicas (ácidos nucléicos, protéınas). A similaridade

de tamanhos dessas estruturas pode permitir uma integração entre a nanotecnologia e

a biologia, levando a avanços sem precedentes no diagnóstico de doenças, terapêutica

direcionada, biologia molecular e biologia celular [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52].

Espera-se que nanocristais ultrafinos sejam amplamente empregados em biotecnologia e

aplicações médicas para separar biomateriais, para identificação de substâncias através de

ação antigênica, diagnósticos, e transporte de medicamentos (drug delivery).

A fluorescência é uma ferramenta amplamente utilizada em biologia como forma de

rastrear o composto desejado, seja para estudo da farmacodinâmica, seja para moni-

toração de processos celulares in vivo ou do desenvolvimento de culturas celulares, como

fungos e células cancerosas. A iniciativa de medir mais indicadores biológicos simulta-

neamente impõe novas demandas às amostras usadas nestes experimentos. No entanto,

os materiais comumente utilizados apresentam capacidades de absorção limitadas porque

seu espectro de absorção é muito estreito ou porque o ińıcio de tal processo não pode

ser controlado facilmente. Por exemplo, cristais semicondutores bulk possuem um amplo

espectro de absorção. O único problema é que o mesmo é plano demais e, portanto, dif́ıcil

de ajustar numa certa faixa de comprimentos de onda. Já os corantes orgânicos possuem

picos de absorção bem distintos os quais, infelizmente, tendem a ser assimétricos e pouco

controláveis. Para piorar o quadro, experimentos usando corantes orgânicos são limitados

a ensaios de curta duração por causa do baixo tempo de fluorescência dessas substâncias.

Tais corantes não são adequados para peŕıodos longos de observação usando microscopia

fluorescente e confocal. Muitas vezes é dif́ıcil ou imposśıvel registrar imagens fluorescentes
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de boa resolução enquanto as sondas orgânicas coloridas se apagam durante o ajuste do

foco.

Em contraste, pontos quânticos combinam o amplo espectro de absorção de um cristal

semicondutor com os picos de absorção bem definidos de um corante orgânico, além de

apresentar tempos de fluorescência mais longos e brilho mais intenso. Finalmente, estas

nanoestruturas podem ser fabricadas de modo a produzir linhas de emissão gaussianas

em qualquer freqüência no viśıvel ou infravermelho pasśıveis de excitação por lâmpada de

mercúrio.

Inicialmente, pontos quânticos sintetizados quimicamente não foram empregados em

aplicações bioqúımicas por não serem solúveis em água. Uma vez que foram desenvolvi-

dos tratamentos para tornar as superf́ıcies dos pontos quânticos hidrof́ılicas, abriram-se

as portas para posśıveis aplicações na área de obtenção de imagens biológicas in vivo.

Apesar disso, os pontos são instáveis em condições de acidez ou salinidade, agregando-se

facilmente em meios ácidos ou isotônicos. Logo, é dif́ıcil produzir biomoléculas conjugadas

a pontos quânticos porque estas, em sua maioria, encontram-se em condições isotônicas in

vivo. As moléculas que podem ser conjugadas são poucas: streptavidina, oligopept́ıdeos,

e alguns anticorpos.

Para superar tal dificuldade, Alivisatos et al. [53, 54] usaram um revestimento de

śılica/siloxano para criar pontos quânticos de ZnS revestidos com CdSe solúveis em água

e altamente estáveis contra agregação, embora seu método permita apenas a fabricação

de pequenas quantidades (miligramas) por vez. Zou et al. [55] obtiveram a silanização

de nanopart́ıculas de siĺıcio, produzindo pontos quânticos revestidos com SiO2. Tais pon-

tos exibem notável estabilidade e apresentam potencial para fácil manipulação. Li et al.

[56] prepararam nanopart́ıculas de śılica porosa para aplicações em controle de liberação

de medicamentos. As nanopart́ıculas produzidas foram aplicadas como portadores para

estudar o comportamento de liberação controlada do corante azul brilhante F, o qual foi

inserido no interior e na superf́ıcie das nanopart́ıculas. Este corante foi liberado vagaro-

samente em uma solução ĺıquida ao longo de 1140 min, em comparação com os 10 min

normalmente obtidos para nanopart́ıculas de SiO2. Além disto, observou-se que valores

baixos de pH e baixas temperaturas aumentaram o tempo de liberação do corante. Recen-

temente, nanopart́ıculas de CaCO3 revestidas com SiO2 foram fabricadas, abrindo novas

possibilidades para o desenvolvimento de aplicações biológicas [57].

Uma abordagem recente para o problema da hidrofobia dos pontos quânticos é o em-

prego de encapsulamento em micelas. A micela é um ligante qúımico simples consistindo
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Figura 6: Sensibilidade e multiplicidade de cores no uso de pontos quânticos para obtenção de
imagens in vivo. (a,b): sensibilidade e comparação espectral entre células cancerosas marcadas
com pontos quânticos e células marcadas com protéınas fluorescentes (a), e obtenção simultânea
de imagem in vivo de microcontas codificadas com pontos quânticos (b). As imagens do lado
direito em (a) mostram células cancerosas marcadas com pontos quânticos (laranja, acima)
e células marcadas com protéınas fluorescentes (verde, embaixo). Aproximadamente mil das
células marcadas com pontos quânticos foram injetadas no flanco direito de um rato, enquanto
o mesmo número de células marcadas com protéına fluorescente foram injetadas no flanco es-
querdo (ćırculo) no mesmo animal. Similarmente, as imagens do lado direito em (b) mostram
microcontas codificadas com pontos quânticos (0.5 µm) emitindo nas cores verde, amarela ou
vermelha. Aproximadamente um ou dois milhões de contas de cada cor foram injetadas sob a
pele do animal em três pontos adjacentes [44].

de duas partes: uma região hidrofóbica e outra hidrof́ılica. Empresas farmacêuticas empre-

gam micelas como revestimento para medicamentos dotados de qualidades hidrofóbicas.

Dubertret et al. [50] fabricaram pontos quânticos de ZnS revestidos com CdSe e encapsularam-

nos dentro do interior hidrofóbico de micelas usadas comumente para entrega de medi-

camentos e diagnóstico por imagem. Após um processo de purificação, eles conseguiram

injetar os pontos quânticos em células embrionárias de Xenopus (uma espécie de sapo),

atingindo concentrações da ordem de até 109 pontos quânticos em uma única célula.
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Os processos de diferenciação das células de um embrião em rápido processo de di-

visão celular tornam o embrião altamente senśıvel a mudanças f́ısicas e qúımicas do meio.

O fato de que a presença de um número considerável de pontos quânticos não perturbou

o processo de divisão celular é uma not́ıcia promissora para o estudo do desenvolvimento

embrionário. Observou-se no experimento que quatro horas depois da fertilização, após

os pontos quânticos se dispersarem pelo citoplasma, ocorre uma súbita relocalização dos

mesmos em torno do núcleo, sinalizando o ińıcio da atividade de transcrição. Graças

aos pontos quânticos, o estudo também comprovou que nos primeiros estágios do desen-

volvimento do Xenopus não existe śıntese de RNA, ou seja, não ocorre transferência de

informação contida no DNA do embrião e, conseqüentemente, śıntese das protéınas ne-

cessárias para o seu desenvolvimento. Nestes estágios, o embrião utiliza protéına e RNA

fornecidos pela mãe. Uma vez, no entanto, que o embrião efetua sua 12a divisão celular

(4000 células), seu próprio RNA passa a controlar a śıntese de protéınas.

Gao et al. [44] descreveram o desenvolvimento de sondas multifuncionais nanoparticu-

ladas baseadas em pontos quânticos semicondutores ZnS-CdSe com marcadores de células

cancerosas em animais vivos. O design estrutural desses marcadores envolve o encapsu-

lamento de pontos quânticos luminescentes dentro de um revestimento polimérico e a

ligação deste poĺımero a ligantes marcadores de tumor e funcionalidades para transporte

espećıfico de medicamentos. Estudos in vivo de células de câncer de próstata humano

crescidas em ratos indicam que as sondas baseadas em pontos quânticos se acumulam nos

tumores em virtude da maior permeabilidade e capacidade de retenção de śıtios tumorais

e através da ligação de anticorpos a biomarcadores espećıficos na superf́ıcie das células

cancerosas. Usando ao mesmo tempo a injeção subcutânea de células cancerosas marca-

das com pontos quânticos e a injeção sistêmica de sondas multifuncionais baseadas em

pontos quânticos, foram obtidas imagens precisas e coloridas de células cancerosas in vivo,

abrindo novas possibilidades para obtenção de imagens ultra-senśıveis e multiplexadas de

alvos moleculares in vivo.

Usando ainda a capacidade das células vivas de reconhecimento molecular, foram fei-

tos contatos elétricos seletivos com neurônios [58, 59]. Contatos de pontos quânticos de

CdS agem como fotodetectores, permitindo comunicação com as células usando compri-

mentos de onda preciso. Processos de difusão de receptores laterais de neurotransmissores

mostraram que apenas um ponto quântico interage por śıtio de receptores de glicina, de

modo que a microscopia eletrônica desses receptores confirma a entrada destes na sinapse

por difusão.
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Uma idéia promissora consiste em tentar acoplar lectinas vegetais às micelas. As lecti-

nas são de origem não imune e têm a capacidade de se ligar reversivelmente a carboidratos,

ou seja, não modificam quimicamente os receptores (carboidratos) aos que se ligam [60].

Sabe-se que este tipo de protéına se une a seus açucares receptores através de ligações de

hidrogênio e forças de Van Der Walls. É fato conhecido também que em células tumorais

existem diferenças estruturais marcantes. Glicoprotéınas existentes na membrana celu-

lar de células canceŕıgenas podem ter formas distintas em comparação com as de células

sadias. Muitos genes que codificam enzimas do tipo glicosiltransferases são sujeitos a mo-

dificações que ocasionam mudanças pós-transducionais diferentes, ou seja, glicanos que

deveriam ser incorporados em estruturas protéicas de uma forma, são inseridos de outra,

concorrendo para a formação de uma célula anômala [61].

Pelo fato de as lectinas se ligarem a açúcares presentes em membranas celulares de

uma maneira bastante espećıfica, estas podem, em alguns casos, ser utilizadas como exce-

lentes marcadores, podendo, até mesmo, serem marcadores espećıficos para determinados

tipos de células canceŕıgenas. Pode-se mencionar o exemplo da jacalina, lectinas de se-

mentes de jaca que tiveram sua estrutura cristalográfica em complexo com ant́ıgeno T

[62] determinada.

Os polipept́ıdeos (poĺımeros formados a partir de aminoácidos) são excelentes candi-

datos para a fabricação de biomateriais por conta de sua biocompatibilidade e pelo fato

de serem biodegradáveis. Materiais baseados em pept́ıdeos podem ter suas seqüências de

aminoácidos programadas e é fácil controlar seu comprimento e estequiometria. Instruções

de montagem minuciosas podem ser codificadas em seqüências de pept́ıdeos, e o uso de

biopoĺımeros para a construção de materiais avançados a partir de polipept́ıdeos é uma

possibilidade real [63, 64, 65, 66]. Existem trabalhos sobre o emprego de polipept́ıdeos

sintéticos como matrizes para materiais compósitos a fim de fabricar novos materiais para

engenharia (plásticos para usos em dispositivos, substitutos de implantes ósseos, filmes

para tratamento de queimaduras) com propriedades de interesse. Tal pesquisa pode levar,

por exemplo, à criação de um filme plástico capaz de conservar os alimentos frescos limi-

tando a exposição ao oxigênio e matando as bactérias, ao mesmo tempo em que apresenta

biodegradação após poucas semanas ou meses.

Materiais baseados em polipept́ıdeos podem ser preenchidos com enchimentos na-

nométricos para melhorar suas caracteŕısticas mecânicas. O uso desses enchimentos,

incluindo argilas inorgânicas e fibras de pept́ıdeos autofabricadas, permite reforçar um

material (as propriedades do material nanocompósito não mudam com o acréscimo desses
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enchimentos, mas são melhoradas). Fibras de pept́ıdeos já existem na natureza associadas

a doenças como o mal Alzheimer e a diabetes tipo II. Numa pessoa com Alzheimer, fibras

compridas e ŕıgidas de protéınas são formadas no tecido cerebral porque as protéınas se

agregam sem realizar suas funções naturais. Fibras benignas poderiam ser formadas em

laboratório e usadas como enchimento em um compósito [65, 66]. Tais materiais baseados

em pept́ıdeos são alternativas sustentáveis para materiais baseados em petróleo (um re-

curso não-renovável) e como base para novas tecnologias de engenharia para produção de

uma nova classe de materiais e dispositivos nanoestruturados, como plataformas bioativas

para a construção de tecidos e sistemas inteligentes de entrega de fármacos (Drug Delivery

Systems), bem como, num futuro um tanto mais distante, nanomáquinas moleculares.

Figura 7: Uso de pept́ıdeos para fabricação de uma nanoestrutura. A: pept́ıdeo. B: nanotubo
formado a partir do pept́ıdeo. C: imagem real da estrutura formada pelo pept́ıdeo [67].

Há vários relatos na literatura sobre nanotubos constrúıdos a partir de pept́ıdeos

ćıclicos artificiais [67, 68]. Os nanotubos constrúıdos nesta técnica apresentam tamanhos

de poros ajustáveis, qúımicas de superf́ıcie facilmente modificável, extremidades abertas

para empacotar metais, ı́ons ou pequenas moléculas, e facilidade de śıntese.

Para compreender melhor todos esses novos sistemas e suas interações básicas, é ne-
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cessário uma abordagem que leve em conta os efeitos quânticos relevantes na escala na-

nométrica. É neste ponto que entra com força a f́ısica com suas ferramentas teóricas e

experimentais. Partir dos prinćıpios fundamentais que governam o comportamento da

matéria para estudar sistemas com muitos elétrons (como os aminoácidos, que são um

dos blocos fundamentais da vida), é a essência dos métodos de primeiros prinćıpios, ou

métodos ab initio, que são a principal ferramenta do presente trabalho.

1.4 Breve histórico dos métodos ab initio

Apesar de os fenômenos elétricos serem conhecidos deste a antiguidade, apenas com a

descoberta do elétron, em 1897, por Joseph John Thomson [69, 70], começamos a ter uma

compreensão mais profunda de sua importância na descrição da estrutura da matéria. Um

pouco antes, Hendrik Anton Lorentz havia modificado a teoria de Maxwell do eletromag-

netismo para interpretar as propriedades elétricas e magnéticas das diferentes substâncias

em termos do movimento de part́ıculas eletricamente carregadas (o elétron possui carga

negativa). Com a descoberta do núcleo de carga positiva por Ernst Rutherford, em 1911

[71], a f́ısica clássica deparou-se com o problema da estabilidade do átomo. o qual foi

resolvido quando Niels Böhr [72] propôs a quantização do momento angular orbital dos

elétrons no hidrogênio (era o ano de 1913). Pela hipótese de Böhr, os elétrons movem-se em

torno do núcleo em um conjunto discreto de órbitas circulares com energias bem definidas

(quantização da energia). Quando um elétron muda de órbita, é emitido ou absorvido um

quantum de radiação eletromagnética, originando um espectro de raias confirmado pelo

experimento. A teoria quântica de Böhr, embora errônea sob muitos aspectos, lançou as

bases para a descoberta das leis da mecânica quântica, na primeira metade da década de

20, mormente através das notáveis contribuições de Louis de Broglie, Erwin Schrödinger

e Werner Heisenberg.

Os elétrons foram cruciais como campo de teste da mecânica quântica. Os experi-

mentos de Otto Stern e Walther Gerlach, realizados em 1921 [73, 74], nos quais átomos

eram defletidos por campos magnéticos, foram formulados como testes da aplicabilidade

da nova teoria quântica a part́ıculas em campos magnéticos. Pouco depois, Arthur Holly

Compton [75] propôs a idéia de que o elétron possui um momento magnético intŕınseco

com base em observações da convergência de feixes de raios. O acoplamento do momento

angular orbital com o spin do elétron foi formulado por Samuel Goudschmidt e George

Ühlenbeck [76], que consideraram a hipótese aduzida por Compton.
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Um dos grandes triunfos da nova teoria quântica foi a explicação da tabela periódica de

elementos qúımicos em termos da ocupação de estados atômicos por elétrons obedecendo

ao prinćıpio de exclusão enunciado por Wolfgang Pauli, em 1925 [77]. No ińıcio de 1926,

Enrico Fermi levou adiante as conseqüências do prinćıpio da exclusão, estabelecendo uma

fórmula geral para a estat́ıstica de part́ıculas não interagentes, obtendo uma fórmula

parecida com a obtida para a estat́ıstica de Bose-Einstein [78, 79, 80]. Werner Heisenberg

e Paul Dirac, separadamente, discutiram a questão da simetria de troca da função de onda

de sistemas formados por várias part́ıculas em 1926 [81, 82]. Juntando a equação de onda

relativ́ıstica de Dirac e as leis da mecânica estat́ıstica quântica, os grandes avanços feitos

nos anos 20 constituem a base de todas as teorias modernas sobre a estrutura eletrônica

da matéria, dos átomos e moléculas isolados até a matéria condensada.

Rapidamente os progressos da teoria levaram a uma melhor compreensão do com-

portamento dos elétrons em moléculas e sólidos. Usando novas ferramentas, as noções

mais fundamentais sobre as ligações qúımicas em moléculas (como as desenvolvidas por

Gilbert Newton Lewis [83] e outros antes de 1920) foram explicadas em termos do com-

portamento das funções de onda eletrônicas quando os átomos se aproximam. As regras

para o número de ligações qúımicas foram determinadas a partir do fenômeno quântico da

deslocalização, o qual permite o compartilhamento de elétrons entre dois ou mais átomos,

reduzindo sua energia cinética e tirando vantagem da atração elétron-núcleo.

Para estudar o comportamento dos elétrons na matéria condensada, é necessário re-

solver um problema de muitos corpos, o qual exige conceitos estat́ısticos para determinar

as propriedades intŕınsecas dos materiais no limite termodinâmico. Com o fito de obter

resultados quantitativos é necessário fazer várias simplificações e aproximações, sendo a

primeira e mais simples a aproximação na qual os elétrons não interagem entre si. Nesta

aproximação, não se correlacionam diretamente os movimentos eletrônicos, mas se impõe

o prinćıpio da exclusão de Fermi e cada elétron se move em algum tipo de potencial efetivo

médio produzido pelos seus companheiros. O estado do sistema é especificado por auto-

estados independentes de uma única part́ıcula e por números de ocupação, estes últimos

determinados no equiĺıbrio térmico através da estat́ıstica de Fermi-Dirac.

Um dos primeiros feitos da nova teoria quântica foi a solução da maior parte dos

problemas da teoria clássica de Drude-Lorentz por Wolfgang Pauli e Arnold Sommerfeld

[84, 85]. Num primeiro momento, Pauli, em paper submetido no final de 1926 [84], explicou

o paramagnetismo através de um modelo de polarização do spin de elétrons obedecendo

à estat́ıstica de Fermi-Dirac. Na ausência de campos magnéticos e para T = 0K, os



1.4 Breve histórico dos métodos ab initio 35

elétrons apresentam spins emparelhados e preenchem os estados de mais baixa energia

até o ńıvel de Fermi, deixando estados vazios acima deste ńıvel. Aumentando um pouco

a temperatura ou o campo magnético (ou seja, produzindo excitações energéticas bem

menores que as energias eletrônicas caracteŕısticas), somente estados eletrônicos próximos

do ńıvel de Fermi podem contribuir para a definição de propriedades como condutividade

elétrica, capacidade térmica e paramagnetismo. Pauli e Sommerfeld basearam sua teoria

dos metais num modelo de gás homogêneo de elétrons livres, que resolveu a maior parte

dos problemas da teoria de Drude-Lorentz. No entanto, ainda não estavam claras as

conseqüências de incluir os núcleos e, por conseguinte, a periodicidade de uma estrutura

cristalina na teoria, elementos que certamente afetariam o comportamento dos elétrons.

Portanto, o passo seguinte foi incluir os efeitos de um potencial periódico sobre os

estados quânticos eletrônicos. Foi o que fez Felix Bloch em sua tese. Bloch [86] lançou o

conceito de estrutura de bandas a partir da demonstração de um teorema fundamental –

o teorema de Bloch – demonstrando que um elétron num cristal pode existir apenas em

estados quânticos que são autoestados do operador “momentum cristalino”. Com isto, foi

resolvido um dos maiores problemas da teoria de condutividade de Pauli-Sommerfeld, a

saber, a mobilidade sem empecilhos dos elétrons em uma rede cristalina perfeita, sendo

esta propriedade afetada apenas pela presença de perturbações na periodicidade da rede

(imperfeições, impurezas, vibrações).

Com base na teoria de bandas foi posśıvel mostrar, a partir do prinćıpio da exclusão

de Pauli, que os estados permitidos (o conjunto de estados contidos numa banda) para

cada spin podem conter, cada um, um número máximo de um elétron por célula unitária

do cristal. Rudolf Peierls mostrou a importância do preenchimento de bandas e da pre-

sença de “buracos” (lacunas de elétrons nas bandas) para explicar o efeito Hall e certas

propriedades dos metais [87, 88]. Contudo, foi somente com o trabalho de Alan Herries

Wilson [89, 90] que foram estabelecidos os fundamentos para a classificação teórica de

todos os cristais em metais, semicondutores e isolantes:

– Isolantes: apresentam bandas completamente preenchidas e um grande gap de ener-

gias proibidas separando o estado eletrônico fundamental dos estados excitados.

– Semicondutores: possuem gap pequeno, de modo que energias térmicas são suficien-

tes para levar os elétrons a estados excitados. Por conta disso, apresentam condutividade

elétrica intermediária entre isolantes e metais.

– Metais: possuem bandas parcialmente preenchidas e não apresentam gaps de ex-

citação, de modo que os elétrons podem conduzir eletricidade mesmo a T = 0K.
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Figura 8: Ilustração esquemática dos ńıveis de energia eletrônicos, indicando a evolução dos ńıveis
eletrônicos discretos dos átomos isolados para as bandas eletrônicas que se formam quando os
átomos se aproximam. Os preenchimento das bandas e os gaps proibidos determinam se o
material é isolante, semicondutor ou metálico. Figura retirada de [91]

Douglas Rayner Hartree e Egil Hylleraas foram pioneiros no cálculo de propriedades

de átomos com vários elétrons usando a mecânica quântica [92, 93, 94]. Hartree introduziu

o método do campo auto-consistente, no qual cada elétron se move em um campo médio

criado pelos núcleos atômicos e pelos demais elétrons, lançando as sementes de vários

métodos numéricos ainda em uso nos dias atuais. Apesar disso, sua abordagem carecia de

rigor. Foi só em 1930 que Vladimir Fock [95] publicou os primeiros cálculos empregando

funções de onda anti-simétricas, no que hoje conhecemos como método de Hartree-Fock.

Os anos 30 registraram as primeiras formulações da maior parte dos atuais métodos

teóricos para cálculo de estrutura eletrônica em sólidos. Entre os primeiros cálculos quan-

titativos de estados eletrônicos se encontra o trabalho sobre o sódio metálico publicado

por Eugene Wigner e Frederick Seitz, publicado em 1933 e 1934 [96, 97], no qual foi em-

pregado o método celular. As bandas de energia eletrônicas foram obtidas em trabalhos

separados por John Slater e Wigner e Seitz [97, 98]. Embora a função de onda tenha

caráter atômico nas vizinhanças imediatas do núcleo, as bandas calculadas revelaram que

os elétrons se comportavam com grande liberdade de movimento no metal, resultado que
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se tornou a base de muito do entendimento teórico dos metais com ligações do tipo sp.

Uma das grandes dificuldades no trato de sólidos em geral é ajustar a precisão com que

os estados eletrônicos serão descritos perto do núcleo e nas regiões de ligação. Slater uti-

lizou ondas planas aumentadas (Augmented Plane Waves - APWs) em 1937 [99], usando

diferentes conjuntos de base e condições de contorno apropriadas. Ondas planas ortogo-

nalizadas (Orthogonalized Plane Waves - OPWs) foram definidas por Conyers Herring em

1940 [100] para levar em conta efeitos de caroço sobre os elétrons de valência. Potenciais

efetivos, precursores dos pseudopotenciais, foram introduzidos em vários campos da f́ısica

(por exemplo, Fermi, em 1934 [101], adotou a técnica para estudar o espalhamento de

elétrons por átomos e espalhamento de nêutrons por núcleos). Hans Hellmann desenvol-

veu uma teoria para elétrons de valência em metais notavelmente similar aos modernos

cálculos de pseudopotencial [102, 103]. Embora não fosse posśıvel completar os cálculos

para sólidos em geral, o desenvolvimento dos conceitos - juntamente com o trabalho ex-

perimental - levou a muitos desenvolvimentos importantes, dentre eles destacando-se o

transistor.

Os primeiros cálculos quantitativamente precisos de estrutura de bandas em materiais

mais dif́ıceis, como os semicondutores (nestes os estados eletrônicos são bastante diferentes

dos estados atômicos originais), começaram a surgir nos anos 50. Apesar do seu sucesso,

entretanto, a teoria de bandas até então desenvolvida não levava em conta os efeitos diretos

das interações elétron-elétron. Um dos efeitos mais importantes desse tipo de interação

foi a explicação do magnetismo da matéria dada por Heisenberg e Dirac [104, 105] em

termos da “energia de troca” dos elétrons interagentes, que depende do spin e do fato

de a função de onda mudar de sinal quando dois elétrons são “trocados” (permutados).

Tanto na f́ısica atômica quanto na qúımica, sentiu-se a necessidade de descrições mais

precisas que fossem além das aproximações de elétrons independentes, tendo em vista a

forte correlação em sistemas localizados e os tamanhos t́ıpicos das ligações qúımicas nas

moléculas [106].

Na f́ısica de matéria condensada, as linhas essenciais traçadas pelo problema das in-

terações elétron-elétron foram expostas por Eugene Wigner e Nevill Mott [107, 108, 109,

110] em termos de transições metal-isolante. Uma maneira de apresentar a questão é con-

trastar a formação de bandas quando se aproximam os átomos na estrutura cristalina com

os efeitos intensos de interação em sistemas isolados (nos quais os átomos se acham muito

distantes para que exista overlap significativo dos estados eletrônicos). Se o átomo é um

sistema de camada aberta, sabe-se que interações coulombianas produzem a separação dos
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estados eletrônicos independentes em multipletos, com o estado fundamental dado pelas

regras de Hund [111, 112, 113]. Em geral, existe competição entre efeitos “formadores de

banda”, os quais devem dominar em altas densidades, e efeitos de muitos corpos tipica-

mente atômicos, dominantes em baixas densidades. O desafio é resolver problemas em

densidades intermediárias, nas quais efeitos de banda e efeitos de muitos corpos produzem

contribuições de mesma ordem.

O papel da correlação entre elétrons permanece como elemento definidor das grandes

questões no campo da determinação de estruturas eletrônicas. Descobertas experimentais,

como a existência de materiais supercondutores ou com magnetoresistência gigantesca,

estimularam novos desenvolvimentos na teoria de sistemas eletrônicos com alto grau de

correlação. Interações podem produzir transições de fase para estados com quebra de

simetria, ordem de longo alcance, e outros comportamentos coletivos interessantes.

As últimas décadas do século XX trouxeram promissores desenvolvimentos para apri-

morar nossa compreensão da f́ısica da matéria condensada. Relevantes contribuições ex-

perimentais, como a descoberta dos fulerenos, a fabricação de nanotubos de carbono, a

śıntese materiais supercondutores em altas temperaturas, o crescimento de nanoestruturas

semicondutoras, o emprego de novas tecnologias de microscopia (microscopia de tunela-

mento, força atômica), abriram as portas para vastos campos de investigação. No aspecto

teórico, a teoria da supercondutividade criada por John Bardeen, Leon Neil Cooper e

John Robert Schrieffer (teoria BCS) [114] influenciou várias áreas da f́ısica fornecendo

um alicerce para a emergência de fenômenos completamente novos a partir do compor-

tamento cooperativo de sistemas de muitas part́ıculas. Novos métodos para o cálculo

de propriedades eletrônicas foram desenvolvidos, dentre os quais os seguintes merecem

destaque:

– Teoria do funcional da densidade (Density Functional Theory - DFT) para o estado

fundamental e extensões para estados excitados.

– Métodos de Monte Carlo quânticos, que podem lidar diretamente com o sistema de

muitos corpos formado por elétrons e núcleos.

– Métodos de muitos corpos perturbativos para o espectro de excitações do sistema

eletrônico.

– Avanços computacionais que tornam posśıveis cálculos realistas e influenciam deci-

sivamente o desenvolvimento deste campo de pesquisa.
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1.5 Estado fundamental e estados excitados

Podemos dividir as propriedades da matéria em dois conjuntos: aquelas que são de-

terminadas a partir do estado fundamental e aquelas definidas pelos estados excitados dos

elétrons:

– Estado fundamental: energia de coesão, estrutura cristalina no equiĺıbrio, transições

de fase estruturais, constantes elásticas, densidade de carga, ordem magnética, suscetibi-

lidades dielétricas e magnéticas no caso estático, vibrações dos núcleos e seus movimentos

em geral (na aproximação adiabática ou de Born-Oppenheimer), etc.

– Estados excitados: excitações de baixa energia em metais que contribuem para o

calor espećıfico, suscetibilidade de spin de Pauli, transporte; excitações de alta energia

que determinam gaps isolantes, propriedades ópticas, espectro de energias para adição e

remoção de elétrons, etc.

A razão para esta divisão reside no fato de as energias cinéticas eletrônicas serem bem

maiores que as nucleares, de modo que o estado de mais baixa energia para os elétrons

determina os movimentos de baixa energia e a distribuição espacial dos núcleos. As

diversas formas de matéria são, em larga medida, manifestações do estado fundamental dos

elétrons. O movimento dos núcleos, por exemplo, em vibrações da rede cristalina, ocorre

em uma escala de tempo muito maior que a dos elétrons, o que justifica a suposição de

que, instantaneamente, os elétrons sempre se encontram no estado de mais baixa energia

[115, 116].

Como o estado fundamental dos elétrons é crucial para o cálculo das propriedades

eletrônicas na matéria condensada, boa parte do trabalho teórico desenvolvido nesta disci-

plina visa estabelecer métodos adequados e precisos para lidar com o estado fundamental.

No presente, a abordagem mais utilizada para cálculo de primeiros prinćıpios do estado

fundamental é a teoria do funcional da densidade (Density Functional Theory - DFT)

[117, 118, 119].

A estrutura estável dos sólidos é classificada de um modo mais natural através do

estado fundamental eletrônico, que determina como os átomos formam ligações. O estado

de mais baixa energia eletrônica determina a estrutura espacial dos núcleos, suas cargas

e o número de elétrons, exatamente as informações que são o input para a equação de

Schrödinger do sistema. Considerando a natureza geral das ligações qúımicas, podemos

apontar esquematicamente cinco tipos principais de materiais quanto ao tipo de ligação

que se forma entre seus átomos constituintes:
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1. Sistemas de camada fechada (closed-shell), tais como os gases nobres e os sólidos

moleculares, apresentam estados eletrônicos qualitativamente parecidos com os estados

dos átomos (ou moléculas) componentes. As bandas formadas não são largas, e as es-

truturas formadas são sólidos com célula unitária bem compacta (close-packed), no caso

dos gases nobres, e estruturas complexas, no caso de sólidos formados por moléculas sem

simetria esférica. A ligação é muitas vezes descrita como oriunda da fraca atração de Wan

der Waals equilibrada pela repulsão criada pelo overlap dos estados quânticos eletrônicos.

Uma análise mais detalhada revela que outros mecanismos também são relevantes.

2. Cristais iônicos, formados por elementos com eletronegatividades muito diferentes,

podem ser caracterizados pela transferência de carga de modo a formar ı́ons de camada

fechada, criando estruturas com ânions grandes em um arranjo compacto (hcp, fcc, ou

bcc), e pequenos cátions localizados em posições que maximizam a atração coulombiana.

Experimentos quantitativos e a teoria mostram, entretanto, que não é posśıvel identificar

cargas associadas de modo único a um dado ı́on. Tais sistemas são isolantes com um gap

de energia.

3. Sistemas metálicos não apresentam gaps de excitação e são excelentes condutores.

As bandas de um metal aceitam facilmente números diferentes de elétrons, possibilitando

a formação de ligas entre átomos de diferentes valências em estruturas compactas. O

gás eletrônico homogêneo é uma excelente aproximação para tais sistemas. Metais de

transição são particularmente importantes por suas propriedades mecânicas e magnéticas,

bem como por seus efeitos de muitos corpos, os quais proporcionam boa parte dos desafios

teóricos a resolver.

4. Ligações covalentes implicam numa mudança radical no caráter dos estados eletrônicos

dos átomos isolados. Tal mudança envolve o preenchimento de bandas eletrônicas até o

gap de energia. Ligações covalentes direcionais criam estruturas abertas, bastante dife-

rentes do empacotamento compacto t́ıpico dos outros tipos de ligação. É o que ocorre

com materiais semicondutores, por exemplo.

5. Pontes de hidrogênio são freqüentemente identificadas como outro tipo de ligação.

O hidrogênio é o único elemento qúımico sem elétrons de caroço. Seu núcleo, um próton, é

atráıdo mais fortemente por elétrons próximos por conta da ausência da blindagem criada

pelos elétrons de caroço em outros elementos. As propriedades da água são fortemente

afetadas pela formação de ligações de hidrogênio. Tais ligações também são especialmente

importantes para a bioqúımica.

Em geral, num dado material, as ligações qúımicas misturam em diferentes proporções
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os cinco tipos acima mencionados.

Por outro lado, para certas estruturas as excitações eletrônicas são o cerne das pro-

priedades eletrônicas da matéria - incluindo condutividade elétrica, propriedades ópticas,

excitação térmica de elétrons, fenômenos causados por elétrons extŕınsecos em semicon-

dutores, etc. Estas propriedades são governadas pelo espectro de energias de excitação e

pela natureza dos estados excitados. Existem dois tipos básicos de excitação: adição ou

subtração de elétrons, e excitações que conservam constante o número de elétrons. Como

as excitações podem ser considerados rigorosamente como sendo perturbações do estado

fundamental, os métodos de teoria de perturbação são não poucas vezes a chave para o

entendimento teórico e o cálculo de tais propriedades.

Excitações eletrônicas também se acoplam ao movimento nuclear, levando a efeitos

como a interação entre elétrons e fônons. Tal interação afeta os estados eletrônicos (elec-

tronic states broadening) e implica em fortes efeitos nos metais (uma vez que estes possuem

energias de excitação arbitrariamente pequenas, levando a misturas com excitações nucle-

ares de baixa energia). O acoplamento pode produzir transições de fase e novos estados

da matéria, como o estado supercondutor.

Figura 9: Bandas de “quase-part́ıcula” no germânio calculadas através da aproximação GW com
pseudopotenciais e uma base gaussiana [120] comparadas com resultados experimentais (lado
direito) obtidos por fotoemissão [121] e fotoemissão inversa [122], e um resultado teórico usando
a aproximação LDA (Local Density Approximation), indicado pelas linhas tracejadas na figura
da esquerda. As bandas LDA ilustram o conhecido problema do band-gap que produz gap zero
para o germânio. Este problema praticamente desaparece quando são usados métodos de muitos
corpos ou quando se emprega o funcional de troca exato (EXX).
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A despeito dos impressionantes triunfos da teoria DFT para o estado fundamental,

esta teoria ainda não é capaz de produzir resultados confiáveis para as excitações. O gap

fundamental é o ponto chave do problema. Os gaps calculados através dos funcionais DFT

se encontram bem abaixo dos valores experimentais para praticamente todos os materiais.

Obter avanços na teoria de excitações em isolantes constitui boa parte do esforço atual

em pesquisa. A obtenção de gaps reduzidos não é intŕınseca à abordagem DFT e pode ser

corrigida através de um tratamento mais apropriado da energia de troca não-local, como

o uso de um termo de troca exato (Exact Exchange - EXX, ver Ref. [123]) e funcionais

h́ıbridos, que incluem caracteŕısticas ausentes nos funcionais comumente utilizados. Por

exemplo, o funcional EXX produz excelentes valores para os gaps sem destruir a pre-

cisão do cálculo de energia do estado fundamental se um funcional de correlação local é

inclúıdo. Outra opção, computacionalmente muito dispendiosa, é o cálculo de correções

perturbativas de muitos corpos (aproximação GW).

Figura 10: Gaps de energia para diferentes semicondutores usando os funcionais da densidade
LDA e EXX. Os resultados usando o funcional LDA subestimam os gaps na maioria dos cálculos
DFT. A teoria do potencial de troca exato exige maior trabalho computacional, mas fornece gaps

bem próximos dos resultados experimentais. Figura retirada de [124].

Excitações que conservam o número de elétrons podem ser vistas como excitações do

tipo elétron-buraco, em que o elétron adicionado interage com a “lacuna” deixada pela

remoção de um elétron na banda de valência. A energia do éxciton assim formado é

inferior ao gap entre as bandas. A medida mais universal de excitações que conservam

o número de elétrons é a capacidade térmica, por abranger todas as excitações posśıveis
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sem distinções. A capacidade térmica a baixas temperaturas é a medida que distingue

definitivamente sistemas com gaps de energia e sistemas sem gap, e a base da distinção

entre metais e isolantes. Nos metais, “quase-part́ıculas”, excitações de baixa energia que

atuam como elétrons fracamente interagentes, fornecem uma descrição bastante adequada

do calor espećıfico, da condutividade elétrica e do paramagnetismo de Pauli. Introduz-se,

nesta descrição, o conceito de superf́ıcie de Fermi, conjunto de pontos no espaço rećıproco

onde o tempo de vida das “quase-part́ıculas” é infinito e a energia é igual à energia de

Fermi. Tal superf́ıcie já foi minuciosamente mapeada para muitos cristais metálicos.

As funções dielétricas e a condutividade são as funções resposta mais importantes

em f́ısica da matéria condensada por serem determinantes para as propriedades ópticas,

condutividade elétrica, e muitas outras propriedades interessantes para aplicações tec-

nológicas. Além disso, os espectros ópticos são, provavelmente, a ferramenta de estudo

de excitações mais amplamente utilizada. A formulação fenomenológica das equações de

Maxwell na presença de meios polarizáveis ou condutores inclui a função dielétrica ǫ(ω)

e a condutividade σ(ω), onde ω é uma freqüência complexa. Note-se que o número de

elétrons não muda, ou seja, a absorção óptica pode ser vista como a adição simultânea de

um elétron e um buraco, os quais podem interagir.

Uma outra abordagem para o cálculo do espectro de excitação para o caso em que o

número de elétrons não muda é a teoria do funcional da densidade dependente do tempo

(Time-Dependent Density Functional Theory - TDDFT) [125], que fornece, em prinćıpio,

uma solução exata para a densidade de carga eletrônica em função do tempo. Tal abor-

dagem vem sendo utilizada juntamente com funcionais de troca e correlação aproximados

com considerável sucesso no cálculo de espectros ópticos de sistemas confinados, como

moléculas e clusters, e também no cálculo de excitações magnéticas em sólidos.

À medida que a teoria progride e se torna mais acurada, torna-se mais relevante a

consideração de efeitos de muitos corpos decorrentes da interação elétron-elétron. Isto não

apenas para melhorar as descrições teóricas sobre materiais e fenômenos já conhecidos,

como também para prever novas propriedades e fenômenos coletivos fora do alcance das

teorias de campo médio.

1.6 L-Alanina

O objeto de estudo da presente tese é o aminoácido α-L-alanina (L significa a forma

enantiomórfica levógira), fórmula qúımica C3H7NO2. As duas formas enantiomórficas da
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alanina são apresentadas na Fig. 11, juntamente com duas perspectivas da molécula de

L-alanina. Vale salientar que, de todos os aminoácidos quirais, a alanina é o mais simples

e que, na natureza, os aminoácidos apresentam-se na forma levógira.

Figura 11: Na parte superior, formas enantiomórficas da alanina, juntamente com (abaixo) duas
perspectivas diferentes da molécula de L-alanina (zwitteŕıon neutro). Os átomos cinzentos são
de carbono, os azuis, nitrogênio, os vermelhos, oxigênio e os brancos, hidrogênio.

A alanina é incorporada na cadeia polipept́ıdica nascente durante a biosśıntese protéica

em resposta a quatro códons (um códon é uma seqüência de três bases nitrogenadas, ou

nucleot́ıdeos): GCU, GCC, GCA e GCG, e representa aproximadamente 8.3% dos reśıduos

de protéınas que já foram caracterizadas [126]. O reśıduo alanil incorporado possui uma

massa de 71.09 unidades de massa atômica (ou dalton), um volume de van der Waals

de 67 Å3 e uma superf́ıcie acesśıvel de 113 Å2 [126]. Reśıduos de alanina são muitas

vezes variáveis através de várias espécies, sendo muitas vezes substitúıdos em protéınas

homólogas por reśıduos de serina, treonina, valina, ácido glutâmico e prolina. A cadeia

lateral da alanina consiste num grupo metila. Esta cadeia lateral apolar torna os reśıduos

de alanina não-reativos quimicamente, relativamente hidrofóbicos e pouco hidrof́ılicos.

Conseqüentemente, 38% dos reśıduos de alanina ficam profundamente enterrados nas

conformações dobradas das protéınas [126]. Nessas condições, a cadeia lateral de metila

sofre rápidas rotações em torno da ligação simples entre o carbono α e o carbono β (o
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carbono do grupo CH3). A alanina possui, dentre todos os reśıduos de aminoácidos, a

maior tendência para adotar a conformação α-hélice em pept́ıdeos. A ocorrência da ala-

nina em estruturas de protéınas dobradas em α-hélices é duas vezes mais freqüente que

em β-folhas e reversões.

No organismo humano, a L-alanina é um aminoácido essencial cuja principal função

parece ser o metabolismo do triptofano e da piridoxina. Tem pouca relevância terapêutica,

mas é uma importante fonte de energia para os músculos, sistema nervoso central e cérebro

e também toma parte na fabricação de anticorpos. Existe alanina no fluido da próstata,

e ela pode desempenhar um papel importante na saúde deste orgão [127]. Altos ńıveis

de alanina juntamente com baixos ńıveis de tirosina e fenilalanina vem sendo associados

com o v́ırus de Epstein-Barr [128] e a śındrome de fadiga crônica [129]. Baixos ńıveis

do aminoácido têm sido encontrados em pacientes com hipoglicemia, diabetes e hepatite

alcóolica.

Cao et al. [130] otimizaram usando técnicas ab initio (método de Hartree-Fock e

teoria da perturbação MP2) 13 conformações da alanina, encontrando bom acordo com

resultados experimentais. Ellzy et al. [131] fizeram medidas do espectro vibracional infra-

vermelho e do espectro de dicróısmo circular vibracional (Vibrational Circular Dichroism

- VCD) para os zwitteŕıons α-D-alanina, α-L-alanina, α-D-manose e α-L-manose. Os

dados experimentais foram comparados com cálculos de otimização de geometria usando

o funcional h́ıbrido B3LYP e a base 6-31G*. A estrutura zwitteriônica da α-L-alanina

foi estabilizada pela adição de moléculas de água. O estudo concluiu que a abordagem

DFT/B3LYP fornece uma boa descrição do VCD para as moléculas estudadas. Tulip

e Clark [132] calcularam os tensores de polarizabilidade e as freqüências normais de vi-

bração para a alanina (e também para a leucina, isoleucina e valina) usando teoria da

perturbação do funcional da densidade com um pseudopotencial de ondas planas. Eles

verificaram que o comportamento da densidade eletrônica quando são aplicados campos

externos depende em larga medida da estrutura da molécula estudada, e não somente dos

grupos funcionais constituintes. Os modos normais podem ajudar a diferenciar os dife-

rentes tipos de ligação de hidrogênio intramoleculares e ajudam a explicar a razão de os

cálculos mostrarem a leucina estabilizada na forma zwitteriônica mesmo na fase gasosa.

O espectro infravermelho calculado mostrou uma notável diferença entre os resultados

obtidos para moléculas neutras e zwitteriônicas. Tais diferenças podem ser atribúıdas aos

diferentes tipos de ligação de hidrogênio e substâncias qúımicas presentes.

O pioneiro na cristalização da L-alanina foi J. D. Bernal, em 1931 [133], seguido
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Figura 12: Célula unitária da L-alanina. Os parâmetros de rede são a=6.023 Å, b=12.343 Å e
c=5.784 Å, de acordo com experimentos de difração de raios X e difração de nêutrons [134, 135].

por H. J. Simpson et al. [134] e R. Destro et al. [136]. Os cristais obtidos por esses

trabalhos iniciais eram pequenos e não puderam ser usados para investigações ópticas.

Mesmo assim, bastaram para determinar a estrutura ortorrômbica do cristal, com grupo

de simetria espacial P212121 e quatro moléculas por célula unitária. Cristais maiores

foram crescidos por Misoguti et al. [137], sem que fossem revelados maiores detalhes

sobre o modo de crescimento e a qualidade das amostras.

Estudos posteriores [138] detalharam o crescimento em solução e caracterizaram cris-

tais de alanina pura, sendo proposto um modelo preditivo para a forma dos cristais [28].

As amostras de maior qualidade foram conseguidas usando soluções tamponadas e auto-

semeadura, com cristais crescendo no fundo do recipiente. Os hábitos de crescimento per-

tencem às famı́lias {020}, {011} e {120}, segundo o esperado para o sistema ortorrômbico

(ver Fig. 13). As maiores faces foram as {120}, que sofriam da existência de degraus

múltiplos encadeados e macrodegraus. As menores faces são as {020}, em geral, embora

apresentem melhor qualidade óptica.
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Figura 13: Hábitos do cristal de L-alanina pura, com indicação das faces.

O modo como as moléculas estão dispostas na face de um cristal de aminoácido

determina sua energia superficial, enquanto o número de śıtios dispońıveis determina como

se dará a adsorção das moléculas que vão sendo acrescentadas. Apesar de a composição

qúımica numa face ser uniforme, as energias superficiais exibidas podem variar por causa

dos tipos de grupos funcionais de cada face. É esta a razão pela qual as faces de cristais

de aminoácidos apresentam velocidades de crescimento e qualidades ópticas distintas [28,

138].

Uma rede de ligações de hidrogênio envolvendo todas as ligações N − H − − − O

é responsável pela estabilização do cristal de L-alanina. Cada próton do grupo amina

é empregado na formação dessas ligações de hidrogênio, duas com o oxigênio número 2

(ver Fig. 14) e uma com o oxigênio número 1, promovendo um pequeno mas relevante

aumento no comprimento da ligação C−O2 em relação ao comprimento da ligação C−O1.

Uma das ligações N − H − − − O2 liga as moléculas de alanina entre si formando uma

cadeia ao longo do eixo c do cristal, enquanto as outras duas ligações de hidrogênio ligam

estas cadeias entre si, configurando uma estrutura tridimensional. Os canais formados ao

longo desta rede são ocupados pelos grupos metila (ver Fig. 15). A molécula de L-alanina
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no cristal bulk forma seis ligações de hidrogênio com as moléculas vizinhas. Todas estas

ligações de hidrogênio são aproximadamente idênticas em comprimento [28, 135, 138, 139].

Figura 14: Pontes de hidrogênio formadas pelos átomos de oxigênio no cristal de L-alanina [135].

A cristalização se dá usualmente a partir de uma solução ou a partir de um banho

fundido ou térmico, mas algumas vezes formam-se cristais por sublimação a partir da fase

gasosa. Diversos aspectos do processo de condensação de vapor são também comuns ao

processo de cristalização. Cristais podem ser formados também a partir de soluções de

reagentes, que ao mesmo tempo produzem e depositam materiais, como na cristalização

hidrotérmica do quartzo. Em alguns aspectos, pode-se enxergar a cristalização como o

inverso da decomposição, mas com diferenças essenciais. Por exemplo, a quantidade de

part́ıculas presentes durante a decomposição permanecerá a mesma ou diminuirá, ao passo

que, na cristalização, o número de núcleos sobre os quais a substância se deposita pode

aumentar constantemente. Além disso, enquanto na decomposição poucas vezes ocorre

resistência apreciável ao processo de transferência de substância através da interface entre

as duas fases, o mesmo não se aplica ao caso da cristalização.

O processo de cristalização consiste de duas etapas, que, via de regra, acontecem ao

mesmo tempo, mas que podem em alguma medida ser controladas de modo independente.

A primeira etapa é a formação de pequenas part́ıculas ou núcleos e a segunda etapa é

o crescimento desses núcleos. Se o número de núcleos é controlado, também o será o

tamanho dos cristais, o que é fundamental no processo de cristalização.

No processo de nucleação, moléculas ou agregados não-cristalinos livres em uma

solução juntam-se formando um agregado termodinamicamente estável e cristalino. A

formação e dissolução desses núcleos cristalinos obedece a uma lei de tamanho: se o agre-
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Figura 15: Vão na estrutura tridimensional do cristal de L-alanina ocupado por grupos metila.
O eixo c aponta para fora da página.

gado excede um tamanho cŕıtico, torna-se um núcleo capaz de favorecer o crescimento de

um cristal macroscópico. Caso contrário, dissolve-se espontaneamente. A intensidade da

nucleação é determinada pelo grau de supersaturação da solução.

Segundo a teoria de ligação de cadeia periódica, existem três tipos diferentes de cres-

cimento de faces: faces planas, faces em degrau, e faces dobradas. As faces planas exigem

uma nucleação bidimensional (a formação de folhas de moléculas com tamanhos crescen-

tes) para induzir o crescimento, e assim crescem mais devagar. Faces em degrau crescem

como colunas de moléculas, com taxas de nucleação unidimensionais, com velocidade de

crescimento intermediária. Por fim, as faces dobradas são locais de crescimento que não

precisam de nucleação, crescendo mais rapidamente do que os outros dois tipos de faces.

Logo, o tipo da face cristalina (plana, degrau, ou dobrada) pode influenciar fortemente

na taxa de crescimento do cristal.

Em trabalho desenvolvido para obtenção do grau de mestre em f́ısica no Departamento

de F́ısica da Universidade Federal do Ceará, Jean Reinildes Pinheiro obteve o crescimento

de cristais de L-alanina com e sem dopagem metálica pela técnica da evaporação lenta

de solvente [140]. Tal escolha baseou-se na disponibilidade de equipamentos no Grupo de

Semicondutores quando foi iniciado o trabalho. O método de evaporação lenta do solvente

já vinha sendo empregado no crescimento de aminoácidos puros (alanina, glicina, arginina,

asparagina, histidina, treonina, prolina, etc), e de outros cristais tais como sal de Rochelle,

KDP, ADP, etc.

Todos os cristais de L-alanina dopados apresentados no trabalho de Pinheiro seguiram
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o mesmo procedimento desde a preparação da solução até o momento de sua deposição na

sala de crescimento de cristais. Vários cristais de aminoácidos apresentaram certas carac-

teŕısticas tais como: redução no tempo de cristalização, estrutura morfológica, tamanho

do cristal e propriedades óticas e magnéticas, dependendo da dopagem metálica. Foi feita

a caracterização dos cristais pelas mais diversas técnicas: microscopia de força atômica,

luminescência, espectroscopia Raman, espectroscopia no infravermelho, raios X e ICP

(Inductively Coupled Plasma - Mass Spectrometry, espectrometria de massa de plasma

indutivamente acoplado, para determinar a presença, concentração e quantidade de do-

pantes metálicos). Também foi usada a técnica da ressonância paramagnética eletrônica

(Electronic Paramagnetic Ressonance - EPR). Medidas inéditas de EPR realizadas em

cristais de L-alanina dopados com manganês (Mn2+) foram apresentadas e analisadas.

Tais medidas foram feitas no Laboratório de EPR do Departamento de F́ısica da Uni-

versidade Federal de Minas Gerais (UFMG), pela equipe do prof. Klaus Krumbrock.

Investigou-se o efeito de dopagem a partir do crescimento de cristais de L-alanina em

soluções com concentrações de 0,5%, 1%, 2%, 3% e 5% de Mn2+ em cristais de L-alanina

crescidos por evaporação lenta de soluções aquosas a temperaturas de 4 oC, 8oC e 27 oC.

Com base na teoria sobre as caracteŕısticas espectrais do Mn2+, as medidas de EPR

permitem concluir que no crescimento por evaporação nas condições de temperatura espe-

cificadas, os ı́ons Mn2+ se incorporam aos cristais de L-alanina. Para baixas densidades de

dopagem (< 3% para baixas temperaturas de crescimento), esses ı́ons ocupam individual-

mente śıtios intersticiais, enquanto que para dopagens maiores as medidas EPR sugerem

fortemente a existência de clusters de ı́ons Mn2+ no cristal. Também foi provado que as

amostras são crescidas com maior eficiência a baixas temperaturas (mas longe do inter-

valo de temperaturas do comportamento anômalo da água, 0 oC-4 oC). Ao mesmo tempo,

as medidas EPR indicam também que, embora razoável controle da dopagem tenha sido

obtido, novos esforços devem ser realizados para melhorar a qualidade e homogeneidade

dos cristais de L-alanina com dopagem metálica.

Guzman et al. [141] estudaram como a presença de um campo magnético afeta a

topografia da superf́ıcie (120) de cristais de L-alanina através de microscopia de força

atômica (Atomic Force Microscopy - AFM) ex situ (ver Fig. 16). A aplicação de um

campo magnético de 5 T modificou a intensidade e a altura das ilhas bidimensionais

observadas nesta face. Sob a ação do campo magnético, a quantidade e o tamanho

t́ıpico das ilhas diminuem, e conseqüentemente a taxa de crescimento do cristal também

é reduzida.
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Figura 16: Imagens de microscopia de força atômica revelando a topografia da superf́ıcie da face
(120) de um cristal de L-alanina crescido a 3 oC: (a) submetido a um campo magnético de 5
T, (b) submetido a um campo magnético de 0 T; crescido a 7 oC: (c) submetido a um campo
magnético de 5 T, e (d) submetido a um campo magnético de 0 T [141].

Na literatura existem estudos sobre o espectro vibracional de aminoácidos há pelo me-

nos cinco décadas [142]. Para a L-alanina cristalina, há ind́ıcios de que existem dois grupos

de modos: modos associados a vibrações entre as moléculas na rede, com freqüências mais

baixas que ≈ 400 cm−1, originárias de interações intermoleculares mediadas por ligações

de hidrogênio entre grupos carboxila e amina; e modos com freqüências acima desse limite,

originados de diferentes vibrações do grupo carboxila nas moléculas [36]. O espalhamento

coerente inelástico de nêutrons em cristais de L-alanina foi usado para efetuar medidas

da relação de dispersão dos fônons na L-alanina [26]. Também foi mostrada a existência

de uma transição de fase na L-alanina sob pressões hidrostáticas da ordem de 22.8 kbar

[143]. Sinais de eco de fônon foram observados em um pó cristalino finamente disperso

de L-alanina [144]. Medidas do tempo de relaxação revelaram uma transição de fase nos

cristais de L-alanina a uma temperatura de cerca de 440 oC. Durand /etal [145] examina-

ram algumas das vibrações em cristais de L-alanina usando espalhamento de nêutrons e

simulações computacionais, encontrando evidências para a interação entre os dois fônons

ópticos de mais baixa freqüência e o modo acústico longitudinal. A velocidade do som

é anisotrópica e pode ser ligada ao arranjo de ligações de hidrogênio no cristal. Embora

algumas das freqüências vibracionais calculadas tenham ficado um tanto elevadas, a forma

das relações de dispersão calculadas está em bom acordo com o experimento. Crowell et
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al. [146] obtiveram a dependência das taxas de defasamento dos dois fônons ópticos da L-

alanina (42 e 49 cm−1) em função da temperatura através de medidas de Raman coerente.

As intensidades Raman anômalas determinadas para esses modos são atribúıdas a uma

instabilidade termicamente induzida no modo de 49 cm−1 e ao processo de localização

dinâmica a baixa temperatura [147].

1.7 Escopo da presente tese

A presente tese de doutoramento divide-se em quatro caṕıtulos, sendo o primeiro esta

introdução.

No caṕıtulo segundo, são apresentados resultados teóricos de diversas propriedades

ópticas, eletrônicas e vibracionais obtidos para a molécula de L-alanina. Otimização de

geometria, cálculos de funções de onda, orbitais HOMO e LUMO, densidades eletrônicas,

potenciais eletrostáticos, análises populacionais e espectros Raman, infravermelho e VCD

são calculados e discutidos em confronto com dados experimentais e outros resultados

teóricos.

O caṕıtulo terceiro contém os resultados dos cálculos teóricos para o cristal de L-

alanina, com a apresentação da otimização da geometria, densidades eletrônicas, estru-

tura de bandas, estimativa do band gap e massas efetivas, função dielétrica, absorção e

refletividade óptica. É feito um estudo comparativo dos resultados em vários ńıveis de

refinamento computacional. Excitações moleculares são investigadas através do método

CIS, em busca de uma interpretação adequada dos picos de luminescência observados no

espectro da L-alanina cristalizada. Também se estuda o comportamento de sistemas com

várias moléculas de alanina em série e as implicações das propriedades moleculares nas

propriedades ópticas de cristais de L-alanina (efeitos de polaron). Por fim, uma análise

do efeito da presença de um ı́on Mn2+ entre quatro moléculas de L-alanina é apresentada.

O quarto caṕıtulo apresenta as conclusões da tese e as perspectivas de novos desdo-

bramentos. Em um anexo são apresentados os fundamentos teóricos dos métodos usados

para determinação das propriedades optoeletrônicas da L-alanina. Primeiramente é des-

crita a aproximação de Hartree-Fock para um sistema de muitos elétrons, começando da

aproximação de Born-Oppenheimer, passando pelas implicações do prinćıpio da exclusão

sobre a forma da função de onda de muitos elétrons, pela expansão da função de onda

em determinantes de Slater, pela definição do operador de Fock e chegando ao conjunto

de equações de Roothaan para um sistema de camada fechada (método de Hartree-Fock
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restrito). São realizados em seguida vários comentários sobre o cálculo de propriedades

moleculares e sobre métodos derivados a partir da aproximação de Hartree-Fock.

Na seqüência, é apresentada uma introdução à teoria do funcional da densidade com a

prova dos teoremas de Hohenberg-Kohn e a definição e descrição do método dos orbitais de

Kohn-Sham. Várias aproximações para o funcional de troca e o funcional de correlação

são discutidas, bem como o uso de funcionais h́ıbridos. A aplicação dos métodos ab

initio a cristais vem logo em seguida, com a apresentação de alguns conceitos básicos e o

teorema de Bloch. Também são feitos comentários sobre métodos de integração na zona

de Brillouin e o emprego de pseudopotenciais e ondas planas como funções de base em

sistemas periódicos.

O apêndice consiste numa breve descrição do sistema de unidades atômicas.
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2 Cálculos ab initio para a molécula

de L-alanina

É grande na literatura o número de resultados de primeiros prinćıpios para moléculas

de aminoácidos. No entanto, uma parte significativa dos trabalhos publicados procura

apenas identificar as geometrias moleculares que minimizam a energia total [6, 130, 148,

149, 150]. No presente caṕıtulo serão apresentados cálculos teóricos de otimização de

geometria, determinação dos orbitais moleculares, análises de população eletrônica, modos

normais de vibração, espectros Raman e infravermelho, depolarizações Raman e espectros

VCD (Vibrational Circular Dichroism) para o aminoácido L-alanina nas condições neutra

e zwitteriônica (solvatação em água).

2.1 Definições iniciais

Para facilitar a apresentação e discussão dos dados obtidos, os átomos da molécula

de L-alanina neutra e zwitteriônica serão identificados de acordo com a Fig. 17. Cálculos

teóricos indicam que a molécula de alanina isolada pode adotar diversas conformações

[130, 148, 151, 152], cuja estabilidade depende de um sutil equiĺıbrio entre o efeito de cor-

relação eletrônica e a formação de ligações de hidrogênio intramoleculares. Isto pruduz

uma certa variação nas predições teóricas conforme o método de cálculo adotado. Das 13

conformações moleculares identificadas nesses estudos, as configurações de energia mais

baixa possuem valores de energia extremamente próximos, o que implica teoricamente na

coexistência de diversas conformações a alta temperatura com populações mais ou me-

nos iguais. Contudo, a primeira determinação estrutural por difração de elétrons na fase

gasosa [153] encontrou evidências da existência de uma única conformação (conformação

I da Fig. 17). Experimentos posteriores de espectroscopia rotacional [9] identificaram a

presença de uma segunda conformação da alanina (conformação II da Fig. 17), em uma



56 2 Cálculos ab initio para a molécula de L-alanina

proporção de uma molécula na conformação II para cada 8 moléculas na conformação I.

Os outros tipos de geometria molecular não foram observados. Um segundo estudo de

difração de elétrons [154], uma análise de dados guiada por resultados de espectroscopia

rotacional [9] e cálculos teóricos [148] confirmaram a coexistência das conformações I e

II numa proporção de 8 para 1 e a ausência de outras geometrias. Pouca informação

a mais foi obtida a respeito da fase gasosa da alanina além do espectro de fotoelétrons

He I [155, 156, 157]. Tais resultados podem ser interpretados de modo a se obter in-

formação sobre a estrutura eletrônica da molécula. Também foi indicado recentemente

[158] que esses espectros de fotoelétrons de baixa resolução parecem ter sido produzidos

predominantemente pela conformação do tipo I.

Pode-se facilmente identificar na Fig. 17 os grupos carboxila, amina e a cadeia lateral

metila. A ordem em que os números aparecem é a mesma usada nos inputs para os

cálculos, e segue o número atômico dos elementos em ordem decrescente. O carbono α é

indicado pelo número 5, enquanto o carbono do grupo carboxila é o átomo de número 4. O

átomo de hidrogênio ligado ao Cα é o átomo de número 13. O nitrogênio do grupo amina

possui número 3 e o hidrogênio que, na molécula zwitteriônica passa para o nitrogênio

possui o número 7. O carbono do grupo metila é o de número 6, e seus hidrogênios possuem

os números 10, 11 e 12. Os dois hidrogênios que sempre estão ligados ao nitrogênio são

numerados 8 e 9. Os dois oxigênios possuem números 1 (o que, na Fig. 17, forma a

ligação simples com o carbono número 4) e 2 (forma ligação dupla com C4). No total

são 13 átomos com 48 elétrons, sendo 36 elétrons de valência e 12 elétrons de caroço.

As configurações eletrônicas na tabela periódica são: O - 1s22s22p4, N - 1s22s22p3, C -

1s22s22p2, H - 1s1.

Como o maior valor de Z presente é 8, não será necessário efetuar correções rela-

tiv́ısticas nos cálculos. Explica-se: um critério razoável para determinar se é ou não

necessário um cálculo relativ́ıstico é medir a razão entre o número atômico do elemento

mais pesado na molécula e o inverso da constante de estrutura fina, que é aproximada-

mente 137 (ver seção A.6.8 no Anexo A). Se a razão for próxima de 1, ou for uma fração

significativa desse número, é necessário incluir efeitos relativ́ısticos. No caso da alanina,

o maior valor de Z é 8, e 8/137 ≈ 0.058394, o que é bem menor do que 1.

A parte (c) da Fig. 17 apresenta os mesmos átomos numa molécula zwitteriônica. A

conformação neutra estável que mais se aproxima da geometria zwitteŕıon é a forma II.

Note-se, em comparação, que a ligação dupla da forma neutra II entre o carbono 4 e o

oxigênio 2 passa a ser uma ligação ressonante compartilhada com o oxigênio 1, que perde
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Figura 17: Convenção para identificar os átomos da molécula de L-alanina: (a) L-alanina na
conformação neutra I, (b) conformação neutra II, e (c) forma zwitteriônica.

o hidrogênio 7 para o nitrogênio 3. Observe-se também como os hidrogênios 8 e 9 abrem

espaço e giram para que o hidrogênio 7 possa se ligar ao átomo de nitrogênio na forma

molecular zwitteŕıon em comparação com a molécula neutra.

Removendo os graus de liberdade associados à translação do centro de massa e ao

movimento de rotação, a molécula de L-alanina possui 33 graus de liberdade (e, por

conseguinte, 33 modos normais de vibração).

Todos os cálculos foram realizados usando o software Gaussian03 [159], revisão B.04,

gentilmente cedido pelo Prof. Sylvio Canuto da Universidade de São Paulo, empregando

funções de base gaussianas. Para as formas neutra I, neutra II e zwitteŕıon, a tabela 1

apresenta as coordenadas xyz (cartesianas) em Å que foram usadas como ponto de partida

para os cálculos, enquanto a tabela 2 contém as distâncias (em Å) entre os átomos nas

configurações iniciais. A tabela 3 apresenta os comprimentos das ligações, os ângulos

entre os átomos e os ângulos de diedro para as três conformações. Em todos os casos, o

grupo de simetria pontual da molécula é C1 (apenas a operação identidade).
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Tabela 1: Coordenadas iniciais (cartesianas) para os átomos em diferentes conformações da molécula de L-alanina.
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Tabela 2: Distâncias (em Å) entre os átomos em diferentes conformações da molécula de L-alanina.
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Tabela 3: Comprimentos de ligação R (em Å), ângulos θ e ângulos de diedro τ entre os átomos da molécula de L-alanina em diferentes conformações.
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Foi realizada a otimização da geometria de uma molécula de L-alanina neutra nas

conformações I, II e zwitteŕıon usando o algoritmo de Berny [160, 161] empregando o

método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) e a teoria

do funcional da densidade (funcional B3LYP [162]). Foi usado o software Gaussian03 com

três critérios para convergência:

1. Convergência no valor médio quadrático da matriz densidade: variação inferior a

10−8 unidades atômicas num limite de 128 ciclos em dois passos consecutivos.

2. Convergência no valor máximo da matriz densidade: variação inferior a 10−8

unidades atômicas em dois passos consecutivos.

3. Convergência no valor da energia: variação inferior a 10−6 H em dois passos

consecutivos.

Nas próximas páginas serão apresentados os resultados dos cálculos com comentários

e discussões.
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2.2 Conformação I

2.2.1 Convergência

A Fig. 18 revela a convergência na energia e na força média quadrática para três

otimizações da conformação I da L-alanina usando os métodos RHF e DFT. O primeiro

cálculo efetuado partiu da configuração inicial dada na última seção e usou a aproximação

RHF na base 6-31++G(d,p). Como a configuração inicial estava bem longe da confi-

guração ótima, foram necessários mais passos (20, no total) para alcançar convergência.

Em seguida, usou-se esta configuração convergida como ponto de partida para os cálculos

RHF na base 6-311++G(3d,3p) e DFT na base 6-31++G(d,p). O número de iterações em

cada um desses métodos caiu de 20 para 4 (RHF) e 6 (DFT), indicando que o resultado

RHF na base 6-31++G(d,p) é bastante razoável. A tabela 4 apresenta as forças sobre

cada átomo na configuração convergida pelos três métodos.
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Figura 18: Convergência da energia e da força média quadrática no cálculo RHF para a L-alanina na conformação I usando três métodos distintos.
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Tabela 4: Forças sobre cada átomo após convergência.
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2.2.2 Geometria

A tabela 5 apresenta as coordenadas finais dos átomos da molécula de L-alanina na

conformação I após convergência usando os três métodos já mencionados, e as tabelas

6, 7 e 8 mostram as distâncias entre todos os átomos da molécula. As tabelas 9, 10 e

11 contêm os comprimentos de ligação, ângulos e torções obtidos pelos três métodos. É

importante fazer uma comparação desses resultados com outros trabalhos teóricos e dados

experimentais. Cao et al. [130] otimizaram a geometria de 13 conformações da L-alanina

usando cálculos de Hartree-Fock e MP2 nas bases 6-31G(d,p). Através da comparação com

estruturas sem correlação eletrônica (HF) e com correlação (MP2), foi posśıvel detectar

algumas diferenças. A magnitude desses efeitos é da ordem de 0.03 Å nos comprimentos

de ligação e 30 nos ângulos (na seqüência C–O > C–N > C–C e H–O–C > H–N–C >

H–C–C.

Uma comparação com a referência [130] é apresentada para alguns comprimentos de

ligação e ângulos na tabela 12. Por exemplo, o comprimento da ligação C–N é igual a

1.4425 Å na aproximação RHF/6-31G(d,p) e 1.4548 Å na aproximação MP2/6-31G(d,p).

Para esta ligação, a inclusão de efeitos de correlação eletrônica aumenta a distância entre

o carbono e o nitrogênio em mais ou menos 0.85%. O resultado obtido na presente tese

é de 1.4419 Å na aproximação RHF/6-31++G(d,p) e 1.4552 Å na aproximação DFT/6-

31++G(d,p), um aumento de 0.91%. Tais comprimentos são menores que o valor ex-

perimental de 1.471 Å [153]. A ligação entre os átomos de carbono C4 e C5 possui

comprimento de 1.5219 Å na aproximação RHF/6-31G(d,p) e 1.5205 Å na aproximação

MP2/6-31G(d,p) (uma diferença relativa bem pequena, de 0.09%), enquanto o resultado

aqui obtido é de 1.5233 Å na aproximação RHF/6-31++G(d,p) e 1.5325 Å na aproximação

DFT/6-31++G(d,p) (uma diferença relativa de 0.6%). Para efeito de comparação, o re-

sultado experimental para esse comprimento de ligação é de 1.507 Å [153] Aparentemente,

a ligação entre C4 e C5 é um pouco menos afetada pela correlação eletrônica em com-

paração com a ligação entre C5 e N3. A ligação entre o átomo C4 e o átomo O2 possui

comprimento de 1.1886 Å na aproximação RHF/6-31G(d,p) e 1.2194 Å na aproximação

MP2/6-31G(d,p), diferença relativa de 2.5%, bem maior que as mencionadas nas duas

ligações anteriores. 1.192 Å é o valor experimental da ligação C=O [153]. Para nossos

cálculos, os comprimentos obtidos foram de 1.1898 Å (RHF/6-31++G(d,p)) e 1.2134 Å

(DFT/6-31++G(d,p)), diferença relativa de 1.9%.

As ligações de hidrogênio entre o grupo carboxila e os átomos H8 e H9 possuem,

respectivamente, comprimentos de 2.87233 Å e 2.688954 Å no cálculo RHF simples. No
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cálculo DFT, essas mesmas distâncias, na mesma ordem, mudam para 2.939173 Å e

2.680154 Å.

O ângulo A(1-4-2), envolvendo o átomo de carbono e os dois oxigênios do grupo

carboxila é de 122.27960 de acordo com o cálculo RHF/6-31++G(d,p) e 122.40570 segundo

o resultado obtido via DFT/6-31++G(d,p). Na referência [130], os ângulos obtidos foram

de 122.380 (RHF/6-31G(d,p)) e 122.920 (MP2/6-31G(d,p)). A correlação eletrônica tende

a aumentar a abertura do ângulo O-C=O. Já para o ângulo A(8-3-9), os resultados obtidos

foram 106.99130 (RHF/6-31++G(d,p)), 106.37420 (DFT/6-31++G(d,p)) em comparação

com 106.320 (RHF/6-31G(d,p)) e 104.660 (MP2/6-31G(d,p)).

A molécula de alanina é muito pequena para exibir as sutis tendências de comporta-

mento das distâncias interatômicas que são caracteŕısticas de sistemas nos quais vários

ângulos de diedro entre átomos pesados ocorrem em seqüência [163]. Mesmo assim, a

comparação entre estruturas sem correlação eletrônica e estruturas que incluem este efeito

permite detectar caracteŕısticas importantes da geometria que são influenciadas pela cor-

relação eletrônica.

Comparando os resultados obtidos nas tabelas 9 e 11, podem ser observadas várias

tendências. Os comprimentos de ligação calculados usando DFT são, via de regra, maiores

que os obtidos de acordo com o método RHF, indicando que a correlação eletrônica

produz o alongamento dos comprimentos de ligação, sendo tal efeito mais intenso nas

ligações entre o carbono e os oxigênios. No caso dos ângulos entre as ligações não existe

uma tendência tão ńıtida. Os ângulos A(1-4-2) (O–C=O, diferença de 0.12610), A(3-5-

4) (C–C–N, diferença de 0.2590) e A(4-5-13) (C–C–H, diferença de 0.32490) são maiores

com a inclusão de correlação eletrônica, enquanto os ângulos A(8-3-9) (NH2, diferença

de -0.61710), A(4-5-6) (C–C–C, diferença de -0.270) e A(4-1-7) (C–O–H, diferença de -

1.69280) são menores. O ângulo C–C–N é de 110.10 de acordo com dados experimentais

[153], enquanto o valor obtido usando DFT é de 113.5160. Para o ângulo C-C=O, o

resultado experimental é 125.60 [153] e o valor previsto de acordo com o cálculo DFT do

presente trabalho é de 125.50830.

Os ângulos de diedro não apresentam uma tendência clara, mas podem ser dividi-

dos em dois grupos: ângulos que aumentam com a correlação eletrônica e ângulos que

diminuem. A lista dos que se enquadram neste último grupo é formada por D(7-1-4-5),

D(8-3-5-6), D(8-3-5-13), D(9-3-5-13), D(1-4-5-3), D(1-4-5-13), D(2-4-5-6), D(3-5-6-11),

D(3-5-6-12), D(4-5-6-10), D(13-5-6-10) e D(13-5-6-11). Todos esses ângulos envolvem o

carbono de número 5, ou carbono α, com 7 ocorrências para o carbono de número 6 e 6
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ocorrências para o nitrogênio. A correlação eletrônica produz modificações nos ângulos de

diedro por alguns graus (no máximo algo em torno de 40). O ângulo de diedro D(7-1-4-5)

teórico (DFT) é de 178.25690, enquanto o experimental [153] é de 1800.

Olhando agora para as tabelas 9 e 10, que apresentam dados usando o método RHF

com bases diferentes, observa-se que o refinamento da base tende, em geral, a reduzir ainda

mais os comprimentos de ligação (a exceção é a ligação C–N, que aumenta um pouco).

O mesmo ocorre com os ângulos, exceto aqueles que envolvem o átomo de nitrogênio, os

quais tendem a aumentar com o emprego de uma base maior. Os ângulos de diedro não

apresentam uma tendência ńıtida, ora aumentando, ora diminuindo.
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Tabela 5: Coordenadas finais (cartesianas) para os átomos da molécula de L-alanina na conformação I.
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Tabela 6: Distâncias finais (em Å) entre os átomos da molécula de L-alanina I após convergência
empregando o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero)
na base 6-31++G(d,p).
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Tabela 7: Distâncias finais (em Å) entre os átomos da molécula de L-alanina I após convergência
empregando o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero)
na base 6-311++G(3d,3p).
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Tabela 8: Distâncias finais (em Å) entre os átomos da molécula de L-alanina I após convergência
empregando o método do funcional da densidade (DFT) de camada fechada (spin igual a zero)
na base 6-31++G(d,p).
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Tabela 9: Comprimentos de ligação R (em Å), ângulos θ e ângulos de diedro τ entre os átomos
da molécula de L-alanina I na configuração após convergência empregando o método de Hartree-
Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 10: Comprimentos de ligação R (em Å), ângulos θ e ângulos de diedro τ entre os átomos
da molécula de L-alanina I na configuração após convergência empregando o método de Hartree-
Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 11: Comprimentos de ligação R (em Å), ângulos θ e ângulos de diedro τ entre os átomos
da molécula de L-alanina I na configuração após convergência empregando o método do funcional
da densidade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 12: Comprimentos de ligação R (em Å) e ângulos θ entre átomos selecionados da molécula
de L-alanina I na configuração após convergência empregando o método do funcional da densi-
dade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p). Os resultados são
comparados com cálculos publicados na literatura usando a aproximação de Hartree-Fock (HF)
e teoria da perturbação MP2 [153].



76 2 Cálculos ab initio para a molécula de L-alanina

2.2.3 Propriedades eletrônicas e vibracionais

Antes de iniciar esta análise, vale a pena lembrar aqui que a conformação I é a que pos-

sui energia total mais baixa. Um confronto com as energias calculadas para a conformação

II será apresentado na seção 2.3.3.

As tabelas 13, 14 e 15 indicam as energias finais obtidas nos cálculos HF e DFT

efetuados. Para comparar, usaremos os resultados obtidos por Blanco et al. [164], que

realizaram cálculos para otimização das geometrias de mais baixa energia da alanina

usando teoria da perturbação de Møller-Plesset de segunda ordem (MP2) na aproximação

de caroço congelado (frozen core), e um conjunto de base 6-311++G(d,p). No trabalho

desses autores, as energias foram calculadas via teoria de perturbação de quarta ordem

(MP4) aplicada às geometrias já convergidas. Na tabela 13, que apresenta o resultado

de cálculo RHF simples (base 6-31++G(d,p), a energia final foi de -321.898 H, sendo

a energia de interação núcleo-núcleo igual a 251.011 H, a energia de interação elétron-

núcleo, -1258.264 H e a energia cinética eletrônica, 321.285 H. A energia vibracional de

ponto zero é igual a 305098.1 J/mol, o que equivale a 3.167 eV ou 0.1164 H.

Já o cálculo refinado (base 6-311++G(3d,3p)) apresentou uma energia de -321.989

H com contribuições de 251.544 H, -1260.313 H e 321.929 H oriundas, respectivamente,

das energias de interação núcleo-núcleo, elétron-núcleo e cinética eletrônica. A energia

vibracional de ponto zero calculada foi de 303726.8 J/mol (3.153 eV ou 0.1159 H). O

cálculo DFT (base 6-31++G(d,p), que inclui efeitos de correlação eletrônica, forneceu

uma energia de valor mais baixo: -323.776 H, dos quais 248.066 H provêm da energia de

interação núcleo-núcleo, -1252.489 H da energia de interação elétron-núcleo e 320.764 H

da energia cinética dos elétrons. A energia do movimento vibracional para temperatura

zero é de 283245.4 J/mol (2.94 eV ou 0.108 H). Em comparação, a energia calculada por

Blanco et al. [164] foi de -323.069 H. A diferença entre os métodos DFT e RHF usando a

mesma base, atribúıvel principalmente à correlação eletrônica, é de 1.878 H ou 51.1 eV.

A diferença entre o cálculo DFT e o cálculo MP4 é de 0.707 H ou 19.24 eV.

Godfrey [9] et al. realizaram um estudo do espectro vibracional da alanina na região

de comprimentos de onda milimétricos sem incluir a estrutura hiperfina de acoplamento de

quadrupolo do nitrogênio da molécula. Com o desenvolvimento de instrumentação mais

avançada [164], o problema da vaporização das amostras foi resolvido e o espectro rotaci-

onal foi medido com excelente resolução. Os parâmetros de acoplamento de quadrupolo

nuclear são bastante senśıveis tanto ao meio eletrônico no qual o átomo de nitrogênio está

imerso quanto à sua orientaçào com respeito ao eixo inercial principal, e servem, portanto,
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para determinar sem ambigüidade a identidade das conformações observadas. O espectro

rotacional da conformação I é o de um pião assimétrico com transições de dipolo elétrico

µy dominantes.

As constantes rotacionais calculadas para a L-alanina foram:

• Cálculo RHF simples: 5.14955 GHz (A), 3.13075 GHz (B) e 2.27932 GHz (C).

• Cálculo RHF refinado: 5.17284 GHz (A), 3.12411 GHz (B) e 2.29867 GHz (C).

• Cálculo DFT: 5.03749 GHz (A), 3.02613 GHz (B) e 2.25712 GHz (C).

• Resultados da referência [164] (MP2): 5.074 GHz (A), 3.051 GHz (B) e 2.298 GHz

(C).

• Resultados experimentais [9]: A = 5.0661 GHz, B = 3.1009 GHz e C = 2.264 GHz.

O momento de dipolo da molécula é dominado pela componente y e o módulo µ é igual

a 1.4698 D no cálculo RHF simples e 1.3455 D no cálculo DFT, o que é significativamente

menor que o valor experimental de 1.8 D [9], mas bem próximo do valor calculado teori-

camente (1.41 D) na referência [164]. O momento calculado na aproximação DFT, como

já foi posśıvel perceber, é menor que o obtido na aproximação RHF. Suas componentes

são µx = 0.7292 D, µy = 1.0331 D e µz = −0.4597 D. O resultado obtido por [164] é

µx = 0.64 D, µy = 1.19 D e µz = −0.42 D, o qual se aproxima mais dos valores aqui

obtidos no cálculo RHF.

Não é posśıvel detectar uma tendência na variação das componentes do momento de

quadrupolo quando se muda do método RHF para o método DFT. Já as polarizabilidades

são, em geral, maiores em intensidade no cálculo DFT em comparação com o cálculo

RHF. As componentes obtidas usando DFT são (em Å3): αxx = 58.229, αxy = 0.616,

αyy = 55.028, αxz = 0.550, αyz = −2.727 e αzz = 45.156. As polarizabilidades xx e yy

são mais intensas que a polarizabilidade zz. Ao longo do eixo x, a carga eletrônica tende

a oscilar entre o grupo carboxila e os grupos amina e metila. Já ao longo do eixo y, a

tendência de vibração das cargas é ir do oxigênio 2 e do grupo amina para o oxigênio 1 e

para o grupo metila. No eixo z, a oscilação é entre o hidrogênio 13 que se liga ao carbono

α e os hidrogênios do grupo metila e um dos hidrogênios do grupo amina (dáı o menor

valor).

Por fim, as propriedades termodinâmicas para uma temperatura de 298.15 K e pressão

de 1 atm mostram valores maiores para as energias na aproximação RHF, enquanto a
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aproximação DFT produz valores maiores para o calor espećıfico a volume constante e a

entropia. A componente vibracional domina a energia térmica (70.277 kcal/mol em 72.055

kcal/mol no cálculo DFT). O calor espećıfico a volume constante no cálculo empregando

o funcional da densidade é de 24.139 cal/mol.K e a entropia é de 81.730 cal/mol.K, com

contribuição dominante dos graus de liberdade translacionais (39.372 cal/mol.K). Neste

caso, a entropia vibracional fornece a menor contribuição (15.720 cal/mol.K), enquanto a

entropia rotacional fica num ńıvel intermediário (26.638 cal/mol.K).

Tabela 13: Energia final, energias de interação núcleo-núcleo, elétron-núcleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinâmicas. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 14: Energia final, energias de interação núcleo-núcleo, elétron-núcleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinâmicas. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 15: Energia final, energias de interação núcleo-núcleo, elétron-núcleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinâmicas. Resultados obtidos empregando o método do funcional da densidade (DFT)
de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.2.3.1 Análises de população

As tabelas 16, 17 e 18 apresentam as análises populacionais de Mulliken e APT para

a conformação I da L-alanina. Na análise de Mulliken para o cálculo RHF simples os

dois átomos de oxigênio, o átomo de nitrogênio e os carbonos 5 e 6 aparecem com carga

negativa, enquanto os demais átomos estão positivamente carregados.

Pode-se também contar a carga de um átomo incluindo as cargas dos átomos de

hidrogênio que lhe estão ligados. Neste caso, apenas os oxigênios e o carbono 5 ficam com

excesso de elétrons.

A análise APT revela um quadro um tanto diferente em comparação com os dados da

análise de Mulliken: nenhum átomo de carbono fica carregado negativamente, mas quatro

átomos de hidrogênio, (10, 11, 12 e 13, respectivamente os três hidrogênios do grupo metila

e o hidrogênio ligado diretamente ao carbono α) apresentam cargas ligeiramente negativas.

A incorporação dos hidrogênios deixa apenas os oxigênios e o nitrogênio com excesso de

elétrons e os oxigênios aparecem mais fortemente carregados (-0.827999 e -0.884303, O1 e

O2, respectivamente) na análise APT do que na análise de Mulliken (-0.533587 e -0.545117,

O1 e O2, respectivamente).

Para o cálculo RHF refinado as cargas APT e de Mulliken para os oxigênios são mais

próximas, mas aparece uma senśıvel diferença entre as cargas atribúıdas ao átomo de

nitrogênio (-0.979436 na análise de Mulliken e -0.505231 na análise APT). No caso da

análise de Mulliken, apenas os oxigênios e o nitrogênio revelam-se com carga negativa.

Os resultados obtidos usando DFT são mais similares aos do cálculo RHF simples,

sendo que O1, O2 e N3 apresentam cargas de Mulliken menos negativas, enquanto os

átomos C5 e C6 possuem cargas mais negativas. As cargas APT são mais negativas para

os oxigênios, enquanto os carbonos apresentam sempre carga positiva. Dois hidrogênios,

10 e 13, aparecem negativamente carregados.

Pode-se, portanto, concluir que na conformação I da L-alanina os oxigênios possuem

uma afinidade maior por elétrons, sendo seguidos pelo nitrogênio, que atrai mais forte-

mente os elétrons dos três átomos de hidrogênio que o circundam, o que está de acordo

com o que se esperaria a partir de uma breve análise das eletronegatividades na tabela

periódica dos elementos.
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Tabela 16: Análises populacionais de Mulliken e APT. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 17: Análises populacionais de Mulliken e APT. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 18: Análises populacionais de Mulliken e APT. Resultados obtidos empregando o método
do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.2.3.2 Modos normais de vibração

Foram calculados ab initio os modos normais de vibração para a conformação I da

molécula de L-alanina, sendo elencados os resultados obtidos nas tabelas 19, 20 e 21, jun-

tamente com as atribuições dos modos. Comparando os resultados, observam-se algumas

diferenças nas atribuições entre os resultados DFT e RHF. Por exemplo, as atribuições

dos modos 2 e 3 aparecem trocadas, sendo o modo 2 um twisting do CH3 de acordo com o

cálculo RHF e um twisting do NH2 no cálculo DFT (alguns autores denotam a atribuição

como sendo uma torção dos grupos, por exemplo [165]). Resultados obtidos usando teoria

do funcional da densidade dependente do tempo [132] atribuem uma torção do CH3 para o

segundo modo, o que coincide com o cálculo HF de [165]. É necessário fazer uma correção

das freqüências calculadas através da aproximação de HF. Aqui, usa-se o fator 0.9 base-

ado na referência [166]. As freqüências a partir de 300 cm−1 apresentam atribuições de

stretching. O modo mais energético corresponde ao stretching da ligação O-H no grupo

carboxila, precedido por modos nos quais aparecem stretchings simétricos ou assimétricos

dos grupos amina e metila. Os valores de freqüência calculados segundo a aproximação

DFT são, em geral, maiores que os valores calculados na aproximação RHF corrigida.

A freqüência mais baixa no cálculo RHF na base 6-31++G(d,p) é de 48.97899 cm−1

(comparar com os valores de 51 cm−1 da referência [165] e 188 cm−1 de [132]), e corres-

ponde a uma torção do grupo carboxila. No cálculo RHF na base 6-311++G(3d,3p), esta

freqüência é de 47.20743 cm−1 e no cálculo DFT, 46.3827 cm−1. Já a freqüência mais

alta é de 3709.77264 cm−1 no método RHF/6-31++G(d,p) em comparação com 3605

cm−1 [165] e 3400 cm−1 [132], sendo que esta última referência atribui a vibração a um

stretching assimétrico do grupo amina ao invés do stretching da ligação O-H. Medidas

experimentais de espectroscopia no infravermelho [165] apontam uma freqüência de 3555

cm−1 para o modo mais energético.

As tabela 22 e 23 exibem as atribuições e freqüências obtidas por outros autores, bem

como dados experimentais para efeito de comparação.
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Tabela 19: Freqüências dos modos normais de vibração (calculadas e corrigidas) e atribuições. A
notação para os vários movimentos de átomos nos modos normais é definida do seguinte modo: t
- torção, tw - twisting, s - scissors, w - wagging, r - rocking ; st - stretching ; ı́ndices: s - simétrico,
as - assimétrico. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base de funções 6-31++G(d,p).
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Tabela 20: Freqüências dos modos normais de vibração (calculadas e corrigidas) e atribuições. A
notação para os vários movimentos de átomos nos modos normais é definida do seguinte modo: t
- torção, tw - twisting, s - scissors, w - wagging, r - rocking ; st - stretching ; ı́ndices: s - simétrico,
as - assimétrico. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 21: Freqüências dos modos normais de vibração e atribuições. A notação para os vários
movimentos de átomos nos modos normais é definida do seguinte modo: t - torção, tw - twisting,
s - scissors, w - wagging, r - rocking ; st - stretching ; ı́ndices: s - simétrico, as - assimétrico.
Resultados obtidos empregando o método do funcional da densidade (DFT) de camada fechada
(spin igual a zero) na base 6-31++G(d,p).
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Tabela 22: Quadro comparativo entre freqüências dos modos normais de vibração e atribuições -
primeira parte. Os cálculos de Hartree-Fock e DFT usam a base 6-31++G(d,p). A notação para
os vários movimentos de átomos nos modos normais é definida do seguinte modo: t - torção,
tw - twisting, s - scissors, w - wagging, r - rocking ; st - stretching ; ı́ndices: s - simétrico, as -
assimétrico.
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Tabela 23: Quadro comparativo entre freqüências dos modos normais de vibração e atribuições -
segunda parte. Os cálculos de Hartree-Fock e DFT usam a base 6-31++G(d,p). A notação para
os vários movimentos de átomos nos modos normais é definida do seguinte modo: t - torção,
tw - twisting, s - scissors, w - wagging, r - rocking ; st - stretching ; ı́ndices: s - simétrico, as -
assimétrico.
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2.2.3.3 Espectros Raman e IR

Na Fig. 19 são descritos os espectros Raman e IR da L-alanina. O espectro IR no

cálculo RHF simples apresenta picos de maior intensidade para o modo 26 (intensidade

de 421.862 km/mol, freqüência de 2000.1153 cm−1), que corresponde ao stretching as-

simétrico das ligações O–C=O e ao movimento em tesoura do grupo COH. O segundo

pico mais intenso é criado pelo modo 17 (200.933 km/mol, em 1293.1512 cm−1), o qual

consiste no stretching simétrico das ligações C–C–C, stretching da ligação C=O, movi-

mento em tesoura do grupo COH e wagging do grupo metila. Os outros picos relevantes

ocorrem para os modos 12 (972.4257 cm−1), 8 (625.0106 cm−1), 33 (4121.9696 cm−1) e

16 (1253.9155 cm−1). Para o espectro Raman, os pico de maior intensidade ocorre para

o modo 27 (intensidade 135.666 Å4/u.m.a., freqüência de 3189.3640 cm−1), que corres-

ponde ao stretching simétrico do grupo metila e ao stretching da ligação C–H envolvendo

o carbono α. O segundo pico mais intenso é o do modo 33 (intensidade 87.033 Å4/u.m.a.,

freqüência de 4121.9696 cm−1), quase igual ao terceiro pico mais intenso, no modo 31 (in-

tensidade 86.6487 Å4/u.m.a., freqüência de 3752.9798 cm−1), que consiste no stretching

simétrico do grupo NH2. Picos menos intensos ocorrem para os modos 28 (3224.5373

cm−1), 30 (3289.9999 cm−1) e 29 (3264.6905 cm−1).

Para o cálculo RHF refinado, o espectro Raman repete os picos caracteŕısticos que

foram obtidos usando o cálculo RHF simples, mas a intensidade do pico mais intenso é

visivelmente reduzida. O espectro IR também apresenta praticamente o mesmo padrão

na localização dos picos mais relevantes, com redução do pico máximo associado ao modo

26.

Finalmente, no cálculo DFT, o espectro Raman tem máximo no modo 33 (3747.2909

cm−1, intensidade de 169.543 Å4/u.m.a.), correspondendo ao stretching da ligação O–H.

O segundo pico mais intenso é o do modo 27 (3047.2280 cm−1, intensidade de 161.414

Å4/u.m.a.) e o terceiro pico no modo 31 (3503.6800 cm−1, intensidade de 105.644 Å4/u.m.a.).

Já o espectro IR possui máximo no modo 26, com freqüência de 1811.3365 cm−1 e inten-

sidade de 308.185 km/mol. O segundo pico mais relevante do espectro IR corresponde

ao modo 16, com freqüência de 1135.1521 cm−1 e intensidade de 273.915 km/mol, e o

terceiro pico é associado ao modo 12 (887.1113 cm−1, intensidade de 153.226 km/mol).

Picos menos intensos ocorrem para os modos 8 e 33.

Dados experimentais [165] mostram picos significativos nos modos 33, 30, 26, 25, 21,

20, 18, 16, 14, 13, 12, 11, 10 e 8, que coincidem razoavelmente bem com os picos calculados

neste trabalho.
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á
lc

u
lo

s
a
b

in
it
io

p
a
ra

a
m

o
lé
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Figura 19: Espectros Raman e infravermelho (IR) para a L-alanina neutra na conformação I.
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2.2.3.4 Depolarizações Raman

As depolarizações Raman foram obtidas para a L-alanina (Fig. 20) considerando luz

incidente plano-polarizada e não-polarizada.

Fazendo um breve sumário, de acordo com o cálculo RHF simples, a depolarização

nos casos plano-polarizado e não-polarizado é mais intensa para os modos 2, 3 e 24. No

cálculo RHF refinado, os modos 24, 2 e 3 também são dominantes em ambos os tipos de

radiação incidente, o mesmo ocorrendo no cálculo DFT.
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Figura 20: Depolarizações Raman para radiação plano-polarizada (P) e não-polarizada (N) no caso da L-alanina neutra na conformação I.
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2.2.3.5 Espectro VCD

O cálculo do campo de força harmônico e dos tensores atômicos polar e axial é imple-

mentado no pacote ab initio Gaussian03 [159]. Aqui são apresentados resultados para o

espectro VCD da L-alanina na conformação I usando tanto a abordagem HF (dois con-

juntos de base distintos, como temos feito até agora: 6-31++G(d,p) e 6-311++G(3d,3p))

como DFT (funcional h́ıbrido B3LYP e base 6-31++G(d,p)).

A Fig. 21 apresenta os gráficos do espectro VCD nesses três casos. Observa-se em

todos eles que os picos mais significativos encontram-se abaixo do número de onda 2000

cm−1, com destaque para os picos que correspondem aos modos 16, 17, 20, 8, 9 e 3.

No cálculo RHF, o modo 16 corresponde ao stretching assimétrico das ligações C–C–

N, ao stretching da ligação C–O e ao movimento em tesoura das ligações C–O–H. Já

no cálculo DFT, a atribuição muda para um stretching assimétrico das ligações C–C–C,

um stretching da ligação C–N, mantendo o stretching da ligação C–O e um movimento

tesoura das ligações do grupo C–O–H. O modo 17 no cálculo DFT envolve o stretching

simétrico do grupo C-C-C, o stretching das ligações C–O e C–N e o wagging do grupo CH3.

O modo 20 envolve o stretching assimétrico da ligação C–C–C, rocking do grupo NH2,

stretching da ligação C–O e o movimento em tesoura do grupo C–O–H. Com intensidade

menor, o modo 8 consiste no twisting do grupo C–O–H, no stretching da ligação entre

o carbono α e o carbono do grupo CH3 e no movimento em tesoura das ligações C–

C–C. O modo 9 envolve o wagging das ligações C-C-N, o stretching da ligação C–O e

o rocking das ligações C–C–H, onde o H faz parte do grupo metila. Por fim, o modo

3 corresponde ao twisting deste último. Pode-se notar a tendência de os picos mais

intensos corresponderem a stretchings simétricos ou assimétricos ao longo das ligações C–

C–C–N, ou seja, tais vibrações apresentam dicróısmo mais acentuado (e, portanto, maior

diferença de comportamento entre as geometrias levógira e dextrógira quanto à absorção

de radiação circularmente polarizada). Comparando os três diferentes métodos entre si,

observa-se também que o cálculo RHF com base 6-311++G(3d,3p) apresenta picos mais

intensos, enquanto o cálculo RHF na base 6-31++G(d,p) apresenta picos com intensidades

da mesma ordem das obtidas usando o cálculo DFT usando esta mesma base.
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Figura 21: Espectro VCD calculado para a L-alanina neutra na conformação I.
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2.2.3.6 Ńıveis de energia e orbitais moleculares

Foram calculados os ńıveis de energia dos orbitais ocupados e de alguns orbitais vir-

tuais, sendo apresentados os resultados nas tabelas de 24 a 26. A molécula de L-alanina

possui 48 elétrons distribúıdos em 24 orbitais moleculares, cada orbital contendo dois

elétrons com spins opostos. Em destaque, aparecem o orbital ocupado de mais alta ener-

gia (Highest Occupied Molecular Orbital – HOMO) e o orbital não-ocupado de mais baixa

energia (Lowest Unoccupied Molecular Orbital – LUMO). Para o cálculo RHF simples,

a energia do orbital HOMO é de -0.40587 H e a energia do orbital LUMO é de 0.04156

H, o que resulta num gap de energia HOMO-LUMO igual a 0.44743 H ou 12.1752 eV.

No cálculo RHF refinado, os valores de energia para os orbitais HOMO e LUMO são,

respectivamente, -0.40740 H e 0.03942 H, perfazendo um gap de 0.44682 H ou 12.1586

eV. Vê-se, portanto, que o aumento no tamanho da base para o cálculo RHF promove

uma ligeira redução no gap de energia entre os orbitais fronteira.

Pode-se constatar também que os ńıveis de energia dos orbitais virtuais mudam signi-

ficativamente quando o ńıvel de refinamento do cálculo é maior. O último orbital virtual

apresentado nas tabelas, de número 75, possui energia de 0.59571 H no cálculo efetuado

usando a base 6-311++G(3d,3p), e 1.01477 eV no cálculo feito na base 6-31++G(d,p),

uma diferença de 0.41906 H ou aproximadamente 11.4 eV.

Já para o cálculo DFT, o orbital HOMO apresenta energia igual a -0.26010 H e o

orbital LUMO, energia igual a -0.01814 H, o que leva a um gap de 0.24196 H ou 6.5841

eV. O gap obtido segundo a teoria do funcional da densidade é, portanto, quase metade

do gap previsto na aproximação de Hartree-Fock, conseqüência do efeito de correlação

eletrônica negligenciado na aproximação HF.

A Fig. 22 apresenta isosuperf́ıcies de amplitude máxima representando a distribuição

espacial dos orbitais HOMO e LUMO calculados. Pode-se notar em todos os casos que

a isosuperf́ıcie do orbital HOMO considerada envolve praticamente toda a molécula, com

destaque para as ligações de hidrogênio entre o grupo NH2 e o oxigênio que não está ligado

ao átomo de hidrogênio do grupo carboxila. Já a isosuperf́ıcie correspondendo ao orbi-

tal LUMO encontra-se espacialmente afastada das vizinhanças dos átomos que formam

a molécula de L-alanina, formando uma espécie de nuvem em volta do grupo carboxila.

O cálculo RHF simples é o que apresenta uma tendência mais forte nesse sentido. As

isosuperf́ıcies do orbital LUMO calculados pelo método DFT e pelo método RHF refi-

nado apresentam-se mais próximas da molécula. Pode-se notar que, nesta configuração

eletrônica, a amplitude de probabilidade em volta do grupo amina é pequena. Numa
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eventual transição HOMO-LUMO, um dos elétrons salta de um lado da molécula (grupo

amina) para o outro (grupo carboxila).
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Tabela 24: Energias dos orbitais moleculares da L-Alanina na conformação I. Estados ocupados
em verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando
o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-
31++G(d,p).



100 2 Cálculos ab initio para a molécula de L-alanina

Tabela 25: Energias dos orbitais moleculares da L-Alanina na conformação I. Estados ocupados
em verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando
o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-
311++G(3d,3p).
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Tabela 26: Energias dos orbitais moleculares da L-Alanina na conformação I. Estados ocupados
em verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando
o método do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base
6-31++G(d,p).
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Figura 22: Isosuperf́ıcies de amplitude máxima para os orbitais HOMO (todos os que ficam à
esquerda) e LUMO (à direita) da molécula de L-Alanina na conformação I.
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2.3 Conformação II

2.3.1 Convergência

Uma descrição gráfica da convergência para os diferentes cálculos de otimização da

geometria é apresentada na Fig. 23. Para o cálculo RHF simples, partindo de uma

configuração inicial zwitteriônica, foram necessários 55 passos até a estabilização completa

da estrutura (que implica na transferência de um hidrogênio do grupo amônia para o grupo

COO). O output foi usado como entrada para o segundo cálculo RHF, agora usando uma

base maior (cálculo RHF refinado), o qual exigiu apenas cinco iterações. Por fim, partindo

novamente da configuração zwitteriônica, a geometria foi otimizada no formalismo da

teoria do funcional da densidade em 40 passos. A tabela 27 mostra as forças sobre os

átomos após cada processamento.
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Figura 23: Convergência da energia e da força média quadrática no cálculo RHF para a L-alanina na conformação II usando três métodos distintos.
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Tabela 27: Forças sobre cada átomo após convergência.
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2.3.2 Geometria

Blanco et al. [164] estudaram o espectro de rotação de jatos resfriados de alanina

neutra através de espectroscopia de microondas. Os espectros das duas formas mais

estáveis da molécula foi medido no intervalo de freqüências entre 6 e 18 GHz. As estruturas

das conformações foram determinadas experimentalmente, revelando que a estrutura do

aminoácido não é planar. Para a conformação I, mais estável, o grupo carboxila adota

uma configuração cis e uma ligação de hidrogênio bifurcada é formada entre o grupo amina

e um átomo de oxigênio do grupo carboxila. Para a conformação II, o grupo COOH adota

uma configuração trans e é estabilizado por uma ligação de hidrogênio entre o hidrogênio

do grupo carboxila e o átomo de nitrogênio.

As coordenadas finais obtidas nas três modalidades de cálculo seguidas no presente

caṕıtulo estão indicadas na tabela 28, e as distâncias entre os átomos encontram-se nas

tabelas 29, 30 e 31. As tabelas 32, 33 e 34 apresentam os comprimentos de ligação, ângulos

entre ligações e torções, que serão comparados com os medidos na referência [164].

Para o cálculo RHF simples (base 6-31++G(d,p)), a distância entre o carbono 4 e

o oxigênio 1 é de 1.3197 Å, a qual diminui para 1.3175 Å no cálculo RHF refinado. O

comprimento desta mesma ligação, no cálculo DFT, aumenta para 1.3424 Å. A medida

experimental é 1.372 Å. Comparando a distância obtida pelo método DFT para a con-

formação I (1.3574 Å), observa-se que o comprimento da conformação II (1.3424 Å) é um

pouco menor. Na conformação II, a ligação entre os carbonos 4 e 5 é de 1.5337 Å (RHF

simples), 1.5324 Å (RHF refinado) e 1.5445 (DFT). Em comparação com a medida expe-

rimental de 1.525 Å, nota-se que os cálculos ab initio fornecem comprimentos de ligação

maiores. Comparando com a conformação I, a distância entre C4 e C5 é de 1.5324 Å

(DFT), valor menor que o calculado para a conformação II.

Para a ligação entre o átomo de carbono e o átomo de nitrogênio, os comprimentos

são 1.459 Å (cálculo RHF simples), 1.4592 Å (cálculo RHF refinado) e 1.4756 Å (cálculo

DFT). Os valores obtidos usando o método de Hartree-Fock aproximam-se bastante do

valor experimental de 1.459 Å. O comprimento da ligação entre os carbonos 5 e 6 é de

1.5267 Å (RHF simples), 1.5249 Å (RHF refinado) e 1.5341 Å (DFT), com a medida

experimental igual a 1.5438 Å. A distância entre o carbono 5 e o hidrogênio 13 é de 1.087

Å (RHF simples), 1.0848 Å (RHF refinado), 1.0967 Å (DFT) e 1.100 Å (experimental).

Observa-se que a tendência, observada para a conformação I, de aumento no comprimento

das ligações calculadas a partir da teoria do funcional da densidade em comparação com

os cálculos que empregam a abordagem de Hartree-Fock é respeitada também no caso da
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conformação II.

A ligação de hidrogênio entre o átomo H7 e o átomo de nitrogênio possui comprimento

igual a 2.031929 Å no cálculo RHF simples, diminuindo um pouco para 2.030465 Å no

cálculo RHF refinado e diminuindo mais ainda para 1.907412 Å no cálculo DFT. A medida

experimental é de 1.96 Å [164].

O ângulo formado pelas ligações dos átomos C–C–C é igual a 111.22380 (RHF sim-

ples), 111.21780 (RHF refinado), 109.25270 (DFT), 107.10 (experimental). A correlação

eletrônica, neste caso, tende a diminuir a abertura do ângulo, aproximando-se melhor do

resultado experimental. Para o ângulo entre os átomos C–C=O, os cálculos atribuem os

valores 122.46650 (RHF simples), 122.60440 (RHF refinado) e 122.62690 (DFT), sendo o

valor experimental igual a 1250. Aqui a correlação aumenta o ângulo entre as ligações.

O ângulo entre as ligações C4–C5 e C5–N3 é de 110.0630 (RHF simples), 110.22940

(RHF refinado), 109.33450 (DFT) e 111.70 (experimental). O erro em relação ao valor

experimental aumenta com a introdução da correlação eletrônica por conta da inexatidão

do funcional.

Para o ângulo de diedro formado pelas ligações N–C–C=O, os valores calculados foram

18.34210 (RHF simples), 18.92020 (RHF refinado) e 13.05120 (DFT). O valor medido é

130, bem próximo do calculado usando a teoria do funcional da densidade. Já o ângulo

de diedro N–C–C–O é de 163.98290 (RHF simples), 163.40750 (RHF refinado), 168.18310

(DFT) e 168.5 (experimental). Os cálculos DFT, nesses dois casos, aproximam bem

melhor os ângulos de diedro que os cálculos de Hartree-Fock. A conformação I, para

a diedro N–C–C–O, apresenta um valor menor (161.17940, DFT)que o obtido para a

conformação II (168.18310, DFT).
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Tabela 28: Coordenadas finais (cartesianas) para os átomos da molécula de L-alanina na conformação II.
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Tabela 29: Distâncias finais (em Å) entre os átomos da molécula de L-alanina II após con-
vergência usando o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a
zero) na base 6-31++G(d,p).
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Tabela 30: Distâncias finais (em Å) entre os átomos da molécula de L-alanina II após con-
vergência usando o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a
zero) na base 6-311++G(3d,3p).
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Tabela 31: Distâncias finais (em Å) entre os átomos da molécula de L-alanina II após con-
vergência empregando o método do funcional da densidade (DFT) de camada fechada (spin
igual a zero) na base 6-31++G(d,p).
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Tabela 32: Comprimentos de ligação R (em Å), ângulos θ e ângulos de diedro τ entre os átomos
da molécula de L-alanina II na configuração após convergência empregando o método de Hartree-
Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 33: Comprimentos de ligação R (em Å), ângulos θ e ângulos de diedro τ entre os átomos
da molécula de L-alanina II na configuração após convergência empregando o método de Hartree-
Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 34: Comprimentos de ligação R (em Å), ângulos θ e ângulos de diedro τ entre os átomos da
molécula de L-alanina II na configuração após convergência empregando o método do funcional
da densidade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.3.3 Propriedades eletrônicas e vibracionais

Na seqüência de apresentação de resultados temos, nas tabelas 35, 36 e 37, dados sobre

energias, constantes rotacionais, momentos de dipolo e quadrupolo, polarizabilidades e

propriedades termodinâmicas da conformação II da L-alanina.

A energia final calculada foi de -321.8945 H (RHF simples), -321.9853 H (RHF re-

finado) e -323.7765 (DFT), valores em geral um pouco maiores que os obtidos para a

conformação I, de mais baixa energia: -321.8984 H (RHF simples), -321.9889 H (RHF re-

finado) e -323.7765 H (DFT). A diferença de energia entre a conformação I e a conformação

II no cálculo RHF utilizando a base 6-31++G(d,p) é de 0.00384 H ou aproximadamente

104.6 meV. A mesma diferença usando o cálculo DFT passa a ser igual a -0.000013 H, ou

-0.347 meV. Em comparação, a referência [167], usando teoria da perturbação de segunda

ordem (MP2), obteve energias de -323.1030 H e -323.1028 H para as conformações I e

II, respectivamente, com uma diferença de 0.00022 H ou aproximadamente 6 meV. Já a

referência [164], usando MP4, obteve energias de -323.06948 H (I) e -323.06897 H (II),

uma diferença de 0.000506 H ou 13.76 meV. As duas conformações, portanto, apresentam

valores de energia extremamente próximos, indicando uma provável coexistência na fase

gasosa à temperatura ambiente. Um cálculo DFT refinado (base 6-311++G(3d,3p)), ob-

teve energia de -323.8702 H para a conformação I e -323.8699 H para a conformação II,

uma variação de 0.00034 H ou 9.24 meV entre as duas geometrias da L-alanina.

A energia de interação núcleo-núcleo é de 251.6229 H de acordo com o cálculo RHF

simples, 252.1412 H no cálculo RHF refinado e 249.593 H no cálculo DFT. Já a energia

de interação elétron-núcleo é igual a -1259.421 H (RHF simples), -1261.4481 H (RHF

refinado) e -1255.4853 (DFT). Por fim, a energia cinética total para os elétrons é igual a

321.2759 H (RHF simples), 321.9265 H (RHF refinado) e 320.7617 H (DFT). No cálculo

DFT, os elétrons se movem um pouco mais devagar que nos cálculos RHF, passando menos

tempo nas vizinhanças dos núcleos atômicos (ou seja, o tamanho da molécula no cálculo

DFT é um pouco maior, o que, de fato, é demonstrado pelos maiores comprimentos de

ligação obtidos segundo o método do funcional da densidade).

As constantes rotacionais calculadas foram: A = 4.97054 GHz (RHF simples), 4.99807

GHz (RHF refinado), 4.93183 GHz (DFT); B = 3.45241 GHz (RHF simples), 3.45952

GHz (RHF refinado), 3.21553 GHz (DFT); C = 2.17077 GHz (RHF simples), 2.17656

GHz (RHF refinado), 2.27657 (DFT). Dados obtidos usando MP2 [164] atribuem valores

de 4.993 GHz, 3.197 GHz e 2.344 GHz para as constantes rotacionais A, B e C, respecti-

vamente. Os valores experimentais obtidos por Godfrey et al. [9] foram A = 4.9731 GHz,
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B = 3.2283 GHz e C = 2.3078 GHz. Em geral, como se pode perceber, o cálculo DFT

fornece um erro menor que os cálculos RHF para as constantes rotacionais em comparação

com o experimento.

O momento de dipolo da conformação II é de 5.1 D [9], menor que os valores obtidos

teoricamente (5.682 D no cálculo DFT). A componente x do vetor é dominante sobre

as demais, e aponta ao longo do eixo que liga os carbonos 4 e 5, tendo num extremo

da molécula o grupo carboxila e no outro os grupos amina e metila. Isto contrasta

com o que ocorre na conformação I, onde a componente dominante aponta ao longo do

eixo y, perpendicular à ligação entre os carbonos 4 e 5. Os momentos de quadrupolo

apresentam componentes xx e yy com intensidades próximas. Já as polarizabilidades

calculadas usando DFT são mais intensas que as obtidas pelo método Hartree-Fock, com

termos xx e yy quase iguais.

A energia vibracional de ponto zero é de 306447.3 J/mol (aproximadamente 3.18 eV

ou 0.117 H, no cálculo RHF simples), 305111.5 J/mol (aproximadamente 3.17 eV ou 0.116

H, no cálculo RHF refinado) e 284505.8 J/mol (aproximadamente 2.95 eV ou 0.108 H,

DFT). A energia interna para o gás à temperatura de 298.15 K e pressão de 1 atm é de

72.170 kcal/mol (DFT), com contribuição dominante das vibrações (70.393 kcal/mol). O

calor espećıfico a volume constante é de 23.376 cal/mol.K (DFT) e a entropia é de 80.169

cal/mol.K (DFT), com contribuição dos graus de liberdade translacionais dominante.
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Tabela 35: Energia final, energias de interação núcleo-núcleo, elétron-núcleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinâmicas. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 36: Energia final, energias de interação núcleo-núcleo, elétron-núcleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinâmicas. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 37: Energia final, energias de interação núcleo-núcleo, elétron-núcleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinâmicas. Resultados obtidos empregando o método do funcional da densidade (DFT)
de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.3.3.1 Análises de população

Análises populacionais de Mulliken e APT são apresentadas nas tabelas 38, 39 e 40.

Para o cálculo RHF simples, os oxigênios 1 e 2 possuem, respectivamente, cargas de

Mulliken iguais a -0.542613 e -0.543457, enquanto o nitrogênio possui carga de -0.681818.

O carbono 6 também possui carga negativa (-0.370072). Os outros átomos possuem certa

carência de elétrons, com destaque para o carbono 4 (0.525141), que se liga aos oxigênios.

Incorporando os átomos de hidrogênio aos quais está unido, a carga do oxigênio 1 passa

a ser -0.114034, e a carga do nitrogênio praticamente é nula (-0.062084). Já as cargas

APT para O1 e O2 são, respectivamente, -0.869883 e -0.890202, e a carga do átomo de

nitrogênio passa a ser -0.578505. Três átomos de hidrogênio, 10, 12 e 13, adquirem ligeira

carga negativa. Incorporando os átomos de hidrogênio, a carga do oxigênio 1 torna-se

-0.456403 e a carga do átomo de nitrogênio é -0.235622. Enquanto as cargas de Mulliken

calculadas apontam o nitrogênio como mais negativo que qualquer um dos átomos de

oxigênio, a situação se inverte no resultado para as cargas APT.

No cálculo RHF refinado, as cargas de Mulliken dos oxigênios 1 e 2 indicam excesso de

elétrons (-0.932849 e -0.923756), bem como a carga do átomo de nitrogênio (-1.018464). O

átomo de carbono que faz parte do grupo carboxila possui maior carga positiva (1.617118)

seguido pelo hidrogênio 7 da ligação O-H (0.505472), demonstrando a afinidade dos átomos

de oxigênio por elétrons. Somando as cargas dos hidrogênios à carga dos átomos aos quais

eles se ligam, temos uma carga de -0.427377 para o oxigênio 1 e -0.634787 para o átomo

de nitrogênio, que seqüestra carga eletrônica não só dos hidrogênios que o circundam

mas também do átomo de carbono 5 e um pouco do hidrogênio 13. Já as cargas APT

apresentam o seguinte quadro: os oxigênios 1 e 2 possuem cargas um pouco menores em

módulo que as previstas pelo método de Mulliken: -0.828842 e -0.876402, respectivamente.

O nitrogênio possui carga de -0.542546 e o carbono 4 continua sendo o átomo com mais

carência de elétrons, 1.239597. Os hidrogênios 10, 12 e 13 aparecem novamente com um

pouco de carga negativa. Incorporando a carga do hidrogênio 7 à carga do oxigênio 1,

esta passa a ser de -0.431477, enquanto o nitrogênio passa a ter carga -0.228616 quando

lhe são acrescentadas as cargas dos hidrogênios 10, 11 e 12.

As cargas de Mulliken de O1 e O2 calculadas usando DFT são menores em valor

absoluto que as obtidas no cálculo RHF simples: -0.392111 e -0.450754. O mesmo ocorre

com o nitrogênio, -0.622593. O carbono 6 aparece negativamente carregado (-0.559932)

juntamente com o carbono 5 (-0.176299). O carbono 4 possui carga positiva de 0.434640,

seguido de perto pelo hidrogênio 7 (do grupo O-H), com carga 0.409317. Incorporando
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as cargas dos hidrogênios, o oxigênio 1 passa a ter um pouco de carga positiva (0.017206)

e os carbonos 5 e 6 ficam praticamente neutros, juntamente com o nitrogênio. Para as

cargas APT, os oxigênios possuem certo excedente de elétrons (-0.773961 para O1 e -

0.751090 para O2) juntamente com o nitrogênio (-0.517777). Os carbonos possuem carga

positiva, especialmente o carbono 4 (1.073354), e os hidrogênios 10, 12 e 13 aparecem

negativamente carregados. Com os hidrogênios incorporados, a carga do oxigênio 1 passa

a ser -0.373885 e a carga do nitrogênio, -0.215180. Na conformação I (cálculo DFT) as

cargas APT dos oxigênios e do nitrogênio revelam uma menor quantidade de elétrons em

confronto com a conformação II.
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Tabela 38: Análises populacionais de Mulliken e APT. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 39: Análises populacionais de Mulliken e APT. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 40: Análises populacionais de Mulliken e APT. Resultados obtidos empregando o método
do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.3.3.2 Modos normais de vibração

Para o cálculo RHF na base 6-31++G(d,p) (ver tabela 41), o modo normal de vi-

bração de mais baixa energia ocorre para uma freqüência (corrigida) de 54.83196 cm−1,

que corresponde à torção do grupo carboxila (como, aliás, também ocorre para a con-

formação I). Em seguida vem um modo para a freqüência de 225.58941 cm−1, associado

ao twisting dos grupos metila e amina e o terceiro modo em 262.25298 cm−1, com as

mesmas atribuições do segundo modo mais o wagging do grupo COH. No outro extremo

do espectro, o modo mais energético ocorre para uma freqüência de 3631.11453 cm−1, as-

sociado ao stretching da ligação O-H (outra semelhança com a conformação I). O segundo

modo mais energético ocorre na freqüência de 3462.9622 cm−1, atribúıdo ao stretching as-

simétrico do grupo amina, e o terceiro modo ocorre para 3376.84923 cm−1, com stretching

simétrico do grupo amina e stretching da ligação O-H.

O cálculo RHF refinado (tabela 42) conserva as mesmas atribuições vibracionais do

cálculo RHF simples, mas a freqüência de mais baixa energia sobe para 55.37736 cm−1.

Já a segunda freqüência diminui para 224.53965 cm−1 e a terceira cai para 255.63411

cm−1. O modo 33 possui freqüência de 3620.54475 cm−1 e os modos 32 e 31 ocorrem com

freqüências de 3427.04637 cm−1 e 3351.44961, mais baixas que as encontradas no cálculo

RHF com base reduzida.

Os resultados do cálculo DFT (tabela 43) manifestam algumas diferenças nas atri-

buições dos modos num comparativo com os resultados determinados via método de

Hartree-Fock. O modo 1 ocorre na freqüência 57.1740 cm−1 e o modo 2, para 234.2141

cm−1. Neste último caso, a atribuição é um movimento em tesoura das ligações C–C–

C, e não o twisting dos grupos metila e amina indicado pelos resultados HF. O modo

3 possui freqüência igual a 253.4151 e consiste num twisting do grupo metila e um roc-

king dos átomos C–O–O. O modo 33 não é o stretching da ligação O–H (HF), mas um

stretching assimétrico do grupo amina, com freqüência de 3614.6483 cm−1, e o modo 32

é um stretching simétrico dos átomos de hidrogênio ligados ao nitrogênio com freqüência

igual a 3527.4481 cm−1. O modo 31 é atribúıdo ao stretching da ligação O–H juntamente

com o stretching simétrico do grupo amina, e sua freqüência é de 3455.3602 cm−1. As

freqüências mais alta e mais baixa no cálculo DFT são, respectivamente, menor e maior

que as correspondentes no cálculo RHF.
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Tabela 41: Freqüências dos modos normais de vibração (calculadas e corrigidas) e respectivas
atribuições. A notação para os vários movimentos de átomos nos modos normais é definida do
seguinte modo: t - torção, tw - twisting, s - scissors, w - wagging, r - rocking ; st - stretching ;
ı́ndices: s - simétrico, as - assimétrico. Resultados obtidos empregando o método de Hartree-Fock
restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 42: Freqüências dos modos normais de vibração (calculadas e corrigidas) e respectivas
atribuições. A notação para os vários movimentos de átomos nos modos normais é definida do
seguinte modo: t - torção, tw - twisting, s - scissors, w - wagging, r - rocking ; st - stretching ;
ı́ndices: s - simétrico, as - assimétrico. Resultados obtidos empregando o método de Hartree-Fock
restrito (RHF) de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 43: Freqüências dos modos normais de vibração e atribuições. A notação para os vários
movimentos de átomos nos modos normais é definida do seguinte modo: t - torção, tw - twisting,
s - scissors, w - wagging, r - rocking ; st - stretching ; ı́ndices: s - simétrico, as - assimétrico.
Resultados obtidos empregando o método do funcional da densidade (DFT) de camada fechada
(spin igual a zero) na base 6-31++G(d,p).
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2.3.3.3 Espectros Raman, IR, depolarizações Raman e VCD

A Fig. 24 apresenta os espectros Raman e infravermelho para a conformação II. No

cálculo RHF simples, o pico Raman mais intenso corresponde ao modo normal de número

27 (140.724 Å4/u.m.a., atribuição: stretching simétrico do grupo metila e stretching da

ligação C–H envolvendo o carbono α), seguido pelos modos 31 (89.6513 Å4/u.m.a., atri-

buição: stretching simétrico do grupo amina e stretching da ligação O–H), 28 (80.4356

Å4/u.m.a., atribuição: stretching da ligação C–H envolvendo o carbono α), 30 (59.6568

Å4/u.m.a., atribuição: stretching simétrico de duas ligações de hidrogênio do grupo metila

com stretching assimétrico da terceira ligação), 29 (54.2893 Å4/u.m.a., atribuição: stret-

ching assimétrico de duas ligações do grupo metila, stretching da ligação entre o carbono

α e o átomo de hidrogênio) e 32 (53.3683 Å4/u.m.a., atribuição: stretching assimétrico do

grupo amina). Somente os modos a partir de 3150 cm−1 contribuem significativamente

para o espectro Raman. Já o espectro infravermelho apresenta pico máximo para o modo

26 (410.037 km/mol, atribuição: stretching assimétrico das ligações O–C=O, stretching

simétrico das ligações C–C–O e movimento em tesoura do grupo C–O–H), com os picos

21 (247.701 km/mol, atribuição: wagging do grupo metila, movimento em tesoura do

grupo C-O-H, stretching assimétrico das ligações C–C–C e stretching da ligação C–O), 33

(219.778 km/mol) e 20 (154.648 km/mol, atribuição: stretching assimétrico das ligações

C–C–N, rocking do grupo amina, stretching da ligação C–O, movimento em tesoura do

grupo C–O–H e wagging do grupo metila) sucedendo-se em intensidade. Existe uma

espécie de janela no infravermelho entre os picos 26 e 33. O espectro de depolarização

Raman da Fig. 25, tanto para onda incidente plano-polarizada e não-polarizada, possui

pico mais intenso no modo 20. Já o espectro VCD (Fig. 26) exibe máximo para o modo

21 e mı́nimo para o modo 20 (em comparação, a conformação I apresenta máximo no

modo 16 e mı́nimo no modo 20 usando o mesmo método de cálculo).

No cálculo RHF refinado (base 6-311++G(3d,3p)), o pico mais significativo do es-

pectro Raman continua no modo 27 (intensidade 152.901 Å4/u.m.a., um pouco maior),

seguido pelo pico no modo 31 (intensidade de 88.295 Å4/u.m.a., um pouco menor). No

espectro infravermelho, o máximo permanece no modo 26, com intensidade de 399.458

km/mol (um pouco menor que o obtido no cálculo RHF simples), enquanto o segundo pico

mais intenso corresponde ao modo 22 (intensidade 162.522 km/mol) e o terceiro ao modo

21 (intensidade de 151.863 km/mol). Qualitativamente não há muita diferença no aspecto

das depolarizações Raman em comparação com o cálculo RHF simples. O espectro VCD,

por sua vez, apresenta máximo no modo 22 e mı́nimo no modo 20.
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Nos cálculos feitos empregando a teoria do funcional da densidade, o pico Raman

mais intenso corresponde ao modo 27 (intensidade 162.595 Å4/u.m.a., atribuição: stret-

ching simétrico do grupo metila, stretching da ligação entre o carbono α e o hidrogênio

13), seguido pelo pico do modo 32 (intensidade 128.15 Å4/u.m.a., atribuição: stretching

simétrico do grupo amina) e pelo pico do modo 28 (intensidade 78.137 Å4/u.m.a., atri-

buição: stretching da ligação entre o carbono α e o hidrogênio, stretching simétrico do

grupo metila). No espectro infravermelho, o pico mais intenso é o do modo 26, com in-

tensidade de 343.705 km/mol (atribuição idêntica ao modo calculado usando o método de

Hartree-Fock). O segundo lugar pertence ao modo 31, com intensidade 278.876 km/mol

(atribuição: stretching da ligação O-H, stretching simétrico do grupo amina), e o terceiro,

ao modo 22, com intensidade 217.487 km/mol (atribuição: wagging do grupo metila, mo-

vimento em tesoura das ligações do grupo C–O–H e stretching assimétrico das ligações

C–C–O). O espectro de depolarização para radiação incidente plano-polarizada apresenta

um máximo ńıtido no modo 24 (atribuição: wagging envolvendo o grupo metila), en-

quanto o pico para radiação não-polarizada ocorre para o modo 23 (atribuição: wagging e

twisting envolvendo ligações do grupo metila). Já a intensidade VCD máxima ocorre para

o modo 8 (atribuição: movimento em tesoura das ligações C–C–N, C–C=O e wagging do

grupo metila) e a mı́nima para o modo 26 (em comparação, a conformação I apresenta

máximo e mı́nimo nos modos 16 e 17, respectivamente).
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Figura 24: Espectros Raman e infravermelho (IR) para a L-alanina neutra na conformação II.
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Figura 25: Depolarizações Raman para radiação plano-polarizada (P) e não-polarizada (N) no caso da L-alanina neutra na conformação II.
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Figura 26: Espectro VCD calculado para a L-alanina neutra na conformação II.
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2.3.3.4 Ńıveis de energia e orbitais moleculares

Os ńıveis de energia moleculares calculados para a conformação II são apresentados

nas tabelas 44, 45 e 46. No caso do cálculo RHF simples, as energias dos orbitais HOMO

e LUMO são, nesta ordem, -0.41898 H e 0.02944 H, com um gap de 0.44842 H ou 12.20

eV. Para o cálculo RHF refinado, a energia do orbital HOMO é de -0.41917 H e a energia

do orbital LUMO é igual a 0.02853 H, com um gap de 0.4477 H ou 12.18 eV. Finalmente,

no cálculo DFT, o orbital ocupado de mais alta energia possui energia igual a -0.26770

H, enquanto o orbital LUMO possui -0.02984 H, levando a um gap de 0.23786 H ou 6.47

eV. Mais uma vez, a correlação eletrônica contribui para diminuir a separação entre os

ńıveis de energia dos orbitais fronteira. Em comparação, para a conformação I os gaps

calculados foram de 12.18 eV (RHF simples), 12.16 eV (RHF refinado) e 6.58 eV (DFT),

valores maiores que os equivalentes obtidos para a conformação II.

A Fig. 27 apresenta as isosuperf́ıcies de máxima amplitude para os orbitais fron-

teira. Pode-se notar que a superf́ıcie associada ao orbital HOMO, como ocorreu com a

conformação I, envolve toda a molécula. Nota-se nitidamente a existência de uma con-

figuração anti-ligante na região da ligação de hidrogênio entre o hidrogênio do grupo

carboxila e o nitrogênio do grupo amina. Já a isosuperf́ıcie do orbital LUMO apresenta-se

um tanto afastada do corpo da molécula de L-alanina, perto do grupo amina, o que sugere

que a excitação da molécula produz uma certa transferência de carga do grupo COOH

para o grupo NH2.
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Tabela 44: Energias dos orbitais moleculares da L-Alanina na conformação II. Estados ocupados
em verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando
o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-
31++G(d,p).
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Tabela 45: Energias dos orbitais moleculares da L-Alanina na conformação II. Estados ocupados
em verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando
o método de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-
311++G(3d,3p).
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Tabela 46: Energias dos orbitais moleculares da L-Alanina na conformação II. Estados ocupados
em verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando
o método do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base
6-31++G(d,p).
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Figura 27: Isosuperf́ıcies de amplitude máxima para os orbitais HOMO (todos os que ficam à
esquerda) e LUMO (à direita) da molécula de L-Alanina na conformação II.
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2.4 Conformação zwitteŕıon

2.4.1 Convergência

A convergência dos cálculos para a conformação zwitteŕıon (Fig. 28) foi obtida obtida

com solvatação IPCM em água (ver Anexo A, seção A.6.9). Para o cálculo RHF simples,

a otimização demandou 21 iterações, enquanto o cálculo RHF refinado convergiu com 22

iterações. Para o cálculo DFT, foram necessários 14 passos. Todos os cálculos partiram

da mesma configuração inicial, dada na tabela 1. A tabela 47 exibe as forças residuais

sobre cada átomo quando foi alcançada a geometria ótima.
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Figura 28: Convergência da energia e da força média quadrática no cálculo de Hartree-Fock para a L-alanina na conformação zwitteŕıon usando
três métodos distintos.
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Tabela 47: Forças sobre cada átomo após convergência.
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2.4.2 Geometria

Selvarengan e Kolandaivel [168] usaram o método DFT para estudar a estabilidade

conformacional de moléculas de glicina e alanina. As geometrias moleculares foram otimi-

zadas usando os funcionais B3LYP, B3PW91 e B3P86 na base 6-311++G(d,p). Mapas da

superf́ıcie de potencial em três dimensões foram obtidos variando variando três ângulos

de diedro. O cálculo B3LYP foi capaz de prever a estrutura estável correta, mas outros

funcionais testados não produziram a resposta esperada. Os funcionais adotados foram

capazes de prever o número máximo de 6 conformações mı́nimas para a glicina (de 8

conformações conhecidas) e 11 conformações mı́nimas para a alanina (de 13 conformações

conhecidas). Muito embora existam diferenças na ordem das conformações calculadas por

diferentes métodos, os dados obtidos são relevantes. Nóbrega et al. [169] estudaram as

formas zwitteriônica, neutra e transicionais da alanina usando o funcional h́ıbrido B3LYP

e a base 6-31++G(d,p). A transferência protônica intramolecular do oxigênio para o

nitrogênio e o espectro vibracional foram analisados em diferentes meios dielétricos: ace-

tonitrila, etanol, tetracloreto de carbono e no vácuo. A geometria adquirida pelas formas

neutra, zwitteŕıon e transicional foi parecida na acetonitrila e no etanol. O espectro vibra-

cional obtido para a forma zwitteriônica também foi similar no caso destes dois solventes.

Sambrano et al. [170] estudaram a transferência protônica na α-alanina usando métodos

HF e MP2 incluindo efeitos de solvente via teoria de campo de reação autoconsistente.

Uma análise dos seus resultados mostra que a estrutura transicional apresenta um dese-

quiĺıbrio no sentido de que o deslocamento de elétrons se atrasa em relação à transferência

protônica, fazendo com que a formação da nova ligação se dê antes mesmo do desfazi-

mento da ligação antiga. Jalkanen et al. [23] usaram o funcional B3LYP na base 6-31G(d)

para determinar as geometrias e Hessianos da L-alanina em solução aquosa e calcular os

espectros VCD, obtendo bom acordo com uma série de dados experimentais.

A tabela 48 apresenta as coordenadas convergidas da molécula de L-alanina. As

tabelas de 49 a 51 exibem as distâncias entre todos os átomos e as tabelas de 52 a 54, os

comprimentos de ligação, ângulos e diedros. Para o cálculo RHF simples, o comprimento

da ligação C–O é de 1.2342 Å (valor experimental: 1.249 Å [23]), e a ligação C=O possui

comprimento igual a 1.2374 Å (valor experimental: 1.266 Å [23]). A distância entre o

carbono 5 e o átomo de nitrogênio é de 1.4957 Å (comparar com o valor experimental

de 1.495 Å [23]) e a distância entre os carbonos 5 e 6 é de 1.5239 Å (valor experimental:

1.534 Å [23]). No cálculo RHF refinado essas mesmas ligações passam a ter comprimentos

de 1.2275 Å (C–O), 1.2311 Å (C=O), 1.4945 Å (C–N) e 1.5221 Å (C–C), diminuindo
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um pouco. Já os ângulos principais são, no cálculo RHF simples: 128.13670 (O=C–O),

108.9430 (C4–C5–N), 116.69720 (C–C=O, valor experimental: 118.300 [23]) e 115.16520

(C–C–O, valor experimental: 116.000 [23]). No cálculo RHF refinado, tais valores mudam

para: 128.30060 (O=C–O, ligeiro aumento em comparação com o cálculo RHF simples),

108.9540 (C4–C5–N, ligeiro aumento), 116.54170 (C–C=O, ligeira diminuição) e 115.15660

(C–C–O, ligeiro aumento). Por fim, os ângulos de diedro O=C–C–N e O–C–C–N são

de -7.48340 e 172.83140 no cálculo RHF simples, e -8.97760 e 171.37260 no cálculo RHF

refinado.

O funcional B3LYP incorpora efeitos de correlação. Os comprimentos de ligação

calculados são de 1.2561 Å (C–O), 1.2631 Å (C=O), 1.5108 Å (C–N) e 1.5284 Å (C5–C6),

maiores que os obtidos nos cálculos RHF. Já os ângulos são: 128.22590 (O=C–O, ligeiro

aumento em comparação com o cálculo RHF simples), 107.88790 (C4–C5–N, diminuição),

116.21190 (C–C=O, ligeira diminuição) e 115.54210 (C–C–O, ligeiro aumento). Os ângulos

de diedro envolvendo os átomos O=C–C–N e O–C–C–N são, respectivamente, -18.1990

(valor experimental: -18.600) e 163.29490 (valor experimental: 161.500).
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Tabela 48: Coordenadas finais (cartesianas) para os átomos da molécula de L-alanina na conformação zwitteŕıon.



2.4 Conformação zwitteŕıon 145

Tabela 49: Distâncias finais (em Å) entre os átomos da molécula de L-alanina na conformação
zwitteŕıon após convergência empregando o método de Hartree-Fock restrito (RHF) de camada
fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 50: Distâncias finais (em Å) entre os átomos da molécula de L-alanina na conformação
zwitteŕıon após convergência empregando o método de Hartree-Fock restrito (RHF) de camada
fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 51: Distâncias finais (em Å) entre os átomos da molécula de L-alanina na conformação
zwitteŕıon após convergência empregando o método do funcional da densidade (DFT) de camada
fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 52: Comprimentos de ligação R (em Å), ângulos θ e ângulos de diedro τ entre os átomos
da molécula de L-alanina zwitteŕıon na configuração após convergência empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 53: Comprimentos de ligação R (em Å), ângulos θ e ângulos de diedro τ entre os átomos
da molécula de L-alanina zwitteŕıon na configuração após convergência empregando o método de
Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 54: Comprimentos de ligação R (em Å), ângulos θ e ângulos de diedro τ entre os átomos
da molécula de L-alanina zwitteŕıon na configuração após convergência empregando o método
do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.4.3 Propriedades eletrônicas e vibracionais

A energia final calculada no cálculo RHF simples, indicada na tabela 55, é de -321.918

H, com contribuições de 251.0845 H da interação entre os núcleos, -1258.8229 H das

interações entre os elétrons e os núcleos e 321.1178 H da energia cinética eletrônica. No

cálculo RHF refinado (tabela 56) esses valores mudam para -322.0058 H (energia total),

251.6993 H (energia de interação entre os núcleos), -1261.0571 H (energia de interação

entre elétrons e núcleos) e 321.7718 H (energia cinética eletrônica). O cálculo DFT (tabela

57), que inclui efeitos de correlação eletrônica, apresenta uma energia total mais baixa,

igual a -323.7991 H, com contribuições de 248.4322 H da energia de repulsão internuclear, -

1253.6337 H da energia de interação entre os elétrons e os núcleos atômicos e 320.6115 H de

energia cinética dos elétrons. A energia total no cálculo DFT simples para a conformação

I foi de -323.7765 H e, para a conformação II, -323.7765 H, valores menores que a energia

da conformação zwitteŕıon obtida pelo mesmo método.

As constantes rotacionais são:

• Cálculo RHF simples: A =5.01044 GHz, B = 3.30472 GHz, C = 2.26727 GHz.

• Cálculo RHF refinado: A =5.04258 GHz, B = 3.30163 GHz e C = 2.28435 GHz.

• Cálculo DFT usando o funcional h́ıbrido B3LYP: A = 4.91794 GHz, B = 3.15443

GHz e C = 2.28643 GHz.

O módulo do momento de dipolo da molécula é igual a: 14. 8770 D (cálculo RHF

simples), 14.6227 D (cálculo RHF refinado) e 14.3398 D (cálculo DFT), com a maior

componente apontando ao longo do eixo x, que é quase paralelo à direção da ligação

entre os carbonos 4 e 5, ficando os grupos NH+

3 e COO− em lados opostos. Tal momento

de dipolo é bem maior que o determinado para a conformação I e quase o triplo do

momento de dipolo da conformação II. A componente xx do momento de quadrupolo é a

que apresenta maior valor absoluto.

O elemento xx do tensor de polarizabilidade domina, sendo igual a: 59.165 Å3 (cálculo

RHF simples), 64.543 Å3 (cálculo RHF refinado) e 73.143 Å3 (cálculo DFT). Em segundo

lugar vem a componente yy e em terceiro a componente zz. Como esperado, a forma

zwitteŕıon é mais polarizável que as conformações I e II.

Quanto às propriedades termodinâmicas, a energia de ponto zero é de 305369.3 J/mol

(cálculo RHF simples, valor equivalente a 3.17 eV ou 0.1165 H), 304371 J/mol (cálculo
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RHF refinado, equivalente a 3.16 eV ou 0.1161 H) e 283267.3 J/mol (cálculo DFT, equi-

valente a 2.94 eV ou 0.1080 H). A maior parte da energia térmica do gás à temperatura

de 298.15 K e pressão de 1 atm é de origem vibracional, sendo a energia térmica total

igual a: 77.048 kcal/mol (cálculo RHF simples), 76.794 kcal/mol (cálculo RHF refinado)

e 72.028 kcal/mol (cálculo DFT). O calor espećıfico a volume constante no cálculo DFT

é igual a 23.128 cal/mol.K e é de origem principalmente vibracional. A entropia, por sua

vez, é igual a 81.803 cal/mol.K (cálculo DFT), com componente dominante translacional,

seguida das componentes rotacional e vibracional, nesta ordem. A energia térmica total

calculada usando a teoria do funcional da densidade para a conformação zwitteŕıon é

maior que a obtida para as conformações I e II.
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Tabela 55: Energia final, energias de interação núcleo-núcleo, elétron-núcleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinâmicas. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 56: Energia final, energias de interação núcleo-núcleo, elétron-núcleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinâmicas. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 57: Energia final, energias de interação núcleo-núcleo, elétron-núcleo e cinética, constan-
tes rotacionais, momento de dipolo e momento de quadrupolo, polarizabilidades e propriedades
termodinâmicas. Resultados obtidos empregando o método do funcional da densidade (DFT)
de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.4.3.1 Análises de população

Os resultados da análise de Mulliken na aproximação de Hartree-Fock usando a base

6-31++G(d,p) (ver tabela 58) revelam uma concentração de carga negativa em volta dos

dois átomos de oxigênio, com valores de -0.80545 (O1) e -0.81091 (O2) e de (análise APT)

-1.45251 (O1) e -1.44863 (O2). O nitrogênio apresenta carga de Mulliken igual a -0.56272

e carga APT de -0.498345. Incorporando os hidrogênios, a carga de Mulliken do átomo

de nitrogênio passa a ser de 0.736322 e a carga APT, 0.57767. O grupo COO− apresenta,

na análise de Mulliken, carga igual a -0.94896. O carbono de número 6 (grupo metila)

aparece com um ligeiro excesso de elétrons (-0.356353). Já a carga APT do grupo COO− é

igual a -1.0008 e do grupo NH+

3 é de 0.5777. Os hidrogênios de números 10 e 12 aparecem

com pequenas quantidades de carga APT negativa.

O cálculo RHF refinado (tabela 59) apresenta cargas de Mulliken de -1.07175, -1.12403

e -0.73464 para os átomos de oxigênio 1 e 2 e o nitrogênio, nesta ordem. A carga do grupo

amônia é de 0.2149 e a carga do grupo COO− é de -0.496645. Já as cargas APT são de

-1.43583 (O1), -1.4418 (O2) e -0.43824 (N+

3 ). O grupo NH+

3 apresenta carga de 0.59835 e

o grupo COO−, carga de -1.020326, valores maiores em módulo que os calculados usando

o método de Hartree-Fock na base reduzida.

No cálculo DFT (tabela 60), os átomos de oxigênio 1 e 2 apresentam cargas de Mulliken

iguais a -0.67171 e -0.68626, respectivamente, e o nitrogênio aparece com carga de -

0.51731. O carbono 4 possui carga de 0.5425, resultando numa carga ĺıquida de -0.8155

para o grupo COO−. A carga de Mulliken do grupo NH3 é igual a 0.77436. A carga

APT calculada para os principais átomos foi: -1.29376 (O1), -1.29308 (O2), -0.4192 (N3),

1.61903 (C4). Para o grupo COO−, -0.9676 e para o grupo NH+

3 , 0.6286. Fica ńıtido,

em comparação com as conformações I e II, que a conformação zwitteŕıon possui carga

positiva em volta do grupo NH+

3 (como esperado) e uma carga negativa em torno do grupo

COO−, sendo que a carga negativa em um desses grupos é maior em módulo que a carga

positiva do outro grupo em todos os casos.



2.4 Conformação zwitteŕıon 157

Tabela 58: Análises populacionais de Mulliken e APT. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 59: Análises populacionais de Mulliken e APT. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).



2.4 Conformação zwitteŕıon 159

Tabela 60: Análises populacionais de Mulliken e APT. Resultados obtidos empregando o método
do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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2.4.3.2 Modos normais de vibração

Para os zwitteŕıons, as fortes interações intermoleculares presentes nas fases crista-

lina e solvatada são responsáveis por sua estabilização. As estruturas moleculares zwit-

teriônicas caracterizam-se por possúırem um espectro vibracional modificado de um modo

que depende do solvente. Logo, uma caracterização apropriada dessas estruturas mole-

culares e de seus espectros infravermelhos em cálculos ab initio deve levar em conta os

efeitos da imersão em diversos meios dielétricos. Tal análise foi feita em vários estudos

sobre zwitteŕıons em soluções aquosas [25, 170, 171].Há vários estudos da interação da

L-alanina com uma, duas, três ou quatro moléculas de água [25, 172, 173, 174]. Em geral,

tal aproximação exige um custo computacional muito mais elevado que as aproximações

de meio cont́ınuo.

Cao e Fischer [175] obtiveram o espectro infravermelho de zwitteŕıons da L-alanina

em uma matriz de KBr. A estrutura molecular e o espectro vibracional da L-alanina

zwitteriônica foram determinados de modo autoconsistente usando cálculos ab initio e o

modelo de Onsager.

As tabelas 61, 62 e 63 apresentam os modos normais de vibração e atribuições para

a conformação zwitteŕıon. Os resultados do cálculo RHF simples mostram os modos 1,

2 e 3 nas freqüências (corrigidas) de 42.3867 cm−1, 181.7282 cm−1 e 219.9618 cm−1,

respectivamente, com as seguintes atribuições: modo 1 - torção do grupo COO; modo

2 - twisting do grupo NH3; modo 3 - twisting do grupo metila. Já os modos de mais

alta energia, 31, 32 e 33, ocorrem nas freqüências (também corrigidas) 3170.7227 cm−1,

3241.7329 cm−1 e 3244.0068 cm−1. As atribuições são: stretching simétrico das ligações

do grupo NH3 (modo 31), stretching assimétrico das ligações do grupo NH3 (modos 32 e

33). No cálculo RHF refinado as freqüências corrigidas (em cm−1) associadas aos modos 1,

2, 3, 31, 32 e 33 são, respectivamente, 65.25405, 176.0533, 218.3214, 3167.5503, 3226.854

e 3229.1545. Em comparação, os resultados experimentais (em cm−1) apresentados na

referência [23] são, na mesma ordem, 184, 219, 283, 3020, 3060 e 3080.

As atribuições dos modos de energia mais baixa e mais alta no cálculo DFT coinci-

dem com os valores calculados pelo método de Hartree-Fock. A freqüência do modo 1

é de 59.7591 cm−1. Para os modos 2 e 3 as freqüências são, respectivamente, 116.7319

cm−1 e 229.1123 cm−1. Para o modo 31, obteve-se uma freqüência de 3274.4144 cm−1.

O modo 32 corresponde à freqüência de 3338.0776 cm−1 e o modo 33, em 3355.5891

cm−1. Em comparação, os resultados da referência [175] são: modo 31 - freqüências

de 3201 cm−1 (HF/6-311++G(d,p)), 3141 cm−1 (DFT/6-311++G(d,p) B3LYP) e 3143
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cm−1 (experimental); modo 32 - freqüências (em cm−1) de 3284 (HF/6-311++G(d,p)),

3317 (DFT/6-311++G(d,p) B3LYP), 3249 (experimental); modo 33 - freqüências (em

cm−1) de 3312 (HF/6-311++G(d,p)), 3352 (DFT/6-311++G(d,p) B3LYP) e 3314 (expe-

rimental). As atribuições calculadas teoricamente [175] coincidem com as apresentadas

no presente trabalho.
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Tabela 61: Freqüências dos modos normais de vibração (calculadas e corrigidas) e respectivas
atribuições. A notação para os vários movimentos de átomos nos modos normais é definida do
seguinte modo: t - torção, tw - twisting, s - scissors, w - wagging, r - rocking ; st - stretching ;
ı́ndices: s - simétrico, as - assimétrico. Resultados obtidos empregando o método de Hartree-Fock
restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 62: Freqüências dos modos normais de vibração (calculadas e corrigidas) e atribuições. A
notação para os vários movimentos de átomos nos modos normais é definida do seguinte modo: t
- torção, tw - twisting, s - scissors, w - wagging, r - rocking ; st - stretching ; ı́ndices: s - simétrico,
as - assimétrico. Resultados obtidos empregando o método de Hartree-Fock restrito (RHF) de
camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 63: Freqüências dos modos normais de vibração e atribuições. A notação para os vários
movimentos de átomos nos modos normais é definida do seguinte modo: t - torção, tw - twisting,
s - scissors, w - wagging, r - rocking ; st - stretching ; ı́ndices: s - simétrico, as - assimétrico.
Resultados obtidos empregando o método do funcional da densidade (DFT) de camada fechada
(spin igual a zero) na base 6-31++G(d,p).
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2.4.3.3 Espectros Raman, IR, depolarizações Raman e VCD

A molécula de L-alanina na conformação zwitteŕıon não é estável no vácuo. Neste

meio ocorre a transferência de um próton do grupo amônia para o grupo carboxilato.

A solvatação desses grupos em um meio aquoso, no entanto, é capaz de estabilizar a

estrutura zwitteriônica.

Os aminoácidos possuem os grupos amônia e carboxilato carregados positiva e ne-

gativamente, nesta ordem. Barron et al. [176] e Yu et al. [171] fizeram um modelo da

espécie zwitteŕıon da L-alanina sem considerar explicitamente as moléculas de água no

ńıvel de cálculo RHF. Também foi observado que a forma zwitteŕıon da L-alanina é estável

quando se usa o funcional B3LYP e a base 6-31G(d). Yu et al. [171] não modelaram acu-

radamente as interações espećıficas devidas à formação de ligações de hidrogênio entre a

primeira camada de solvatação e o soluto, mas foram capazes de tratar os efeitos oriundos

da água em bulk usando o tratamento cont́ınuo de Onsager.

A Fig. 29 apresenta os espectros Raman e infravermelho da L-alanina zwitteŕıon.

No cálculo RHF simples, o pico Raman mais intenso é associado ao modo 27 (322.873

Å4/u.m.a., atribuição: stretching simétrico do grupo metila, stretching do hidrogênio

ligado ao carbono α), seguido pelo pico do modo 28 (186.971 Å4/u.m.a., atribuição:

stretching da ligação entre o carbono α e o átomo de hidrogênio, stretching assimétrico do

grupo metila) e pelo pico do modo 31 (168.274 Å4/u.m.a., atribuição: stretching simétrico

do grupo amônia). Os modos de vibração que precedem o modo 27 apresentam picos

Raman de pequena intensidade. Já o espectro infravermelho apresenta pico mais intenso

no modo 26 (1108.6 km/mol, atribuição: wagging do grupo amônia, stretching assimétrico

do grupo O=C–O), seguido pelo modo 25 (260.207 km/mol, atribuição: twisting de dois

hidrogênios do grupo amônia, wagging de dois hidrogênios do grupo amônia, stretching

assimétrico das ligações O=C–O) e pelo modo 33 (244.51 km/mol, stretching assimétrico

do grupo amônia). Os modos entre o 26 e o 31 apresentam picos muito pequenos. No

cálculo RHF refinado o pico Raman máximo também coincide com o modo 27 (intensidade

347.753 Å4/u.m.a., um tanto maior que o pico do cálculo simples), seguido pelo pico

do modo 31 (intensidade 189.883 Å4/u.m.a.) e pelo do modo 28 (intensidade 180.873

Å4/u.m.a.). No espectro infravermelho, três picos bem próximos, 24, 25 e 26, apresentam

intensidades semelhantes (em km/mol): 466.996, 487.752 e 483.707. Neste caso o pico

mais intenso é o do modo 25, seguido pelo modo 26 (o contrário, portanto, do que acontece

no cálculo RHF simples, onde o pico do modo 26 é mais intenso que o do modo 25) e

depois pelo modo 24 (atribuição: wagging de dois hidrogênios do grupo amônia, stretching
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assimétrico das ligações O=C–O).

A depolarização Raman no cálculo RHF simples para o caso da radiação incidente

plano-polarizada exibe um pico máximo no modo 33 (0.7483), seguido do modo 32 (0.7421,

atribuição: stretching assimétrico do grupo amônia). O mesmo padrão se repete para a

radiação não-polarizada, com intensidades 0.856 (modo 33) e 0.852 (modo 32). No cálculo

RHF refinado, estes dois picos mais intensos não mudam, mas diminuem um pouco de

intensidade.

Já o espectro VCD no cálculo RHF simples tem um pico máximo para o modo 25

(150.504 10−44 esu2 cm2) e mı́nimo para o modo 24 (-171.042 10−44 esu2 cm2), com ausência

de picos significativos a partir do modo 26. No cálculo RHF refinado, o máximo no modo

25 possui intensidade de 293.634 10−44 esu2 cm2 e o mı́nimo, no modo 24, -334.009 10−44

esu2 cm2.

Os resultados do cálculo DFT para o espectro Raman revelam um sinal mais intenso

no modo 31 (intensidade 344.815 Å4/u.m.a., atribuição idêntica à dos cálculos RHF),

seguido pelo pico 32 (intensidade 198.265 Å4/u.m.a., mesma atribuição do caso RHF) e

pelo pico 33 (intensidade 136.31 Å4/u.m.a., mesma atribuição encontrada no cálculo de

Hartree-Fock). A intensidade máxima no infravermelho ocorre para o modo 26 (intensi-

dade 410.467 km/mol, atribuição: wagging do grupo amônia, stretching assimétrico das

ligações O=C–O), seguido do modo 21 (intensidade 222.296 km/mol, atribuição: wagging

do grupo amônia, stretching da ligação C–N, stretching da ligação C–O) e do modo 18

(intensidade 121.706 km/mol, atribuição: stretching assimétrico das ligações C–C–C, C–

C–O, stretching simétrico das ligaçòes O=C–O, wagging das ligações C–C–H, sendo o H

do grupo metila).

A depolarização mais intensa para radiação incidente plano-polarizada ocorre para

o modo 13 (atribuição: stretching assimétrico das ligações C–C–N, wagging do grupo

amônia, wagging do grupo metila), com intensidade igual a 0.7344. Para o modo 12

(atribuição: stretching assimétrico das ligações C–C–C, wagging do grupo amônia, wag-

ging do grupo metila), a intensidade cai um pouco, ficando igual a 0.6541. No caso

da radiação incidente não-polarizada, os máximos principais são os mesmos da radiação

plano-polarizada, com intensidades de 0.8469 (modo 13) e 0.7909 (modo 12). O pico

máximo do espectro VCD ocorre, no cálculo DFT, para o modo 1 (intensidade de 122.243

10−44 esu2 cm2, atribuição: torção do grupo O=C–O), e o mı́nimo para o modo 24 (in-

tensidade de -153.249 10−44 esu2 cm2, atribuição: wagging de dois hidrogênios do grupo

amônia, stretching assimétrico das ligações O=C–O), com ausência de picos relevantes
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entre os modos 24 e 33.

Os insets da Fig. 32 apresentam resultados experimentais obtidos por Jalkanen et al.

[23] para os espectros Raman e VCD da L-alanina zwitteŕıon, os quais são comparados

diretamente com os resultados aqui obtidos usando o funcional B3LYP. De um modo geral,

há acordo entre as intensidades dos picos calculados e as intensidades medidas. No caso

do espectro Raman, pode-se notar que as freqüências calculadas são um pouco maiores

que as obtidas dos dados experimentais.
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Figura 29: Espectros Raman e infravermelho (IR) para a L-alanina na conformação zwitteŕıon.
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ŕıo

n
1
6
9

Figura 30: Depolarizações Raman para radiação plano-polarizada (P) e não-polarizada (N) no caso da L-alanina na conformação zwitteŕıon.
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Figura 31: Espectro VCD calculado para a L-alanina na conformação zwitteŕıon.
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Figura 32: Espectros Raman e VCD calculados usando DFT em comparação com resultados
experimentais (insets) obtidos em [23].
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2.4.3.4 Ńıveis de energia e orbitais moleculares

As tabelas de 64 a 66 apresentam os ńıveis de energia dos orbitais moleculares da

conformação zwitteŕıon. No cálculo RHF simples, a energia dos orbitais HOMO e LUMO

ficou em -0.41509 H e 0.04506 H, respectivamente, com um gap de 0.46015 H ou 12.52 eV.

No caso do cálculo RHF refinado, a energia do orbital HOMO é de -0.41347 H e a energia

do orbital LUMO é igual a 0.04247 H, com um gap de 0.45594 H ou 12.41 eV. No cálculo

DFT, as energias obtidas foram -0.25847 H (orbital HOMO) e -0.01435 (orbital LUMO),

com um gap de 0.24412 H ou 6.64 eV. Em comparação com as conformações I e II, o gap

da conformação zwitteŕıon solvatada em água é maior no cálculo RHF e no cálculo DFT,

que incorpora efeitos de correlação eletrônica.

As isosuperf́ıcies de máxima amplitude para os orbitais HOMO e LUMO (Figs. 33,

34 e 35) revelam, para o orbital HOMO, uma distribuição espalhada por toda a molécula.

Ocorre concentração de carga positiva em volta do grupo amônia e concentração de carga

negativa em volta do grupo COO (ver Fig. 34), ao passo que o orbital LUMO reúne seus

elétrons do lado do grupo amônia (o oposto do que acontece nas conformações I e II, onde

a nuvem eletrônica excitada está mais próxima do grupo carboxila). A Fig. 36 ilustra de

diversos ângulos isosuperf́ıcies de densidade eletrônica.
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Tabela 64: Energias dos orbitais moleculares da L-Alanina zwitteŕıon. Estados ocupados em
verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Tabela 65: Energias dos orbitais moleculares da L-Alanina zwitteŕıon. Estados ocupados em
verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando o método
de Hartree-Fock restrito (RHF) de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Tabela 66: Energias dos orbitais moleculares da L-Alanina zwitteŕıon. Estados ocupados em
verde, com destaque para os orbitais HOMO e LUMO. Resultados obtidos empregando o método
do funcional da densidade (DFT) de camada fechada (spin igual a zero) na base 6-31++G(d,p).
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Figura 33: Isosuperf́ıcies de máxima amplitude para os orbitais HOMO (todos os que ficam à
esquerda) e LUMO (à direita) da molécula de L-Alanina na conformação zwitteŕıon.
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Figura 34: Orbital HOMO da L-alanina zwitteŕıon sob outra perspectiva. Na parte superior são
indicadas uma isosuperf́ıcie simples (lado esquerdo) e a superposição de várias isosuperf́ıcies (lado
direito). Na parte inferior, à esquerda, a densidade eletrônica é mapeada no orbital (quanto mais
azul, maior a densidade), enquanto do lado direito é mapeado o potencial eletrostático (quanto
mais azul, mais positivo o potencial, quanto mais vermelho, mais negativo). Resultados obtidos
empregando o método RHF de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Figura 35: Orbital LUMO da L-alanina zwitteŕıon sob outra perspectiva. Na parte superior são
indicadas uma isosuperf́ıcie simples (lado esquerdo) e a superposição de várias isosuperf́ıcies (lado
direito). Na parte inferior, à esquerda, a densidade eletrônica é mapeada no orbital (quanto mais
azul, maior a densidade), enquanto do lado direito é mapeado o potencial eletrostático (quanto
mais azul, mais positivo o potencial, quanto mais vermelho, mais negativo). Resultados obtidos
empregando o método RHF de camada fechada (spin igual a zero) na base 6-311++G(3d,3p).
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Figura 36: Diferentes perspectivas para a densidade eletrônica da molécula de L-alanina zwit-
teŕıon. Resultados obtidos empregando o método RHF de camada fechada (spin igual a zero)
na base 6-311++G(3d,3p).
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2.5 Sumário do caṕıtulo

No presente caṕıtulo foram apresentados resultados de cálculos ab initio para otimi-

zação de geometria e determinação de propriedades vibracionais e eletrônicas da molécula

de L-alanina nas conformações de mais baixa energia (I e II), e zwitteŕıon. Um sumário

é apresentado a seguir.

2.5.1 Conformação I

Para a conformação I otimizada, o comprimento da ligação C–N é igual a 1.4425 Å

na aproximação RHF/6-31G(d,p) e 1.4548 Å na aproximação MP2/6-31G(d,p). No caso

desta ligação, a inclusão de efeitos de correlação eletrônica aumenta a distância entre o

carbono e o nitrogênio em mais ou menos 0.85%. O resultado obtido na presente tese

é de 1.4419 Å na aproximação RHF/6-31++G(d,p) e 1.4552 Å na aproximação DFT/6-

31++G(d,p), um aumento de 0.91%. Tais dimensões são menores que o valor experimental

de 1.471 Å [153].

As distâncias entre átomos ligados calculadas usando DFT são, via de regra, maiores

que as obtidas de acordo com o método RHF, o que sugere o alongamento das ligações

como efeito da correlação eletrônica, sendo esta mais intensa nas ligações entre o carbono

e os dois átomos de oxigênio. O refinamento da base tende, nos cálculos RHF, a reduzir

ainda mais os comprimentos de ligação (a exceção é a ligação C–N, que aumenta um

pouco). O mesmo ocorre com os ângulos, exceto aqueles que envolvem o átomo de ni-

trogênio, os quais tendem a aumentar com o emprego de uma base maior. Os ângulos de

diedro não apresentam uma tendência ńıtida, ora aumentando, ora diminuindo conforme

o ńıvel de cálculo.

O cálculo DFT (base 6-31++G(d,p), que inclui efeitos de correlação, forneceu uma

energia total para a molécula no valor de -323.776 H, dos quais 248.066 H provêm da

interação núcleo-núcleo, -1252.489 H da energia de interação elétron-núcleo e 320.764 H

da energia cinética dos elétrons. A energia do movimento vibracional para temperatura

zero é de 283245.4 J/mol (2.94 eV ou 0.108 H). Em comparação, a energia calculada por

Blanco et al. [164] foi de -323.069 H. A diferença entre os métodos DFT e RHF usando a

mesma base, atribúıvel principalmente à correlação eletrônica, é de 1.878 H ou 51.1 eV.

A diferença entre o cálculo DFT e o cálculo MP4 é de 0.707 H ou 19.24 eV.

As constantes rotacionais calculadas para a L-alanina na aproximação de RHF simples

são iguais a 5.14955 GHz (A), 3.13075 GHz (B) e 2.27932 GHz (C). No cálculo RHF
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refinado, os resultados obtidos foram 5.17284 GHz (A), 3.12411 GHz (B) e 2.29867 GHz

(C). Por fim, os resultados do cálculo DFT foram 5.03749 GHz (A), 3.02613 GHz (B) e

2.25712 GHz (C). Os resultados da referência [164] são 5.074 GHz (A), 3.051 GHz (B)

e 2.298 GHz (C). Dados experimentais [9] registram A = 5.0661 GHz, B = 3.1009 GHz

e C = 2.264 GHz. Já o momento de dipolo da molécula é dominado pela componente y

e o módulo µ é igual a 1.4698 D no cálculo RHF simples e 1.3455 D no cálculo DFT, o

que é significativamente menor que o valor esperimental de 1.8 D [9], mas bem próximo

do valor calculado teoricamente (1.41 D) na referência [164].

As propriedades termodinâmicas para uma temperatura de 298.15 K e pressão de 1

atm mostram valores maiores para as energias na aproximação RHF, enquanto a apro-

ximação DFT produz valores maiores para o calor espećıfico a volume constante e para a

entropia.

Na conformação I da L-alanina os oxigênios possuem uma afinidade maior por elétrons,

retendo mais carga negativa, sendo seguidos pelo nitrogênio, que atrai mais fortemente

os elétrons dos três átomos de hidrogênio que o circundam, o que respeita a ordem das

eletronegatividades da tabela periódica.

Comparando as atribuições calculadas usando os métodos RHF e DFT, observam-se

algumas diferenças. Por exemplo, as atribuições dos modos 2 e 3 aparecem trocadas, sendo

o modo 2 um twisting do CH3 de acordo com o cálculo RHF e um twisting do NH2 no

cálculo DFT (alguns autores denotam a atribuição como sendo uma torção dos grupos, por

exemplo [165]). Resultados obtidos usando teoria do funcional da densidade dependente

do tempo [132] atribuem uma torção do CH3 para o segundo modo, o que coincide com

o cálculo HF da referência [165]. É necessário fazer a correção das freqüências calculadas

através da aproximação de HF. Empregou-se aqui o fator 0.9, recomendado na referência

[166]. As freqüências a partir de 300 cm−1 apresentam atribuições de stretching. O modo

mais energético corresponde ao stretching da ligação O-H no grupo carboxila, precedido

por modos nos quais aparecem stretchings simétricos ou assimétricos dos grupos amina e

metila. Os valores de freqüência calculados segundo a aproximação DFT são, em geral,

maiores que os valores calculados na aproximação RHF corrigida.

No cálculo DFT, o espectro Raman apresenta máximo no modo 33 (3747.2909 cm−1,

intensidade de 169.543 Å4/u.m.a.), correspondendo ao stretching da ligação O–H. O

segundo pico mais intenso é o do modo 27 (3047.2280 cm−1, intensidade de 161.414

Å4/u.m.a.) e o terceiro pico associa-se ao modo 31 (3503.6800 cm−1, intensidade de

105.644 Å4/u.m.a.). Já o espectro IR possui máximo no modo 26, com freqüência de
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1811.3365 cm−1 e intensidade de 308.185 km/mol. O segundo pico mais relevante do

espectro IR corresponde ao modo 16, com freqüência de 1135.1521 cm−1 e intensidade de

273.915 km/mol, e o terceiro pico é associado ao modo 12 (887.1113 cm−1, intensidade

de 153.226 km/mol). Picos menos intensos ocorrem para os modos 8 e 33. Dados expe-

rimentais [165] mostram picos significativos nos modos 33, 30, 26, 25, 21, 20, 18, 16, 14,

13, 12, 11, 10 e 8, que quase coincidem com os picos aqui calculados.

No cálculo RHF simples, a depolarização nos casos plano-polarizado e não-polarizado

é mais intensa para os modos 2, 3 e 24. No cálculo RHF refinado, os modos 24, 2 e 3

também são dominantes em ambos os tipos de radiação incidente. O mesmo ocorre no

cálculo DFT. No espectro VCD, comparando os três diferentes métodos de cálculo entre si,

observa-se que o cálculo RHF com base 6-311++G(3d,3p) apresenta picos mais intensos,

enquanto o cálculo RHF na base 6-31++G(d,p) exibe picos com intensidades da mesma

ordem das obtidas no cálculo DFT usando esta mesma base.

O orbital HOMO calculado no ńıvel DFT apresenta energia igual a -0.26010 H e o

orbital LUMO, energia igual a -0.01814, o que leva a um gap de 0.24196 H ou 6.584066

eV. O gap obtido segundo a teoria do funcional da densidade é quase metade do gap

previsto na aproximação de Hartree-Fock, conseqüência do efeito de correlação eletrônica

negligenciado na aproximação HF.

O orbital HOMO se espalha praticamente por toda a molécula, com destaque para as

ligações de hidrogênio entre o grupo NH2 e o oxigênio que não está ligado ao átomo de

hidrogênio do grupo carboxila. Já o orbital LUMO encontra-se espacialmente menos con-

centrado nas vizinhanças dos átomos que formam a molécula de L-alanina, formando uma

espécie de nuvem em volta do grupo carboxila. Os orbitais LUMO calculados pelo método

DFT e pelo método RHF refinado apresentam maior presença nas vizinhanças imediatas

da molécula. Pode-se notar que a amplitude de probabilidade do LUMO em volta do

grupo amina é pequena. Numa eventual transição HOMO-LUMO, um dos elétrons salta

de um lado da molécula (grupo amina) para o outro (grupo carboxila).

2.5.2 Conformação II

Nos cálculos de otimização de geometria para a conformação II, a ligação entre o

átomo de carbono e o átomo de nitrogênio apresenta comprimentos de 1.459 Å (cálculo

RHF simples), 1.4592 Å (cálculo RHF refinado) e 1.4756 Å (cálculo DFT). Os valores

obtidos usando o método de Hartree-Fock aproximam-se bastante do valor experimental,

que é 1.459 Å. O comprimento da ligação entre os carbonos 5 e 6 é de 1.5267 Å (RHF
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simples), 1.5249 Å (RHF refinado) e 1.5341 Å (DFT), com a medida experimental igual

a 1.5438 Å. A distância entre o carbono 5 e o hidrogênio 13 é de 1.087 Å (RHF simples),

1.0848 Å (RHF refinado), 1.0967 Å (DFT) e 1.100 Å (valor experimental). Observa-se

que a tendência de aumento no comprimento das ligações calculadas a partir da teoria

do funcional da densidade em comparação com os cálculos Hartree-Fock é respeitada

também no caso da conformação II. A ligação de hidrogênio entre o átomo H7 e o átomo

de nitrogênio possui comprimento igual a 2.032 Å no cálculo RHF simples, diminuindo

um pouco para 2.03 Å no cálculo RHF refinado e diminuindo mais ainda para 1.91 Å no

cálculo DFT. A medida experimental é 1.96 Å [164].

A energia final calculada para a conformação foi de -321.8945 H (RHF simples), -

321.9853 H (RHF refinado) e -323.7765 (DFT), valores em geral um pouco maiores que

os obtidos para a conformação I, de mais baixa energia: -321.8984 H (RHF simples),

-321.9889 H (RHF refinado) e -323.7765 H (DFT). A diferença de energia entre a con-

formação I e a conformação II no cálculo RHF utilizando a base 6-31++G(d,p) é de

0.00384 H ou aproximadamente 104.6 meV. A mesma diferença usando o cálculo DFT

passa a ser igual a -0.000013 H, ou -0.347 meV. Em comparação, a referência [167], usando

teoria da perturbação de segunda ordem (MP2), obteve energias de -323.103 H e -323.1028

H para as conformações I e II, respectivamente, com uma diferença de 0.00022 H ou apro-

ximadamente 6 meV. Já a referência [164], usando MP4, obteve energias de -323.06948 H

(I) e -323.06897 H (II), uma diferença de 0.0005 H ou 13.76 meV. As duas conformações,

portanto, apresentam valores tão próximos de energia que pode-se esperar a coexistência

de ambas as geometrias na fase gasosa da L-alanina à temperatura ambiente. Um cálculo

DFT refinado (base 6-311++G(3d,3p)), obteve energia de -323.8702 H para a conformação

I e -323.8699 H para a conformação II, uma diferença de 0.00034 H ou 9.24 meV entre as

duas geometrias da L-alanina.

O momento de dipolo da conformação II é de 5.1 D [9], menor que os valores obtidos

teoricamente (5.682 D no cálculo DFT). A componente x do vetor é dominante sobre

as demais, e aponta ao longo do eixo que liga os carbonos 4 e 5, tendo num extremo

da molécula o grupo carboxila e no outro os grupos amina e metila (contrastar com o

que ocorre na conformação I, onde a componente dominante aponta ao longo do eixo y,

perpendicular à ligação entre os carbonos 4 e 5). Os momentos de quadrupolo apresen-

tam componentes xx e yy com intensidades próximas. Já as polarizabilidades calculadas

usando DFT são mais intensas que as obtidas pelo método Hartree-Fock, com termos xx

e yy quase iguais.
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As cargas de Mulliken de O1 e O2 calculadas usando DFT são menores em módulo

que as obtidas no cálculo RHF simples: -0.392111 e -0.450754. O mesmo ocorre com o ni-

trogênio, -0.622593. O carbono 6 aparece com excesso de elétrons (-0.559932) juntamente

com o carbono 5 (-0.176299). O carbono 4 possui carga positiva de 0.434640, seguido

de perto pelo hidrogênio 7 (do grupo O-H), com carga 0.409317. Incorporando as cargas

dos hidrogênios, o oxigênio 1 passa a ter um pouco de carga positiva (0.017206) e os

carbonos 5 e 6 ficam praticamente neutros, juntamente com o nitrogênio. Para as cargas

APT, os oxigênios possuem carga mais negativa (-0.773961 para O1 e -0.751090 para O2)

e o nitrogênio apresenta carga menos intensa (-0.517777). Os carbonos possuem carga

positiva, com destaque para o carbono 4 (1.073354) e os hidrogênios 10, 12 e 13 aparecem

negativamente carregados. Com os hidrogênios incorporados, a carga do oxigênio 1 passa

a ser -0.373885 e a carga do nitrogênio, -0.215180. Na conformação I (cálculo DFT) as

cargas APT dos oxigênios e do nitrogênio são menores em módulo do que na conformação

2.

No cálculo DFT, aparecem algumas diferenças nas atribuições dos modos de vibração

em comparação com os dados resultantes da aplicação do método de Hartree-Fock. O

modo 1 ocorre na freqüência 57.1740 cm−1 e o modo 2, para 234.2141 cm−1. Neste último

caso, a atribuição é um movimento em tesoura das ligações C–C–C, e não um twisting dos

grupos metila e amina (HF). O modo 3 possui freqüência igual a 253.4151 e consiste num

twisting do grupo metila e um rocking dos átomos C–O–O. O modo 33 não é o stretching

da ligação O–H (HF), mas um stretching assimétrico do grupo amina, com freqüência

de 3614.6483 cm−1, e o modo 32 é um stretching simétrico dos átomos de hidrogênio

ligados ao nitrogênio com freqüência igual a 3527.4481 cm−1. O modo 31 é atribúıdo ao

stretching da ligação O–H juntamente com o stretching simétrico do grupo amina, e sua

freqüência é de 3455.3602 cm−1. As freqüências mais alta e mais baixa no cálculo DFT

são, respectivamente, menor e maior que as correspondentes no cálculo RHF.

De acordo com os cálculos feitos empregando a teoria do funcional da densidade, o

pico Raman mais intenso da conformação II corresponde ao modo 27 (intensidade 162.595

Å4/u.m.a., atribuição: stretching simétrico do grupo metila, stretching da ligação entre o

carbono α e o hidrogênio 13), seguido pelo pico do modo 32 (intensidade 128.15 Å4/u.m.a.,

atribuição: stretching simétrico do grupo amina) e pelo pico do modo 28 (intensidade

78.137 Å4/u.m.a., atribuição: stretching da ligação entre o carbono α e o hidrogênio,

stretching simétrico do grupo metila). No espectro infravermelho, o pico mais intenso

é o do modo 26, com intensidade de 343.705 km/mol (atribuição idêntica ao modo cal-

culado usando o método de Hartree-Fock). O segundo lugar pertence ao modo 31, com
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intensidade 278.876 km/mol (atribuição: stretching da ligação O-H, stretching simétrico

do grupo amina), e o terceiro, ao modo 22, com intensidade 217.487 km/mol (atribuição:

wagging do grupo metila, movimento em tesoura das ligações do grupo C–O–H e stretching

assimétrico das ligações C–C–O). O espectro de depolarização para radiação incidente

plano-polarizada apresenta um máximo ńıtido no modo 24 (atribuição: wagging envol-

vendo o grupo metila), enquanto o pico para radiação não-polarizada ocorre para o modo

23 (atribuição: wagging e twisting envolvendo ligações do grupo metila). Já a intensidade

VCD máxima ocorre para o modo 8 (atribuição: movimento em tesoura das ligações C–

C–N, C–C=O e wagging do grupo metila) e a mı́nima para o modo 26 (em comparação,

a conformação I apresenta máximo e mı́nimo nos modos 16 e 17, respectivamente).

No cálculo DFT, o orbital ocupado de mais alta energia possui energia igual a -0.26770

H, enquanto o orbital LUMO possui -0.02984 H, levando a um gap de 0.23786 H ou 6.47

eV. Mais uma vez, a correlação eletrônica contribui para diminuir a separação entre os

ńıveis de energia dos orbitais fronteira. Em comparação, para a conformação I os gaps

calculados foram de 12.175 eV (RHF simples), 12.16 eV (RHF refinado) e 6.58 eV (DFT),

valores maiores que os equivalentes obtidos para a conformação I. Pode-se notar que

o orbital HOMO, como ocorreu na conformação I, acha-se difuso por toda a molécula.

Quanto à ligação de hidrogênio entre o hidrogênio do grupo carboxila e o nitrogênio do

grupo amina, a contribuição do orbital HOMO aparenta ser anti-ligante. Já o orbital

LUMO apresenta-se como uma nuvem um tanto afastada do corpo da molécula de L-

alanina, em volta do grupo amina, o que sugere que a excitação da molécula produz uma

certa transferência de carga do grupo COOH para o grupo NH2.

2.5.3 Conformação zwitteŕıon

A terceira conformação estudada foi a conformação zwitteriônica. Para o ńıvel RHF

simples, o comprimento calculado da ligação C–O é de 1.2342 Å (valor experimental:

1.249 Å [23]), e a ligação C=O possui comprimento igual a 1.2374 Å (valor experimen-

tal: 1.266 Å [23]). A distância entre o carbono 5 e o átomo de nitrogênio é de 1.4957

Å (comparar com o valor medido de 1.495 Å [23]) e a distância entre os carbonos 5 e

6 é de 1.5239 Å (valor experimental: 1.534 Å). No cálculo RHF refinado essas mesmas

ligações passam a ter comprimentos de 1.2275 Å (C–O), 1.2311 Å (C=O), 1.4945 Å (C–N)

e 1.5221 Å (C–C), diminuindo um pouco. Já os ângulos principais são, no cálculo RHF

simples: 128.13670 (O=C–O), 108.9430 (C4–C5–N), 116.69720 (C–C=O, valor experimen-

tal: 118.300 [23]) e 115.16520 (C–C–O, valor experimental: 116.000 [23]). No cálculo RHF
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refinado, esses valores mudam para: 128.30060 (O=C–O, ligeiro aumento em comparação

com o cálculo RHF simples), 108.9540 (C4–C5–N, ligeiro aumento), 116.54170 (C–C=O,

ligeira diminuição) e 115.15660 (C–C–O, ligeiro aumento). Por fim, os ângulos de diedro

O=C–C–N e O–C–C–N são de -7.48340 e 172.83140 no cálculo RHF simples, e -8.97760 e

171.37260 no cálculo RHF refinado.

Usando o funcional B3LYP, incluem-se efeitos de correlação eletrônica. Os compri-

mentos de ligação calculados neste ńıvel são 1.2561 Å (C–O), 1.2631 (C=O), 1.5108 Å

(C–N) e 1.5284 Å (C5–C6), maiores que os obtidos nos cálculos RHF. Já os ângulos

são: 128.22590 (O=C–O, ligeiro aumento em comparação com o cálculo RHF simples),

107.88790 (C4–C5–N, diminuição), 116.21190 (C–C=O, ligeira diminuição) e 115.54210

(C–C–O, ligeiro aumento). As torções para os átomos O=C–C–N e O–C–C–N são, res-

pectivamente, -18.1990 (valor experimental: -18.600) e 163.29490 (valor experimental:

161.500).

A energia final calculada no cálculo RHF simples é de -321.918 H, com contribuições

de 251.0845 H da interação entre os núcleos, -1258.8229 H das interações entre os elétrons

e os núcleos e 321.1178 H da energia cinética eletrônica. No cálculo RHF refinado esses

valores mudam para -322.0058 H (energia total), 251.6993 H (energia de interação entre os

núcleos), -1261.057 H (energia de interação entre elétrons e núcleos) e 321.772 H (energia

cinética eletrônica). O cálculo DFT, que inclui efeitos de correlação eletrônica, apresenta

uma energia total mais baixa, igual a -323.799 H, com contribuições de 248.4322 H da

energia de repulsão internuclear, -1253.6337 H da energia de interação entre os elétrons

e os núcleos atômicos e 320.6115 H de energia cinética dos elétrons. A energia total no

cálculo DFT simples para a conformação I foi de -323.7765 H e, para a conformação II,

-323.7765 H, valores menores que a energia da conformação zwitteŕıon obtida pelo mesmo

método.

As constantes rotacionais no cálculo RHF simples são: A = 5.01044 GHz, B = 3.30472

GHz, C = 2.26727 GHz. No cálculo RHF refinado, esses valores mudam para: A =

5.04258 GHz, B = 3.30163 GHz e C = 2.28435 GHz. Finalmente, no cálculo DFT usando

o funcional h́ıbrido B3LYP, A = 4.91794 GHz, B = 3.15443 GHz e C = 2.28643 GHz. O

módulo do momento de dipolo da molécula é igual a: 14. 8770 D (cálculo RHF simples),

14.6227 D (cálculo RHF refinado) e 14.3398 D (cálculo DFT), com a maior componente

apontando ao longo do eixo x, que é quase paralelo à direção da ligação entre os carbonos

4 e 5, ficando os grupos NH+
3 e COO− em lados opostos. Tal momento de dipolo é bem

maior que o determinado para a conformação I e quase o triplo do momento de dipolo da
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conformação II. A componente xx do momento de quadrupolo é a que apresenta maior

valor absoluto. O elemento xx do tensor de polarizabilidade é dominante e igual a: 59.165

Å3 (cálculo RHF simples), 64.543 Å3 (cálculo RHF refinado) e 73.143 Å3 (cálculo DFT).

Em segundo lugar vem a componente yy e em terceiro a componente zz. Como esperado,

a forma zwitteŕıon é mais polarizável que as conformações I e II.

Para as análises de população temos que, no cálculo DFT, os átomos de oxigênio

1 e 2 apresentam cargas de Mulliken iguais a -0.671710 e -0.686257, respectivamente, e

o nitrogênio aparece com carga de -0.517310. O carbono 4 possui carga de 0.542502,

resultando numa carga ĺıquida de -0.815465 para o grupo COO−. A carga de Mulliken

do grupo NH3 é igual a 0.774357. A carga APT calculada para os principais átomos foi:

-1.293756 (O1), -1.293079 (O2), -0.419185 (N3), 1.619026 (C4). Para o grupo COO−, -

0.967575 e para o grupo NH+
3 , 0.628610. Fica ńıtido, em comparação com as conformações

I e II, que a conformação zwitteŕıon apresenta-se, como esperado, com uma carga positiva

em volta do grupo NH+
3 e uma carga negativa em torno do grupo COO−, sendo que a

carga negativa em um desses grupos é maior em módulo que a carga positiva do outro

grupo em todos os casos.

No o cálculo RHF simples, os modos normais de vibração 1, 2 e 3 surgem com

freqüências (corrigidas) de 42.38667 cm−1, 181.72818 cm−1 e 219.9618 cm−1, respecti-

vamente, adotando as seguintes atribuições: modo 1 - torção do grupo COO; modo 2

- twisting do grupo NH3; modo 3 - twisting do grupo metila. Já os modos de mais

alta energia, 31, 32 e 33, ocorrem nas freqüências (também corrigidas) 3170.72268 cm−1,

3241.73295 cm−1 e 3244.0068 cm−1. As atribuições são: stretching simétrico das ligações

do grupo NH3 (modo 31), stretching assimétrico das ligações do grupo NH3 (modos 32 e

33). No cálculo RHF refinado as freqüências corrigidas (em cm−1) associadas aos modos

1, 2, 3, 31, 32 e 33 são, respectivamente, 65.25405, 176.05332, 218.32137, 3167.55027,

3226.85397 e 3229.15455. Em comparação, os resultados experimentais (em cm−1) apre-

sentados na referência [23] são, na mesma ordem, 184, 219, 283, 3020, 3060 e 3080.

As atribuições dos modos de energia mais baixa e mais alta no cálculo DFT coincidem

com os valores calculados pelo método de Hartree-Fock. A freqüência do modo 1 é de

59.7591 cm−1. Para os modos 2 e 3 as freqüências são, respectivamente, 116.7319 cm−1

e 229.1123 cm−1. Para o modo 31, obteve-se uma freqüência de 3274.4144 cm−1. O

modo 32 ocorre na freqüência de 3338.0776 cm−1 e o modo 33, em 3355.5891 cm−1. Em

comparação, os resultados da referência [175] são: modo 31 - freqüências de 3201 cm−1

(HF/6-311++G(d,p)), 3141 cm−1 (DFT/6-311++G(d,p) B3LYP) e 3143 cm−1 (experi-
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mental); modo 32 - freqüências (em cm−1) de 3284 (HF/6-311++G(d,p)), 3317 (DFT/6-

311++G(d,p) B3LYP), 3249 (experimental); modo 33 - freqüências (em cm−1) de 3312

(HF/6-311++G(d,p)), 3352 (DFT/6-311++G(d,p) B3LYP) e 3314 (experimental). As

atribuições calculadas teoricamente em [175] coincidem com as apresentadas no presente

trabalho.

Os resultados do cálculo DFT para o espectro Raman revelam o pico mais intenso

no modo 31 (intensidade 344.815 Å4/u.m.a., atribuição idêntica à dos cálculos RHF),

seguido pelo pico 32 (intensidade 198.265 Å4/u.m.a., mesma atribuição do caso RHF)

e pelo pico 33 (intensidade 136.31 Å4/u.m.a., mesma atribuição RHF). A intensidade

máxima no infravermelho ocorre para o modo 26 (intensidade 410.467 km/mol, atribuição:

wagging do grupo amônia, stretching assimétrico das ligações O=C–O), seguido do modo

21 (intensidade 222.296 km/mol, atribuição: wagging do grupo amônia, stretching da

ligação C–N, stretching da ligação C–O) e do modo 18 (intensidade 121.706 km/mol,

atribuição: stretching assimétrico das ligações C–C–C, C–C–O, stretching simétrico das

ligações O=C–O, wagging das ligações C–C–H, sendo o H do grupo metila).

A depolarização mais intensa para radiação incidente plano-polarizada ocorre para

o modo 13 (atribuição: stretching assimétrico das ligações C–C–N, wagging do grupo

amônia, wagging do grupo metila), com intensidade igual a 0.7344. Para o modo 12

(atribuição: stretching assimétrico das ligações C–C–C, wagging do grupo amônia, wag-

ging do grupo metila), a intensidade cai um pouco, ficando igual a 0.6541. No caso

da radiação incidente não-polarizada, os máximos principais são os mesmos da radiação

plano-polarizada, com intensidades de 0.8469 (modo 13) e 0.7909 (modo 12). O pico

máximo do espectro VCD ocorre, no cálculo DFT, para o modo 1 (intensidade de 122.243

10−44 esu2 cm2, atribuição: torção do grupo O=C–O), e o mı́nimo para o modo 24 (in-

tensidade de -153.249 10−44 esu2 cm2, atribuição: wagging de dois hidrogênios do grupo

amônia, stretching assimétrico das ligações O=C–O), com ausência de picos relevantes

entre os modos 24 e 33.

Os insets da Fig. 32 apresentam resultados experimentais obtidos por Jalkanen et

al. [23] para os espectros Raman e VCD da L-alanina zwitteŕıon, em comparação com os

resultados aqui obtidos usando o funcional B3LYP. De um modo geral, há acordo entre as

intensidades dos picos calculados e as intensidades medidas. No caso do espectro Raman,

pode-se notar que as freqüências calculadas são um pouco maiores que as determinadas

experimentalmente.

Quanto aos ńıveis de energia dos orbitais moleculares da conformação zwitteŕıon, no
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cálculo RHF simples, a energia dos orbitais HOMO e LUMO ficou em -0.41509 H e 0.04506

H, respectivamente, com um gap de 0.46015 H ou 12.52 eV. No caso do cálculo RHF

refinado, a energia do orbital HOMO é de -0.41347 H e a energia do orbital LUMO é igual

a 0.04247 H, com um gap de 0.45594 H ou 12.41 eV. No cálculo DFT, as energias obtidas

foram -0.25847 H (orbital HOMO) e -0.01435 (orbital LUMO), gap de 0.24412 H ou 6.64

eV. Em comparação com as conformações I e II, o gap da conformação zwitteŕıon solvatada

em água é maior no cálculo RHF e no cálculo DFT, que incorpora correlação eletrônica.

O orbital HOMO apresenta uma distribuição difusa por toda a molécula, revelando uma

concentração de carga positiva em volta do grupo amônia e uma concentração de carga

negativa em volta do grupo COO, ao passo que o orbital LUMO concentra-se do lado do

grupo amônia (o oposto do que acontece nas conformações I e II, onde a nuvem eletrônica

excitada está mais próxima do grupo carboxila).
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3 Cálculos ab initio para o cristal de

L-alanina

No presente caṕıtulo são apresentadas diversas propriedades ópticas e eletrônicas do

cristal de L-alanina determinadas ab initio dentro do formalismo da teoria do funcional

da densidade nas aproximações LDA e GGA. Foram usados nos cálculos os softwares

ABINIT [177] e CASTEP. Os cálculos teóricos são comparados com resultados experi-

mentais de luminescência e absorção. A análise dos picos de luminescência observados

experimentalmente sugere que transições eletrônicas moleculares são importantes para sua

interpretação e que existem fortes efeitos relacionados com o acoplamento dos elétrons às

vibrações da rede (polarons). Para investigar a primeira possibilidade, foram calculadas

as transições vertical e adiabática da molécula usando o método de Hartree-Fock na apro-

ximação de excitação simples CI na base 6-31G(d). Já a relevância dos polarons para

a compreensão das propriedades ópticas do cristal é estudada através da análise da con-

figuração espacial dos orbitais HOMO e LUMO em sistemas formados por duas e três

moléculas de L-alanina em série.

A partir da estrutura de bandas da L-alanina, são feitas estimativas para o band gap e

as massas efetivas de elétrons e buracos neste material. Um estudo usando duas moléculas

de L-alanina e um átomo de manganês procura esclarecer a questão do modo como átomos

desse metal podem se inserir nos interst́ıcios de um cristal de L-alanina dopado.

3.1 Estrutura cristalina da L-alanina

Dois fatores importantes na determinação das estruturas secundária e terciária de

polipept́ıdeos e cadeias de nucleot́ıdeos são as ligações de hidrogênio e forças de van der

Waals entre átomos de hidrogênio. As posições precisas dos átomos de hidrogênio nesses

compostos e em seus monômeros são desconhecidas em geral, sendo posśıvel, entretanto,
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sua determinação através da difração de nêutrons. Técnicas atuais permitem obter as

posições atômicas e as amplitudes médias quadráticas de vibração com precisão igual

ou melhor que 0.01 Å. Estudos de difração de nêutrons dos aminoácidos mais comuns,

pequenos pept́ıdeos, nucleośıdeos e nucleot́ıdeos podem fornecer informações preciosas

sobre sobre sua estereoqúımica e geometria, superando técnicas convencionais de raios X.

Tais informações são de grande relevância para a investigação da energética e morfologia

de macromoléculas biológicas.

A estrutura cristalina e molecular da L-alanina foi estabelecida via difração de raios X

por Simpson e Marsh [134] e por Dunitz e Ryan [178]. Lehmann et al. [135] efetuaram um

estudo de difração de nêutrons da L-alanina. No seu trabalho, cristais de L-alanina foram

crescidos com relativa facilidade através da evaporação de soluções aquosas à temperatura

ambiente. Os cristais apresentaram caracteŕıstica prismática apresentando faces principais

[120] e [011]. O volume do cristal usado nas medidas era de 7.8 mm3. Os dados de difração

de nêutrons foram coletados usando difratômetros, obtendo-se dois conjuntos de dados.

Em um dos difratômetros, as intensidades foram medidas para reflexões com senθ < 0.54

e nêutrons com comprimento de onda de 1.248 Å. Em outro difratômetro, as intensidades

para ângulos satisfazendo 0.48 < senθ < 0.70 foram obtidas. Em ambas as séries de

medidas, o cristal foi montado com o eixo c praticamente alinhado com o eixo φ do

equipamento. A orientação do cristal, bem como as constantes de rede da célula unitária

foram determinadas usando um refinamento de mı́nimos quadrados dos ângulos do arranjo

para 27 reflexões intensas uniformemente distribúıdas no espaço rećıproco. Para checar a

estabilidade do cristal e do detector, duas reflexões padrão foram registrada para cada 30

reflexões. Não houve deterioração na qualidade do cristal durante a coleta de dados.

Os resultados de difração de nêutrons confirmaram que o cristal de L-alanina possui

quatro moléculas em uma célula ortorrômbica com grupo espacial P212121 (número 19),

o qual apresenta as operações de simetria (x, y, z) (identidade), (−x + 1/2,−y, z + 1/2)

(eixo de screw), (−x, y +1/2,−z +1/2) (eixo de screw) e (x+1/2,−y +1/2,−z) (eixo de

screw). Os parâmetros obtidos por Simpson e Marsh [134] são: a = 6.032 Å, b = 12.343

Å e c = 5.784 Å. Já os resultados de difração de nêutrons de Lehmann et al. [135] são

a = 6.025 Å, b = 12.324 Å e c = 5.783 Å. A densidade calculada é de 1.37 g/cm3, e

o coeficiente de absorção de nêutrons resultou em 2.63 cm−1 (assumindo uma seção de

choque de nêutrons incoerente para o hidrogênio de 40 barns). As coordenadas fracionárias

dos átomos de uma única molécula acham-se indicadas na Tabela 67. Através da aplicação

das operações de simetria do grupo espacial P212121, são determinadas as coordenadas

dos átomos das outras três moléculas dentro da célula unitária. As identificações dos



3.1 Estrutura cristalina da L-alanina 193

átomos por meio de números são as mesmas que aparecem na Fig. 37. A Fig. 38 mostra

várias perspectivas da célula unitária da L-alanina e a célula primitiva no espaço rećıproco

(zona de Brillouin) com os pontos de alta simetria usados para o cálculo das estruturas

de bandas no presente trabalho. A Fig. 39 mostra várias perspectivas a partir do interior

do cristal.

Tabela 67: Coordenadas fracionárias dos átomos na célula unitária da L-alanina obtidas através
de difração de nêutrons [135].
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Figura 37: Convenção para numeração dos átomos na célula unitária do cristal de L-alanina.

Figura 38: Acima: perspectivas da célula unitária do cristal de L-alanina. Abaixo: zona de
Brillouin para o cristal de L-alanina.
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Figura 39: Mais perspectivas do cristal de L-alanina. De cima para baixo, vistas ao longo das
direções definidas pelos eixos a, b e c, nesta ordem.



196 3 Cálculos ab initio para o cristal de L-alanina

3.2 Otimização da geometria

Foram realizadas três otimizações de geometria para o cristal de L-alanina. A pri-

meira otimização utilizou o software ABINIT. Os cálculos foram realizados usando a

aproximação de densidade local (LDA) [179, 180] com uma base de ondas planas e pseudo-

potenciais de Troullier-Martins constrúıdos pelo programa fhi98PP [181]. A amostragem

da zona de Brillouin foi feita com um conjunto de pontos k (2 3 2) de Monkhorst-Pack

[182]. Para determinar a estrutura cristalina de equiĺıbrio, a energia total foi minimi-

zada em função dos parâmetros de rede e das coordenadas internas dos átomos na célula

unitária através da técnica do gradiente conjugado [183], sendo obtida a convergência

para uma energia de 70 H (aproximadamente 1900 eV). Foi efetuada uma comparação

entre os padrões de difração de raios X para o resultado calculado e para os resultados

experimentais [134, 178] usando o software Atoms 6.0 [184], com excelente acordo.

A segunda e a terceira otimizações foram feitas usando o software CASTEP (Cam-

bridge Sequential Total Energy Package), desenvolvido originalmente pelo Grupo de Ma-

téria Condensada da Universidade de Cambridge, o qual utiliza a teoria do funcional da

densidade para simular propriedades de sólidos, interfaces e superf́ıcies em uma grande

variedade de materiais. Baseado em métodos de pseudopotencial, o programa CASTEP

prevê propriedades como parâmetros de rede, geometria molecular, propriedades estrutu-

rais, estruturas de bandas, densidades de estados, densidades de carga, funções de onda

e propriedades ópticas. Versões eficientes do código para computação em paralelo são

disponibilizadas para simular sistemas com centenas de átomos.

Para a segunda otimização, foi empregada a aproximação de densidade local (LDA).

Pseudopotenciais de norma conservada de Hamann [185] são utilizados no esquema pro-

posto por Lee [186]. Outros parâmetros relevantes para o cálculo foram uma base de

ondas planas com energia de corte igual a 800 eV e uma amostragem de Monkhorst-Pack

[182](4 2 4) da zona de Brillouin.

A terceira otimização envolveu o uso da aproximação do gradiente generalizado (GGA)

com o funcional PBE (Perdew-Burke-Ernzerhof) [187] e pseudopotenciais de norma-

conservada de Hamann [185]. A amostragem da zona de Brillouin é a mesma adotada na

segunda otimização, bem como o valor da energia de corte.

Através do pacote ABINIT foram obtidas a estrutura de bandas e a densidade de

estados total. Já os cálculos empregando o software CASTEP inclúıram a obtenção

de estrutura de bandas, densidades de estados parcial e total e diversas propriedades
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optoeletrônicas. A convergência do cálculo ABINIT envolveu aproximações sucessivas

nas quais a energia de corte das ondas planas era aumentada de 5 em 5 H a partir do

valor inicial de 30 H usando como ponto de partida os dados da referência [135], que

também serviu como ponto de partida para os cálculos no CASTEP. A tolerância para

a variação na energia no cálculo ABINIT foi de 10−6 H. O cálculo CASTEP-LDA levou

28 iterações para convergir (ver Fig. 40), enquanto o cálculo CASTEP-GGA tomou 72

iterações (ver Fig. 41). As Figs. 40 e 41 apresentam também as tolerâncias usadas para

os parâmetros de controle de convergência (variação na energia, deslocamento atômico

máximo, força máxima e tensão máxima).

As energias por célula unitária para a L-alanina após convergência no cálculo ABINIT

foram de -252.773 H (energia total, aproximadamente -6878.302 eV), 184.386 H (energia

cinética), -68.315 H (energia de troca e correlação), -130.639 H (energia de Ewald), 1.121

H (correção de caroço para o pseudopotencial), -376.973 H (energia do pseudopotencial

local) e 28.922 H (energia do pseudopotencial não-local). Os parâmetros de rede calculados

foram a = 5.855 Å, b = 11.977 Å e c = 5.614 Å, os quais são menores que os valores

experimentais como esperado para um cálculo na aproximação de densidade local: a =

6.032 Å, b = 12.343 Å e c = 5.784 Å [134] e a = 6.025 Å, b = 12.324 Å e c = 5.783

Å [135]. O volume da célula unitária é de 393.701 Å3 (ABINIT-LDA), menor que os

volumes obtidos a partir dos dados experimentais: 430.636 Å3 [134] e 429.4 Å3 [135]. A

este volume teórico corresponde uma densidade de 1.5 g/cm3 (comparar com os valores

experimentais de 1.37 g/cm3 [135] e 1.38 g/cm3 [134]).

Para o cálculo CASTEP-LDA, a energia total obtida foi de -6819.03 eV, valor maior

(diferença de pouco mais que 59 eV ou aproximadamente 2.2 H) que o obtido no cálculo

ABINIT, provavelmente por conta do menor número de ondas planas. Os parâmetros de

rede encontrados foram: a = 5.710 Å, b = 11.47 Å e 5.672 Å, levando a um volume de

371.514 Å3 (densidade de 1.59 g/cm3). O valor reduzido para a energia de corte leva a

um erro maior para menos em comparação com o resultado do cálculo ABINIT.

No cálculo CASTEP-GGA, a energia total por célula unitária convergiu para o valor

de -6849.692 eV, valor menor que o obtido no cálculo CASTEP-LDA, mas ainda assim

maior que o obtido no cálculo ABINIT. Os parâmetros de rede após o término dos cálculos

convergiram para: a = 6.683 Å, b = 11.557 Å e 5.748 Å, resultando num volume de

443.911 Å3 (maior que os valores experimentais, como se espera de um cálculo que inclui

o gradiente da densidade eletrônica) e densidade de 1.33 g/cm3). Em comparação com os

valores experimentais, o parâmetro a é o que possui maior erro percentual (≈ 10%, para
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mais). O parâmetro b é menor que o medido experimentalmente, maior que o obtido no

cálculo CASTEP-LDA e menor que o obtido no cálculo ABINIT-LDA. O parâmetro c do

cálculo GGA é o que mais se aproxima do valor experimental dentre as três otimizações.

A Tabela 68 compara as coordenadas fracionárias internas dos átomos nas três oti-

mizações com os valores medidos por Lehmann et al. [135], juntamente com os desvios

quadráticos totais das coordenadas x, y e z calculadas em comparação com os dados

experimentais (o que dá uma idéia do erro cometido em cada aproximação). Percebe-se

claramente que a maior variação (ou erro) em comparação com o experimento ocorre para

o cálculo CASTEP-GGA, seguido do cálculo CASTEP-LDA e, por último, do cálculo

ABINIT-LDA. A Fig. 42 ilustra-o de modo eloqüente. O desvio quadrático médio do

cálculo ABINIT-LDA é de 0.0015, enquanto o desvio do cálculo CASTEP-LDA é de

0.00236, e o do cálculo GGA é de 0.00452. O desvio quadrático da aproximação GGA na

coordenada x é o mais alto, atingindo 0.0121, em comparação com o resultado 0.00405

do cálculo ABINIT-LDA.

Alguns comprimentos de ligação significativos, bem como ângulos de abertura en-

tre ligações são indicados na Tabela 69. Para a ligação entre os átomos C1 e O1, o

cálculo usando o programa ABINIT apresenta uma melhor estimativa em comparação

com o experimento, o mesmo ocorrendo para a ligação C1-O2. Para a ligação C2-N,

o cálculo CASTEP-GGA fornece resultado mais próximo do experimental, seguido do

cálculo CASTEP-LDA e do cálculo ABINIT-LDA. O comprimento da ligação entre os

carbonos 2 e 3 é melhor estimado no cálculo ABINIT, enquanto o comprimento da ligação

entre os carbonos 2 e 1 é mais próximo do valor experimental no cálculo GGA. As três

ligações de hidrogênio responsáveis pela estabilização da rede aproximam-se melhor dos

resultados experimentais, em todos os casos, na aproximação do gradiente generalizado.

O ângulo entre as ligações O–C–O é obtido com maior acurácia na otimização CASTEP-

GGA, bem como o ângulo entre as ligações O1-C1-C2. Para os ângulos entre as ligações

C-C-C, C1-C2-N e O2-C1-C2, o cálculo ABINIT-LDA dá melhores resultados.
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Tabela 68: Comparação entre coordenadas convergidas nas três otimizações e resultados experi-
mentais [135].
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Figura 40: Acima: convergência na energia para o cálculo LDA. Abaixo: convergências lo-
gaŕıtmicas na variação da energia (eV/átomo, em azul), deslocamento atômico máximo (Å, em
laranja), força máxima (eV/Å, em violeta) e tensão máxima (GPa, em verde).
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Figura 41: Acima: convergência na energia para o cálculo GGA. Abaixo: convergências lo-
gaŕıtmicas na variação da energia (eV/átomo, em azul), deslocamento atômico máximo (Å, em
laranja), força máxima (eV/Å, em violeta) e tensão máxima (GPa, em verde).
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Figura 42: Variação das coordenadas fracionárias calculadas x, y e z dos átomos da molécula de
L-alanina no cristal em comparação com resultados experimentais [135].
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Tabela 69: Comparação entre comprimentos de ligação e ângulos convergidos nas três otimizações
e resultados experimentais [135].
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3.3 Propriedades optoeletrônicas na aproximação LDA

A estrutura de bandas de um cristal de L-alanina ortorrômbico para o cálculo ABINIT-

LDA e a correspondente densidade de estados (total e integrada) aparecem na Fig. 43

(apenas as bandas perto da região do gap foram desenhadas). Vale lembrar aqui que

uma célula unitária de L-alanina possui quatro moléculas, totalizando 52 átomos e 192

elétrons, com 144 elétrons de valência e 48 elétrons de caroço. A densidade de estados

apresentada envolve apenas elétrons de valência.

No curso da realização deste trabalho foram feitas várias medidas experimentais de

absorção e fotoluminescência de cristais de L-alanina pura. Os cristais foram crescidos

através da lenta evaporação de L-alanina comercial (99% de pureza) em soluções aquosas

à temperatura ambiente. Experimentos de fotoluminescência foram realizados nas ins-

talações da Universidade de São Paulo (USP), variando a temperatura das amostras de 4

K até 400 K, usando a linha de 325 nm de um laser He-Cd focalizado em um spot com 500

µm de diâmetro. As amostras foram montadas em um criostato de temperatura variável e

a luz foi coletada através de um monocromador de 0.5 m acoplado a um fotomultiplicador

de arsenieto de gálio e analisada em um amplificador lock-in profissional. O percentual de

absorção foi medido por um fotoespectrômetro Carry 500 scan-Varian UV-Vis-Nir, com

tolerância de 0.1 nm na região do espectro entre o ultravioleta e o viśıvel. A Fig. 44

apresenta o resultado desta medida. Nota-se que a absorbância cresce muito em torno de

5.10 eV, o que indica que o gap de energia da L-alanina fica próximo deste valor.

O coeficiente de absorção pode ser obtido a partir da absorbância, a qual é definida

como o logaritmo na base 10 da razão entre a intensidade da radiação incidente e a

intensidade da radiação transmitida. Para transições diretas, o coeficiente de absorção é

relacionado à energia fotônica através de:

αGAP DIRETO(ω) = A
√

~ω − Eg, (3.1)

onde A é uma constante. Usando esta forma, o comportamento linear assimptótico da

absorbância aponta para um gap direto igual a 5.05 eV.

De acordo com o cálculo ABINIT-LDA, o cristal de L-alanina possui gap direto igual

a 4.54 eV e um gap indireto (não mostrado na Fig. 43) de 4.62 eV bem próximo do ponto

U, sugerindo que ambos os vales devem ser efetivos nos processos de luminescência (a

separação entre os gaps é de 80 meV, o suficiente para ser percebido nos picos do espectro
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de luminescência). No ponto U, as bandas são bastante planas e assimétricas, indicando

que processos de polaron possivelmente devem afetar as propriedades ópticas do material.

Sabe-se que os cálculos ab initio subestimam os valores de energia dos estados da banda

de condução, o que é o caso aqui, uma vez que o gap de energia direto calculado (4.54

eV) é aproximadamente 9% menor que o gap experimental determinado via absorção

óptica. Este acordo entre a teoria e o experimento no presente trabalho é, no entanto,

surpreendentemente melhor que o erro t́ıpico de 20 a 30% nos cálculos de band gap usando

teoria do funcional da densidade.

A partir da estrutura de bandas estimaram-se os valores das massas efetivas de elétrons

e buracos no ponto Γ. Os resultados obtidos foram, para os buracos: mΓ−X
h = 0.320,

mΓ−Y
h = 0.315 e mΓ−Z

h = 1.340; para os elétrons: mΓ−X
e = 13.914, mΓ−Y

e = 12.916

e mΓ−Z
e = 12.944. Note-se que as massas efetivas no mı́nimo da banda de condução

são relativamente bem próximas e grandes. Já as massas para a banda de valência são

menores, com uma diferença significativa da massa ao longo de Γ−Z em relação às massas

ao longo de Γ − Y e Γ − X.

Vêem-se na Fig. 45 vários planos de corte para a densidade eletrônica obtida no

cálculo LDA-CASTEP. Podem ser percebidas claramente as ligações de hidrogênio que

estabilizam a estrutura do cristal. O mesmo pode ser observado em três dimensões na

Fig. 46.

A estrutura de bandas e a densidade de estados total para o cálculo LDA-CASTEP

são exibidas na Fig. 47. A Fig. 48 mostra em detalhe o topo da banda de valência, que

apresenta máximos nos pontos Γ, Z e U , juntamente com a densidade de estados total.

Já a Fig. 49 faz o mesmo com a banda de condução, que possui mı́nimos nos pontos Γ, T,

X e R. A Fig. 50 coloca as duas bandas num mesmo gráfico, o que permite notar que os

gaps principais ocorrem entre os pontos Γ-Γ e U-Γ. O gap direto é de 5.02 eV, enquanto

gap U-Γ é de 5.017, uma diferença de apenas 3 meV entre ambos. A diferença entre o

gap Γ-Γ teórico e o valor experimental, neste caso, é de apenas 10 meV, o que indica a

necessidade de refinamento do cálculo CASTEP-LDA através do aumento do tamanho da

base, tendo em vista que tal método sempre estima gaps significativamente menores que

os valores experimentais.
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Figura 44: Absorbância e transmissão obtidas experimentalmente para o cristal de L-alanina a
300 K. A reta pontilhada no gráfico superior intercepta o eixo horizontal no valor de energia que
corresponde ao band gap estimado para o cristal.
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Figura 45: Planos de corte de densidade eletrônica.
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Figura 47: Estrutura de bandas e densidade de estados total.
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Figura 48: Estrutura de bandas - banda de valência e DOS total.
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Figura 49: Estrutura de bandas - banda de condução e DOS total.
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Figura 50: Estrutura de bandas - bandas de valência e condução.
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3.3.1 Densidade de estados parcial

A densidade de estados parcial para os átomos de hidrogênio (Fig. 51, acima) e

carbono (Fig. 51, abaixo) na aproximação LDA foi obtida usando o programa CASTEP.

A contribuição dos átomos de hidrogênio para a densidade de estados é exclusivamente

do tipo s e é relativamente pequena para o topo da banda de valência, mas significativa

na base da banda de condução. Já os átomos de carbono possuem densidades de elétrons

s e p, sendo que os elétrons s contribuem principalmente para ńıveis profundos dentro da

banda de valência, ao passo que os elétrons p contribuem mais para a DOS nas bandas

de condução e um pouco abaixo do máximo da banda de valência.

Na Fig. 52, temos a DOS parcial para os átomos de nitrogênio e oxigênio. Os

elétrons do tipo s no nitrogênio fornecem contribuições relevantes apenas para energias

menores que -10 eV, ao passo que os elétrons p exibem picos no intervalo entre -10 e 0

eV, com uma contribuição bastante pequena para a DOS na banda de condução. Já os

oxigênios apresentam contribuições do tipo s relevantes em dois picos perto de -20 eV, e

contribuições dominantes do tipo p para o topo da banda de valência.

Considerando a densidade de estados total (Fig. 53), vê-se que o topo da banda de

valência é dominado pelo caráter dos elétrons p, o mesmo ocorrendo logo na base da banda

de condução. Um pouco acima do mı́nimo desta banda, no entanto, o caráter s torna-se

um pouco mais intenso que o caráter p. Os ńıveis mais profundos, como esperado, são

predominantemente marcados com o caráter s.

Tomando agora os átomos de carbono 1, 2 e 3 isoladamente (Fig. 54), temos, para o

carbono 1, uma contribuição mais relevante de caráter p perto do mı́nimo da banda de

condução e para ńıveis entre -10 e -2 eV na banda de valência (vale lembrar que o carbono

1 está ligado aos oxigênios 1 e 2, que tendem a “roubar” seus elétrons mais externos, o

que provavelmente explica a pequena contribuição de elétrons tipo p desse átomo para

o topo da banda de valência). Também existe um pico do tipo p em um ńıvel profundo

por volta de -20 eV. Já o carbono 2 apresenta contribuições relevantes do tipo p para a

faixa entre -10 eV e 0 eV, e para a faixa entre 7 e 10 eV (banda de condução). Por fim,

o carbono 3 possui um pico mais intenso de elétrons do tipo p entre -7 e -2 eV, e uma

contribuição menor no intervalo entre 6 e 10 eV na banda de condução. Os elétrons s

apresentam dois picos significativos em torno de -10 eV e -13 eV.

Para os oxigênios 1 e 2, a Fig. 55 indica a DOS parcial. A forma da densidade de

estados para os dois oxigênios é bem parecida, com um pico bem definido do tipo p no



3.3 Propriedades optoeletrônicas na aproximação LDA 215

topo da banda de valência, uma região com contribuição p predominante entre -2 e -8 eV,

e contribuições significativas do tipo s em dois picos próximos de -20 eV.
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Figura 51: Densidade de estados parcial para átomos de hidrogênio e carbono da L-alanina.
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Figura 52: Densidade de estados parcial para nitrogênios e oxigênios da molécula de L-alanina.
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Figura 53: Densidade de estados parcial e total no cristal de L-alanina.
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Figura 54: Densidade de estados parcial para átomos de carbono individuais.
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Figura 55: Densidade de estados parcial para átomos de oxigênio individuais.
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3.3.2 Propriedades ópticas

A função dielétrica foi calculada (Fig. 56) para três diferentes polarizações de radiação

incidente (tomadas em relação aos três eixos ortogonais da célula unitária da L-alanina)

e para uma amostra policristalina. O valor da parte real da função dielétrica para um

comprimento de onda de 543 nm (verde) é igual a 2.104. Existe uma anisotropia no

tamanho dos picos da parte real e da parte imaginária em função da polarização da

radiação incidente. Por exemplo, o segundo pico da esquerda para a direita na parte real

da função dielétrica para polarização 100 é bem mais definido que na polarização 010,

mas é menos intenso que o pico correspondente para radiação incidente com polarização

001. A Fig. 57 apresenta o ı́ndice de refração igual a 1.45 para comprimento de onda

igual a 543 nm no caso da amostra policristalina (comparar com o valor experimental de

1.54 [138].

Para a polarização 100, aparecem 3 picos ńıtidos de absorção (Fig. 58) em energias

de aproximadamente 8, 11 e 13 eV. Quando se passa para a polarização 010, dois desses

picos são atenuados. A absorção, em todos os casos, é significativa apenas na faixa de

energias entre 5 e 20 eV (a L-alanina praticamente não absorve no viśıvel). Na Fig. 59

é apresentada a refletividade, que em geral é pequena, chegando a um máximo de apro-

ximadamente 0.23 (polarização ao longo do eixo 010). Existe uma maior anisotropia da

intensidade do máximo desse parâmetro em função da polarização da radiação incidente.

Para o comprimento de onda de 543 nm (verde) a refletividade é igual a 0.0338, o que

revela o grau de transparência do cristal.

As Figs. 60 e 61 exibem a condutividade óptica e a função perda, respectivamente.

A parte real da condutividade óptica apresenta algumas diferenças nas intensidades dos

picos para diferentes polarizações. Ela é máxima para um valor em torno de 12 eV no caso

da amostra policristalina. A função perda, pos sua vez, é senśıvel à polarização incidente,

tendo máximo mais intenso ao longo das direções 100 e 010. Para energias menores que

5 eV e maiores que 23 eV, sua intensidade é despreźıvel.
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Figura 56: Propriedades ópticas: função dielétrica. No canto superior direito de cada gráfico acha-se indicada a direção de polarização da radiação
incidente em termos das direções da célula unitária. No gráfico do canto inferior direito é apresentado o resultado para uma amostra policristalina
de L-alanina.
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Figura 57: Propriedades ópticas: ı́ndice de refração. No canto superior direito de cada gráfico acha-se indicada a direção de polarização da radiação
incidente em termos das direções da célula unitária. No gráfico do canto inferior direito é apresentado o resultado para uma amostra policristalina
de L-alanina.
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Figura 58: Propriedades ópticas: absorção. No canto superior direito de cada gráfico acha-se indicada a direção de polarização da radiação
incidente em termos das direções da célula unitária. No gráfico do canto inferior direito é apresentado o resultado para uma amostra policristalina
de L-alanina.
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Figura 59: Propriedades ópticas: refletividade. No canto superior direito de cada gráfico acha-se indicada a direção de polarização da radiação
incidente em termos das direções da célula unitária. No gráfico do canto inferior direito é apresentado o resultado para uma amostra policristalina.
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Figura 60: Propriedades ópticas: condutividade óptica. No canto superior direito de cada gráfico acha-se indicada a direção de polarização da
radiação incidente em termos das direções da célula unitária. No gráfico do canto inferior direito é apresentado o resultado para uma amostra
policristalina de L-alanina.
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Figura 61: Propriedades ópticas: função perda. No canto superior direito de cada gráfico acha-se indicada a direção de polarização da radiação
incidente em termos das direções da célula unitária. No gráfico do canto inferior direito é apresentado o resultado para uma amostra policristalina.
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3.4 Propriedades optoeletrônicas na aproximação GGA

Passamos agora aos resultados obtidos usando a aproximação GGA. Como foi feito na

seção anterior, temos algumas figuras representando a densidade eletrônica, com destaque

para as ligações de hidrogênio que estabilizam a estrutura cristalina do aminoácido (Figs.

62 e 63). A Fig. 64 exibe a estrutura de bandas completa, juntamente com a densidade de

estados total. Na Fig. 65, há o detalhamento da banda de valência, que agora apresenta

dois máximos, um no ponto Γ e outro no ponto X. É ńıtido que o máximo no ponto Γ se

sobressai entre os demais. Os pontos U e Z, diferente do que ocorre no cálculo LDA, não

são máximos locais. O ponto Z é um mı́nimo local e o ponto U não é cŕıtico (a derivada

da banda mais alta neste ponto é diferente de zero). Já a banda de condução (Fig. 66)

apresenta mı́nimos em Γ, X, R e nas vizinhanças do ponto T. O gap é direto, como no

cálculo LDA, e igual a 5.10 eV, enquanto o gap entre os pontos X (banda de valência) e Γ

(banda de condução) é de 5.14 eV, uma diferença de 40 eV, aproximadamente. A diferença

entre os gaps diretos teórico e experimental é de 50 meV, sendo o gap teórico maior que

o experimental, contrariando o que se esperaria de um cálculo DFT convergido. Por fim,

a Fig. 67 coloca num mesmo gráfico as bandas de valência e condução num intervalo de

energia que corresponde ao topo da banda de valência e à base da banda de condução.
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Figura 63: Isosuperf́ıcies de densidade eletrônica.
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Figura 65: Estrutura de bandas - banda de valência e DOS total.
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Figura 66: Estrutura de bandas - banda de condução e DOS total.
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Figura 67: Estrutura de bandas - bandas de valência e condução.
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3.4.1 Densidade de estados parcial

A densidade de estados parcial para os átomos de hidrogênio e carbono é mostrada

na Fig. 68. A densidade de estados para os átomos de hidrogênio (que inclui apenas

termos tipo s) apresenta regiões de maior intensidade entre as energias de -8 e -2.5 eV

e entre 5 e 10 eV, ou seja, um pouco abaixo do topo da banda de valência e na base da

banda de condução. Para os átomos de carbono, o mesmo padrão se repete, só que agora

envolvendo estados do tipo p. Os estados s são mais intensos apenas em ńıveis profundos,

abaixo de -10 eV. A seguir, na Fig. 69, acham-se indicadas as densidades parciais para o

nitrogênio e os átomos de oxigênio. No caso do nitrogênio, existe um pico de intensidade

na DOS do tipo p perto de -7 eV, e uma pequena contribuição do tipo p para a banda

de valência. Um pico intenso do tipo s aparece em torno de -17 eV. Para os átomos de

oxigênio, existe uma forte contribuição de elétrons p para a DOS no topo da banda de

valência, como ocorreu também no cálculo CASTEP-LDA.

A Fig. 70 apresenta a DOS total, que deixa evidente o caráter dominante p dos

elétrons no topo da banda de valência. A contribuição do tipo p no caso da base da

banda de condução é da mesma ordem que a contribuição do tipo s. Na Fig. 71, as

DOS para cada átomo de carbono revelam, no caso do carbono 1 (o qual se liga aos

átomos de oxigênio) uma contribuição reduzida de caráter p para o topo da banda de

valência (uma vez que os elétrons desse átomo são transferidos, em boa parte, para os

átomos de oxigênio, repetindo o que foi observado no cálculo LDA). Existe também uma

contribuição p relevante para um ńıvel profundo, em torno de -17 eV. Já o carbono de

número 2 apresenta um pico do tipo p mais intenso no topo da banda de valência, embora

boa parte da contribuição com esse tipo de caráter esteja localizada em ńıveis mais baixos

e em ńıveis um pouco acima do mı́nimo da banda de condução. Por fim, o carbono de

número 3 possui pico associado a elétrons do tipo p perto de -5 eV, e pouca contribuição

no topo da banda de valência (ao que parece, seus elétrons são em parte seqüestrados

para o carbono 2).

Nota-se nas densidades de estado parciais dos átomos de oxigênio 1 e 2 (Fig. 72)

como, novamente, as densidades são parecidas em forma, com o caracteŕıstico pico no

topo da banda de valência associado a elétrons tipo p.
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Figura 68: Densidade de estados parcial para átomos de hidrogênio e carbono da L-alanina.
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Figura 69: Densidade de estados parcial para nitrogênios e oxigênios da molécula de L-alanina.
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Figura 70: Densidade de estados parcial e total no cristal de L-alanina.
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Figura 71: Densidade de estados parcial para átomos de carbono individuais.
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Figura 72: Densidade de estados parcial para átomos de oxigênio individuais.



3.4 Propriedades optoeletrônicas na aproximação GGA 241

3.4.2 Propriedades ópticas

A função dielétrica foi determinada para quatro situações de incidência (Fig. 73): em

três a radiação incidente é polarizada e em uma simula-se uma amostra policristalina. A

parte real da função dielétrica possui três picos caracteŕısticos, que variam em intensidade

conforme o estado de polarização. Já a parte imaginária, associada à absorção, possui

valores significativos apenas no intervalo entre 5 e 18 eV. Para um comprimento de onda

igual a 543 nm, a parte real da função dielétrica é 1.784, valor menor que o obtido no

cálculo CASTEP-LDA. Na Fig. 74, são descritas as partes real e imaginária do ı́ndice

de refração do cristal. A parte real atinge um mı́nimo perto de 17 eV independente da

polarização da luz. Aparecem três máximos caracteŕısticos tanto na parte real como na

parte imaginária, quase nas mesmas posições, e um quarto pico.

Vale lembrar aqui que tal estrutura de picos em todos os espectros aqui calculados,

tanto via LDA como GGA, depende do smearing de energia escolhido. No caso dos

resultados apresentados na presente tese, o valor adotado para o smearing de energia foi

de 0.5 eV. Um smearing menor revelaria uma estrutura mais detalhada, considerando

o número enorme de transições posśıveis entre as bandas de valência e condução. De

qualquer maneira, os picos que aparecem visivelmente nos gráficos aqui desenhados são

certamente os mais relevantes.

O ı́ndice de refração para uma amostra policristalina considerando um comprimento

de onda de 543 nm é igual a 1.34, valor também menor que o calculado através da

aproximação LDA, e bem menor que o valor experimental (igual a 1.54 [138]).

A Fig. 75 contém o espectro de absorção, que apresenta 5 picos principais de inten-

sidades dependentes do tipo de polarização da radiação incidente. A absorção é menos

intensa para luz polarizada ao longo da direção 001. Na amostra policristalina, os picos

caracteŕısticos aparecem em 7, 10, 13 e 14 eV. Como no cálculo LDA, a intensidade de

absorção só é significativa entre as energias de 5 e 20 eV. A refletividade, pos sua vez,

é indicada na Fig. 76, e atinge valores menores que os do cálculo CASTEP-LDA, mal

passando de 0.10, especialmente na amostra policristalina. 5 picos caracteŕısticos variam

de intensidade conforme a polarização. Por exemplo, para luz incidente com polarização

100, o pico mais bem definido possui energia mais baixa, e os dois picos mais intensos são

bem próximos. Já para a luz que incide com polarização 001, o segundo pico é mais bem

definido e mais intenso.

A condutividade óptica e a função perda (Figs. 77 e 78) comportam-se como se segue.
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Para a parte real da condutividade óptica, existem 4 picos caracteŕısticos que variam em

intensidade e largura conforme o estado de polarização da radiação incidente. A parte

imaginária assume valor negativo para energias até 11 eV, tornando-se positiva a partir

deste valor. O máximo da parte real fica por volta de 12 eV. Para a função perda existe

uma anisotropia, com a direção de polarização 001 exibindo um pico menos intenso que

o observado para as outras direções.
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ã
o

G
G

A
2
4
3

Figura 73: Propriedades ópticas: função dielétrica. No canto superior direito de cada gráfico acha-se indicada a direção de polarização da radiação
incidente em termos das direções da célula unitária. No gráfico do canto inferior direito é apresentado o resultado para uma amostra policristalina
de L-alanina.
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Figura 74: Propriedades ópticas: ı́ndice de refração. No canto superior direito de cada gráfico acha-se indicada a direção de polarização da radiação
incidente em termos das direções da célula unitária. No gráfico do canto inferior direito é apresentado o resultado para uma amostra policristalina
de L-alanina.
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Figura 75: Propriedades ópticas: absorção. No canto superior direito de cada gráfico acha-se indicada a direção de polarização da radiação incidente
em termos das direções da célula unitária. No gráfico do canto inferior direito é apresentado o resultado para uma amostra policristalina.
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Figura 76: Propriedades ópticas: refletividade. No canto superior direito de cada gráfico acha-se indicada a direção de polarização da radiação
incidente em termos das direções da célula unitária. No gráfico do canto inferior direito é apresentado o resultado para uma amostra policristalina.
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Figura 77: Propriedades ópticas: condutividade óptica. No canto superior direito de cada gráfico acha-se indicada a direção de polarização da
radiação incidente em termos das direções da célula unitária. No gráfico do canto inferior direito é apresentado o resultado para uma amostra
policristalina de L-alanina.
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Figura 78: Propriedades ópticas: função perda. No canto superior direito de cada gráfico acha-se indicada a direção de polarização da radiação
incidente em termos das direções da célula unitária. No gráfico do canto inferior direito é apresentado o resultado para uma amostra policristalina.
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3.5 Luminescência do cristal de L-alanina

O espectro de fotoluminescência t́ıpico da L-alanina num intervalo de temperaturas

entre 4 e 300 K é indicado na Fig. 79. Os picos são largos e compreendem a região entre o

laranja e o ultravioleta (2.05 eV a 3.60 eV). Ao invés de uma linha espectral caracteŕıstica

bem suave, aparece certo grau de estruturação. O pico mais intenso ocorre para a energia

de 3.10 eV, e se torna mais pronunciado sem mudar de posição quando a temperatura

diminui. Podem ser detectados também picos mais fracos em torno de 3.43 eV, 2.75 eV

e 2.50 eV, com os picos situados no espectro viśıvel obedecendo a uma dependência com

a temperatura similar à do pico mais intenso. O pico em 3.43 eV continua bem estreito

quando a temperatura cai, indicando que não há fônons envolvidos na formação desta

linha. Nota-se que por volta de 50 K existe uma mudança na relaxação dos estados

eletrônicos que se deve a mudanças no acoplamento dos elétrons aos diferentes modos da

rede. Os modos de vibração dos cristais de L-alanina possuem baixa energia (desvios de

Raman menores que 500 cm−1), mas os modos moleculares possuem energias maiores (o

desvio de Raman dos modos de stretching envolvendo átomos de hidrogênio é de cerca

de 3000 cm−1 [188]. Ver também resultados do caṕıtulo 2). Isto sugere que os picos na

região viśıvel do espectro podem ser associados a processos ligados à rede, enquanto o

pico no ultravioleta pode ser devido à relaxação de estados moleculares excitados.

Os picos de luminescência em 2.50 eV, 2.75 eV e 3.10 eV são bem largos e possuem

energias menores que o band gap medido através de absorção (5.05 eV). A luminescência

no viśıvel pode ser associada a processos de natureza excitônica envolvendo fônons ligados

a estados cujos ńıveis de energia (El para os ńıveis próximos da banda de valência, Ed

para os próximos da banda de condução) encontram-se dentro do gap, tais como ńıveis

de polaron e defeitos que aprisionam portadores [189]. El + Ed = 1.96 eV para o pico

de luminescência mais intenso a 3.10 eV (ńıveis rasos); El + Ed = 2.31 eV para o pico

de luminescência em 2.75 eV e El + Ed = 2.56 eV para o pico em 2.50 eV (ńıveis mais

profundos). O mecanismo relacionado a polarons é sugerido pelo fato de as bandas de

condução em U e Γ no cálculo ABINIT-LDA serem planas, enquanto o mecanismo de

impurezas aprisionadoras é uma conseqüência do controle limitado do crescimento do

cristal via evaporação. Para esses mecanismos, os fônons da rede devem contribuir com o

alargamento das linhas espectrais (o qual aparece claramente na Fig. 79), suavizando os

picos na região do viśıvel quando aumenta a temperatura.

Para reforçar a hipótese do mecanismo polarônico de emissão, foram feitos vários

cálculos ab initio (funcional LDA PWC [190]) usando o programa DMOL3 [191, 192, 193],
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usando como ponto de partida seqüências de zwitteŕıons em série obtidas a partir da

estrutura cristalina convergida no cálculo ABINIT-LDA. Os resultados aparecem nas Figs.

80 e 81. Percebe-se que a transição HOMO-LUMO envolve transferência eletrônica de

um extremo para o outro da cadeia de aminoácidos. Durante tal transição, o eĺetron deve

perturbar toda a extensão da cadeia, deslocando moléculas e transferindo energia para a

rede cristalina.

O pico estreito em 3.43 eV pode ser associado a transições LUMO → HOMO de

estados quânticos das moléculas de L-alanina fracamente interagentes. Os cristais de L-

alanina são mantidos por seis ligações de hidrogênio entre os ı́ons amônia e carboxilato.

Observando atentamente a figura do cristal, e considerando a posição do band gap no

espaço rećıproco, para o ponto U na zona de Brillouin, a ligação de hidrogênio entre os ı́ons

amônia e carboxilato aponta ao longo da direção [101], ou seja, ao longo da direção que fica

exatamente no meio entre os eixos c e a. Configurações de estado fundamental e excitado

associadas com moléculas de L-alanina que interagem fracamentede modo pouco intenso

são, ao que parece, responsáveis pelas transições intramoleculares de natureza excitônica

responsáveis pelo pico estreito da luminescência [189]. Para checar tal atribuição, foram

feitos cálculos ab initio para as transições vertical e adiabática entre o estado fundamental

e estados excitados de uma molécula de L-alanina simples na conformação zwitteŕıon,

usando o método de Hartree-Fock juntamente com cálculos de excitação simples CIS

e o conjunto de base 6-31G(d) por meio do pacote Gaussian03 [159]. Os resultados

revelaram duas importantes excitações verticais a partir do estado fundamental (GS)

para um tripleto 3A em 6.36 eV, e para um singleto 1A em 7.41 eV. Após a relaxação

dos dois estados excitados, encontraram-se as excitações adiabáticas relacionadas com os

resultados de fotoluminescência: a energia de excitação 3A → GS cai para 4.83 eV e a

energia 1A → GS diminui para 5.01 eV em tais transições. Nota-se que o estado tripleto

corresponde a uma transição do estado HOMO para os dois estados virtuais de energia

mais baixa, enquanto o singleto corresponde a uma transição dos dois estados de energia

mais alta ocupados.

Existe uma contribuição de 54% do orbital HOMO para os estados virtuais de menor

energia. Considerando que as interações via ligação de hidrogênio entre várias cadeias

de zwitteŕıons mencionadas anteriormente não foram levadas em conta no cálculo e que

cálculos de Hartree-Fock tendem a superestimar as energias de excitação (por conta da

falta de correlação eletrônica), pode-se inferir que o pico de luminescência observado em

3.43 eV é atribúıvel a essas duas transições, e também parte do pico de luminescência em

3.10 eV.
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Os cálculos com seqüências do aminoácido L-alanina aqui realizados revelam que existe

uma tendência de diminuição do gap HOMO-LUMO à medida que aumenta o número

de moléculas (2.55 eV para uma única molécula, 0.87 eV para duas moléculas em série,

0.73 eV para três moléculas e 0.69 eV para quatro moléculas). É também digno de

nota que ramificações e interações entre cadeias foram recentemente consideradas muito

importantes na determinação das propriedades eletrônicas de cristais de poĺımeros [194].
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Figura 79: Fotoluminescência do cristal de L-alanina ortorrômbico medida a 4 K, 20 K, 90
K, 180 K e 300 K. O inset mostra a dependência com a temperatura do pico máximo de
fotoluminescência (normalizado), que se localiza em 3.1 eV.
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Figura 80: Isosuperf́ıcies de amplitude máxima dos orbitais HOMO (acima) e LUMO (abaixo)
para uma e duas moléculas de L-alanina em série.
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Figura 81: Três e quatro moléculas de L-alanina em série com respectivos orbitais HOMO e
LUMO (de cima para baixo, a seqüência é HOMO-LUMO, HOMO-LUMO).
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3.6 Dopagem do cristal com Mn2+

A emissão de luz a partir de materiais orgânicos e inorgânicos é um aspecto fundamen-

tal para inúmeras aplicações tecnológicas, notavelmente no caso da optoeletrônica baseada

em semicondutores e em marcadores biológicos ópticos. Reduzir ou aumentar a fotolumi-

nescência é crucial para o projeto de dispositivos emissores de luz. Sabe-se que a inclusão

de dopantes pode modificar consideravelmente as propriedades de fotoluminescência de

um material. Por exemplo, foi observada a diminuição da fotoluminescência de filmes

finos do oligômero vinileno fenileno em até 30%-50% quando ocorre o depósito de átomos

de Ca ou quando há aumento na temperatura e na desordem estrutural [195, 196]. A lu-

minescência de semicondutores magnéticos dilúıdos para aplicações em spintrônica [197]

pode ser aumentada ou diminúıda dependendo dos ńıveis de dopagem de Mn [198, 199].

Aminoácidos aromáticos são responsáveis pela fluorescência em protéınas, e podem ser

seletivamente introduzidos como marcadores através de métodos qúımicos ou genéticos.

A interação dos aminoácidos com ı́ons metálicos pode produzir uma forte atenuação da

fluorescência [200].

Por outro lado, ı́ons metálicos são importantes para a funcionalidade e o dobramento

de metaloprotéınas. Sua disponibilidade biológica é controlada no ńıvel celular a fim de

evitar excessos prejudiciais. A pesquisa sobre os prinćıpios que governam a ligação de ı́ons

a śıtios de protéınas ainda está no ińıcio [34], e um passo básico para a sua compreensão é

estudar cristais de aminoácidos dopados com metais. Experimentos de espectroscopia de

ressonância paramagnética de elétrons (Electron Paramagnetic Resonance - EPR) mos-

traram que o manganês é incorporado em cristais de L-alanina na forma de ı́ons Mn2+

[36, 41]. Recentemente, foi demonstrado que existe um limiar na concentração de dopagem

com manganês (MnCl2
>
∼3% na solução-mãe de crescimento), após o qual a formação de

clusters de Mn2+ se torna posśıvel [201]. Além disso, o espectro de fotoluminescência de

cristais de L-alanina não-dopados, visto na seção anterior, apresenta amplo e estruturado,

com picos associados a processos de natureza excitônica envolvendo interações com a rede

cristalina (polarons, defeitos operando como centros de aprisionamento de portadores), o

que torna interessante considerar os efeitos de impurezas metálicas sobre suas principais

caracteŕısticas.

Diversos efeitos f́ısicos da dopagem de cristais de L-alanina com manganês foram

estudados por Pinheiro [140] em sua dissertação de mestrado. Cristais de L-alanina fo-

ram crescidos através da lenta evaporação de soluções-mãe aquosas com concentrações

de MnCl2 variando entre 1% e 10%. Medidas de fotoluminescência foram efetuadas a
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300 K em amostras sem e com dopagem usando a linha de 325 nm de um laser He-Cd

focalizado num spot de 500 µm de diâmetro, usando o mesmo equipamento usado para a

fotoluminescência da L-alanina pura (ver seção anterior). Também foram feitas medidas

de difração de raio-X usando pó das amostras por meio de um difratômetro RIGAKU

DMAXB (λ = 1.54056 Å) para correlacionar o ińıcio de uma forte redução na intensidade

da fotoluminescência com a ocupação de múltiplos śıtios intersticiais de uma mesma célula

unitária por ı́ons Mn2+, que provoca alguma deformação na rede cristalina.

O espectro de luminescência das amostras sem e com dopagem aparece na parte

superior da Fig. 82. Um baixo ńıvel de dopagem (≤ 3.0%) não modifica o padrão de

luminescência como um todo, uma vez que os picos de luminescência em torno de 3.43

eV, 3.10 eV, 2.75 eV e 2.50 eV permanecem. No entanto, ocorre diminuição na intensidade

desses picos. Ao se aumentar a dopagem, os principais efeitos são enumerados a seguir.

• A taxa de diminuição da intensidade da luminescência reduz-se com o aumento na

concentração do dopante.

• A intensidade do pico estreito de luminescência em 3.43 eV (associado a transições

intramoleculares) é reduzida apreciavelmente, quase desaparecendo para um ńıvel

de dopagem de 10%.

• Os picos em torno de 3.10 eV e 2.75 eV apresentam melhor resolução (menor largura)

e desviam para direções opostas, o primeiro para energias menores e o segundo para

energias maiores.

• O pico em 2.50 eV é eliminado para ńıveis de dopagem mais elevados.

Na parte inferior da Fig. 82, vê-se que a intensidade integrada de fotoluminescência

é dramaticamente reduzida (quenching) – notem-se os ćırculos. Uma redução maior que

65% na intensidade de fotoluminescência é obtida com 5% de dopagem (quadrados). Esta

redução é maior que a observada para filmes finos do oligômero fenileno vinileno devido

a deposição de cálcio [195], e a desordem estrutural ou a diminuição de temperatura

[196]. Existem dois regimes de quenching da luminescência nos cristais de L-alanina

dopados com Mn: o primeiro, para concentrações de MnCl2 < 3%, no qual a taxa de

aumento do quenching é mais rápida (ver as linhas guia tracejadas na parte inferior da

Fig. 82); o segundo, para concentrações de MnCl2 ≥ 3%, situação na qual a taxa de

aumento do quenching é pequena (ver linhas pontilhadas da Fig. 82). Esta mudança de

comportamento é associada ao momento em que vários śıtios intersticiais numa mesma
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célula unitária de L-alanina são ocupados por um átomo de Mn para concentrações de

MnCl2 maiores que 3%, o que pode ser notado também através da variação percentual da

deformação do volume da célula unitária obtida a partir de medidas de difração de raios

X (ver Tabela 70). O onset desta ocupação múltipla foi demonstrado através de medidas

EPR [201].

Tabela 70: Deformação percentual no volume da célula unitária ε provocada pela dopagem da
L-alanina com Mn em função da concentração percentual de MnCl2 na solução-mãe.

O quenching da luminescência é atribúıdo a canais não-radiativos criados pelo man-

ganês intersticial [195], e à redistribuição das energias de ligação excitônicas relacionada

com o aumento da deformação estrutural provocada pela dopagem [196]. O fator que

contribui para a existência de canais não-radiativos é a redistribuição de carga induzida

pelos ı́ons Mn2+, que pode mudar a taxa de formação de polarons atuando como centros

de dissociação para os éxcitons [195]. Para estudar esse efeito, foi feita uma simulação

de mecânica molecular usando mecânica clássica (campo de força universal) para uma

supercélula de L-alanina (2 × 2 × 2 células unitárias) com um átomo de Mn isolado em

seu centro (ver Fig. 83), visando estimar aproximadamente a localização do dopante num

dos interst́ıcios. Após a convergência desta simulação clássica, foi isolada a camada de

moléculas de L-alanina em volta do átomo de Mn e efetuado um cálculo ab initio usando

a teoria do funcional da densidade (funcional LDA [190], orbitais irrestritos, configuração

de spin sexteto) por meio do pacote DMOL3 [191, 192, 193] para a camada de átomos

sem e com o átomo de Mn. Os orbitais HOMO e LUMO obtidos acham-se indicados nas

Figs. 84 (sem dopagem) e 85 (com dopagem). Para a configuração sem dopante, o orbital

HOMO concentra-se em volta dos grupos carboxilato de duas moléculas de L-alanina,

enquanto o orbital LUMO fica no lado oposto da estrutura, em torno dos grupos amônia

de outras duas moléculas, o que significa que, numa eventual transição, os elétrons devem

saltar de um lado para outro da estrutura, provocando perturbações vibracionais (pola-

ron). Olhando agora para a Fig. 85, percebe-se claramente como o átomo de Mn modifica

este quadro, deixando os orbitais HOMO e LUMO mais ou menos na mesma região da

estrutura de quatro moléculas de L-alanina, ou seja, entre os grupos carboxilato e o átomo

de Mn. O gap HOMO-LUMO calculado sem o átomo de Mn foi de 1.31 eV e, com o átomo

de Mn, 0.58 eV, mostrando que a dopagem tende a reduzir a energia de excitação. A Fig.

86 apresenta, por fim, a densidade de spin mapeada sobre a densidade eletrônica (acima)
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e o mapeamento da densidade eletrônica (abaixo) sobre o orbital HOMO na configuração

de camada dopada. É ńıtido um excesso de elétrons com spin up em torno do átomo de

Mn.

Dois ı́ons Mn2+ serão menos efetivos para a atenuação da luminescência do que um

único ı́on, uma vez que a redistribuição de carga será menor. O raio de quenching do

Mn [196] é definido como a distância média entre dois ı́ons Mn2+ que reduz a taxa de

quenching. Tal valor pode ser estimado em torno de 3 Å [201], e determina o ińıcio do

segundo regime de atenuação da luminescência após o ińıcio da formação de clusters de

átomos de Mn. Com o aumento no ńıvel de dopagem, os śıtios intersticiais ocupados se

tornam próximos o bastante para permitir a formação de clusters, que são agrupamentos

de ı́ons Mn2+ onde cada um dos ı́ons é localizado em śıtios distintos mas próximos [201].

Esta descrição é reforçada pelo argumento de que tanto a repulsão coulombiana de ı́ons

Mn2+ próximos como seu raio iônico relativamente grande impedem uma ocupação maior

do que um para o mesmo interst́ıcio. Cálculos diretos mostram que devido ao raio iônico do

Mn2+, os śıtios intersticiais nos cristais de L-alanina ortorrômbicos só podem ser ocupados

por um único ı́on [201].

Para o caso de um baixo ńıvel de dopagem com Mn, os śıtios intersticiais não ocu-

pados continuam a favorecer a existência de defeitos, dando sustentação ao espectro de

luminescência estruturado no viśıvel do cristal puro. Quando a dopagem com manganês

aumenta além de 3%, mais de um śıtio intersticial em cada célula unitária pode ser ocu-

pado, tornando menos provável a existência de defeitos na rede. Conseqüentemente, a

tendência global do aumento da dopagem nos cristais de L-alanina é diminuir o alarga-

mento das estruturas de luminescência na região viśıvel do espectro, uma vez que o número

de estados associados a defeitos se reduz. Os desvios em direções opostas dos picos em

torno de 3.10 eV e 2.75 eV é relacionado ao desaparecimento de centros de aprisionamento

associados a defeitos cujos estados possuem energias: 1. um pouco maiores que 3.1 eV

(mas menores que 3.4 eV), o que deixa mais abrupta a região de energia mais alta do

pico de luminescência em 3.1 eV (sem dopagem), uma vez que a deformação estrutural

provocada pela dopagem com manganês modifica a distribuição das energias excitônicas,

eliminando alguns ńıveis que contribuem para um padrão mais suave; 2. um pouco meno-

res que 2.75 eV, dando um caráter mais abrupto para a região de baixa energia da linha

de luminescência em 2.75 eV (sem dopagem). Finalmente, a presença de ı́ons Mn2+ nos

interst́ıcios altera a configuração de carga das moléculas de L-alanina zwitteŕıon próximas,

e pode eliminar transições intramoleculares entre alguns de seus estados. Um aumento na

dopagem de Mn leva ao enfraquecimento do pico em 3.43 eV modificando a configuração
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de carga da maioria das moléculas de L-alanina zwitteriônicas que formam o cristal.
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Figura 82: Acima: fotoluminescência do cristal de L-alanina ortorrômbico medida a 300 K sem
dopagem (linha sólida), e com dopagens de Mn com percentuais de 1% (linha tracejada), 2%
(linha pontilhada), 3% (linha tracejada-pontilhada), 5% (linha com traços pequenos), 7% (linha
com pontos bem próximos) e 10% (tracejado pequeno-pontilhado). Abaixo: dependência da
fotoluminescência integrada (ćırculos) e da fotoluminescência integrada acumulada (quadrados)
a 300 K em função da concentração de MnCl2 na solução-mãe aquosa. As curvas sólidas suaves
são apenas linhas de referência. As linhas tracejada e pontilhada indicam os dois regimes do
quenching da luminescência.
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Figura 83: Supercélula de L-alanina com um átomo de Mn inserido. As duas retas indicam a camada da supercélula que será analisada.
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Figura 84: Agrupamento de quatro moléculas de L-alanina em camada da supercélula, com os orbitais HOMO (esquerda) e LUMO (direita)
desenhados.
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Figura 85: Agrupamento de quatro moléculas de L-alanina em camada da supercélula com átomo de Mn inserido com os orbitais HOMO (esquerda)
e LUMO (direita) desenhados.
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Figura 86: Acima: isosuperf́ıcie de densidade eletrônica com mapeamento da densidade de spin.
Quanto mais vermelho, maior a densidade de spin. Abaixo: projeção da densidade eletrônica
sobre o orbital HOMO. Quanto mais vermelho, maior a densidade eletrônica.
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3.7 Sumário do caṕıtulo

Neste caṕıtulo foram apresentados resultados de cálculos ab initio para o cristal de

L-alanina usando a teoria do funcional da densidade e as aproximações LDA e GGA.

Segue um sumário dos principais resultados.

3.7.1 Otimizações de geometria

Foram realizadas três otimizações de geometria distintas para o cristal de L-alanina,

duas na aproximação de densidade local (softwares ABINIT e CASTEP), e uma na apro-

ximação do gradiente generalizado (CASTEP). É bom o acordo entre o padrão de difração

de raios X teórico obtido com o programa ABINIT e as medidas experimentais [134, 178].

Nos cálculos usando o programa CASTEP, pseudopotenciais de norma conservada

de Hamann [185] no esquema proposto por Lee [186] são adotados, juntamente com

uma base de ondas planas com energia de corte igual a 800 eV e uma amostragem de

Monkhorst-Pack [182](4 2 4) da zona de Brillouin. A otimização na aproximação do gra-

diente generalizado (GGA) foi feita com o funcional PBE (Perdew-Burke-Ernzerhof) [187]

e pseudopotenciais de norma-conservada de Hamann [185].

O cálculo realizado através do pacote ABINIT envolveu amostragem da zona de Bril-

louin com um conjunto de pontos k (2 3 2) de Monkhorst-Pack [182]. Para determinar a

estrutura cristalina de equiĺıbrio, a energia total foi minimizada em função dos parâmetros

de rede e das coordenadas internas dos átomos na célula unitária através da técnica do

gradiente conjugado [183], sendo obtida a convergência para uma energia de 70 H (apro-

ximadamente 1900 eV). Foram calculadas a estrutura de bandas e a densidade de estados

total.

Os resultados obtidos do software CASTEP inclúıram a obtenção de estrutura de

bandas, densidades de estados parcial e total e várias propriedades optoeletrônicas. As

energias por célula unitária para a L-alanina após convergência no cálculo ABINIT foram

de -252.773 H (energia total, aproximadamente -6878.302 eV), 184.386 H (energia ciné-

tica), -68.316 H (energia de troca e correlação), -130.639 H (energia de Ewald), 1.121

H (correção de caroço para o pseudopotencial), -376.973 H (energia do pseudopotencial

local) e 28.92 H (energia do pseudopotencial não-local). Os parâmetros de rede calculados

foram a = 5.855 Å, b = 11.977 Å e c = 5.614 Å, os quais são menores que os valores

experimentais (como esperado para o método de cálculo): a = 6.032 Å, b = 12.343 Å e

c = 5.784 Å [134] e a = 6.025 Å, b = 12.324 Å e c = 5.783 Å [135]. O volume da célula
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unitária é de 393.7 Å3 (ABINIT-LDA), menor que os volumes obtidos a partir dos dados

experimentais: 430.636 Å3 [134] e 429.4 Å3 [135]. A este volume teórico corresponde uma

densidade de 1.5 g/cm3 (comparar com os valores experimentais de 1.37 g/cm3 [135] e

1.38 g/cm3 [134]).

Para o cálculo CASTEP-LDA, a energia total obtida foi de -6819.03 eV, valor maior

(diferença de pouco mais que 59 eV ou aproximadamente 2.2 H) que o obtido no cálculo

ABINIT, provavelmente por conta do menor número de ondas planas empregadas. Os

parâmetros de rede encontrados foram: a = 5.71 Å, b = 11.47 Å e 5.67 Å, levando a um

volume de 371.51 Å3 (densidade de 1.59 g/cm3). O valor reduzido para a energia de corte

leva a um erro maior para menos em comparação com o resultado do cálculo ABINIT. Por

fim, no cálculo CASTEP-GGA, a energia total por célula unitária convergiu para o valor

de -6849.692 eV, abaixo do obtido no cálculo CASTEP-GGA, mas ainda assim maior que

o do cálculo ABINIT. Os parâmetros de rede após o término dos cálculos convergiram

para: a = 6.683 Å, b = 11.557 Å e 5.748 Å, resultando num volume de 443.91 Å3 (maior

que os valores experimentais, como se espera de um cálculo na aproximação GGA) e

densidade de 1.33 g/cm3). Em comparação com os valores experimentais, o parâmetro a

é o que possui maior erro percentual (≈ 10%, para mais). O parâmetro b é menor que

o experimental, maior que o obtido no cálculo CASTEP-LDA e menor que o do cálculo

ABINIT-LDA. O parâmetro c da aproximação GGA é o que mais se aproxima do valor

experimental nas três otimizações.

Dentre as metodologias utilizadas, a aproximação GGA apresentou maior variação

nas coordenadas internas dos átomos em comparação com os dados experimentais, se-

guida, nesta ordem, do cálculo CASTEP-LDA e do cálculo ABINIT-LDA. Tal erro deve

ser atribúıdo a uma insuficiente convergência na otimização da geometria, e não a um

problema intŕınseco ao método adotado.

O desvio quadrático médio nas coordenadas internas é, para o cálculo ABINIT-LDA,

0.0015. Nos cálculos CASTEP-LDA e CASTEP-GGA este valor muda para 0.00236 e

0.00452, respectivamente. O desvio quadrático da aproximação GGA na coordenada

x é mais pronunciado, atingindo 0.0121 (comparar com o resultado 0.00405 do cálculo

ABINIT-LDA). Para o comprimento da ligação entre os átomos C1 e O1, o cálculo usando

o programa ABINIT apresenta uma melhor estimativa em comparação com resultados de

medidas, o mesmo ocorrendo para a ligação C1-O2. No caso da ligação C2-N, o cálculo

CASTEP-GGA fornece melhor resultado quando confrontado com o experimento, seguido

do cálculo CASTEP-LDA e do cálculo ABINIT-LDA. O comprimento da ligação entre
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os carbonos 2 e 3 é melhor estimado no cálculo ABINIT, enquanto o comprimento da

ligação entre os carbonos 2 e 1 é mais próximo do valor experimental no cálculo GGA. As

três ligações de hidrogênio responsáveis pela estabilização do cristal aproximam-se melhor

dos resultados experimentais, em todos os casos, no método do gradiente generalizado.

O ângulo entre as ligações O–C–O é obtido com maior acurácia na otimização CASTEP-

GGA, bem como o ângulo entre as ligações O1-C1-C2. Para os ângulos entre as ligações

C-C-C, C1-C2-N e O2-C1-C2, o cálculo ABINIT-LDA produz melhores resultados.

3.7.2 Estrutura de bandas e propriedades optoeletrônicas

De acordo com o cálculo ABINIT-LDA, o cristal de L-alanina possui gap direto igual

a 4.54 eV e um gap indireto de 4.62 eV bem próximo do ponto U, sugerindo que ambos

os vales devem ser efetivos nos processos de luminescência (a separação entre os gaps é

de 80 meV, o suficiente para ser percebido nos picos do espectro de luminescência). No

ponto U, as bandas são bastante planas e assimétricas, indicando que processos envol-

vendo polarons devem contribuir para as propriedades ópticas. Sabe-se que os cálculos

ab initio subestimam os valores de energia dos estados da banda de condução. Tal regra

é confirmada no presente trabalho, uma vez que o gap de energia direto teórico (4.54 eV)

é aproximadamente 9% menor que o gap experimental determinado via absorção óptica.

O acordo entre a teoria e o experimento no presente trabalho, entretanto, é melhor que o

erro t́ıpico de 20 a 30% nos cálculos de band gap usando teoria do funcional da densidade.

Foram feitas estimativas para os valores das massas efetivas de elétrons e buracos

no ponto Γ. Para os buracos: mΓ−X
h = 0.320, mΓ−Y

h = 0.315 e mΓ−Z
h = 1.340; para

os elétrons: mΓ−X
e = 13.914, mΓ−Y

e = 12.916 e mΓ−Z
e = 12.944. Note-se que as massas

efetivas de condução são consideráveis e quase iguais entre si. Já as massas para a banda

de valência são menores, com uma diferença significativa (anisotropia) da massa ao longo

de Γ − Z em relação às massas ao longo de Γ − Y e Γ − X.

A estrutura de bandas para o cálculo CASTEP-LDA mostra que o topo da banda de

valência apresenta máximos nos pontos Γ, Z e U . A banda de condução possui mı́nimos

nos pontos Γ, T, X e R. Os gaps principais ocorrem entre os pontos Γ-Γ e U-Γ. O

gap direto é de 5.02 eV, enquanto gap U-Γ é de 5.017, uma diferença de apenas 3 meV

entre ambos. A diferença entre o gap Γ-Γ teórico e o valor experimental, neste caso, é

de apenas 10 meV, o que indica a necessidade de refinamento do cálculo CASTEP-LDA

através do aumento do tamanho da base, tendo em vista que tal método sempre estima

gaps significativamente menores que os valores experimentais.
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No cálculo CASTEP-GGA, a banda de valência apresenta dois máximos, um no ponto

Γ e outro no ponto X. O máximo no ponto Γ se sobressai em relação aos demais. Os pontos

U e Z, diferente do que ocorre no cálculo LDA, não são pontos de máximo. O ponto Z é

um mı́nimo local e a banda de valência mais alta no ponto U apresenta derivada diferente

de zero. Já a banda de condução exibe mı́nimos em Γ, X, R e nas vizinhanças do ponto

T. O gap é direto, como no cálculo LDA, e igual a 5.1 eV, enquanto gap entre os pontos

X (banda de valência) e Γ (banda de condução) é de 5.14 eV, uma diferença de 40 eV,

aproximadamente. A diferença entre os gaps diretos teórico e experimental é de 50 meV,

sendo o gap teórico maior que o medido, contrariando o que se esperaria de um cálculo

DFT completamente otimizado.

A densidade de estados parcial para os átomos de hidrogênio e carbono no cálculo

CASTEP-LDA possui as seguintes caracteŕısticas: a contribuição dos átomos de hi-

drogênio para a densidade de estados é exclusivamente do tipo s e é relativamente pequena

para o topo da banda de valência, mas significativa para a base da banda de condução.

Já os átomos de carbono possuem densidades de elétrons s e p assim distribúıdas: os

elétrons s contribuem principalmente para ńıveis profundos dentro da banda de valência,

ao passo que os elétrons p contribuem mais para a DOS nas bandas de condução e um

pouco abaixo do topo da banda de valência.

A DOS parcial para os átomos de nitrogênio e oxigênio mostra que os elétrons do

tipo s no nitrogênio fornecem contribuições mais significativas para a DOS em energias

menores que -10 eV, ao passo que os elétrons p são mais importantes no intervalo entre

-10 e 0 eV, com uma contribuição bastante pequena para a DOS na banda de condução.

Já os oxigênios apresentam contribuições do tipo s relevantes em dois picos perto de -20

eV, e contribuições dominantes do tipo p para o topo da banda de valência.

Considerando a densidade de estados total, o topo da banda de valência é dominado

pelo caráter dos elétrons p, o mesmo ocorrendo logo na base da banda de condução. Um

pouco acima do mı́nimo desta banda, no entanto, o caráter s torna-se um pouco mais mar-

cante que o caráter p. Os ńıveis mais profundos, como esperado, são predominantemente

dominados pelo caráter s.

Tomando os átomos de carbono 1, 2 e 3 isoladamente, temos, para o carbono 1,

uma contribuição mais relevante de caráter p para a região de menor energia da banda de

condução e para ńıveis entre -10 e -2 eV na banda de valência (vale lembrar que o carbono

1 está ligado aos oxigênios 1 e 2, que tendem a “roubar” seus elétrons mais externos, o

que provavelmente explica a pequena contribuição de elétrons tipo p desse átomo para
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o topo da banda de valência). Também existe um pico do tipo p em um ńıvel profundo

por volta de -20 eV. Já o carbono 2 apresenta contribuições relevantes do tipo p para a

faixa entre -10 eV e 0 eV, e para a faixa entre 7 e 10 eV (banda de condução). Por fim, o

carbono 3 possui um pico mais intenso associado a elétrons do tipo p entre -7 e -2 eV, e

uma contribuição menor no intervalo entre 6 e 10 eV na banda de condução. Os elétrons

s apresentam dois picos significativos em torno de -10 eV e -13 eV. A forma da densidade

de estados para os dois oxigênios é similar, com um pico bem definido do tipo p no topo

da banda de valência, uma região com contribuição p predominante entre -2 e -8 eV, e

contribuições significativas do tipo s em dois picos próximos de -20 eV.

A densidade de estados parcial do cálculo CASTEP-GGA inclui, no caso da densi-

dade de estados para os átomos de hidrogênio (contribuição exclusivamente do tipo s)

contribuições significativas entre as energias de -8 e -2.5 eV e entre 5 e 10 eV, ou seja,

um pouco abaixo do topo da banda de valência e na base da banda de condução. Para

os átomos de carbono, o mesmo padrão se repete, só que agora envolvendo estados do

tipo p. Os estados s são mais intensos apenas em ńıveis profundos, abaixo de -10 eV. No

caso do nitrogênio, existe um pico de intensidade na DOS do tipo p perto de -7 eV, e

uma pequena contribuição do tipo p para a banda de valência. Um pico intenso do tipo

s aparece em torno de -17 eV. Para os átomos de oxigênio, existe uma forte contribuição

de elétrons p para a DOS no topo da banda de valência, como ocorreu também no cálculo

CASTEP-LDA.

A DOS total no cálculo CASTEP-GGA deixa evidente o caráter dominante p dos

elétrons no topo da banda de valência. A contribuição do tipo p no caso da base da

banda de condução é da mesma ordem que a contribuição do tipo s. No caso do carbono

1, que é ligado aos átomos de oxigênio, a contribuição p para o topo da banda de valência é

reduzida, repetindo o que foi observado no cálculo LDA. Existe também uma contribuição

p relevante para um ńıvel profundo, em torno de -17 eV. Já o carbono de número 2

apresenta pico do tipo p mais intenso no topo da banda de valência, embora boa parte da

contribuição com esse tipo de caráter esteja localizada em ńıveis mais baixos desta banda

e um pouco além do mı́nimo da banda de condução. Por fim, o carbono de número 3

possui pico associado a elétrons do tipo p perto de -5 eV, e pouca contribuição no topo da

banda de valência (ao que parece, seus elétrons são em parte seqüestrados para o carbono

2).

Pode-se notar como as densidades de estado dos oxigênios 1 e 2 são parecidas em

forma, com o caracteŕıstico pico no topo da banda de valência associado a elétrons tipo
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p.

O valor da parte real da função dielétrica no cálculo CASTEP-LDA para um compri-

mento de onda de 543 nm (verde) é igual a 2.104. Existe uma anisotropia no tamanho dos

picos da parte real e da parte imaginária da função dielétrica em função da polarização da

radiação incidente. O ı́ndice de refração é igual a 1.45 para comprimento de onda de 543

nm no caso da amostra policristalina (comparar com o valor experimental de 1.54 [138].

Para a radiação incidente com polarização 100, aparecem 3 picos ńıtidos de absorção para

energias de aproximadamente 8, 11 e 13 eV. No caso da polarização 010, dois desses picos

são atenuados. A absorção, em todos os casos, é significativa apenas na faixa de energias

entre 5 e 20 eV (a L-alanina praticamente não absorve no viśıvel). A refletividade é pe-

quena, chegando a um máximo de aproximadamente 0.23 (polarização ao longo do eixo

010). Existe uma maior anisotropia da intensidade do máximo desse parâmetro em função

da polarização da radiação incidente. Para o comprimento de onda de 543 nm (verde) a

refletividade é igual a 0.0338, o que revela o grau de transparência do cristal. A parte real

da condutividade óptica apresenta algumas diferenças nas intensidades dos picos para di-

ferentes polarizações. Ela é máxima para um valor em torno de 12 eV no caso da amostra

policristalina. A função perda, pos sua vez, é senśıvel à polarização da radiação incidente,

tendo máximo mais intenso ao longo das direções 100 e 010. Para energias menores que

5 eV e maiores que 23 eV, a intensidade desta propriedade é despreźıvel.

Passando aos resultados na aproximação do gradiente generalizado, temos que a parte

real da função dielétrica possui três picos caracteŕısticos, os quais variam em intensidade

conforme o estado de polarização da luz incidente. Quanto à parte imaginária, associada

à absorção, aparece uma estrutura de picos significativos apenas no intervalo entre 5 e

18 eV. Para um comprimento de onda igual a 543 nm, a parte real da função dielétrica

é 1.784, valor menor que o obtido no cálculo CASTEP-LDA. A parte real do ı́ndice de

refração atinge um mı́nimo perto de 17 eV independente da polarização da luz. Aparecem

três máximos caracteŕısticos tanto na parte real como na parte imaginária do ı́ndice de

refração, aproximadamente nas mesmas posições, e um quarto pico. O ı́ndice de refração

para uma amostra policristalina considerando um comprimento de onda de 543 nm é igual

a 1.336, valor também menor que o calculado através da aproximação LDA, e bem menor

que o valor experimental (1.54 [138]).

O espectro de absorção apresenta 5 picos principais de intensidade variável conforme

muda a polarização da radiação incidente. A absorção é menos intensa para luz incidente

polarizada ao longo da direção 001. Para a amostra policristalina, os picos caracteŕısticos
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aparecem em 7, 10, 13 e 14 eV. Como no cálculo LDA, a intensidade de absorção só é

significativa entre as energias de 5 e 20 eV. A refletividade, pos sua vez, atinge valores me-

nores que os do cálculo CASTEP-LDA, mal passando de 0.10, especialmente na amostra

policristalina. 5 picos caracteŕısticos variam de intensidade conforme a polarização. Por

exemplo, para luz incidente com polarização 100, o pico mais bem definido ocorre num

valor de energia mais baixo, e os dois picos mais intensos são bem próximos. Já para a

luz que incide com polarização 001, o segundo pico a partir da direção de menor energia é

mais bem definido e mais intenso. Na parte real da condutividade óptica, existem 4 picos

caracteŕısticos que variam em definição dependendo do modo como se polariza a radiação

que incide sobre a amostra. A parte imaginária assume valor negativo para energias até 11

eV, tornando-se positiva dáı por diante. O máximo da parte real fica por volta de 12 eV.

Para a função perda existe uma anisotropia, coma função para a direção de polarização

001 com um pico menos intenso que o observado para as outras direções.

3.7.3 Luminescência do cristal de L-alanina puro

O espectro de fotoluminescência da L-alanina foi medido num intervalo de tempera-

turas entre 4 e 300 K. As bandas são largas e compreendem a região entre o laranja e

o ultravioleta (2.05 eV a 3.60 eV), com um pico mais intenso em torno de 3.10 eV que

aumenta em intensidade e não se desloca quando a temperatura diminui. Puderam ser

detectados também picos mais fracos em torno de 3.43 eV, 2.75 eV e 2.50 eV, com os

picos situados no espectro viśıvel exibindo uma dependência em função da temperatura

similar à do pico mais intenso.

O pico em 3.43 eV continua bem estreito quando a temperatura é reduzida, o que

permite inferir o não envolvimento de fônons no processo responsável por esta linha.

Por volta de 50 K existe uma mudança na relaxação dos estados eletrônicos que se deve

a mudanças no acoplamento dos elétrons aos diferentes modos da rede. Os modos de

vibração dos cristais de L-alanina possuem baixa energia (desvios de Raman menores que

500 cm−1), mas os modos moleculares possuem energias maiores (o desvio de Raman dos

modos de stretching envolvendo átomos de hidrogênio é de cerca de 3000 cm−1 [188]. Ver

também resultados do caṕıtulo 3). Isto sugere que os picos na região viśıvel do espectro

podem ser associados a processos ligados à rede, enquanto o pico no ultravioleta pode ser

devido à relaxação de estados moleculares excitados.

Os picos de luminescência em 2.50 eV, 2.75 eV e 3.10 eV são bem largos e possuem

energias menores que o band gap medido através de absorção (5.05 eV). A luminescência
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no viśıvel pode ser associada a processos de natureza excitônica (e envolvendo fônons)

relacionados a estados cujos ńıveis de energia (El para os ńıveis próximos da banda de

valência, Ed para os próximos da banda de condução) encontram-se dentro do gap, tais

como ńıveis de polaron e de defeitos que funcionam como centros de aprisionamento de

portadores [189]. O mecanismo relacionado a polarons é sugerido pelo fato de as bandas

de condução em U e Γ no cálculo ABINIT-LDA serem bastante planas, enquanto o meca-

nismo de impurezas que funcionam como centros de aprisionamento é uma conseqüência

do controle limitado do crescimento do cristal via evaporação. Para esses mecanismos, os

fônons da rede devem contribuir significativamente para o alargamento das linhas espec-

trais.

Com o fito de reforçar teoricamente a hipótese do mecanismo de polaron, foram fei-

tos vários cálculos ab initio (funcional LDA PWC [190]) usando o programa DMOL3

[191, 192, 193], tomando como ponto de partida seqüências de zwitteŕıons em série ob-

tidas a partir da estrutura cristalina convergida no cálculo ABINIT-LDA. Os resultados

mostram claramente que a transição HOMO-LUMO envolve a transferência eletrônica de

um extremo para o outro da cadeia de aminoácidos. Durante tal transição, o eĺetron deve

percorrer a extensão da cadeia, perturbando as moléculas e perdendo energia sob a forma

de vibração da rede.

O pico estreito em 3.43 eV pode ser associado a transições LUMO → HOMO de es-

tados moleculares em moléculas de L-alanina fracamente interagentes cujos cristais são

mantidos por pontes de hidrogênio entre os ı́ons amônia e carboxilato. Observando aten-

tamente a estrutura do cristal, e considerando a posição do band gap no espaço rećıproco,

para o ponto U na zona de Brillouin, a ponte de hidrogênio entre os ı́ons amônia e carbo-

xilato aponta ao longo da direção [101], ou seja, ao longo da direção que fica exatamente

no meio entre os eixos c e a. Configurações de estado fundamental e excitado associadas

com moléculas de L-alanina que interagem de modo fraco aparentemente são responsáveis

pelas transições intramoleculares de natureza excitônica por trás do estreito pico de lu-

minescência [189]. Para checar esta atribuição, foram feitos cálculos ab initio para as

transições vertical e adiabática entre o estado fundamental e estados excitados de uma

molécula de L-alanina simples na conformação zwitteŕıon, usando o método de Hartree-

Fock com cálculos de excitação simples CIS e o conjunto de base 6-31G(d) usando o

pacote Gaussian03 [159]. Os resultados mostraram duas importantes excitações verticais

a partir do estado fundamental (GS) para um tripleto 3A em 6.36 eV, e para um singleto

1A em 7.41 eV. Após a relaxação dos dois estados excitados, encontram-se as excitações

adiabáticas relacionadas aos resultados de fotoluminescência: a energia de excitação 3A
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→ GS cai para 4.83 eV e a energia 1A → diminui para 5.01 eV em tais transições. Note-se

que o estado tripleto corresponde a uma transição do estado HOMO para os dois estados

virtuais de energia mais baixa, enquanto o singleto corresponde a uma transição dos dois

estados de energia mais alta ocupados. Considerando que as interações via ligação de

hidrogênio entre várias cadeias de zwitteŕıons mencionadas anteriormente não foram leva-

das em conta no cálculo e que cálculos de Hartree-Fock tendem a superestimar as energias

de excitação (por conta da falta de correlação eletrônica), pode-se inferir que o pico de

luminescência observado em 3.43 eV é atribúıvel a essas duas transições, e também parte

do pico de luminescência em 3.10 eV.

Os cálculos com seqüências do aminoácido L-alanina aqui realizados revelam que

existe uma tendência de diminuição do gap HOMO-LUMO à medida que aumenta o

número de moléculas (2.55 eV para uma única molécula, 0.87 eV para duas moléculas

em série, 0.73 eV para três moléculas e 0.69 eV para quatro moléculas). É digno de

nota que ramificações e interações entre cadeias foram recentemente consideradas muito

importantes na determinação das propriedades eletrônicas de cristais de poĺımeros [194].

3.7.4 Quenching da luminescência no cristal de L-alanina dopado

com Mn

O efeito da dopagem com manganês sobre as propriedades ópticas do cristal de L-

alanina foi estudado por Pinheiro [140] em sua dissertação de mestrado. Cristais de

L-alanina foram crescidos através da lenta evaporação de soluções-mãe aquosas com con-

centrações de MnCl2 variando entre 1% e 10%. Foram feitas medidas de luminescência

e medidas de difração de raio-X usando pó das amostras para correlacionar o ińıcio de

uma forte redução na intensidade da fotoluminescência com a ocupação de múltiplos śıtios

intersticiais de uma mesma célula unitária por ı́ons Mn2+.

Um baixo ńıvel de dopagem (≤ 3.0%) não modifica o padrão de luminescência como

um todo, uma vez que os picos em torno de 3.43 eV, 3.10 eV, 2.75 eV e 2.50 eV do cristal

puro permanecem. No entanto, ocorre diminuição na intensidade desses picos.

Ao se aumentar a dopagem, os principais efeitos são: 1. a taxa de diminuição da

intensidade da luminescência cai; 2. a intensidade do pico estreito em 3.43 eV (associado

a transições intramoleculares) é reduzida apreciavelmente, quase desaparecendo para um

ńıvel de dopagem de 10%; 3. os picos em torno de 3.10 eV e 2.75 eV apresentam me-

lhor resolução (menor largura) e desviam para direções opostas, o primeiro para energias

menores e o segundo para energias maiores; 4. o pico em 2.50 eV é eliminado quando os
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ńıveis de dopagem são elevados. Uma redução maior que 65% na intensidade de fotolu-

minescência é obtida com 5% de dopagem. Esta redução é maior que a observada para

filmes finos do oligômero fenileno vinileno devido a deposição de cálcio [195] e a desordem

estrutural ou a diminuição de temperatura [196]. Existem dois regimes de quenching da

luminescência nos cristais de L-alanina dopados com Mn: o primeiro, para concentrações

de MnCl2 < 3%, para as quais a taxa de aumento do quenching é mais rápida; o segundo,

para concentrações de MnCl2 ≥ 3%, situação na qual a taxa de aumento do quenching é

pequena. Esta mudança de comportamento é associada ao ińıcio da ocupação de múltiplos

śıtios intersticiais nas células unitárias de L-alanina para concentrações de MnCl2 maiores

que 3%, o que pode ser notado também através da variação percentual da deformação

do volume da célula unitária obtida a partir de medidas de difração de raios X. O onset

desta ocupação múltipla foi demonstrado através de medidas EPR [201].

O quenching da luminescência é atribúıdo a canais não-radiativos criados pelo man-

ganês intersticial [195] e a redistribuição das energias de ligação excitônicas relacionada

com o aumento da deformação estrutural provocada pela dopagem [196]. O fator que

contribui para a existência de canais não-radiativos é a redistribuição de carga induzida

pelos ı́ons Mn2+, que pode mudar a taxa de formação de polarons atuando como centros

de dissociação para os éxcitons [195]. Com o objetivo de estudar esse efeito, foi feita uma

simulação de mecânica molecular usando mecânica clássica (campo de força universal)

para uma supercélula de L-alanina (2 × 2 × 2 células unitárias) com um átomo de Mn

isolado em seu centro, tendo em vista estimar aproximadamente a localização do dopante

num dos interst́ıcios. Após a convergência, foi isolada a camada de moléculas de L-alanina

em volta do átomo de Mn e efetuado um cálculo ab initio usando a teoria do funcional

da densidade (funcional LDA [190], orbitais irrestritos, configuração de spin sexteto) por

meio do pacote DMOL3 [191, 192, 193] para a camada sem e com o átomo de Mn. Na con-

figuração sem dopante, o orbital HOMO concentra-se em volta dos grupos carboxilato de

duas moléculas de L-alanina, enquanto o orbital LUMO fica no lado oposto da estrutura,

em torno dos grupos amônia de outras duas moléculas, o que significa que, numa eventual

transição, os elétrons devem saltar de um lado para outro da estrutura, acoplando-se às

vibrações da rede (polaron). Quando existe Mn na camada, percebe-se claramente como

o a transição do elétron do grupo carboxilato para o grupo amônia é eliminada, deixando

os orbitais HOMO e LUMO mais ou menos na mesma região da estrutura de quatro

moléculas de L-alanina, ou seja, entre os grupos carboxilato e o átomo de Mn. O gap

HOMO-LUMO calculado sem o átomo de Mn foi de 1.31 eV e, com o átomo de Mn, 0.58

eV, o que prova que a dopagem tende a reduzir a energia de excitação. Um excesso de
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elétrons com spin up se concentra em torno do átomo de Mn.

Dois ı́ons Mn2+ serão menos efetivos para a atenuação da luminescência do que um

único ı́on, uma vez que a redistribuição de carga será menor. O raio de quenching do

Mn [196] é definido como a distância média entre dois ı́ons Mn2+ na concentração a

partir da qual a taxa de quenching diminui. Tal valor é estimado em torno de 3 Å

[201], e determina o ińıcio do segundo regime de atenuação da luminescência após o ińıcio

da formação de clusters de Mn. Com o aumento no ńıvel de dopagem de Mn, os śıtios

intersticiais ocupados se tornam próximos o bastante para permitir a formação de clusters,

que são agrupamentos de ı́ons Mn2+ onde cada um dos ı́ons é localizado em śıtios distintos

mas próximos [201]. Esta descrição é reforçada pelo argumento de que tanto a repulsão

coulombiana de ı́ons Mn2+ próximos como seu raio iônico relativamente grande impedem

uma ocupação maior do que um para o mesmo interst́ıcio. Cálculos diretos mostram que

devido ao raio iônico do Mn2+, os śıtios intersticiais nos cristais de L-alanina ortorrômbicos

só podem ser ocupados por um único ı́on [201].

Para o caso de um baixo ńıvel de dopagem com Mn, os śıtios intersticiais não ocupados

continuam a favorecer a existência de defeitos, preservando as estruturas do espectro de

luminescência do cristal puro no viśıvel. Quando a dopagem com manganês aumenta

além de 3%, mais de um śıtio intersticial em cada célula unitária pode ser ocupado,

tornando menos provável a existência de defeitos na rede. Conseqüentemente, a tendência

global do aumento da dopagem nos cristais de L-alanina é diminuir o alargamento das

estruturas de luminescência na região viśıvel do espectro, uma vez que o número de

estados associados a defeitos se reduz. Os desvios em direções opostas dos picos em torno

de 3.10 eV e 2.75 eV são relacionados ao desaparecimento de centros de aprisionamento

associados a defeitos cujos estados possuem energias: 1. um pouco maiores que 3.1 eV

(mas menores que 3.4 eV), o que deixa mais abrupta a região de energia mais alta do

pico de luminescência em 3.1 eV (sem dopagem); 2. um pouco menores que 2.75 eV,

dando um caráter mais abrupto para o lado de baixa energia da linha de luminescência

em 2.75 eV (sem dopagem). Finalmente, a presença de ı́ons Mn2+ nos interst́ıcios altera

a configuração de carga das moléculas de L-alanina próximas, e pode eliminar transições

intramoleculares entre alguns de seus estados. Um aumento na dopagem de Mn leva ao

enfraquecimento do pico em 3.43 eV modificando a configuração de carga da maioria das

moléculas de L-alanina zwitteriônicas que formam o cristal.
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4 Conclusões e Perspectivas

A investigação das propriedades da L-alanina incluiu cálculos de propriedades ele-

trônicas e vibracionais (molécula) e propriedades optoeletrônicas (cristal). Seguem-se as

principais conclusões do presente trabalho no que concerne aos cálculos para a molécula:

• Os comprimentos de ligação calculados usando o formalismo DFT são, via de regra,

maiores que os obtidos de acordo com o método de Hartree-Fock restrito, indicando

que a correlação eletrônica produz o alongamento das ligações, sendo tal efeito mais

intenso nas ligações entre o carbono e os oxigênios. O aumento no tamanho da base

tende, nos cálculos RHF, a reduzir ainda mais as distâncias entre átomos ligados

(exceção aberta para o comprimento C–N, que aumenta um pouco). O mesmo ocorre

com os ângulos entre ligações, exceto aqueles que envolvem o átomo de nitrogênio.

Os ângulos de torsão não apresentam uma tendência de comportamento ńıtida,

ora aumentando, ora diminuindo conforme o ńıvel de refinamento e a aproximação

teórica empregada.

• Nas diversas conformações da L-alanina os oxigênios possuem uma afinidade maior

por elétrons, retendo mais carga negativa, sendo seguidos pelo nitrogênio, que atrai

mais fortemente os elétrons dos três átomos de hidrogênio que o circundam, o que

confirma as previsões de eletronegatividade da tabela periódica.

• Comparando as atribuições calculadas usando os métodos RHF e DFT, observam-se

algumas diferenças. Por exemplo, para a conformação I as atribuições dos modos 2

e 3 aparecem trocadas, sendo o modo 2 um twisting do CH3 de acordo com o cálculo

RHF e um twisting do NH2 no cálculo DFT. Resultados obtidos usando teoria do

funcional da densidade dependente do tempo [132] atribuem uma torção do CH3

para o segundo modo, o que coincide com o cálculo HF de [165]. Os valores de

freqüência calculados segundo a aproximação DFT são, em geral, maiores que os

valores calculados na aproximação RHF corrigida.
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• O orbital HOMO espalha-se praticamente por toda a molécula, concentrando-se

um pouco no grupo amina (ou amônia, no caso da conformação zwitteŕıon). Já o

orbital LUMO encontra-se espacialmente menos concentrado nas vizinhanças dos

átomos que formam a molécula de L-alanina, produzindo uma espécie de nuvem em

volta do grupo COO. Os orbitais LUMO calculados pelo método DFT e pelo método

RHF refinado apresentam maior intensidade nas vizinhanças imediatas da molécula.

Pode-se notar que a amplitude de probabilidade em volta do grupo do nitrogênio é

pequena. Numa eventual transição HOMO-LUMO, um dos elétrons salta de um lado

da molécula (grupo amina ou amônia) para o outro (grupo carboxila ou carboxilato).

• De um modo geral, há acordo entre as intensidades dos picos calculados e as in-

tensidades medidas para os espectros Raman e VCD. No caso do espectro Raman,

pode-se notar que as freqüências calculadas são um pouco maiores que as medidas

experimentalmente.

• Quanto aos ńıveis de energia dos orbitais moleculares da conformação zwitteŕıon,

no cálculo RHF simples, a energia dos orbitais HOMO e LUMO ficou em -0.415 H

e 0.045 H, respectivamente, com um gap de 0.46 H ou 12.52 eV. No caso do cálculo

RHF refinado, a energia do orbital HOMO é de -0.413 H e a energia do orbital

LUMO é igual a 0.0425 H, com um gap de 0.456 H ou 12.41 eV. No cálculo DFT,

as energias obtidas foram -0.258 H (orbital HOMO) e -0.01435 H (orbital LUMO),

com um gap de 0.244 H ou 6.64 eV. Em comparação com as conformações I e II,

o gap da conformação zwitteŕıon solvatada em água é maior no cálculo RHF e no

cálculo DFT, que incorpora efeitos de correlação eletrônica.

As principais conclusões que podem ser enumeradas a partir do cálculo das proprie-

dades optoeletrônicas do cristal são:

• Os parâmetros de rede calculados usando o programa ABINIT e a aproximação de

densidade local foram a = 5.855 Å, b = 11.977 Å e c = 5.614 Å, os quais são menores

(como esperado para um cálculo na aproximação LDA) que os valores experimen-

tais: a = 6.032 Å, b = 12.343 Å e c = 5.784 Å [134] e a = 6.025 Å, b = 12.324 Å

e c = 5.783 Å [135]. O volume da célula unitária é de 393.70 Å3 (ABINIT-LDA),

menor que os volumes obtidos a partir dos dados experimentais: 430.64 Å3 [134]

e 429.4 Å3 [135]. A este volume teórico corresponde uma densidade de 1.5 g/cm3

(comparar com os valores experimentais de 1.37 g/cm3 [135] e 1.38 g/cm3 [134]).

No cálculo CASTEP-LDA, os parâmetros de rede encontrados foram: a = 5.71 Å,
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b = 11.47 Å e 5.67 Å, o que produz um volume igual a 371.51 Å3 (densidade de 1.59

g/cm3). O valor reduzido para a energia de corte nos cálculos feitos usando o pro-

grama CASTEP-LDA leva a um erro maior nos parâmetros de rede em comparação

com o resultado do cálculo ABINIT. Por fim, no cálculo CASTEP-GGA, a energia

total por célula unitária convergiu para o valor de -6849.69 eV, valor abaixo do

obtido no cálculo CASTEP-LDA, mas ainda assim maior que o do cálculo ABINIT.

Os parâmetros de rede após o término dos cálculos na aproximação do gradiente

generalizado convergiram para: a = 6.68 Å, b = 11.56 Å e 5.75 Å, resultando

num volume de 443.91 Å3 (maior que as medidas experimentais, como ocorre com

todo cálculo GGA) e densidade de 1.33 g/cm3). Em comparação com os valores

experimentais, o parâmetro a é o que possui maior erro percentual (≈ 10%, para

mais). O parâmetro b é menor que o medido experimentalmente, maior que o ob-

tido no cálculo CASTEP-LDA e menor que o obtido no cálculo ABINIT-LDA. O

parâmetro c no método GGA é o que mais se aproxima do valor experimental nas

três otimizações.

• A maior variação (ou erro) para as coordenadas internas dos átomos em comparação

com os dados experimentais aparece no cálculo CASTEP-GGA, seguido do cálculo

CASTEP-LDA e, por último, do cálculo ABINIT-LDA.

• De acordo com o cálculo na aproximação de densidade local usando o pacote ABI-

NIT, o cristal de L-alanina possui gap direto igual a 4.54 eV e um gap indireto de

4.62 eV bem próximo do ponto U, o que indica a participação de ambos os vales

nos processos de luminescência (a separação entre os gaps é de 80 meV, o suficiente

para ser percept́ıvel nos picos do espectro de luminescência). No ponto U, as bandas

são bastante planas e assimétricas, indicando que processos de polaron devem con-

tribuir para as propriedades ópticas. Sabe-se que os cálculos ab initio subestimam

os valores de energia dos estados da banda de condução, o que é o caso aqui, uma

vez que o gap de energia direto calculado (4.54 eV) é aproximadamente 9% menor

que o gap experimental determinado via absorção óptica. Este acordo entre a teoria

e o experimento é melhor que o erro t́ıpico de 20 a 30% nos cálculos de band gap

usando teoria do funcional da densidade. Foram feitas estimativas para os valores

das massas efetivas de elétrons e buracos no ponto Γ. Os resultados obtidos foram,

para os buracos: mΓ−X
h = 0.320, mΓ−Y

h = 0.315 e mΓ−Z
h = 1.340; para os elétrons:

mΓ−X
e = 13.914, mΓ−Y

e = 12.916 e mΓ−Z
e = 12.944. É fácil ver que as massas efetivas

dos elétrons de condução são bem próximas entre si e grandes. Já as massas para

portadores na banda de valência são menores, com uma anisotropia significativa da
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massa ao longo de Γ − Z em relação às massas ao longo de Γ − Y e Γ − X. As

estruturas de bandas obtidas usando o software CASTEP, tanto LDA como GGA,

apresentaram valores próximos do gap experimental, indicando a necessidade de

uma base maior para melhorar a consistência da otimização.

• Considerando a densidade de estados total, o topo da banda de valência é dominado

pelo caráter dos elétrons do tipo p, o mesmo ocorrendo logo na base da banda de

condução. Um pouco acima do mı́nimo desta banda, no entanto, o caráter s torna-se

ligeiramente mais intenso que o caráter p. Os ńıveis mais profundos, como esperado,

são predominantemente marcados pelo caráter s.

• No cálculo CASTEP-LDA, tomando os átomos de carbono 1, 2 e 3 isoladamente,

temos, para o carbono 1, uma contribuição mais relevante de caráter p para a base

da banda de condução e para ńıveis entre -10 e -2 eV na banda de valência (vale

lembrar que o carbono 1 está ligado aos oxigênios 1 e 2, que tendem a “roubar”

seus elétrons mais externos, o que explica a pequena contribuição de elétrons tipo

p desse átomo para o caráter do topo da banda de valência). Também existe um

pico do tipo p em um ńıvel profundo por volta de -20 eV. Já o carbono 2 apresenta

contribuições relevantes do tipo p para a faixa entre -10 eV e 0 eV, e para a faixa

entre 7 e 10 eV (banda de condução). Por fim, o carbono 3 possui um pico mais

intenso de elétrons do tipo p entre -7 e -2 eV, e uma contribuição menor no inter-

valo entre 6 e 10 eV na banda de condução. Os elétrons s apresentam dois picos

significativos em torno de -10 eV e -13 eV. A forma da densidade de estados para

os dois oxigênios é bem parecida, com um pico bem definido do tipo p no topo da

banda de valência, uma região com contribuição p predominante entre -2 e -8 eV, e

contribuições significativas do tipo s em dois picos próximos de -20 eV.

• O valor da parte real da função dielétrica para um comprimento de onda de 543

nm (verde) no cálculo CASTEP-LDA é igual a 2.104. Existe uma anisotropia no

tamanho dos picos da parte real e da parte imaginária em função da polarização da

radiação incidente. O ı́ndice de refração é igual a 1.45 para comprimento de onda

de 543 nm no caso da amostra policristalina (comparar com o valor experimental

de 1.54 [138]. Para a polarização 100, aparecem 3 picos ńıtidos de absorção em

energias de aproximadamente 8, 11 e 13 eV. No caso da polarização 010, dois desses

picos são atenuados. A absorção, em todos os casos, é significativa apenas na faixa

de energias entre 5 e 20 eV (a L-alanina praticamente não absorve no viśıvel). A

refletividade é pequena, chegando a um máximo de aproximadamente 0.23, no caso
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de polarização ao longo do eixo 010. Existe uma maior anisotropia da intensidade

do máximo desse parâmetro em função da polarização da radiação incidente. Para o

comprimento de onda de 543 nm (verde) a refletividade é igual a 0.0338, o que revela

o grau de transparência do cristal. A parte real da condutividade óptica apresenta

algumas diferenças nas intensidades dos picos para diferentes polarizações. Ela é

máxima para um valor em torno de 12 eV no caso da amostra policristalina. A

função perda, pos sua vez, é senśıvel à polarização incidente, tendo máximo mais

intenso ao longo das direções 100 e 010. Para energias menores que 5 eV e maiores

que 23 eV, sua intensidade é despreźıvel.

• Os picos do espectro de luminescência da alanina pura em 2.35 eV, 2.75 eV e 3.10

eV são bem largos e possuem energias menores que o band gap medido através

de absorção (5.05 eV). A luminescência no viśıvel pode ser associada a processos

de natureza excitônica (e envolvendo fônons) relacionados a estados cujos ńıveis

de energia (El para os ńıveis próximos da banda de valência, Ed para os ńıveis

próximos da banda de condução) encontram-se dentro do gap, tais como ńıveis de

polaron e defeitos que funcionam como centros de aprisionamento de portadores

[189]. O mecanismo relacionado a polarons é sugerido pelo fato de as bandas de

condução em U e Γ no cálculo ABINIT-LDA serem planas, enquanto o mecanismo

de impurezas aprisionadoras de portadores é uma conseqüência do controle limitado

do crescimento do cristal via evaporação. Para esses mecanismos, os fônons da rede

devem contribuir significativamente para o alargamento das linhas.

• Para reforçar a hipótese do mecanismo de luminescência envolvendo polarons, fo-

ram feitos vários cálculos ab initio (funcional LDA PWC [190]) usando o programa

DMOL3 [191, 192, 193], partindo de seqüências de zwitteŕıons em série obtidas a par-

tir da estrutura cristalina convergida no cálculo ABINIT-LDA. Os resultados mos-

tram claramente que a transição HOMO-LUMO envolve a transferência eletrônica

de um extremo para o outro da cadeia de aminoácidos. Durante tal transição, o

elétron deve perturbar as moléculas da cadeia e perder energia, transferida para as

vibrações da rede cristalina.

• Um pico estreito de luminescência em 3.43 eV pode ser associado a transições

LUMO → HOMO em moléculas de L-alanina fracamente interagentes (os cristais

de L-alanina são estabilizados por ligações de hidrogênio entre os ı́ons amônia e

carboxilato). Para checar esta atribuição, foram feitos cálculos ab initio para as

transições vertical e adiabática entre o estado fundamental e estados excitados de
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uma molécula de L-alanina simples na conformação zwitteŕıon, usando o método de

Hartree-Fock com excitação simples CIS e o conjunto de base 6-31G(d) usando o

pacote Gaussian03 [159]. Os resultados mostraram duas importantes excitações ver-

ticais a partir do estado fundamental (GS) para um tripleto 3A em 6.36 eV, e para

um singleto 1A em 7.41 eV. Após a relaxação dos dois estados excitados, encontram-

se as excitações adiabáticas, relacionadas com os resultados de fotoluminescência: a

energia de excitação 3A → GS cai para 4.83 eV e a energia 1A → diminui para 5.01

eV em tais transições. Nota-se que o estado tripleto corresponde a uma transição

do estado HOMO para os dois estados virtuais de energia mais baixa, enquanto o

singleto corresponde a uma transição dos dois estados de energia mais alta ocupados

(contribuição de 54% do orbital HOMO para os mesmos estados virtuais de energia

mais baixa). Considerando que as interações via ponte de hidrogênio entre as várias

cadeias de zwitteŕıons não foram levadas em conta no cálculo e que cálculos de

Hartree-Fock tendem a superestimar as energias de excitação (por conta da falta de

correlação eletrônica), pode-se inferir que o pico de luminescência observado em 3.43

eV é atribúıvel a essas duas transições, e também parte do pico de luminescência

em 3.10 eV.

• Cálculos com seqüências seriais do aminoácido L-alanina revelam que existe uma

tendência de diminuição do gap HOMO-LUMO à medida que aumenta o número de

moléculas (2.55 eV para uma única molécula, 0.87 eV para duas moléculas em série,

0.73 eV para três moléculas e 0.69 eV para quatro moléculas). É digno de nota

que ramificações e interações entre cadeias foram recentemente consideradas muito

importantes na determinação das propriedades eletrônicas de cristais de poĺımeros

[194].

• Um baixo ńıvel de dopagem do cristal de L-alanina com Mn (≤ 3.0%) não modifica

o padrão de luminescência como um todo uma vez que os picos de luminescência

observados em torno de 3.43 eV, 3.10 eV, 2.75 eV e 2.50 eV continuam a aparecer. No

entanto, ocorre uma diminuição na intensidade da luminescência. Ao se aumentar

a dopagem, os principais efeitos são: 1. a taxa de variação da intensidade da

luminescência em função da dopagem fica menor; 2. a intensidade do pico estreito

de luminescência em 3.43 eV (associado a transições intramoleculares) é reduzida

apreciavelmente, quase desaparecendo para um ńıvel de dopagem de 10%; 3. os

picos em torno de 3.10 eV e 2.75 eV apresentam melhor resolução (menor largura)

e desviam para direções opostas, o primeiro para energias menores e o segundo

para energias maiores; 4. o pico em 2.50 eV é eliminado para maiores ńıveis de
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dopagem. Uma redução maior que 65% na intensidade de fotoluminescência é obtida

com 5% de MnCl2, fator bem maior que o observado em filmes finos do oligômero

fenileno vinileno com deposição de cálcio [195], desordem estrutural ou diminuição

de temperatura [196].

• Existem dois regimes de quenching da luminescência nos cristais de L-alanina do-

pados com Mn: o primeiro, para concentrações de MnCl2 < 3%, no qual a taxa

de aumento do quenching é mais rápida; o segundo, para concentrações de MnCl2

≥ 3%, situação na qual a taxa de aumento do quenching é pequena. Esta mudança

de comportamento é associada ao ińıcio da ocupação de vários śıtios intersticiais

nas células unitárias de L-alanina para concentrações de MnCl2 maiores que 3%.

Tal ocupação múltipla pode ser notada também através da variação percentual da

deformação do volume da célula unitária obtida a partir de medidas de difração de

raios X. O onset desta ocupação múltipla foi demonstrado através de medidas EPR

[201].

• O quenching da luminescência deve ser atribúıdo a canais não-radiativos criados

pelo manganês intersticial [195], e à redistribuição das energias de ligação excitônicas

relacionada com o aumento da deformação estrutural provocada pela dopagem [196].

O fator que contribui para a existência de canais não-radiativos é a redistribuição

de carga induzida pelos ı́ons Mn2+, que pode mudar a taxa de formação de polarons

atuando como centros de dissociação para os éxcitons [195]. Para estudar esse efeito,

foi feita uma simulação de mecânica molecular usando mecânica clássica (campo de

força universal) para uma supercélula de L-alanina (2× 2× 2 células unitárias) com

um átomo de Mn isolado em seu centro, com a intenção de estimar aproximadamente

a localização do dopante num dos interst́ıcios. Após a convergência, foi isolada

a camada de moléculas de L-alanina em volta do átomo de Mn e efetuado um

cálculo ab initio usando a teoria do funcional da densidade (funcional LDA PWC

[190], orbitais irrestritos, configuração de spin sexteto) por meio do pacote DMOL3

[191, 192, 193] para a camada sem e com o átomo de Mn. Na configuração sem

dopante, o orbital HOMO concentra-se em volta dos grupos carboxilato de duas

moléculas de L-alanina, enquanto o orbital LUMO fica no lado oposto da estrutura,

em torno dos grupos amônia de outras duas moléculas. Isto significa que, numa

eventual transição, os elétrons devem saltar de um lado para outro da estrutura,

acoplando-se a perturbações vibracionais (polarons). Quando existe Mn na camada,

percebe-se nitidamente como a transição do elétron do grupo carboxilato para o

grupo amônia é eliminada, deixando os orbitais HOMO e LUMO mais ou menos
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na mesma região da estrutura de quatro moléculas de L-alanina, ou seja, entre os

grupos carboxilato e o átomo de Mn. O gap HOMO-LUMO calculado sem o átomo

de Mn foi de 1.31 eV e, com o átomo de Mn, 0.58 eV, provando que a dopagem tende

a reduzir a energia de excitação. Um excesso de elétrons com spin up se concentra

em torno do átomo de Mn.

As principais perspectivas para futuro desenvolvimento do trabalho apresentado aqui

incluem:

• Cálculo de propriedades moleculares usando a teoria do funcional da densidade e

uma base maior (6-311++G(3d,3p)) para aprimoramento dos resultados já obtidos

na base 6-31++G(d,p).

• Aumento no tamanho da base usada nos cálculos CASTEP-LDA e CASTEP-GGA

para convergir melhor a célula unitária e cálculo mais confiável da estrutura de

bandas e das propriedades optoeletrônicas.

• Implementação da correção de troca exata (EXX) para determinar com maior pre-

cisão o band gap do cristal de L-alanina.

• Cálculo dos fônons para o cristal de L-alanina: relação de dispersão e densidade de

estados.

• Cálculo ab initio da otimização de uma supercélula de L-alanina dopada com Mn

em um ou mais interst́ıcios. Repetir o mesmo estudo para outros tipos de dopagem

com metais.

• Aplicar os métodos de primeiros prinćıpios a outros sistemas f́ısicos de interesse f́ısico

ou biológico: fármacos, pontos quânticos, novos compostos cristalinos inorgânicos,

nanoestruturas de carbono.

Boa parte dessas melhorias depende da aquisição de computadores capazes de atender

as altas exigências em termos de processamento e memória para os cálculos. O estudo

de aminoácidos, polipept́ıdeos e protéınas é uma área que evolui rapidamente e atrai o

interesse de diversas disciplinas do conhecimento cient́ıfico. Os avanços são rápidos e

podem produzir resultados significativos em relativamente pouco tempo. A presente tese

revela algumas das propriedades moleculares e cristalinas do aminoácido L-alanina e abre

as portas para novas e interessantes linhas de investigação teórica.
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ANEXO A -- Fundamentos teóricos

No decorrer deste anexo utilizaremos o sistema de unidades atômicas. Os fatores de

conversão deste sistema para o SI são apresentados no Apêndice. As principais referências

bibliográficas deste anexo (e também para parte da introdução desta tese) são [202, 203,

204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214].

A.1 Aproximação de Born-Oppenheimer

O hamiltoniano de um sistema formado por Ne elétrons e Nn núcleos atômicos pode

ser escrito como:

Ĥ = −1

2

Ne∑

i=1

∇2
i −

1

2

Nn∑

I=1

∇2
I

MI

−
Ne∑

i=1

Nn∑

I=1

ZI

|ri − RI |
+

+
Ne∑

i=1

Ne∑

j=i+1

1

|ri − rj|
+

Nn∑

I=1

Nn∑

J=I+1

ZIZJ

|RI − RJ |
, (A.1)

onde os elétrons são numerados com ı́ndices e coordenadas grafados em letras minúsculas

e os núcleos atômicos, com letras maiúsculas. Tal hamiltoniano inclui termos de interação

elétron-núcleo, elétron-elétron e elétron-núcleo. O termo de energia cinética nuclear pode

ser considerado relativamente pequeno em comparação com a energia cinética eletrônica

(o operador energia cinética inclui o inverso da massa). É posśıvel, portanto, tratar tal

termo como uma perturbação dependendo dos parâmetros 1/MI . Podemos escrever o

operador Ĥ como a soma de vários termos:

Ĥ = T̂e(r) + T̂n(R) + V̂e−n(r,R) + V̂e−e(r) + V̂n−n(R), (A.2)

onde temos, nesta ordem, a energia cinética dos elétrons, a energia cinética dos núcleos, e

as energias potenciais coulombianas de interação elétron-núcleo, elétron-elétron e núcleo-

núcleo:
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T̂e(r) = −1

2

Ne∑

i=1

∇2
i , (A.3)

T̂n(R) = −1

2

Nn∑

I=1

∇2
I

MI

, (A.4)

V̂e−n(r,R) = −
Ne∑

i=1

Nn∑

I=1

ZI

|ri − RI |
, (A.5)

V̂e−e(r) =
Ne∑

i=1

Ne∑

j=i+1

1

|ri − rj|
, (A.6)

V̂n−n(R) =
Nn∑

I=1

Nn∑

J=I+1

ZIZJ

|RI − RJ |
. (A.7)

Seja Û(r,R) = V̂e−n(r,R)+ V̂e−e(r)+ V̂n−n(R) o termo de energia potencial referente

a todas as interações entre elétrons e núcleos. Aqui r e R denotam, respectivamente, co-

ordenadas eletrônicas e nucleares. Consideraremos o operador T̂n como uma perturbação

do hamiltoniano Ĥ ′ = Ĥ − T̂n, no qual os núcleos são mantidos fixos em suas posições.

Calculam-se então os autovalores e autofunções Ei(R) e ΨiR(r) para os elétrons em função

das posições nucleares representadas pelo vetor R. O ı́ndice i = 0, 1, 2, 3, ... enumera o

conjunto completo de estados para cada R. As soluções completas para o sistema acoplado

de núcleos e elétrons são obtidas através de:

ĤΨs(r,R) = EsΨs(r,R), (A.8)

onde s = 0, 1, 2, 3, ... enumera os estados do sistema acoplado. Podemos expandir Ψs(r,R)

na base dos ΨiR(r):

Ψs(r,R) =
∞∑

i=0

ϑsi(R)ΨiR(r). (A.9)

Os estados do sistema eletrônico-nuclear acoplado são especificados agora pelas funções

ϑsi, que dependem das coordenadas nucleares e multiplicam os estados ΨiR na expansão

de Ψs(r,R). Para encontrar as equações que esses coeficientes devem satisfazer, inserimos

a Eq. (A.9) na Eq. (A.8), multiplicamos tudo por Ψ∗
iR(r) e calculamos a integral da
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equação resultante sobre as coordenadas r, obtendo:

[

T̂n(R) + EiR − Es

]

ϑsi(R) = −
∞∑

j=0

Cij(R)ϑij(R), (A.10)

onde Cij(R) = Aij(R) + Bij(R), com:

Aij(R) =
Nn∑

I=1

1

MI

〈ΨiR(r)|∇I |ΨjR(r)〉∇I , (A.11)

Bij(R) =
1

2

Nn∑

I=1

1

MI

〈ΨiR(r)|∇2
I |ΨjR(r)〉 . (A.12)

Aqui, 〈ΨiR(r)| Ô |ΨjR(r)〉 envolve integração somente sobre as coordenadas eletrônicas

r para o operador Ô.

A aproximação adiabática ou aproximação de Born-Oppenheimer consiste em igno-

rar os coeficientes Cij(R) quando i 6= j (termos não-diagonais), ou seja, desprezam-se

transições eletrônicas i → j, com i 6= j, provocadas pelo movimento nuclear. Em outras

palavras, ignora-se qualquer transferência de energia dos graus de liberdade associados

ao vetor R para os graus de liberdade associados ao vetor r. Pode-se mostrar que os

coeficientes Aii(R) são nulos a partir da condição de normalização da função de onda Ψ.

O termo Bii(R) pode ser agrupado com EiR para formar um potencial efetivo para os

núcleos, Ui(R) = EiR+Bii(R). Por conseguinte, na aproximação adiabática o movimento

nuclear é descrito por uma equação que depende apenas de R e dos estados eletrônicos

associados a R:

[

−1

2

Nn∑

I=1

∇2
I

MI

+ Ui(R) − Eni

]

ϑsi(R) = 0, (A.13)

onde n = 0, 1, 2, 3, ... é um ı́ndice para contar os estados nucleares. Na aproximação

adiabática, o conjunto completo de estados é um produto direto de estados nucleares e

eletrônicos.

Enquanto for posśıvel desprezar os termos Cij(R) com i 6= j, é aceitável resolver o

problema do movimento dos núcleos através da Eq. (A.13), sendo dadas as funções Ui(R)

para o estado eletrônico i que evolui adiabaticamente. É digno de nota que o termo

Bii(R) é tipicamente muito pequeno por conta da considerável massa dos núcleos em
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comparação com a massa do elétron. Em geral, a aproximação adiabática funciona muito

bem, exceto nos casos em que existe degenerescência ou quase degenerescência dos estados

eletrônicos (o que aumenta em muito a probabilidade de transições eletrônicas induzidas

por vibrações nucleares). Se existe um gap no espectro de excitação bem maior que as

energias cinéticas nucleares t́ıpicas, as excitações nucleares ficam bem determinadas na

aproximação adiabática. É necessário, porém, ter cuidado com transições entre estados

em moléculas onde ocorre degenerescência eletrônica, ou em metais, onde a falta de um

gap de energia produz efeitos qualitativos importantes.

Os termos Cij(R) não-diagonais podem ser interpretados como interações elétron-

fônon, descrevendo transições entre diferentes estados eletrônicos provocadas pelo movi-

mento dos núcleos. Os termos dominantes são dados pela Eq. (A.11), que envolve um

gradiente atuando sobre as funções de onda eletrônicas e um gradiente atuando sobre a

função de onda de fônon ϑsi(R). A combinação desses operadores produz uma transição

eletrônica entre os estados i e j juntamente com a emissão ou absorção de um fônon.

É útil escrever o operador energia cinética nuclear empregando operadores de criação e

aniquilação de fônons, e obter uma expansão perturbativa para o elemento Cij(R). É fácil

notar que a variação na função de onda eletrônica provocada pelo deslocamento do núcleo

I é efeito da mudança que este deslocamento provoca na energia potencial elétron-núcleo.

Considerando tal mudança como uma perturbação de primeira ordem, temos:

〈ΨiR(r)|∇I |ΨjR(r)〉 =
1

EjR − EiR

× 〈ΨiR(r)| ∂V̂e−n(r,R)

∂RI

|ΨjR(r)〉 . (A.14)

Que é a forma usual para os elementos da matriz elétron-fônon.

A.2 O método autoconsistente de Hartree-Fock

A.2.1 Orbitais de spin

Dentro da aproximação de Born-Oppenheimer, vista na seção anterior, podemos es-

crever um hamiltoniano apenas para os elétrons, o qual é dado por:

Ĥe = −1

2

Ne∑

i=1

∇2
i −

Ne∑

i=1

Nn∑

I=1

ZI

|ri − RI |
+

Ne∑

i=1

Ne∑

j=i+1

1

|ri − rj|
. (A.15)
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Negligenciamos aqui a energia de interação núcleo-núcleo, que é facilmente calculada

para uma configuração fixa das coordenadas R. Tal energia deve ser acrescentada se

quisermos obter valores de EiR consistentes com as definições da seção anterior. De agora

em diante, no entanto, usaremos EiR para indicar as autoenergias satisfazendo:

ĤeΨiR(r) = EiRΨiR(r). (A.16)

O hamiltoniano da Eq. (A.15) depende apenas das coordenadas espaciais dos elétrons,

r. Para descrever completamente um elétron, contudo, é necessário especificar também

seu spin. Em uma abordagem não-relativ́ıstica, podemos fazer isto introduzindo duas

funções, α(ω) (representando um spin up,↑), e β(ω) (representando um spin down,↓),
onde ω é uma variável de identificação eletrônica. As funções de spin formam uma base

ortonormal:

〈α | α〉 = 〈β | β〉 = 1, (A.17)

〈α | β〉 = 〈β | α〉 = 0. (A.18)

Nesta convenção, um elétron i é descrito não apenas pelas três coordenadas espaciais

ri, mas também pela coordenada de spin ωi. Denotaremos o conjunto de quatro coorde-

nadas usando a notação xi. A função de onda de um sistema de N elétrons passa a ser,

então, uma função de x = {xi}.

Elétrons obedecem à estat́ıstica de Fermi e, portanto, estão sujeitos ao prinćıpio da

exclusão de Pauli, o qual pode ser enunciado da seguinte forma:

“A função de onda de um sistema de muitos elétrons deve ser anti-simétrica com

respeito à permutação da coordenada x entre quaisquer dois elétrons”.

Em forma algébrica:

Ψ(x1,x2, . . . ,xi, . . . ,xj, . . . ,xN) = −Ψ(x1,x2, . . . ,xj, . . . ,xi, . . . ,xN). (A.19)

Definimos aqui orbital como sendo uma função de onda dependente das coordenadas

de um único elétron. No caso de estruturas eletrônicas moleculares, usa-se comumente o

termo orbital molecular (Molecular Orbital - MO) para designar uma combinação de orbi-
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tais atômicos que determinam coletivamente parte da densidade eletrônica numa molécula.

Um orbital espacial φi(r) é uma função do vetor posição r e descreve a distribuição es-

pacial de um elétron de modo que |φi(r)|2 dr é a probabilidade de encontrar o elétron em

um pequeno elemento de volume dr em torno de r (vale lembrar aqui que o orbital em si

mesmo não possui significado f́ısico, mas representa uma amplitude de probabilidade que

sempre pode ser multiplicada por um fator de fase constante). Iremos assumir, salvo dito

em contrário, que os orbitais espaciais formam uma base ortonormal. O número de orbi-

tais numa base é, em geral, infinito, o que significa que qualquer cálculo com número finito

de orbitais produzirá apenas resultados aproximados. No espaço dos spins, entretanto,

bastam duas funções (α(ω) e β(ω), como já definimos) para expressar completamente o

estado do elétron. Para cada orbital espacial é posśıvel formar dois diferentes orbitais de

spin:

ψ(x) =

{

φ(r)α(ω)

φ(r)β(ω)
(A.20)

Dado um conjunto com P orbitais espaciais é posśıvel formar um conjunto de 2P

orbitais de spin.

Consideremos o caso de um gás de elétrons não interagentes. O hamiltoniano de tal

sistema pode ser escrito como:

Ĥ =
Ne∑

i=1

[

−1

2
∇2

i + V (ri)

]

=
Ne∑

i=1

ĥ(ri), (A.21)

onde ĥ(ri) = − (∇2
i /2) + V (ri) é um operador que atua somente sobre o elétron indicado

pelas coordenadas ri. Este operador possui um conjunto de autofunções que formam uma

base de orbitais de spin:

ĥ(ri)ψj(xi) = Ejψj(xi). (A.22)

A.2.2 Produtos de Hartree e determinantes de Slater

Como o hamiltoniano dado pela Eq. (A.21) é um somatório de hamiltonianos de um

único elétron, uma função de onda do tipo:
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ΨH(x) = ψw(1)(x1)ψw(2)(x2)ψw(3)(x3) . . . ψw(Ne)(xNe
), (A.23)

deve satisfazer a equação:

ĤΨH(x) = EH
i ΨH(x). (A.24)

Na Eq. (A.23), w : N → N. O autovalor EH
i é dado por:

EH
i = E1 + E2 + E3 + . . . + ENe

. (A.25)

A função de onda dada pela Eq. (A.23) é conhecida como produto de Hartree. Tal

produto não exibe correlação eletrônica, uma vez que a probabilidade de encontrar qual-

quer elétron num dado volume independe da presença de outros elétrons por perto. O

produto de Hartree não leva em conta que os elétrons são indistingúıveis (atribui a cada

elétron i um orbital bem definido ψw(i)) e a anti-simetria da função de onda do sistema

(prinćıpio da exclusão). É posśıvel satisfazer esta última condição se a função de onda do

sistema de Ne elétrons for dada por um determinante de Slater:

ΨHF (x) =
1√
Ne!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψw(1)(x1) ψw(2)(x1) . . . ψw(Ne)(x1)

ψw(1)(x2) ψw(2)(x2) . . . ψw(Ne)(x2)
...

...
. . .

...

ψw(1)(xNe
) ψw(2)(xNe

) · · · ψw(Ne)(xNe
)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (A.26)

O fator
√

N ! é uma constante de normalização. No determinante existem Ne elétrons

ocupando Ne orbitais de spin
{
ψw(1), ψw(2), ψw(3), . . . , ψw(Ne)

}
de tal maneira que cada

elétron pode ocupar igualmente todos os orbitais (todos os elétrons são indistingúıveis)

respeitando a anti-simetria da função de onda do sistema (permutar dois elétrons equivale

a permutar duas linhas do determinante, o que faz a função de onda trocar de sinal). Se

pelo menos dois elétrons, i e j, ocuparem um mesmo orbital (se w(i) = w(j), ao menos

duas colunas da matriz se tornam iguais, e o determinante é zero), a função de onda

se anula (ou seja, a probabilidade de encontrar dois ou mais elétrons no mesmo estado

quântico é zero), respeitando o prinćıpio da exclusão de Pauli.

É conveniente introduzir aqui uma notação para o determinante de Slater normali-

zado que deixe subentendida a inclusão do fator de normalização e apresente apenas os

elementos da diagonal do determinante:
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∣
∣ΨHF (x)

〉
=

∣
∣ψw(1)(x1)ψw(2)(x2) . . . ψw(Ne)(xNe

)
〉
. (A.27)

Se pusermos sempre os ı́ndices das coordenadas eletrônicas (ou os ı́ndices dos elétrons)

em ordem crescente, podemos encurtar mais ainda a notação:

∣
∣ΨHF (x)

〉
=

∣
∣ψw(1)ψw(2) . . . ψw(Ne)

〉
. (A.28)

A anti-simetria da função de onda pode ser escrita como:

∣
∣ψw(1)ψw(2) . . . ψw(i) . . . ψw(j) . . . ψw(Ne)

〉
= −

∣
∣ψw(1)ψw(2) . . . ψw(j) . . . ψw(i) . . . ψw(Ne)

〉
.

(A.29)

A menos de um sinal, os determinantes de Slater são completamente especificados pe-

los orbitais de spin a partir dos quais são constrúıdos (ou seja, orbitais de spin ocupados).

Determinantes de Slater constrúıdos a partir de orbitais de spin ortonormais e que in-

cluem o fator de normalização já são automaticamente normalizados. Dois determinantes

de Ne elétrons com diferentes orbitais de spin ortonormais ocupados são ortogonais.

Ao introduzir a anti-simetria na função de onda eletrônica, o determinante de Slater

cria efeitos de troca e correlação de troca (troca, porque a densidade de probabilidade

deve ser invariante sob permutas de coordenadas espaciais e de spin, correlação de troca

por conta do modo como os movimentos de elétrons com mesmo spin afetam-se mutu-

amente, sendo nula a probabilidade desses elétrons possúırem as mesmas coordenadas

espaciais, formando-se um “buraco de Fermi” em volta do elétron). Porém, como não

existe correlação do movimento de elétrons com spins opostos, é usual dizer que a função

de onda dada pelo determinante de Slater não embute efeitos de correlação.

A.2.3 As equações de Hartree-Fock

O prinćıpio variacional afirma que uma função de onda normalizada para o estado

fundamental de um sistema descrito pelo hamiltoniano Ĥ minimiza o funcional:

E[Ψ] = 〈Ψ| Ĥ |Ψ〉 . (A.30)

Seja |Ψ〉 =
∣
∣ψw(1)ψw(2) . . . ψw(Ne)

〉
um determinante de Slater normalizado. A idéia do
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método autoconsistente de Hartree-Fock é obter o conjunto de orbitais:

{
ψw(1), ψw(2), ψw(3), . . . , ψw(Ne)

}

capaz de minimizar o funcional E[Ψ], determinando uma aproximação para o verdadeiro

estado fundamental,
∣
∣ΨGS

〉
.

Podemos escrever a Eq. (A.15) como:

Ĥ =
Ne∑

i=1

ĥ(ri) +
1

2

Ne∑

i=1

Ne∑

j=1
j 6=i

V (ri, rj), (A.31)

onde:

ĥ(ri) = −1

2
∇2

i −
Nn∑

I=1

ZI

|ri − RI |
, (A.32)

V (ri, rj) =
1

|ri − rj|
. (A.33)

Inserindo este hamiltoniano juntamente com o determinante de Slater normalizado

na Eq. (A.30), temos:

E[Ψ] =
〈
ψw(1)ψw(2) . . . ψw(Ne)

∣
∣

Ne∑

i=1

ĥ(ri) +
1

2

Ne∑

i=1

Ne∑

j=1
j 6=i

V (ri, rj)
∣
∣ψw(1)ψw(2) . . . ψw(Ne)

〉
=

=
Ne∑

i=1

〈
ψw(1)ψw(2) . . . ψw(Ne)

∣
∣ ĥ(ri)

∣
∣ψw(1)ψw(2) . . . ψw(Ne)

〉
+

+
1

2

Ne∑

i=1

Ne∑

j=1
j 6=i

〈
ψw(1)ψw(2) . . . ψw(Ne)

∣
∣ V (ri, rj)

∣
∣ψw(1)ψw(2) . . . ψw(Ne)

〉
. (A.34)

O funcional resultante possui dois termos, um dependendo dos operadores de um

elétron ĥ(ri), e outro dependendo dos operadores de dois elétrons V (ri, rj). Pode-se

mostrar, usando as propriedades dos determinantes, que:



294 Anexo A -- Fundamentos teóricos

Ne∑

i=1

〈
ψw(1)ψw(2) . . . ψw(Ne)

∣
∣ ĥ(ri)

∣
∣ψw(1)ψw(2) . . . ψw(Ne)

〉
=

=
Ne∑

i=1

〈ψi(x)| ĥ(r) |ψi(x)〉,
(A.35)

1

2

Ne∑

i=1

Ne∑

j=1
j 6=i

〈
ψw(1)ψw(2) . . . ψw(Ne)

∣
∣ V (ri, rj)

∣
∣ψw(1)ψw(2) . . . ψw(Ne)

〉
=

=
1

2

Ne∑

i=1

Ne∑

j=1
j 6=i

〈ψi(x)ψj(x
′)|V (r, r′) |ψi(x)ψj(x

′)〉+

−1

2

Ne∑

i=1

Ne∑

j=1
j 6=i

〈ψi(x)ψj(x
′)|V (r, r′) |ψi(x

′)ψj(x)〉 .

(A.36)

O funcional energia passa a ser uma função dos orbitais de spin ψi(x):

E[ψ1, ψ2, . . . , ψNe
] =

Ne∑

i=1

〈ψi(x)| ĥ(r) |ψi(x)〉+

+
1

2

Ne∑

i=1

Ne∑

j=1
j 6=i

〈ψi(x)ψj(x
′)|V (r, r′) |ψi(x)ψj(x

′)〉+
(A.37)

−1

2

Ne∑

i=1

Ne∑

j=1
j 6=i

〈ψi(x)ψj(x
′)|V (r, r′) |ψi(x

′)ψj(x)〉 . (A.38)

Vamos agora minimizar o funcional com respeito aos orbitais de spin obedecendo ao

v́ınculo de ortonormalização:

〈ψi(x) | ψj(x)〉 = δij. (A.39)

Tal v́ınculo pode ser inclúıdo mais facilmente através da técnica dos multiplicadores

de Lagrange, definindo um novo funcional:

Λ[ψ1, ψ2, . . . , ψNe
] = E[ψ1, ψ2, . . . , ψNe

] −
Ne∑

i=1

Ne∑

j=1

λij [〈ψi(x) | ψj(x)〉 − δij]. (A.40)
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Nesta equação, os λij formam um conjunto de multiplicadores de Lagrange. Como

Λ[ψ1, ψ2, . . . , ψNe
] é real e 〈ψi(x) | ψj(x)〉 = 〈ψj(x) | ψi(x)〉∗, os multiplicadores de La-

grange devem ser elementos de uma matriz hermiteana:

λij = λ∗
ji. (A.41)

Calculando a variação de Λ[ψ1, ψ2, . . . , ψNe
], temos:

δΛ[ψ1, ψ2, . . . , ψNe
] =

Ne∑

i=1

〈δψi(x)| ĥ(r) |ψi(x)〉+

+
Ne∑

i=1

Ne∑

j=1

〈δψi(x)ψj(x
′)|V (r, r′) |ψi(x)ψj(x

′)〉+

−
Ne∑

i=1

Ne∑

j=1

〈δψi(x)ψj(x
′)|V (r, r′) |ψi(x

′)ψj(x)〉+

−
Ne∑

i=1

Ne∑

j=1

λji 〈δψi(x) | ψj(x)〉 + complexo conjugado.

(A.42)

Definimos os operadores de Coulomb e de troca, respectivamente Ĵi e K̂i:

Ĵi(x)ψj(x) =

[∫

ψ∗
i (x

′)V (r, r′)ψi(x
′)dx′

]

ψj(x) =

=

[∫
ψ∗

i (x
′)ψi(x

′)

|r − r′| dx′

]

ψj(x), (A.43)

K̂i(x)ψj(x) =

[∫

ψ∗
i (x

′)V (r, r′)ψj(x
′)dx′

]

ψi(x) =

=

[∫
ψ∗

i (x
′)ψj(x

′)

|r − r′| dx′

]

ψi(x).

(A.44)

O operador de Coulomb representa o potencial médio local em x criado pela presença

de um elétron no estado ψi. A origem do termo de troca é o caráter anti-simétrico dos

determinantes de Slater. Tal termo possui caráter não-local e é puramente quântico (sem

análogo clássico), pois não existe um potencial simples K̂i(x) definido de modo único em

um ponto x. A aplicação deste operador sobre um estado ψj depende do valor de ψj em

todo o espaço. É interessante notar que K̂i(x)ψi(x) = Ĵi(x)ψi(x).

Em função desses operadores, a Eq. (A.42) pode ser escrita como:
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Ne∑

i=1

∫

δψ∗
i (x)

[

ĥ(r)ψi(x) +
Ne∑

j=1

(

Ĵj(x) − K̂j(x)
)

ψi(x) −
Ne∑

j=1

λjiψj(x)

]

dx+

+complexo conjugado = 0.

(A.45)

Definindo o operador de Fock como:

F̂(x) = ĥ(r) +
Ne∑

j=1

(

Ĵj(x) − K̂j(x)
)

. (A.46)

É interessante introduzir aqui também a definição do potencial de Hartree-Fock:

V̂ HF (r) =
Ne∑

j=1

(κ̂j(x) − χ̂j(x)), (A.47)

de modo que:

F̂(x) = ĥ(r) + V̂ HF (r). (A.48)

A Eq. (A.42) pode ser escrita na forma:

δΛ[ψ1, ψ2, . . . , ψNe
] =

Ne∑

i=1

∫

δψ∗
i (x)

[

F̂(x)ψi(x) −
Ne∑

j=1

λjiψj(x)

]

dx+

+complexo conjugado = 0.

(A.49)

Como δψ∗
i é arbitrário, a expressão entre colchetes deve ser zero para todos os valores

de i. Logo:

F̂(x)ψi(x) =
Ne∑

j=1

λjiψj(x). (A.50)

Que é a equação de Hartree-Fock não-canônica. Pode-se mostrar que qualquer função

de onda de Slater formada a partir do conjunto de orbitais {ψi} possui certo grau de

flexibilidade. Os orbitais de spin podem ser misturados sem alterar o valor de E[Ψ]

através de uma transformação unitária. O conjunto de orbitais que minimizam o funcional
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energia não é único, e não se pode atribuir significado f́ısico espećıfico a um conjunto

particular de orbitais de spin. Orbitais de spin localizados não são mais “reais” que

orbitais deslocalizados, do ponto de vista f́ısico.

Em particular, é posśıvel provar a existência de uma transformação unitária que pro-

duz novos orbitais {ψi} nos quais a Eq. (A.50) torna-se diagonal (forma canônica):

F̂(x)ψi(x) = εiψi(x). (A.51)

Esta é a equação de Hartree-Fock canônica. Os orbitais de spin canônicos, que são

as soluções desta equação, são em geral deslocalizados e formam uma base para a re-

presentação irredut́ıvel do grupo de simetria pontual da molécula estudada. Uma vez

calculados os orbitais de spin canônicos, é posśıvel obter um número infinito de conjuntos

de orbitais equivalentes através de uma transformação unitária. Em particular, há vários

critérios para escolha de transformações unitárias que levam a conjuntos de orbitais de

spin localizados e, portanto, mais de acordo com a natureza das ligações qúımicas.

A.2.4 Teoremas de Koopman e Brillouin

Cada solução da Eq. (A.51) possui energia εi. Os Ne orbitais de spin com energias

mais baixas são precisamente os orbitais de spin ocupados em Ψ, para os quais usamos

os ı́ndices 1, 2, . . . , Ne. O restante dos orbitais de spin não ocupados ou virtuais (um

conjunto infinito de orbitais) será indicado usando os ı́ndices u1, u2, . . . , uj, . . ..

A representação matricial do operador de Fock na base das autofunções canônicas é

diagonal, e seus elementos são as energias dos orbitais. O teorema de Koopman assegura

que, dado um determinante Hartree-Fock de Ne elétrons, com energias de orbitais ocupa-

dos e não ocupados dadas por {εi} e {εuj
}, o potencial de ionização (igual a energia da

configuração com Ne − 1 elétrons menos a energia da configuração com Ne elétrons) para

produzir um determinante com Ne−1 elétrons
∣
∣Ne−1Ψi

〉
com orbitais de spin idênticos, ex-

ceto pela remoção de um elétron do orbital de spin ψi, é igual a −εi e a afinidade eletrônica

(igual a energia da configuração com Ne elétrons menos a energia da configuração com

Ne +1 elétrons) para produzir um determinante com Ne +1 elétrons
∣
∣Ne+1Ψuj

〉
com orbi-

tais de spin idênticos, exceto pelo acréscimo de um elétron no orbital de spin ψuj
, é dada

por −εuj
.

O teorema de Koopman permite estimar os potenciais de ionização e as afinidades

eletrônicas. Nesta aproximação, conhecida como aproximação de “orbital congelado”,
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supõe-se que os orbitais de spin nos estados Ne ± 1, ou seja, os ı́ons positivo e negativo se
∣
∣NΨ

〉
é uma espécie neutra, são idênticos aos orbitais para o estado com Ne elétrons. Tal

aproximação ignora a relaxação dos orbitais nos estados Ne ± 1, ou seja, que os orbitais

de spin de
∣
∣NΨ

〉
não são os orbitais otimizados para

∣
∣Ne−1Ψi

〉
e

∣
∣Ne+1Ψuj

〉
. Otimizar os

orbitais de spin dos determinantes com Ne ± 1 elétrons em dois cálculos de Hartree-Fock

separados reduz o potencial de ionização e a afinidade. Portanto, deve-se concluir que

o teorema de Koopman tende a superestimar os valores dessas energias. Além do mais,

a aproximação de um único determinante para a função de onda produz certo erro, e

efeitos de correlação obtidos quando se vai além da aproximação de Hartree-Fock trarão

novas correções aos resultados obtidos através do teorema de Koopman. Em particular,

as energias de correlação são maiores para sistemas com mais elétrons. Logo, efeitos de

correlação tendem a cancelar o erro de relaxamento para os potenciais de ionização, mas

o reforçam no cálculo de afinidade eletrônica. Em geral, os potenciais de ionização de

Koopman são boas aproximações de primeira ordem, mas as afinidades calculadas se-

gundo este teorema não são boas e diferem bastante dos resultados experimentais. Por

exemplo, muitas moléculas neutras ganham um elétron a fim de formar ı́ons negativos

estáveis. Cálculos de Hartree-Fock nesses casos, porém, quase sempre resultam em ener-

gias positivas para os orbitais virtuais, ou seja, prevêem que o acréscimo de um elétron é

energeticamente desfavorável.

Tendo em vista que o conjunto de todos os determinantes de Slater constrúıdos a partir

de todos os orbitais de spin forma uma base para a representação do estado fundamental

exato, podemos escrever:

∣
∣ΨGS

〉
= c0 |ψ1 . . . ψNe

〉 +
Ne∑

i=1

∞∑

j=1

cj
i

∣
∣ψ1 . . . ψi−1ψuj

ψi+1 . . . ψNe

〉
+

+
Ne∑

i=1

Ne∑

j=1
j 6=i

∞∑

k=1

∞∑

l=1
l 6=k

ckl
ij |ψ1 . . . ψi−1ψuk

ψi+1 . . . ψj−1ψul
ψj+1 . . . ψNe

〉 + . . . .

(A.52)

Esta expansão é a base para o método de interação de configuração (Configuration

Interaction - CI) para o cálculo do estado fundamental (e também para estados excita-

dos). Temos, portanto, correções de determinantes com excitação simples, dupla, etc.

O teorema de Brillouin afirma que determinantes de excitação simples não interagem

diretamente com o determinante do estado fundamental:
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〈ψ1 . . . ψNe
| Ĥ

∣
∣ψ1 . . . ψi−1ψuj

ψi+1 . . . ψNe

〉
= 0. (A.53)

É correto dizer, portanto, que resolver a equação de autovalores de Hartree-Fock equi-

vale a garantir que |Ψ〉 não incluirá misturas envolvendo determinantes com um único

estado excitado. Neste sentido, o estado fundamental de Hartree-Fock é estável até pri-

meira ordem. Correções mais relevantes para o estado fundamental são fornecidas por

termos de segunda ordem, ou seja, envolvendo determinantes duplamente excitados.

A.2.5 Orbitais espaciais

Os orbitais de spin são divididos em restritos e irrestritos. No método de Hartree-

Fock restrito (Restricted Hartree-Fock Method, RHF) os orbitais possuem a mesma função

espacial para as duas funções de spin α(ω) e β(ω). Num modelo de camada fechada, todos

os orbitais de mais baixa energia são completamente ocupados:

|Ψ〉 = |ψ1ψ2 . . . ψNe
〉 =

∣
∣
∣φ

↑
1φ

↓
1 . . . φ↑

Ne/2φ
↓

Ne/2

〉

(A.54)

Figura 87: Diagrama representando a ocupação de orbitais nos métodos de Hartree-Fock restrito
(esquerda) e irrestrito (direita). Note-se que no modelo irrestrito as camadas são naturalmente
abertas, ou seja, há no máximo um elétron por orbital espacial.

O operador de Fock para coordenadas espaciais é dado por:

F̂(r) = ĥ(r) +

Ne/2
∑

j=1

[

2Ĵj(r) −Kj(r)
]

, (A.55)

onde Jj(r) e Kj(r) são, respectivamente, os operadores de Coulomb e de troca no modelo
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de camada fechada:

Ĵj(r) =

∫
φ∗

j(r
′)φj(r

′)

|r − r′| dr′, (A.56)

K̂j(r)φi(r) =

[∫
φ∗

j(r
′)φi(r

′)

|r − r′| dr′
]

φj(r). (A.57)

O valor esperado para a energia de Hartree-Fock é:

EHF = 〈Ψ| Ĥ |Ψ〉 = 2

Ne/2
∑

i=1

hii +

Ne/2
∑

i=1

Ne/2
∑

j=1

(2Jij − Kij) , (A.58)

onde:

hii = 〈φi(r)| ĥ(r) |φi(r)〉 , (A.59)

Jij = 〈φi(r)| Ĵj(r) |φi(r)〉 , (A.60)

Kij = 〈φi(r)| K̂j(r) |φi(r)〉 . (A.61)

A energia dos orbitais é dada por:

εi = hii +

Ne/2
∑

j=1

(2Jij − Kij) . (A.62)

Como nem todos os sistemas são de camada fechada, é necessário generalizar o for-

malismo para acomodar situações nas quais uma molécula possui um ou mais elétrons

não emparelhados. As abordagens mais usadas em sistemas de camada aberta empregam

orbitais restritos ou irrestritos. No método restrito (Open-Shell Restricted Hartree-Fock

Method - ORHF), todos os elétrons menos os explicitamente necessários para formar as

camadas abertas, encontram-se em camadas fechadas. A vantagem deste procedimento é

que a função de onda obtida é autofunção do operador de spin Ŝ2. A desvantagem é que

a exigência de ocupação de orbitais em pares aumenta a energia calculada em relação ao

valor exato. Além disso, as equações que devem ser resolvidas são mais complicadas que

as usadas no método irrestrito. A descrição restrita de Hartree-Fock é imprópria para

descrever estados de camada aberta como estados excitados (dupletos, tripletos, etc.) e

moléculas com comprimentos de ligação grandes (por exemplo, a molécula de hidrogênio,
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H2, que se dissocia em espécies de camada aberta).

Figura 88: Energia potencial para a molécula de H2 usando dois conjuntos de base (ver a subseção
A.2.7 mais adiante): STO-3G (esquerda), 6-31G** (direita), segundo os métodos de Hartree-
Fock restrito (RHF) e irrestrito (UHF). Diagrama representando a ocupação de orbitais nos
métodos de Hartree-Fock restrito (esquerda) e irrestrito (direita). O resultado exato foi obtido
por Kolos e Wolniewicz [215]. Unidades atômicas são utilizadas. Figura retirada de [214].

O método de Hartree-Fock irrestrito (Unrestricted Hartree-Fock Method - UHF) ga-

rante maior liberdade à forma dos orbitais, tornando a parte espacial do orbital depen-

dente do spin. É um método que forma necessariamente camadas abertas (cada orbital

espacial comporta apenas um único elétron). A função de onda UHF fornece uma ener-

gia ligeiramente mais baixa que a obtida pelo método ORHF e é mais útil para prever

o espectro de ressonância eletrônica de spin. O maior problema com a função de onda

UHF é que ela não é uma autofunção do operador de spin Ŝ2 (pior: é imposśıvel construir

uma autofunção de Ŝ2 através de uma combinação linear de funções UHF), enquanto a

verdadeira função de onda e a função de onda RHF de camada aberta são autofunções

deste operador. Quando uma função de onda UHF é encontrada, é necessário calcular
〈

Ŝ2
〉

e comparar com S(S + 1). Se a diferença for significativa, a função de onda UHF

deve ser vista com desconfiança.

A.2.6 Equações de Roothaan

Após a eliminação da variável de spin, temos de resolver a equação integral-diferencial

de Hartree-Fock:
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F̂(r)φi(r) = εiφi(r). (A.63)

Clemens Roothaan propôs resolver este problema através da introdução de um con-

junto de funções de base conhecidas {ξν(r)} com ν = 1, 2, 3, . . . , K, expandindo os orbitais

moleculares linearmente nesta base:

φi(r) =
K∑

ν=1

Cνiξν(r), i = 1, 2, 3, . . . , K. (A.64)

Em geral, a expansão é exata somente se o número de funções de base for infinito.

A otimização do custo computacional exige que se escolha um conjunto finito de vetores

de base adequado para a obtenção de orbitais moleculares aproximados. O número de

orbitais linearmente independentes será sempre no máximo igual ao número de funções

de base. Substituindo a expansão dos orbitais em uma base com número finito de funções

na equação de Hartree-Fock, temos:

F̂(r)
K∑

ν=1

Cνiξν(r) = εi

K∑

ν=1

Cνiξν(r). (A.65)

Multiplicando ambos os lados por ξ∗µ(r) e integrando, obtemos a equação matricial:

K∑

ν=1

Cνi

∫

ξ∗µ(r)F̂(r)ξν(r)dr = εi

K∑

ν=1

Cνi

∫

ξ∗µ(r)ξν(r)dr. (A.66)

Definimos agora as matrizes de overlap (ou métrica) e de Fock, respectivamente:

Sµν =

∫

ξ∗µ(r)ξν(r)dr, (A.67)

Fµν =

∫

ξ∗µ(r)F̂(r)ξν(r)dr. (A.68)

Ambas as matrizes são hermiteanas. As funções de base {ξν(r)} são linearmente

independentes e normalizadas, embora não sejam em geral ortogonais. Logo, 0 6 |Sµν | 6

1. Os elementos da diagonal principal de S são iguais a 1 e os elementos fora da diagonal

principal tem módulo menor do que 1. S pode ser diagonalizada empregando-se uma

matriz unitária e é posśıvel provar que seus autovalores são necessariamente positivos (a

matriz S é positiva-definida). Quando os autovalores se aproximam de zero ou o overlap é
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próximo de 1 para funções de base distintas, temos o limite no qual as funções se tornam

linearmente dependentes.

Usando as Eqs. (A.67) e (A.68), podemos escrever a equação de Hartree-Fock inte-

grada como:

K∑

ν=1

FµνCνi = εi

K∑

ν=1

SµνCνi, i = 1, 2, 3, . . . , K. (A.69)

Tais são as equações de Roothaan, que podem ser escritas de modo mais simplificado

usando matrizes:

FC = SCε . (A.70)

Aqui, ε é uma matriz diagonal contendo as energias dos orbitais. As colunas da matriz

C contêm os orbitais moleculares procurados.

A densidade de carga eletrônica no modelo de camada fechada é dada por:

ρ(r) = −2

Ne/2
∑

i=1

|φi(r)|2, (A.71)

e depende da probabilidade de encontrar um elétron numa certa região do espaço. É

comum representar tal densidade através de mapas de contorno para vários planos de

corte moleculares.

Substituindo a autofunção φi por sua expansão na base {ξν(r)} e efetuando algumas

manipulações algébricas, temos:

ρ(r) =
K∑

µ=1

K∑

ν=1

Pµνξµ(r)ξ∗ν(r), (A.72)

onde:

Pµν = −2

Ne/2
∑

i=1

CµiC
∗
νi (A.73)

é a matriz densidade, ou matriz de densidade de carga. Dado um conjunto de base {ξν(r)},
a matriz P especifica completamente a densidade de carga ρ(r). O operador de Fock para
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o problema de camada fechada pode ser escrito em termos desta matriz:

F̂(r) = ĥ(r) +
1

2

K∑

µ=1

K∑

ν=1

Pµν

[
∫

ξ∗ν(r
′)(2 − P̂rr′)ξµ(r′)

|r − r′| dr′

]

. (A.74)

O operador P̂rr′ permuta as coordenadas r e r′ de todas as funções à sua direita.

Da Eq. (A.74), o potencial de Hartree-Fock é dado por:

V̂ HF (r) =
1

2

K∑

µ=1

K∑

ν=1

Pµν

[
∫

ξ∗ν(r
′)(2 − P̂rr′)ξµ(r′)

|r − r′| dr′

]

. (A.75)

A representação matricial do operador de Fock pode ser escrita como:

Fµν = HCAROÇO
µν + Gµν , (A.76)

onde:

HCAROÇO
µν =

∫

ξ∗µ(r′)ĥ(r′)ξν(r
′)dr′ =

=

∫

ξ∗µ(r′)

[

−1

2
∇2

r′ −
Nn∑

I=1

ZI

|r′ − RI |

]

ξν(r
′)dr′ =

=

∫

ξ∗µ(r′)

[

−1

2
∇2

r′

]

ξν(r
′)dr′

︸ ︷︷ ︸

Tµν

+

∫

ξ∗µ(r′)

[

−
Nn∑

I=1

ZI

|r′ − RI |

]

ξν(r
′)dr′

︸ ︷︷ ︸

V nuclear
µν

.
(A.77)

As integrais Tµν e V nuclear
µν envolvem operadores que atuam sobre um único elétron e

necessitam ser calculadas somente uma vez no método autoconsistente. A matriz Gµν é

dada por:

Gµν =
K∑

λ=1

K∑

σ=1

Pλσ

[

(µν|σλ) − 1

2
(µλ|σν)

]

, (A.78)

sendo:

(µν|λσ) =

∫
ξ∗µ(r)ξν(r)ξ

∗
λ(r

′)ξσ(r′)

|r − r′| dr′dr (A.79)
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o termo resultante da interação de dois elétrons via potencial de Hartree-Fock. Para a

matriz que representa o operador de Fock, portanto, temos um termo de elétron simples,

H
CAROÇO, e um termo de dois elétrons, G, que depende da matriz densidade P e de um

conjunto de integrais nas coordenadas espaciais de duas dessas part́ıculas (Eq. A.79).

As equações de Roothaan são não-lineares:

F(C)C = SCε . (A.80)

Para resolvê-las, primeiramente se faz a ortogonalização dos orbitais. Encontra-se

uma matriz X a partir da matriz S (por ortogonalização simétrica ou ortogonalização

canônica) tal que:

X
†
SX = I, (A.81)

onde I é a matriz identidade. Define-se então uma matriz de coeficientes modificada C
′

tal que:

C
′ = X

−1
C, C = XC

′. (A.82)

Multiplicadas à esquerda por X
†, as equações de Roothaan se transformam em:

(X†
FX)

︸ ︷︷ ︸

F
′

C
′ = F

′
C
′ = (X†

SX)
︸ ︷︷ ︸

I

C
′
ε = C

′
ε . (A.83)

Que são as equações de Roothaan modificadas, as quais podem ser resolvidas para os

coeficientes de C
′ através da diagonalização de F

′. Dado C
′, C pode ser obtido a partir da

Eq. (A.82).

O procedimento autoconsistente pode ser resumido nos passos apresentados na Fig.

89.

Um dos critérios de convergência mais adotados é observar a energia eletrônica total

em cada iteração e exigir que dois valores sucessivos desta energia difiram por no máximo

um pequeno valor δ (usualmente da ordem de 10−5 eV). Outra maneira de definir a

convergência é olhar para os elementos da matriz densidade e exigir que o desvio padrão da

distribuição formada por todos os seus elementos em duas iterações sucessivas seja menor

que uma tolerância estabelecida. Um valor de δ = 10−4 para o critério de convergência
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Figura 89: Fluxograma do método autoconsistente de Hartree-Fock restrito

via matriz densidade equivale, em geral, a um δ no critério de convergência por energia

da ordem de 10−5 eV.

Dentro da aproximação de Born-Oppenheimer, o método de Hartree-Fock determina

um valor aproximado para o estado fundamental do sistema a partir das part́ıculas que

o constituem (dáı ser considerado um método ab initio). Com o acréscimo da energia

repulsiva entre os núcleos à energia de Hartree-Fock determina-se a energia total (ETOT)

do sistema (a menos de termos relacionados com a energia cinética nuclear, em geral

despreźıveis) em função das coordenadas nucleares, {RI}.

Variando as coordenadas nucleares, é posśıvel descobrir um mı́nimo local para ETOT

que otimiza a geometria da molécula. Para isto um algoritmo usado comumente é o do
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gradiente conjugado, que utiliza o gradiente da função de n variáveis que se deseja mini-

mizar. Tal método emprega direções conjugadas à direção definida pelo gradiente local

para “descer as ladeiras” na hipersuperf́ıcie que representa a energia total do sistema em

função de {RI}. Se a conformação da hipersuperf́ıcie assemelha-se a um vale longo e

estreito nas vizinhanças do mı́nimo desejado, este é encontrado mais rapidamente. Re-

sumindo em poucas palavras o procedimento numérico, efetuam-se várias iterações nas

quais são geradas seqüências de vetores que sucessivamente aproximam a solução dese-

jada valendo-se dos reśıduos e das direções de busca de iterações anteriores. Como as

direções são linearmente independentes, a minimização caminha numa trajetória que au-

menta a eficiência da exploração do espaço n-dimensional, evitando que a cada iteração

seja desperdiçado o trabalho de minimização já realizado. Este algoritmo funciona bem

em sistemas positivo-definidos simétricos, como é o caso de ETOT.

Uma análise semelhante à que foi feita aqui para o método restrito de camada fechada

pode ser estendida ao método irrestrito de camada aberta. Neste caso as equações de

Roothaan são substitúıdas pelas equações de Pople-Nesbet, que distinguem os orbitais

espaciais com diferentes spins. No lugar de uma densidade de carga simples, são obtidas

duas densidades de carga dependentes do spin eletrônico e uma densidade de spin positiva

ou negativa conforme existam mais spins up ou down numa região do espaço. Para o caso

em que o número de elétrons com os dois tipos de spin é igual, as equações de Pople-Nesbet

podem apresentar duas soluções distintas: uma que coincide com a solução restrita dada

pelas equações de Roothaan e outra solução, irrestrita e de energia mais baixa (portanto,

mais desejável). Para se chegar a esta última solução, é necessário atribuir densidades de

carga iniciais diferentes para os dois tipos de spin.

A.2.7 Bases de funções

Crucial para a realização de cálculos ab initio é a escolha de uma base adequada em

termos de custo-benef́ıcio computacional. Os tipos de funções de base mais empregados

em moléculas são funções de Slater:

ξFS
µ (r − RI , ζ) = NµPµ(x − XI , y − YI , z − ZI) exp[−ζ |r − RI |] (A.84)

e funções gaussianas:



308 Anexo A -- Fundamentos teóricos

ξFG
µ (r − RI , α) = NµPµ(x − XI , y − YI , z − ZI) exp[−α |r − RI |2]. (A.85)

A função Pµ(x, y, z) é um polinômio que especifica o caráter da função de base (s,

p, d, f , etc.). Para representar as caracteŕısticas dos diversos tipos de orbital, é posśıvel

escrever estes polinômios em forma pura ou cartesiana. Por exemplo, uma representação

pura do orbital d exige cinco funções (5D): dxy, dxz, dyz, dx2−y2 , dz2 . Na representação

cartesiana empregam-se seis funções (6D): dxy, dxz, dyz, dx2 , dy2 , dz2 , que não representam

um orbital d puro, mas exibem contaminação de orbital do tipo s. Cada conjunto de base

padrão inclúıdo nos programas para cálculos ab initio em moléculas é geralmente definido

em uma dessas duas representações.

Figura 90: Orbitais do tipo d e um orbital f .

As funções de base são centradas no núcleo de coordenada RI . Os expoentes ζ e α

relacionam-se ao “tamanho” das funções. A maior diferença entre os dois tipos de base

ocorre em r = 0 e para grandes valores de r. Em r = 0, a derivada da função de Slater

é finita e a derivada da função gaussiana é zero. Para r grande, a gaussiana decai bem

mais rápido que a função de Slater.

Bases de Slater são mais adequadas para o cálculo de funções de onda eletrônicas. As

caracteŕısticas qualitativas de um orbital molecular são capturadas com maior precisão

pelas funções de Slater que pelas funções gaussianas, sendo necessárias menos funções do
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primeiro tipo para uma boa expansão. Contudo, as integrais necessárias ao cálculo de

Hartree-Fock tornam-se mais simples de resolver numa base gaussiana. Tendo em mente

que o custo computacional do método Hartree-Fock cresce com o tamanho da base de

acordo com a quarta potência de K (mais precisamente da ordem de K4/8), tal vantagem

é extremamente valiosa para ser ignorada.

A fim de reduzir a incompatibilidade das funções gaussianas com a natureza dos orbi-

tais moleculares, empregam-se combinações lineares dessas funções, as quais são chamadas

de contrações:

ξFGC
v (r − RI) =

L∑

i=1

divξ
FG
i (r − RI , αiv). (A.86)

L, div e αiv são, respectivamente, o comprimento, os coeficientes e os expoentes da

contração. Escolhendo corretamente esses parâmetros é posśıvel aproximar satisfatoria-

mente os orbitais atômicos e moleculares de Hartree-Fock. Um procedimento que é muito

observado é ajustar um orbital de Slater (Slater Type Orbital - STO) a uma combinação

linear de L = 1, 2, 3, . . . funções gaussianas primitivas. O procedimento STO-NG ajusta

N primitivas gaussianas para cada função de Slater.

Figura 91: Comparação da qualidade do ajuste de um orbital de Slater 1s usando combinações
lineares de uma, duas e três gaussianas. Unidades atômicas são utilizadas. Figura retirada de
[214].

Conjuntos de base mı́nimos contém o menor número de funções de base necessárias

para descrever cada átomo (um STO para cada orbital atômico de cada átomo). Por
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exemplo:

H: 1s

C: 1s, 2s, 2px, 2py, 2pz

Estes conjuntos mı́nimos empregam orbitais atômicos de tamanho fixo. O conjunto de

base STO-3G é um conjunto mı́nimo (embora não o menor) que usa três primitivas gaus-

sianas (3G) por função. Pode-se aumentar um conjunto de base aumentando o número de

funções de base por átomo. Conjuntos de base com split de valência, como 3-21G e 6-31G,

possuem duas (ou mais) funções de Slater aproximadas para cada orbital de valência, cada

uma delas com tamanho (ζ) próprio. Por exemplo, o hidrogênio e o carbono podem ser

representados nesse tipo de base como:

H: 1s, 1s′

C: 1s, 2s, 2s′, 2px, 2py, 2pz, 2p′x, 2p′y, 2p′z

onde os orbitais com e sem ′ diferem apenas no tamanho. Similarmente, conjuntos de base

com split triplo de valência, como o 6-311G, usam três funções contráıdas de tamanhos

distintos para cada tipo de orbital de valência.

Cabe aqui um esclarecimento sobre a notação adotada usualmente para represen-

tar conjuntos de base com primitivas gaussianas. Quando se tem conjunto de base N -

IJKL . . .G, N indica o número de primitivas usadas para construir cada função de Slater

representando um único orbital interno (um único valor de ζ) e I, J,K, L, . . . são números

indicando em seqüência a quantidade de primitivas que definem as várias funções de Sla-

ter (com diferentes valores de ζ) que representam cada orbital de valência. O número de

ı́ndices I, J,K, L, . . . conta a quantidade de funções de Slater usadas para descrever esses

mesmos orbitais.

Os conjuntos de base zeta duplo (double zeta - DZ) são obtidos substituindo cada

STO de um conjunto de base mı́nimo por dois STOs que diferem no parâmetro ζ para

todas as camadas, tanto internas como de valência. Acrescentando mais STOs, temos

conjuntos de base zeta triplos (TZ), zeta quádruplos (QZ), etc.

Os conjuntos de base com split de valência duplo ou triplo por vezes são chamados

de conjuntos de base zeta duplo ou triplo de valência.

Quando ocorre formação de uma molécula, os orbitais atômicos sofrem deformação

e seus centros de carga são deslocados, produzindo certa polarização. Com o fito de

descrever este fenômeno, acrescentam-se STOs com números quânticos azimutais l maiores
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que o valor máximo de l na camada de valência do átomo no estado fundamental. Diz-se

que qualquer base com esta caracteŕıstica é uma base polarizada.

Conjuntos de base com polarização acrescentam funções tipo d aos STOs do átomos

de carbono e f aos metais de transição. Em alguns casos, somam-se funções p aos átomos

de hidrogênio. Dois conjuntos bastante utilizados são o 6-31G* (ou 6-31G(d), apontando

o acréscimo de funções tipo d para descrever átomos mais pesados que o hidrogênio) e

o 6-31G** (ou 6-31G(d,p), que adiciona funções p aos átomos de hidrogênio, além de

funções d aos átomos pesados).

Funções de base difusas são versões aumentadas das funções do tipo s e p que permi-

tem aos orbitais ocupar uma região maior do espaço. Conjuntos de base desse tipo são

importantes no caso de sistemas onde os elétrons se encontram relativamente longe do

núcleo: moléculas com pares solitários, ânions e outros sistemas com carga negativa não

despreźıvel, sistemas em estados excitados, sistemas com baixos potenciais de ionização,

etc.

O conjunto de base 6-31+G(d) é equivalente ao conjunto 6-31G(d) para átomos pe-

sados, diferindo apenas pela presença de funções difusas. A versão 6-31++G(d) também

acrescenta funções difusas aos átomos de hidrogênio, o que poucas vezes faz alguma dife-

rença nos cálculos.

Com o avanço na capacidade de processamento dos computadores, trabalhar com

conjuntos de base cada vez maiores tornou-se viável. Várias bases agora incluem múltiplas

funções de polarização por átomo e três ou mais valores de ζ. Por exemplo, o conjunto

6-31G(2d) soma duas funções d por átomo pesado ao invés de apenas uma, enquanto o

conjunto 6-31++G(3df ,3pd) possui três conjuntos de funções de valência, funções difusas

tanto para átomos pesados como para os hidrogênios e múltiplas funções de polarização:

três funções d e uma função f para átomos pesados e três funções p e uma função d para

átomos de hidrogênio. Tais conjuntos são apropriados para estudar as interações entre

elétrons em métodos de correlação, mas não são necessários em cálculos de Hartree-Fock

corriqueiros.

Alguns conjuntos de base especificam diferentes conjuntos de funções de polarização

para átomos pesados, dependendo da linha da tabela periódica na qual estes se localizam.

O conjunto de base 6-311+(3df ,2df ,p) aloca três orbitais d e um f para átomos a partir

da segunda linha da tabela periódica, dois orbitais d e um orbital f para átomos pesados

na primeira coluna e um orbital p para os átomos de hidrogênio. Note-se que os qúımicos

quânticos ignoram os elementos H e He na numeração das linhas da tabela periódica.
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A Tabela 71 apresenta as bases mais usadas juntamente com as recomendações de

uso.

A.2.8 Erro de superposição de conjuntos de base

Suponhamos o cálculo da energia de dimerização de A e B usando um conjunto de base

qualquer. O procedimento natural a seguir seria calcular a energia do d́ımero AB nesta

base para cada um dos átomos do d́ımero, e calcular a energia de cada monômero usando

o mesmo conjunto de base para cada um dos átomos do monômero, obtendo a energia

de dimerização ∆E = EAB
MOL({ξA} + {ξB}) − EA

MOL({ξA}) − EB
MOL({ξB}). {ξA} designa

o conjunto de base contrado nos átomos de A. EA
MOL({ξA}) é a energia na geometria de

equiĺıbrio de A calculada com o conjunto de base {ξA}. As mesmas considerações aplicam-

se a B. A quantidade EAB
MOL({ξA} + {ξB}) é a energia de AB calculada no conjunto de

base aumentado {ξA} + {ξB}. Tal procedimento revela uma inconsistência, pois a base

usada para descrever o d́ımero é maior (contém mais funções de base) que as bases usadas

para descrever os monômeros, o que reduz de modo artificioso a energia de dimerização.

Esta redução postiça é chamada de erro de superposição de conjuntos de base (Basis-Set

Superposition Error - BSSE). O BSSE desaparece no limite em que se usa um conjunto

completo para cada monômero. O procedimento mais utilizado para corrigir o BSSE é

usar o mesmo conjunto de base tanto para os d́ımeros como para os monômeros. Este

método, chamado de correção de contrapeso, sofreu cŕıticas no ińıcio, mas é reconhecido

atualmente como o melhor método para reduzir o erro BSSE.

A.2.9 Análises de população e valores esperados

Não há modo uńıvoco de determinar o número de elétrons associados a um certo

núcleo em uma molécula, mas é interessante por vezes fazer um estudo populacional. No

modelo de camada fechada, existem dois elétrons em cada orbital molecular:

Ne = 2

Ne/2
∑

i=1

∫

|φi(r)|2dr (A.87)

temos, substituindo a expansão de φi(r) na base ξµ(r):

Ne =
K∑

µ=1

K∑

ν=1

PµνSνµ =
K∑

µ=1

(PS)µµ = trPS. (A.88)
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Tabela 71: Alguns conjuntos de base recomendados [206].
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Podemos interpretar (PS)µµ como o número de elétrons associados a ξµ(r). Tal inter-

pretação é chamada de análise de população de Mulliken. Supondo que as funções de base

estão centradas nos núcleos atômicos, o número correspondente de elétrons associados a

um dado átomo em uma molécula é obtido somando-se os elétrons para todas as funções

de base centradas no átomo. A carga ĺıquida associada ao átomo A fica dada por:

qA = ZA +
∑

µ∈A

(PS)µµ. (A.89)

onde ZA é a carga do núcleo atômico A. O ı́ndice da soma indica que só somamos sobre

funções de base com centro em A.

Tal definição não é única, uma vez que trAB = trBA. Logo, podemos escrever em

geral:

Ne =
K∑

µ=1

(Sκ
PS

1−κ)µµ. (A.90)

Com κ = 1/2, temos:

Ne =
K∑

µ=1

(S1/2
PS

1/2)µµ. (A.91)

Esta expressão define uma análise de população de Löwdin:

qA = ZA +
∑

µ∈A

(S1/2
PS

1/2)µµ. (A.92)

Nenhum desses esquemas de análise populacional é único, mas eles são muitas vezes

úteis para comparar diferentes moléculas usando o mesmo tipo de base.

É fácil ver porque é necessário ter cautela com análises de população. Pode-se, por

exemplo, colocar todos os vetores da base centrados em um único átomo, o que, numa

análise populacional, resultaria erroneamente na pertença de todos os elétrons a este

átomo singular.

Uma maneira mais razoável de determinar as cargas atômicas é o ajuste do poten-

cial eletrostático da molécula. Primeiramente é determinada uma densidade eletrônica

molecular que permite o cálculo do potencial eletrostático em um conjunto de pontos

selecionados fora da superf́ıcie de van der Waals. A seguir, atribuem-se valores de carga



A.2 O método autoconsistente de Hartree-Fock 315

a cada núcleo e calcula-se o potencial eletrostático que a combinação de todas as cargas

nucleares atribúıdas produz nos pontos selecionados. Variam-se os valores dessas car-

gas nucleares (mantendo a neutralidade molecular como v́ınculo) de modo a minimizar o

desvio quadrático entre o valor do potencial calculado via função de onda e o potencial

obtido via cargas nucleares. Há diversas formas de se escolher os pontos fora da molécula

e podem ser inclúıdos vários refinamentos adicionais, existindo vários esquemas para cal-

cular as cargas atribúıdas aos núcleos na técnica do potencial eletrostático (Electrostatic

Potential - ESP).

O particionamento do momento de dipolo em contribuições atômicas e de ligação tem

sido explorado há um bom tempo [216, 217, 218, 219, 220, 221]. O momento de dipolo p

de uma molécula neutra é invariante sob translações, mas a magnitude de sua contribuição

é modificada pela escolha da origem. As derivadas do momento de dipolo em relação às

coordenadas cartesianas dos átomos estão diretamente ligadas às intensidades infraverme-

lhas por um método conhecido como formalismo do tensor atômico polar (Atomic Polar

Tensor - APT) [222, 223]. Neste formalismo, para cada átomo α na molécula existe uma

matriz 3 × 3 P(α) cujos elementos são:

[
P(α)

]

µν
=

∂pµ

∂xα
ν

, (A.93)

onde pµ é uma das componentes do momento de dipolo e xα
ν é a coordenada xν do átomo

α. Tais derivadas foram interpretadas em termos de cargas atômicas por vários autores

[224, 225, 226]. De acordo com o modelo proposto por Cioslowski [226], a carga atômica

APT do átomo α é igual a 1/3 do traço do tensor T(α).

A energia eletrônica total é o valor esperado de Ĥ, expresso na Eq. (A.30). O valor

esperado para qualquer observável Ô para o sistema no estado fundamental é dado por:

〈Ψ| Ô |Ψ〉 . (A.94)

A maior parte das propriedades das moléculas (momento de dipolo, momento de qua-

drupolo, gradiente de campo no núcleo, suscetibilidade diamagnética, etc.) são descritas

por somas de operadores de um elétron na forma geral:

Ô1 =
Ne∑

i=1

η̂(ri), (A.95)
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onde η̂i é qualquer operador dependendo apenas das coordenadas de um único elétron.

Os valores esperados para tais operadores terão sempre a forma:

〈

Ô1

〉

= 〈Ψ| Ô1 |Ψ〉 =
K∑

µ=1

K∑

ν=1

Pµν

∫

ξ∗ν(r)η̂(r)ξµ(r)dr. (A.96)

Por exemplo, o momento de dipolo de uma molécula é dado por:

µ = 〈Ψ| −
Ne∑

i=1

ri |Ψ〉 +
Nn∑

I=1

ZIRI , (A.97)

onde o primeiro termo é a contribuição (quântica) dos elétrons de carga -1 e o segundo

termo é a contribuição (clássica) dos núcleos de carga ZI para o momento de dipolo. O

operador de dipolo eletrônico é uma soma de operadores de um elétron. Portanto:

µ = −
K∑

µ=1

K∑

ν=1

Pµν

∫

ξ∗ν(r)rξµ(r)dr +
Nn∑

I=1

ZIRI . (A.98)

Para calcular o momento de dipolo precisamos, além de P, das integrais de dipolo:

∫

ξ∗ν(r)xξµ(r)dr,

∫

ξ∗ν(r)yξµ(r)dr,

∫

ξ∗ν(r)zξµ(r)dr. (A.99)

Racioćınio semelhante pode ser aplicado no cálculo dos tensores de momento quadru-

polar e octupolar.

A.3 Propriedades moleculares e interações de moléculas

com radiação

A.3.1 Cálculo de propriedades vibracionais e termodinâmicas em

moléculas

A otimização da geometria de uma molécula leva a uma estimativa de mı́nimo local

da energia molecular ETOT(RI). Infelizmente são desconsiderados os movimentos nu-

cleares em torno do mı́nimo exato (energia de ponto zero) que podem causar problemas

na acurácia dos cálculos. O cálculo da energia de ponto zero requer o conhecimento das

freqüências naturais de vibração moleculares. O cálculo teórico de freqüências vibracio-

nais também ajuda na análise do espectro infravermelho (vale lembrar que é praticamente
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imposśıvel entender corretamente as assinaturas do espectro infravermelho de moléculas

sem o uso da mecânica quântica).

O cálculo de freqüências vibracionais permite classificar um ponto estacionário da

energia como um mı́nimo local (todas as freqüências vibracionais são reais) ou um ponto

de sela de ordem n (n freqüências imaginárias).

A Eq. (A.13) pode ser considerada como a equação de Schrödinger para o movimento

nuclear em uma molécula. A energia molecular total EMOL é aproximadamente a soma

das energias translacionais, rotacionais, vibracionais e eletrônicas. Usando o oscilador

harmônico como modelo, a energia vibracional de uma molécula com Nn núcleos é a soma

das energias vibracionais dos seus modos normais (total de 3Nn − 6 modos, ou 3Nn − 5

para moléculas lineares):

EVIB =
3Nn−6∑

i=1

(

ni +
1

2

)

ωi, (A.100)

onde ωi é a freqüência harmônica ou vibracional para o i-ésimo modo normal. Cada

número quântico ni pode assumir os valores 0, 1, 2, . . ., independentemente dos demais

números quânticos vibracionais. Para o estado fundamental, cada um dos números

quânticos é igual a zero, e a energia do ponto zero na aprozimação do oscilador harmônico

é EPZ = (1/2)
∑3Nn−6

i=1 ωi.

O procedimento para calcular as freqüências normais de uma molécula consiste em,

primeiramente, resolver a equação de Schrödinger (Eq. (A.13)) para várias geometrias

moleculares até encontrar um mı́nimo de energia. Em seguida, calcula-se o conjunto de

derivadas parciais segundas para formar a matriz Hessiana:










∂2ETOT

∂X2
1

∂2ETOT

∂X1∂Y1
· · · ∂2ETOT

∂X1∂Z3Ne

∂2ETOT

∂Y1∂X1

∂2ETOT

∂Y 2
1

· · · ∂2ETOT

∂Y1∂Z3Ne

...
...

. . .
...

∂2ETOT

∂Z3Ne∂X1

∂2ETOT

∂Z3Ne∂Y1
· · · ∂2ETOT

∂Z2

3Ne










. (A.101)

Aqui, (XI , YI , ZI) são as coordenadas do I-ésimo núcleo da molécula no sistema centro

de massa (CM). As derivadas são calculadas para a configuração de coordenadas nucleares

que minimiza ETOT. Tais derivadas segundas podem ser calculadas analiticamente a partir

das funções de onda determinadas ab initio (ou por outros métodos).

Após a determinação da matriz Hessiana, forma-se uma matriz de constantes de força:
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κij =
1√

MIMJ

∂2ETOT

∂QI∂QJ

∣
∣
∣
∣
MIN

, (A.102)

onde QI pode representar coordenadas X,Y ou Z. A partir da diagonalização desta

matriz, são obtidos os modos normais de vibração:

det(κ − λI) = 0. (A.103)

Os autovalores são os quadrados das freqüências normais de vibração, ω2
i = λi. Seis

desses valores serão iguais a zero, correspondendo aos três graus de liberdade translacionais

mais três graus de liberdade rotacionais (na prática, como a geometria de equiĺıbrio nunca

é encontrada com perfeita acurácia, é posśıvel encontrar seis freqüências vibracionais com

valores bem próximos de zero: |ωi|/c < 300cm−1. As 3Ne − 6 freqüências vibracionais

restantes são freqüências vibracionais moleculares harmônicas.

É importante frisar que um cálculo de freqüência vibracional deve ser precedido por

uma otimização de geometria usando o mesmo método e o mesmo conjunto de base que

será empregado no cálculo das freqüências. São falsas todas as “freqüências” calculadas

em um ponto que não é um mı́nimo local da energia ETOT.

As autofunções calculadas resolvendo o sistema:

3Nn∑

j=1

(κij − δijλk) ajk = 0 (A.104)

fornecem as componentes ajk do k-ésimo autovetor associado ao autovalor λk. A quan-

tidade
√

ms/mj(ajk/ask) fornece a razão entre as amplitudes vibracionais clássicas das

coordenadas Qj e Qs para o k-ésimo modo normal.

A freqüência de absorção de luz para a transição na qual o número quântico vi-

bracional nk passa de 0 a 1 sem mudança nos demais números quânticos vibracionais é

chamada de freqüência fundamental do k-ésimo modo normal. Efeitos anarmônicos fazem

com que a freqüência vibracional seja menor que a freqüência harmônica correspondente.

Freqüências vibracionais são convertidas em números de onda dividindo seus valores pela

velocidade da luz c. Valores experimentais das freqüências harmônicas são obtidos a par-

tir da análise dos espectros infravermelho e Raman. Para moléculas médias e grandes,

muitas vezes apenas as freqüências fundamentais são conhecidas. Para calcular a ener-

gia do ponto zero, é prefeŕıvei usar as freqüências fundamentais, uma vez que estas já



A.3 Propriedades moleculares e interações de moléculas com radiação 319

incorporam correções de anarmonicidade.

As freqüências vibracionais harmônicas calculadas através do método de Hartree-

Fock são usualmente maiores que as freqüências harmônicas observadas. Podem ser feitas

boas estimativas das freqüências fundamentais multiplicando as freqüências harmônicas

obtidas de modo autoconsistente a partir de cálculos ab initio usando um fator de escala

emṕırico. Para a base 6-31G* no método HF, tal fator é 0.895 [166]. A referência [166]

fornece fatores de escala para diversos métodos e conjuntos de base, incluindo fatores

de escala separados para freqüências vibracionais, energias de ponto zero e propriedades

termodinâmicas).

Os resultados de uma análise vibracional ou do cálculo de uma matriz Hessiana podem

ser usados para estimar a entalpia (H), entropia (S), energia de Gibbs (G) e calores

espećıficos a pressão constante (Cp) e volume constante (CV ). em função da temperatura.

Na aproximação do gás ideal, a entalpia é dada por:

H(T ) = ETRANS(T ) + EROT(T ) + EVIB(T ) + NAkBT, (A.105)

onde:

ETRANS(T ) =
3

2
NAkBT, (A.106)

EROT(T ) =
3

2
NAkBT, (A.107)

EVIB(T ) = NA

{

1

2

3Nn−6∑

i=1

ωi +
3Nn−6∑

i=1

ωi exp (−ωi/kBT )

1 − exp (−ωi/kBT )

}

, (A.108)

são, respectivamente, as energias vibracional, rotacional e translacional da molécula. Para

o caso em que a molécula é linear, os somatórios na energia vibracional são feitos de i = 1

até i = 3Nn − 5, e a energia rotacional deve ser substitúıda por NAkBT . NA é o número

de Avogrado e kB é a constante de Boltzmann. As contribuições para a entropia S(T )

são dadas por:

STRANS(T ) = NAkB

{

ln

[(
mMOLkBT

2π

)3/2
kBT

p

]

+
5

2

}

, (A.109)
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SROT(T ) = NAkB

{

ln

[√
π

σ

(
T 3

ΘAΘBΘC

)1/2
]

+
3

2

}

, (A.110)

SVIB(T ) = NAkB

3Nn−6∑

i=1

[
ωi/kBT

exp(ωi/kBT ) − 1
− ln (1 − exp(−ωi/kBT ))

]

, (A.111)

onde ΘS = 1/2IS é a temperatura rotacional associada ao giro da molécula em torno

do eixo S. IS é o momento de inércia molecular em torno desse eixo. σ é o número de

simetria. Se a molécula não possui centro de simetria, σ = 1. Caso contrário, σ = 2. Para

moléculas lineares, a entropia rotacional é substitúıda por:

SROT(T ) = NAkB

{

ln

[
T

σΘR

]

+ 1

}

, (A.112)

e o somatório na entropia vibracional é realizado de i = 1 até i = 3Nn − 5. O calor

espećıfico sob pressão constante é:

Cp,TRANS =
5

2
NAkB, (A.113)

Cp,ROT =
5

2
NAkB, (A.114)

Cp,VIB = NAkB

3Nn−6∑

i=1

[

(ωi/kBT )2 exp(−ωi/kBT )

1 − exp(−ωi/kBT )

]

. (A.115)

Para moléculas lineares, Cp,ROT = NAkB e o somatório nos modos normais no calor

espećıfico vibracional é tomado de i = 1 até i = 3Nn − 5. O calor espećıfico a pressão

constante total é:

Cp = Cp,TRANS + Cp,ROT + Cp,VIB, (A.116)

onde são desprezadas contribuições de excitações eletrônicas.
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A.3.2 Estados atômicos, regras de Hund, hibridização de orbitais,
orbitais HOMO e LUMO

Uma configuração eletrônica produz, em geral, diversos estados atômicos, alguns com

a mesma energia e alguns com energias diferentes, dependendo da natureza das repulsões

entre os elétrons nesses estados. Por exemplo, a configuração 1s2s do hélio dá lugar a

quatro estados, formando um tripleto (três estados distintos com mesma energia) e um

singleto. A configuração 1s2p produz doze estados: um nonupleto e um tripleto. Estados

atômicos que surgem a partir de uma configuração eletrônica dada podem ser agrupados

em conjuntos de estados com mesma energia. Pode-se mostrar que estados que se originam

da mesma configuração de elétrons e que possuem a mesma energia (ignorando interações

spin-órbita) terão valores iguais de L e S. Um conjunto de estados atômicos com a mesma

energia, mesmo L e mesmo S é o que se chama de termo atômico. Para um valor fixo de L,

o número quântico ML (que dá a componente do momento angular orbital total ao longo

de uma direção qualquer) assume 2L + 1 valores distintos, variando de −L a +L. Para

um valor fixo de S, MS assume 2S + 1 valores. A energia atômica não depende de ML

ou MS, e cada termo consiste de (2L + 1)(2S + 1) estados atômicos com energia idêntica.

A degenerescência de um termo atômico é, portanto, (2L + 1)(2S + 1), desconsiderando

a interação spin-órbita. Cada termo de um átomo é designado por um śımbolo de termo

formado escrevendo o valor numérico da quantidade 2S + 1 (multiplicidade) como um

ı́ndice sobrescrito à esquerda de uma letra que dá o valor de L e inserindo um subscrito

à direita indicando o número quântico J . Por exemplo, um termo com L = 2, S = 1 e

J = 1 é simbolizado por 3D1, uma vez que 2S + 1 = 3 (tripleto). Existem regras para

derivação de termos atômicos. Em configurações de camada fechada, há apenas um termo:

1S0. Para configurações misturando camadas fechadas e abertas, as camadas fechadas não

contribuem para L ou S, e podem ser ignoradas. Os elétrons que existem em diferentes

subcamadas são chamados de não-equivalentes e não sofrem as restrições do prinćıpio de

exclusão. Elétrons em uma mesma subcamada são chamados de equivalentes, e neste caso

deve-se evitar que dois elétrons tenham o mesmo spin.

As regras criadas por Friedrich Hund fornecem uma maneira simples de prever que

termo de uma dada configuração atômica possuirá menor energia:

– O termo com maior multiplicidade (ou, o que é equivalente, o maior valor de spin

total S) possuirá menor energia.

– Para uma dada multiplicidade, o termo com momento angular orbital mais elevado

L possuirá menor energia.
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– Para uma dada multiplicidade e um dado momento angular orbital, o termo com

maior (menor) valor do momento angular total J terá menor energia se a camada de

valência estiver com ocupação menor (maior) que 50%.

A mudança da ordem dos ńıveis com mesmo J quando uma camada possui ocupação

superior a 50% é chamada de inversão de ńıveis. As regras de Hund são razoavelmente

confiáveis para estimar o termo de energia mais baixa, mas não o são para estabelecer a

ordem relativa dos estados excitados.

A explicação da primeira regra (multiplicidade máxima) remonta aos efeitos do prinćı-

pio da exclusão de Pauli. Para alcançar o máximo valor de S, o maior número de elétrons

posśıvel deve ocupar orbitais diferentes. Nesta condição, existirá a maior quantidade

posśıvel de elétrons com spins paralelos. Como esses elétrons ocupam tantos orbitais

distintos quanto posśıvel, os elétrons de um termo com alta multiplicidade alcançam uma

separação espacial máxima, diminuindo a intensidade da repulsão coulombiana. Apesar

de plauśıvel, tal explicação não é correta. Cálculos detalhados feitos para o átomo de hélio

mostram que a repulsão entre elétrons é maior em estados de tripleto do que em singleto, e

que a redução da energia se deve, na verdade, ao aumento na atração elétron-núcleo. Se os

elétrons possuem spins paralelos, a nuvem eletrônica se contrai, intensificando a repulsão

eletrônica e a atração entre os elétrons e o núcleo. Os dois efeitos combinados resultam em

uma pequena vantagem para a atração nuclear. É razoável presumir que a formação de

um buraco de Fermi também ajuda a impedir que a repulsão elétron-elétron cresça mais

rápido que a força atrativa exercida pelo núcleo. Quando ocorre emparelhamento de spin,

não há buraco de Fermi para “proteger” os elétrons, e assim os orbitais eletrônicos não

conseguem diminuir de tamanho. De fato, nesta circunstância, os orbitais se expandem

ligeiramente para compensar o efeito dos “anti-buracos” de Fermi, e assim a interação

favorável dos elétrons com o núcleo é enfraquecida.

A segunda regra (L elevado) reflete a tendência dos elétrons manterem-se afasta-

dos se seus momentos angulares orbitais os levam a girar na mesma direção. Elétrons

circulando num mesmo sentido, ou seja, com momento angular orbital total mais alto,

podem conservar-se relativamente distantes uns dos outros. Elétrons orbitando em sen-

tidos opostos, por outro lado, encontrar-se-ão próximos freqüentes vezes, intensificando

sua interação repulsiva.

Para explicar a terceira regra é preciso considerar o acoplamento spin-órbita. A

energia é menor quando os momentos magnético orbital e de spin de um elétron em

um átomo apontam em sentidos opostos. Contudo, tal arranjo de momentos magnéticos
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implica que os dois momentos angulares também se opõem, o que corresponde a um

momento angular mais baixo. A inversão dos ńıveis quando a camada está com mais de

50% de ocupação reflete a mudança correspondente no sinal da constante do acoplamento

spin-órbita em tais casos.

Hibridização

Um orbital h́ıbrido é uma combinação linear de orbitais atômicos centrados em um

único átomo. Um h́ıbrido sp, por exemplo, é uma função de onda atômica composta de

proporções iguais de orbitais s e p de um mesmo átomo, e um elétron que ocupa tal orbital

possui 50% de caráter s e 50% de caráter p. Um h́ıbrido sp3 possui 25% de caráter s e 75%

de caráter p (a razão das contribuições é 1:3). Um h́ıbrido sp3d2 é um orbital formado

a partir da mistura de orbitais atômicos s, p e d na razão 1:3:2. Se n orbitais atômicos

contribuem para a hibridização, n h́ıbridos ortogonais podem ser formados. Logo, existem

dois h́ıbridos sp, quatro h́ıbridos sp3 e seis h́ıbridos sp3d2. A hibridização capaz de explicar

a forma de uma molécula é especificada geometricamente, ajustando os orbitais h́ıbridos

do átomo central de modo que apontem ao longo das direções de ligação. A configuração

que fornecer menor energia é a correta.

Figura 92: Hibridização de orbitais s e p [207].

O conceito de hibridização é por vezes adotado em discussões sobre a teoria dos

orbitais moleculares, e estes são por vezes representados como resultantes do overlap de

orbitais h́ıbridos. Entretanto, muitas vezes é melhor tratar os orbitais moleculares como

se fossem constrúıdos a partir de combinações lineares adaptadas de todos os orbitais

atômicos, evitando recorrer ao conceito de hibridização. Tal conceito, porém, pode ser

útil na discussão de moléculas em termos de orbitais localizados, onde cada ligação é

descrita a partir do overlap de pares de orbitais vizinhos, como na teoria das ligações de



324 Anexo A -- Fundamentos teóricos

valência. Por exemplo, na descrição da molécula de benzeno é conveniente considerar os

orbitais σ como formados a partir de h́ıbridos sp2 entre os átomos de carbono e tratar os

orbitais π como orbitais deslocalizados.

Orbitais HOMO e LUMO

Os orbitais fronteira de uma molécula são o orbital molecular ocupado de maior energia

(Highest Occupied Molecular Orbital - HOMO) e o orbital molecular não-ocupado de

menor energia (Lowest Unoccupied Molecular Orbital - LUMO). A importância desses

orbitais fronteira reside no modo como determinam certas propriedades moleculares, por

exemplo, reatividade, eletronegatividade, dureza e aromaticidade. A diferença de energia

entre esses orbitais determina a energia necessária para produzir um rearranjo de elétrons

na molécula: o gap HOMO-LUMO é a energia mı́nima de excitação eletrônica. HOMO

e LUMO também são importantes na formação de ligações qúımicas, particularmente

quando uma molécula é formada a partir de uma combinação de dois fragmentos. O

fragmento que age como uma base de Lewis (doador de um par de elétrons) fornece os

elétrons do seu orbital HOMO, e o fragmento que atua como ácido de Lewis (ou seja,

receptor de um par de elétrons) acomoda os elétrons em seu orbital LUMO.

Figura 93: Orbitais HOMO (esquerda) e LUMO (direita) para uma molécula de butano.

Se relaxarmos a definição de orbital de fronteira para incluir qualquer orbital próximo

do orbital HOMO, podem ser considerados os orbitais moleculares formados primaria-

mente a partir de orbitais d, responsáveis pelos complexos metálicos do bloco d da tabela

periódica. Afirma-se então que os orbitais moleculares de um complexo são formados a

partir do overlap de orbitais d não completamente preenchidos do ı́on metálico central com

orbitais de fronteira do átomo metálico e combinações lineares simetrizadas de orbitais
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dos átomos ligantes mais próximos. As transições de campo ligante do complexo podem,

do mesmo modo, ser tratadas como transições entre orbitais fronteira do complexo.

A importância teórica dos orbitais fronteira deve-se à regra geral que dita serem mais

fortes os efeitos de ligação originados pelo overlap de orbitais com energias próximas.

Tipicamente, o orbital HOMO de um fragmento tem uma energia bastante parecida com

a do orbital LUMO de outro fragmento (pelo menos nos casos de combinações de interesse

qúımico). A separação dos orbitais de fronteira é adotada na definição de dureza qúımica,

e a energia média dos dois orbitais de fronteira é uma definição de eletronegatividade.

Mais recentemente foi proposto que a separação dos orbitais fronteira em uma molécula

pode ser usada como definição de aromaticidade independente da escolha do estado de

referência.

Em cálculos autoconsistentes normais para cálculo do estado fundamental, os orbitais

de mais baixa energia são preenchidos com números de ocupação inteiros. No entanto,

pode ser necessário empregar números de ocupação não-inteiros (ocupação fracionária),

o que efetivamente mistura alguns orbitais virtuais com orbitais ocupados. Isto é feito

quando o gap HOMO-LUMO é pequeno e existe uma densidade de estados significativa

nas vizinhanças do ńıvel de Fermi. Em tais situações, é posśıvel alcançar convergência

autoconsistente usando técnicas de smearing (espalhamento) [227], deslocando para cima

orbitais virtuais ou fixando (congelando) a ocupação. Tipicamente são encontrados pro-

blemas com a convergência autoconsistente para sistemas de alta simetria, camada aberta

ou metálicos.

A técnica de Ewald [228, 229] é um método para o cálculo de energias não-ligantes

em sistemas periódicos. Sólidos cristalinos são os candidatos mais apropriados para a

soma de Ewald, em parte porque o erro associado a métodos de corte é muito maior em

uma rede infinita. No entanto, a técnica também pode ser aplicada a sólidos amorfos e

soluções.

A.3.3 Prinćıpio de Franck-Condon

Considerando que as massas nucleares são bem maiores que as massas eletrônicas,

uma transição eletrônica deve ocorrer enquanto os núcleos em uma molécula se encontram

efetivamente imóveis. Tal é o prinćıpio de Franck-Condon, que governa as probabilidades

de transição entre ńıveis vibracionais de diferentes estados eletrônicos moleculares.

Suponhamos que ocorra uma transição eletrônica a partir de um estado no qual os
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núcleos estão parados em suas posições de equiĺıbrio. Como resultado, a densidade de

elétrons aumenta ou diminui em certas regiões da molécula, e os núcleos inicialmente

imóveis sofrem a ação de forças elétricas criadas pela reconfiguração eletrônica. Tais forças

irão tirar os núcleos do repouso, fazendo-os vibrar em torno de suas antigas posições de

equiĺıbrio. A transição eletrônica inicial, que só perturbou os núcleos após ser completada,

é chamada de transição vertical.

A versão quântica do prinćıpio de Franck-Condon usa as funções de onda da molécula.

Veja-se, por exemplo, o caso em que a transição eletrônica acontece quando a molécula

está no estado fundamental de energia vibracional no estado de energia eletrônica mais

baixa. A forma da função de onda vibracional mostra que a localização mais provável dos

núcleos é a configuração de equiĺıbrio REQ. Conseqüentemente, a transição eletrônica mais

provável ocorrerá quando os núcleos estiverem nas vizinhanças de REQ. Quando ocorre a

transição vertical, ela atravessa vários ńıveis vibracionais do novo estado eletrônico (ver

Fig. 94). O ńıvel indicado com * é aquele em que a probabilidade de os núcleos estarem

próximos da configuração REQ é máxima e deve ser, portanto, o ńıvel mais provável

como destino da transição. Mesmo assim, vários ńıveis próximos também possuem uma

probabilidade apreciável de os núcleos se encontrarem nas imediações de REQ. Portanto,

ocorrem transições para todos os ńıveis vibracionais na região, mas mais intensamente

para o ńıvel com função de onda vibracional que possui pico mais intenso perto de REQ.

Pode-se dar ainda uma interpretação mais consistente com o esṕırito da mecânica

quântica. A função de onda do estado vibracional final mais provável é a que mais se

assemelha ao estado vibracional inicial. Portanto, deve-se procurar pela função de onda

vibracional do estado eletrônico de destino que possui a maior semelhança posśıvel com

a função de onda de partida. Como o overlap das funções de onda mede sua semelhança,

devemos procurar por uma função de onda vibracional excitada que possua picos em

posições similares às dadas por REQ, o que equivale a selecionar preferencialmente uma

transição vertical.

A estrutura do espectro de vibração depende do deslocamento relativo das duas cur-

vas de energia potencial. Uma longa série de vibrações é observada se os dois estados

são bastante deslocados. A curva superior na Fig. 94 é freqüentemente deslocada para

comprimentos de ligação maiores porque estados excitados usualmente possuem caráter

ligante reduzido em comparação com o estado eletrônico fundamental.
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Figura 94: Prinćıpio de Franck-Condon quântico. A transição mais provável ocorre partindo do
estado quântico fundamental de vibração para o estado vibracional excitado * mais semelhante
dentre os vários posśıveis dentro da configuração eletrônica de maior energia [207].

A.3.4 Fluorescência e fosforescência

A energia da radiação eletromagnética absorvida por uma molécula pode ser conver-

tida em movimento térmico ou radiação eletromagnética. A luz que é emitida por uma

molécula excitada é chamada de fluorescência se o mecanismo de emissão não envolve a

transição entre estados com diferentes multiplicidades de spin. A fluorescência geralmente

cessa quase que imediatamente após a remoção da radiação excitante.

A Fig. 95 ilustra o mecanismo fluorescente. A radiação que incide sobre a molécula

estimula o estado fundamental singleto (denotado S0, onde todos os spins acham-se em-

parelhados) para um estado excitado singleto S1. Durante a transição, ocorre também a

excitação vibracional da molécula. Colisões e interações com o meio induzem transições

vibracionais não-radiativas (por exemplo, outras moléculas interagindo com a molécula

excitada podem remover quanta vibracionais).

São dois os processos posśıveis quando a molécula solvatada atinge seu estado vibraci-

onal mı́nimo em S1. Num caso, o solvente remove a energia de excitação eletrônica, o que

é mais provável quando os ńıveis de energia moleculares do solvente se ajustam ao gap
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de energia da molécula excitada. O outro modo de decaimento é via emissão de radiação

(fóton), quando o estado eletrônico excitado decai para um estado eletrônico de energia

mais baixa irradiando luz, a qual é medida como fluorescência.

O que decide se vai ou não ocorrer fluorescência é o resultado da competição entre os

mecanismos de emissão radiativa e não-radiativa. Se a interação entre a moĺecula exci-

tada e suas companheiras é forte, o decaimento não-radiativo prevalece. Se a interação

é pouco efetiva para realizar a transferência de energia que devolve a molécula ao estado

eletrônico fundamental, ainda é posśıvel a remoção de energia vibracional mantendo o

estado eletrônico excitado até que a molécula alcance um valor mı́nimo de energia de vi-

bração. Nestas circunstâncias, a molécula pode livrar-se da energia de excitação eletrônica

fluorescendo, ou seja, emitindo um fóton e retornando ao estado eletrônico de mais baixa

energia.

Figura 95: Esquerda: mecanismo da fluorescência. A transição de excitação acontece entre esta-
dos com mesma multiplicidade e obedece ao prinćıpio de Franck-Condon. O estado vibracional
excitado perde energia para o meio e efetua uma transição radiativa de volta para o estado
eletrônico fundamental. A figura menor mostra a simetria de reflexão entre os espectros de
fluorescência e absorção. Direita: mecanismo da fosforescência. A absorção de radiação excita
a molécula para um estado de singleto. À medida que a energia vibracional é transferida para
o meio, ocorre a passagem para um estado tripleto (intersystem crossing). A relaxação vibraci-
onal não-radiativa prossegue, deixando a molécula aprisionada no estado tripleto. Pode ocorrer
uma transição radiativa fraca para o estado fundamental de singleto por causa da quebra das
regras de seleção promovida pela interação spin-órbita [207] (a qual também é responsável pelo
intersystem crossing).

Duas caracteŕısticas da fluorescência devem ser ressaltadas. A primeira é que a energia
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do fóton irradiado é menor que a energia do fóton absorvido. A segunda é que ocorrem

pequenas variações na energia do fóton irradiado provocadas por transições entre o ńıvel de

energia vibracional mais baixo do estado eletrônico excitado e diferentes ńıveis vibracionais

do estado eletrônico fundamental. Examinando estas pequenas variações é posśıvel obter

alguma informação sobre as constantes de força da molécula no estado eletrônico de

mais baixa energia (analogamente, o espectro de absorção eletrônica informa algo das

constantes de força das ligações no estado eletrônico excitado). Os espectros de absorção

e o espectro de fluorescência de uma molécula devem ser correlacionados, ou melhor, numa

primeira aproximação devem ser a imagem refletida um do outro (deve-se ter cautela com

esta descrição, no entanto, pois as separações de modos vibracionais e suas intensidades

não são exatamente as mesmas).

Algums detalhes merecem ser mencionados além desta descrição básica. O primeiro

é que a absorção inicial pode levar a molécula a um estado singleto excitado de energia

mais elevada que S1, por exemplo, S2 e S3. Em tais circunstâncias, ocorre uma conversão

interna para S1 (colisões fazem com que os singletos mais altos S2, S3, etc. efetuem uma

transição sem emissão de fótons para o estado singleto excitado de mais baixa energia),

que fluoresce. Tal processo é conhecido como lei de Kasha: o ńıvel fluorescente é o ńıvel

mais baixo dentro da multiplicidade de spin especificada.

A intensidade da fluorescência depende sensivelmente do estado f́ısico da amostra.

Ĺıquidos puros e não-dilúıdos geralmente possuem fluorescência muito baixa porque uma

excitação pode pular de uma molécula para outra via processo ressonante (o que seria

uma espécie de éxciton para o estado ĺıquido).

Por outro lado, é posśıvel aumentar a fluorescência fazendo com que uma molécula

absorva a energia da radiação incidente e a transfira para outra molécula que irradia um

fóton (fluorescência induzida).

Na chamada fluorescência de ressonância, a radiação emitida possui a mesma freqüência

da radiação incidente. Esta espécie de fluorescência é mais intensa que a ordinária porque

o processo de emissão é estimulado pela radiação incidente. Na fluorescência normal, a

emissão ocorre de forma espontânea. Radiação com exatamente a mesma freqüência é

rara em moléculas fluorescentes porque as interações entre a molécula e o solvente deslo-

cam ligeiramente os ńıveis de energia moleculares. Por exemplo, o solvente pode solvatar

a molécula de modos distintos quando esta se encontra no estados fundamental e exci-

tado (o estado excitado deve durar tempo suficiente para que as moléculas do solvente

se organizem em um diferente arranjo de solvatação). Como resultado, as freqüências de
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absorção e fluorescência podem ser diferentes muito embora as transições sejam entre os

mesmos estados.

Tão logo a luz deixa de incidir sobre a amostra, cessa o fenômeno de fluorescência.

Tal ocorre porque todas as transições de interesse são permitidas e, por conseguinte,

processam-se bastante rapidamente. A despeito deste fato, existe também um fenômeno

conhecido como fluorescência retardada (que não deve ser confundida com a fosforecência),

na qual a emissão de fótons persiste por vários milissegundos. Um dos mecanismos de

fluorescência retardada conhecidos envolve a excitação de S0 para S1 e a subseqüente

migração da molécula excitada para junto de outra molécula. Quando as duas moléculas

estão em contato, formam um d́ımero excitado que é chamado de exćımero (S0S1)
∗ se as

moléculas são idênticas, ou exciplexo, se elas são diferentes. O exćımero/exciplexo rapi-

damente se dissocia com a emissão de luz. Outro mecanismo de fluorescência retardada

é conhecido como aniquilação tripleto-tripleto, onde a excitação de várias moléculas as

coloca em um estado tripleto (T ). Duas dessas moléculas excitadas migram juntas, e sua

energia de excitação conjunta é suficiente para fazer com que uma delas transite para um

estado singleto excitado e a outra para o estado fundamental: T + T → S1 + S0. O sin-

gleto excitado, por sua vez, decai emitindo radiação. Neste caso, o atraso na fluorescência

resulta do tempo necessário para as moléculas no estado excitado de tripleto difundirem

juntas e combinarem suas energias.

No fenômeno da fosforescência, um material emite radiação que persiste por um tempo

apreciável após o desaparecimento do est́ımulo luminoso. Tal persistência é o traço dis-

tintivo entre a fosforescência e a fluorescência, mas a principal diferença f́ısica entre os

dois processos reside no fato de o primeiro envolver uma mudança na multiplicidade do

estado excitado.

Pode-se entender o mecanismo de fosforescência considerando a excitação de uma

molécula do seu estado singleto fundamental, S0, para um estado singleto excitado, S1.

A excitação eletrônica é acompanhada de excitação vibracional, e o excesso de energia

vibracional é perdido de modo não-radiativo para o meio. Se a desativação vibracional

não é suficientemente rápida e existe um estado de tripleto próximo (T1), a molécula pode

passar para este estado sob a influência do acoplamento spin-órbita (o acoplamento spin-

órbita experimentado por dois elétrons pode diferir se eles se encontram em diferentes

partes de uma molécula, e os diferentes campos magnéticos experimentados localmente

podem alinhar os spins). Depois que tal transição é completada (intersystem crossing),

a desativação vibracional continua descendo a “ladeira” energética de ńıveis do estado
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tripleto.

No final da “ladeira” a molécula fica aprisionada. Não é posśıvel irradiar sua ener-

gia eletrônica e decair diretamente para o estado fundamental porque isto implica numa

transição singleto-tripleto, proibida por regra de seleção de primeira ordem. A molécula

também não pode voltar atrás, para o estado excitado de singleto, porque as colisões com

moléculas vizinhas não conseguem fornecer a energia necessária para tal retorno. Também

não é posśıvel ceder sua energia eletrônica para as moléculas vizinhas via transição não-

radiativa porque supomos que mesmo a desativação vibracional é fraca, removendo ener-

gias pequenas demais para cruzar o gap T1 − S0.

Apesar de todos esses fatos, a transição singleto-tripleto não é completamente proi-

bida. O acoplamento spin-órbita é suficientemente intenso para violar a regra de seleção

singleto-tripleto, e a transição torna-se fracamente permitida (o que se traduz em tempos

de permanência longos no estado T1). É posśıvel prever, a partir da Fig. 95, que o com-

primento de onda da luz emitida deve ser maior que o da emissão fluorescente por conta

do ńıvel vibracional mais baixo do estado de tripleto.

A fosforescência pode ocorrer se existe um estado de tripleto adequado na vizinhança

dos estados excitados de singleto da molécula e se existir um acoplamento spin-órbita

forte o bastante para induzir transições S → T . Deve também haver tempo suficiente

para a molécula passar de uma curva para outra, o que significa que o mecanismo de

desativação não deve ocorrer numa velocidade rápida a ponto de impedir a molécula de

alcancar o cruzamento das duas curvas na Fig. 95. É por esta razão que muitas moléculas

que fluorescem em uma solução ĺıquida fosforescem quando são aprisionadas em uma rede

sólida.

A.3.5 Espectros infravermelho e Raman

A excitação de um modo normal pela absorção de radiação eletromagnética é go-

vernada por regras de seleção. Em particular, um modo só pode ser excitado por uma

transição de dipolo elétrico se o deslocamento ao longo da coordenada normal resulta

numa mudança desse momento de dipolo. Se isto ocorre, o modo é ativo no infraverme-

lho, porquanto modos com esta caracteŕıstica são responsáveis pela absorção de radiação

infravermelha em moléculas.

O processo de Raman consiste no espalhamento inelástico de um fóton por uma

molécula. No processo inelástico ocorre transferência de energia para modos internos
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dos sistemas colidentes. No caso do espalhamento Raman, o fóton incidente é destrúıdo

e parte de sua energia é convertida em energia rotacional ou vibracional da molécula que

recebe o impacto. O restante é usado para criar um novo fóton com energia menor que

a energia do fóton incidente. É posśıvel também que o fóton criado seja mais energético

que o fóton incidente. A energia extra é obtida às custas do decaimento do estado vibra-

cional ou rotacional da molécula para um ńıvel mais baixo. Como as energias rotacionais

e vibracionais são quantizadas, a transferência de energia só pode ocorrer em pacotes, e

assim a luz espalhada contém componentes de freqüência que são deslocadas da freqüência

incidente por quantidades discretas relacionadas com a estrutura de ńıveis rotacionais e

vibracionais. A composição de freqüências da radiação espalhada é o espectro Raman da

molécula. O efeito foi descoberto em 1928 pelo f́ısico indiano Chandrasekhar Raman e

previsto teoricamente alguns anos antes por Werner Heisenberg na Alemanha.

Num experimento de espectroscopia Raman, um feixe intenso e monocromático de

radiação LASER passa através da amostra e a radiação espalhada perpendicularmente

à direção de propagação é detectada e analisada. O espectro consiste em uma intensa

componente de Rayleigh na freqüência incidente, que se origina de colisões elásticas entre

os fótons e a amostra, e uma série de linhas com freqüências maiores ou menores que a

freqüência da radiação incidente. As linhas de freqüência mais baixa que a freqüência

do LASER são chamadas de linhas de Stokes, resultantes de colisões nas quais os fótons

perdem energia para a molécula. As linhas de alta freqüência são linhas anti-Stokes,

produzidas quando os fótons tiram energia da molécula com que colidem. As linhas de

Stokes são geralmente mais intensas que as anti-Stokes, porque estas exigem a presença

de uma certa população de moléculas excitadas.

Figura 96: Diagramas de Feynman para o espalhamento Raman. (1) Processo que produz linhas
de Stokes. (2) Processo de espalhamento que produz linhas anti-Stokes [207].

O espectro Raman é determinado pela polarizabilidade da molécula. A radiação

incidente induz um momento de dipolo na molécula, que atua como fonte da radiação

espalhada. A eficiência do processo depende da facilidade com que a molécula pode ser
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distorcida pela radiação incidente e, portanto, de sua polarizabilidade.

Uma descrição clássica do efeito Raman focaliza a freqüência na qual o dipolo mole-

cular induzido oscila quando exposto a um campo eletromagnético oscilante de freqüência

angular ω. Se a polarizabilidade não varia na presença do est́ımulo externo, o dipolo oscila

na mesma freqüência que a radiação incidente. No entanto, se o movimento da molécula

produz uma oscilação de sua polarizabilidade com freqüência angular ω′, tal componente

de freqüência fica registrada na radiação espalhada, que apresenta agora, além da compo-

nente ω, duas componentes com freqüências ω − ω′ e ω + ω′. A intensidade dos picos do

espectro Raman é proporcional ao quadrado da variação da polarizabilidade da molécula

com a variação da coordenada associada ao modo normal correspondente.

Para que uma molécula exiba um espectro Raman rotacional, no qual a transferência

de energia envolva graus de liberdade rotacionais da molécula, sua polarizabilidade pre-

cisa ser anisotrópica e variável à medida que a molécula gira. Se tomarmos como exemplo

uma molécula de H2, veremos que esta é Raman-ativa porque possui diferentes polarizabi-

lidades ao longo das direções paralela e perpendicular à direção da ligação dos átomos de

hidrogênio. Já uma molécula de CH4 é inativa porque sua polarizabilidade é praticamente

a mesma em todas direções.

A condição de existência para o espectro Raman vibracional é que a polarizabilidade

molecular varie à medida que a molécula vibra. Uma molécula de H2 possui assinatura

Raman vibracional porque sua polarizabilidade depende do estiramento da ligação entre

os átomos. Já a vibração anti-simétrica do CO2 não afeta a polarizabilidade da molécula,

e não deixa assinatura Raman vibracional.

Existe uma regra, conhecida como regra de exclusão, segundo a qual se uma molécula

possui centro de inversão, nenhum modo de movimento pode ser ao mesmo tempo ativo

nos espectros Raman e infravermelho. Dáı decorre a grande utilidade do efeito Raman no

estudo de vibrações e rotações inacesśıveis à espectroscopia de absorção convencional.

A absorção e emissão de fótons por um elétron ligado ocorre entre os ńıveis de energia

permitidos de acordo com certas regras de seleção, que descrevem as mudanças permitidas

(observadas) nos vários números quânticos. Uma regra de seleção de primeira ordem (ou

seja, que envolve apenas a interação de duas part́ıculas) importante é que a variação de

l não pode exceder ±1 durante uma transição. Na ausência de interação entre spin e

movimentos orbitais, a regra de seleção para o número quântico S (associado ao momento

angular total de spin em um átomo) é ∆S = 0, e a regra de seleção para o número

quântico L (associado ao momento angular orbital total em um átomo) é ∆L = 0 ou ±1,
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exceto para transições L = 0 → L = 0, que são proibidas. O momento angular total J é a

soma dos vetores L e S, J = L+S e o número quântico J é tal que |L − S| 6 J 6 L+S. A

regra de seleção para J é ∆J = 0,±1 exceto para as transições proibidas J = 0 → J = 0.

Para cristais a regra de seleção é que somente transições em que o “número” quântico

k é conservado são permitidas. Como o momentum de um fóton óptico é pequeno, isto

significa que a conservação do momentum durante transições eletrônicas num sólido é

garantida principalmente por trocas de momentum entre elétrons e átomos, ou seja, entre

elétrons e fônons. Um elétron verdadeiramente livre não pode absorver nem emitir um

fóton. Tal proibição ocorre porque, no momento da destruição ou criação do fóton, o

vetor k do elétron seria modificado, transgredindo a regra de seleção. Quando o elétron

está preso a uma terceira part́ıcula, no entanto, esta pode preservar o momentum do

sistema assegurando que pelo menos duas part́ıculas compartilhem o momentum total

antes e depois da emissão de um fóton. Um elétron num cristal não é completamente

livre, porque mesmo na banda de condução está sujeito ao campo periódico do cristal.

É importante notar também que nas vizinhanças de imperfeições em cristais reais, os

fônons podem ter momenta locais distintos dos permitidos em cristais perfeitos. Nas vizi-

nhanças de imperfeições, portanto, transições ópticas proibidas nas regiões mais perfeitas

do cristal podem ocorrer.

As regras de seleção de Raman são ∆v = ±1 para transições vibracionais e ∆J = 0,±1

ou ±2 para rotações. A possibilidade de mudar o momento angular total em até duas

unidades está ligada ao fato de a polarizabilidade da molécula poder voltar ao estado

inicial após meio peŕıodo de rotação. Já a permissão de transições vibracionais com

variações de ±1 ocorre porque a molécula só pode retornar ao estado de polarizabilidade

inicial após um peŕıodo de vibração completo. Logo, a polarizabilidade varia com o mesmo

peŕıodo da vibração, mas com metade do peŕıodo de uma rotação. A explicação quântica

deste fenômeno em termos do spin unitário do fóton é mais complicada, mas baseia-se no

fato de que dois fótons estão envolvidos no processo de espalhamento (o fóton incidente

e o fóton espalhado), sendo que suas direções relativas de movimento permitem que o

momento angular da molécula possa mudar em até duas unidades.

As transições rotacionais que acompanham uma transição vibracional de uma molécula

dão lugar a linhas no espectro que podem ser agrupadas em ramos:

– Ramo O: linhas produzidas por transições J → J − 2 (espectro Raman).

– Ramo P: linhas produzidas por transições J → J − 1 (espectros Raman e infraver-

melho).
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– Ramo Q: linhas produzidas por transições J → J , se permitidas.

– Ramo R: linhas produzidas por transições J → J + 1 (espectros Raman e infraver-

melho).

– Ramo S: linhas produzidas por transições J → J + 2 (espectro Raman).

O ramo Q é permitido apenas para moléculas lineares que possuem uma componente

de momento angular em torno do eixo internuclear, uma vez que somente então o momento

angular do fóton incidente pode ser transferido para a molécula sem alterar seu estado

rotacional. São raras as moléculas diatômicas que produzem um ramo Q. Uma exceção

conhecida é o NO.

Uma analogia clássica que mostra porque transições rotacionais são esperadas junta-

mente com excitações vibracionais é o mecanismo pelo qual patinadores no gelo mudam

de velocidade angular. Se eles abrem os braços, giram mais devagar; se os aproximam,

giram mais rápido. Da mesma forma, o rápido aumento ou diminuição de um compri-

mento de ligação quando ocorre uma transição vibracional modifica o estado de rotação

da molécula. Transições Raman vibracionais são acompanhadas por estrutura rotacional.

No espectro Raman ressonante, a excitação eletromagnética leva a molécula para

perto de um ńıvel de excitação eletrônica, ao invés de conduzir a um estado virtual tran-

siente antes da conversão da energia eletromagnética em energias vibracional, rotacional

e fotônica (como ocorre no espectro Raman não-ressonante).

Se o elipsóide de polarizabilidade de uma molécula é uma esfera, a direção do dipolo

induzido coincide com a orientação do campo aplicado não importando a orientação da

molécula. Quando, portanto, a irradiação de um gás formado por moléculas desse tipo

é feita com luz de freqüência ν, a luz espalhada com a mesma freqüência (espalhamento

de Rayleigh), quando observada ao longo de ângulos perpendiculares ao feixe incidente,

apresentará polarização completa no plano perpendicular ao raio que incidiu sobre o gás,

mesmo que a luz incidente não seja polarizada. No entanto, no caso em que o elipsóide

de polarizabilidade do sistema espalhador não é uma esfera, a direção do momento de

dipolo induzido coincide com a direção do campo somente se este coincide com um dos

eixos do elipsóide de polarizabilidade. De outro modo, o momento de dipolo induzido

apontará numa direção diferente da direção do campo aplicado. Se um gás (ou ĺıquido)

contendo tais moléculas com todas as orientações posśıveis é irradiado, o momento de

dipolo induzido não está mais restrito ao plano que forma ângulos retos com o feixe,

muito embora não possa assumir todas as orientações posśıveis em relação ao feixe com
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a mesma probabilidade. Portanto, a luz espalhada observada ao longo de ângulos per-

pendiculares ao feixe incidente será, neste caso, parcialmente polarizada, com o grau de

polarização dependente, entre outras coisas, do ńıvel de polarização do feixe que incide

sobre a amostra.

A taxa de depolarização é definida como a razão entre a intensidade da luz espalhada

polarizada perpendicularmente ao plano xy, I⊥, e a intensidade da luz espalhada parale-

lamente a este mesmo plano I‖. Aqui o eixo z é tomado na direção de propagação do raio

incidente, e a direção de observação é perpendicular ao eixo z.

As constantes vibracionais estão ligadas aos momentos de inércia principais de uma

molécula assimétrica, em ordem crescente de magnitude: IA, IB e IC . Temos, em unidades

atômicas:

A =
1

4παIA

, B =
1

4παIB

, C =
1

4παIC

, (A.117)

onde α é a constante de estrutura fina. Cálculos elaborados são necessários para obter

uma representação quantitativa dos ńıveis de energia de uma molécula assimétrica. Tais

cálculos foram feitos por vários autores [230, 231, 232, 233, 234, 235, 236]. Uma das

fórmulas utilizadas, devida a Wang [231], é:

E(Jτ ) =
1

2
(B + C)J(J + 1) +

[

A − 1

2
(B + C)Wτ

]

. (A.118)

Nesta expressão, Wτ é uma quantidade que depende de uma maneira complicada de

A, B, C e J , e que para um dado J assume 2J + 1 valores distintos correspondendo

a 2J + 1 subńıveis. Os 2J + 1 valores de Wτ para um dado J são as ráızes de um

determinante secular de grau 2J + 1. Contudo, felizmente tal determinante pode ser

fatorado em determinantes de grau menor, o que leva a um certo número de equações

algébricas. Mesmo assim, o grau dessas equações aumenta linearmente com J , de modo

que se torna cada vez mais dif́ıcil determinar os ńıveis de energia quando os momentos

de inércia são conhecidos. Para se ter uma idéia do ńıvel de complicação ao qual se pode

chegar, uma das equações para J = 6 é:

W 4
τ − 56W 3

τ + W 2
τ (784 − 1176b2) − Wτ (2304 − 53.664b2)+

−483.840b2 + 55.440b4 = 0,
(A.119)

onde:
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b =
C − B

2
[
A − 1

2
(B + C)

] . (A.120)

A.4 Espectro VCD

Moléculas quirais exibem dicróısmo vibracional circular (Vibrational Circular Dich-

roism - VCD) [237, 238]. O espectro VCD de uma molécula com quiralidade é uma

função que depende de modo bastante senśıvel de sua estrutura tridimensional e, no caso

de moléculas flex́ıveis, da conformação. Em prinćıpio, portanto, o espectro VCD permite

a determinação da estrutura de uma molécula quiral.

Espectros VCD foram medidos pela primeira vez nos anos 70 [239, 240, 241]. Poste-

riormente, os equipamentos de medida evolúıram bastante tanto no intervalo de compri-

mentos de onda como na sensibilidade [242, 243]. Atualmente, o espectro VCD de ĺıquidos

e soluções pode ser medido para a maior parte do intervalo espectral infravermelho com

alta sensibilidade e boa resolução (1 a 5 cm−1, usando instrumentação VCD dispersiva ou

de transformada de Fourier.

Durante um bom tempo, o dicróısmo vibracional foi pouco usado para a determinação

das estruturas de moléculas pela falta de um algoritmo capaz de obter as coordenadas

atômicas a partir das medidas VCD. Embora vários procedimentos tenham sido propostos

(variando desde correlações emṕıricas até cálculos ab initio quânticos), até muito pouco

tempo atrás era imposśıvel obter simultaneamente resultados gerais, confiáveis e pasśıveis

de aplicação a um número grande de moléculas. Conseqüentemente, embora a medida de

espectros VCD seja comum há mais de uma década, a análise de espectros VCD é algo

raro.

Recentemente, no entanto, um novo algoritmo para obter a estrutura a partir dos

espectros VCD foi desenvolvido [244] empregando a teoria do funcional da densidade, o

qual permite pela primeira vez a análise confiável do espectro VCD de moléculas qui-

rais com ampla variação no tamanho molecular. Dado um espectro experimental de uma

molécula quiral cuja configuração absoluta e/ou conformação é desconhecida, o procedi-

mento geral é o seguinte: 1) todas as estruturas posśıveis são definidas; 2) os espectros

dessas estruturas são calculados; 3) os espectros calculados são comparados com o espectro

experimental.

A chave para a implementação bem sucedida desta estratégia é a capacidade de prever

acuradamente os espectros VCD. Metodologias imprecisas tornam o procedimento não-
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confiável e inútil.

O espectro VCD é quase sempre obtido simultaneamente com o espectro de absorção

vibracional não-polarizado (espectro infravermelho) e os dois espectros vibracionais juntos

fornecem mais informação que o espectro VCD isoladamente. Em acréscimo, o espectro

de absorção vibracional não-polarizada é previsto simultaneamente com o espectro VCD

sem a necessidade de cálculos adicionais.

A determinação do espectro de dicróısmo vibracional circular exige o cálculo do campo

de força harmônico:

∂2UG

∂x
λα

∂x
λ′α′

, (A.121)

onde UG é a energia do estado fundamental e x
λα

é a coordenada α = x, y, z do núcleo λ.

Também é necessário conhecer o tensor atômico polar:

P λ
αβ =

∂µen
G,β

∂x
λα

∣
∣
∣
∣
0

, (A.122)

sendo µen
G,β o valor esperado do momento de dipolo elétrico no estado fundamental para

a molécula (incluindo contribuições de elétrons e núcleos. Além disso, é necessário cal-

cular também uma contribuição relacionada com a interação entre a molécula e o campo

magnético da radiação incidente, que depende da variação da função de onda do estado

fundamental com o campo magnético (tal contribuição inclui, como a contribuição de di-

polo elétrico, termos oriundos da interação com elétrons e núcleos separadamente). Esta

contribuição depende de um tensor análogo ao tensor atômico polar, chamado de tensor

atômico axial. O campo de força harmônico e os tensores polar e axial são calculados

ab initio com maior eficiência usando métodos de derivadas anaĺıticas [245, 246, 247],

juntamente com funções de base dependentes de perturbação. No caso de derivadas com

respeito as coordenadas cartesianas dos núcleos, a escolha das funções de base recai so-

bre orbitais atômicos centrados nos núcleos mesmo durante o seu deslocamento. Para

derivadas com respeito ao campo magnético, a escolha mais seguida é empregar orbi-

tais atômicos com invariância de calibre, ou orbitais de London [248, 249]. No presente,

exceto para moléculas muito pequenas, as opções práticas para o cálculo ab initio são:

1) método de Hartree-Fock (HF) autoconsistente; 2) teoria da perturbação de segunda

ordem de Møller-Plesset (MP2); 3) teoria do funcional da densidade (DFT).

O método de Hartree-Fock é o mais simples, negligenciando efeitos de correlação
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eletrônica. MP2 e DFT incluem alguma correlação eletrônica, sendo a teoria MP2 uma

extensão do método de Hartree-Fock na qual a correlação é inclúıda de modo perturbativo.

A abordagem DFT, por outro lado, é completamente distinta, possuindo a mesma simpli-

cidade da abordagem autoconsistente HF e incluindo efeitos de correlação eletrônica. Em

termos de custo computacional e precisão, portanto, a teoria do funcional da densidade é

a escolha mais adequada.

A.5 Métodos derivados da aproximação de Hartree-Fock

Apesar do sucesso do método de Hartree-Fock em muitas aplicações, o mesmo possui

limites. Por exemplo, a ordem prevista para os potenciais de ionização do N2 é incorreta e

a abordagem restrita é incapaz de descrever a dissociação de moléculas em fragmentos de

camada aberta. Embora o método de Hartree-Fock irrestrito produza melhores resultados

para tais dissociações, as curvas de energia potencial obtidas não são acuradas. Para

melhorar o método Hartree-Fock é necessário obter a energia de correlação ECORR, definida

como a diferença entre a energia não-relativ́ıstica exata E0 e a energia de Hartree-Fock

no limite em que a base usada atinge completeza (energia de Hartree-Fock, EHF:

ECORR = E0 − EHF. (A.123)

Como a energia de Hartree-Fock é um limite superior para a energia exata, a energia

de correlação é negativa.

A fim de obter a energia de correlação, vários aperfeiçoamentos do método Hartree-

Fock foram desenvolvidos. O primeiro deles, e o conceitualmente mais simples, é o método

de interação de configuração (Configuration Interaction - CI) [250], cuja idéia básica é

diagonalizar o hamiltoniano de Ne elétrons numa base de determinantes de Slater usando

o método variacional. A partir de um conjunto de 2K orbitais de spin é posśıvel cons-

truir

(

2K

Ne

)

determinantes de Slater de Ne elétrons distintos. Infelizmente, mesmo para

moléculas pequenas e tamanhos moderados para a base de orbitais, o número de determi-

nantes de Slater que podem ser constrúıdos é gigantesco. É necessário truncar a função

de onda tentativa de alguma maneira e usar apenas uma fração de todos os posśıveis

determinantes de Ne elétrons.

É conveniente descrever as funções de Ne elétrons especificando como elas diferem da

função de onda de Hartree-Fock para o estado fundamental, |Ψ〉 . Funções que diferem
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de |Ψ〉 por n orbitais de spin são chamadas de determinantes n-uplamente excitados. A

matriz CI completa (full CI)é a matriz do hamiltoniano na base de todas as posśıveis

funções de Ne elétrons formadas substituindo de nenhum até todos os orbitais de spin

em |Ψ〉. Podem ser consideradas várias aproximações para a matriz CI completa, obti-

das truncando as funções de onda eletrônicas até certo ńıvel de excitação. Por exemplo,

na aproximação de CI duplamente excitada (Doubly-excited Configuration Interaction -

DCI) [251, 252, 253], a truncagem é feita até excitações duplas, enquanto que na apro-

ximação de CI simples [254], a truncagem vai até excitações que substituem apenas um

orbital. No método de campo de multiconfiguração autoconsistente (Multiconfiguration

Self-Consistent Field - MCSCF) [255, 256, 257, 258, 259, 260], usa-se o prinćıpio varia-

cional para determinar quais orbitais serão usados na expansão CI. É considerada uma

função de onda contendo relativamente poucos determinantes, a qual é otimizada não só

nos coeficientes da expansão mas também na forma dos orbitais. Infelizmente todas as

formas de CI truncadas são inaplicáveis a sistemas grandes (o conhecido problema da

inconsistência de tamanho: a energia de correlação total deve ser proporcional ao número

de elétrons. Na aproximação CI truncada isto não acontece, e a energia de correlação por

elétron tende a zero se o número de elétrons tende a infinito). O método MCSCF mais

usadoo é o método SCF no espaço ativo completo (Complete Active Space SCF - CASS-

SCF, ver aplicações em [261, 262, 263, 264, 265, 266, 267]), no qual os orbitais utilizados

são divididos em ativos e inativos. Os orbitais inativos são mantidos com ocupação dupla.

Os elétrons em orbitais ativos (com ocupação simples) são chamados de elétrons ativos.

A função de onda é uma combinação de todos os determinantes de Slater que podem

ser formados distribuindo os elétrons ativos entre os orbitais ativos de todos os modos

posśıveis, respeitando o spin e a simetria do estado que se deseja obter. O método de

multirreferência CI (Multireference CI - MRCI) combina o método MCSCF com o método

CI [268]. Métodos CI também são usados para o cálculo de estados excitados moleculares.

Uma maneira de contornar o problema da consistência de tamanho é empregar métodos

de pares e pares acoplados. O preço que se paga nesses métodos é a não utilização de

técnicas variacionais, ou seja, a energia calculada por tais métodos pode ser menor que

a energia verdadeira do sistema. A aproximação de pares de elétrons independentes (In-

dependent Electron Pair Approximation - IEPA)[269, 270] calcula a energia de correlação

associada com um par de elétrons nos orbitais de spin a e b negligenciando todos os demais

elétrons. Apenas os elétrons nesses dois orbitais se correlacionam através da excitação

em orbitais virtuais. É constrúıda então uma função de onda de correlação para o par

ab através de interações da função de onda de Hartree-Fock com determinantes formados
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pela excitação deste único par. A energia desta função de onda é a soma da energia de

Hartree-Fock com a energia de correlação do par:

Eab = EHF + εab. (A.124)

A fim de obter o melhor valor de εab utiliza-se o método variacional linear. Embora

o valor de εab calculado nesta aproximação seja variacional, a soma das energias dos

pares não é necessariamente maior que a energia de correlação exata. O método IEPA

é, computacionalmente, idêntico a um cálculo DCI efetuado para cada par de elétrons

separadamente.

Em um sistema de muitos elétrons real, dois pares quaisquer de elétrons ab e cd não

são independentes. Mesmo assim é interessante aproximar os coeficientes de excitações

quádruplas através de produtos de coeficientes de excitações duplas. Esta abordagem

é conhecida como teoria de muitos elétrons acoplados em pares (Coupled-Pair Many

Electron Theory - CPMET) ou aproximação de cluster acoplado (Coupled-Cluster Ap-

proximation - CCA) [271, 272, 273]. Converter as equações desta aproximação em uma

forma computacionalmente adequada exige bastante trabalho. O método CCA incluindo

apenas excitações duplas recebeu o nome de CCD (Coupled-Clusters Doubles)[272] para

diferenciar-se de outras versões da teoria que também incorporam excitações simples ou

de ordem superior. As equações da aproximação CCD não são lineares, o que aumenta o

ńıvel de complicação de suas soluções (existe inclusive uma aproximação linear, conhecida

CCA linear, bem como uma aproximação de pares de elétrons acoplados, Coupled-Electron

Pair Approximation - CEPA [274], que reduz o custo computacional do método CCD).

Sua vantagem é que, em contraste com o método DCI, apresenta consistência de tamanho,

além de não sofrer dos mesmos problemas de invariância apresentados pelo método IEPA

(a aproximação CCD é invariante sob transformações unitárias de orbitais degenerados).

Já a desvantagem é que, por tratar-se de um método não-variacional, pode resultar numa

energia de correlação menor que a energia de correlação real. A diferença entre a energia

calculada em uma dessas aproximações que vão além de Hartree-Fock e a energia exata

do sistema é chamada de energia de relaxação.

Uma outra abordagem para determinar a energia de correlação, que não é varia-

cional mas possui consistência de tamanho em cada passo é a teoria de perturbação.

Existem várias expansões perturbativas para a energia de correlação (por exemplo, a

teoria de perturbação de Møller-Plesset, Møller-Plesset Perturbation Theory - MPPT

ou teoria de perturbação de muitos corpos - Many-Body Perturbation Theory - MBTE,
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[251, 275, 276, 277, 278, 279, 280, 281, 282, 283]). Quando se olham para as expressões

padrão para as energias MBPT de ordem mais alta (como ocorre com sistemas com muitos

elétrons), verifica-se que estas apresentam termos proporcionais ao quadrado do número

de part́ıculas, os quais são representados por diagramas de Feynman com pedaços des-

conectados. Felizmente foi provado que esses termos desconectados sempre se cancelam,

não importando a ordem com que são somados (teorema do linked-cluster), garantindo a

consistência de tamanho do método perturbativo.

Na teoria da função de Green de muitos corpos para uma part́ıcula (Many-Body Green

Function - MBGF) a informação sobre as afinidades eletrônicas e potenciais de ionização

é mais confiável que a calculada na aproximação de Hartree-Fock simples.

Além dos métodos apresentados nesta seção e do método de Hartree-Fock, outra

abordagem para o problema da energia de correlação é a teoria do funcional da densidade

(Density Functional Theory - DFT), que será descrita nas próximas seções.

A.6 Teoria do funcional da densidade

A.6.1 Funcionais da densidade eletrônica

O modo convencional de tratar sistemas com muitos elétrons, visto nas seções anteri-

ores, utiliza a função de onda |Ψ〉 como ponto de partida. De fato, uma vez determinada

a função de onda, é posśıvel obter toda a informação f́ısica sobre o sistema em estudo.

O problema desta abordagem, porém, é que a função de onda de um sistema de Ne

elétrons depende de 4Ne variáveis, 3Ne coordenadas espaciais e Ne coordenadas de spin.

Os sistemas de interesse em f́ısica, qúımica, biologia e ciência dos materiais possuem mui-

tos átomos e, portanto, grande quantidade de elétrons. Logo, qualquer tratamento que

lida diretamente com a função de onda em tais sistemas é bastante dif́ıcil, quando não

inviável, e rapidamente impede o acesso a qualquer interpretação intuitiva dos processos

f́ısicos subjacentes ao seu comportamento. Por outro lado, o operador hamiltoniano Ĥ

contém apenas operadores que atuam sobre uma T̂e, V̂e−n, ou duas (Ve−e) part́ıculas simul-

taneamente, independente do tamanho do sistema, o que sugere a possibilidade de uma

abordagem menos dispendiosa capaz de prescindir do cálculo da função de onda (pode-se,

de fato, mostrar que a equação de Schrödinger pode ser escrita em termos de matrizes

densidade de uma e duas part́ıculas, reduzindo o número de variáveis de 4Ne para 8). A

idéia dos funcionais de densidade é empregar uma densidade eletrônica ρe(r) (não confun-

dir com a densidade de carga eletrônica definida anteriormente. A densidade eletrônica
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no método funcional da densidade quer significar o número de elétrons que podem ser

encontrados em um certo volume. Por certo é posśıvel calcular a densidade de carga

eletrônica a partir da densidade eletrônica, bastando para isso multiplicar esta última

quantidade pela carga do elétron) dependendo apenas das três coordenadas espaciais a

fim de obter uma solução para a equação de Schrödinger. De fato, a densidade eletrônica

do estado fundamental possui todos os ingredientes necessários para a representação do

hamiltoniano do sistema: sua integral em todo o espaço fornece o número de elétrons

presentes, a localização de seus picos revela as coordenadas nucleares e a forma de cada

um desses picos indica a magnitude da carga nuclear presente.

Tentativas preliminares de usar a densidade eletrônica no lugar da função de onda

são quase tão velhas quanto a mecânica quântica. No cerne do modelo mais antigo,

conhecido como modelo de Thomas-Fermi (formulado perto do fim dos anos 20), reside um

modelo estat́ıstico dos elétrons que, na formulação original, só considera a energia cinética

eletrônica, analisando as contribuições elétron-núcleo e elétron-elétron classicamente. A

energia cinética de Thomas-Fermi em função da densidade eletrônica para um gás de

elétrons uniforme é dada por:

TTF[ρe(r)] =
3

10
(3π2)2/3

∫

[ρe(r)]5/3dr. (A.125)

Combinando esta expressão com as expressões clássicas para o potencial atrativo

elétron-núcleo e o potencial repulsivo elétron-elétron, temos a energia de Thomas-Fermi

para um átomo com número atômico Z:

ETF[ρe(r)] =
3

10
(3π2)2/3

∫

[ρe(r)]5/3dr − Z

∫
ρe(r)

r
dr +

1

2

∫
ρe(r)ρe(r′)

|r − r′| drdr′. (A.126)

A importância desta equação não consiste tanto na precisão com que descreve a energia

de um átomo, mas sim no fato de a energia ser função apenas da densidade eletrônica. Este

é, portanto, o primeiro exemplo de um funcional da densidade genúıno para a energia,

ou seja, a Eq. (A.119) é uma receita para calcular a energia em termos da densidade

eletrônica, sem qualquer cálculo de funções de onda. Para achar a densidade eletrônica

correta, o modelo de Thomas-Fermi usa o prinćıpio variacional, assumindo que o estado

fundamental do sistema minimiza o funcional acima, imposto o v́ınculo
∫

ρe(r)dr = Ne.

Em 1951, Slater propôs uma aproximação para a energia de troca não-local de Hartree-

Fock baseada na densidade eletrônica. A contribuição de troca oriunda da anti-simetria
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da função de onda pode ser escrita como a interação entre a densidade de carga com spin

σ e o buraco de Fermi de mesmo spin:

EX[ρe
σ(r)] =

1

2

∫
ρe

σ(r)hX,σ(r, r′)

|r − r′| drdr′, (A.127)

onde hX,σ é uma densidade de buracos de troca associados ao spin σ. A idéia de Slater foi

supor que o buraco de troca é esfericamente simétrico e centrado em torno do elétron de

referência em r. Supondo que dentro da esfera a densidade do buraco de troca é constante,

sendo nula na região exterior, o raio do buraco de Fermi é dado por:

rh(r) =

(
3

4π

)1/3

[ρe
σ(r)]−1/3 . (A.128)

O raio rh é algumas vezes chamado de raio de Wigner-Seitz e pode ser interpretado

como uma primeira aproximação para a distância média entre dois elétrons no sistema.

Regiões de alta densidade são caracterizadas por valores pequenos de rh. Usando ele-

trostática simples, é fácil mostrar que o potencial de uma esfera uniformemente carregada

de raio rh é proporcional a 1/rh ou, o que é equivalente, a [ρe
σ(r)]−1/3. Logo, temos a

seguinte expressão aproximada para EX:

EX[ρe(r)] ∼= CX

∫

[ρe(r)]4/3dr, (A.129)

onde CX é uma constante numérica. Desta forma substitúımos o trabalhoso termo de

troca não-local de Hartree-Fock por uma expressão simples que depende somente dos

valores locais da densidade eletrônica. Logo, esta expressão representa um funcional da

densidade para a energia de troca. Para melhorar a qualidade desta aproximação, um

parâmetro ajustável, semi-emṕırico, α, foi introduzido no fator CX, no que é chamado de

método Hartree-Fock-Slater:

EX,α[ρe(r)] = −9

8

(
3

π

)1/3

α

∫

[ρe(r)]4/3dr. (A.130)

Valores t́ıpicos de α variam entre 2/3 e 1. A lei de potência 4/3 que aparece nesta

equação pode ser obtida usando outra abordagem, usando o conceito do gás de elétrons

uniforme introduzido por Bloch, em 1929, e por Dirac, em 1930. Se o valor de CX

for ligeiramente modificado na Eq. (A.129) e combinado com a energia de Thomas-

Fermi dada pela Eq. (A.126), chega-se ao modelo de Thomas-Fermi-Dirac, o qual inclui
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contribuições cinéticas e de Coulomb clássicas além dos efeitos quânticos de troca. Mais

uma vez o fato relevante é que todas as partes são escritas como funcionais puros da

densidade.

A.6.2 O teorema de Hellmann-Feynman

Antes de chegar na moderna teoria DFT, será provado aqui um teorema que apresenta

grande utilidade para o cálculo de propriedades de sistemas com muitos elétrons (como

forças, por exemplo). Trata-se do teorema de Hellmann-Feynman.

Seja um sistema com hamiltoniano independente do tempo Ĥ que envolve vários

parâmetros, representados aqui genericamente pela letra λ. A equação de Schrödinger é

dada por:

Ĥψn = Enψn, (A.131)

onde os ψn são autofunções estacionárias normalizadas. Temos então que:

En =

∫

ψ∗
nĤψndr,

∂En

∂λ
=

∂

∂λ

∫

ψ∗
nĤψndr.

(A.132)

A integral para o cálculo do valor esperado da energia é efetuada sobre todo o espaço, e

seu valor depende parametricamente de λ. Desde que o integrando seja bem comportado,

podemos colocar o operador ∂
∂λ

para dentro da integral, obtendo:

∂En

∂λ
=

∫
∂

∂λ

(

ψ∗
nĤψn

)

dr =

∫
∂ψ∗

n

∂λ
Ĥψndr +

∫

ψ∗
n

∂
(

Ĥψn

)

∂λ
dr. (A.133)

Temos então:

∂
(

Ĥψn

)

∂λ
=

∂
(

T̂ψn

)

∂λ
+

∂
(

V̂ ψn

)

∂λ
, (A.134)

e:
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∂
(

V̂ ψn

)

∂λ
=

∂V

∂λ
ψn + V

∂ψn

∂λ
,

∂
(

T̂ψn

)

∂λ
=

∂T̂

∂λ
ψn + T̂

∂ψn

∂λ
.

(A.135)

Logo:

∂
(

Ĥψn

)

∂λ
=

∂Ĥ

∂λ
ψn + Ĥ

∂ψn

∂λ
. (A.136)

Temos então:

∂En

∂λ
=

∫
∂ψ∗

n

∂λ
Ĥψndr +

∫

ψ∗
n

∂Ĥ

∂λ
ψndr+

∫

ψ∗
nĤ

∂ψn

∂λ
dr. (A.137)

A primeira integral é facilmente simplificada:

∫
∂ψ∗

n

∂λ
Ĥψndr = En

∫
∂ψ∗

n

∂λ
ψndr. (A.138)

Tendo em vista que o operador Ĥ é hermiteano, a última integral na Eq. (A.137)

pode ser escrita como:

∫

ψ∗
nĤ

∂ψn

∂λ
dr =

∫
∂ψn

∂λ

(

Ĥψn

)∗

dr = En

∫

ψ∗
n

∂ψn

∂λ
dr. (A.139)

Logo:

∂En

∂λ
=

∫

ψ∗
n

∂Ĥ

∂λ
ψndr + En

∫
∂ψ∗

n

∂λ
ψndr + En

∫

ψ∗
n

∂ψn

∂λ
dr. (A.140)

De onde se segue que:

∂En

∂λ
=

∫

ψ∗
n

∂Ĥ

∂λ
ψndr + En

∫
∂ψ∗

n

∂λ
ψndr + En

∫

ψ∗
n

∂ψn

∂λ
dr =

=

∫

ψ∗
n

∂Ĥ

∂λ
ψndr + En

∫
∂ (ψ∗

nψn)

∂λ
dr =

∫

ψ∗
n

∂Ĥ

∂λ
ψndr + En

∂

∂λ

∫

ψ∗
nψndr

︸ ︷︷ ︸

1

=

=

∫

ψ∗
n

∂Ĥ

∂λ
ψndr + En

∂1

∂λ
=

∫

ψ∗
n

∂Ĥ

∂λ
ψndr.

(A.141)
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Esse é o teorema de Hellmann-Feynman generalizado. Aplicando esta equação a

moléculas e tomando λ como sendo a coordenada de um dos núcleos, Helmann e Feynman

provaram que a força efetiva atuando sobre um núcleo em uma molécula pode ser deter-

minada usando apenas eletrostática simples, somando as forças coulombianas exercidas

pelos outros núcleos e por uma nuvem eletrônica cuja densidade de carga é obtida resol-

vendo a equação de Schrödinger ou minimizando um funcional da densidade eletrônica.

Este teorema é conhecido como teorema eletrostático de Hellmann-Feynman. Quando se

usam funções de base incompletas centralizadas nos núcleos, um erro é introduzido nas

forças obtidas a partir deste teorema (as chamadas forças de Pulay [284]). Este erro pode

ser eliminado se for utilizado um conjunto de base formado por ondas planas, desde que

o sistema eletrônico seja convergido para o estado fundamental. Para sistemas periódicos

onde a forma da célula unitária varia, também surgem erros (conhecidos como tensões de

Pulay [285]).

A.6.3 Os teoremas de Hohenberg-Kohn

No ano de 1964, Hohenberg e Kohn publicaram um artigo [117] no qual demonstravam

dois teoremas fundamentais para a moderna teoria do funcional da densidade.

O primeiro teorema de Hohenberg-Kohn prova que a densidade eletrônica de fato

determina de um modo único o operador hamiltoniano e, portanto, todas as propriedades

do sistema. A demonstração original dada por Hohenberg e Kohn no artigo de 1964

é extremamente simples, quase trivial, e é leǵıtimo perguntar porque foram necessários

quase 40 anos desde o modelo de Thomas-Fermi para se chegar a ela. O primeiro teorema,

conforme enunciado por Hohenberg e Kohn, é:

Primeiro teorema de Hohenberg-Kohn: O potencial externo VEXT(r) é (a menos

de uma constante) um funcional único de ρe(r); uma vez que VEXT(r) determina Ĥ, vemos

que o estado fundamental completo de muitas part́ıculas é um funcional único de ρe(r).

Vale lembrar que uma condição necessária para a densidade de elétrons é que sua

integral em todo o espaço deve resultar igual ao número do elétrons do sistema. A prova

do primeiro teorema é feita como se segue e é baseada numa reductio ad absurdum. Sejam

dois potenciais externos VEXT e V ′
EXT que diferem entre si por um fator que não é constante

(explica-se: como a função de onda e, por conseguinte, a densidade de carga, não muda

se uma constante é adicionada ao potencial, deve-se exigir desde o ińıcio que os dois

potenciais externos difiram por um termo que não é constante) mas produzem a mesma

densidade de elétrons ρe(r) associada aos estados fundamentais não-degenerados de Ne
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part́ıculas (a limitação a estados não-degenerados do argumento original de Hohenberg-

Kohn será removida posteriormente). Esses dois potenciais externos são parte de dois

hamiltonianos que diferem apenas no potencial externo:

Ĥ = T̂e + V̂e−e + VEXT,

Ĥ ′ = T̂e + V̂e−e + V ′
EXT.

(A.142)

Obviamente, os dois hamiltonianos Ĥ e Ĥ ′ possuem duas funções de onda distin-

tas para o estado fundamental, Ψ e Ψ′, e energias de estado fundamental E0 e E ′
0, com

E0 6= E ′
0. No entanto, supõe-se que ambas as funções de onda dão lugar à mesma densi-

dade eletrônica (o que é bem plauśıvel, uma vez que a receita de como uma densidade é

constrúıda a partir de uma função de onda não é única). Podemos espressar isto esque-

maticamente:

VEXT(r) ⇒ Ĥ ⇒ Ψ ⇒ ρe(r) ⇐ Ψ′ ⇐ Ĥ ′ ⇐ V ′
EXT(r) (A.143)

Como Ψ e Ψ′ são diferentes, podemos usar Ψ′ como uma função variacional tentativa

para Ĥ. Logo, em virtude do prinćıpio variacional:

E0 < 〈Ψ′| Ĥ |Ψ′〉 = 〈Ψ′| Ĥ ′ |Ψ′〉 + 〈Ψ′| Ĥ − Ĥ ′ |Ψ′〉 , (A.144)

ou ainda:

E0 < E′
0 + 〈Ψ′| T̂e + V̂e−e + VEXT − T̂e − V̂e−e − V ′

EXT |Ψ′〉 =

= E ′
0 + 〈Ψ′|VEXT − V ′

EXT |Ψ′〉 = E ′
0 +

∫

ρe(r) {VEXT − V ′
EXT}dr.

(A.145)

Permutando as quantidades com e sem ′, e repetindo o mesmo procedimento, temos:

E ′
0 < E0 +

∫

ρe(r) {V ′
EXT − VEXT}dr. (A.146)

Somando as Eqs. (A.145) e (A.146), temos uma contradição:

E0 + E ′
0 < E ′

0 + E0. (A.147)
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Isto conclui a prova de que não podem existir dois potenciais externos VEXT capazes

de criar a mesma densidade eletrônica para o estado fundamental, ou seja, a densidade

eletrônica do estado fundamental especifica de modo único o potencial externo VEXT. Uma

vez que a energia completa do estado fundamental é um funcional da densidade eletrônica

neste estado, seus componentes tambem devem sê-lo (aqui para um potencial externo

produzido por cargas nucleares):

E[ρe(r)] = T̂e[ρ
e(r)] + V̂e−e[ρ

e(r)] + V̂e−n[ρe(r)]. (A.148)

É conveniente separar esta expressão em partes que dependem do sistema espećıfico

e partes que são comuns a todos os sistemas (independentes do número de elétrons, das

coordenadas e das cargas nucleares):

E[ρe(r)] = T̂e[ρ
e(r)] + V̂e−e[ρ

e(r)]
︸ ︷︷ ︸

Termo comum a todos
os sistemas

+ V̂e−n[ρe(r)]
︸ ︷︷ ︸

Termo dependente
do sistema

. (A.149)

Reunindo os termos que são independentes do sistema utilizado, temos a definição do

funcional de Hohenberg-Kohn FHK:

FHK[ρe(r)] = Te[ρ
e(r)] + Ve−e[ρ

e(r)]. (A.150)

E a Eq. (A.148) se transforma em:

E[ρe(r)] = FHK[ρe(r)] + Ve−n[ρe(r)]. (A.151)

Em outras palavras, se o funcional de Hohenberg-Kohn recebe uma densidade de

carga arbitrária ρe(r) como input, ele devolve o valor esperado 〈Ψ| T̂e + V̂e−e |Ψ〉. Esta

é a soma da energia cinética com o operador repulsão elétron-elétron para a função de

onda do estado fundamental Ψ conectada à densidade ρe(r) (ou seja, Ψ é, dentre todas

as funções de onda que produzem ρe(r), aquela que devolve o valor mais baixo para a

energia). Temos:

FHK[ρe(r)] = Te[ρ
e(r)] + Ve−e[ρ

e(r)] = 〈Ψ| T̂e + V̂e−e |Ψ〉 . (A.152)

Determinar o funcional exato FHK é crucial para a teoria do funcional da densidade.
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Se este potencial fosse conhecido exatamente, seria posśıvel resolver exatamente a equação

de Schrödinger. E, uma vez que tal funcional é completamente independente do sistema,

o mesmo poderia ser usado para resolver sistemas simples, com poucos componentes, ou

sistemas mais complexos com números gigantescos de átomos (uma protéina ou seqüência

de DNA). Infelizmente, no entanto, a forma exata de FHK ainda não foi descoberta.

Podemos, no entanto, extrair o termo de Coulomb clássico J [ρe(r)] da energia potencial

resultante da interação elétron-elétron:

Ve−e[ρ
e(r)] =

1

2

∫
ρe(r)ρe(r′)

|r − r′| drdr′

︸ ︷︷ ︸

J [ρe(r)]

+ENC[ρe(r)] = J [ρe(r)] + ENC[ρe(r)]. (A.153)

ENC[ρe(r)] é a contribuição não-clássica para a interação elétron-elétron, que incorpora

todos os efeitos da correção de auto-interação, troca e correlação de Coulomb. Determinar

ENC[ρe(r)] juntamente com Te[ρ
e(r)] representa o maior desafio da teoria do funcional da

densidade.

Deve-se notar neste momento que a densidade do estado fundamental determina de

modo o único o Hamiltoniano, o qual por sua vez determina todos os estados posśıveis do

sistema, tanto o fundamental como os excitados. Logo, todas as propriedades de todos

os estados são formalmente determinadas a partir da densidade no estado fundamental

(apesar de os funcionais da Eq. (A.151) não serem adequados para determinar proprieda-

des desses estados excitados). Logo mais veremos que a teoria do funcional da densidade

é usualmente considerada uma teoria apenas para o estado fundamental por causa do

segundo teorema de Hohenberg-Kohn. Por outro lado, é apenas a densidade eletrônica

do estado fundamental que contém a informação sobre posições e cargas nucleares, per-

mitindo a tradução da informação contida na densidade para um potencial externo. A

densidade de um estado excitado não se presta a esse mesmo fim.

O segundo teorema de Hohenberg-Kohn afirma que FHK[ρe(r)], o funcional que devolve

a energia do estado fundamental do sistema, retorna a energia mais baixa se e somente

se a densidade de input é a densidade do estado fundamental verdadeira ρe
0.

Segundo teorema de Hohenberg-Kohn: O funcional da energia do estado fun-

damental E[ρe] é minimizado se e somente se ρe é a densidade exata para o estado fun-

damental.

Trata-se de um prinćıpio variacional, o qual pode ser escrito como:
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E0 6 E[ρe(r)] = Te[ρ
e(r)] + Ve−e[ρ

e(r)] + Ve−n[ρe(r)]. (A.154)

Qualquer densidade de carga tentativa ρ′e(r) satisfazendo as condições de contorno

do problema de muitos elétrons e que é associada a algum potencial externo V ′
EXT -

determinado a partir da Eq. (A.148), por exemplo - irá fornece uma valor máximo para a

energia do estado fundamental verdadeiro E0. A energia só será igual a E0 se e somente

se a densidade correta para o estado fundamental é inserida na Eq. (A.151). A prova

deste teorema é simples. Basta lembrar que qualquer densidade eletrônica tentativa ρ′e(r)

define seu próprio hamiltoniano Ĥ ′ e sua própria função de onda Ψ′. Esta função de onda

pode ser inserida como tentativa no hamiltoniano gerado a partir do potencial externo

verdadeiro VEXT, resultando em:

〈Ψ′| Ĥ |Ψ′〉 = Te[ρ
′e(r)] + Ve−e[ρ

′e(r)] + Ve−n[ρ′e(r)] =

= E[ρ′e(r)] > E[ρe
0(r)] = 〈Ψ0| Ĥ |Ψ0〉 ,

(A.155)

que é o que queŕıamos provar.

É interessante considerar uma definição alternativa do funcional densidade criada por

Mel Levy e Elliott Lieb que estende o alcance da definição do funcional de uma maneira

que é formalmente mais tratável e esclarece seu significado f́ısico, além de fornecer uma

maneira de determinar o funcional exato em prinćıpio, produzir as mesmas densidade

e energia para o estado fundamental (minimizadas variacionalmente, como no caso do

funcional de Hohenberg-Kohn) e ser aplicável a estados fundamentais degenerados.

A idéia de Levy e Lieb (LL) é definir um procedimento de minimização em dois passos

começando com a expressão geral usual para a energia em termos da função de onda de

muitos corpos Ψ. O estado fundamental pode ser calculado, em prinćıpio, minimizando

a energia com respeito a todas as variáveis de Ψ. Entretanto, suponhamos que se quer

considerar a energia somente para a classe de funções de muitos corpos Ψ que produzem

a mesma densidade eletrônica, ρe(r). Para qualquer função de onda, a energia total pode

ser escrita como:

E[Ψ] = 〈Ψ| T̂e |Ψ〉 + 〈Ψ| V̂e−e |Ψ〉 +

∫

Ve−n(r)ρe(r)dr. (A.156)

Minimizando a energia dada pela Eq. (A.156) sobre a classe de funções de onda que

produzem a mesma densidade ρe(r), é posśıvel determinar uma densidade que minimiza
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a energia:

ELL[ρe(r)] = min
Ψ→ρe(r)

[

〈Ψ| T̂e |Ψ〉 + 〈Ψ| V̂e−e |Ψ〉
]

+

∫

Ve−n(r)ρe(r)dr + EII ≡

≡ FLL[ρe(r)] +

∫

Ve−n(r)ρe(r)dr,

(A.157)

onde o funcional da densidade de Levy-Lieb é definido por:

FLL[ρe(r)] = min
Ψ→ρe(r)

[

〈Ψ| T̂e |Ψ〉 + 〈Ψ| V̂e−e |Ψ〉
]

. (A.158)

Nesta forma, ELL[ρe(r)] é um funcional da densidade e o estado fundamental é de-

terminado minimizando ELL[ρe(r)]. A formulação de Levy-Lieb é bem mais que uma

reafirmação do funcional de Hohenberg-Kohn. Primeiramente, a Eq. (A.158) esclarece

o significado do funcional e fornece um meio de construir uma definição operacional: o

mı́nimo da soma da energia cinética com as energias de interação para todas as funções

de onda posśıveis com a densidade eletrônica ρe(r). O funcional LL também é formal-

mente diferente do funcional HK; em particular, o funcional LL é definido para qualquer

densidade ρe(r) derivável de uma função de onda Ψ para Ne elétrons. Tal caracteŕıstica é

chamada de N -representabilidade, e sabe-se que sempre existe uma função de onda desse

tipo para qualquer densidade satisfazendo certas condições. Por outro lado, o funcional

HK é definido apenas para densidades que podem ser geradas por algum potencial ex-

terno, o que é chamado de V -representabilidade, e as condições para a existência de tais

densidades não são conhecidas em geral. No mı́nimo da energia total do sistema em um

dado potencial externo, o funcional FLL[ρe(r)] deve ser igual ao funcional FHK[ρe(r)], uma

vez que o mı́nimo é uma densidade que pode ser gerada por um potencial externo. Além

disso, o formalismo LL elimina a restrição na prova original de Hohenberg-Kohn a estados

fundamentais não-degenerados. Agora é posśıvel efetuar uma busca num espaço contendo

também degenerescências.

Logo, fica estabelecido que um funcional pode ser definido para qualquer densidade

(sujeita a certas condições), e que minimizando este funcional é posśıvel encontrar as

energias e densidades exatas para o sistema de muitos corpos real. Assim como no caso

das provas de Hohenberg-Kohn, no entanto, persiste o fato de que nenhum método foi

capaz de encontrar outro funcional que não o originalmente definido em termos de funções

de onda. A despeito disso, a dependência do funcional com as energias cinética e potencial

da função de onda completa de muitos corpos aponta o caminho para a construção de
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funcionais aproximados que são de grande utilidade em cálculos práticos e na interpretação

dos efeitos de troca e correlação entre os elétrons.

A análise que acaba de ser feita também mostra como os teoremas de Hohenberg-

Kohn podem ser estendidos a vários tipos de part́ıculas. A razão para o papel especial da

densidade e do potencial externo nos teoremas de Hohenberg-Kohn se deve ao fato dessas

quantidades entrarem no cálculo da energia total de modo expĺıcito apenas através do

termo integral bilinear simples
∫

Ve−n(r)ρe(r)dr. Se existirem outros termos no hamilto-

niano com esta forma, então cada par potencial externo-densidade de part́ıculas obedecerá

a um teorema de Hohenberg-Kohn. Por exemplo, há problemas em que existem interações

diferentes para part́ıculas com spins distintos, levando a definição de uma teoria do fun-

cional de densidade de spin, importante na descrição de átomos e moléculas com spin

ĺıquido, ou de sólidos com ordem magnética.

David Mermin [286] estendeu o racioćınio de Hohenberg-Kohn a ensembles grã-canô-

nicos e mostrou que, para sistemas em equiĺıbrio térmico, não só a energia, mas também

a entropia, calor espećıfico, etc. são funcionais da densidade de equiĺıbrio. Subsiste, no

entanto, grande dificuldade em definir funcionais apropriados para a entropia (que envolve

somas sobre estados excitados). Por exemplo, na descrição do ĺıquido de Fermi para um

metal o coeficiente do calor espećıfico a baixa temperatura é diretamente relacionado

com a massa efetiva na superf́ıcie de Fermi. O funcional de Mermin para a energia livre

pretende descrever corretamente a massa efetiva (com toda a renormalização de muitos

corpos) bem como o estado fundamental, enquanto somente o último pode ser calculado

a partir do funcional HK.

Estendendo os teoremas de Hohenberg-Kohn para o domı́nio temporal, foi provado

que dada a função de onda num instante inicial, a evolução posterior é um funcional

único da densidade dependente do tempo (Time-Dependent Density Functional Theory -

TDDFT). A demonstração dessa extensão dos teoremas HK são quase tão simples quanto

as provas originais sem dependência temporal, e isto pode ser considerado como uma

etapa formal na construção de uma teoria do funcional da densidade para excitações.

Evidentemente o funcional da densidade dependente do tempo deve ser bastante compli-

cado, com ressonâncias para as energias de excitação corretas. Mesmo assim, tem havido

considerável progresso ao longo desta linha de investigação. Recentemente mostrou-se

que em um sistema sem fronteiras a evolução não é um funcional apenas da densidade.

Um contra-exemplo simples para ilustrar este fato é um anel uniforme de carga que pode

se mover ao longo do anel. Como a densidade é sempre uniforme, o estado completo
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do sistema é determinado somente se uma condição adicional, a densidade de corrente

eletrônica, é especificada.

Os teoremas de Hohenberg-Kohn lançam o desafio de reformular a teoria de muitos

corpos em termos de funcionais da densidade. Os teoremas são provados em termos de

funcionais desconhecidos da densidade, e é fácil mostrar que esses funcionais devem ser

não-locais, dependendo simultaneamente de ρe(r) em diferentes posições r. Existe certo

número de questões relacionadas com a natureza das densidades posśıveis que os elétrons

podem possuir, dado somente o fato de que sua integral deve fornecer o número correto de

part́ıculas. Foi provada a existência, por exemplo, de densidades aparentemente razoáveis

que não podem ser o estado fundamental de nenhum potencial externo (densidades não-

V -representáveis).

A teoria do funcional da densidade não fornece uma maneira de entender as proprieda-

des de um material simplesmente olhando para a forma da densidade eletrônica. Embora

esta em prinćıpio seja suficiente, a relação com as propriedades é quase sempre muito

sutil e não foi encontrada (ainda) uma maneira geral de extráı-las (por exemplo, saber

imediatamente se o material é metal ou isolante). Não existe forma conhecida de escrever

o funcional da energia cinética a não ser através de derivadas que atuam sobre funções de

ondas descont́ınuas em termos dos números de ocupação (que são sempre inteiros). Do

teorema do virial, que relaciona as energias cinética e potencial, segue-se imediatamente

que todas as partes do funcional exato irão variar de modo não-anaĺıtico em função do

número de elétrons.

No caso de materiais sólidos, a densidade é notavelmente similar a somatórios de

densidades atômicas sobrepostas. A ligação covalente, de fato, é dif́ıcil de discernir na

densidade total. Um cristal iônico é muitas vezes considerado como uma soma de ı́ons,

mas também pode ser tratado como uma soma de átomos neutros. Isto é posśıvel porque

o ânion negativo é tão grande que sua densidade se estende em volta do cátion positivo,

tornando a densidade parecida com aquela dos átomos neutros. Logo, mesmo para cris-

tais iônicos bem conhecidos, não é óbvio como obter informação pertinente a partir da

densidade de elétrons. E ainda é mais dif́ıcil distinguir metais de isolantes.

Todas essas considerações nos levam à abordagem de Kohn-Sham, cujo sucesso se ba-

seia no fato da mesma incluir a energia cinética dos elétrons não-interagentes em termos

de funções de onda de part́ıculas independentes, além dos termos de interação explicita-

mente modelados como funcionais da densidade. Como a energia cinética é tratada em

termos de orbitais - e não como um funcional expĺıcito - ela se baseia em propriedades
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quânticas que não possuem uma relação trivial com a densidade. No exemplo de um cris-

tal iônico, o ponto principal é que a densidade é constrúıda a partir de estados fermiônicos

que obedecem ao prinćıpio da exclusão. É este fato que leva ao preenchimento de quatro

bandas por célula e a um gap isolante, que é a essência de um cristal desse tipo. Tão logo

a solução de muitos corpos esteja suficientemente próxima da formulação de part́ıculas

independentes, por exemplo, os estados devem ter a mesma simetria, e a abordagem de

Kohn-Sham fornece pistas úteis e métodos poderosos para a teoria de estrutura eletrônica.

A.6.4 O método de Kohn-Sham

Se a densidade eletrônica para o estado fundamental ρe
0(r) é conhecida, o teorema

de Hohenberg-Kohn afirma que é posśıvel em prinćıpio calcular todas as propriedades

eletrônicas do estado fundamental a partir de ρe
0(r) sem ter de determinar a função de

onda molecular. O teorema de Hohenberg-Kohn não diz como calcular E0 a partir de

ρe
0(r) (uma vez que o funcional FHK é desconhecido), nem informa como encontrar ρe

0(r)

sem primeiro determinar a função de onda. Um passo importante para alcançar tais

resultados foi dado em 1965, quando Kohn e Sham divisaram um método para calcular

ρe
0(r) e, depois, E0 a partir de ρe

0(r) [118]. O método por eles desenvolvido é capaz,

em prinćıpio, de fornecer resultados exatos, mas como as equações do método de Kohn-

Sham (KS) contêm um funcional desconhecido, os resultados, na prática, são apenas

aproximados.

Kohn e Sham consideraram um sistema de referência fict́ıcio (denotado pelo subscrito

s e chamado de sistema não-interagente) de Ne elétrons que se comportam de modo

totalmente independente e que experimentam a mesma energia potencial Vs(ri), onde

Vs(ri) é definida de modo que a densidade eletrônica para o estado fundamental ρe
s(ri) do

sistema de referência é igual à densidade exata para o estado fundamental ρe
0(ri) do sistema

real, ρe
0(ri) = ρe

s(ri). Como Hohenberg e Kohn provaram que a densidade eletrônica do

estado fundamental determina o potencial externo de modo completo, uma vez definida a

densidade ρe
s(ri) para o sistema de referência, o potencial externo Vs(ri) é único, embora

não se possa de fato calculá-lo.

Os elétrons não interagem uns com os outros no sistema s. Logo, em tal sistema o

hamiltoniano é dado por:

Ĥs =
Ne∑

i=1

[

−1

2
∇2

i + Vs(ri)

]

≡
n∑

i=1

ĤKS
i , (A.159)
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onde:

ĤKS ≡ −1

2
∇2

i + Vs(ri). (A.160)

ĤKS é o hamiltoniano de um elétron de Kohn-Sham. O uso de um sistema fict́ıcio

de elétrons não-interagentes não constitui um problema, pois é posśıvel relacionar o sis-

tema fict́ıcio de referência de Kohn-Sham com o sistema real escrevendo o hamiltoniano

Ĥλ ≡ T̂e +
Ne∑

i=1

Vλ(ri) + λV̂e−e, onde o parâmetro λ varia de 0 (sem repulsões inter-elétron,

que é o sistema de referência) até 1 (o sistema real), e Vλ é definido como o potencial

externo que determinará a densidade eletrônica para o estado fundamental do sistema

com hamiltoniano Ĥλ igual à densidade para o estado fundamental do sistema real.

Como o sistema de referência s consiste de part́ıculas não-interagentes, os resultados

já obtidos para o método Hartree-Fock mostram que a função de onda para o estado fun-

damental do sistema s é o produto anti-simetrizado (determinante de Slater) dos orbitais

de spin de Kohn-Sham de mais baixa energia, uKS
i , do sistema de referência, onde a parte

espacial θKS
i (ri) de cada orbital de spin é uma autofunção do operador de um elétron ĤKS

i ,

ou seja:

ψs,0 =
∣
∣uKS

1 uKS
2 · · ·uKS

Ne

〉
, (A.161)

onde:

uKS
i = θKS

i (ri)σi, (A.162)

e:

ĤKSθKS
i (ri) = εKS

i θKS
i (ri). (A.163)

σi é uma função de spin (α ou β) e os εKS
i são as energias dos orbitais de Kohn-Sham.

Para um estado fundamental de camada fechada, os elétrons estão emparelhados em

orbitais de Kohn-Sham, com dois elétrons de spins opostos ocupando o mesmo orbital

espacial (tal como acontece no método RHF).

Kohn e Sham reescreveram a equação de Hohenberg-Kohn como descrito a seguir.

Define-se uma quantidade ∆T̄e,s:
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∆T̄e,s[ρ
e
0(r)] ≡ T̄e[ρ

e
0(r)] − T̄e,s[ρ

e
0(r)]. (A.164)

∆T̄e,s é a diferença na energia cinética média do estado fundamental entre o sistema

real e o sistema formado por elétrons não-interagentes com densidade eletrônica igual à

densidade do sistema real. Seja ainda:

∆V̄e−e[ρ
e
0(r)] ≡ V̄e−e[ρ

e
0(r)] −

1

2

∫
ρe

0(r)ρ
e
0(r

′)

|r − r′| drdr′ (A.165)

onde |r − r′| é a distância entre os pontos (x, y, z) e (x′, y′, z′). A quantidade 1
2

∫ ρe
0
(r)ρe

0
(r′)

|r−r′|

drdr′ é a expressão clássica para a energia de repulsão eletrostática entre dois elétrons

cujas cargas foram espalhadas de acordo com uma densidade de carga proporcional à

densidade eletrônica. A carga dq em um pequeno elemento de volume dr da distribuição

é −ρe
0(r)dr e a energia potencial de repulsão entre dq e a carga no elemento de volume

dr′ localizado em r′ é
ρe
0
(r)ρe

0
(r′)

|r−r′|
drdr′. Integrando em dr′ encontra-se a energia de repulsão

entre dq e a distribuição de carga; integrando sobre dr e multiplicando por 1/2 (evitando

contar duas vezes cada repulsão) chega-se à energia total. Com essas definições, podemos

escrever:

EVEXT
[ρe

0(r)] =

∫

VEXT(r)ρe
0(r)dr + T̄e,s[ρ

e
0(r)]+

+
1

2

∫
ρe

0(r)ρ
e
0(r

′)

|r − r′| drdr′ + ∆T̄e,s[ρ
e
0(r)] + ∆V̄e−e[ρ

e
0(r)]. (A.166)

Os funcionais ∆T̄e,s e ∆V̄e−e são desconhecidos. Definindo o funcional de energia de

troca e correlação EXC[ρe(r)] como:

EXC[ρe(r)] = ∆T̄e,s[ρ
e(r)] + ∆V̄e−e[ρ

e(r)], (A.167)

temos:

E0 = EVEXT
[ρe

0(r)] =

∫

VEXT(r)ρe
0(r)dr + T̄e,s[ρ

e
0(r)] +

1

2

∫
ρe

0(r)ρ
e
0(r

′)

|r − r′| drdr′ + EXC[ρe
0(r)].

(A.168)

A razão por trás de todas essas definições é expressar Ev[ρ
e(r)] em função de três
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quantidades, os três primeiros termos do lado direito da Eq. (A.168), que são fáceis de

calcular através de ρe e que incluem a principal contribuição para a energia do estado

fundamental, mais uma quarta quantidade EXC que, embora não seja fácil de determinar

com acurácia, é um termo relativamente pequeno. A chave para cálculos de Kohn-Sham

bem sucedidos é encontrar uma boa aproximação para EXC.

Antes de determinar os termos na Eq. (A.168), é necessário calcular a densidade

eletrônica para o estado fundamental. É preciso lembrar que o sistema fict́ıcio de elétrons

não-interagentes é definido de modo a ter a mesma densidade eletrônica que o estado

fundamental do sistema real: ρe
s = ρe

0. É posśıvel mostrar que:

ρe
0(r) = ρe

s(r) =
Ne∑

i=1

∣
∣θKS

i (ri)
∣
∣
2
. (A.169)

Para os termos da Eq. (A.168):

∫

VEXT(r)ρe
0(r)dr = −

Nn∑

I=1

ZI

∫
ρe

0(r)

|r − RI |
dr, (A.170)

T̄e,s[ρ
e
0(r)] = −1

2
〈ψs,0|

Ne∑

i=1

∇2
i |ψs,0〉 = −1

2

Ne∑

i=1

〈
θKS

i (r)
∣
∣∇2

∣
∣θKS

i (r)
〉
. (A.171)

Logo, a Eq. (A.168) se transforma em:

E0 = −
Nn∑

I=1

ZI

∫
ρe

0(r)

|r − RI |
dr − 1

2

Ne∑

i=1

〈
θKS

i (r)
∣
∣∇2

∣
∣θKS

i (r)
〉
+

+
1

2

∫
ρe

0(r)ρ
e
0(r

′)

|r − r′| drdr′ + EXC[ρe
0(r)].

(A.172)

Podemos então calcular E0 a partir de ρe
0 se pudermos determinar os orbitais de

Kohn-Sham θKS
i e se soubermos qual é o funcional EXC. A energia eletrônica incluindo a

repulsão nuclear é encontrada adicionando o termo de repulsão Vn−n.

Para calcular os orbitais de Kohn-Sham, o procedimento a tomar é o seguinte. O

segundo teorema de Hohenberg-Kohn diz que é posśıvel achar a energia do estado funda-

mental variando ρe (sujeito ao v́ınculo
∫

ρe(r)dr = Ne) de modo a minimizar o funcional

Ev[ρ
e]. De modo equivalente, ao invés de variar ρe, é posśıvel variar os orbitais KS θKS

i ,

que determinam ρe (Eq. (A.169)) (ao fazer isto é necessário impor que os orbitais θKS
i
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sejam ortonormais, uma vez que foi assumida ortonormalidade no cálculo de T̄e,s). Da

mesma forma como foi provado que os orbitais ortonormais que minimizam a expressão

de Hartree-Fock para a energia satisfazem a equação de Fock, pode-se mostrar que os or-

bitais de Kohn-Sham que minimizam a Eq. (A.172) para a energia do estado fundamental

satisfazem:

[

−1

2
∇2 −

Nn∑

I=1

ZI

|r − RI |
+

∫
ρe(r)

|r − r′|dr
′ + VXC(r)

]

θKS
i (r) = εKS

i θKS
i (r), (A.173)

onde a função VXC é dada por:

VXC(r) ≡ δEXC[ρe(r)]

δρe(r)
. (A.174)

VXC é o potencial de troca e correlação obtido a partir da derivada funcional da energia

de troca e correlação. A definição precisa da derivada funcional não é dada aqui, mas

a seguinte fórmula permite encontrar a derivada funcional na maior parte dos casos que

ocorrem no método DFT. Para um funcional definido por:

F [f ] =

∫

g(x, y, z, f,
∂f

∂x
,
∂f

∂y
,
∂f

∂z
)dxdydz, (A.175)

onde f é uma função de x, y e z que se anula nos limites de integração, a derivada funcional

é dada por:

δF

δf
=

∂g

∂f
− ∂

∂x

∂g

∂(∂f/∂x)
− ∂

∂y

∂g

∂(∂f/∂y)
− ∂

∂z

∂g

∂(∂f/∂z)
. (A.176)

A Eq. (A.173) também pode ser escrita como:

[

−1

2
∇2 + Vs(r)

]

θKS
i (r) = εKS

i θKS
i (r), (A.177)

ou como na Eq. (A.163). Se se conhece EXC, sua derivada funcional é prontamente

calculada e determina-se a função VXC. O funcional EXC é um número, enquanto a

derivada funcional de EXC é uma função de ρe, e como ρe é uma função de r, VXC também

é função de r, ou seja, de x, y e z. Algumas vezes se escreve VXC como vXC(ρe(r)).

O operador de Kohn-Sham de um elétron ĤKS
i é quase igual ao operador de Fock
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F̂i que aparece nas equações de Hartree-Fock exceto pelo fato de os operadores de troca

K̂i serem substitúıdos por VXC, o termo DFT que leva em conta os efeitos de troca e

correlação eletrônica.

O único problema no método de Kohn-Sham para calcular ρe e E0 é que não se

conhece o funcional correto EXC[ρe(r)]. Portanto, tanto EXC[ρe(r)] como vXC[ρe(r)] são

desconhecidos. Várias aproximações para EXC[ρe(r)] serão discutidas aqui brevemente.

Os orbitais de Kohn-Sham θKS
i (r) são orbitais do sistema de referência fict́ıcio de

elétrons não-interagentes. Logo, estritamente falando, esses orbitais não possuem signifi-

cado f́ısico outro que não o de permitirem calcular o estado fundamental exato. A função

de onda no método do funcional da densidade não é um um determinante de Slater de or-

bitais de spin. De fato, não existe função de onda do funcional da densidade. No entanto,

em cálculos práticos verifica-se que os orbitais de Kohn-Sham ocupados assemelham-se

aos orbitais moleculares calculados através do método de Hartree-Fock, e os orbitais de

Kohn-Sham podem ser usados (da mesma maneira que os orbitais moleculares de Hartree-

Fock) em discussões qualitativas sobre propriedades moleculares e reatividades [287, 288]

(note-se que, estritamente falando, também os orbitais de Hartree-Fock não são fisica-

mente reais, uma vez que eles se referem a um sistema modelo fict́ıcio no qual cada

elétron experimenta algum tipo de campo médio produzido pelos demais elétrons).

Para uma molécula de camada fechada, cada energia de Hartree-Fock de cada orbital

ocupado é uma boa aproximação para o negativo da energia necessária para remover um

elétron daquele orbital (teorema de Koopman). O mesmo não é verdade para as energias

dos orbitais de Kohn-Sham. A única exceção é a energia εKS
i para o orbital HOMO que,

pode-se provar, é igual a menos a energia de ionização molecular (mesmo assim, usando

as aproximações atuais para EXC, as energias de ionização calculadas a partir de orbitais

de KS HOMO não estão muito de acordo com os dados experimentais).

Vários funcionais aproximados EXC são usados em cálculos moleculares no método

do funcional da densidade. Para estudar a acurácia de um EXC aproximado, é necessária

a comparação com o dado experimental. A falta de um procedimento sistemático para

melhorar EXC e, portanto, melhorar as propriedades moleculares calculadas é a principal

desvantagem do método DFT.

Em uma teoria DFT rigorosa, apenas densidades eletrônicas deveriam entrar como

input dos cálculos, sem necessidade do cálculo de orbitais, e seria feita uma busca da

densidade eletrônica ρe capaz de minimizar E[ρe]. Como o funcional exato é desconhecido,

utiliza-se o método de Kohn-Sham, que é uma espécie de concessão que vai contra os
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objetivos iniciais da teoria do funcional da densidade.

A energia de troca e correlação EXC dada pela Eq. (A.167) contém como componen-

tes: a energia cinética de correlação ∆T̄e,s (a diferença entre a energia cinética real e a

energia cinética no sistema de referência); a energia de troca (que surge da anti-simetria

da função de onda eletrônica), a energia de correlação coulombiana (associada a repulsões

entre os elétrons) e uma correção de auto-interação. A auto-interação origina-se do fato

de que a expressão clássica para energia de repulsão eletrostática de uma nuvem eletrônica
1
2

∫ ρe
0
(r)ρe

0
(r′)

|r−r′|
drdr′ erroneamente permite que a porção de ρe

0 em dr interaja com a distri-

buição de carga do mesmo elétron em todo o espaço. Na verdade, um elétron não interage

consigo mesmo. A energia cinética ∆T̄e,s do sistema de referência em geral é próxima da

energia cinética real T̄e, e a razão ∆T̄e,s/T̄e fica pequena. No entanto, a contribuição de

∆T̄e,s para EXC não é negligenciável.

A.6.5 A aproximação de densidade local (Local Density Approxima-

tion - LDA)

Hohenberg e Kohn mostraram que se ρe varia extremamente devagar com a posição,

então EXC[ρe] é dado por:

ELDA
XC [ρe(r)] =

∫

ρe(r)εXC(ρe(r))dr, (A.178)

onde a integral é efetuada em todo o espaço, e εXC(ρe) é a energia de troca e correlação

por elétron em um gás de elétrons homogêneo com densidade eletrônica ρe. O jellium é

um meio hipotético eletricamente neutro, de volume infinito, consistindo de um número

infinito de elétrons interagentes movendo-se em um espaço no qual uma carga positiva é

distribúıda de modo cont́ınuo e uniforme. O número de elétrons por unidade de volume

tem um valor diferente de zero e constante igual a ρe. Os elétrons no jellium formam

um gás de elétrons homogêneo (ou uniforme). Tomando a derivada funcional de ELDA
XC ,

temos:

V LDA
XC =

δELDA
XC

δρe
= εXC(ρe(r)) + ρe(r)

∂εXC(ρe(r))

∂ρe(r)
. (A.179)

Kohn e Sham sugeriram o uso das Eqs. (A.178) e (A.179) como aproximações para

EXC e VXC nas Eqs. (A.172) e (A.173), um procedimento que é chamado de aproximação

de densidade local (Local Density Approximation - LDA). Pode-se mostrar que εXC pode
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ser escrito como a soma de duas partes, um termo de troca e outro de correlação:

εXC(ρe(r)) = εX(ρe(r)) + εC(ρe(r)), (A.180)

onde:

εX(ρe(r)) = −3

4

(
3

π

)1/3

[ρe(r)]1/3 . (A.181)

A parte de correlação εC foi calculada e os resultados expressos como uma função

extremamente complicada εC(ρe(r)) = εVWN
C (ρe(r)) por Vosko, Wilk e Nusair (VWN)

[289]. Temos, por fim:

V LDA
XC = V LDA

X + V LDA
C , (A.182)

onde:

V LDA
X = −[(3/π)ρe(r)]1/3, (A.183)

V LDA
C = V VWN

C , (A.184)

e:

ELDA
X =

∫

ρe(r)εX(ρe(r))dr = −3

4

(
3

π

)1/3 ∫

[ρe(r)]4/3dr. (A.185)

Para determinar as quantidades εX e εC, é necessário considerar um gás de elétrons

uniforme (GEU) com ρe(r) = k, onde k é um valor constante. Como VXC = VXC(ρe(r)),

e uma vez que ρe(r) é constante para um GEU particular, também VXC o será (VXC é

diferente para dois GEUs com densidades eletrônicas k1 e k2). De acordo com a equação

de Kohn-Sham para o sistema de referência que corresponde ao GEU, a constante VXC

pode ser omitida sem afetar as autofunções. Além do mais, no caso do GEU o segundo

termo entre os colchetes da Eq. (A.173) (o potencial externo) deve ser substitúıdo pela

atração entre um elétron e a densidade de carga positiva que equilibra a densidade de

carga negativa do gás de elétrons. Por causa deste balanceamento, o segundo e o terceiro

termos entre colchetes da Eq. (A.173) se cancelam. Logo o termo de energia cinética
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é o único a sobreviver em ĤKS
i para o gás. Os orbitais de Kohn-Sham podem, então,

ser tomados como ondas planas com amplitudes ajustadas para fornecer a densidade de

elétrons de acordo com a Eq. (A.169). Como o GEU é eletricamente neutro em cada

região do espaço, a soma das repulsões eletrostáticas entre os elétrons espalhados com a

soma das atrações entre a distribuição de carga positiva uniforme e a densidade eletrônica

mais a repulsão entre os elementos da distribuição de carga positiva deve resultar em

zero. Isto deixa o lado direito da Eq. (A.172) somente o termo EXC e o termo de energia

cinética T̄e,s, que é prontamente calculado a partir dos orbitais KS conhecidos. Separando

EXC como a soma de EX com EC, calculam-se EX e os orbitais de Kohn-Sham, com o

resultado mostrado na Eq. (A.185), deixando apenas EC como incógnita. É feito então

um cálculo numérico acurado da equação de Schrödinger para encontrar a energia para a

densidade particular ρe = k. Combinando esta energia com a energia de Kohn-Sham já

calculada encontra-se EC para a densidade ρe. A repetição desse procedimento para várias

densidades fornece a energia de correlação para o gás de elétrons uniforme em função da

densidade ρe. A partir de EX e EC, determinam-se εX e εC.

A energia EX é definida pela mesma fórmula usada para a energia de troca na teoria

de Hartree-Fock, apenas substituindo os orbitais de Hartree-Fock pelos orbitais de Kohn-

Sham. A energia de troca de Hartree-Fock para uma molécula de camada fechada é dada

pelo termo envolvendo a matriz K na Eq. (A.58). Substituindo os orbitais HF pelos

orbitais KS, temos:

EX ≡ −1

4

Ne∑

i=1

Ne∑

j=1

∫
θKS*

i (r)θKS*
j (r′)θKS

j (r)θKS
i (r′)

|r − r′| drdr′. (A.186)

Aqui o fator 1/4 surge do fato de somarmos na Eq. (A.58) sobre orbitais, enquanto na

Eq. (A.186) a soma é sobre elétrons, o que dá quatro vezes mais termos que o somatório

da Eq. (A.58). Como, na prática, os orbitais de Kohn-Sham são bem parecidos com os

orbitais de Hartree-Fock, a energia de troca DFT é semelhante à energia de troca HF.

Tendo definido EX, o funcional de correlação EC é definido pela diferença entre EXC e

EX, ou seja, EC ≡ EXC −EX. Quando EX é calculado de acordo com a definição (A.186),

e EC é calculado usando algum dos modelos atualmente adotados (como o modelo LDA),

são obtidos resultados pobres para as propriedades moleculares. Na prática, é melhor

modelar tanto EX como EC, porque isto produz um cancelamento de erros e melhores

resultados. Deve-se usar a abordagem LDA para encontrar tanto EX como EC.

Tanto EX como EC são negativos, com |EX| muito maior que |EC|. A definição de EC
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na teoria do funcional da densidade difere da definição da energia de correlação na teoria

de Hartree-Fock dada pela Eq. (A.123), mas várias análises e cálculos mostram que essas

duas quantidades são quase iguais [290].

No método Xα (que já comentamos anteriormente sob o nome de método de Hartree-

Fock-Slater), a contribuição EC é omitida (por ser substancialmente menor em magnitude

que a contribuição de troca) e:

EXC ≈ EXα = −9

8

(
3

π

)1/3

α

∫

[ρe(r)]4/3dr. (A.187)

A diferenciação funcional da Eq. (A.187) leva ao potencial de troca VXC,Xα = (−3α/2)

(3ρe/π)1/3. Note-se que com α = 2/3, a Eq. (A.187) torna-se igual a parte de troca na

aproximação LDA (Eq. (A.185)). O método Xα fornece resultados de qualidade variável

em cálculos moleculares e foi superado por melhores aproximações para EXC.

Num cálculo de funcional densidade de Kohn-Sham na aproximação LDA (e não só

na aproximação LDA, mas com outros funcionais) o primeiro passo é escolher um valor

inicial para ρe(r), o que é feito na maioria das vezes através de superposições de densi-

dades eletrônicas para átomos individuais na geometria estudada. A partir da densidade

eletrônica, estima-se a energia de troca e correlação VXC(r) usando as Eqs. (A.179),

(A.182), (A.183) e (A.184). Em seguida, insere-se VXC(r) na Eq. (A.173) (equação de

Kohn-Sham), que é resolvida, gerando uma estimativa inicial para os orbitais KS θKS
i (r),

os quais são expandidos em um conjunto de funções de base ξj(r) (θKS
i (r) =

∑K
j=1 cjiξj(r))

que leva a um conjunto de equações parecido com as equações de Roothaan, exceto pela

substituição dos elementos da matriz de Fock Fij =
∫

ξ∗i (r)F̂(r)ξj(r)dr pelos elementos

da matriz de Kohn-Shan HKS
ij =

∫
ξ∗i (r)ĤKS(r)ξj(r)dr. Logo, na teoria DFT é necessário

resolver o sistema de equações:

K∑

j=1

cji(H
KS
kj −εKS

i Skj) = 0, k = 1, 2, 3, . . . , K. (A.188)

As funções de base usuais em cálculos moleculares no método do funcional densidade

de Kohn-Sham são gaussianas contráıdas, mas alguns programas usam orbitais do tipo

Slater ou ainda outros conjuntos de funções de base. A equação de Kohn-Sham também

pode ser resolvida numericamente, sem usar uma expansão numa base de funções. Tal

escolha, porém, só é feita bastante raramente.

Os orbitais ξj(r) calculados inicialmente são usados na Eq. (A.169) fornecendo uma
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nova densidade eletrônica, que permite calcular um novo potencial de troca e correlação,

que por sua vez vai gerar um novo conjunto de orbitais de Kohn-Sham, que geram uma

nova densidade eletrônica, e assim por diante. O cálculo termina quando não ocorrem

mais mudanças significativas na densidade eletrônica e nos orbitais. Cálculos DFT KS

envolvem iterações até atingir a autoconsistência entre o potencial de troca e correlação e

os orbitais KS. Trata-se, portanto, de uma espécie de cálculo de campo autoconsistente.

Após a convergência dos cálculos, a energia do estado fundamental E0 é determinada

a partir da densidade eletrônica convergida e do funcional ELDA
XC . O momento de dipolo

pode ser calculado usando a densidade eletrônica, bem como outras propriedades de um

só elétron, conforme delineado na subseção A.2.9. Gradientes anaĺıticos da energia foram

desenvolvidos para cálculos DFT KS, de modo que a geometria de equiĺıbrio pode ser

encontrada como indicado na subseção A.2.6. Derivadas segundas da energia de Kohn-

Sham são calculáveis, permitindo a determinação de propriedades vibracionais.

Uma diferença significativa entre o método DFT de Kohn-Sham e os cálculos de

Hartree-Fock surge do fato de que V LDA
XC e versões de VXC mais acuradas são sempre

funções intrincadas das coordenadas, o que torna imposśıvel calcular analiticamente as

integrais 〈ξi(r)|VXC(r) |ξj(r)〉, que aparecem em HKS
ij . Ao invés, 〈ξi(r)|VXC(r) |ξj(r)〉 é

obtido numericamente calculando o integrando em cada ponto de um grid que cobre o

sistema estudado e efetuando um somatório (uma abordagem alternativa é expandir VXC

usando um conjunto auxiliar de funções de base - não o mesmo conjunto usado para

expandir os orbitais -, onde os coeficientes de expansão são escolhidos de modo a dar um

bom ajuste pelo método dos mı́nimos quadrados para VXC no grid).

Cálculos de funcional da densidade que usam uma expansão dos orbitais de Kohn-

Sham em uma base devem lidar com os mesmos elementos da matriz de Coulomb Jij

que ocorrem nos cálculos de Hartree-Fock (Eq. (A.60)). Portanto, tais cálculos DFT

podem ser acelerados pelos mesmos métodos usados na aproximação HF, a saber, métodos

diretos e semidiretos, negligência de integrais menores que um valor limı́trofe, método de

multipolo cont́ınuo rápido, métodos de árvore, motor matriz J , etc. Também o método do

gradiente conjugado de busca pode ser empregado para evitar a diagonalização da matriz

de Kohn-Sham.

Desvios dos resultados calculados pelo método KS em relação aos valores reais são

devidos ao emprego de expressões aproximadas para EXC e VXC, e a limites dos conjuntos

de base. As técnicas para cálculos DFT ainda não são maduras como as do método

HF, e por conta da variedade de procedimentos utilizados, cálculos DFT feitos com dois
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programas diferentes usando o mesmo funcional de troca e correlação e o mesmo conjunto

de base podem produzir resultados ligeiramente diferentes.

A.6.6 A aproximação de densidade de spin local (Local-Spin-Density
Approximation - LSDA)

Para moléculas de camada aberta e geometrias moleculares próximas da dissociação, a

aproximação de densidade de spin local [289] (Local-Spin-Density Approximaxion - LSDA)

produz melhores resultados que a aproximação LDA. Enquanto nesta os elétrons com spins

opostos se emparelham na ocupação dos mesmos orbitais de Kohn-Sham, a aproximação

LSDA permite que os elétrons ocupem diferentes orbitais espaciais dependentes do spin,

θKS
iα (r), θKS

iβ (r). A aproximação LSDA, portanto, é análoga ao método de Hartree-Fock

irrestrito (UHF), já comentado na subseção A.2.5. Os teoremas de Hohenberg, Kohn

e Sham não exigem o uso de orbitais diferentes para elétrons com spins distintos (a

não ser na presença de um campo magnético externo), e se o funcional exato de troca

e correlação fosse conhecido, tal consideração não seria necessária. Com os funcionais

de troca e correlação aproximados usados nos cálculos DFT KS, é vantajoso permitir a

possibilidade de diferentes orbitais espaciais para elétrons com spins diferentes, de modo

a melhorar as propriedades calculadas para espécies de camada aberta e espécies com

geometria próxima da dissociação.

A generalização da teoria do funcional densidade que permite diferentes orbitais para

elétrons com diferentes spins é chamada de teoria do funcional densidade de spin. Na

aproximação DFT com spin, as densidades eletrônicas ρe↑(r) e ρe↓(r) são tratadas separa-

damente, e o funcional se torna dependente dessas duas funções. Disto resultam equações

de autovalores de Kohn-Sham separadas para orbitais α e β com potenciais de troca e

correlação dependentes do spin:

V α
XC = δEXC[ρe↑(r), ρe↓(r)]/δρe↑(r),

V β
XC = δEXC[ρe↑(r), ρe↓(r)]/δρe↓(r).

(A.189)

Para sistemas como o CH3 ou o estado fundamental tripleto do O2, o número de

elétrons com spin α difere do número de elétrons com spin β, de modo que ρe↑(r) 6= ρe↓(r),

e a teoria DFT com spin apresentará orbitais diferentes para elétrons com spins distintos.

Como ocorre no método Hartree-Fock irrestrito, admitir orbitais espaciais de Kohn-

Sham diferenciados para os dois valores de spin produz uma função de onda para o
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sistema de referência s que não é autofunção do operador Ŝ2. Esta contaminação de

spin, entretanto, é um problema menor na teoria DFT KS, ao contrário do que ocorre no

método UHF.

Para espécies com todos os elétrons emparelhados e geometrias moleculares na região

de equiĺıbrio, pode-se esperar que ρe↑(r) = ρe↓(r) e a aproximação DFT com spin deve

dar resultados iguais aos obtidos pela aproximação DFT comum.

Apesar de ρe não ser, numa molécula, uma função que varia lentamente com a posição,

o método LSDA funciona bastante bem para o cálculo de geometrias moleculares de

equiĺıbrio, freqüências vibracionais e momentos de dipolo, mesmo para compostos com

metais de transição, onde cálculos de Hartree-Fock muitas vezes dão resultados fracos.

No entanto, as energias de atomização na aproximação LSDA são muito ruins. Para

refinar o cálculo de energias de dissociação são necessários funcionais capazes de ir além

da aproximação LSDA.

A.6.7 Funcionais corrigidos pelo gradiente e funcionais h́ıbridos

As aproximações LDA e LSDA se baseiam no modelo do gás eletrônico homogêneo,

que é apropriado para um sistema no qual a densidade eletrônica varia suavemente com

a posição. O integrando na Eq. (A.178) para a energia de troca e correlação LDA é uma

função apenas da densidade eletrônica, e o integrando equivalente na aproximação LSDA

depende apenas das densidades de elétrons com spins α e β. Funcionais que vão além da

aproximação LSDA têm como objetivo incorporar no funcional a variação da densidade

eletrônica com a posição. Para tanto, utilizam gradientes das densidades ρe↑(r) e ρe↓(r)

no integrando, de modo que:

EGGA
XC [ρe↑(r), ρe↓(r)] =

∫

f(ρe↑(r), ρe↓(r),∇ρe↑(r),∇ρe↓(r))dr, (A.190)

onde f é alguma função das densidades de spin e seus gradientes. A sigla GGA significa

Generalized-Gradient Approximation, aproximação do gradiente generalizado. O termo

Gradient-Corrected Functional (funcional corrigido pelo gradiente) também é usado. Não

poucas vezes os funcionais corrigidos pelo gradiente são chamados de “não-locais” mas,

estritamente falando, tal denominação não é apropriada. A energia de troca e correlação

EGGA
XC é comumente dividida em partes de troca e correlação, tratadas separadamente:

EGGA
XC = EGGA

X + EGGA
C . (A.191)
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Figura 97: Representação esquemática do algoritmo autoconsistente para resolver a equação de
Kohn-Sham. Em geral é necessário fazer duas iterações simultaneamente, uma para cada spin.
fσ

i é a função que define a probabilidade de ocupação de um estado na estat́ıstica de Fermi-Dirac.
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Funcionais de troca e correlação GGA aproximados são desenvolvidos usando consi-

derações teóricas tais como o comportamento que se espera dos funcionais verdadeiros

(mas desconhecidos) EX e EC em várias situações limites, juntamente com algumas con-

siderações emṕıricas.

Alguns funcionais de troca GGA mais usados são:

– O funcional de Perdew e Wang de 1986 (sem parâmetros emṕıricos) designado por

PW86 ou PWx86 [291];

– o funcional de Becke de 1988, denotado por B88, Bx88m Becke88 ou B [292];

– o funcional de Perdew e Wang de 1991, PWx91 [293, 294, 295].

A forma expĺıcita do funcional de troca B88 é:

EB88
X = ELSDA

X +

−b
∑

σ=α,β

∫ |∇ρeσ(r)|2 / [ρeσ(r)]4/3

1 + 6b |∇ρeσ(r)| / [ρeσ(r)]4/3 sinh−1
(

|∇ρeσ(r)| / [ρeσ(r)]4/3
)dr.

(A.192)

b é um parâmetro emṕırico com valor igual a 0.0042 unidades atômicas, determinado

a partir do ajuste de energias de troca conhecidas de Hartree-Fock (próximas das energias

de troca KS) para vários átomos, e:

ELSDA
X = −3

4

(
6

π

)1/3 ∫ {[
ρe↑(r)

]4/3
+

[
ρe↓(r)

]4/3
}

dr. (A.193)

O funcional PWx86 (sem parâmetros emṕıricos) e o funcional B88 funcionam igual-

mente bem na predição de propriedades moleculares.

Funcionais de correlação corrigidos pelo gradiente muito usados incluem:

– O funcional de Lee-Yang-Parr (LYP) [296, 297];

– o funcional de correlação de Perdew 1986 (P86 ou Pc86) [298];

– o funcional de correlação livre de parâmetros de Perdew-Wang de 1991 (PW91 ou

PWc91) [293, 294, 295];

– o funcional de Becke denominado Bc95 ou B96 [299].

Existe ainda o funcional de troca e correlação de Perdew-Burke-Ernzerhof (PBE), sem

parâmetros emṕıricos [187].
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Pode-se combinar qualquer funcional de troca com qualquer funcional de correlação.

Por exemplo, a notação BLYP6/6-31G* indica um cálculo na teoria do funcional da

densidade usando o funcional de troca de Becke de 1988 [292] juntamente com o funcional

de correlação de Lee-Yang-Parr [296, 297], e uma base 6-31G* para a expansão dos orbitais

de Kohn-Sham. A letra S (em reconhecimento ao método Xα de Slater) indica o funcional

de troca LSDA. VWN denota a expressão de Vosko-Wilk-Nusair para o funcional de

correlação LSDA [289] (na verdade esses autores deram duas expressões diferentes para o

funcional de correlação LSDA, que são algumas vezes indicadas como VWN3 e VWN5).

Logo, um cálculo LSDA pode ser indicado pelas letras LSDA ou SVWN.

Funcionais de troca e correlação h́ıbridos também são muito usados. Um funcional

h́ıbrido mistura várias fórmulas extráıdas de vários autores para os funcionais de troca e

correlação. Por exemplo, o famoso funcional h́ıbrido B3LYP (ou Becke3LYP) é definido

por [162]:

EB3LYP
XC = (1− a0 − ax)E

LSDA
X + a0E

EXATO
X + axE

B88
X + (1− ac)E

VWN
C + acE

LYP
C , (A.194)

onde EEXATO
X (algumas vezes denotado EHF

X , por usar uma definição de Hartree-Fock para

EX) é dado pela Eq. (A.186), e os parâmetros a0 = 0.20, ax = 0.72, e ac = 0.81 foram

escolhidos de modo a proporcionar bons ajustes para energias de atomização moleculares.

O funcional h́ıbrido B3PW91 substitui ELYP
C por EPW91

C , e usa os mesmos valores de a. O

funcional h́ıbrido de Becke com um parâmetro, B1B96 (ou B1B95) é dado por [299]:

EB1B96
XC = EB88

X + EB86
C + a0(E

EXATO
X − EB88

X ), (A.195)

onde o parâmetro emṕırico a0 = 0.28 foi determinado por ajuste de energias de ato-

mização.

Para melhorar ainda mais os funcionais h́ıbridos B3LYP, B3PW91 e B1B96, Becke e

Schmider [300, 301] propuseram o funcional h́ıbrido:

EXC = EGGA
X + cxE

EXATO
X + EGGA

C , (A.196)

onde cx é um parâmetro e EGGA
X e EGGA

C são certos funcionais GGA que contêm três e seis

parâmetros, respectivamente. Os valores dos 10 parâmetros em EXC foram determinados

como o conjunto com melhor ajuste aos dados experimentais no conjunto de testes G2 (ta-
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bela de dados termoqúımicos experimentais obtidos com extrema precisão). Usando um

método numérico para resolver a equação de Kohn-Sham (de modo a evitar erros de trun-

cagem de base), Becke mostrou que o funcional da equação acima apresentou erro médio

absoluto de apenas 1.8 kcal/mol em uma amostra com 55 energias de atomização, um

avanço significativo sobre o funcional B3PW91, o qual nas mesmas condições apresentou

um erro médio absoluto de 2.4 kcal/mol. No entanto, Becke concluiu que a grande flexi-

bilidade do funcional acima “implica que os limites de acurácia dos métodos GGA/troca

exata foi atingido... Parece que [futuros progressos na acurácia] não serão ganhos através

de experimentação cont́ınua com GGAs particulares, mas irão exigir novos insights básicos

e talvez derivadas da densidade de ordens mais elevadas”.

Muitos outros funcionais contendo ajustes de parâmetros experimentais foram pro-

postos. O funcional de troca e correlação de Van Voorhis-Scuseria (VSXC), com 21

parâmetros, não possui mistura de troca exata e funciona ligeiramente melhor que o

B3LYP para o cálculo de energias de atomização, mas ligeiramente pior para compri-

mentos de ligação [302]. Os nove parâmetros no funcional EDF1 (Empirical Density

Functional Version 1) foram otimizados especificamente para o uso do pequeno conjunto

de base 6-31G* [303]. O funcional EDF1 funciona bem para o cálculo de energias de

atomização e a inclusão de mistura com o termo de troca exato não o melhora muito.

Kafafi propôs o funcional de troca e correlação h́ıbrido K2-BVWN (Kafafi 2-parameter,

Becke, Vosko-Wilk-Nusair,[304]). Cálculos da entalpia de formação usando este funcional

e a base 6-311+G(2df) apresentaram resultados para 350 espécies com erro médio absoluto

de 1.4 kcal/mol, comparável aos resultados obtidos usando o método G2 (que usa grandes

conjuntos de base e teoria da perturbação de segunda ordem MP2), computacionalmente

muito mais dispendioso.

Indo além da abordagem GGA, Becke introduziu um funcional de troca e correlação

com 10 parâmetros onde f na Eq. (A.190) é uma função não somente das densidades

e seus gradientes, mas também de ∇2ρe↑(r) e ∇2ρe↓(r) e dos gradientes dos orbitais de

Kohn-Sham [305, 306]. Este funcional apresentou um desvio médio absoluto de 1.54

kcal/mol para 55 energias de atomização, em comparação com o valor de 1.79 kcal/mol

para o funcional de Becke com 10 parâmetros, mas o uso de derivadas mais elevadas da

densidade eletrônica aumentou consideravelmente o tempo computacional para o cálculo,

o que fez Becke declarar: “ainda estar por ser visto se a teoria do funcional da densidade

de ordem elevada irá oferecer vantagens suficientes para suplantar a aproximação GGA”.

Funcionais corrigidos pelo gradiente e funcionais h́ıbridos não fornecem somente boas
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geometrias de equiĺıbrio, freqüências vibracionais e momentos de dipolo, mas geralmente

também dão energias de atomização moleculares acuradas. Por exemplo, o funcional

h́ıbrido BLYP/6-311+G(2d,p) e o funcional B3LYP/6-311+G(2d,p) forneceram erros mé-

dios absolutos de 3.9 e 3.1 kcal/mol no conjunto de teste G2. Em resumo, os funcionais

h́ıbridos parecem oferecer a melhor performance nesse tipo de cálculo.

Ao usar funcionais da densidade que vão além da abordagem LSDA, algumas vezes

se resolve a equação de Kohn-Sham para os orbitais usando apenas a forma LSDA para

a energia potencial de troca e correlação. Calcula-se então a energia (e seu gradiente,

no caso de uma otimização da geometria) usando os orbitais de Kohn-Sham, a densidade

eletrônica e o funcional GGA ou h́ıbrido para EXC. Tal procedimento (denominado de

perturbativo, por semelhança com o cálculo da energia na teoria de perturbação usando

o verdadeiro hamiltoniano com a função de onda de ordem zero) economiza tempo de

computação ao preço de pequenos erros na energia DFT e nas propriedades moleculares.

Ainda assim, é prefeŕıvel que os orbitais de Kohn-Sham sejam determinados usando o

mesmo funcional empregado para calcular a energia. Quando isto é feito, diz-se que o

cálculo foi realizado de modo autoconsistente.

A teoria do funcional da densidade tem como vantagem o permitir que efeitos de

correlação sejam inclúıdos nos cálculos sem tornar o custo computacional muito alto

(o tempo de cálculo é semelhante ao de um cálculo de Hartree-Fock, que não inclui a

correlação eletrônica). Num artigo de revisão de 1996 [307], foram feitas estimativas

para o número máximo de átomos que diversos métodos ab initio poderiam suportar,

dada a capacidade de processamento de uma workstation de alto ńıvel naquele ano. Uma

molécula sem simetria foi utilizada para efetuar os testes e só foram considerados elementos

da primeira linha da tabela periódica, exclúıdos os hidrogênios. Um conjunto de base zeta

duplo polarizado foi empregado em todos os cálculos. A Tabela 72 registra os resultados.

Tabela 72: Número máximo de átomos da primeira linha da tabela periódica suportados por
uma workstation para diferentes métodos ab initio. Hidrogênios exclúıdos. Ano de referência:
1996. FCI - Full Configuration Interaction; CCSD(T) - forma aproximada do método Coupled

Cluster Singles, Doubles and Triples; CCSD - Coupled Cluster Singles and Doubles; MP2 -
Møller-Plesset Second Order Perturbation Theory; HF - Hartree Fock; KS-DFT - Kohn-Sham
Density Functional Theory.

Persiste o debate sobre se a teoria do funcional de densidade de Kohn-Sham deve
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ou não ser considerada como um método ab initio. Se o funcional de troca e correlação

correto fosse conhecido, não haveria dúvidas sobre o caráter ab initio da abordagem KS.

Infelizmente, dada a ignorância da expressão exata para EXC, é necessário fazer várias

aproximações guiadas por resultados obtidos experimentalmente, como já vimos. Alguns

pesquisadores consideram isto suficiente para desacreditar qualquer tentativa de definir

o tratamento de Kohn-Sham como sendo um tratamento de primeiros prinćıpios. Mas é

preciso notar que o número de parâmetros emṕıricos empregados nos diversos funcionais

h́ıbridos é muito menor que o número de parâmetros em teorias semi-emṕıricas, que usam

vários parâmetros diferentes para cada espécie de átomo. Por conta disso, o método de

Kohn-Sham é tido como uma categoria à parte, distinto de métodos ab initio tais como

Hartree-Fock, interação de configuração, Møller-Plesset e Coupled Cluster.

A despeito de seu sucesso, a teoria do funcional densidade não opera milagres. Suas

principais limitações já foram esboçadas no presente anexo. Primeiramente, aplica-se de

modo confiável apenas ao estado fundamental. Versões para estados excitados já foram

desenvolvidas, mas ainda deixam algo a desejar. Além disso, por não ser conhecida a

forma exata do funcional de troca e correlação, a teoria DFT leva por vezes a energias

menores que a energia do estado fundamental correta. Os funcionais aproximados, além

disso, não efetuam direito a correção de auto-interação, levando a curvas errôneas de ener-

gia para distâncias internucleares grandes. Os funcionais DFT KS dispońıveis também

não fornecem bons resultados para as energias de ativação em reações qúımicas, e não

conseguem superar a acurácia de outros métodos, como CCSD(T) (forma aproximada do

método Coupled Cluster Singles, Doubles and Triples) e QCISD(T) (Quadratic Configu-

ration Interaction Singles, Doubles and Triples). Com métodos como CC, CI e MP, fica

claro o caminho para obter resultados mais precisos: usar conjuntos de base maiores e

atingir ordens mais elevadas de correlação, apesar dos limites computacionais. Já no caso

da teoria do funcional da densidade KS, não há meio claro de construir funcionais de troca

e correlação mais precisos. O processo de aperfeiçoamento é feito por tentativa e erro.

Muitos dos funcionais EXC falham para moléculas de van der Waals. Por exemplo, os

funcionais BLYP, B3LYP e BPW91 não conseguem prever a formação de ligações no He2

e no Ne2 (exceções feitas aos funcionais PBE e K2-BVWN, que apresentam resultados

aceitáveis). Todos os funcionais dispońıveis atualmente violam uma ou mais restrições

impostas pela teoria DFT. Há resultados provando que os potenciais VXC mais usados

estão substancialmente incorretos [308].

Atualmente muito trabalho está sendo realizado na tentativa de desenvolver melhores



374 Anexo A -- Fundamentos teóricos

funcionais de troca e correlação. Uma forma alternativa de tentar resolver o problema,

a teoria do potencial efetivo otimizado (Optimized Effective Potential - OEP), toma EXC

como um funcional dos orbitais de Kohn-Sham ocupados, na esperança de que isto torne

mais fácil desenvolver funcionais menos imperfeitos. O método OEP produz, no entanto,

equações bastante dif́ıceis de se resolver. Kreiger, Li e Iafrate (KLI) [309] desenvolveram

posteriormente uma aproximação das equações OEP computacionalmente mais tratável,

e o assim chamado método KLI tem fornecido bons resultados. A abordagem na qual

se escreve o funcional de troca de Hartree-Fock em termos de orbitais é conhecida como

EXX [123] (Exact Exchange).

Muitos advogados da teoria do funcional da densidade acreditam que a DFT subs-

tituirá os métodos de Hartree-Fock e suas derivações, tornando-se a forma dominante

de fazer cálculos quânticos para sistemas de muitos elétrons e a principal maneira de

interpretar teoricamente conceitos nesses sistemas.

A.6.8 Efeitos relativ́ısticos em moléculas

Para um átomo hidrogenóide não-relativ́ıstico, a velocidade média quadrática de um

elétron num orbital 1s é Zc/137, onde Z é a carga nuclear e c é a velocidade da luz.

Logo, para átomos com número atômico grande, a velocidade média dos elétrons nas

camadas mais internas é próxima de c e correções se fazem necessárias. De fato, os

orbitais internos sofrem mudanças substanciais no seu tamanho e energia quanto são

inclúıdos efeitos relativ́ısticos. Já os elétrons de valência em um átomo ou molécula estão

bem protegidos do núcleo pela blindagem dos elétrons mais internos, e suas velocidades

médias são bem menores que c, mesmo para átomos pesados. Por conta disso, é natural

achar que não é necessário incluir correções relativ́ısticas em moléculas com átomos de

Z grande. Sabe-se, porém, que efeitos relativ́ısticos em espécies moleculares com átomos

pesados não podem ser desprezados.

O raio médio de um átomo hidrogenóide é proporcional ao raio de Bohr a0, o qual, por

sua vez, varia com o inverso do momentum do elétron na órbita que corresponde ao estado

fundamental. Com o aumento relativ́ıstico do momentum com a velocidade, os orbitais

internos do tipo s num átomo pesado encolhem e os orbitais externos do mesmo tipo,

para continuarem ortogonais aos primeiros, também diminuem de tamanho. Em menor

medida, a mesma coisa acontece com os orbitais p, e o resultado ĺıquido deste efeito é que

a blindagem do núcleo pelos elétrons em orbitais s e p aumenta, permitindo a expansão

dos orbitais d e f mais externos. Contrações relativ́ısticas para orbitais 6s para alguns
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elementos pesados foram calculadas: 4% para o Cs (Z = 55), 7% para o Yb (Z = 70),

12% para o Re (Z = 75), 18% para o Au (Z = 55) e 12% para o Rn (Z = 86) [310].

Por causa de contrações relativ́ısticas, o raio atômico do Fr é menor que o do Cs, que fica

acima na tabela periódica.

A forma relativ́ıstica da equação de Schrödinger é a equação de Dirac. É posśıvel

fazer cálculos de Hartree-Fock relativ́ısticos usando a equação de Dirac para modificar o

operador de Fock, dando lugar a um cálculo Dirac-Hartree-Fock (DHF). Do mesmo modo,

é posśıvel usar uma forma relativ́ıstica da equação de Kohn-Sham para efetuar cálculos

DFT relativ́ısticos. Por causa da estrutura complicada das equações relativ́ısticas de

Kohn-Sham, no entanto, poucos trabalhos foram publicados empregando esta abordagem

[311].

Cálculos relativ́ısticos DHF em moléculas com elementos pesados como Au ou U são

muito demorados. Uma maneira de cortar caminho é efetuar um cálculo DHF para cada

tipo de átomo na molécula e usar o resultado para derivar um potencial relativ́ıstico efe-

tivo de caroço (Relativistic Effective Core Potential - RECP) ou pseudopotencial (sobre

pseudopotenciais teremos mais a ver adiante) para aquele átomo (como os termos rela-

tiv́ısticos menos relevantes são descartados na determinação dos RECPs, eles são chama-

dos algumas vezes de ECPs quase relativ́ısticos). É efetuado então um cálculo molecular

de Hartree-Fock em que apenas os elétrons de valência são tratados explicitamente e sem

correções de relatividade. Os efeitos dos elétrons de caroço são inclúıdos na expressão do

operador de Fock através da adição dos ECPs para cada átomo. Assume-se neste modelo

que os orbitais atômicos das camadas mais internas não mudam muito quando os átomos

unem-se e formam uma molécula. Pode-se melhorar os resultados usando técnicas como

CI ou MPPT. RECPs também podem ser usados em cálculos DFT KS.

Também é posśıvel fazer um cálculo não-relativ́ıstico e em seguida incluir efeitos rela-

tiv́ısticos como perturbações usando os métodos de Hartree-Fock e a teoria do funcional

da densidade de Kohn-Sham [312, 313, 314].

A.6.9 Solvatação

Consideremos uma solução dilúıda de uma molécula polar M em um solvente polar

S. Para dar um exemplo concreto, digamos que se trate de uma solução de CH3Br em

água. As moléculas do solvente próximas dos átomos de carbono e bromo tendem a se

orientar com seus hidrogênios positivamente carregados apontando para o átomo de Br

com carga negativa, enquanto as moléculas de água perto do grupo H3C preferem uma
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orientação na qual seus átomos de oxigênio (carga negativa) estejam voltados na direção

do grupo metil (carga positiva). Além disso, o momento de dipolo de uma molécula de

soluto induzirá um momento de dipolo em cada molécula de solvente nas vizinhanças,

o qual se soma ao momento permanente de dipolo. O resultado ĺıquido desses efeitos

de orientação e indução de dipolo é que o solvente adquire uma polarização volumétrica

na região de cada molécula de soluto. O solvente polarizado gera um campo elétrico,

chamado de campo de reação, sobre cada molécula de soluto, o qual distorce a função

de onda molecular do soluto em relação ao que ela seria na fase gasosa. O momento de

dipolo aumentado de M polariza ainda mais o solvente, e o loop recomeça.

Por causa do momento de dipolo adicional induzido pelo campo de reação do sol-

vente, uma molécula polar terá um momento de dipolo maior quando dissolvida do que

na fase gasosa. Além disso, o momento de dipolo de uma molécula do soluto sofrerá

flutuações com o tempo à medida que as orientações das moléculas de solvente próximas

se modificam. Por exemplo, para uma molécula de água dilúıda em água, uma simulação

de dinâmica molecular na qual as interações intermoleculares são modeladas através da

colocação de cargas flutuantes, incluindo um potencial de Lennard-Jones 6-12 entre cada

par de átomos de oxigênio, resulta num momento de dipolo elétrico médio aumentado em

mais de 40% [315].

A forma rigorosa de lidar com efeitos de solvente sobre as propriedades moleculares é

efetuar cálculos para um sistema quântico consistindo em uma molécula de soluto cercada

por muitas moléculas de solvente; repetem-se os cálculos para várias orientações a fim de

encontrar propriedades médias sob certas condições de temperatura e pressão. Tal cálculo,

percebe-se logo, é na maioria das vezes impraticável.

A aproximação mais simples que se pode seguir é adotar um modelo de solvente

cont́ınuo no qual a estrutura molecular do solvente é ignorada e o solvente é tratado como

um meio dielétrico cont́ınuo e infinito, com uma cavidade dentro da qual se enconttra a

molécula do soluto. Utiliza-se a constante dielétrica experimental do meio solvente nas

condições de temperatura e pressão estudadas. A molécula de soluto pode ser tratada

classicamente como uma coleção de cargas que interagem com o meio dielétrico. Num

tratamento quântico, a interação entre uma molécula de soluto M e o dielétrico cont́ınuo

que a envolve é modelado por um termo que é acrescentado ao hamiltoniano molecular.

Na implementação usual do modelo de solvatação cont́ınuo, a função de onda e a

densidade de probabilidade eletrônica da molécula de soluto M podem mudar de modo a

refletir a diferença entre a fase gasosa e a fase de solução, de modo a atingir a autocon-
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sistência entre a distribuição de carga de M e o campo de reação do solvente. Qualquer

tratamento no qual tal autoconsistência é alcançada é chamado de modelo autoconsistente

de campo de reação (Self-Consistent Reaction-Field - SCRF). Existem muitas versões de

modelos SCRF que diferem na escolha do tamanho e da forma da cavidade que contém a

molécula de soluto e no modo de calcular a interação soluto-solvente.

No método do dipolo numa esfera, (ou Onsager quântico, ou Born-Kirkwood-Onsager)

[316, 317, 318, 319, 320, 321], a cavidade molecular é uma esfera de raio a e a interação

entre a distribuição de carga molecular e o campo de reação é calculado aproximando

a distribuição de carga molecular como um dipolo elétrico localizado no centro da cavi-

dade com momento de dipolo elétrico µ . Lars Onsager calculou, em 1936 [317], o campo

elétrico (campo de reação) na cavidade. Em um cálculo SCRF Onsager quântico, parte-se

de um método ab initio (HF, DFT, MP2, etc.), para calcular a densidade de probabi-

lidade eletrônica da molécula isolada, preferencialmente numa geometria otimizada. É

calculado então o momento de dipolo no vácuo, que é usado para produzir uma estima-

tiva do campo de reação. Do campo de reação, estima-se o operador que representa a

interação solvente-soluto, que é acrescentado às equações do método quântico empregado

para obter uma nova densidade de probabilidade eletrônica. Os cálculos prosseguem até

que a autoconsistência é atingida. A geometria molecular deve ser otimizada novamente

na presença do campo de reação, mas algumas vezes tal passo é omitido, uma vez que

mudanças na geometria da fase gasosa para a fase em solução são usualmente pequenas.

No modelo de Onsager quântico, uma molécula de soluto não carregada e sem mo-

mento de dipolo permanente não é afetada pelo solvente. Neste caso, somente momentos

de quadrupolo ou de ordens superiores do soluto irão interagir com o solvente produzindo

um campo de reação.

Pode-se ainda calcular a energia de Gibbs de solvatação, que inclui uma componente

eletrostática resultante da interação dessa natureza entre o soluto e o solvente, uma com-

ponente de cavitação (trabalho necessário para formar as cavidades no solvente que são

ocupadas por moléculas do soluto), uma contribuição de repulsão que resulta das atrações

de dispersão de London entre soluto e solvente, uma contribuição de repulsão, que procede

das repulsões quânticas entre moléculas de soluto e solvente, e a contribuição térmica ou

molecular, que resulta de mudanças nos movimentos moleculares ao ocorrer a transição

da fase gasosa para a fase de solução.

Indo além de Onsager, é posśıvel fazer uma expansão multipolar, escrevendo a ener-

gia potencial de interação entre uma distribuição de carga molecular e o meio dielétrico
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cont́ınuo como um somatório de contribuições de monopolo, dipolo, quadrupolo, octupolo,

etc. O número de termos inclúıdos é decidido por quem vai fazer o cálculo. O que se

verifica é que os termos além do dipolo de Onsager produzem contribuições substanciais, e

a negligência desses termos não pode ser justificada. O fato de que o modelo do dipolo em

uma esfera na aproximação autoconsistente forneça resultados corretos pode ser atribúıdo

a um cancelamento parcial de erros [322].

Uma melhoria em relação a forma esférica da molécula é uma forma molecular elip-

soidal. Cálculos de Onsager quânticos e expansões multipolares usando uma cavidade

elipsoidal fornecem melhores resultados que os obtidos no modelo mais simples de cavi-

dade esférica, mas a melhora não é muito grande.

Cálculos acurados de efeitos de solvente exigem o uso de uma forma molecular mais re-

alista que as formas esférica ou de elipsóide. No modelo do cont́ınuo polarizável [323, 324,

325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340] (Polarizable-

Continuum Model - PCM), cada núcleo atômico na molécula M é cercado por uma esfera

de raio 1.2 vezes maior que o raio de van der Waals do átomo. A região da cavidade é

considerada como o volume ocupado pelas esferas atômicas sobrepostas. Dada a forma

complicada da cavidade PCM, expressões anaĺıticas para os coeficientes de expansão em

uma série de multipolos não podem ser encontradas. Ao invés, um método numérico é

usado para encontrar a energia de interação soluto solvente.

Um passo adiante do método PCM original é o modelo do cont́ınuo polarizável com

isodensidade (Isodensity Polarizable Continuum Model - IPCM), que difere do PCM por

definir a superf́ıcie da cavidade molecular como uma superf́ıcie de densidade de probabi-

lidade eletrônica constante [322]. Um valor de isodensidade de 0.0004 elétrons por bohr

cúbico é recomendado, por resultar em volumes moleculares que estão de acordo com

valores experimentais [341]. Neste modelo o tamanho da molécula muda a cada passo do

cálculo. O método IPCM autoconsistente [322] (Self-Consistent IPCM - SCICPM) é um

refinamento adicional, que incorpora otimização de geometria e cálculos de freqüências

de vibração para a molécula de soluto. O método de átomo unido de Hartree Fock PCM

(United-Atom Hartree-Fock PCM - UAHFPCM) usa esferas atômicas para definir a ca-

vidade molecular, mas a atribuição dos raios das esferas é mais cuidadosa que no método

PCM original. Por exemplo, não são associadas esferas aos átomos de hidrogênio, mas

estes são inclúıdos dentro da esfera definida pelo átomo ao qual estão ligados (dáı o nome

“átomo unido”).

O método PCM foi reformulado de modo a eliminar cálculos iterativos da função de
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onda do soluto na solução. Nesta reformulação, a função de onda e o operador mutua-

mente autoconsistentes são determinados diretamente em um único ciclo, acelerando os

cálculos [325]. A formulação PCM de equação integral é uma generalização do método

PCM que permite lidar com solventes anisotrópicos como os cristais ĺıquidos. Finalmente,

o modelo de solvatação do tipo condutor [342] (Conductorlike Solvation Model - COSMO)

se assemelha ao método PCM no uso de uma forma realista para a molécula de soluto e na

consideração de cargas superficiais sobre a cavidade em torno da molécula de soluto. Mas

essas cargas são calculadas inicialmente usando uma condição apropriada para um meio

solvente que é eletricamente condutor ao invés de dielétrico. O procedimento simplificado

para determinação das cargas torna o COSMO computacionalmente rápido. A apro-

ximação COSMO-RS (COSMO for Real Solvents, para solventes reais) é uma extensão

da técnica COSMO que vai além da aproximação do dielétrico cont́ınuo [343].

A.7 Cristais

A.7.1 Definições básicas e teorema de Bloch

No estado cristalino os núcleos atômicos (e, por conseguinte, como veremos, todas

as propriedades espaciais) se encontram distribúıdos periodicamente no espaço. O cris-

tal é completamente especificado pelos tipos e posições dos núcleos em uma unidade

básica (célula unitária primitiva) e pelas regras que descrevem a repetição desta unidade

(translações). As posições e tipos de átomos na célula primitiva formam o que se chama

de base. O conjunto de translações que gera a estrutura periódica é uma rede de pontos

no espaço chamada de rede de Bravais. Tal conjunto de translações forma um grupo,

que deve ser somado ao grupo das operações pontuais que deixam invariante o cristal

(rotações, reflexões, inversões).

Os pontos da rede de Bravais são dados por:

T(n1, n2, n3) = n1a1 + n2a2 + n3a3, (A.197)

onde os vetores ai são vetores primitivos (não únicos, o mesmo valendo para a célula

primitiva) da rede e os ni são números inteiros. A célula de Wigner-Seitz de um cristal

é o conjunto de todos os pontos mais próximos de um dado ponto da rede e possui o

tamanho mais compacto dentre todas as células unitárias (embora não seja a única). A

célula de Wigner-Seitz também possui exatamente a mesma simetria simetria da rede de
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Bravais. A partir da origem pode-se construir esta célula traçando segmentos ligando a

origem a todos os pontos da rede, e em seguida desenhando planos perpendiculares que

dividem esses segmentos em duas partes iguais. A célula de Wigner-Seitz é o poliedro

com centro na origem formado por um subconjunto desses planos e que possui o menor

volume posśıvel. A Fig. 98 mostra alguns exemplos mais comuns de células primitivas e

células de Wigner-Seitz.

A ordem interna do cristal é descrita por suas operações de grupo de simetria. Existem

32 combinações diferentes de elementos de simetria resultando em 32 grupos de simetria

pontual. Esses grupos pontuais estão distribúıdos entre 7 sistemas cristalinos e 14 redes

de Bravais:

1. Sistema cúbico: contém as redes de Bravais cujo grupo pontual é o grupo de simetria

de um cubo. Três redes de Bravais com grupos espaciais não-equivalentes possuem o

mesmo grupo pontual de simetria cúbica. São as redes cúbica simples, cúbica de corpo

centrado e cúbica de face centrada.

2. Sistema tetragonal: constrúıdo através do afastamento de duas faces opostas da

rede cúbica simples, formando um prisma retangular com base quadrada com altura di-

ferente das arestas da base. Aplicando o mesmo processo a uma rede cúbica simples,

obtém-se o sistema tetragonal centrado. Duas redes no total.

3. Sistema ortorrômbico: obtido pela deformação das bases quadradas do sistema

tetragonal em retângulos, produzindo um objeto com lados perpendiculares desiguais. A

rede ortorrômbica de base centrada é obtida acrescentando um ponto da rede em dois

lados opostos da face do objeto. A rede ortorrômbica de corpo centrado é obtida pelo

acréscima de um ponto da rede no centro do objeto, e a rede ortorrômbica de face centrada

é obtida pela adição de um ponto da rede nos centros das faces do objeto. Quatro redes

no total.

4. Sistema monocĺınico: a rede monocĺınica simples resulta quando se distorcem

as faces retangulares perpendiculares a um dos eixos ortorrômbicos de modo que estas

passam a ter a forma de paralelogramos. Fazendo a mesma coisa com a rede ortorrômbica

de base centrada é produzida a rede monocĺınica de base centrada. Duas redes no total.

5. Sistema tricĺınico: a destruição da simetria do cubo é completada movendo os

paralelogramos da rede ortorrômbica simples de modo que nenhum eixo fica perpendicular

aos outros dois. A rede tricĺınica simples não possui qualquer restrição, a não ser que faces

opostas sejam paralelas. Há apenas uma rede desse tipo.
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6. Sistema trigonal: o sistema trigonal simples (ou romboédrico) é obtido esticando

um cubo ao longo de um de seus eixos diagonais. Apenas uma rede.

7. Sistema hexagonal:o grupo pontual hexagonal é o grupo de simetria de um prisma

com um hexágono regular como base. A rede hexagonal simples tem o grupo pontual

hexagonal como grupo de simetria e é a única rede de Bravais no sistema hexagonal.

O grupo espacial é a soma dos grupos de translação e pontual. Existem 230 grupos

espaciais que são reduzidos a 219 se tipos diferindo apenas pelo caráter enantiomorfo

são inclúıdos num mesmo grupo. Esses grupos espaciais descrevem todos os diferentes

arranjos posśıveis de simetria nos cristais.

Figura 98: Acima: rede cúbica de corpo centrado (body centered cubic - bcc). Indicados três
vetores primitivos. À direita, célula de Wigner-Seitz para esta rede, na qual há oito vizinhos
mais próximos de um dado ponto. Abaixo: rede cúbica de face centrada (face centered cubic -
fcc), com célula de Wigner-Seitz à direita e vetores primitivos delimitando uma célula primitiva
em forma de paraleleṕıpedo, a qual não possui simetria menor que a da rede [211].

O volume de qualquer célula primitiva é sempre o mesmo. Pode-se expressar o volume

da célula primitiva definindo-o a partir dos vetores primitivos da rede de Bravais:

ΩCP = |a1 · (a2 × a3)| (A.198)
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A base descreve as posições dos átomos dentro de cada célula unitária em relação à

origem escolhida. Se existem S átomos por célula primitiva, então a base é especificada

pelos vetores de posição atômica bi, com i = 1, 2, . . . , S. NaCl e ZnS são dois exemplos

de cristais com rede de Bravais fcc e uma base de dois átomos por célula. As magnitudes

dos vetores de translação primitivos são funções da aresta da célula cúbica. Um segundo

exemplo que podemos mencionar é a estrutura zincoblenda, que é a estrutura de muitos

cristais do grupo III-V e II-VI tais como o GaAs e o ZnS. Esta rede também é fcc com

dois átomos por célula unitária, mas não possui centro de inversão. Se os dois átomos

numa estrutura zincoblenda são idênticos, obtém-se a rede cristalina do diamante. Outras

estruturas muito comuns são a estrutura hexagonal e a perovskita.

Em cristais de empacotamento fechado (close-packed) os átomos ocupam a maior

quantidade de espaço posśıvel. A estrutura fcc é a estrutura de empacotamento fechado

cúbica. Já a estrutura hexagonal de empacotamento fechado (hexagonal close-packed -

hcp) consiste de planos de empacotamento empilhados em seqüência alternada. É uma

rede de Bravais hexagonal com uma base de dois átomos que não são equivalentes via

translação. A razão de empacotamento é c/a =
√

8/3, onde c é a altura do prisma

hexagonal e a o apótema do hexágono. Existe uma infinidade de empilhamentos posśıveis

de planos formados com átomos em empacotamento fechado, o que dá origem a um

número infinito de politipos, especialmente em cristais com ligações tetraédricas, como o

ZnS. As estruturas mais simples são a já citada zincoblenda (simetria cúbica) e a wurtzita

(simetria hexagonal), baseadas em redes fcc e hcp.

Consideremos qualquer função f(r) definida para um cristal (a densidade eletrônica,

por exemplo), que possui a mesma periodicidade da rede cristalina:

f(r + T(n1, n2, n3)) = f(r). (A.199)

É posśıvel escrever tal função através de transformadas de Fourier com componentes

q definidas no espaço rećıproco:

f(q) =
1

ΩCRISTAL

∫

ΩCRISTAL

f(r) exp(iq · r)dr. (A.200)

Escrevendo a função periódica usando componentes discretas de Fourier para um

cristal com N1 ×N2 ×N3 células unitárias e condições de contorno de Born-Von Karman

em cada dimensão, podemos restringir os vetores q ao conjunto de vetores que obedece à
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seguinte expressão:

q · ai = 2π
n

Ni

, (A.201)

e a expansão de f(r) pode ser escrita como:

f(q) =
1

N1N2N3

N1∑

n1=1

N2∑

n2=1

N3∑

n3=1

exp [iq · T(n1, n2, n3)]
1

ΩCP

∫

ΩCP

f(r) exp(iq · r)dr. (A.202)

O conjunto de vetores que satisfazem a Eq. (A.201) forma uma base de vetores

primitivos para a rede rećıproca. Vetores da rede rećıproca serão denotados por bi, e

relacionam-se com os vetores primitivos da rede real através de:

bi · aj = 2πδij (A.203)

Um śıtio na rede rećıproca será obtido através do vetor (G) dado por:

G(n1, n2, n3) = n1b1 + n2b2 + n3b3, (A.204)

onde os ni são números inteiros. É fácil mostrar que a rede rećıproca de uma rede cúbica

simples é também uma rede cúbica simples. As redes bcc e fcc são mutuamente rećıprocas.

Define-se a primeira zona de Brillouin (ou simplesmente zona de Brillouin, ZB) como sendo

a célula de Wigner-Seitz da rede rećıproca. Os planos bissetores usados na construção da

ZB são os mesmos planos para os quais a condição de Bragg para espalhamento elástico

é satisfeita. Para part́ıculas incidentes com vetores de onda dentro da ZB não ocorre

espalhamento de Bragg. A Fig. 99 ilustra algumas zonas de Brillouin com pontos de alta

simetria para alguns cristais.

Existe uma importante relação entre os vetores da rede rećıproca e os planos da rede

cristalina real. Cada plano da rede cristalina contém um número infinito de śıtios. Cada

vetor G da rede rećıproca é perpendicular a algum conjunto de planos na rede direta, e

o comprimento de G é inversamente proporcional ao espaçamento entre os planos desse

conjunto. Reduzindo os ı́ndices (n1, n2, n3) a ı́ndices sem fatores comuns (h, k, l) é posśıvel

fazer uma associação entre conjuntos de planos cristalinos e tripletos inteiros (h, k, l)

que representam vetores G no espaço rećıproco. Tal método para designação de planos
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Figura 99: Zonas de Brillouin para várias redes comuns: (a) rede cúbica simples; (b) fcc; (c)
bcc; (d) hexagonal. Pontos e direções de alta simetria apresentados. O centro da zona (k = 0) é
indicado pela letra grega Γ. Pontos no interior da ZB são indicados com letras gregas e pontos
na sua superf́ıcie externa são indicados com letras do alfabeto latino. No caso da rede fcc, um
pedaço de uma célula vizinha é representado por linhas pontilhadas, o que revela a orientação
de células vizinhas. Por exemplo, a linha Σ que vai de Γ até K prolonga-se para fora da primeira
ZB alcançando um ponto na célula vizinha que equivale ao ponto X [211].

equivale aos ı́ndices de Miller usados em cristalografia. A notação usada para vetores

da rede rećıproca e conjuntos de planos cristalinos espećıficos é (hkl). Se um plano não

intercepta um vetor da rede direta, o ı́ndice de Miller correspondente é zero. Se um plano

intercepta um vetor que aponta no sentido negativo, o ı́ndice de Miller correspondente

tem uma linha desenhada sobre si. Para evitar confusão com planos na rede direta e

direções na rede rećıproca, colchetes [hkl] são usados para direções na rede direta e planos

na rede rećıproca. Existe também uma notação espećıfica para indicar famı́lias de planos

ou de vetores na rede rećıproca que são equivalentes por causa da simetria da rede. Por

exemplo, {100} indica os planos (100), (010) e (001). A notação equivalente para direções

(incluindo sentidos negativos) é 〈hkl〉. Redes hexagonais usam quatro ı́ndices de Miller

(hklm): um para cada um dos três vetores coplanares, espaçados de 120o entre si, e outro

ı́ndice na direção normal a este plano.

Consideremos agora os autoestados de qualquer operador Ô definido para o cris-

tal periódico. Qualquer operador desse tipo é invariante se submetido a translações

T(n1, n2, n3). Podemos definir operadores de translação T̂(n1, n2, n3) que deslocam os
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argumentos de uma função de r:

T̂(n1, n2, n3)ψ(r) = ψ(r + T(n1, n2, n3)). (A.205)

O hamiltoniano de um cristal periódico é invariante sob a aplicação do operador

T̂(n1, n2, n3) e, portanto, comuta com este operador. Logo os autoestados Ĥ devem ser

autoestados de todos os T̂(n1, n2, n3). O teorema de Bloch assegura que autoestados dos

operadores de translação apenas mudam de fase quando se passa de uma célula para outra

do cristal:

T̂(n1, n2, n3)ψ(r) = exp(ik · T(n1, n2, n3))ψ(r). (A.206)

Os autoestados de qualquer operador periódico, como o hamiltoniano, podem ser

escolhidos com valores definidos de k que podem ser usados para classificar qualquer

excitação de um cristal periódico. Da Eq. (A.206) segue-se que as autofunções com um

valor de k definido podem ser escritas também como:

ψk(r) = exp(ik · r)uk(r), (A.207)

onde uk(r + T(n1, n2, n3)) = uk(r). No limite de um cristal macroscópico grande, o

espaçamento entre os vetores k tende a zero e k pode ser considerada uma variável

cont́ınua. Os autoestados do hamiltoniano podem ser encontrados separadamente para

cada k em uma célula primitiva da rede rećıproca. Para cada k existe um conjunto dis-

creto de autovalores que podem ser rotulados por um ı́ndice i, o que leva a bandas de

autovalores εik e a gaps de energia nos quais não podem existir autoestados para quaisquer

valores de k.

Em um cristal perfeito o vetor de onda k é conservado módulo qualquer vetor da rede

rećıproca G, sendo tal vetor, portanto, análogo ao momento ordinário no espaço livre,

com a restrição adicional de que ele é conservado somente dentro de uma célula primitiva,

usualmente escolhida como sendo a zona de Brillouin. Logo, duas excitações com vetores

k1 e k2 podem ter momentum total k1 + k2 fora da zona de Brillouin na origem, mas seu

momentum cristalino deve ser reduzido a um ponto interno da zona de Brillouin através

da adição de um vetor da rede rećıproca. O processo f́ısico de espalhamento de duas

excitações por alguma perturbação é chamado de espalhamento “Umklapp”.

Todos os autoestados posśıveis são especificados por k dentro de qualquer célula pri-
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mitiva da rede periódica no espaço rećıproco, mas a ZB é a célula convencional de escolha

para representar as excitações eletrônicas em cristais. Suas fronteiras são os planos bisse-

tores onde ocorre, como já vimos, o espalhamento de Bragg. Logo, as bandas εik devem

ser funções anaĺıticas de k dentro da ZB e só podem se tornar não-anaĺıticas nas suas

fronteiras.

Para muitas propriedades, tais como a população de elétrons nas bandas, energias

totais, etc. é essencial efetuar uma soma sobre estados com número quântico k. Se forem

escolhidas autofunções que obedecem condições de contorno periódicas em um cristal

macroscópico de volume ΩCRISTAL composto de N1N2N3 células, então existe exatamente

um valor de k para cada célula. Logo, em uma soma sobre estados feita para determinar

uma propriedade intŕınseca de um cristal por célula unitária, basta fazer uma soma sobre

os valores de k divididos por N1N2N3. Para uma função geral fi(k), onde i denota

qualquer um dos estados discretos em cada valor de k, o valor médio por célula é:

f̄i(k) =
1

N1N2N3

∑

k

fi(k). (A.208)

Se tomarmos o limite em que os k se tornam muito próximos (ou seja, se fizermos

todas as dimensões do cristal tenderem a infinito), podemos converter o somatório em

uma integral:

f̄i(k) =
1

ΩZB

∫

ZB

fi(k)dk =
ΩCP

(2π)3

∫

ZB

fi(k)dk. (A.209)

As funções periódicas de Bloch uk(r) obedecem à equação:

Ĥ(k)uik(r) =

[

−1

2
(∇ + ik)2 + V (r)

]

uik(r) = εikuik(r). (A.210)

Em sistemas sem campos magnéticos, existe uma simetria adicional para os estados

eletrônicos, que decorre da invariância da equação de Schrödinger sob reversões temporais,

ψi,−k(r) = ψ∗
ik(r). Isto significa que não há necessidade de calcular os estados para k e

−k. Se o cristal também possui simetria de inversão, então a Eq. (A.210) é a mesma para

k e −k, de modo que a parte periódica da função de Bloch pode ser escolhida satisfazendo

ui,−k(r) = uik(r). Logo é sempre posśıvel escolher uik(r) real para todos os valores de k

para cristais com simetria de inversão. A inclusão de efeitos do acoplamento spin-órbita

implica na simetria ψ↑
i,k(r) = ψ↓∗

i,−k(r), a qual é um exemplo concreto do teorema de
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Kramers da mecânica quântica: todos os estados devem ocorrer em pares degenerados

num sistema com simetria de reversão temporal.

É posśıvel definir ainda a zona de Brillouin irredut́ıvel (ZBI) como a menor fração da

ZB que é suficiente para determinar toda a informação sobre as excitações do cristal. Em

pontos k de alta simetria, os estados eletrônicos podem ser classificados de acordo com

as representações de grupo pontual.

A.7.2 Integração sobre a zona de Brillouin

O cálculo de muitas quantidades, tais como a energia ou a densidade eletrônica, exige

integração de funções no volume da ZB. Há dois aspectos distintos nesse problema:

– A integração deve ser acurada usando um conjunto discreto de pontos sobre a ZB. O

método escolhido deve ser espećıfico para o problema considerado e depende da existência

de um número suficiente de pontos em regiões onde o integrando varia rapidamente. Neste

aspecto, existe uma importante diferença entre metais e isolantes. Estes últimos possuem

bandas preenchidas que podem ser integradas usando apenas um pequeno conjunto de

pontos na ZB. Em contraste, os metais exigem uma integração cuidadosa para aquelas

bandas que cruzam a superf́ıcie de Fermi, em cujas vizinhanças ocorrem rápidas variações.

– Pode-se usar a simetria da ZB para reduzir o número de cálculos. Toda a informação

necessária pode ser obtida a partir de estados com k na zona de Brillouin irredut́ıvel. Isto

é muito útil em sistemas de alta simetria, sejam metais ou isolantes.

Para materiais isolantes, as integrais necessárias possuem a forma da Eq. (A.208),

onde a soma é efetuada sobre bandas preenchidas na zona de Brillouin completa. Como o

integrando fi(k) é alguma função das autofunções ψik(r) com autovalores εik, conclui-se

que sua variação é suave e periódica em k. Logo é posśıvel expandir fi(k) em componentes

de Fourier:

fi(k) =
∑

n1,n2,n3

fi(T(n1, n2, n3)) exp(ik · T(n1, n2, n3)). (A.211)

O fato mais importante é que a contribuição dos termos que variam rapidamente para

T(n1, n2, n3) grande decrescem exponencialmente, de modo que a soma infinita pode ser

truncada. A prova disto está relacionada a transformações das expressões em traços sobre

funções de Wannier e a observação de que o alcance de f(T(n1, n2, n3)) é determinado

pelo alcance das funções de Wannier.
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Pontos especiais são escolhidos para a integração eficiente de funções periódicas suaves.

O método mais simples é o do ponto de Baldereschi [344], no qual apenas um ponto é

usado para integração. A escolha é baseada no fato de que existe sempre um ponto de valor

médio onde o integrando é igual à integral e no uso da simetria do cristal para determinar

aproximadamente a localização deste ponto. Para redes cúbicas, as coordenadas do ponto

de valor médio são:

– rede cúbica simples: k = (π/a)(1/2, 1/2, 1/2);

– rede cúbica de corpo centrado: k = (2π/a)(1/6, 1/6, 1/2);

– rede cúbica de face centrada: k = (2π/a)(0.6223, 0.6223, 1/2).

O método geral proposto por Monkhorst e Pack [182] é atualmente muito utilizado

porque usa um conjunto uniforme de pontos determinados por uma fórmula simples que

vale para qualquer cristal:

kn1,n2,n3
≡

3∑

i=1

2ni − Ni − 1

2Ni

Gi, (A.212)

onde os Gi são vetores primitivos da rede rećıproca. As principais caracteŕısticas dos

pontos de Monkhorst-Pack são:

– Uma soma sobre o conjunto uniforme de pontos na Eq. (A.212) com ni = 1, 2, . . . , Ni

integra exatamente uma função periódica com componentes de Fourier que se estendem

somente até NiTi em cada direção.

– O conjunto de pontos definidos pela Eq. (A.212) é um grid uniforme em k que

é uma versão escalonada da rede rećıproca deslocada em relação a k = 0. Para muitas

redes, especialmente as cúbicas, é prefeŕıvel escolher Ni par. Logo o conjunto não envolve

os pontos de mais alta simetria, omitindo o ponto Γ e pontos sobre a fronteira da ZB.

– O conjunto Ni = 2 é o ponto de Baldereschi para um cristal cúbico simples (levando

em conta a simetria). Os conjuntos para todas as redes cúbicas são os mesmos do mesh

de Gilat-Raubenheimer [345].

Uma tabulação informativa sobre grids e suas eficiências, junto com descrições úteis,

é apresentada por Moreno e Soler [346], que enfatizaram a geração de diferentes conjuntos

de grids regulares usando uma combinação de deslocamentos e simetria.

Integrais sobre a zona de Brillouin podem ser substitúıdas por integrais somente sobre

a zona de Brillouin irredut́ıvel. Operações de simetria podem ser usadas para reduzir o
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número de cálculos. Exemplos excelentes são as redes de Monkhorst-Pack aplicadas a

cristais cúbicos, onde existem 48 operações de simetria, de modo que a zona de Brillouin

irredut́ıvel possui 1/48 do volume da zona de Brillouin total. O conjunto definido por

Ni = 2 possui 23 = 8 pontos na Zona de Brillouin, que se reduzem a um único ponto na

zona de Brillouin irredut́ıvel. Similarmente, Ni = 4 produz 64 pontos na zona de Brillouin

que são reduzidos a dois. Ni = 6 leva a 216 pontos, que na zona irredut́ıvel se convertem

em 10 pontos. O conjunto de 10 pontos é suficiente para quase todos os cálculos feitos

em materiais semicondutores.

No caso dos metais, existem questões importantes sobre a amostragem eficiente dos

estados desejados na ZB. A superf́ıcie de Fermi desempenha papel especial em todas as

propriedades e a integração sobre estados deve ter em conta a rápida variação da função

de Fermi-Dirac de um a zero quando k muda. Esta variação desempenha papel decisivo

em todos os cálculos de somatórios sobre estados ocupados para quantidades totais (por

exemplo, densidade eletrônica total, energia, força, etc.), e somas sobre estados ocupados

e vazios para funções resposta e funções espectrais.

O método do tetraedro [347, 348, 349, 350] é bastante usado para representar a su-

perf́ıcie de Fermi. Se os autovalores e vetores são conhecidos em um conjunto de pontos de

grid, a variação entre os pontos de grid pode ser sempre aproximada por uma interpolação

usando tetraedros. Isto é particularmente útil porque podem ser usados tetraedros para

preencher todo o espaço em qualquer grid. O procedimento mais simples é uma inter-

polação linear entre os valores conhecidos nos vértices, mas esquemas de ordem mais

elevada podem ser usados para grids especiais. Métodos de tetraedro são muito impor-

tantes no cálculo de propriedades de metais de transição, terras raras, etc., para os quais

as superf́ıcies de Fermi são intrincadas.

A.7.3 Densidade de estados

Uma quantidade importante para muitos propósitos é a densidade de estados (Density

Of States - DOS) por unidade de energia E (e por unidade de volume Ω em materiais

bulk):

ρ(E) =
1

N1N2N3

∑

i,k

δ(εik − E) =
ΩCP

(2π)3

∫

ZB

δ(εik − E)dk. (A.213)

No caso de estados de part́ıculas independentes, onde εik indica a energia de um
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elétron (ou fônon), a Eq. (A.213) dá o número de estados de part́ıcula independentes por

unidade de energia. Quantidades como o calor espećıfico envolvem excitações de elétrons

que não mudam o número de part́ıculas. Para suscetibilidades de part́ıcula independente,

a parte imaginária é dada por elementos de uma matriz vezes uma densidade de estados

conjunta, ou seja, um somatório duplo sobre bandas i e j e uma soma simples sobre k

por causa da conservação do momentum, em função da diferença de energias E = εi − εj.

É fácil mostrar que a DOS possui pontos cŕıticos, ou singularidades de van Hove,

onde ρ(E) possui formas anaĺıticas que dependem apenas da dimensão espacial. Em três

dimensões, cada banda deve possuir singularidades do tipo inverso da raiz quadrada nos

seus máximos, mı́nimos e pontos de sela.

A densidade de estados é um conceito matemático útil que permite substituir uma

integração sobre a zona de Brillouin por uma integração na energia. Também serve para

analisar visualmente a estrutura eletrônica. Caracteŕısticas tais como a largura da banda

de valência, o gap de energia em materiais isolantes e o número e intensidade das principais

caracteŕısticas são valiosos para a interpretação qualitativa de dados espectroscópicos.

A análise da DOS pode ajudar também na compreensão das mudanças na estrutura

eletrônica causadas, por exemplo, por uma pressão externa.

Existe uma variedade de técnicas numéricas para o cálculo da densidade de esta-

dos. A mais simples se baseia num alargamento gaussiano dos ńıveis de energia de cada

banda, seguido por uma amostragem de histograma. Este método não reproduz traços

caracteŕısticos como singularidades de van-Hove, mas produz geralmente uma forma sa-

tisfatória para a densidade de estados mesmo quando são usados poucos pontos na ZB.

Métodos mais precisos são baseados em interpolações lineares ou quadráticas das

bandas de energia entre os pontos de referência na zona de Brillouin. A técnica mais

popular e confiável, baseada na interpolação do tetraedro, não é muito apropriada para

o grid de Monkhorst-Pack. Um esquema de interpolação linear simplificado foi desen-

volvido por Ackland [351], utilizando paraleleṕıpedos formados pelos pontos do conjunto

de Monkhorst-Pack, seguido pela amostragem de histograma do conjunto resultante de

energias de banda.

Densidades de estado locais (Local Density of States - LDOS) e parciais (Partial

Density of States - PDOS) podem fornecer dados qualitativos para a análise da estru-

tura eletrônica. A LDOS mostra quais átomos no sistema contribuem para os estados

eletrônicos nas várias regiões do espectro de energia. A densidade de estados parcial,

por sua vez, melhora mais ainda esses resultados separando essas contribuições de acordo
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com o momento angular dos estados. É muitas vezes útil saber se os principais picos na

densidade de estados possuem caráter s, p ou d. As análises LDOS e PDOS dão uma

indicação da natureza da hibridização eletrônica do sistema, da origem das principais

caracteŕısticas nos espectros óptico e de fotoelétrons por raios X (X-ray Photoelectron

Spectroscopy - XPS), etc.

Cálculos de densidade de estados parcial são baseados em análises populacionais de

Mulliken, as quais permitem calcular a contribuição para cada banda de energia oriunda

de um dado orbital atômico. A soma dessas contribuições sobre todas as bandas produz

uma densidade parcial ponderada.

A.8 Pseudopotenciais

A.8.1 Ondas planas ortogonalizadas e pseudopotenciais

As propriedades de espalhamento de um potencial esférico localizado para qualquer

energia ε podem ser formuladas em termos do desvio de fase da função de onda, ηl(ε),

o qual determina a seção de choque e todas as propriedades da função de onda fora

da região de interação, as quais são invariantes sob desvios de fase que são múltiplos

inteiros de 2π. A idéia básica dos pseudopotenciais é escolher um potencial simples que

reproduza a interação de uma onda plana com um potencial produzindo desvios de fase

desse tipo. Nos anos 50, Antoncik, Phillips e Kleinman [352, 353, 354] ressuscitaram a

idéia de pseudopotencial lançada por Hellmann nos anos 30 [102, 103], mostrando que o

método de ondas planas ortogonalizadas (Orthogonalized Plane Wave - OPW) pode ser

posto na forma de equações somente para os estados de valência envolvendo um fraco

potencial efetivo. Ao conclúırem que as estruturas de bandas de metais e semicondutores

com ligações sp pode ser descrita acuradamente por uns poucos coeficientes emṕıricos,

Antoncik, Phillips e Kleinman abriram as portas para o entendimento básico de um

enorme conjunto de propriedades de metais e semicondutores com esse tipo de ligação.

A maior parte dos cálculos de pseudopotenciais atualmente feitos baseia-se em po-

tenciais ab initio de norma conservada (Norm-Conserving), que são, em larga medida,

um retorno aos potenciais de Fermi e Hellmann com diferenças importantes. Exigir a

conservação da norma é o passo chave para se construir bons pseudopotenciais, capazes

de operar nos mais diversos ambientes (átomo, ı́on, molécula, cristais, etc.). Quando um

pseudopotencial satisfaz esta condição, diz-se que o mesmo é transfeŕıvel. Tal abordagem

foi estendida por Blöchl [355] e Vanderbilt [356], que mostraram ser posśıvel o uso de
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funções auxiliares localizadas para definir pseudopotenciais ultramacios (Ultrasoft Pseu-

dopotentials). Ao expressar a pseudofunção como a soma de uma parte suave com uma

parte que varia rapidamente em torno do caroço, a precisão dos pseudopotenciais de norma

conservada pode ser aumentada enquanto, ao mesmo tempo, os cálculos tornam-se menos

onerosos (às custas de um aumento na complexidade computacional dos programas).

Em tempos recentes, surgiu o método da onda aumentada projetora (Projector Aug-

mented Wave - PAW), que é uma reformulação do método da onda plana ortogonalizada

(OPW) numa forma que é particularmente apropriada para cálculos DFT de energias

totais e forças. As funções de onda de valência são escritas como uma soma de funções

suaves mais funções de caroço, as quais levam a uma equação de autovalores generalizada

como acontece na abordagem OPW. Diferente dos pseudopotenciais, no entanto, o método

PAW retém o conjunto completo de funções de caroço eletrônicas juntamente com as par-

tes suaves das funções de valência. Elementos de matriz envolvendo funções de caroço são

tratados usando esferas muffin-tin como nos demais métodos de onda aumentada, mas

sem a desvantagem no que se refere ao cálculo de forças.

O conceito de pseudopotencial não se limita a reproduzir cálculos considerando todos

os elétrons dentro da aproximação de part́ıculas independentes, como ocorre na apro-

ximação DFT de Kohn-Sham. De fato, o problema original de substituir os efeitos dos

elétrons de caroço por um potencial efetivo apresenta um desafio maior, pois não se vislum-

bra como tal aproximação pode ser feita numa verdadeira teoria de muitos corpos levando

em conta o fato de que todos os elétrons são indistingúıveis. É necessário um novo insight

para descrever os efeitos dos caroços além da aproximação dos elétrons independentes.

A formulação OPW original [100] é uma abordagem geral para a construção de funções

de base para estados de valência com a forma:

χOPW
q (r) =

1√
Ω

{

exp(iq · r) −
∑

c

[∫

[uc(r
′)]

∗
exp(iq · r′)dr′

]

uc(r)

}

. (A.214)

É fácil ver que χOPW
q é ortogonal a cada função uc. As funções uc(r) (funções de

caroço) não são especificadas aqui, mas devem ser localizadas em torno de cada núcleo

atômico do sistema estudado. Escolhendo bem essas funções, a Eq. (A.214) divide a

função em uma parte suave mais uma parte localizada. Em um cristal, uma função

suave pode ser representada convenientemente através de ondas planas, o que sugere que

pode ser prático tentar aproximar a autofunção em um sistema periódico através de uma
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combinação linear de umas poucas ondas planas com uma combinação linear de poucas

funções centradas em torno de cada núcleo e obedecendo a equações de onda do tipo:

−∇2uc(r)

2
+ (Vc(r) − Ec) uc(r) = 0, (A.215)

O potencial Vc e as funções uc são escolhidos de modo a otimizar a resolução do pro-

blema. Com esta ampla definição presente em sua formulação original, a abordagem OPW

é precursora de todos os métodos de pseudopotencial e PAW. Esses novos métodos envol-

vem novas idéias e escolhas adequadas para as funções e suas operações, o que produziu

importantes avanços no estudo moderno de estruturas eletrônicas. É interessante consi-

derar a forma ortogonalizada para os estados de valência em um átomo, onde o estado é

indicado pelos números quânticos lm, bem como as funções que lhe são adicionadas:

ψV
lm(r) = ψ̄V

lm(r) +
∑

c(l,m)

Bc(l,m)uc(l,m)(r), (A.216)

onde ψV
lm é a função de valência, ψ̄V

lm é a parte suave. O somatório sobre as funções de

caroço inclui apenas funções com números quânticos lm (o que é denotado pelo ı́ndice

c(l,m)). Todas essas quantidades podem ser escritas em termos das ondas planas ortogo-

nalizadas através de transformadas de Fourier:

ψV
lm(r) =

∫

clm(q)χOPW
q dq, (A.217)

ψ̄V
lm(r) =

1√
Ω

∫

clm(q) exp(iq · r)dq, (A.218)

Bc(l,m) =
1√
Ω

∫

clm(q)

{∫
[
uc(l,m)(r

′)
]∗

exp(iq · r′)dr′
}

dq. (A.219)

A forma mais simples de resolver o problema da escolha dos uc(l,m) é fazer estas funções

coincidirem com os orbitais de caroço uc(l,m)(r) = ψc(l,m)(r), de modo que os ψc(l,m)(r) são

os autoestados de mais baixa energia do hamiltoniano. Como os estados de valência ψV
lm(r)

devem ser ortogonais aos estados de caroço, ψC
lm(r), a parte radial da função ψV

l (r) deve

possuir um número de nós igual ao número de orbitais de caroço com o mesmo momento

angular. Pode-se mostrar que a escolha uc(l,m) = ψC
lm leva a funções suaves ψ̄V

lm(r) que

não possuem nós radiais, ou seja, são mais suaves ainda que ψV
lm(r). Além disso, muitas
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vezes os estados de caroço podem ser escolhidos de modo a serem os mesmos em átomos,

moléculas e sólidos.

O conjunto de OPWs não é ortonormal e cada onda possui uma norma menor que a

unidade, o que significa que as equações para os OPWs possuem a forma de um problema

de autovalores generalizado com uma matriz de overlap.

A transformação de pseudopotencial de Phillips e Kleinman [354], e Antoncik (PKA)

[352, 353] é obtida a partir da equação original para autofunções de valência:

ĤψV
lm(r) =

[

−∇2

2
+ V (r)

]

ψV
lm(r) = εV

l ψV
lm(r), (A.220)

onde V é o potencial efetivo total, que leva a uma equação para as funções suaves ψ̄V
lm(r):

ĤPKAψ̄V
lm(r) ≡

[

−∇2

2
+ V̂ PKA

]

ψ̄V
lm(r) = εV

l ψ̄V
lm(r), (A.221)

onde:

V̂ PKA = V (r) + V̂ R. (A.222)

V̂ R é um operador não-local que atua sobre ψ̄V
lm(r):

V̂ Rψ̄V
lm(r) =

∑

c(l,m)

(
εV

l − εC
c(l,m)

) 〈
ψC

c(l,m)(r)
∣
∣ ψ̄V

lm(r)
〉
ψC

c(l,m)(r). (A.223)

V̂ R é repulsivo, uma vez que a Eq. (A.223) é escrita em termos das energias εV
l −εC

c(l,m),

que são sempre positivas. Além disso, um potencial nuclear atrativo mais forte leva a

estados de caroço mais profundos, de modo que a Eq. (A.223) se torna mais repulsiva.

Esta tendência foi apontada por Phillips, Kleinman e Antoncik e derivada em uma forma

muito geral como o teorema do cancelamento por Cohen e Heine [357]. Logo V̂ PKA é

muito mais fraco que o potencial original V , mas assume a forma de um complicado

operador não-local. Além disso, as pseudofunções suaves ψ̄V
lm(r) não são ortonormais

porque a função completa ψV
lm(r) também inclui uma soma sobre orbitais de caroço. Logo

a solução da equação para o pseudopotencial é um problema de autovalores generalizado.

Mais ainda, como os estados de caroço ainda estão presentes na definição dada pela Eq.

(A.223), esta transformação não produz um pseudopotencial suave.
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Todas as vantagens da transformação de pseudopotencial são realizadas usando ao

mesmo tempo as propriedades formais do pseudopotencial V̂ PKA e o fato de que as mes-

mas propriedades de espalhamento podem ser obtidas com diferentes potenciais. Logo o

pseudopotencial pode ser escolhido de modo a se tornar muito mais suave e fraco que o

potencial original V tirando vantagem da não-unicidade dos pseudopotenciais.

Muito embora o operador de potencial seja um ente matemático mais complicado que

um potencial local simples, o fato dele ser mais fraco e suave (o que significa que pode

ser expandido em poucas componentes de Fourier) possui grandes vantagens, conceitual e

computacionalmente. Em particular, este operador resolve a aparente contradição entre o

fato de as bandas de valência εV
nk possúırem uma variação com k parecida com a existente

para elétrons livres e o fato das funções de onda ψV
nk possúırem caracteŕısticas bastante

distintas das dos elétrons livres em virtude de sua ortogonalidade em relação aos estados

de caroço. A solução do problema é que as bandas são determinadas pela equação secular

para as funções ψ̄V
nk (suaves, quase de elétron livre) que envolvem o pseudopotencial fraco

V̂ PKA.

Baseada na teoria do espalhamento, na transformação das equações OPW e no teo-

rema do cancelamento, a teoria dos pseudopotenciais tornou-se um campo fértil para a

criação de novos métodos e insights sobre a estrutura eletrônica de moléculas e sólidos.

Existem duas abordagens principais no método: (1) definir pseudopotenciais iônicos, que

levam a uma situação na qual apenas os elétrons de valência interagem; (2) definir um

pseudopotencial total que inclui efeitos dos demais elétrons de valência. A primeira abor-

dagem é a mais geral, uma vez que os pseudopotenciais iônicos são mais transfeŕıveis. A

segunda é muito útil para descrever acuradamente as bandas se estas são tratadas como

potenciais emṕıricos ajustáveis; pseudopotenciais emṕıricos desempenharam um impor-

tante papel na compreensão das estruturas eletrônicas [358, 359] e são úteis para ajudar

a compreender as bandas em uma base de ondas planas.

No caso de um potencial iônico, o núcleo e os elétrons de caroço são substitúıdos por

um potencial esfericamente simétrico, e os momentos angulares l e m podem ser tratados

separadamente, o que leva a pseudopotenciais modelo l-dependentes não locais Vl(r). Fora

da região de caroço, o potencial possui a forma ZÍON/r, ou seja, o potencial de Coulomb

resultante da superposição dos potenciais nuclear e eletrônico de caroço. Na região de

caroço, o potencial deve ser repulsivo [357] em um grau que depende do momento angular

l, como fica claro da Eq. (A.223). A dependência em l significa que, em geral, um

pseudopotencial é um operador não-local que pode ser escrito numa forma “semilocal”:
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V̂SL =
∑

lm

|Ylm〉Vl(r) 〈Ylm|, (A.224)

onde Ylm = Plm(cos θ) exp(imϕ). Esse termo é chamado de semilocal (SL) por ser não-

local nas variáveis angulares mas local na variável r. Quando atua sobre uma função

f(r, θ′, ϕ′), o efeito de V̂SL é:

V̂SLf(r, θ′, ϕ′) =
∑

lm

Ylm(θ, ϕ)Vl(r)

∫

Ylm(θ′, ϕ′)f(r, θ′, ϕ′)d(cos θ′)dϕ′. (A.225)

Toda a informação se encontra nas funções radiais Vl(r) ou em suas transformadas de

Fourier. O cálculo de uma estrutura eletrônica envolve o cálculo dos elementos da matriz

associada ao operador V̂SL entre os estados ψlm e ψl′m′ :

〈ψlm| V̂SL |ψl′m′〉 =

∫

ψ∗
lm(r, θ, ϕ)

[

V̂SLψl′m′(r, θ, ϕ)
]

r,θ,ϕ
dr. (A.226)

Há duas maneiras de definir os potenciais:

- Potenciais emṕıricos ajustados através de dados atômicos ou de estado sólido. As

formas simples são os modelos de caroço vazio [360] e poço quadrado [361, 362, 363].

Neste último caso, os parâmetros são ajustados a dados atômicos para cada l e tabulados

para vários elementos por Animalu e Heine [362, 363].

- Potenciais ab initio constrúıdos para ajustar as propriedades de valência calculadas

para o átomo. O surgimento dos pseudopotenciais de norma conservada forneceu uma

maneira direta de criar tais potenciais transfeŕıveis para cálculos em moléculas e sólidos.

A.8.2 Pseudopotenciais de norma conservada

Pseudopotenciais gerados através de cálculos atômicos são chamados de ab initio por

não serem obtidos a partir de ajuste experimental. O conceito de conservação de norma

tem lugar especial no desenvolvimento de pseudopotenciais ab initio. De uma vez só ele

simplifica a aplicação dos pseudopotenciais e os torna mais acurados e transfeŕıveis. Em

contraste com a aproximação PKA (onde as equações foram formuladas em termos da

parte suave da função de valência ψ̄V
lm(r), a qual deve receber a adição de uma outra

função, ver Eq. (A.222)), pseudofunções norma conservada ψPS(r) são normalizadas e são

soluções de um potencial modelo escolhido para reproduzir as propriedades de valência



A.8 Pseudopotenciais 397

de um cálculo para todos os elétrons do sistema. Para aplicações de pseudopotenciais a

sistemas complexos, como moléculas, clusters, sólidos, etc., as pseudofunções de valência

devem satisfazer as condições de ortonormalidade:

〈

ψσ,PS
lm

∣
∣
∣ ψσ′,PS

l′m′

〉

= δll′δmm′δσσ′ , (A.227)

de modo que a equação de Kohn-Sham conserva sua forma:

(Ĥσ,PS
KS − εσ

l )ψσ,PS
lm (r) = 0, (A.228)

onde:

Ĥσ,PS
KS = −1

2
∇2 + V̂EXT(r) +

∫
ρe,σ(r′)

|r − r′|dr
′ + V σ

XC(r), (A.229)

com V σ
XC dado pelas Eqs. (A.189). V̂EXT é dado pelo pseudopotencial.

Existe uma divisão tradicional de pseudopotenciais entre pseudopotenciais de forma

consistente [364, 365] e pseudopotenciais de norma conservada [185]. O ponto de partida

para definir pseudopotenciais de norma conservada é a lista de exigências para um bom

pseudopotencial ab initio, dada por Hamann, Schluter e Chiang (HSC) [185]:

1. Os autovalores de energia determinados a partir de pseudopotenciais e a partir de

um cálculo para todos os elétrons (doravante cálculo exato. As funções de onda obtidas

desta forma também serão chamadas aqui de funções de onda exatas) devem ser os mesmos

para uma dada configuração atômica de referência.

2. Funções de onda determinadas a partir de pseudopotenciais e a partir de cálculos

exatos devem ser praticamente iguais para raios maiores que um certo raio de caroço Rc.

3. As derivadas logaŕıtmicas das pseudofunções e das funções de onda calculadas de

modo exato devem ser (por construção) iguais para um raio maior que Rc.

4. A carga integrada de r = 0 até r = Rc deve ser a mesma tanto para funções de

onda exatas como para pseudofunções (conservação da norma).

5. As derivadas primeiras em relação à energia das derivadas logaŕıtmicas das funções

de onda exatas e das pseudofunções devem ser praticamente iguais para r = Rc.

De 1 e 2 segue-se que os pseudopotenciais de norma conservada reproduzem o potencial

atômico fora da região de caroço de raio Rc. Isto porque o potencial é determinado
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de modo único (exceto por uma constante que é determinada se o potencial é zero no

infinito) pela função de onda e pela energia ǫ, que não precisa ser uma autoenergia. O

ponto 3 é necessário uma vez que a função de onda ψl(r) e sua derivada radial ψ′
l(r)

são cont́ınuas em Rc para qualquer potencial suave, e se deseja reproduzir do modo mais

fiel posśıvel as condições de contorno da função de onda exata sobre a esfera de raio Rc,

assegurando a semelhança entre a pseudofunção de onda e a função de onda exata. A

derivada logaŕıtmica adimensional Dl é definida por:

Dl(ε, r) ≡ rψ′
l(ε, r)/ψl(ε, r) = r

d

dr
ln ψl(ε, r). (A.230)

Dentro da esfera de raio Rc o pseudopotencial e o pseudo-orbital radial ψσ,PS
l (r) dife-

rem de seus contrapartes obtidos através de cálculos para todos os elétrons. No entanto,

o ponto 4 impõe a restrição:

Ql =

Rc∫

0

|ψl(r)|2 r2dr =

Rc∫

0

∣
∣ψPS

l (r)
∣
∣
2
r2dr. (A.231)

A conservação de Ql assegura que: (a) a carga total na região de caroço está correta e

(b) o pseudo-orbital normalizado é igual ao verdadeiro orbital para r > Rc (em contraste

com o orbital suave ψ̄V
l (r)) que é igual ao verdadeiro orbital para r > Rc somente se não

for normalizado). Aplicadas a uma molécula ou a um sólido, essas condições garantem

que o pseudo-orbital é correto na região r > Rc entre os átomos, onde ocorrem as ligações,

e também que o potencial para r > Rc é igual ao obtido via cálculo para todos os elétrons,

uma vez que o potencial fora de uma distribuição de carga esfericamente simétrica depende

somente da carga total no interior da esfera.

O ponto 5 é uma etapa crucial na direção de construir um bom pseudopotencial, ou

seja, um pseudopotencial que possa ser gerado em um ambiente simples como o de um

átomo esférico e usado em um outro ambiente mais complicado. Em uma molécula ou

sólido, as funções de onda e autovalores mudam e um pseudopotencial satisfazendo o

ponto 5 reproduzirá as alterações nos autovalores até termos de primeira ordem (lineares)

na mudança do potencial autoconsistente. À primeira vista, porém, não é óbvio como

satisfazer a condição que as primeiras derivadas em relação à energia das derivadas lo-

gaŕıtmicas, dDl(ε, r)/dε, sejam iguais para as funções e pseudofunções de onda eletrônicas

para r = Rc e para a energia εl escolhida para a construção do pseudopotencial de mo-

mento angular l.
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O avanço devido a HSC [185] e outros [364, 365] foi mostrar que o ponto 5 está

impĺıcito no ponto 4. Esta condição de conservação de norma pode ser derivada de modo

direto. A equação radial para um átomo esférico ou ı́on pode ser escrita como:

− 1

2r

d2(rψl(ε, r))

dr2
+

[
l(l + 1)

2r3
+

Vef(r) − ε

r

]

ψl(ε, r) = 0. (A.232)

Definindo a variável xl(ε, r):

xl(ε, r) ≡
d

dr
ln [rψl(ε, r)] =

1

r
[Dl(ε, r) + 1] , (A.233)

pode-se mostrar, a partir da Eq. (A.232), que, para um dado raio R:

∂

∂ε
xl(ε,R) = − 1

[Rψl(ε, R)]2
Ql(R), (A.234)

ou:

∂

∂ε
Dl(ε,R) = − R

[Rψl(ε,R)]2
Ql(R). (A.235)

Isto prova imediatamente que se rψl(ε, r) possui a mesma magnitude que a função de

onda para um cálculo incluindo todos os elétrons em r = Rc e obedece à conservação da

norma (mesmo Ql), então a primeira derivada em relação à energia da derivada logaŕıtmica

Dl(ε,R) é igual tanto para a pseudofunção como para a função de onda verdadeira. Isto

também significa que o pseudopotencial que conserva a norma possui o mesmo desvio

de fase para espalhamento que a função de onda calculada para todos os elétrons possui

até termos de primeira ordem na energia. Logo, as propriedades de espalhamento do

pseudopotencial e do potencial real possuem a mesma variação até termos lineares na

energia quando transferidos para outro sistema.

A geração de um pseudopotencial se inicia com o cálculo usual para todos os elétrons

em um átomo. Cada estado lm é tratado independentemente exceto pelo fato de o po-

tencial total ser calculado de modo autoconsistente para uma certa aproximação de troca

e correlação e para a configuração atômica considerada. O próximo passo é identificar

os estados de valência e gerar os pseudopotenciais Vl(r) e os pseudo-orbitais ψPS
l (ε, r).

O procedimento varia conforme a abordagem, mas em cada caso a primeira coisa feita

é determinar um pseudopotencial total blindado atuando sobre os elétrons de valência

no átomo. A blindagem deste pseudopotencial é então removida subtraindo do potencial
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total a soma dos potenciais de troca e correlação e de Hartree (este último definido como
∫ ρe,σ(r′)

|r−r′|
dr′).

É útil separar os pseudopotenciais iônicos em uma parte local (independente de l)

mais termos não locais:

Vl(r) = VLOCAL(r) + δVl(r). (A.236)

Como os autovalores e os orbitais são os mesmos para os “pseudo-elétrons” e para

os elétrons reais quando r > Rc, cada potencial Vl(r) iguala (se r > Rc) o potencial

local (independente de l) calculado incluindo todos os elétrons explicitamente, sendo que

Vl(r) → −ZION/r para r → ∞. Logo, δVl(r) = 0 para r > Rc e todos os efeitos de longo

alcance do potencial coulombiano são inclúıdos no potencial local VLOCAL(r). Finalmente,

o operador semilocal (Eq. (A.224)) pode ser escrito como:

V̂SL = VLOCAL(r) +
∑

lm

|Ylm〉 δVl(r) 〈Ylm|. (A.237)

Mesmo satisfazendo a exigência da conservação da norma, ainda há liberdade de es-

colha na forma de Vl(r) para a construção de pseudopotenciais. Não existe um pseudopo-

tencial mais apropriado para qualquer elemento dado, mas podem haver muitas escolhas

mais adequadas conforme o uso particular do pseudopotencial. Em geral, existem dois

fatores a se levar em conta:

– Se o interesse é acurácia e capacidade de transferência, devem ser preferidos pequenos

raios de corte Rc e potenciais “duros”, uma vez que se quer descrever a função de onda

tão bem quanto posśıvel nas vizinhanças do átomo.

– Quando se quer descrever a função de onda com o menor número posśıvel de funções

de base (por exemplo, ondas planas), a suavidade dos pseudopotenciais é prioridade, o

que implica em escolher um raio de corte Rc maior, e potenciais mais “macios”.

Existem dois significados para a palavra “dureza”. Um é a medida da variação no

espaço real, que é quantificada pela extensão do potencial no espaço de Fourier. Em geral,

potenciais “duros” descrevem as propriedades dos ı́ons ŕıgidos e localizados, e são mais

transfeŕıveis de um material para outro. Tentativas de tornar o potencial “macio” tendem

a deixar o pseudopotencial menos transfeŕıvel. No entanto, existe um esforço considerável

para criar pseudopotenciais acurados e transfeŕıveis com pouca extensão no espaço de

Fourier [366].
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O segundo significado é uma medida da capacidade dos pseudoelétrons descreverem

a resposta do sistema a uma mudança do meio [367, 368, 369]. A conservação da norma

garante que os estados eletrônicos do átomo possuem a primeira derivada com respeito

à mudanças na energia correta. Este significado de “dureza” é uma medida da fideli-

dade da resposta a uma mudança no potencial. Potenciais podem ser testados usando

perturbações esféricas (mudança de carga, estado, potencial radial). Goedecker e Mas-

chke [367] realizaram uma análise interessante em termos da resposta da densidade de

carga na região de caroço, o que é relevante para cálculos DFT e para a condição de con-

servação da norma. Também foram feitos testes com perturbações não-esféricas (como a

polarizabilidade em um campo elétrico, cfr. [369]).

Após a escolha do tipo de pseudopotencial que será utilizado, devem ser ajustados os

parâmetros de raio de corte (Rc) para cada orbital de valência do elemento estudado, o

que irá depender da aplicação que se tem em vista. Por exemplo, se o objetivo for realizar

um cálculo para o cristal de Si puro, é mais adequado escolher um valor relativamente

grande para Rc. Quanto maior for Rc, menor será o número de ondas planas necessárias

para representar a pseudofunção de onda no cálculo autoconsistente. Se o objetivo for

misturar Si com outro tipo de átomo, como o oxigênio (o oxigênio possui um potencial

que varia rapidamente perto do seu caroço atômico, o que torna mais apropriado usar em

sua descrição funções reais gaussianas do que conjuntos de ondas planas), é recomendável

adotar um pseudopotencial mais “duro”, ou com valor menor de Rc. Dessa forma, o

pseudopotencial se aproximará mais do potencial real. O fato de ser necessária uma

expansão com um número maior de ondas planas não é problema, uma vez que o oxigênio

já exige, normalmente, um número grande de ondas planas para ser bem descrito.

Exemplos de pseudopotenciais [185] para o átomo de Mo são mostrados na Fig. 100.

Uma abordagem similar foi adotada por Bachelet, Hamann e Schlüter [370] (BHS) para

construir pseudopotenciais para todos os elementos do H ao Po na forma de uma expansão

de gaussianas com coeficientes tabulados. Esses potenciais foram calculados a partir de

uma forma inicial do potencial e variando vários parâmetros até que a função de onda

apresentasse as propriedades desejadas, uma abordagem também seguida por Vanderbilt

[371]. Um procedimento mais simples foi desenvolvido por Christiansen et al. [364] e

Kerker [372], os quais definem uma pseudo-função de onda com as propriedades desejadas

para cada l e invertem numericamente a equação de Schrödinger para encontrar o potencial

Vl(r).

Uma das considerações importantes para várias circunstâncias é fazer a função de
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Figura 100: Exemplos de pseudopotenciais de norma conservada, pseudofunções e derivadas
logaŕıtimicas para o Mo. À esquerda, embaixo: Vl(r) em Rydbergs para l = 0, 1, 2 em com-
paração com ZÍON/r (tracejado). Acima, à esquerda: funções de onda radiais para estados de
valência resultantes de um cálculo incluindo explicitamente todos os elétrons, φl(r) = rψl(r),
e pseudofunções de norma conservada. Lado direito: derivada logaŕıtmica do pseudopotencial
em comparação com o cálculo atômico full ; os pontos indicam as energias, ε, para as quais é
feito ajuste. A derivada com respeito à energia também é correta por causa da condição de
conservação da norma [185].
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onda tão suave quanto posśıvel, o que permite reduzir o número de funções de base (por

exemplo, o número de componentes de Fourier). Os potenciais BHS [370] geralmente são

usados como padrão comparativo, mas infelizmente são “duros”, exigindo mais compo-

nentes de Fourier que outros potenciais. Troullier e Martins [373] estenderam o método de

Kerker usando um polinômio de ordem elevada e ajustando mais derivadas da função de

onda, tornando os pseudopotenciais mais suaves. A Fig. 101 mostra uma comparação de

diferentes pseudopotenciais para o carbono, com as formas tanto no espaço real como no

espaço rećıproco. Os fatores de forma Vl(q) entram diretamente nos cálculos de ondas pla-

nas e sua extensão no espaço de Fourier determina o número de ondas planas necessárias

para que haja convergência. Alguns autores propuseram formas de tornar os potenciais

mais suaves para reduzir o tempo de cálculo. Uma das abordagens [366, 374] é minimizar

a energia cinética da pseudofunção explicitamente para o raio de caroço escolhido.

Figura 101: Comparação de pseudopotenciais para o carbono (linha pontilhada para orbital s e
linha sólida para orbital p) no espaço real e no espaço rećıproco, ilustrando as grandes variações
nos potenciais de norma conservada que possuem os mesmos desvios de fase para as energias
escolhidas. Da esquerda para a direita, pseudopotenciais gerados usando os procedimentos de:
Troullier e Martins [373]; Kerker [372]; Hamann, Schlüter e Chiang [185]; Vanderbilt [371].
Retirado de Troullier e Martins [373].

Efeitos relativ́ısticos importantes nas regiões mais profundas no interior do átomo,

perto do núcleo, podem ser incorporados aos pseudopotenciais. As conseqüências desses

efeitos (desvios por causa de efeitos relativ́ısticos escalares, interações spin-órbita) para

os elétrons de valência podem ser facilmente incorporadas aos cálculos moleculares ou de

estado sólido. O primeiro passo é a geração de um pseudopotencial a partir de um cálculo
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relativ́ıstico para todos os elétrons do átomo tanto para j = l+1/2 como para j = l−1/2.

A partir dos dois potenciais pode-se definir [370, 375]:

Vl =
l

2l + 1

[
(l + 1)Vl+1/2 + lVl−1/2

]
,

δV SO
l =

2

2l + 1

[
Vl+1/2 + Vl−1/2

]
.

(A.238)

Efeitos relativ́ısticos escalares são inclúındos no primeiro termo e efeitos de spin-órbita

são inclúıdos em um termo não-local de curto alcance [376, 377]:

δV̂ SO
SL =

∑

lm

|Ylm〉 δV SO
l (r)L̂ · Ŝ 〈Ylm|. (A.239)

Na construção de pseudopotenciais ab initio existe uma relação uńıvoca entre a pseu-

dofunção de valência e o pseudopotencial total. É necessário remover a blindagem para

derivar o pseudopotencial do ı́on a fim de garantir a transferibilidade. Infelizmente o

processo de remoção da blindagem não é fácil por causa da não-linearidade do funcional

de troca e correlação. Correções de caroço neste funcional podem aumentar significativa-

mente a capacidade de transferência do pseudopotencial, mas ao preço de maior tempo de

processamento. A complicação aumenta mais ainda no caso em que o funcional de troca

e correlação não é local, como acontece no método de Hartree-Fock a no método EXX.

Em geral, não é posśıvel construir um potencial que mantenha a função de onda fora do

raio de caroço igual à função de onda verdadeira porque efeitos não-locais se estendem

para r > Rc [378].

Kleinman e Bylander [379] (KB) mostraram que é posśıvel construir um operador

pseudopotencial separável, ou seja:

δV̂ (r, r′) =
∑

i

f̂i(r)ĝi(r). (A.240)

O efeito do potencial semilocal δVl(r) pode ser substitúıdo na Eq. (A.236), numa boa

aproximação, por um operador separável δV̂NL, de modo que o pseudopotencial total fica

na forma:

V̂NL = VLOCAL(r) +
∑

lm

∣
∣ψPS

lmδVl(r)
〉 〈

δVl(r)ψ
PS
lm

∣
∣

〈ψPS
lm | δVl(r) |ψPS

lm〉 , (A.241)

onde o segundo termo escrito explicitamente nas coordenadas é δV̂NL(r, r′), que está na
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forma separável desejada. Quando opera sobre os estados atômicos de referência ψPS
lm ,

δV̂NL(r, r′) atua da mesma forma que δVl(r) e pode ser considerado uma excelente apro-

ximação do pseudopotencial sobre os estados de valência em uma molécula ou sólido.

As funções
〈
δVl(r)ψ

PS
lm

∣
∣ são operadores de projeção (projetores) que atuam sobre a

função de onda:

〈
δVl(r)ψ

PS
lm

∣
∣ ψ

〉
=

∫
[
δVl(r)ψ

PS
lm(r)

]∗
ψ(r)dr. (A.242)

Os operadores de projeção são localizados no espaço, uma vez que cada operador é

diferente de zero somente dentro do raio de corte Rc, onde δVl(r) não se anula. Isto

independe da extensão da função de onda ψPS
lm(r) = ψl(r)Plm(cos θ) exp(imϕ), que possui

o tamanho dos orbitais de valência ou pode mesmo representar estados não-ligados. A

vantagem da forma separável é que elementos da matriz associada a δVl(r) utilizam apenas

produtos de projetores dados pela Eq. (A.242):

〈ψlm| δV̂NL |ψl′m′〉 =
∑

l′′m′′

〈
ψlm

∣
∣ ψPS

l′′m′′δVl′′(r)
〉 〈

δVl′′(r)ψ
PS
l′′m′′

∣
∣ ψl′m′

〉

〈ψPS
l′′m′′| δVl′′(r) |ψPS

l′′m′′〉
(A.243)

Pode-se contrastar esta equação com a Eq. (A.226), que envolve uma integral radial

para cada par de funções ψlm e ψl′m′ . O que se consegue, portanto, é uma economia

computacional que pode ser importante para sistemas com muitos elétrons. O preço que

se paga é o acréscimo de um passo que pode aumentar o erro dos cálculos. Embora a

operação sobre o estado atômico não seja modificada, as operações sobre outros estados

com energias diferentes pode, e deve-se tomar cuidado para assegurar que não sejam

introduzidos estados fantasma [380].

Tais estados fantasma surgem quando existem soluções inesperadas e indesejadas da

equação pseudosecular. Usualmente, os autovalores fantasmas possuem baixas energias

(entre -30 e -2 Ry), de modo que o estado fundamental resultante é, na verdade, o primeiro

estado excitado. Há duas formas de checagem para estados fantasma. A primeira é

analizar o gráfico do logaritmo da derivada cuidadosamente, pois um estado indesejável

pode ser revelado com uma ressonância estreita nas derivadas logaŕıtmicas para o valor da

energia fantasma. Há sempre o risco, contudo, de não ser posśıvel observar tal ressonância

se a mesma ocorrer em uma escala de energia pequena em comparação com o ∆E usado

para desenhar o gráfico, ou mesmo se a energia de ressonância estiver fora de escala.
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O segundo método é bem mais robusto, e consiste em analisar a solução na base

de Bessel. O pseudo-Hamiltoniano é diagonalizado em uma base de funções de Bessel

esféricas de um modo que imita a solução que seria encontrada caso se empregassem

ondas planas. Comparando as energias obtidas com os valores esperados em um cálculo

exato, qualquer autovalor de energia extra corresponderá a um estado fantasma.

A remoção desses estados indesejáveis pode ser bem dif́ıcil. Por exemplo, o caso mais

comum e problemático é quando existe um estado de semicaroço raso que não está sendo

inclúıdo na camada de valência. Em tal caso, escolher um único operador de projeção

pode não resultar em boas propriedades de espalhamento, e a escolha de dois projetores

pode produzir estados fantasmas (de fato, o estado fantasma usualmente se encontra

bem perto da energia do estado de semicaroço). A melhor solução é, portanto, incluir o

estado de semicaroço entre os estados de valência, o que infelizmente aumenta o custo de

processamento e memória em cálculos de estado sólido.

Duas abordagens gerais foram propostas para estender o intervalo de energias sobre

os quais os desvios de fase do potencial eletrônico original são descritos. Shirley e cola-

boradores [381] obtiveram expressões gerais que devem ser satisfeitas para que os desvios

de fase estejam corretos até uma ordem arbitrária em uma expansão em potências de

(ε − ε0)
N em torno da energia escolhida ε0.

A segunda abordagem é mais fácil de implementar e é a base para posteriores ge-

neralizações que são consideradas uma promessa para trabalhos futuros sobre estrutura

eletrônica. A construção dos projetores pode ser feita para qualquer energia εs e o pro-

cedimento pode ser generalizado de modo a satisfazer a equação de Schrödinger para

mais de uma energia dados l, m [355, 356]. Se pseudofunções ψs são constrúıdas a partir

de cálculos para todos os elétrons com diferentes energias εs, pode-se formar a matriz

Bss′ =
〈
ψPS

s

∣
∣ χPS

s′

〉
, onde:

χPS
s (r) =

{

εs −
[

−1

2
∇2 + VLOCAL(r)

]

ψPS
s (r)

}

. (A.244)

Em termos das funções:

βPS
s =

∑

s′

[Bss′ ]
−1 χPS

s′ (A.245)

o operador potencial não-local generalizado pode ser escrito como:
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δV̂NL =
∑

lm

[
∑

s

∑

s′

Bss′
∣
∣βPS

s

〉 〈
βPS

s′

∣
∣

]

lm

. (A.246)

É fácil mostrar que cada ψs é uma solução de Ĥψs = εsψs. Com esta modificação,

o pseudopotencial não-local separável pode ser generalizado de modo a concordar com o

cálculo feito considerando todos os elétrons dentro de uma acurácia arbitrária sobre um

intervalo de energia desejado.

A.8.3 Pseudopotenciais ultramacios

Um dos objetivos dos pseudopotenciais é criar pseudofunções tão suaves quanto pos-

śıvel sem perder muita acurácia. Por exemplo, em cálculos de ondas planas as funções

de valência são expandidas em componentes de Fourier, e o custo do cálculo aumenta

conforme uma potência do número de componentes necessárias. Logo, uma definição

adequada de maximização da suavidade é minimizar no espaço de Fourier o intervalo

necessário para descrever as propriedades de valência dentro de certa precisão. Pseudopo-

tenciais de norma conservada alcançam o objetivo de acurácia, mas às custas de alguma

suavidade.

Uma abordagem diferente conhecida como “pseudopotenciais ultramacios” atinge o

objetivo de cálculos acurados por meio de uma transformação que reformula o problema

em termos de uma função suave e uma função auxiliar que varia rapidamente em volta de

cada caroço iônico. Embora as equações sejam formalmente relacionadas com as equações

OPW e a construção de Phillips-Kleinman-Antoncik da subseção A.8.1, pseudopotenciais

ultramacios são uma abordagem prática para resolver equações além da aplicabilidade

dessas metodologias. Daremos ênfase aqui em exemplos de estados que apresentam os

maiores desafios para a criação de pseudofunções acuradas e suaves: trata-se dos estados

de valência no ińıcio de uma camada atômica, 1s, 2p, 3d, etc. Para esses estados, a

aproximação OPW não possui efeito algum, uma vez que não existem estados de caroço

com o mesmo momento angular. Logo as funções de onda não possuem nós e se estendem

para dentro da região de caroço. A representação acurada por pseudofunções de norma

conservada requer que elas sejam pelo menos moderadamente mais suaves que as funções

exatas.

A transformação proposta por Blöchl [355] e Vanderbilt [356] reescreve o potencial

não local dado pela Eq. (A.246) em uma forma que envolve uma função suave φ̄ = rψ̄ que

não possui norma conservada (por simplicidade, serão omitidos aqui os rótulos PS, l, m e
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σ). A diferença na equação de norma (A.231) em relação à função de norma conservada

φ = rψ é dada por:

∆Qs,s′ =

Rc∫

0

∆Qs,s′(r)dr, (A.247)

onde:

∆Qs,s′(r) = φ∗
s(r)φs′(r) − φ̄∗

s(r)φ̄s′(r). (A.248)

Um novo potencial não-local que atua sobre ψ̄s′ pode ser agora definido como:

δV̂ UM
NL =

∑

s,s′

Ds,s′ |βs〉 〈βs′|, (A.249)

onde:

Ds,s′ = Bs,s′ + εs′∆Qs,s′ . (A.250)

Para cada estado atômico de referência s, é fácil mostrar que as funções suaves ψ̄s′

são soluções do problema de autovalor generalizado:

[

Ĥ − εsŜ
]

ψ̄s = 0, (A.251)

com:

Ĥ = −1

2
∇2 + VLOCAL + δV̂ UM

NL , (A.252)

definindo o operador de overlap Ŝ:

Ŝ = 1̂ +
∑

s,s′

∆Qs,s′ |βs〉 〈βs′|, (A.253)

o qual é diferente de um somente dentro do raio de caroço. Os autovalores εs são iguais aos

obtidos de modo exato para tantos valores de s quanto se queira. A densidade completa

pode ser constrúıda a partir das funções ∆Qs,s′(r), que podem ser substitúıdas por uma

versão suave da densidade exata.
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A vantagem em se relaxar a condição de conservação da norma ∆Qs,s′ = 0 é que cada

pseudofunção suave ψ̄s′ pode ser formada de modo independente, com o único v́ınculo de

ajustar-se ao valor da função ψs′ para r = Rc. Logo, torna-se posśıvel escolher Rc muito

maior do que valores usuais para pseudopotenciais de norma conservada, mantendo ao

mesmo tempo a acurácia desejada ao acrescentar a função auxiliar ∆Qs,s′(r) e o operador

de overlap Ŝ.

Em um cálculo que emprega um pseudopotencial ultramacio, as soluções para as

funções suaves ψ̄i(r) são ortonormalizadas de acordo com:

〈
ψ̄i

∣
∣ Ŝ

∣
∣ψ̄j

〉
= δi,j, (A.254)

e a densidade de valência é definida por:

ρe
V(r) =

ocup.
∑

i

ψ̄∗
i (r)ψ̄i(r) +

∑

s,s′

ρe
s,s′∆Qs,s′(r), (A.255)

onde:

ρe
s,s′ =

ocup.
∑

i

〈
ψ̄i

∣
∣ βs′

〉 〈
βs

∣
∣ ψ̄i

〉
. (A.256)

A solução é encontrada minimizando a energia total:

ETOT =

ocup.
∑

i

〈
ψ̄i

∣
∣

{

−1

2
∇2 + V Í ON

LOCAL +
∑

s,s′

DÍ ON
s,s′ |βs〉 〈βs′ |

}

∣
∣ψ̄i

〉
+

+EHARTREE[ρe
V(r)] + En−n + EXC[ρe

V(r)],

. (A.257)

Se definirmos o pseudopotencial iônico sem blindagem através de:

V Í ON
LOCAL ≡ VLOCAL − VHXC, (A.258)

onde:

VHXC = VHARTREE + VXC, (A.259)
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e:

DÍ ON
s,s′ ≡ Ds,s′ − DHXC

s,s′ , (A.260)

além de:

DHXC
s,s′ =

∫

VHXC(r)∆Qs,s′(r)dr, (A.261)

somos levados ao problema de autovalor generalizado:

[

−1

2
∇2 + VLOCAL + δV̂ UM

NL − εiŜ

]

ψ̄i = 0. (A.262)

Aqui, δV̂ UM
NL é dado através da soma sobre ı́ons da Eq. (A.249). Felizmente, tal

problema de autovalor generalizado não é muito complicado de se resolver com métodos

iterativos.

A.8.4 Ondas aumentadas projetoras

O método de onda plana aumentada projetora [382, 383, 384] (Projector Augmented

Wave - PAW) é uma abordagem geral para a solução do problema da estrutura eletrônica

que reformula o método OPW, adaptando-o a técnicas modernas para cálculos de energia

total, forças e stresses. Como o método do pseudopotencial ultramacio, introduz opera-

dores de projeção (projetores) e funções auxiliares. A abordagem PAW também define

um funcional para a energia total que envolve funções auxiliares e usa avanços em algo-

ritmos para a solução eficiente do problema de autovalor generalizado (Eq. (A.262)). A

diferença do método PAW é que este conserva a função de onda para todos os elétrons

de uma forma parecida com a expressão geral OPW dada pela Eq. (A.214). Como a

função de onda exata varia rapidamente perto do núcleo, todas as integrais são calculadas

como uma combinação de integrais de funções suaves que se espalham pelo espaço mais

contribuições localizadas obtidas via integração radial sobre esferas muffin-tin, como na

abordagem de onda plana aumentada (Augmented Plane Wave - APW).

Assim como acontece na formulação OPW, pode-se definir uma parte suave da função

de onda de valência ψ̄V
i (r) (uma onda plana ou orbital atômico) e uma transformação

linear ψV = T ψ̄V que relaciona o conjunto de funções de valência exato ψV
i (r) com as

funções suaves ψ̄V
i (r). Supõe-se que a transformação seja uma identidade exceto para
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uma esfera centrada no núcleo, T = 1 + T0. Para efeito de simplificação, o ı́ndice V

será omitido (as funções ψ representam estados de valência), bem como os ı́ndices i, j.

Seguindo a notação de Dirac, cada função suave
∣
∣ψ̄

〉
pode ser expandida em ondas parciais

m dentro das esferas em torno de cada núcleo de acordo com:

∣
∣ψ̄

〉
=

∑

m

cm

∣
∣ψ̄m

〉
, (A.263)

com a função exata correspondente:

|ψ〉 = T
∣
∣ψ̄

〉
=

∑

m

cm |ψm〉. (A.264)

Logo, a função de onda exata em todo o espaço é dada por:

|ψ〉 =
∣
∣ψ̄

〉
+

∑

m

cm

{
|ψm〉 −

∣
∣ψ̄m

〉}
, (A.265)

que possui a mesma forma das Eq. (A.216). Se se impõe que a transformação T é linear,

então os coeficientes devem ser dados por uma projeção em cada esfera:

cm =
〈
p̄m

∣
∣ ψ̄

〉
, (A.266)

para algum conjunto de operadores de projeção p̄. Se os operadores de projeção satisfazem

a condição de dupla ortogonalidade:

〈
p̄m

∣
∣ ψ̄m′

〉
= δm,m′ (A.267)

então a expansão em torno de um centro
∑

m

∣
∣ψ̄m

〉 〈
p̄m

∣
∣ ψ̄

〉
da função suave ψ̄ é igual à

própria função ψ̄.

A similaridade entre os operadores de projeção para a forma separável dos operadores

de pseudopotencial é evidente. Assim como acontece com os pseudopotenciais, existem

muitas escolhas posśıveis para os projetores com exemplos dados em [382] de funções

suaves para p̄(r) intimamente relacionadas com os operadores de projeção dos pseudopo-

tenciais. A diferença em relação aos pseudopotenciais, no entanto, é que a transformação

T ainda envolve a função de onda incluindo todos os elétrons:
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T = 1 +
∑

m

{
|ψm〉 −

∣
∣ψ̄m

〉}
〈p̄m| . (A.268)

Além disso, as expressões se aplicam igualmente bem aos estados de valência e de

caroço, de modo que é posśıvel derivar resultados exatos aplicando as expressões para

todos os estados eletrônicos.

A forma geral das equações PAW pode ser posta em termos da transformação dada

pela Eq. (A.268). Para qualquer operador Â no problema exato, é posśıvel introduzir um

operador transformado Ā que atua sobre a parte suave das funções de onda:

Ā = T †ÂT = Â +
∑

mm′

|p̄m〉
{

〈ψm| Â |ψm′〉 −
〈
ψ̄m

∣
∣ Â

∣
∣ψ̄m′

〉}

〈p̄m′|, (A.269)

que é muito similar ao operador de pseudopotencial dado pela Eq. (A.241). É posśıvel

também adicionar ao lado direito da Eq. (A.269) qualquer operador da forma:

B̂ −
∑

mm′

|p̄m〉
〈
ψ̄m

∣
∣ B̂

∣
∣ψ̄m′

〉
〈p̄m′|, (A.270)

sem mudança nos valores esperados. Por exemplo, pode-se remover a singularidade cou-

lombiana nuclear das equações para a função suave, deixando um termo que pode ser

considerado nas equações radiais em torno de cada núcleo.

As expressões para quantidades f́ısicas na abordagem PAW seguem das Eqs. (A.268)

e (A.269). Por exemplo, a densidade eletrônica é dada por:

ρe(r) = ρ̄e(r) + ρe,1(r) − ρ̄e,1(r), (A.271)

que pode ser escrita em termos de autoestados i com ocupações fi:

ρ̄e(r) =
∑

i

fi

∣
∣ψ̄i(r)

∣
∣
2
, (A.272)

ρe,1(r) =
∑

i

fi

∑

mm′

〈
ψ̄i

∣
∣ ψ̄m

〉
ψ∗

m(r)ψm′(r)
〈
ψ̄m′

∣
∣ ψ̄i

〉
, (A.273)

ρ̄e,1(r) =
∑

i

fi

∑

mm′

〈
ψ̄i

∣
∣ ψ̄m

〉
ψ̄∗

m(r)ψ̄m′(r)
〈
ψ̄m′

∣
∣ ψ̄i

〉
. (A.274)
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As duas últimas expressões são localizadas em torno de cada átomo e as integrais

podem ser resolvidas em coordenadas esféricas.

Em um cálculo de pseudopotencial, somente a pseudofunção de onda é determinada

diretamente. Entretanto, a função de onda completa é necessária para descrever muitas

propriedades f́ısicas importantes, por exemplo o desvio de Knight e o desvio qúımico

medido em experimentos de ressonância nuclear [385, 386]. Esses exemplos fornecem

dados relevantes do ambiente nuclear e dos estados de valência, mas a informação depende

de modo cŕıtico das perturbações sobre estados de caroço. Outros experimentos, tais como

fotoemissão e absorção de ńıveis de caroço, envolvem diretamente esses estados.

Os métodos OPW e PAW fornecem as funções de onda de caroço. É posśıvel também

reconstruir a função de onda de caroço a partir de um cálculo de pseudopotencial, ainda

que de modo aproximado. Para cada esquema de geração de pseudopotenciais ab initio,

é posśıvel formular uma maneira expĺıcita de reconstruir as funções de onda completas

dadas a pseudofunção suave calculada na molécula ou sólido [386, 387].

Indo além dos pseudopotenciais, é posśıvel definir pseudohamiltonianos, nos quais

a massa varia de modo a se alcançarem as propriedades desejadas para os estados de

valência. Como o pseudohamiltoniano é escolhido de modo a representar um caroço

esférico, o operador de pseudo-energia cinética pode admitir massas radiais e tangenciais

variáveis com o raio [388]. Os pseudohamiltonianos usados até agora supõem um potencial

local [388, 389, 390], e não foi posśıvel derivar pseudohamiltonianos para aplicações gerais.

É posśıvel também definir pseudopotenciais que descrevem os efeitos de caroço além

da aproximação de elétrons independentes [364, 391, 392, 393]. Em um primeiro momento,

parece imposśıvel definir um hamiltoniano somente para elétrons de valência, omitindo

os caroços, quando todos os elétrons são idênticos. No entanto, uma teoria apropriada

pode ser constrúıda baseada no fato de que todas as excitações de baixa energia podem ser

mapeadas de modo únivoco em um problema de valência simples. Em essência, os elétrons

de valência externos podem ser vistos como quase-part́ıculas que são renormalizadas pela

presença dos elétrons de caroço [391, 392].

A.8.5 Algumas diretrizes para a geração de pseudopotenciais

Na geração de um pseudopotencial para um dado átomo, a lista de passos a seguir é:

1. Escolher um funcional da densidade adequado.
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2. Escolher quais serão os estados de valência e de caroço.

3. Escolher uma configuração atômica de referência.

4. Gerar as funções de onda usando um cálculo exato (incluindo todos os elétrons).

5. Escolher Rc.

6. Decidir se devem ou não ser inclúıdas correções de caroço.

7. Gerar o pseudopotencial.

8. Verificar se o pseudopotencial é transfeŕıvel.

9. Obter a energia de corte que o pseudopotencial impõe para as ondas planas.

10. Verificar a forma separável do pseudopotencial.

Para o ponto 1, existe um grande número de funcionais da densidade implementados.

Muitos foram intensivamente testados, mas é necessário ter alguns cuidados, pois alguns

funcionais da densidade que nunca foram usados podem apresentar erros. Os pseudopo-

tenciais devem ser gerados com o mesmo funcional que será usado posteriormente nos

cálculos. O uso, por exemplo, de funcionais GGA com funcionais LDA pode apresentar

problemas numéricos quando a densidade de carga vai para zero. A correção GGA de

Becke para o funcional de troca pode divergir quando a densidade eletrônica tende a zero,

o que não acontece em um átomo livre no qual a densidade se comporta como deveria.

Num pseudoátomo, porém, comportamentos estranhos podem surgir em torno da região

de caroço por conta da pequena quantidade de pseudocarga naquela região (por vezes

nula, caso não existam estados s não-preenchidos). Como resultados, picos espúrios apa-

recem no pseudopotencial não-blindado perto do núcleo. Isto não é bom, mas usualmente

não causa problemas, porque a região afetada é bem pequena. No entanto, em alguns

raros casos podem aparecer problemas de convergência. Para evitar tais picos, podem ser

usadas correções GGA mais bem comportadas, como PBE, e também correções de caroço

(de modo a garantir que exista carga suficiente perto do núcleo), e também a remoção da

correção pelo gradiente para pequenos valores de r.

A escolha dos estados de valência e de caroço (ponto 2) parece trivial, e na maioria das

vezes é o que ocorre: os estados de valência são aqueles que contribuem para a ligação, e os

estados de caroço são os que não contribuem. Há exceções à regra, contudo. Por exemplo,

em metais de transição, cuja configuração eletrônica externa t́ıpica é ndi(n+1)sj(n+1)pk,

não fica sempre claro que os estados ns e np podem ser postos no caroço. O problema é que

os estados nd se localizam na mesma região que os estados ns e np, a uma profundidade
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maior que a atingida pelos estados (n+1)s e (n+1)p, o que pode tornar o pseudopotencial

intransfeŕıvel.

Metais alcalinos pesados (Rb, Cs, e talvez K) possuem um caroço bastante polarizável.

Pseudopotenciais com apenas um elétron podem não funcionar apropriadamente (mesmo

com correção de caroço). Estados 3d no GaAs podem ser postos com segurança no caroço

(talvez com uma correção de caroço para o Ga), mas a mesma coisa não pode ser feita com

o GaN. Para o ZnSe e outros compostos II-VI o estado d do cátion dá uma contribuição

significativa para a ligação. Em todos esses casos, promover os estados de caroço ns

e np mais elevados, ou nd (estados de semicaroço) para estados de valência pode ser

algo computacionalmente oneroso, mas necessário para garantir a transferibilidade dos

pseudopotenciais.

Pode acontecer também de o mesmo átomo funcionar de modo ótimo sob condições

de valência natural em um sólido com ligações fracas ou metálicas, e funcionar mal com

um tipo diferente de ligação. Isto ocorre para muitos metais de transição e muitos metais

nobres.

Note-se que incluindo estados de semicaroço entre os estados de valência pode deixar

o pseudopotencial mais “duro”, aumentando o número de elétrons e deixando o pseudo-

potencial um pouco pior para situações em que esta inclusão não é necessária.

A escolha de uma configuração de referência (ponto 3) pode envolver qualquer con-

figuração razoável que não seja muito diferente da configuração esperada em sólidos ou

moléculas. É recomendável usar o estado fundamental se não existir uma boa razão para

proceder de outro modo. Uma lista ilustrativa dessas boas razões é feita a seguir:

– Usar uma única configuração para todos os momentos angulares. Muitas vezes

estados com momento angular elevado l não são ligados no átomo (por exemplo, o estado

3d no Si não é ligado no estado fundamental 3s23p2, pelo menos na aproximação LDA).

Em tal caso pode-se escolher entre usar duas configurações diferentes [370] ou escolher

uma configuração simples, mais iônica.

– Os resultados são senśıveis à configuração escolhida. Em semicondutores III-V

zincoblenda, o parâmetro de rede de equiĺıbrio é bastante senśıvel à forma do potencial d

do cátion (por causa da presença de acoplamento p−d entre estados aniônicos p e estados

d do cátion [394]). Variando a configuração de referência pode-se mudar o parâmetro de

rede entre 1 e 2%, o que não seria um problema (encontra-se ainda dentro da margem

de erro t́ıpica para o método LDA com ondas planas e pseudopotenciais). Infelizmente,
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para propriedades de ligas GaAs/AlAs e super-redes, é necessário forçar o parâmetro de

rede do GaAs a se ajustar de modo praticamente exato ao parâmetro de rede do AlAs

(como acontece na realidade), o que causa sérios problemas. A correção de caroço reduz

parcialmente a dificuldade.

– A configuração esperada é conhecida para o sistema de interesse e é necessário ser

fiel a ela. Em metais de transição, com estados de semicaroço, é provavelmente melhor

escolher uma configuração razoável para os estados d e não usá-la para sistemas com

configurações d muito diferentes.

É posśıvel calcular pseudopotenciais para valores de l tão grandes quanto se queira,

mas não é necessário sempre. A regra geral é que se o átomo possui estados até l = lc

no caroço, é necessário um pseudopotencial com momentos angulares até l = lc + 1.

Momentos angulares l > lc + 1 sentirão o mesmo potencial da escolha l = lc + 1 porque

para todos eles não existe ortogonalização de estados de caroço. Como conseqüência, um

pseudopotencial deve ter projetores sobre momentos angulares até lc e l = lc + 1 deve

ser o estado local de referência para cálculos de ondas planas. Esta regra não é ŕıgida

e pode ser relaxada: momentos angulares altos são raramente importantes. Além disso,

pseudopotenciais separáveis colocam sérias restrições sobre o valor de referência local de

l e a escolha é algumas vezes compulsória. Note-se também que quanto maior o l no

pseudopotencial, mais oneroso será o cálculo de ondas planas.

Uma configuração completamente vazia (s0p0d0) ou uma configuração com números de

ocupação fracionários é algo perfeitamente aceitável, porquanto apesar de ocupação fra-

cionários não correspondem a um estado f́ısico, são um objeto matemático perfeitamente

definido e podem ajudar no refinamento dos cálculos.

Na abordagem de Troullier-Martins [373], um pseudopotencial é gerado para cada

l sobre o estado de valência com número quântico principal mais baixo. Se existirem

estados com o mesmo l e número n maior, eles devem estar vazios.

Pseudopotenciais podem em prinćıpio ser gerados em uma configuração com pola-

rização de spin, mas o uso comum é uma configuração sem polarização. Como os pseu-

dopotenciais são constrúıdos de modo a serem transfeŕıveis, eles podem descrever confi-

gurações com polarização de spin tendo o cuidado de lembrar que em tais circunstâncias

correções de caroço são quase sempre necessárias. Aplicam-se pseudopotenciais desse tipo

a sistemas magnéticos. O cálculo da energia pode ser perturbativo: orbitais espaciais up

e down idênticos, com a energia total calculada usando um funcional com polarização de

spin, assumindo a regra de Hund para as ocupações. A energia calculada desta forma é
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em geral uma boa aproximação.

A geração de resultados exatos (cálculo incluindo todos os elétrons, ponto 4) exige

a especificação do átomo, funcional da densidade e configuração eletrônica de referência.

Para átomos pesados, pode ser necessário especificar um grid mais denso no espaço real.

É posśıvel fazer comparações com bases de dados de referência (por exemplo, no endereço

eletrônico indicado em [395] há dados obtidos usando o funcional de Vosko-Wilk-Nusair

[289]).

A escolha do raio Rc (ponto 5) é muito importante e deve ser guiada pelos seguintes

critérios:

– Rc deve ser maior que o raio do nó mais externo da função de onda para qualquer

l dado

– Um valor de Rc t́ıpico é o do pico mais externo, ou mais além, se necessário.

– Quanto maior Rc, mais macio é o potencial, mas também menos transfeŕıvel.

– Muitas vezes existe um valor de l mais dif́ıcil que os demais (em metais de transição,

o estado d, e em elementos da segunda linha, N, O, F, o estado p). Tal estado deve ser

focalizado e forçado ao valor máximo aceitável para Rc.

– Este ponto não é muito importante, e muitas vezes imposśıvel de respeitar: deve-se

evitar usar valores de Rc muito diferentes para valores distintos de momento angular.

Um valor t́ıpico de máximo de função de onda para átomos “duros” é 0.7 ou 0.8

bohrs (em geral, o pico mais externo, mas átomos duros são aqueles com estados de

valência 2p, 3d, 4f sem ortogonalização para estados de caroço com mesmo l e sem nós).

Rc = 0.8 bohr produzirá pseudopotenciais extremamente “duros”. Com algum esforço e

experiência, pode-se dizer que os elementos da segunda linha, 2p, Rc = 1.1 − 1.2 bohr

produzirá resultados bons para ondas planas com energia de corte entre 50-70 Rydbergs.

Para metais de transição 3d, o mesmo Rc irá exigir energias de corte superiores a 80

Rydbergs. É o átomo mais “duro” que determina a energia de corte das ondas planas em

um sólido ou molécula.

A correção de caroço (ponto 6) leva em conta, ao menos parcialmente, a não-linearidade

no potencial de troca e correlação. Na geração de um pseudopotencial primeiramente é

produzido um potencial com as pseudofunções de onda e pseudo-energias desejadas. Para

separar um pseudopotencial “nu” da parte de blindagem, é necessário remover o poten-

cial de blindagem gerado apenas pelas cargas de valência, o que produz um erro porque
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o potencial de troca e correlação não é linear com a densidade de carga. Com a correção

de caroço, é mantida uma carga de caroço suavizada que é adicionada à carga de valência

tanto no passo de remoção da blindagem como no momento em que se usa o pseudopo-

tencial. A correção de caroço é necessária para haletos alcalinos e para pseudopotenciais

usados em sistemas magnéticos (com polarização de spin). Recomenda-se a correção de

caroço onde quer que exista um grande overlap entre as cargas de valência e caroço (metais

de transição se estados de semicaroço são mantidos no caroço).

O passo de geração do pseudopotencial (7) é feito em um programa que exige, tipica-

mente, a função de onda exata, o número de elétrons de valência, se se deseja correção de

caroço, o número de estados de valência que devem ser usados na geração (apenas um para

cada momento angular) e o rótulo para cada estado de momento angular (s, p, d, f, . . .).

Por vezes o programa sugere um valor para Rc, o qual pode ser modificado. Se existe mais

de um estado com o mesmo valor de l na camada de valência, o pseudopotencial deve ser

constrúıdo sobre o estado de menor energia, deixando o de maior energia vazio.

Para checar se o pseudopotencial é transfeŕıvel não há um critério único. Uma maneira

óbvia de averiguar a correção do pseudopotencial é comparar com resultados exatos para

configurações atômicas distintas da configuração inicial. Uma diferença de energias da

ordem de 0.001 Rydberg é muito boa, e algo da ordem de 0.01 Rydberg pode ser aceitável.

É fundamental checar se a pseudofunção de onda coincide com a função de onda atômica

tão acuradamente quanto posśıvel para r > Rc. Outra forma de checagem é comparar

as derivadas logaŕıtmicas das pseudofunções e das funções exatas em relação à energia (o

intervalo de energia deve cobrir o intervalo de variação t́ıpico das energias dos elétrons de

valência nas circunstâncias em que o pseudopotencial será utilizado) para um raio r da

ordem do raio iônico ou covalente, e maior que qualquer um dos valores de Rc adotados.

A checagem da energia de corte para as ondas planas leva em conta o valor de Rc e

a forma da transformada de Fourier Vl(q). Um cálculo atômico usando um conjunto de

base de funções de Bessel esféricas jl(qr) (o que equivale a projetar as ondas planas sobre

estados com um dado valor de l) pode ser útil.

A forma separável dos pseudopotenciais (10) é bastante conveniente em cálculos de

estrutura eletrônica, a não ser que sejam estudados sistemas extremamente simples (siĺıcio

cristalino, por exemplo). No formalismo KB [379], os pseudopotenciais BHS [370] são

reescritos como projetores. Uma função arbitrária pode ser adicionada à parte local

(independente de l) do pseudopotencial e subtráıda para todas as componentes de l.

Geralmente se explora esta arbitrariedade para remover uma componente l usando-a como
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parte local. Infelizmente a projeção KB pode levar a perda de capacidade de transferência

(na maior parte das vezes pequena) ou mesmo ao aparecimento de estados fantasma -

estados com o número errado de nós que estão ausentes no átomo exato - que tornam

o pseudopotencial completamente inútil. Na prática, é necessário explorar a liberdade

na escolha da parte local para evitar estados fantasma. Para cálculos de onda plana é

conveniente escolher como parte local o valor de l mais alto, pois com isto são removidos

mais projetores (2l + 1 por átomo) em comparação com um valor de l reduzido.

A.9 Cálculos ab initio em sistemas periódicos

Existem basicamente três abordagens para o cálculo de estados eletrônicos de part́ıcula

independente:

1. Métodos de ondas planas e grids. Como ondas planas são autofunções da equação

de Schrödinger com potencial constante, elas se tornam uma escolha natural para a des-

crição de bandas na aproximação do elétron quase livre. Pseudopotenciais são usados em

métodos de ondas planas porque permitem cálculos com número reduzido de componentes

de Fourier. Grids no espaço real fornecem uma forma alternativa de resolver as equações

em sistemas finitos.

2. Orbitais atômicos localizados. Pode-se usar uma base que captura a essência das

caracteŕısticas atômicas em sólidos e moléculas.

3. Métodos de esfera atômica. São os métodos mais gerais para solução precisa da

equação de Kohn-Sham. A idéia básica é dividir o problema de estrutura eletrônica,

com uma representação eficiente das caracteŕısticas atômicas que variam rapidamente

perto de cada núcleo, e do comportamento suave das funções de onda entre os átomos.

As funções de onda podem ser aumentadas perto de cada núcleo resolvendo a equação de

Schrödinger na esfera para cada energia e ajustando a função de onda externa. Os métodos

APW (Augmented Planewave) e KKR [396, 397] (Korringa-Kohn-Rostocker) são muito

poderosos, mas exigem a solução de equações não-lineares. Os métodos L (Linearized

Augmented Planewave - LAPW, Linearized Muffin Tin Orbital - LMTO) fazem uso da

linearização das equações em torno de energias de referência, o que permite a escrita

dos métodos aumentados na forma de uma equação secular linear na energia envolvendo

um hamiltoniano e uma matriz de overlap. Esta simplificação levou a novos avanços,

por exemplo, o desenvolvimento de métodos de potencial completos, fazendo do método

LAPW o mais preciso atualmente para a obtenção de soluções da equação de Kohn-Sham.
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A equação de Schrödinger para um elétron que se move sob a ação de um potencial

efetivo Vef(r) é:

[

−1

2
∇2 + Vef(r) − εi

]

ψi(r) = 0. (A.275)

Para um sólido (ou qualquer estado de matéria condensada), é conveniente impor que

os estados sejam normalizados e obedeçam condições de contorno periódicas dentro de

um volume grande Ω o qual pode tender a infinito. Como funções periódicas podem ser

expandidas em componentes de Fourier, temos:

ψi(r) =
1√
Ω

∑

q

ci,q exp(iq · r) ≡
∑

q

ci,q |q〉, (A.276)

onde os ci,q são coeficientes de expansão da função de onda na base ortonormal de ondas

planas:

〈q′ | q〉 ≡ 1

Ω

∫

Ω

exp [i(q − q′) · r] dr = δq,q′ . (A.277)

Substituindo (A.276) na Eq. (A.275), multiplicando à esquerda por 〈q′| e integrando

como na Eq. (A.277), temos:

〈q′|
[

−1

2
∇2 + Vef(r) − εi

]
∑

q

ci,q |q〉 =

=
∑

q

〈q′|
[

−1

2
∇2 + Vef(r) − εi

]

ci,q |q〉 =

=
∑

q

ci,q

[

−1

2
〈q′|∇2 |q〉

]

+
∑

q

ci,q 〈q′|Vef(r) |q〉 −
∑

q

ci,qεi 〈q′ | q〉
︸ ︷︷ ︸

δ
q,q′

= 0.

(A.278)

Mas:

〈q′|∇2 |q〉 =
1

Ω

∫

Ω

exp [−iq′ · r]∇2 exp [iq · r] dr, (A.279)

e:
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∇2 exp [iq · r] = ∇ · ∇ exp [iq · r] = ∇ · iq exp [iq · r] = iq · ∇ exp [iq · r] =

= iq · iq exp [iq · r] = −q2 exp [iq · r] .
(A.280)

Logo:

〈q′|∇2 |q〉 = −q2 〈q′ | q〉 = −q2δq,q′ . (A.281)

Donde:

∑

q

ci,q

{[
q2

2
− εi

]

δq,q′ + 〈q′|Vef(r) |q〉
}

= 0. (A.282)

Para um cristal, o potencial Vef(r) é periódico e pode ser expresso como uma soma de

componentes de Fourier:

Vef(r) =
∑

m

Vef(Gm) exp [iGm · r], (A.283)

onde os Gm são vetores da rede rećıproca. Vef(G) é dado por:

Vef(G) =
1

ΩCP

∫

ΩCP

Vef(r) exp [−iG · r] dr. (A.284)

Temos, então:

〈q′|Vef(r) |q〉 = 〈q′|
∑

m

Vef(Gm) exp [iGm · r] |q〉 =

=
∑

m

Vef(Gm) 〈q′| exp [iGm · r] |q〉.
(A.285)

Mas:

〈q′| exp [iGm · r] |q〉 =
1

Ω

∫

Ω

exp [i(Gm + q − q′) · r] dr = δGm,q′−q. (A.286)

E:
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〈q′|Vef(r) |q〉 =
∑

m

Vef(Gm)δGm,q′−q. (A.287)

Por fim, a equação de Schrödinger se transforma em:

∑

q

ci,q

{[
q2

2
− εi

]

δq,q′ +
∑

m

Vef(Gm)δGm,q′−q

}

= 0. (A.288)

Se definirmos q = k + Gm,q′ = k + Gm′ (os quais diferem por um vetor da rede

rećıproca), teremos:

∑

k,m

cik,m

{[

(k + Gm)2

2
− εi

]

δGm,Gm′
+

∑

m′′

Vef(Gm′′)δGm′′ ,Gm′−Gm

}

= 0. (A.289)

Simplificando e separando os somatórios:

∑

k

∑

m

cik,m

{[

(k + Gm)2

2
− εi

]

δGm,Gm′
+ Vef(Gm′ − Gm)

}

= 0. (A.290)

A Eq. (A.290) é verdadeira se, considerando um valor fixo de mathbfk, tivermos:

∑

m′

cik,m′

{[

(k + Gm′)2

2
− εi

]

δm,m′ + Vef(Gm′ − Gm)

}

= 0. (A.291)

Ou ainda, lançando o termo na energia para o segundo membro:

∑

m′

cik,m′

{

(k + Gm′)2

2
δm,m′ + Vef(Gm′ − Gm)

}

= cik,mεi(k). (A.292)

Definindo a matriz Hm′,m(k):

Hm′,m(k) ≡ 〈k + Gm′| Ĥef |k + Gm〉 =
(k + Gm′)2

2
δm,m′ + Vef(Gm′ − Gm), (A.293)

temos a equação de Schrödinger no espaço rećıproco:
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∑

m′

cik,m′Hm′,m(k) = cik,mεi(k). (A.294)

Os autovalores e autofunções são indicados pelos ı́ndices de banda i e pelo vetor k.

Resolvendo a Eq. (A.294) e usando o teorema de Bloch (subseção A.7.1), a estrutura

eletrônica do cristal pode ser calculada.

Um conceito importante na análise de Fourier de cristais é a divisão em fatores de

estrutura e fatores de forma. Para manter a generalidade, consideremos um cristal com-

posto de diferentes tipos de átomos indicados por κ = 1, 2, . . . , nt, e para cada κ existem

nκ átomos idênticos nas posições dadas pelos vetores tκ,j, com j = 1, 2, . . . , nκ na célula

unitária. Qualquer propriedade do cristal como, por exemplo, o potencial, pode ser escrita

como:

V (r) =
nt∑

κ=1

nκ∑

j=1

∑

T

V κ(r − tκ,j − T), (A.295)

onde T indica o conjunto de vetores de translação. É fácil mostrar que a transformada

de Fourier do potencial pode ser escrita como:

V (G) =
1

ΩCP

∫

ΩCP

V (r) exp [iG · r] dr =
nt∑

κ=1

Ωκ

ΩCP

Sκ(G)V κ(G), (A.296)

onde o fator de estrutura para cada tipo de átomo κ é dado por:

Sκ(G) =
nκ∑

j=1

exp [iG · tκ,j], (A.297)

e o fator de forma:

V κ(G) =
1

Ωκ

∫

TODO O
ESPAÇO

V κ(r) exp [iG · r] dr. (A.298)

Os fatores nas Eqs. (A.296) a (A.297) foram escolhidos de modo que V κ (|G|) é

definido em termos de um volume t́ıpico Ωκ para cada espécie de átomo κ, de modo

que V κ (|G|) é independente do cristal. Além disso, o fator de estrutura é definido de

modo que Sκ(G = 0) = nκ. Todas estas escolhas são arbitrárias mas convenientes. A

Eq. (A.296) é particularmente útil em casos onde o potencial é uma soma de potenciais
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esféricos no espaço real:

V κ(r − tκ,j − T) = V κ (|r − tκ,j − T|) . (A.299)

Isto sempre se aplica a potenciais nucleares e pseudopotenciais iônicos sem blindagem.

Muitas vezes também é razoável considerar que o potencial total do cristal é uma soma

de potenciais esféricos em torno de cada núcleo. Usando a expansão de ondas planas em

harmônicos esféricos, a Eq. (A.298) pode ser escrita como [398, 399, 400]:

V κ(G) = V κ (|G|) =
4π

Ωκ

∞∫

0

r2j0 (|G| r) V κ(r)dr. (A.300)

Para um potencial nuclear, temos:

V κ
NÚCLEO

(|G|) =
4π

Ωκ

−Zκ
NÚCLEO

|G|2
, G 6= 0,

= 0, G = 0. (A.301)

onde o termo divergente G = 0 é tratado separadamente. Para um pseudopotencial sem

blindagem, o fator de forma do potencial (Eq. (A.300)) é a transformada do pseudo-

potencial Vl(r), e novamente o termo G = 0 precisa ser considerado com cuidado. Um

procedimento é calcular o potencial e a energia total de ı́ons pontuais de carga Zκ em um

fundo de carga para balanceamento que representa a componente G = 0 da densidade

eletrônica. Neste caso, existe uma contribuição adicional que surge do fato de que o ı́on

não é uma carga puntiforme [401]:

ακ =

∫

4πr2

[

V κ
LOCAL(r) −

(

−Zκ

r

)]

dr. (A.302)

Cada ı́on contribui com um termo constante na energia total que é igual a (Ne/Ω)ακ,

onde Ne/Ω é a densidade eletrônica média.

A generalização da Eq. (A.296) para pseudopotenciais não locais V κ
NL(r, r′) é obtida de

modo direto. Para cada k e vetores de base Gm e Gm′ é conveniente definir Km = k+Gm

e Km′ = k+Gm′ . O fator de estrutura S(G) ainda depende apenas de G = Km −Km′ =

Gm−Gm′ , mas os elementos da matriz do fator de forma semilocal são mais complicados,

uma vez que dependem de dois argumentos. Usando o fato de que o operador de simetria
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não-local possui simetria esférica, é posśıvel escrevê-lo em termos dos módulos |Km| , |Km′|
e do ângulo θ entre Km e Km′ :

δV κ
NL(Km,Km′) =

4π

Ωκ

∑

l

(2l + 1)Pl (cos θ)

∞∫

0

r2jl (|Km| r) jl (|Km′| r) δV κ
l (r)dr. (A.303)

Esta fórmula tem a desvantagem de precisar ser calculada para cada combinação de

|Km| , |Km′| e θ. Para resolver computacionalmente o problema, é necessário discretizar

esta função em um grid e interpolar.

A forma separável de Kleinman-Bylander (ver Eq. (A.241)) é mais simples porque

é uma soma de produtos de transformadas de Fourier. Cada transformada de Fourier é

uma função unidimensional de |Km| (e a mesma função de |Km′|), o que torna o proces-

samento mais rápido. A forma no espaço rećıproco é semelhante à forma no espaço real

[379, 399](aqui usamos a notação ml para indicar o número quântico azimutal, evitando

confusão com o ı́ndice m das funções de base Gm):

δV κ
NL(Km,Km′) =

∑

lml

Y ∗
lml

(K̂m)T ∗
l (|Km|) × Tl (|Km′|) Ylml

(K̂m′)
〈
ψPS

lml

∣
∣ δVl

∣
∣ψPS

lml

〉 , (A.304)

onde Tl(q) é a transformada de Fourier da função radial ψPS
l (r)δVl(r). A simplicidade desta

forma tornou-a amplamente usada em cálculos reais e facilita a extensão para potenciais

ultramacios que envolvem projetores adicionais.

Fundamental para a aplicação da teoria do funcional da densidade a sistemas periódicos

é a densidade eletrônica por célula unitária, dada por:

ρe(r) =
1

N1N2N3

∑

k,i

f(εi(k))ρe
i,k(r), (A.305)

que é uma média tomada sobre os pontos k. i indica a banda para cada valor de k e f(ε)

é a função de Fermi:

f(ε) =
1

exp
[

ε−µ
kBT

]

+ 1
, (A.306)

e:
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ρe
i,k(r) = |ψi,k(r)|2 . (A.307)

Para uma base de ondas planas, usando o teorema de Bloch, temos:

ρe
i,k(r) =

1

Ω

∑

m,m′

c∗i,m(k)ci,m′(k) exp [i(Gm′ − Gm) · r], (A.308)

e:

ρe
i,k(G) =

1

Ω

∑

m

c∗i,m(k)ci,m′′(k), (A.309)

onde m′′ indica o vetor G para o qual:

Gm′′ = Gm + G. (A.310)

As Ng operações de simetria (denotadas por Rn) do cristal podem ser usadas para

encontrar a densidade tomando pontos k apenas na zona de Brillouin irredut́ıvel (ZBI):

ρe(r) =
1

N1N2N3

∑

k,i

f(εi(k))ρe
i,k(r) =

1

Ng

∑

Rn

ZBI∑

k

wk

∑

i

f(εi(k))ρe
i,k(Rnr + tn),

(A.311)

e:

ρe(G) =
1

Ng

∑

Rn

exp [iRnG · tn]
ZBI∑

k

wk

∑

i

f(εi(k))ρe
i,k(RnG). (A.312)

O fator de fase devido ao movimento de translação, exp [iRnG · tn], decorre da Eq.

(A.308).

Apesar de simples, a Eq. (A.309) não é a forma mais eficiente de calcular a densidade

eletrônica ρe(r) ou ρe(G). Encontrar todas as componentes de Fourier usando a Eq.

(A.309) envolve um duplo somatório, ou seja, uma convolução no espaço de Fourier que

requer N2
G operações, onde NG é o número de vetores G necessários para descrever a

densidade. Para sistemas grandes, o custo computacional é elevado. Por outro lado, se os

estados de Bloch são conhecidos em um grid de NR pontos no espaço real, a densidade
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Figura 102: Cálculo da densidade eletrônica usando transformadas de Fourier e grids. A notação
{G} e {R} denota os conjuntos de N G vetores e N R pontos de grid. Como o custo computaci-
onal da transformada de Fourier rápida (FFT) cresce com NlogN , o algoritmo é mais rápido que
o duplo somatório necessário para calcular ρe{G} (o qual aumenta com N2). Como vantagem
adicional, o resultado é obtido tanto no espaço real como no rećıproco, o que é importante para
o cálculo dos termos de Hartree e de troca e correlação.
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pode ser determinada simplesmente tomando os quadrados das amplitudes de cada ponto,

em NR operações. O truque é usar uma transformada de Fourier rápida (Fast Fourier

Transform - FFT) que permite mudar de espaço em NlogN operações, onde N = NR =

NG. O diagrama (Fig. 102) ilustra o algoritmo. Uma vantagem é que ρe(r) é necessário

para encontrar a energia e o potencial de troca e correlação. A transformada inversa pode

ser usada para calcular ρe(G), que pode ser usada para resolver a equação de Poisson no

espaço de Fourier.

É importante notar que a densidade ρe requer componentes de Fourier que se estendem

por uma distância duas vezes maior que a necessária para a função de onda ψ porque

ρe ∝ |ψ|2. A transformada de Fourier rápida precisa de um grid regular na forma de

um paraleleṕıpedo, enquanto a energia de corte para a função de onda é geralmente uma

esfera com (1/2)(k + G)2 < ECORTE. Logo, o número de pontos no grid FFT para a

densidade N = NR = NG é aproximadamente uma ordem de magnitude maior que o

número NFO
G de vetores G na base para as funções de onda. Apesar disso, a abordagem

FFT é muito mais eficiente para sistemas grandes uma vez que o número de operações

cresce com NlogN .

Como as equações de Kohn-Sham são um conjunto de equações diferenciais de segunda

ordem acopladas, é natural procurar usar métodos como diferenças finitas, elementos

finitos, multigrids, ondeletas ou outras abordagens comuns para problemas similares. De

fato, tais métodos são usados para o estudo de pontos quânticos em semicondutores e estão

sendo desenvolvidos para outras áreas de estrutura eletrônica. Em um recente artigo de

revisão [402], Becke analisa várias dessas opções.

A expressão variacional para a energia de Kohn-Sham em termos de funções de onda

e densidade eletrônica é dada por [398, 399, 401, 403]:

ETOT[ρe(r)] =
1

N1N2N3

∑

k,i

wk,i

{
∑

m,m′

c∗i,m(k)

[
1

2
|Km|2 δm,m′ + VEXT (Km,Km′)

]

ci,m′(k)

}

+

+
∑

G

εXC(G)ρe(G) + 2π
∑

G 6=0

[ρe(G)]2

G2
+ γEWALD +

(
∑

κ

ακ

)

Ne

Ω
.

(A.313)

Como ETOT é a energia total por célula, a média sobre k e sobre as bandas é a mesma

usada para a densidade na Eq. (A.305). As somas também podem ser restringidas à zona

de Brilloin irredut́ıvel. Os termos de potencial envolvem Km ≡ k+Gm. O termo em εXC
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é a energia de troca e correlação total. Os três últimos termos serão considerados logo

adiante.

O tratamento correto dos termos coulombianos é obtido separando de modo consis-

tente as componentes em G = 0 no potencial e na energia total. O termo de Hartree na

Eq. (A.313) é a interação coulombiana dos elétrons consigo mesmos excluindo o termo

divergente devido à densidade média eletrônica. Similarmente, a componente de Fourier

G = 0 do potencial local é definida como sendo igual a zero em (A.313). Ambos os termos

são inclúıdos no termo de Ewald, γEWALD, que é a energia dos ı́ons puntiformes em um

fundo compensador, ou seja, este termo inclui os termos de interação ı́on-́ıon bem como as

interações da densidade média eletrônica com os ı́ons e consigo mesma. Somente combi-

nando os termos juntos a expressão é bem definida. O termo final é uma contribuição que

vem da parte não-coulombiana do pseudopotencial local, e Ne/Ω é a densidade eletrônica

média.

Pode-se definir um funcional:

ĒTOT[ρe(r)] =
1

N1N2N3

∑

k,i

wk,iεi(k) +
∑

G

[εXC(G) − VXC(G)] ρe(G)+

[

γEWALD − 2π
∑

G6=0

[ρe(G)]2

G2

]

+

(
∑

κ

ακ

)

Ne

Ω
,

(A.314)

onde todos os termos envolvem a densidade eletrônica de entrada ρe
in. Esta expressão não

é variacional mas sim um ponto de sela em torno da solução consistente ρe
in = ρe

out. Ela é

muito útil porque muitas vezes converge mais rápido para a energia consistente final de

modo que se torna bastante útil a cada passo do cálculo autoconsistente. Além disso, é o

ponto de partida para aproximações úteis [404, 405, 406, 407, 408].

A força sobre qualquer átomo Fκ
j pode ser obtida pelo teorema de Hellmann-Feynman

usando componentes de Fourier:

Fκ
j = − ∂E

∂tκ,j

= −∂γEWALD

∂tκ,j

− i
∑

m

Gm exp [iGm · tκ,j] V
κ
LOCAL (Gm) ρe(Gm)+

− i

N1N2N3

∑

k,i

wk,iεi(k)
∑

m,m′

c∗i,m(k) [Km,m′ exp [iKm,m′ · tκ,j] δV
κ
NL (Km,Km′)] ci,m′(k).

(A.315)

Aqui o pseudopotencial externo foi separado na parte local, que contém os termos de
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longo alcançe, e no operador não-local de curto alcance δV κ
EXT (Km,Km′), com Km,m′ ≡

Km − Km′ .

A.10 Cálculo de propriedades ópticas em cristais

Em geral, a diferença na propagação de uma onda eletromagnética através do vácuo

e através de um meio material pode ser descrita por um ı́ndice de refração complexo N :

N = n + ik. (A.316)

No vácuo, N é real e igual a 1. Para materiais transparentes tal ı́ndice é real, sendo

a parte imaginária relacionada ao coeficiente de absorção através de:

α(ω) = 2kω/c. (A.317)

O coeficiente de absorção indica a fração de energia perdida pela onda quando esta

passa através de uma unidade de espessura do material. Ela é derivada levando em conta

a taxa de produção de calor na amostra.

O coeficiente de reflexão pode ser obtido para o caso simples de incidência normal

sobre uma superf́ıcie plana igualando os campos elétrico e magnético na superf́ıcie:

R =

∣
∣
∣
∣

1 − N

1 + N

∣
∣
∣
∣

2

=
(n − 1)2 + k2

(n + 1)2 + k2
. (A.318)

No entanto, ao se efetuar cálculos de propriedades ópticas é comum calcular a cons-

tante dielétrica complexa e expressar outras propriedades em termos desta constante. A

constante dielétrica complexa ε(ω) é dada por:

ε = ε1 + iε2 = N2. (A.319)

Logo, a relação entre as partes real e imaginária do ı́ndice de refração com a constante

dielétrica é:

ε1 = n2 − k2ε2 = 2nk. (A.320)
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Outra quantidade usada muitas vezes para expressar as propriedades ópticas é a

condutividade óptica, σ(ω), dada por:

σ = σ1 + iσ2 = −i
ω

4π
(ε − 1). (A.321)

A condutividade óptica é usualmente empregada na caracterização de metais. A

principal diferença entre a condutividade de metais e a condutividade de isolantes e se-

micondutores é que transições intrabanda desempenham um papel importante na região

infravermelha do espectro óptico de metais (tais transições não são consideradas pelo

pacote CASTEP, usado na presente tese para efetuar tais cálculos).

Uma propriedade adicional que pode ser obtida a partir da constante dielétrica com-

plexa é a função perda de energia. Tal função descreve a energia perdida por um elétron

que passa através de um meio dielétrico homogêneo, e é dada por:

L(ω) = Im

(

− 1

ε(ω)

)

. (A.322)

Experimentalmente, os parâmetros ópticos mais acesśıveis são os coeficientes de ab-

sorção, α(ω), e reflexão, R(ω). Em prinćıpio, dado o conhecimento de ambos, as partes

real e imaginária de N podem ser determinadas. No entanto, na prática, os experimentos

são mais complicados que a situação de incidência normal subjacente a todas as equações

apresentadas até aqui. Efeitos de polarização devem ser inclúıdos, e a geometria da amos-

tra pode se tornar bastante complicada (por exemplo, a transmissão através de filmes de

várias camadas com incidência num ângulo arbitrário).

A interação de um fóton com os elétrons no sistema é descrita através de perturbações

dependentes do tempo do estado fundamental eletrônico. Transições entre estados ocu-

pados e virtuais são causadas pelo campo elétrico do fóton (o efeito do campo magnético

é menor por um fator v/c). Quando essas excitações são coletivas, são conhecidas como

plasmons (os quais são mais facilmente observados quando da passagem de um elétron

rápido através do sistema ao invés de um fóton, técnica conhecida como espectrosco-

pia de perda de energia eletrônica, Electron Energy Loss Spectroscopy - EELS), uma vez

que fótons transversais não são capazes de excitar plasmons longitudinais). Quando as

transições são independentes, são conhecidas como excitações de part́ıcula simples. Os

espectros resultantes dessas excitações podem ser vistos como uma espécie de densidade

de estados entre as bandas de valência e condução, ponderado pelos elementos de matriz

apropriados (introduzindo regras de seleção).
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A parte imaginária da constante dielétrica é dada por:

ε2(ω) =
8π2

Ω

∑

k,v,c

|〈ψc
k| û · r |ψv

k〉|2 δ(Ec
k − Ev

k−ω), (A.323)

onde Ω é o volume da célula unitária, û é o vetor que define a polarização do campo elétrico

incidente, e os ı́ndices v e c denotam estados de valência e condução, respectivamente.

Tal expressão é parecida com a regra de ouro de Fermi para perturbações dependentes

do tempo, e ε2(~ω) pode ser interpretado como um detalhamento das transições entre

estados ocupados e virtuais. Uma vez que a constante dielétrica descreve uma resposta

causal, as partes real e imaginária estão conectadas através de uma transformação de

Kramers-Kronig:

ε1(ω) =
2ω

π

∞∫

0

ω′ε2(ω
′)

ω2 − ω′2
dω′. (A.324)

Tal equação permite obter a parte real da função dielétrica a partir da parte ima-

ginária.

Os elementos da matriz envolvendo o operador posição que aparece na Eq. (A.323)

podem normalmente ser escritos como elementos de uma matriz associada ao operador

momentum, permitindo o cálculo direto no espaço rećıproco. No entanto, isto depende do

uso de potenciais locais [409] (o que é um problema para o software CASTEP, que emprega

potenciais não locais na maior parte dos casos). A forma corrigida para o elemento da

matriz é dada por:

〈ψc
k| r |ψv

k〉 =
1

iω
〈ψc

k|p |ψv
k〉 +

1

ω
〈ψc

k|VNLr |ψv
k〉 . (A.325)

Pseudopotenciais ultramacios produzem uma contribuição adicional aos elementos da

matriz óptica.

A contribuição intrabanda para as propriedades ópticas afeta principalmente a parte

infravermelha do espectro. Ela pode ser descrita de modo suficientemente acurado através

de um termo de Drude emṕırico inclúıdo na condutividade óptica:

σD(ω) =
σ0

1 − i ω
τD

, (A.326)
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onde a condutividade DC σ0 e o amortecimento de Drude τD dependem de muitos de-

talhes do material e são usualmente obtidos experimentalmente. Combinando as Eqs.

(4.12) e (4.7), é posśıvel derivar a contribuição de Drude para a função dielétrica e con-

seqüentemente todas as demais constantes ópticas. O amortecimento de Drude descreve o

alargamento do espectro devido a efeitos não inclúıdos nos cálculos. Exemplos de proces-

sos que contribuem para esse alargamento são espalhamentos elétron-elétron (incluindo

processos de Auger), espalhamento elétron-fônon e espalhamento elétrons por defeitos.

Esta última contribuição é usualmente a mais relevante. Conseqüentemente, uma deter-

minação a priori do alargamento exige conhecimento das concentrações e tipos de defeitos

presentes na amostra estudada.

Para materiais que não apresentam simetria cúbica completa, as propriedades ópticas

apresentarão alguma anisotropia, a qual pode ser inclúıda nos cálculos levando em con-

sideração a polarização da radiação eletromagnética. Como já foi mencionado, o vetor

unitário û define a direção de polarização do campo elétrico. Ao calcular a constante

dielétrica, podem ser consideradas três opções:

1. Radiação incidente polarizada: requer um vetor para definir a direção do campo

elétrico para a luz incidindo perpendicularmente ao cristal.

2. Radiação não polarizada: requer um vetor para definir a direção de propagação

da luz incidente em relação à normal da superf́ıcie cristalina. O vetor campo elétrico é

tomado como uma média sobre o plano perpendicular a esta direção.

3. Amostra policristalina (policristal): nenhuma direção precisa ser especificada. O

campo elétrico é tomado como uma média totalmente isotrópica.

O ńıvel de aproximação utilizado aqui não leva em conta quaisquer efeitos de campo

local. Estes efeitos resultam do fato de o campo elétrico sentido em um dado ponto

do sistema estudado ser parcialmente blindado pela polarizabilidade do próprio sistema.

Logo, o campo local é diferente do campo externo aplicado (ou seja, o campo elétrico

fotônico). Isto pode afetar de modo significativo os espectros calculados, mas exige um

custo computacional muito alto para a maioria dos sistemas no presente.

Para calcular quaisquer propriedades espectrais, é necessário identificar os autovalores

de Kohn-Sham com as energias de quase-part́ıculas. Embora não exista nenhuma conexão

formal entre as duas coisas, as semelhanças entre a equação do tipo Schrödinger para as

quase-part́ıculas e as equações de Kohn-Sham permitem que as duas sejam identificadas.

Para semicondutores, foi demonstrado computacionalmente (comparando estruturas de
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banda DFT e GW) que a maior parte da diferença entre os autovalores de Kohn-Sham e

as verdadeiras energias de excitação pode ser corrigida através de um deslocamento ŕıgido

da banda de condução para cima em relação à banda de valência [410]. Isto é atribúıdo

à descontinuidade do potencial de troca e correlação quando o sistema passa de Ne para

Ne + 1 elétrons durante o processo de excitação. É posśıvel ocorrer, em alguns sistemas,

significativa dispersão desse desvio ao longo da zona de Brillouin, e o deslocamento ŕıgido

pode ser insuficiente.

Juntamente com a ausência de efeitos de campo local, efeitos excitônicos não são

tratados pelo programa CASTEP, o que é de particular importância em cristais iônicos

(como o cloreto de sódio, por exemplo), nos quais tais efeitos são bem conhecidos.

Outras limitações do pacote são:

– A natureza não-local dos funcionais de troca e correlação GGA não é levada em

conta no cálculo dos elementos de matriz, mas espera-se que isto tenha um pequeno efeito

sobre os espectros calculados.

– Fônons e seus efeitos ópticos são negligenciados.

– Existe um erro intŕınseco nos elementos de matriz para transição óptica devida ao

fato de pseudofunções de onda serem utilizadas (ou seja, elas se desviam do comporta-

mento da verdadeira função de onda no caroço). No entanto, as regras de seleção não

serão modificadas na transição entre pseudofunções e funções reais.

A.11 Sumário

No presente anexo foram apresentados os fundamentos teóricos para o estudo de siste-

mas com muitos elétrons (moléculas, cristais) na aproximação de elétrons independentes.

Primeiramente foi vista a aproximação de Hartree-Fock para o cálculo da energia total em

moléculas usando funções de base gaussianas e com ênfase em sistemas de camada fechada.

Várias definições básicas de qúımica quântica foram apresentadas (orbitais moleculares,

hibridização de orbitais, orbitais HOMO e LUMO, análises populacionais), bem como bre-

ves resumos sobre o cálculo de propriedades vibracionais e termodinâmicas, fluorescência,

fosforescência e espectros Raman e infravermelho. Extensões do método de Hartree-Fock

visando a inclusão de efeitos de correlação eletrônica (interação de configuração, teoria da

perturbação, métodos coupled-cluster) foram sucintamente expostas.

Prosseguindo, foi efetuada uma apresentação da teoria do funcional da densidade,
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precedida de uma demonstração simples do teorema de Hellmann-Feynman. Os teoremas

de Hohenberg-Kohn foram provados e o método de Kohn-Sham para a realização de

cálculos DFT introduzido. Várias aproximações para o funcional de troca e correlação

foram vistas: a aproximação de densidade local, LDA, a aproximação de densidade de spin

local (LSDA), funcionais corrigidos pelo gradiente (GGA) e funcionais h́ıbridos. Teceram-

se comentários sobre a inclusão de efeitos relativ́ısticos em moléculas e efeitos de solvatação

na abordagem de Onsager.

Seguiu-se uma breve revisão de conceitos básicos sobre estruturas cristalinas e o teo-

rema de Bloch, métodos de integração sobre a zona de Brillouin e a definição e o cálculo

da densidade de estados (DOS). Uma introdução aos pseudopotenciais e suas normas de

geração e uso também foi realizada. Por fim, uma śıntese sobre como são feitos cálculos

ab initio em sistemas periódicos encerra o anexo.
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os aminoácidos comumente encontrados nos seres vivos, excetuando-se a

prolina. O grupo R ou cadeia lateral (em vermelho) ligado ao carbono α
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acha-se indicada a direção de polarização da radiação incidente em termos
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73 Propriedades ópticas: função dielétrica. No canto superior direito de
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cada gráfico acha-se indicada a direção de polarização da radiação in-

cidente em termos das direções da célula unitária. No gráfico do canto
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75 Propriedades ópticas: absorção. No canto superior direito de cada gráfico
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direito é apresentado o resultado para uma amostra policristalina. . . . p. 246
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de cada gráfico acha-se indicada a direção de polarização da radiação

incidente em termos das direções da célula unitária. No gráfico do canto
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que vai de Γ até K prolonga-se para fora da primeira ZB alcançando um
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7 Distâncias finais (em Å) entre os átomos da molécula de L-alanina I após

convergência empregando o método de Hartree-Fock restrito (RHF) de

camada fechada (spin igual a zero) na base 6-311++G(3d,3p). . . . . . p. 70

8 Distâncias finais (em Å) entre os átomos da molécula de L-alanina I após

convergência empregando o método do funcional da densidade (DFT) de

camada fechada (spin igual a zero) na base 6-31++G(d,p). . . . . . . . p. 71
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23 Quadro comparativo entre freqüências dos modos normais de vibração e

atribuições - segunda parte. Os cálculos de Hartree-Fock e DFT usam

a base 6-31++G(d,p). A notação para os vários movimentos de átomos
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dos empregando o método do funcional da densidade (DFT) de camada

fechada (spin igual a zero) na base 6-31++G(d,p). . . . . . . . . . . . . p. 155

58 Análises populacionais de Mulliken e APT. Resultados obtidos empre-

gando o método de Hartree-Fock restrito (RHF) de camada fechada (spin

igual a zero) na base 6-31++G(d,p). . . . . . . . . . . . . . . . . . . . p. 157

59 Análises populacionais de Mulliken e APT. Resultados obtidos empre-

gando o método de Hartree-Fock restrito (RHF) de camada fechada (spin

igual a zero) na base 6-311++G(3d,3p). . . . . . . . . . . . . . . . . . . p. 158

60 Análises populacionais de Mulliken e APT. Resultados obtidos empre-

gando o método do funcional da densidade (DFT) de camada fechada

(spin igual a zero) na base 6-31++G(d,p). . . . . . . . . . . . . . . . . p. 159
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Appl. Phys. Lett 69, 1492 (1996).

[196] D. Moses, R. Schmechel, A. J. Heeger, Synthetic Metals 139, 807 (2003).

[197] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M.
L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science 294, 1488 (2001).

[198] P. H. Borse, D. Srinivas, R. F. Shinde, S. K. Date, W. Vogel, S. K. Kulkarni, Phys.
Rev. B 60, 8659 (1999).

[199] V. F. Agekyan, N. N. Vasil’ev, and A. Yu. Serov, Phys. Solid State 41, 41 (1999).

[200] T. T. Tominaga, H. Imasato, O. R. Nascimento, M. Tabak, Analytica Chimica Acta
315, 217 (1995).

[201] J. R. Pinheiro, E. W. S. Caetano, J. R. L. Fernandez, J. R. Leite, V. N. Freire, G.
A. Farias, M. C. F. de Oliveira, J. A. Pinheiro, B. S. Cavada, J. L. de Lima Filho,
H. W. Leite Alves, J. Phys. Chem., submitted for publication (2003).



472 Referências

[202] I. N. Levine, Quantum Chemistry, Prentice Hall, New Jersey, 2000.

[203] T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory, John
Wiley & Sons LTD., Chichester, 2002.

[204] W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory,
Wiley - VCH, Weinheim, 2002.

[205] A. R. Leach, Molecular Modelling - Principles and Applications, Pearson - Prentice
Hall, London, 2001.

[206] J. B. Foresman, Æ. Frisch, Exploring Chemistry with Electronic Structure Methods:
A Guide to Using Gaussian, Gaussian Inc., Pittsburgh, 1993.

[207] P. W. Atkins, Quanta - A Handbook of Concepts, 2nd Edition, Oxford University
Press, Oxford, 1991.

[208] J. P. Lowe, Quantum Chemistry, Academic Press, London, 1988.
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caṕıtulo quatro.

[251] J. A. Pople, R. Seeger, R. Krishnan, Int. J. Quant. Chem. Symp. 11, 149 (1977).

[252] R. Krishnan, H. B. Schlegel, and J. A. Pople, J. Chem. Phys. 72, 4654 (1980).

[253] K. Raghavachari, J. A. Pople, Int. J. Quant. Chem. 20, 167 (1981).

[254] J. B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch, J. Phys. Chem. 96,
135 (1992).

[255] D. Hegarty, M. A. Robb, Mol. Phys. 38, 1795 (1979).

[256] R. H. E. Eade, M. A. Robb, Chem. Phys. Lett. 83, 362 (1981).

[257] H. B. Schlegel, M. A. Robb, Chem. Phys. Lett. 93, 43 (1982).

[258] F. Bernardi. A. Bottini, J. J. W. McDougall, M. A. Robb, H. B. Schlegel, Far.
Symp. Chem. Soc. 19, 137 (1984).

[259] N. Yamamoto, T. Vreven, M. A. Robb, M. J. Frisch, H. B. Schlegel, Chem. Phys.
Lett. 250, 373 (1996).

[260] M. J. Frisch, I. N. Ragazos, M. A. Robb, H. B. Schlegel, Chem. Phys. Lett. 189,
524 (1992).

[261] F. Bernardi, A. Bottoni, M. J. Field, M. F. Guest, I. H. Hillier, M. A. Robb, A.
Venturini, J. Am. Chem. Soc. 110, 3050 (1988).

[262] F. Bernardi, A. Bottoni, M. Olivucci, M. A. Robb, H. B. Schlegel, G. Tonachini, J.
Am. Chem. Soc. 110, 5993 (1988).

[263] F. Bernardi, A. Bottoni, M. A. Robb, A. Venturini, J. Am. Chem. Soc. 112, 2106
(1990).

[264] F. Bernardi, M. Olivucci, I. Palmer, M. A. Robb, J. Org. Chem. 57, 5081 (1992).

[265] I. J. Palmer, F. Bernardi, M. Olivucci, I. N. Ragazos, M. A. Robb, J. Am. Chem.
Soc. 116, 2121 (1994).

[266] G. Tonachini, H. B. Schlegel, F. Bernardi, M. A. Robb, J. Am. Chem. Soc. 112,
483 (1990).

[267] T. Vreven, F. Bernardi, M. Garavelli, M. Olivucci, M. A. Robb, H. B. Schlegel, J.
Am. Chem. Soc. 119, 12687 (1997).



Referências 475

[268] T. J. Martinez, E. A. Carter. J. Chem. Phys. 102, 7564 (1995).
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[314] C. van Wüllen, J. Chem. Phys. 105, 5485 (1996).

[315] S. W. Rick, S. J. Stuart, B. J. Berne, J. Chem. Phys. 101, 6141 (1994).

[316] J. G. Kirkwood, J. Chem. Phys. 2, 351 (1934).

[317] L. Onsager, J. A. Chem. Soc. 58, 1486 (1936).

[318] M. W. Wong, M. J. Frisch, K. B. Wiberg, J. Am. Chem. Soc. 113, 4776 (1991).

[319] M. W. Wong, K. B. Wiberg, M. J. Frisch, J. Am. Chem. Soc. 114, 523 (1992).

[320] M. W. Wong, K. B. Wiberg, M. J. Frisch, J. Chem. Phys. 95, 8991 (1991).

[321] M. W. Wong, K. B. Wiberg, M. J. Frisch, J. Am. Chem. Soc. 114, 1645 (1992).



Referências 477

[322] J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, M. J. Frisch, J. Phys.
Chem. 100, 16098 (1996).

[323] S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys. 55, 117 (1981).

[324] S. Miertus, J. Tomasi, Chem. Phys. 65, 239 (1982).

[325] M. Cossi, V. Barone, R. Cammi, and J. Tomasi, Chem. Phys. Lett. 255, 327 (1996).

[326] M. T. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys. 107, 3032 (1997).

[327] V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys. 107, 3210 (1997).

[328] M. Cossi, V. Barone, B. Mennucci, J. Tomasi, Chem. Phys. Lett. 286, 253 (1998).

[329] V. Barone, M. Cossi, J. Tomasi, J. Comp. Chem. 19, 404 (1998).

[330] V. Barone, M. Cossi, J. Phys. Chem. A 102, 1995 (1998).

[331] B. Mennucci, J.Tomasi, J. Chem. Phys. 106, 5151 (1997).

[332] J. Tomasi, B. Mennucci, E. Cancès, J. Mol. Struct. (Theochem) 464, 211 (1999).

[333] B. Mennucci, E. Cancès, I. Tomasi, J. Phys. Chem. B 101, 10506 (1997).

[334] R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A 103, 9100 (1999).

[335] M. Cossi, V. Barone, M. A. Robb, J. Chem. Phys. 111, 5295 (1999).

[336] R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A 104, 5631 (2000).

[337] M. Cossi, V. Barone, J. Chem. Phys. 112, 2427 (2000).

[338] M. Cossi, V. Barone, J. Chem. Phys. 115, 4708 (2001).

[339] M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Chem. Phys. 114, 5691 (2001).

[340] M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 117, 43 (2002).

[341] K. B. Wiberg, T. A. Keith, M. J. Frisch, M. Murcko, J. Phys. Chem. 99, 9072
(1995).

[342] F. Eckert, A. Klamt, AIChE J. 48, 369 (2002).

[343] A. Klamt, V. Jonas, T. Burger, J. C. W. Lohrenz, J. Phys. Chem. A 102, 5074
(1998).

[344] A. Baldereschi, Phys. Rev. B 7, 5212 (1973).

[345] J. F. Janak, in Computational Methods in Band Theory, editado por P. M. Marcus,
J. F. Janak e A. R. Williams, Plenum, New York, 1971, pp. 323-339.

[346] J. Moreno, J. M. Soler, Phys. Rev. B 45, 13891 (1992).

[347] G. Gilat, J. Comput. Phys. 10, 432 (1972).



478 Referências

[348] G. Gilat, Methods Comput. Phys. 15, 317 (1976).

[349] A. H. MacDonald, S. H. Vosko, P. T. Coleridge, J. Phys. C: Solid State Phys. 12,
2991 (1979).
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[382] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

[383] G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999).

[384] N. A. W. Holzwarth, G. E. Matthews, A. R. Tackett, R. B. Dunning, Phys. Rev. B
55, 2005 (1997).

[385] C. P. Slichter, Principles of Magnetic Resonance, Third Ed., Springer Verlag, Berlin,
1996.

[386] F. Mauri, B. G. Pfrommer, S. G. Louie, Phys. Rev. Lett. 77, 5300 (1996).

[387] T. Gregor, F. Mauri, R. Car, J. Chem. Phys. 111, 1815 (1999).

[388] G. B. Bachelet, D. M. Ceperley, M. G. B. Chiocchetti, Phys. Rev. Lett. 62, 2088
(1989).
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Apêndice – Unidades Atômicas

O sistema de unidades atômicas baseia-se no sistema gaussiano e usa a massa do

elétron, me, como unidade de massa. A unidade de carga é a carga do próton, e e a

unidade de momento angular é ~. Não se deve confundir a unidade de massa do sistema

de unidades atômicas com a unidade de massa atômica (1/12 da massa do átomo de 12C).

A unidade de comprimento é igual ao raio de Böhr, a0 e a unidade de energia é o hartree,

que equivale a −1/2 da energia do átomo de hidrogênio do estado fundamental, EH
0 (−1

vezes esta energia fornece outra unidade, o Rydberg: Ry). A tabela a seguir apresenta

alguns fatores de conversão do sistema de unidades atômicas para o sistema internacional.

Tabela 73: Conversão de unidades atômicas para o SI.

Alguns fatores adicionais: uma unidade de comprimento é igual a 0.52918 Å. Uma

unidade atômica de momento de dipolo é igual a 2.5418 Debyes (D) e uma unidade atômica

de energia é igual a 27.21138 eV, ou 627.5095 kcal/mol. A unidade atômica de tempo é

igual a 2.418884 x 10−17 s.

A Eq. de Schrödinger (dependente do tempo) mais simples para o átomo de hi-

drogênio, que no SI é dada por:
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− ~
2

2me

∇2Ψ − e2

4πε0r
Ψ = i~

∂Ψ

∂t
, (1)

passa a ser escrita como:

−1

2
∇2Ψ − 1

r
Ψ = i

∂Ψ

∂t
. (2)

Note-se que 1
4πε0

= 1 hartree.bohr/ (carga protônica)2.

Para finalizar, temos uma pequena tabela com fatores de conversão para energia:

Tabela 74: Fatores de conversão para energia.


