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Resumo

Nesta dissertacao, apresentamos uma abordagem distribuida para a
estimacao e deteccao de dados para uplink em uma rede que emprega
CDMA nos transmissores (usuarios). A rede analisada pode ser representada
por um grafo sem direcao e conectado, em que os nés fazem uso de um
algoritmo de estimacao distribuida baseado em consenso médio para realizar
a estimacao conjunta de simbolos transmitidos e do canal, utilizando um
receptor baseado em processamento tensorial. O receptor centralizado,
operando em uma Estacao Radio Base central, e o receptor distribuido,
operando em Micro Estacoes Radio Base, tém seus desempenhos comparados
em uma rede heterogénea. Em seguida, considerando-se uma rede assistida
por repetidores, dois receptores tensoriais sao propostos. Neste caso, fazemos
uso de um processamento de sinais colaborativo entre os repetidores para a
recuperacao da informacao transmitida pela fonte, antes de ser encaminhada
para estacao radio base fazendo uso do protocolo Decode-and-Forward. O
primeiro receptor € baseado na transmissao nao codificada do tensor de dados
reconstruido pelos repetidores a partir da estimacao de suas matrizes fatores.
O segundo considera uma codificacao tensorial dos simbolos previamente
estimados nos repetidores antes da transmissao para estacao radio base.
Os diferentes receptores propostos sdao comparados através de simulacoes

computacionais em termos de convergéncia e taxa de erro de bit.

Key-words: Consenso médio, repetidores, decomposicao tensorial, CDMA.



Abstract

In this dissertation, we present a distributed data estimation and detection
approach for the uplink of a network that uses CDMA at transmitters (users).
The analyzed network can be represented by an undirected and connected
graph, where the nodes use a distributed estimation algorithm based on
consensus averaging to perform joint channel and symbol estimation using a
receiver based on tensor signal processing. The centralized receiver, developed
for a central base station, and the distributed receiver, developed for micro
base stations, have their performances compared in a heterogeneous network.
Then, two tensor-based receivers are proposed to be used in a relay-assisted
network. In this case, the proposed receiver makes use of collaborative signal
processing among relays to recover sources information before forwarding to
the base station using a Decode-and-Forward protocol. The first receiver is
based on the uncoded transmission of the tensor data reconstructed by the
relays from the estimation of their factors matrix. The second one considers
a tensor encoding of symbols estimated at the relays before transmission to
the base station. The different proposed receivers are compared by means of

computer simulations in terms of convergence and bit error rate.

Key-words: Consenso average, relays, tensorial decomposition, CDMA.
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Capitulo

Introducao

A popularizacao de tecnologias de transmissao sem-fio, em especial a
telefonia movel, tem sido o motivo da criacao de novos servicos e aplicacoes.
Estes, por sua vez, geram a necessidade de obtencao de altas taxas de
transmissdao de dados e o desenvolvimento de sistemas mais confiaveis e
resistentes a falhas e erros. Observando atentamente o caso da telefonia
movel, grandes distancias e construcoes cada vez maiores aumentam o
desvanecimento do sinal, que aliado as altas densidades de usuarios,
dificultam a decodificacao e separacdo de fonte. Mesmo que se pense em
aumentar o numero de Estacoes Radio Base (ERBs) para melhorar a cobertura
e diminuir as distancias entre usuarios e ERB, ha varios fatores quem
impedem a execucao desta solucao: aumento nos custos por bit enviado, altos
custos de instalacao e manutencao das estacoes novas, falta de espaco fisico
para instalacao, etc.

Uma técnica possivel para mitigar estes problemas sem necessitar do
aumento do numero de ERBs € a utilizacao de repetidores. Estes
necessitariam de menos recursos para instalacao e manutencao por serem
equipamentos mais simples do que os existentes nas ERBs € mesmo assim
poderiam assistir aos usuarios em suas transmissoes [1]. Outra possibilidade
seria a utilizacao Micro Estacoes Radio Base (micro-ERBs) para fornecer uma
cobertura mais orientada para as zonas deficientes enquanto a ERB fornece
uma vasta cobertura [2].

Nos ultimos anos, o desenvolvimento em Rede de Sensores Sem-Fio (RSSF)
para monitoramento colaborativo, processamento de informacao e controle
tem atraido atencdo consideravel do meio cientifico. Especificamente, uma
RSSF pode operar de forma autonoma, i.e. sem um centro de fusao que
coleta e processa as medi¢coes/informacoes, € mesmo assim apresentando
propriedades desejaveis, tais como robustez a falha de né6 [3]. Com a nao

existéncia de uma central de controle, ha a necessidade de cooperacao entre os



nos da rede para estimar/detectar um parametro comum do sistema ou para
tomar decisdes confiaveis e, com a finalidade de manter acées coordenadas
entre os diferentes nos, a troca de informacao local ¢ também necessaria. O
conceito de consenso médio (CA, do inglés Consensus Averaging) € usado para
alcancar a cooperacao.

Ao se observar o downlink em uma RSSF, um problema de consenso
distribuido pode ser util quando os nés da rede possuem interesse em
uma mensagem comum enviada por um transmissor remoto, mas cada no
possui hardware e recursos limitados, tornando-se incapaz de decodificar
a mensagem individualmente [4]. Nas duas ultimas décadas, alguns
pesquisadores tém realizado estudos sobre problemas de consenso distribuido
aplicados a sistemas de comunicacao [4-6]. Varios estudos tedricos tém
sido desenvolvidos sobre o problema de decodificacao iterativa de mensagens
comuns enviadas através de canais de transmissao a um par de noés, por
exemplo, em [6]. Alguns autores desenvolveram métodos para a estimacao
cooperativa entre mais de dois nos ponderando as informacoes recebidas pelos
nos vizinhos [4, 5, 7-9]. Um método para obtencao dos pesos otimos para as
conexodes entre vizinhos com a finalidade de obter uma rapida convergéncia do
sistema foi proposta em [7]. Problemas envolvendo Consensus Averaging (CA)
com falhas aleatorias nos links foi abordado em [9, 10], no quais os autores
assumiram que as trocas entre os nos eram livres de ruido. Em [5] foram
realizados estudos sobre a demodulacao, deteccao e estimacao utilizando
problemas Consenso Médio em Unica Iteracao (CA-SI) e uma variacao baseada
no método dos multiplicadores (CA-MoM), no qual os autores consideraram
ambos os algoritmos robustos a falha aleatéria de n6 e ruido nas trocas de
informacao.

A utilizacdo de ferramentas de algebra tensorial em sistemas de
comunicacao tem crescido ultimamente sendo aplicada para equalizacao
cega em sistemas multiusuario [11, 12] e em problemas envolvendo redes
cooperativas sem-fio utilizando protocolo cooperativo [13-15]. Em [13] €
proposta uma técnica supervisionada para um sistema de multiplas antenas
(MIMO) com repetidores bidirecionais, com os nos repetidores podendo operar
com multiplas antenas, explorando a reciprocidade do canal o que torna dificil
sua aplicacao em sistemas MIMO com repetidores unidirecionais. Um receptor
cego utilizando o algoritmo Levenberg-Marquardt foi proposto em [14]. Um
modelo unificado para receptores cegos em redes cooperativas € proposto em
[16] possuindo como dimensoes exploradas pelo tensor as antenas receptoras,
os ramos de cooperacao e o periodo de simbolo. Um receptor distribuido

baseado em tensor € proposto por [17] para a estimacao e detec¢cao conjunta



de canal e simbolo, respectivamente, em uma RSSF na qual faz-se o uso de
Multiplo Acesso por Divisao de Codigo de Sequéncia Direta (DS-CDMA).
Nesta dissertacao € apresentada uma abordagem de estimacao e deteccao
de dados de maneira distribuida para o uplink de uma rede celular
multiusuario que emprega Multiplo Acesso por Divisao de Codigo (CDMA)
nas fontes transmissoras (usuarios) e estimacdo por consenso distribuido
nos nos intermediarios (repetidor/micro-ERB). Os noés intermediarios devem
cooperar entre si para recuperar os dados enviados pelos usuarios sem a
ajuda da ERB. Para a realizacao do processamento distribuido € utilizado
o algoritmo distribuido de minimos quadrados alternados (D-ALS, do inglés
Distributed Alternating Least Squares) [17] que explora o modelo PARAllel
FACtor (PARAFAC) [18, 19] do conjunto de dados recolhidos pela rede. Ao
utilizar o sistema com as micro-ERBs, assumimos que estas possuem ligacao
direta com a central de comutacao nao havendo a necessidade de envio das
informacoes obtidas para a ERB central. Por outro lado, os repetidores nao
possuem ligacao direta com a central de comutacao, assim faz-se necessario
o envio das informacdes por eles estimadas e detectadas para a ERB central.

Este documento esta organizado da seguinte forma:

Capitulo 2 - este capitulo fornece a base tedrica utilizada na metodologia
deste trabalho. Serao apresentados conceitos basicos de algebra
multilinear, de decomposicoes tensoriais e da técnica de Consensus
Averaging. Trabalhos relacionados ao tema serao descritos neste

capitulo.

Capitulo 3 - apresenta o modelo de receptor distribuido utilizando
decomposicao tensorial proposto em [17]. Os resultados obtidos por este
receptor serao apresentados em diferentes configuracées de topologia,
numero de antenas receptoras e de iteracoes de consenso com o objetivo

de amparar os resultados do Capitulo 4.

Capitulo 4 — neste capitulo sao formulados dois receptores baseados em
decomposicoes tensoriais a serem utilizados em uma rede auxiliada por

repetidores.

Capitulo 5 — neste capitulo serao apresentadas as conclusoes e perspectivas

para trabalhos futuros.



Capitulo

Revisao de Literatura

Este capitulo ira apresentar os conceitos basicos utilizados para o
desenvolvimento deste trabalho. Primeiro, sera feita a exposicao dos
fundamentos de algebra multilinear bem como as decomposicoes TUCKER-3 e
PARAFAC. Em seguida, sera feita uma revisao matematica sobre CA e critérios

de convergéncia.

2.1 Algebra Multilinear

—
Modelos matematicos de sistemas reais, como circuitos elétricos, sao

obtidos com o uso da algebra linear no qual os estados dos sistemas
serdo armazenados em vetores ou matrizes. Assim, pode-se fazer uso
das decomposicoes matriciais, e.g. decomposicao em autovalores (EVD,
do inglés EigenValue Decomposition) € decomposicao em valores singulares
(SVD, do inglés Singular Value Decomposition) entre outras, para obter as
informacoes desejadas do estado do sistema. Contudo, esta abordagem
permite a manipulacao de apenas duas diversidades simultaneamente [20],
e.g. simbolos e usuarios em um sistema de comunicacao. Para representacoes
de problemas com um maior grau de diversidade, i.e. simbolos, usuarios e
codigos, faz-se necessario o uso de estruturais matriciais multidimensionais.
Embora a terminologia "tensor" possua distintas definicoes dependendo do
dominio cientifico no qual € empregada, adotaremos a definicao utilizada
na quimiometria e processamento de sinais a qual aborda tensores como
sindnimos de arranjos, ou ordenamentos multidimensionais de dados [21-23].
Assim, um tensor de 2* ordem € uma matriz e um tensor de 1? ordem € um
vetor. Um tensor de 3* ordem pode ser representado por um paralelepipedo

como mostra a Figura 2.1.
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Figura 2.1: Representacao grafica de um tensor de 3* ordem.

2.1.1 Conceito Basico e Operacoes

Algebra multilinear é um ramo da algebra linear a qual estuda os tensores
de ordem superior a dois. As operacoes e decomposicoes envolvendo tensores
podem ser vistas como generalizacoes destas quando os fatores sao matrizes.
Seja X ¢ Clr*I2>xIxn ym tensor de N-ésima ordem, podemos representar o seu

(11,19, ...,iy)-ésimo componente escalar como

Liysig,vin = [X]h,iz,...,iw (2.1)

no qual i,|,—12. n €sta associado a n-ésima dimensao do tensor X. Algumas
definicoes sobre tensores e produtos matriciais necessarios para esta

dissertacao sao apresentadas a seguir e foram baseadas em [20, 22, 24].

Definicao 2.1 (Produto Interno) - Sejam X e Y dois tensores de N -ésima ordem

posstuidores das mesmas dimensoées, o produto interno entre eles é definido por:

I I In

(X, y> = Z Z T Z Liyig,..inYitin,.in (2.2)

i1=112=1 in=1
De forma andloga ao produto interno matricial, os tensores X e ) sao
considerados mutuamente ortogonais se (X,Y) = 0.

Definicdao 2.2 O produto externo entre dois tensores X € Clixlzx-xIv ey ¢

C/rxJ2x-xInv de N-enésima e M-ésima ordem, respectivamente, é obtido por

(X0 Vi i2,.viin it dasing = Titsigseensing Yt dzing - (2.3)

Assim o produto externo entre dois tensores tem como resultado um outro tensor
no qual a ordem (M + N) é a soma das ordens dos dois tensores argumentos.
Podemos ver a equacao (2.3) com uma generalizacao do produto interno entre

dois vetores cujo resultado é uma matriz, i.e. um tensor de 2% ordem.
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Definicao 2.8 O rank de um tensor X € Ch*I2x-xIx corresponde ao menor
numero de tensores de rank-1 necessdrios para formar o tensor X através de
combinacdo linear. Se X for um tensor de rank-1, podemos afirmar que ele pode
ser obtido através do produto externo entre N vetores como

X=wDow®@Do...owh (2.4)

)

em que w) € CI¥Y,_ 5 .

Definicao 2.4 (Slice) - Ao fixarmos uma dimenséao n qualquer de um tensor
de 3% ordem, obtemos uma matriz denominada fatia (do inglés slices) modo-n.

Assim os slices de um tensor qualquer X ¢ C'*2*Is  (ver Figura 2.2) sdo

X, liy=12...1, matrizes slices modo-1, (2.5a)
X i.|is=1,2,..1, Mmatrizes slices modo-2, (2.5b)
X islig=1,2,..1, matrizes slices modo-3. (2.5¢)
Slices modo-1 Slices modo-2 Slices modo-3
le XZQ ng

X i

Figura 2.2: Slices de um tensor de 3* ordem.

Definicao 2.5 (Matriciacao) - Seja X ¢ C*2xL ym tensor qualquer de 3%
ordem, é possivel obter uma _forma matriciada no modo-n de X ao empilharmos

as matrizes slices modo-n como

(X, | (X, | (X, |
X, X, X
X = ) , Xy = ] , X3 = , (2.6)
X, | X X, |

com X, € Chbxls X, ¢ CPkIxh e X; ¢ CBI*2 representando as formas
matriciadas no modo-1, modo-2 e modo-3 respectivamente. Podemos afirmar
que toda a informacao que o tensor X possuia estd contida em qualquer uma
destas trés formas matriciadas, as quais diferem apenas na forma como a

informacao esta organizada. Esta organizacao dos dados de um tensor em
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Jforma matricial permite um maior desempenho computacional ao realizarmos
operacées matemadticas [25]. A obtencdao das formas matriciadas de um tensor
nao possui um método tnico [20]. O método utilizado neste trabalho é o mesmo
abordado em [23].

Definicdo 2.6 A norma de Frobenius de um tensor X ¢ C''*2xxIx ¢ obtida de

Jorma andloga a mesma opera¢ao em uma matriz como

Iy I In

HXHF Y, <X7X> = ZZ Z ‘x|z21,i2 ..... in (2.7)

i1=1142=1 in=1
Definicao 2.7 (Produto modo-n) - Podemos realizar operacées de multiplicacéo
entre uma matriz e um tensor, contudo a segunda dimensao da matriz (numero
de colunas) deve ser igual a alguma dimensao do tensor. Este produto recebe
a denominacdo de produto modo-n. Assim, seja X ¢ Ci*2x>xIn ym tensor de
N-ésima ordem e A € C/»*I», O produto modo-n entre X e A, simbolizado por
X x, A, é

In
[X Xn A]h,iQ,...,in_l,jn,i,L+1 ..... iN — E Ti1inyein—1yinint1sin Vin,in - (2.8)

in=1
O resultado de um produto modo-n possui a mesma ordem do tensor original,
com a nova n-ésima dimensdao igual a J,. O produto modo-n também é
denominado de operador TUCKER [22].

Definicao 2.8 O produto de Kronecker entre duas matrizes quaisquer A € C'*/

e B € CK*L ¢ simbolizado por A ® B, e é descrito por

aHB CL1JB
A®B= : : € CIExIL, (2.9)
a,le a[JB

Definicao 2.9 O produto de Khatri-Rao entre duas matrizes A € C'*7 e BK*/,

simbolizado por A < B, é dado por:

A<>B2|:al®b1 a2®b2...aj®bJ]€CUXJ (210)

emquea; eb; paraj=1,2,...,J sao as colunas das matrizes A e B. O produto
de Khatri-Rao também pode ser escrito como

B diag(A, )

AoB = (2.11)

B diag(A.)
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com diag(-) representando uma matriz diagonal construida a partir de seu vetor

argumento.

Definicao 2.10 (Produto de Hadamard) - O produto elemento-a-elemento entre
duas matrizes A € C*/ e B € C!¥, também conhecido como produto de

Hadamard é representado por

ai1bin apabin ... alJbU
AxB— a21‘b21 a22‘622 . a2J.b2J (2.12)
_Cmbn arbre ... CLIJbIJ_

2.1.2 Decomposicoes tensoriais

A primeira ideia a respeito de decomposicoes tensoriais foi apresentada
por Hitchcock [26]. Contudo, seu desenvolvimento s6 foi exposto apoés
alguns anos por Cattel [27] em 1944 e Tucker [28]. Em 1970, duas
decomposicoes obtiveram um grande atencdo da comunidade cientifica por
possuirem critérios de unicidade bem definidos. Estas decomposicoes,
Canonical Decomposition (CANDECOMP) e PARAFAC, foram apresentadas por
Carrol & Chang [19] e Harshman [18], respectivamente. As decomposicoes
CANDECOMP e PARAFAC sao semelhantes, embora o desenvolvimento de
ambas tenha ocorrido de modo independente entre os autores. Apesar
dos trabalhos citados terem o enfoque na psicometria, atualmente sao

amplamente utilizados em outras areas como processamento de sinais.
2.1.2.1 TUCKER-3

Desenvolvida por Ledyard Tucker [28], a decomposicao TUCKER baseia-se
em fatorar um tensor de dados em um outro tensor transformado por
uma matriz através de suas dimensoes. Assim, podemos representar
matematicamente um tensor de 3* ordem X < Ch*2xIs  conhecido por

TUCKER-3, utilizando o produto modo-n, como na Definicao 2.7, por

X =G x, U x, U? x, UG, (2.13)

com UW ¢ Chxf Ul ¢ Clxf e U® ¢ Ch*F sao conhecidas pela
denominacao de matrizes fatores e G € CF>*f2xf como tensor nucleo da
decomposicao.

A representacao escalar da decomposicao TUCKER-3 € dada

R1 R2 Rs3

1 2 3
xi17i27i3 = Z Z Z gT‘l,T2a7"3u§1,)T1ugg,)rgugg,)rg,' (2‘14)

ri=1ro=1r3z=1
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Podemos representar um tensor TUCKER-3 por sua matrizes slices. Para

isso € necessario rescrever (2.14) como

Liyinyis = (Z Gry,ror3U ZlJ‘l) Z Z 1277"2 1377"3 (215)

r1=1 ro=1rz=1
definindo assim uma combinacao equivalente entre o nucleo e a matriz fator

do modo-1 por

21 7“2 r3 Z gT17T27T3 11 7"1 - [g X1 U ]217T27T37 (216)

ri=1

1
com wfl)m ., sendo o componente escalar do tensor transformado W ¢
Chxf2xlis - Desta forma podemos obter a i-ésima matriz slice de X por uma
combinacio entre as matrizes fatores U® e U® com a i-ésima matriz slice do
tensor W como

X,

i1..

—UuOwHu®". (2.17)

Para a obtencao dos outros slices utilizaremos o mesmo método sobre (2.14)

para determinar

T1,22,T3 E :grl,mﬂ“s ZQ,T‘Q? rl,rQ,zg § Gr1,re,r3U 23 7“3’ (2.18)

ro=1 rg=1

como componentes escalar dos tensores transformados W® ¢ CFixbxfs ¢
WO ¢ Clfhixlzxls respectivamente e, de forma semelhante a aplicada em (2.17)

temos

X, =U® WZQ UT gy =1,..., I, (2.19)

X, =UOWOUR" =1 (2.20)

Ao utilizarmos (2.17), (2.19) e (2.20), podemos expressar as formas

matriciadas X;, X, e X3 por

X; = (UY @ UG, Uu®" (2.21a)
X, = (U? @ UB)G,uWT (2.21b)
X; = (U® @ U)G,Uu?" (2.21¢)
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com G, € Cliaxls G, ¢ CRlisxf ¢ Gy € CH3fixf2 gendo as formas matriciadas
do tensor nucleo G seguindo a Definicao 2.5.

A decomposicao TUCKER nao possui unicidade quando nao ha
conhecimento de nenhuma de suas matrizes fatores e/ou do tensor nucleo.
Este fato ocorre devido a possibilidade de suas matrizes fatores sofrerem
rotacoes que, quando compensadas pelo novo tensor nucleo, reconstroem o
mesmo tensor original [29]. De forma a atingir a unicidade, podemos inserir
algumas restricoes no tensor nucleo, como o conhecimento de posicoes cujos
elementos sao nulos ou o conhecimento do proéprio tensor nucleo, como ¢é
o caso de aplicacoes em sistemas de comunicacoes MIMO, em que o tensor
nucleo pode modelar uma estrutura de codificacao do sinal, a qual € conhecida

pelo sistema (transmissor e receptor) [20].
2.1.2.2 PARAFAC

Podemos decompor um tensor de 3* ordem X ¢ Cli*2*L ysando a
decomposicao PARAFAC [18], também conhecida como CANDECOMP [19],

com sua forma escalar como

R
Livizis = Z Ugll,)rug,)ruig,)m (2.22)

r=1
onde UW = [q;,,] € CI*E U® = [p,,] € C2*F e U® = [¢,,] € C*F sdo as

matrizes fatores do tensor X'. Ao compararmos (2.22) com (2.14) podemos ver
que a decomposicdao PARAFAC é um caso especifico de uma decomposicao
TUCKER-3 no qual o tensor nucleo G € CH**E possui a super-diagonal
principal com elementos iguais a 1 enquanto o restante dos elementos seriam

0. Podemos fazer esse comparativo por

R R R

- Z Z 297"17"27"3 Z17"1 127)"2u§§7)"3

ri=1ro=1r3z=1

Ly igyis

- Zgwr“m 133 (2.23)

com g, = 1 para todo r, o que permite simplificar (2.23) para (2.22).
A decomposicao PARAFAC de um tensor de 3° ordem em R componentes €
ilustrada na Figura 2.3.

As matrizes slices do tensor X', como descrito na Definicao 2.4, podem ser
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L X

Figura 2.3: Decomposicao PARAFAC de 3% ordem.

expressas por [20,23]

X,, = UP diag(UUOT 4, =1,..., 1,
X, = U® diag(UYUVT 4y =2, 1,

7

2
X i, = U diag(UHU" iy =1,..., Iy

(2.244a)
(2.24Db)
(2.24c¢)

De acordo com a Definicao 2.5 e usando (2.11), obtemos as formas matriciadas

do tensor X':

(U diag(UMUOT]  [UO diag(UV)]

X, _ U@ diag(.Ug))U(?’)T _ u® difg(Ug)) UGT = (UW o U UGT (2.25a)
U diag(UYUBT | | UG diag(U)
(U® diag( U2y UOT|  [US diag(U?)]

X, u® diag(.Ug))U(l)T _ u® diafg(Ug)) U — (U@ s UG ULT (2.25b)
_U(g) diag(Ug?)U(l)T_ _U(?’) diag(Uﬁ?)_
(U0 diag( UM U™ [UO diag(UP)]

X, uw diag(.Ug_)’))U@)T _ uw diafg(Ug’)) U@ — (U® o UMYUT (2.25¢)
UO diag(UR)UDT | | U diag(UF) |

em que X, € Chlxls X, ¢ Cl2lsxhi e X, € CBIixIz,

A popularidade da decomposicao PARAFAC deve-se as propriedades de
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unicidade desta decomposicao. Em 1977 Kruskal [30] obteve a condicao
suficiente para atingir a unicidade em tensores de 3% ordem cujos elementos
sdo numeros reais, a qual foi denominada condicao de Kruskal em sua
homenagem. Apods mais de duas décadas, foi obtida a generalizacao para o
conjunto dos numeros complexos [12] e para tensores de ordem superior a
3 [31].

Definicdo 2.11 O Rank de Kruskal (k-rank) de uma matriz A € C*/ é o
numero maximo r para o qual todo conjunto de k colunas seja linearmente

independentes.

Teorema 2.1 (Unicidade) Para que seja obtida unicidade para uma
decomposicao PARAFAC deve-se garantir que a soma dos ranks das matrizes

Jfatores obedeca a inequacao dada

K1+ Ko + kg > 2(R + 1), (226)

COM K1, Ky € K3 0 k-rank das matrizes fatores UM, U® e U® respectivamente.
Ao se respeitar essa condicdo é possivel obter matrizes fatores tinicas UV, U®
e U® que sé diferem das originais por fator de escala e permutacdo em suas

colunas. Assim podemos afirmar que

U =unA,, U® =u®naA,, U® =U®IIA,, (2.27)

em que A, A, e Az sao matrizes diagonais R x R que possuem os fatores de
escala das matrizes UV, U? e U®), respectivamente, com A1 A,A; = 1y, eIl
é uma matriz de permutacao R x R. Assim, caso as matrizes fatores possuam

rank completo a condigcao descrita por (2.26) pode ser reescrita como
min(/y, R) + min(ly, R) + min(l3, R) > 2(R+ 1) (2.28)

2.2 Técnica de Consenso Médio para Estimacao Distribuida
]

Na década de setenta, DeGroot [32] apresentou um algoritmo CA que

descrevia, em um sistema invariante no tempo, a possibilidade de um
grupo chegar ao consenso sobre um determinado parametro reunindo o
valor inicial deste parametro em cada componente do grupo. Posteriormente
essa abordagem foi expandida para os sistemas variantes no tempo [33, 34].
Este algoritmo baseia-se em trocas iterativas entre os elementos do grupo
para a estimacao de parametros comuns a eles, os quais também sao

denominados de variaveis de consenso. Contudo, deve-se observar a condicao
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de convergéncia necessaria para que o algoritmo atinja a convergéncia em

todos os elementos do grupo.
2.2.1 Condicao de Convergéncia

O grupo descrito por DeGroot [32] pode ser representado como um grafo
conectado e sem direcao
G:={E, I} (2.29)

com I := {1,...,/} simbolizando o conjunto de nés do sistema, e E C {I x I}
€ o conjunto de arestas. Particularmente, o conjunto E relacionam as
conectividades entre os nés, definindo uma lista de nés vizinhos. Em outras
palavras, cada no possui sua lista de nos vizinhos em que N; C I € o conjunto
de nos vizinhos para o no «.

Ao consideramos um grafo como sem direcdo, estamos assumindo que os
pares de nos nao sao ordenados. Assim, sejam ¢ € j dois nés do conjunto
I, temos que a conexao para (i,j) € a mesma para (j,i) [35]. Um grafo é
considerado conectado, no sentido do espaco topologico, quando qualquer dois
pares de nos pertencentes ao grafo possam ser conectados através de um
caminho, existindo a possibilidade do uso de um caminho de multiplos saltos
[35].

Dado que cada né i possui um valor escalar z;(t)|,—o = x;(0) como estado
inicial, o grupo de valores iniciais do grafo pode ser organizado em um vetor
no tempo discreto ¢ denotado por x(t) = [z1(t),22(t),...,2;(t)]F. A equacado de

atualizacdo do consenso para x(¢) € dada por

zi(t+1) = waz; + Y wya;(t), parai € I (2.30)

JEN;
em que w;; € o peso da contribuicdo de z;(t) para com o né i. Assim,
ao assumirmos que w;; = 0 para j ¢ N;,, podemos escrever a equacao de

atualizacao do consenso utilizando o vetor x como

x(t+1) = Wx(t), (2.31)

com a matriz W € C*! sendo composta pelos pesos das contribuicées entre
0S Sensores.

Atendando-se para (2.31), podemos obter x(¢) a partir de um produto
recursivo da matriz de peso W com o estado anterior x(f) = Wx(¢ — 1). Assim

a relacdo do estado ¢ com o estado inicial € descrita como

x(t) = W'x(0). (2.32)
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Para que o sistema descrito em (2.32) convirja de um valor inicial x(0), x(t)

tem que convergir para a média do vetor a qual € descrita por

X = <1T@) 1= (1%@) : (2.33)

em que 1 representa um vetor em que todo elemento € igual a um. Obtendo o
limite de x(¢) temos

lim x(¢) = lim W'x(0) = ——x(0). (2.34)

t—00 t—o0 I
Podemos afirmar que, para qualquer matriz de pesos escolhida, a
convergéncia so sera alcancada se for obedecido
tlgélo W = 1TTI (2.35)
A partir de (2.35) Xiao & Boyd [7] obtiveram as condicdes necessarias e
suficientes para a convergéncia assintética em uma rede fixa. As provas da
obtencao das condicdes de convergéncia podem ser conferidas em [7]. Estas
condicoes sao

1TW =17, (2.364a)
Wi1-=1, (2.36b)

T
0 <W — %) <1, (2.36¢)

em que p(.) € o raio espectral da matriz argumento.

Ao analisarmos as condicoes (2.36), podemos obter algumas informacaées.
Podemos afirmar que 1 € o autovetor esquerdo de W associado ao autovalor 1
observando (2.36a). Desta maneira tanto a soma quanto a média, dos valores
contidos no vetor de nos € conservado em cada iteracao t. A equacao (2.36b)
afirma que 1 é o autovetor direito de W associado também ao autovalor 1 o
que significa que 1 € fixo durante a iteracao linear (2.32). Quando W respeita
as trés condicoes descritas em (2.36) podemos afirmar que 1 € um autovalor
da matriz W e que ele limita em magnitude os demais autovalores de W. Da
mesma forma, podemos afirmar que se W nao possui elementos negativos ela

sera uma matriz duplamente estocastica.
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2.2.2 Matriz de Peso Metropolis-Hastings

Existem inumeras matrizes W de pesos que obedecam os critérios de
convergéncia expostos em (2.36), mas cada escolha possui uma taxa de
convergéncia distinta [8]. Com o proposito de acelerar a convergéncia das
iteracoes de consenso, € importante realizar uma criteriosa escolha de W.

Visando a obtencido da matriz W, varios métodos foram criados. Em [7] os
autores formularam um método para selecao de pesos 6timos, contudo este
meétodo pode ser irrealizavel em redes grandes e dinamicas.

Para evitar este problema, consideramos que cada no calcula seu peso em
relacao ao no vizinho localmente. Para isto sera necessario que o n6é conheca
o numero de conexoes que seu vizinho possui, o qual denominamos grau de
conectividade. Esta abordagem € conhecida como peso Metropolis-Hastings,
ou peso dos graus locais. Logo, temos os elementos de W definidos por

1 o S,
= 7max{5i,5j}’ se (i,j) EEei#] | 2.37)

0, se (i,j) ¢Eei#j
em que J,(0;) representa o grau de conectividade do né i(j). De modo a
satisfazer as condicdes de convergéncia expostas em (2.36), o elemento w;;

€ calculado como

wi =1-Y wy. (2.38)

JCN;

2.3 Receptor Linear baseado em Consenso Médio
|

Nesta secao apresentaremos um receptor linear baseado em CA proposto

em [4,5]. Estes trabalhos consideram um sistema no qual ha um ponto de
acesso (AP) movel equipado com M antenas que transmitem M sequencias
de simbolos distintas para uma RSSF ad hoc composta por J sensores. Uma
ilustracao deste cenario € fornecida pela Figura 2.4. A informacao transmitida
pode ser organizada de forma a obtermos uma matriz S € CM*Y, cujas
entradas pertencem a um alfabeto finito A em que N é o numero de slots
de tempo. O bloco de dados recebidos no j-€ésimo sensor € representado por

y; € a relacao de entrada/saida (por sensor) €

y; =S"h; +¢; (2.39)

com h; € CM*! representando o canal de desvanecimento plano entre o AP e
0 sensor j, € € representa o ruido aditivo gaussiano branco (AWGN, do inglés

Additive White Gaussian Noise) no j-ésimo sensor. E assumido que AWGN é
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nao correlacionado entre os sensores. Além disso, assumimos que o alfabeto
de modulacao e a informacao de estado do canal (CSI, do inglés Channel State

Information) sao perfeitamente conhecidos.

AP

Figura 2.4: Downlink em uma RSSF.

Organizando os blocos de dados coletados por todos os sensores em um
unico vetor y := [le,yQT,...,yﬂT e definindo s = vec(S), onde o operador

vec() obtém um vetor empilhando as colunas da matriz argumento, obtemos a

relacao centralizada de entrada/saida por

y =Hs+e€ (2.40)
em que H = [H{ HI,. ..,H?]T, com H; = Iy @ h?, com Iy representando a
matriz identidade de dimensées N x N, e € := [e] €], .., eﬂT. A Figura 2.5

apresenta o diagrama de blocos de um receptor Zero Forcing (ZF). Assumindo
que o ruido € nao correlacionado em (2.40), o vetor de simbolos estimado por

um receptor ZF €

J
. . 2 . 2
Szr = arg min |ly — Hs||7 = arg min g 1 ly; — Hys||% - (2.41)
=

Yy Zero- S
Forcing

A

H

Estimacao
do
Canal

Figura 2.5: Diagrama de blocos do receptor ZF.
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O objetivo € determinar a informac¢ao minima suficiente que sera comutada
entre a vizinhanca de um unico salto para reduzir a sobrecarga na

comunicacao [5]. Podemos expandir (2.41) como

J
Szp = arg Isnein { (y]Tyj — ijHjs — STHJTyj + STHJTHjs) }

A
j=1
J J
— : T T T
= argmin {s <Z H] Hj> s —2 < H] yj> s} . (2.42)
j=1 i=1
Definimos a matriz de covariancia do canal como I'; := H/H; e o vetor de

covariancia cruzada entre o bloco recebido y; e o canal H; como ¢; := Hly,.

Isto permite que (2.42) possa ser reescrita como

J J
Szr = arg min {ST (2 1}-) 5 —2 <z; w) S} : (2.43)
Jj= Jj=

Deste modo, com o intuito de resolver (2.43) localmente, basta fazer com
que cada sensor adquira a média dos termos de covariancia e covariancia

cruzada, obtido por

J
==Y ¢, e r::%er. (2.44)
j=1

Neste contexto, o sistema passa a apresentar caracteristicas de consenso

~l=

distribuido. Logo, € possivel aplicar um algoritmo CA para a obtencao dos
valores médios de I' € ¢p. Na Figura 2.6 podemos ver o diagrama de blocos de

um receptor ZF distribuido.

Yk Algoritmo f; @ Zero- S
CA Forcing
H
Estimacao
Canal

Figura 2.6: Diagrama de blocos do receptor ZF distribuido.



Capitulo 3

Receptor Tensorial Distribuido
para Estimacao Conjunta de Canal

e Simbolos em uma HetNet

3.1 Modelo do Sistema

]
Consideramos o uplink em uma rede de comunicacao sem-fio na qual

exista uma ERB, ) usuarios co-canal e K micro-ERBs. Cada equipamento
de usuario e micro-ERB sao dispositivos de uma antena enquanto a ERB €
um dispositivo de K antenas. As micro-ERBs podem servir aos usuarios com
o objetivo de melhorar a performance, e.g., quanto a cobertura de célula e
capacidade do sistema [2]. A Figura 3.1 apresenta o uplink aqui descrito.

k

1 Link 1

Q

2 3

. &

Q<> Link 2

Usuarios

Ly

Micro-ERBs

Figura 3.1: Comunicacao multiusuario em uma HetNet.

18
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Assumimos que os usuarios podem se comunicar diretamente com a ERB
ou com as micro-ERBs. Embora seja de menor porte, as micro-ERBs possuem
as caracteristicas semelhantes as da ERB referentes a entrega da mensagem
dos usuarios ao seu destino, eliminando a necessidade comunicacao entre
micro-ERB e ERB. Os usuarios transmitem suas informacdes para as
micro-ERBs ou para as antenas da ERB utilizando CDMA através de um
canal com desvanecimento plano de Rayleigh com ruido do tipo AWGN. Para
que seja possivel a estimacao nas micro-ERBs, a cooperacao entre elas €
necessaria. As trocas de informacao entre as micro-ERBs sao consideradas
livres de ruido. O sinal banda base recebido por cada antena (a partir da ERB
ou micro-ERB) € amostrado a taxa de chip e decomposto em suas componentes
polifasicas. O sinal recebido pela k-ésima antena, no p-ésimo chip e no n-ésimo

simbolo é

Q
xk7p7n = Z hkvqcp7q8n7q7 (3‘ 1)
g=1

em que h;, € o coeficiente do canal entre o usuario ¢ € a antena k, c¢,, € s,
sao o codigo e o n-ésimo simbolo do usuario ¢, respectivamente. Por sua
vez, cada usuadrio codifica sua sequéncia de informacao [s, 4],—1,.. ~ usando o
codigo ¢, , antes da transmissao. Por comparacao entre (2.22) e (3.1), obtemos

as seguintes correspondéncias

(UW,U® U®) » (H,C,8S), (3.2a)
(11,12,13) <~ (K, P, N) (3.2b)

com H € CK*Q, C ¢ CP*? e S € CV*?, Consequentemente, por analogia com

(2.25), podemos obter as formas matriciadas de X € CE*P*¥ como

X, = (HoC)ST ¢ CKPN (3.3a)
X, = (CoS)H! € CPV*E, (3.3b)
X3 = (SoH)C? € CVEXP, (3.3¢)

O processamento tensorial pode ser realizado de duas maneiras distintas:
i) caso centralizado, com a ERB reunindo a informacao de todos os usuarios, e

ii) caso distribuido, em que as micro-ERBs realizam o processamento do sinal
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de forma distribuida. No primeiro caso, cada antena da ERB recebe uma coépia
de Xj. o que permite a ela reconstruir o tensor X para o processamento. No
ultimo, as micro-ERBs formam uma rede seguindo alguma topologia, na qual
estimaram X de forma distribuida. Em ambos os casos, a matriz de codigos C

€ assumida como conhecida.

3.2 Receptor Centralizado

|
Existem diversos algoritmos para estimacao das matrizes fatores de uma

decomposicao PARAFAC desde que seja respeitada a condicao de Kruskal
(Teorema 2.1). Como a matriz de codigo C € considerada conhecida, faz-se
necessario somente a estimacao das matrizes H e S, as quais podemos obter
ao explorarmos as formas matriciadas (3.3a) e (3.3b), respectivamente. Com
este objetivo, podemos utilizar o algoritmo bilinear de minimos quadrados
alternados (BALS, do inglés Bilinear Alternating Least Squares) que busca

minimizar de forma alternada as seguintes funcoes custo

~

S = argmin | X; — YST|2, (3.4a)
s

H = argmin || X, — ZH”|2, (3.4b)
H

emqueY = (HoC)eZ=(CoS). Na Figura 3.2 é apresentado o diagrama de

blocos do algoritmo.

X Estimacio dos S, A
: Simbolos :

~

A

Estimacao do .
Canal

Figura 3.2: Diagrama de blocos - BALS.

A convergéncia € alcancada quando as funcgées custo (3.4) na i-ésima
iteracao nao apresenta diferenca substancial em relacao ao seu valor obtido
na iteracao ¢ — 1. Existem diversos métodos para a obtencao inicial da matriz
H, e.g. o uso de decomposicoes em valores singulares de ordem superior
(HOSVD, do inglés Higher-Order Singular Value Decomposition). Objetivando a
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Tabela 3.1: Algoritmo PARAFAC - BALS

Passo 1: Define i=0;
Passo 2: Inicializa aleatoriamente H(i);
Passo 3: Define i =i+ 1;
Passo 4: Utiliza X; para encontrar uma estimativa de minimos
quadrados de S(i):
Y = (H(i—1)oC);
S(i) = [(YIY)Yix,]";
Passo 5: Utiliza X, para encontrar uma estimativa de minimos
quadrados de H(7):
Z = (CoS(i));
H = [(2"2)Z2"X,]";
Passo 6: Repetir os passos 3-5 até que seja atingido o critério de
convergencia.

simplicidade do algoritmo a matriz H foi inicializada de aleatoriamente.

3.3 Receptor Distribuido

]
O conjunto de dados recebidos pelas micro-ERBs nos permite obter

um tensor X que obedece as propriedades da decomposicao PARAFAC.
Contudo, isso ocorre somente quando analisamos os dados recebidos por
cada micro-ERB de forma centralizada, o que nao ocorre em nosso sistema.
Deste modo, cada micro-ERB possuira somente o sinal recebido em sua
antena, impedindo a decodificacao local. Deste modo, € requerida a troca
de informacoes entre as micro-ERBs de forma a permitir o processamento do
tensor recebido. O algoritmo aqui descrito € uma derivacao do proposto por
Kibangou & De Almeida em [17]. Assim, a informacao recebida pela k-ésima

micro-ERB pode ser interpretada como a k-ésima matriz slice do tensor X

dada por
Te11 Tk12 -+ LTEIN
Tk21 Lk22 --- TgaN
Xp. = | . o et (3.5)
Tk,p1 TgpP2 --- LkPN

Para que seja possivel a realizacao do processamento nas micro-ERBs, ¢é
necessario que estas troquem, entre si, informacoes que as permitam estimar

as matrizes H e S. Usando (2.11) e a propriedade da norma de Frobenius

K
1X: ... Xgll% = > | X% [36], é possivel reescrever a funcoes custo (3.4a) em
k=1
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relacao as informacodes obtidas nas K micro-ERBs como

2
X, C diag(H, )
S = arg min : — : S”
> X C diag(Hg)) (3.6)
. - at

K
= arg mjnz X, — Y ST|%,
S k=1

em que Y, = Cdiag(Hy,). Logo, podemos minimizar a soma representada em
(3.6) para estimar a matriz de simbolos. Isto posto, a equacao de estimacao

de pode ser obtida como

ST = (YHv)'yX,

L -1 | K (3.7)

— (? ZY,fYk> <? ZYHXk> :
k=1 k=1

Nesta situacdo, temos que considerar dois problemas de CA, A.(0) = Y'Y,
e ©,(0) = YX, na troca t = 0. Ao permitirmos que estas matrizes sejam
trocadas através da rede, a cada iteracao ¢, cada micro-ERB atualiza os valores
de suas matrizes por uma soma ponderada das discrepancias locais, ou seja,
a diferenca entre os valores de suas matrizes com as obtidas de seus vizinhos.

As equacoes de atualizacao sao dadas por

Ap(t+1) = Ap(t)+ > wii(A(t) — Ay(t)), (3.8)
Ot +1) = Ou(t)+ > wii(O;(t) — O(t)), (3.9)

Este procedimento continua até que A, e O, convirja para suas meédias,
a partir da qual uma estimacao comum € obtida em cada micro-ERB. O
diagrama de blocos do algoritimo distribuido bilinear de minimos quadrados
alternados (D-BALS, do inglés Distributed Bilinear Alternating Least Squares)
pode ser visualizado na Figura 3.3.

A estimacao do vetor de canal de cada micro-ERB ¢ feita de forma local
apos a estimacao da matriz de simbolos. Para obter a equacao de estimacao

local do vetor de canal de cada micro-ERB, H; € preciso utilizar a propriedade



3.3. Receptor Distribuido 23

Xiseos Xk Consenso A © Esimacao de - S,[Hy, ..., Hg]
; Médio Simbolo :

5 A Estimacao de .
' h Canal

Figura 3.3: Diagrama de blocos - D-BALS.

vec(ADB) = (BT ¢ A)vecd(D) [37], em que o operador vecd(.) transforma em
vetor os elementos da diagonal principal do argumento. Deste modo, podemos
reescrever a forma matriciada (3.3b) como

X, = [vec(XT] ), vec(X3 ), ..., vec(X )]

= [vec(C diag(H;,)S™), vec(C diag(H,.)S”), . . ., vec(C diag(Hg)S™)]
=[(S¢C)vec(H;),(So C)vec(Hy),...,(SoC)vec(Hg)] (3.10)
= (SoC)[vec(Hy),vec(Hy), ..., vec(Hg)]
= (SoC)H”.

Ao empregarmos a propriedade da norma de Frobenius |[(xi,...,xx)||% =

S Ixx|l% [36], podemos reescrever a funcédo custo (3.4b) em relacdo a
k=1

informacao obtida em cada micro-ERB como

2
S diag(C )
H-= arg min [VGC(X{“), Vec(X;), . ,VeC(X?(“)} — : [HlT, HT ]
Hy .. Hg
—_—
Z F
K

Hi,..., Hy. k=1

(3.11)

Observando a equacao (3.11) podemos estimar localmente os coeficientes de
canal da micro-ERB k como H! = (C ¢ S;) vec(X? ) em que S, é a estimativa
da matriz de simbolo na micro-ERB k. Na Tabela 3.2 € apresentado o resumo
do algoritmo D-BALS.
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Tabela 3.2: Algoritmo PARAFAC - D-BALS

Passo 1: Parak=1,..., K faca:
Inicialize aleatoriamente Hk. € C'*9;
Calcule Y}, = C diag(Hy.),
AL0) =YY, e ©,00) =YEX, ;
Passo 2: Execute o algoritmo de consenso sobre A e ©:
Parat=0,1,...,T -1
Ap(t+1) = Ag(t) + EZN wi (A1) — Ag(t));
J&NE
Ot +1) =0(t) + g wy,;(©;(t) — Ok(t));
Passo 3: Defina A;(0) = Ak(JT)ke 0,(0) = O4(T);
Passo 4: Calcule a estimacao local de S:
ST = AZH0)©,(0);
Passo 5: Calcule a estimacao local do canal ﬂk,:
H! = (CoSy)tvee(XT );
Passo 6: Retorne ao Passo 2 até convergir.

3.4 Simulacoes e Resultados
|

Nesta secao, os resultados das simulagoes computacionais sao

disponibilizados para avaliacao do algoritmo de recepc¢ao tensorial em uma
rede distribuida. Objetivando realizar o comparativo entre os métodos
centralizados e distribuidos de forma mais simples possivel o canal utilizado
possul somente o desvanecimento plano. Contudo, em sistemas com
taxas de transmissao elevadas € comum se deparar com canal seletivo em
frequéncia. Consideramos que as micro-ERBs formam um grafo sem direcao
e conectado. A analise € feita em funcao da relacao sinal-ruido (SNR, do inglés
Signal-to-Noise Ratio) do sistema para cada um dos receptores apresentados
nas secoes 3.2 e 3.3, considerando varios cenarios constituidos da variacao
do numero de antenas receptoras, iteracoes de consenso e topologia adotadas
pelas as micro-ERBs. Todas as simulacoes exprimem o desempenho médio
obtido a partir de 500 simulacoes de Monte Carlo independentes. Admitimos
o conhecimento da matriz de codigo C em ambos os receptores sendo
gerada com numeros complexos aleatorios possuindo rank coluna completo
e os simbolos transmitidos sao obtidos utilizando a modulacao 4-QAM. Na
Figura 3.4 € apresentada o padrao das topologias de conexao utilizadas pelas
as micro-ERBs.

A Figura 3.5 apresenta a comparacao de desempenho entre o receptor
distribuido e o centralizado em diferente numeros de iteracoes de consenso 7T’
com as micro-ERBs assumindo as duas topologias apresentadas na Figura 3.4

para (Q = 12 usuarios, K = 4 antenas, P = 12 codigos e N = 50 simbolos.
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3
(@) Topologia 1 - Anel. (b) Topologia 2 - Anel com n6 concentrador.

Figura 3.4: Topologia de conexao entre as micro-ERBs.

Podem ser vistas na Figura 3.5(a) as curvas de taxa de erro de bit (BER, do
inglés Bit Error Rate) para ambos os receptores com o receptor distribuido
obtendo uma excelente aproximacao para a topologia 1 com 7" = 4 iteracoes de
consenso e para a topologia 2 em ambos numero de iteracoes de consenso. A
topologia 2 obtém um melhor resultado com um numero menor de iteracoes
por nesta existir um n6 que possui conexao com todos os demais, facilitando
a obtencao dos valores médios das variaveis de consenso A; e ©®,. Contudo, €
possivel obter um resultado similar utilizando a topologia 1 quando o numero
de iteracoes de consenso € aumentado. Isso ocorre pois todos os nos obtém
a informacao de noés nao vizinhos ao receber os valores das variaveis de
consenso calculados na iteracao anterior. E apresentado na Figura 3.5(c) uma
ampliacao das curvas da Figura 3.5(a) com a SNR igual a 12 dB onde € possivel
visualizar com mais exatidao as curvas de erros que estao sobrepostas. Mesmo
com um numero maior de iteracoes de consenso a topologia 1 nao consegue
superar a topologia 2.

A Figura 3.5(b) apresenta o numero de iteracoes média do Alternating
Least Squares (ALS). Observando o grafico podemos afirmar que para 7' = 1
a topologia 1 necessita de um numero maior de iteracoes ALS para que o
algoritmo convirja, pois os valores obtidos das variaveis de consenso esta
mais distante da média o que atrapalha o ALS. Ao analisarmos o receptor
distribuido para a topologia 1, com 7 = 4, e topologia 2, com ambos os
numeros de iteracoes de consenso, podemos afirmar que os resultados obtidos
sao muito proximos dos obtidos com o receptor centralizado com uma pequena
diferenca que pode ser visualizada na Figura 3.5(d).

O tempo médio de simulacao para cada valor de SNR € apresentado pela
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Figura 3.5: Comparacao entre receptor centralizado e distribuido.

Figura 3.6. Como mostrado na Figura 3.5(b), a topologia 1 para 7' = 1 possui

uma meédia de 30 iteracoes do algoritmo ALS para que atinja o critério de

convergéncia o que eleva o tempo de simulacao. As outras trés configuracoes

possuem numero de iteracoes do algoritmo ALS semelhantes, contudo a

topologia 2 para T =

1 possui o menor tempo de simulacdo por realizar
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somente uma iteracao de consenso com os vizinhos. Assim podemos afirmar

que o motivo de as topologias 1 e 2 para T = 4 possuirem um maior tempo de

simulacao médio € devido ao maior numero de trocas.

3

—e—BALS
--©-'DBALS Top =1eT=1
7 (9\. --4-DBALS Top =1eT=4
T2.5- -© - DBALS Top =2 eT=1
z, . --4- DBALS Top =2 e T=4
8
g7 °--.. ]
=2 R S
g | T
) ‘0.,
o 1.5 O ]
=
2 O Y
= T e C L
L L L LT - T
s Ororrareane, °
= L S
ST
% B .====::..
& o IRREE: I
0.5 TTTteeell o
— .
L
() 3

Figura 3.6: Tempo médio de simulacao vs SNR com diferentes configuracoes.

Para avaliar o impacto de diferentes numeros de micro-ERBs K no
processamento distribuido para ambas as topologias, decidimos fixar o
numero de iteracoes de consenso 7' = 4. Esta decisao foi tomada apos analise
dos resultados apresentados pelas Figuras 3.5 e 3.6, pois com quatro iteracoes
de consenso ambas as topologias obtiveram resultados muito proximos entre
elas e aos obtidos pelo receptor centralizado. Na Figura 3.7 é apresentado os
resultados obtidos nas simulacées do receptor distribuido com as micro-ERBs
assumindo duas topologias ja citadas para diferentes niumeros de micro-ERBs
K =246 com N =50, P=12, Q = 12. Para K = 2 temos um caso especial
onde as duas topologias se reduzem a uma topologia linear entre as duas
unicas micro-ERBs. Analisando a Figura 3.7(a) € possivel perceber que quanto
maior o numero de micro-ERBs melhor sao os resultados obtidos para Bit Error
Rate (BER) do sistema, devido ao aumento da diversidade espacial do sistema.
Para K = 4, o receptor distribuido obtém resultados muito proximos para
ambas topologias, sendo possivel ver a pequena diferenca entre os resultados
pela a ampliacao exibida pela Figura 3.7(b). Contudo, ao aumentarmos o
numero de micro-ERBs para K = 6, os resultados obtidos pela topologia 1 sao
superados pelos obtidos pela topologia 2 devido a esta possuir um no com
conexao com todos os demais.

Sao expostos na Figura 3.8 os valores médios do numero de iteracoes
do algoritmo ALS e tempo de simulacao das curvas obtidas na Figura 3.7.
Embora a configuracdo K = 2 tenha obtidos os piores resultados em valores

médios de BER das configuracdes testadas, o seu numero de médio de
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Figura 3.7: Comparacao entre receptor centralizado e distribuido com diferente
numeros de antenas receptoras e topologias.

iteracoes aproxima-se dos menores valores obtidos, para K = 4 em ambas
as topologias, e seu tempo médio de simulacao atinge o menor valor entre
todas as configuracdes em valores de SNR mais altos. Deste modo, embora
tenha obtido valores médios de erros piores, a estimacado do tensor recebido
por esta configuracao foi feita de forma mais rapida devido a facil obtencao
do valor médio das variaveis de consenso pois existem apenas dois nos para
a realizacao das iteracdes de consenso justificando também seu baixo tempo
de simulacao por existir menos conexoes para iteracoes de consenso na rede
distribuida. Para a topologia 1 € possivel visualizar que o numero médio de
iteracoes para K = 6 € superior ao obtido para K = 4 o que acontece devido a
uma estimacdao menos precisa das variaveis de consenso para K = 6. Este fato
também ocorre para a topologia 2. Este aumento na média de iteracoes do
algoritmo ALS para K = 6 € explicado devido ao aumento do tamanho da rede
distribuida fazendo-se necessario um maior numero de iteracoes de consenso
para uma estimativa das variaveis de consenso mais proxima da média.

Ao analisarmos o tempo médio de simulacdao para a topologia 1 torna-se
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perceptivel que para um numero maior de micro-ERBs sao obtidos valores
meédios maiores devido ao aumento no numero de iteracoes de consenso total
da rede bem como no numero médio de iteracoes do algoritmo ALS necessarias
para atingir o critério de convergéncia devido a estimacao pouco precisa das
variaveis de consenso. Ja para a topologia 2, com valores de SNR inferiores
a 12 dB e K = 6, possui melhores tempos médio de simulacao em relacao
aos resultados alcancados com K = 4 devido ao numero de iteracado total do
algoritmo ALS ser também inferior para estes valores de SNR. Contudo, para
valores de SNR superior a 15 dB o numero de iteracoes de algoritmo ALS, para
K = 6, se mantém praticamente constante enquanto, para K = 4, os valores
meédios continuam a cair explicando assim da obtencao de menores tempos de

simulacao.
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Figura 3.8: Numero médio de iteracoes do algoritmo ALS e tempo médio de simulacao
vs SNR para 1" = 4.



Capitulo I

Receptor Tensorial Cooperativo

com Processamento Distribuido

nos Repetidores

4.1 Modelo do Sistema

]
O sistema em estudo € semelhante ao do Capitulo 3. Entretanto, existem

algumas diferencas neste que faz necessaria a sua descricdo. Consideramos
o uplink em uma rede de comunicacao sem-fio na qual ha uma ERB, @
usuarios co-canal e K repetidores. A ERB € composta por M antenas, e
cada equipamento de usuario quanto repetidor possui somente uma antena.
Os repetidores podem ser utilizados pela ERB para melhorar a cobertura da
c€lula.

Existem trés links possiveis neste sistema (Figura 4.1): Fonte-Destino
(FD), Fonte-Repetidor (FR) e Repetidor-Destino (RD). Os repetidores nao sao
conectados a uma central de comutacao e controle, assim eles necessitam
enviar toda informacdao que recebem dos usuarios para a ERB. Desta
forma, a comunicacao entre usuarios e ERB ¢ realizada em dois instantes de
transmissao. As transmissoes ocorrem através de canal com desvanecimento
Rayleigh com ruido do tipo AWGN. Consideramos os codigos CDMA
conhecidos pelos repetidores e ERB.

No primeiro instante, os usuarios transmitem suas sequéncias de
informacdao com tamanho N, fazendo uso de CDMA, as quais sao recebidas
pelos repetidores e pela ERB. A representacao escalar da informacao recebida
pelo k-ésimo repetidor (e m-ésima antena da ERB), no n-ésimo simbolo e no

p-€simo codigo € dada por

30
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1 Link FD

Q
2<> : ?0 Link RD gA?

O Link FR

Usuarios

?1 Kx

Repetidores

Figura 4.1: Uplink em um sistema de comunicacao multiusuario auxiliado por

repetidores.
(FR) : (
FR (FR)
Lhpn = Z My CpaSnas 4.1)
q=1
Q
FD) _ (FD)
xgmlh)n o hgn,q Cp,qSn,q» (4.2)
q=1
em que hng) / hgfff ) sao os coeficientes de canal entre o usudrio q € 0 k-ésimo

repetidor (link FR)/m-€ésima antena da ERB (link FD), ¢, , € s, , sao o codigo € o
simbolo do usuario ¢, respectivamente. Desta forma, ao compararmos (2.22)
com (4.1) podemos afirmar que o sinal recebido pelos repetidores pode ser
organizado de forma a obtermos a decomposicao PARAFAC com as seguintes

correspondéncias

(U(l), u®, U(3)) o (H(FR)7 C,S), (4.3a)
([1,[2,[3) < (K,P,N) (43b)

para os sinal recebido pelos repetidores com HR ¢ CKx@, C € C"*? e S ¢
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CN*@, Enquanto no sinal recebido pela ERB temos

(U(l), u®, U(?’)) o (H(FD>7 C,S), (4.4a)
(I1,I5,I3) <> (M, P,N). (4.4b)

em que HFP) ¢ CM*?, Fazendo uso da analogia em (2.25), obtemos as formas

(FR) c CKExPxN

matriciadas do tensor X por

X = (HR 6 C)ST e CHP*Y, (4.52)
X — (Co SR ¢ PN, (450
XgFR) = (So HFR)CT e CNEXP, (4.5¢)

Consequentemente as formas matriciadas do tensor X(FP) ¢ CM*PxN g30

X = (HFP) o C)ST e CHPAY, (4.62)
X (D) _ (C o S)yHFDIT ¢ CPNXM (4.6Db)
X{™ = (5o HFP)CT € VP, (4.60)

No segundo instante, os usuarios param a transmissao e os repetidores
realizam a estimacao conjunta de simbolos e coeficientes de canal de forma
distribuida utilizando o algoritimo D-BALS exposto na Tabela 3.2. Em seguida
eles transmitem para a ERB. A transmissao entre os repetidores e a ERB pode
ocorrer de duas maneiras: i) os repetidores reconstroem o tensor recebido a
partir das matrizes estimadas e enviam-no através do canal no link RD para a
ERB ou ii) os repetidores codificam a matriz de simbolo e codigo estimadas e

as transmitem através do canal presente no link RD.

4.2 Receptor LS-KRF

Os repetidores, apos realizarem a estimacao da matriz de canal H® e

(FR)

da matriz de simbolos S, reconstroem o tensor & € o transmite para ERB

através do link RD. Podemos analisar o sinal recebido pela ERB no n-ésimo
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simbolo recebido como

X (RD) _ py(RD) (FR)
— HROHR) giag(S, )CT (4.7)
— H®D diag(S,.)CT

em que HRP) ¢ CM*K ¢ a matriz de coeficientes do canal entre os repetidores
e as antenas da ERB e H = HRDHFR) ¢ CM*Q ¢ g matriz efetiva do canal
percebida pela ERB. Desta forma, o tensor X(RP) ¢ CM*P*N ¢ obtido pela ERB

e suas formas matriciadas sao

X = (HE 6 C)ST € CMPY, (4.8a)
X§P) = (CoS)HENT ¢ VM (4.8b)
XD = (S o HEM)CT e CNM*P, (4.8¢)

Para o processamento na ERB, as matrizes slices modo-1 transpostas do

tensor XP) e X¥RP) 530 empilhadas como

X (DT S diag H™)HCT]  [Sdiag(H™)
FD)T . FD . FD
(cat) __ ng..) _ Sd1ag(H§u_ ))CT . Sdlag(ng. )) T
X - (eff) T - . (eff) T - . (eff) C
Xi S diag(H; /)C S diag(Hy )
X7 [SdiagEED)CT| | Sdiag@ED) | w9
'HgFD)' :
H(FD)
= e | @S| C" = H"=Y o8)CT,
Hl.
1]
(H |

em que H(cat) — [H(FD)T’ H(eﬂ)T}T c C2MxQ .
O algoritmo LS-KRF (do inglés, Least-Squares Khatri-Rao Factorization)
proposto em [13] é utilizado para estimar as matrizes S e H®®, Diversos

trabalhos se aproveitam do uso deste algoritmo [38, 39] o qual pode ser
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utilizado quando as duas matrizes fatores sdo desconhecidas ou quando
se tem o conhecimento de uma das matrizes [40]. Considerando a matriz
D € C*MNxQ como representacdo do produto de Khatri-Rao entre as matrizes
H ) e S, podemos obter as matrizes estimadas H( e S minimizando a

funcao custo dada por

[HY S| = arg min |D — (H o S)|2. (4.10)
ﬂ<0at),S

Como exposto na Definicao 2.9, podemos obter a ¢-ésima coluna de D como
o produto de Kronecker entre a g-ésima coluna das matrizes H® e S, d, =
h((fat) ®s,. Ao reorganizarmos os dados da ¢-€ésima coluna de D em uma matriz

D, € CV**M com vec(D,) = d,, permite-nos reescrever D, como

D, = s;h{®7. (4.11)

(cat)

Desta forma, € possivel estimar s, e h{®™ ao calcularmos a SVD da matriz

D

q»

D, =U,sVH (4.12)

O fato de D, ser uma matriz de rank-1 nos permite truncar a SVD em seu

. . . ~ . t ~
primeiro termo. Logo, podemos obter as estimacoes h((fa) € S, por

hca) = /7ivi € CPM, (4.13a)
8, = ouy € CV¥L (4.13b)

em que u; € v; representam a primeira coluna das matrizes U, e V,,
respectivamente, e o0; € o maior valor singular da matriz ¥,. Na Tabela 4.1

€ apresentada um resumo do algoritmo LS-KRF para o sistema proposto.

4.3 Receptor TUCKER-3

]
Cada repetidor k£ possui uma matriz de codigo de dimensao ) x  a qual

utiliza para codificar S e C antes de transmitir para a ERB. Ao organizarmos
estas matrizes, obtemos o tensor F € CKX*@*Q no qual suas matrizes slices
modo-1 sao formadas pelas matrizes codigo de cada repetidor. Assim o sinal

recebido pela m-ésima antena da ERB, no p-ésimo chip e no n-ésimo simbolo é

K Q Q
ympn Zzzfqu mkcpanQ (4.14)

k=1 q1=1g2=1
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Tabela 4.1: Algoritmo LS-KRF

Passo 1: Obtém a matriz X como descrito em (4.9);
Passo 2: Utiliza-se da matriz C para obter a matriz D por:
D= X(cat)(eT)—l;
Passo 3: Inicializar ¢ = 1;
Passo 4: Reorganizar D, para obter D, com vec(D,) = D ;;
Passo 5: Calcular a SVD de D,:
D, =U,sVl;
Passo 6: Calcular a ¢-ésima coluna de H(¢ e S:
fl((zcat) _ \/EVT;
Sq = o1uy;
Passo 7: Definir ¢ = ¢+ 1;
Passo 8: Repetir passos 4-7 enquanto ¢ < Q).

Comparando (2.14) e (4.14) podemos afirmar que o sinal recebido obedece
as caracteristicas de uma decomposicao TUCKER-3. A representacao por
produto modo-n entre o tensor formado pelas matrizes cédigos dos repetidores
F € CK*@%Q e as matrizes de canal entre receptores e as antenas da ERB HRP),
de simbolo e de codigo dos usuarios, respectivamente, S € CV*? e C ¢ CP*@
é dada por Y®P) = F x; HRD) x, C x3 S € CM*P*N_ Deste modo, obtemos as

seguintes correspondéncias

(G, UM U® UB) & (F, HRD C,8), (4.15a)
(Rl,RQ,Rg,]l,]Q,]g) e (K, Q,Q,M, P, N) (415b)

Utilizando de analogia com (2.21) podemos obter as formas matriciadas do
tensor Y(RP) por

Y*P) — (HRP) ¢ C)F,S7, (4.16a)
YRP) = (C @ S)F,HRDT, (4.16Db)
Y = (S @ HRD)F,CT. (4.160)

com F; € CK@xQ F, € CY*K ¢ F; € CRKxQ,

Como exposto no Capitulo 2, a decomposicao TUCKER-3 nao possui
unicidade quando nao ha nenhum conhecimento sobre suas matrizes fatores
ou tensor nucleo [29]. Em nosso sistema, consideramos conhecidos pela

ERB os codigos de cada repetidor o que possibilita a unicidade desde que
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sejam respeitados os critérios de identificabilidade. A matriz de coédigo
dos usuarios também € considerada como conhecida. Desta forma, €
necessaria apenas a estimacdo das matrizes S e HR®) as quais podem ser
obtidas ao explorarmos as formas matriciadas descritas em (4.16a) e (4.16b)
respectivamente. Utilizaremos o algoritmo BALS com o objetivo de minimizar

de forma alternada as funcoes custo

S = argmin | Y™ — (H®®) g C)F,S7|%, (4.17a)
S
H®P) — arg Ir(un) YT — (C @ S)F,HROT |2, (4.17b)
H(®RD

Com o conhecimento da matriz de codigo C e do tensor nucleo F pela
ERB € possivel a obtencao de estimacao da matriz de simbolo S e canal HRD)
diferentes das matrizes fatores originais apenas por um fator de escala em
suas colunas. Contudo, para alcancar esta estimacao € necessario garantir

que

= (H®) g CO)F,, (4.18)
Z = (C®S)Fs, (4.19)

possuam rank coluna completo permitindo a obtencao da matriz
pseudo-inversa a esquerda. O operador rank(-) possui as seguintes
propriedades: o rank do produto de duas matrizes A e B é dado por rank(AB) =
rank(B) quando A € rank coluna completo [41] e o rank do produto de
Kronecker das mesmas matrizes € dado por rank(A ® B) = rank(A) rank(B) [42].
Assim, aplicando estas duas propriedades em (4.18) e (4.19) faz-se necessario
que Fi, Fy, C, S e HRP) sejam rank coluna completo obtendo as seguintes
relacoes M > K, P > Q, N > (). Ha a possibilidade de antenas na ERB ser
menor que o numero de repetidores, M < K. Desta forma, a matriz HRP)
sera rank linha completo. Assim uma condicdo suficiente para que U seja
rank coluna completo € M P > (). Assim a identificabilidade € garantida para
o receptor TUCKER-3. Na Tabela 4.2 é apresentado o algoritmo BALS para a

decomposicao TUCKER-3 do sistema descrito neste capitulo.

4.4 Simulacoes e Resultados
|

Esta secao disponibiliza os resultados obtidos por simulacoes

computacionais para avaliacao dos receptores tensoriais auxiliados por

repetidores apresentados nas Secoes 4.2 e 4.3. Novamente foi utilizado
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Tabela 4.2: Algoritmo TUCKER-3 - BALS

Passo 1: Define i = 0;

Passo 2: Inicialiga aleatoriamente ou através de uma estimativa inicial a
matriz S.

Passo 3: Definei =1+ 1;

Passo 4: Utiliza YgRD) para encontrar uma estimativa de minimos
quadrados de H®P)(j):
Z=(C®S(@i—1))Fy;
“r(RD) (. Hrz\—1r7 Hy(RD) T
H( >(z)=[(z 7)) ZHY } :

Passo 5: Utiliza YiRD) para encontrar uma estimativa de minimos
quadrados de S(i):
U= (H®)(}) ® C)Fy;
Q0 Hy1\-17T7H~+ (RD) r
S() = [(ur) Uy ]

Passo 6: Repetir os passos 3-5 até que seja atingido o critério de
convergencia.

somente canal com desvanecimento plano nas simulacées de forma a
simplifica-las. Os repetidores formam um grafo conectado e sem direcao
no qual foi feita a estimacado conjunta dos coeficientes de canal do link FR
e os simbolos transmitidos por cada usuarios utilizando-se do algoritmo
D-BALS descrito no Capitulo 3. Apo6s a estimacdao dos simbolos, os
repetidores utilizam-se do protocolo Decode-and-Forward (DF) para enviar
os simbolos transmitidos e codigo de cada usuario para a ERB obedecendo
cada receptor descrito nas secoes anteriores. Todos os resultados foram
obtidos a partir do desempenho médio de 1000 simulacdoes de Monte Carlo
independentes e a analise € feita em funcao da SNR. A matriz de codigo
C € considerada conhecida tanto nos repetidores quanto na ERB sendo
gerada com numeros complexos aleatorios possuindo rank coluna completo
e os simbolos transmitidos sao obtidos utilizando 4-QAM. Apo6s analise dos
resultados obtidos no Capitulo 3, foi decidido o uso da topologia 2, sendo um
caso especial, para K = 2, no qual obtemos a topologia linear, apresentada na
Figura 3.4(b) para a conexao entres os repetidores e o numero de iteracoes
de consenso 7' = 4. Todos os resultados foram obtidos, para N = 50
simbolos transmitidos por usuario, (¢ = 12 usuarios co-canal, comprimento
P = 12 dos codigos CDMA. O receptor nao auxiliado pelos repetidores, o

qual identificaremos no restante deste trabalho como receptor Link Direto,
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utiliza-se de uma variacao do algoritmo descrito na Tabela 4.1 com
XfD)T
X (cat) — : = (H™ o 8)CT. (4.20)
X"

A Figura 4.2 apresenta as curvas de BER obtidas para o receptor LS-KRF
em comparacao a um receptor nao auxiliado por repetidores para a variacoes
do numero de antenas na ERB, M = 2, 4,6 e de repetidores, K = 2,4,6. Também
mostrados os resultados do receptor LS-KRF sem fazer uso da concatenacao
descrita por (4.9). Como ja esperado, o receptor nao cooperativo obtém
melhores resultados ao aumentarmos o numero de antenas na ERB, pois
assim a ERB obtém uma maior diversidade espacial. O mesmo ocorre com
o receptor LS-KRF utilizando ou nao a concatenacao. Contudo, ao utilizar a
concatenacao da informacdo transmitida pelos usuarios a ERB, através do
link FD, com a transmitida pelos repetidores a ERB, através do link RD,
conseguimos dobrar a diversidade espacial em cada configuracdao. Assim, a
BER alcancada pelo receptor LS-KRF com o uso da concatenacao supera este
sem o uso da concatenacao para todas as configuracoes simuladas.

As configuracoes testadas, para M = 2, na Figura 4.2(a) em um receptor
LS-KRF com o uso de concatenacao supera ao receptor Link Direto em
termos de BER para valores de SNR superiores 6 dB. Isto ocorre devido a
se conseguir o dobro da diversidade espacial na ERB do que o obtido pelo
receptor Link Direto. A distincao entre médias de BER alcancada pelos
os diferentes valores de K € resultado da variacdo da diversidade especial
no receptor distribuido, também abordado no Capitulo 3, diminuindo o
erro de reconstrucao da informacao dos usuarios recebida pelos repetidores.
Entretanto, na Figura 4.2(b), os valores médios de BER para K = 2 sao
mais elevados em todos os valores de SNR testados. Para K = 4, o receptor
LS-KRF consegue igualar-se ao Link Direto para valores de SNR superiores
a 12 dB, e somente para K = 6 este consegue superar o Link Direto o que
ocorre a partir do valor de SNR igual a 6 dB. Para os resultados obtidos para
M = 6, Figura 4.2(c), o receptor LS-KRF nao conseguiu superar o Link Direto,
embora tenha se aproximado em todo aumento do numero de repetidores.
A nao superacao do receptor LS-KRF visualizado nas Figuras 4.2(b) e 4.2(c)
acontece devido ao aumento da diversidade espacial conseguida através da
concatenacao das informacgdes recebidas pela ERB nao ser suficiente para
compensar o erro de reconstrucao ocorrido no receptor distribuido utilizado
pelos repetidores.

As curvas de BER para o receptor TUCKER-3 em comparacao ao receptor
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Figura 4.2: Comparativo entre comunicacao direta com a ERB e o uso de repetidores
utilizando o receptor LS-KRF para numero de iteracdoes de consenso

T = 4 com diferentes numeros de antenas receptoras.
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Link Direto sao apresentadas na Figura 4.3. Foram utilizados os mesmos
numeros de antenas presentes na ERB M e repetidores K das simulacoes
envolvendo o receptor LS-KRF. Também foram empregadas duas abordagem
do receptor TUCKER-3: i) utilizando a informacdao recebida pela ERB no
primeiro instante de transmissao para realizar uma estimagcao inicial da matriz
de simbolos de forma a inicializa-la no algoritmo descrito pela Tabela 4.2 e ii)
sem a utilizacao da informacao recebida através do link FD sendo referenciados
neste capitulo como receptor TUCKER-3 (A) e (B) respectivamente.

A Figura 4.3(a) exibe os as curvas de BER para M = 2. Devido ao numero
reduzido de antenas na ERB o receptor TUCKER-3 (B) nao consegue obter
uma boa estimacao mesmo com um numero maior de repetidores. Entretanto,
o receptor TUCKER-3 (A) consegue alcancar bons resultados principalmente
para K = 4 e K = 6 superando o receptor Link Direto para valores de SNR
superiores a 9 dB, e ficando proximo para K = 2. Quando o numero de
antenas na ERB € aumentado para M = 4, ver Figura 4.3(b), o receptor
TUCKER-3 (B) nao consegue, novamente, realizar uma boa estimacao da
matriz de simbolos para K = 2 e K = 4 repetidores auxiliando. Contudo, para
K = 6 os dois receptores TUCKER-3 obtém praticamente a mesma curva média
de BER superando o receptor Link Direto para SNR superior a 6 dB. Este
resultado pode se explicado pelo o aumento da diversidade espacial na ERB
com também o aumento da diversidade espacial nos repetidores auxiliando-os
a obtencao de uma melhor estimativa da matriz de simbolos diminuindo assim
o erro da decisdao dos simbolos. E importante levar em consideracao que o
aumento do numero de repetidores, consequentemente, aumenta o nimero
de matrizes de codigos adicionando mais informacao conhecida no receptor
o que favoreceu a obtencao de resultados melhores. Os resultados para
M = 6 sdo apresentados na Figura 4.3(c). E perceptivel que para K = 2
o uso de estimacao inicial da matriz de simbolos ainda é benéfica por esta
configuracao possuir um erro de reconstrucao maior. Contudo o aumento
da diversidade espacial na ERB obtido nesta configuracdo permite que o
receptor TUCKER-3 (B) obtenha curvas praticamente sobrepostas ao receptor
TUCKER-3 (A), demonstrando que a estimacao inicial para um numero maior
de antenas na ERB nao €é mais tao benéfica.

A comparacao dos receptores propostos pelas secoes anteriores (Figura 4.4)
foi realizada para os trés numeros de antenas da ERB nas Figuras 4.2 € 4.3
para K = 6 repetidores. Este numero de repetidores foi escolhido
devido a ambos os receptores propostos terem obtidos seus melhores
resultados em todas as configuracoes testadas. Foi escolhido o receptor

LS-KRF com concatenacao e TUCKER-3 (A) por estes terem apresentado
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os melhores resultados entre suas variacées. De forma a garantir um
melhor entendimento, iremos referencia-los como receptor LS-KRF e receptor
TUCKER-3 para o restante deste capitulo. Ambos os receptores possuem
resultados inferiores aos obtidos pelo receptor Link Direto para baixos valores
de SNR, inferiores a 6 dB. Isto ocorre devido ao erro de estimacao e decisao
de simbolos, advindo do receptor distribuido formado pelos repetidores,
alcancar valores altos a ponto da ERB nao conseguir bons resultados
utilizando a vantagem de cada receptor, aumento da diversidade espacial pela
concatenacao no receptor LS-KRF e diversidade das matrizes de codigos dos
receptores pelo TUCKER-3. Para M =2 e M = 4, o receptor TUCKER-3, embora
comece com resultados inferiores ao receptor LS-KRF, consegue superar os
demais para valores de SNR iguais a 12 dB e 6 dB respectivamente. Para
M = 6, nenhum dos receptores propostos conseguiu superar os resultados
obtidos pelo receptor Link Direto, contudo o receptor TUCKER-3 consegue se

igualar a este para valor de SNR igual a 12 dB.
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Figura 4.3: Comparativo entre comunicacao direta com a ERB e o uso de repetidores
utilizando o receptor TUCKER-3 para numero de iteracoes de consenso
4 em diferentes numeros de antenas receptoras.
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Figura 4.4: Comparativo entre comunicacao direta com a ERB e o uso de repetidores
utilizando o receptor TUCKER-3 para numero de iteracoes de consenso
T = 4 em diferentes numeros de antenas receptoras.



Capitulo

Conclusao e Perspectivas

Nesta dissertacao, o desempenho da estimacao conjunta de canal e
simbolos utilizando um receptor tensorial distribuido, no qual as antenas
formam um grafo seguindo uma topologia pré-determinada, foi investigado.
Foram propostos métodos cooperativos de estimacao de simbolos baseados
em decomposicoes tensoriais, os quais utilizam o receptor distribuido
para estimacdo nos repetidores de forma a empregar o protocolo de
transmissao cooperativo DF. Estes métodos exploram a transmissao do tensor
reconstruido pelos repetidores e a transmissao da matriz reconstruida de
simbolo e matriz de codigo, ambas dos usuarios, com a utilizacao distinta para
cada usuario e repetidor, com o uso das decomposi¢coes PARAFAC e TUCKER-3
respectivamente.

Objetivando obter um melhor desempenho na estimacao dos simbolos pela
ERB, foi utilizada a concatenacao dos sinais recebidos pela ERB através
dos links FD e RD de forma a se obter um aumento virtual da diversidade
espacial, tendo os codigos dos usuarios conhecidos nos receptores, utilizando
o algoritmo LS-KRF para realizar a estimacao. Também com o intuito de
melhorar o desempenho foi utilizada a informacao recebida através do link
FD para se obter uma estimacao da matriz de simbolos de forma a inicializar
o algoritmo para a decomposicao TUCKER-3 de forma nao aleatoria.

Os resultados obtidos para o receptor tensorial distribuido se mostram
satisfatorios em todas as configuracoes para a topologia 2 (Figura 3.4), e
para as configuracées com o numero de iteracées de consenso 7' = 4 para
topologia 1. As iteracoes de consenso sao consideradas livres de ruido. Deste
modo, foi escolhida a topologia 2 com numero de iteracoes de consenso 7' = 4
para uso nos receptores cooperativos propostos pelo Capitulo 4.

Os meétodos propostos neste trabalho mostram-se atraentes em relacao
ao receptor nao auxiliado por repetidores para configuracées com o numero

de repetidores K superior ao numero de antenas M na ERB, apresentando

44



45

melhores resultados para o receptor TUCKER-3 em relacao ao receptor
LS-KRF. Os resultados foram obtidos com o valor da SNR no receptor para
todos os links iguais. E de conhecimento publico que dispositivos moveis
possuem limitacoes de hardware e alimentacao de energia, o que limita suas
poténcias de transmissao. Desta forma, ha a possibilidade de que a poténcia
do sinal recebido pela ERB através do link FD seja mais atenuada que ao
se utilizar os repetidores para retransmissao, tornando os métodos propostos
ainda mais benéficos.

Abaixo ha um resumo das perspectivas futuras que pretendemos abordar:

» Avaliacao da sobrecarga provocada pelas iteracoes de consenso nos

sistema.

» Inclusao de cenarios mais realisticos com a insercao de ruido nas
iteracoes de consenso do receptor tensorial distribuido e avaliacao de

seu impacto na escolha do melhor numero de iteracoes de consenso 7.

» Estudo sobre a possivel abordagem do algoritmo CA-MoM desenvolvido

em [5].

» Abordagem aprofundada para escolha da topologia adotada pelos
repetidores, avaliando caracteristicas importantes como numero

necessario de conexoes total e local do grafo.
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