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Resumo

Este trabalho propde o estudo e aplicagdo de controladores avangados ao seguimento de
trajetdrias de robds moveis com rodas. Este tipo de problema é bastante desafiador do ponto de
vista de controle uma vez que o modelo tem duas entradas e trés saidas, além disso, trata-se de
um modelo ndo linear. Na literatura existem diversas solu¢des para o controle de trajetéria de
robds moveis, dentre eles tem-se o Controle Preditivo Baseado em Modelo (MPC) por meio de
modelos linearizados € um controlador ndo linear denominado neste trabalho de controlador de
Klancar. Os controladores preditivos podem ser aplicados de forma eficiente em plantas com
modelos multivaridveis, em situacdes na qual a trajetdria futura de referéncia € conhecida e em
sistemas com restricOes nas vaidveis de entrada e de saida. Porém, a principal desvantagem
do MPC linearizado € o alto custo computacional o que limita as aplicacdes praticas. Além
disso, esse controlador especifico utiliza um modelo linearizado da planta. Por outro lado, o
controlador de Klancar pode ser mais eficiente que os baseados em modelos lineares, devido as
nao linearidades inerentes do modelo. No entanto, a sua solucao, por defini¢do, ndo corresponde
a critérios 6timos o que pode representar uma desvantagem principalmente em sistemas com
restri¢cdes e referéncia futura conhecida. Além disso, neste trabalho é proposta a aplicagao
do controle preditivo EPSAC (Extended Prediction Self Adaptive Control) para o controle de
seguimento de trajetorias. Esta estratégia utiliza de forma explicita o0 modelo ndo linear do
rob0, a referéncia futura, as restricdes nas varidveis do robd e solug@o corresponde a um critério
6timo. Até onde foi pesquisado pelo autor deste trabalho, ndo existem relatos da utilizacdo do
EPSAC na robética movel, sendo desta forma uma aplicacdo inédita. Resultados de simulagao
sdo apresentados comparando os controladores estudados, utilizando indices de desempenhos.
Além disso, os mesmo foram implementados em um robé moével.

Numero de paginas: 73

Palavras-chave:EPSAC, rob6 mével,Controle Preditivo, Seguimento de trajetdria.
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Abstract

This work proposes a study and application of advanced controller to trajectory tracking of
wheeled mobile robots. This kind of problem is a challenger for controllers once its models has
two inputs and three outputs and is a non-linear model. In the literature there are various solu-
tions to wheeled mobile robots trajectory tracking, among them the Model Predictive Control
(MPC) with linearization model and a non linear control which in this work will be nominated
as Klancar Controller. The Predictive Controllers can be applied efficiently in plants which has
multiple inputs an multiple outputs, in situation that a future reference trajectory is known and
systems with input and output constraints . However, the main disadvantage of MPC is the
high computational effort which limits its practical application. Thus, this specific controller
uses the plants linearization model. On the other hand, the Klancar Controller may be more
efficient than the ones based on linear models, once the model is non linear. However, its solu-
tion, by definition, does not match the optimized criteria which can be a disadvantage mainly
in systems that has constrains and a known future reference. Furthermore, this work proposes
the application of the Predictive Control Extended Prediction Self Adaptive Control (EPSAC)
to wheeled mobile robot trajectory tracking. This control strategy uses explicitly the non linear
robot model, future reference, constraints on the variables and has a optimized solution. And,
to the matter of this work, it has not been found reports of the EPSAC applied in mobile robo-
tics, and is thus an unprecedented application. Simulation results are presented comparing the
controllers studied using performance indices. Else, the controllers were applied in a mobile
robot.

Number of pages:73

Keywords: EPSAC, mobile robot,Predictive Control, trajectory tracking .
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1 Introducao

Desde a antiguidade os seres humanos demonstram interesses por maquinas que sejam se-
melhantes aos seres humanos, ndo s6 no aspecto fisico, mas que possuam alguma capacidade
coletar, interpretar informagdes sobre o ambiente que os rodeiam e a partir dessas informagdes
sejam capazes de tomar alguma decisdo; estas sdo as caracteristicas de um rob6. Podem-se
dividir os robos em dois grandes grupos: o primeiro grupo engloba os robés manipuladores,
amplamente utilizado nas industrias realizando tarefas repetitivas, tais como soldar, pintar, apa-
rafusar entre outras (CRAIG, 2008). E no segundo grupos tem-se os robos mdveis, que possuem
a capacidade de deslocar-se no espacgo e esse deslocamento pode ser tanto terrestre, quanto aéreo
ou mesmo submarino (SIEGWART; NOURBAKHSH, 2004).

Os robds moéveis podem ser utilizados para exploracdes de locais inacessiveis aos seres
humanos, como por exemplo, ambientes submarinos, vulcdes ou o espaco. Na Fig. 1.2(a) é
apresentado o robd Curiosity desenvolvido pela NASA enviado a Marte para a realizagdo de
estudos (NASA, 2013). Também podem ser utilizado em locais que a proximidade de seres
humanos pode ser prejudicial a satide, tais como, em Nagatani et al. (2013) € apresentado os
rob0s utilizados para avaliar a situagcdo do reator nuclear em Fukushima devido ao terremoto que
atingiu o Japao em 11 de marco de 2011 apresentado na Fig. 1.2(b), esses robds sdo chamados
de Quincy. E podem ser utilizados ainda em locais que correm o risco de acidentes, por exemplo
no desarmamento de bombas, ou combate a incéndios.

Além dos robds para executar tarefas perigosas, existem aqueles usados em ambientes
domésticos e de servigos. O robd Rhino, por exemplo, Fig. 1.3(a) desenvolvido pela Universi-
dade de Bonn na Alemanha servia como guia de um museu (BUHMANN et al., 1995). Existe
também o Ashimo, apresentado na Fig. 1.3(b) desenvolvido pelo empresa japonesa Honda,
sendo o primeiro robd humandide e a Sony desenvolveu um robd de uso pessoal quadripede se-
melhante a um cachorro, chamado Aibo, Fig. 1.4(a). Algumas empresas trabalham com robos
ou kits com pecas para montar robos utilizados na educacdo, como € o caso do robd NI Lab-
VIEW Robotics Starter Kit, da National Instruments (NI) Fig. 1.4(b) utilizado nesse trabalho.

Os robds moveis podem ser divididos de acordo com o ambiente na qual se deslocam. Os

robos moveis terrestres sdo subdivididos de qual forma esse deslocamento € realizado, dentre
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Figura 1.1: a)Robd Curiosity - NASA b) Rob6 Quincy - Fukushima, Japao

(a) (b)

Fonte: (NASA, 2013) Fonte: (NAGATANI et al., 2013)
Figura 1.2: a)Robd Rhino b) Robd humanoide Asimo

(@) (b)

Fonte: (BUHMANN et al., 1995) Fonte: (MOTOR, 2013)

entre eles existem os que se deslocam com rodas. E estes sdo subdivididos em dois grupos: os
omni-direcionais sdo aqueles que tem a capacidade de se deslocar livremente no plano e os ndo
- holondmicos sdo os robds que ndo podem se locomover em dire¢des laterais em relacdo as
rodas, tendo desta forma, restricdes na sua locomocao.

O sistemas ndo-holondmicos estdo sendo bastantes estudados, uma vez que sdo os robds
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Figura 1.3: a)Robd pessoal Aibo da Sony b) Robd educacional da NI

(b)

Fonte: (AIBO, 2013) Fonte: Autor

moveis mais populares pela facilidade e o custo menor em relag@o a outras configuracdes. Con-
siderando que o ambiente em que o robd se encontra ndo possua obstiaculos, pode-se fazer com
que ele se locomova considerando apenas o ponto inicial e o final, ou desejar que o mesmo siga
uma trajetdria pré-estabelecida.

Na literatura existem diversas propostas para o controle de trajetdria de robds moveis nao-
holondmicos com rodas (WMR), sendo que a grande maioria das propostas usam o modelo para
o robd baseado nas equagdes da cinematica, sendo denominado modelo cinematico, tanto pela
simplicidade quanto pelo fato da maioria dos robods terem como parametro de entrada as veloci-
dades linear e angular e ndo valores de acelerag@o ou torque (KLANCAR et al., 2005). Porém,
existem outras estruturas a serem utilizadas: Kanayama et al (2009) utiliza uma linearizagdo da
equacao diferencial do sistema, ja em Kim e Oh (1999) € utilizado o método de linearizagao
entrada-saida. Em Kiihne et al (2004) o modelo € linearizado levando em consideragdo o erro
do rob6 de referéncia e o robo real.

Entre os controladores propostos na atualidade existem varios ramos de estudos, incluindo
a utilizacdo de inteligéncia artificial com propostas de utilizacdo de 16gica de fuzzy e redes
neurais como o apresentado em Fierro e Lewis (1995), enquanto em Jang e Chung (2009) é
proposto um controlador que combina logica de fuzzy e redes neurais. Ha propostas de con-
troladores PI e PID tanto com estruturas lineares como nao linear, em Al-Araji et al (2011)
¢ proposto um controlador PID adaptativo, ja em Klancar et al (2009) o controlador proposto
possui caracteristicas de um controlador PI com termos nao-lineares. Em Secchi e Mut (2007)
€ proposto e analisado a estabilidade de um controlador discreto.

Alguns autores avaliam a utilizacdo de algumas das diversas estratégias de controle predi-
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tivo (Model Predictive Control - MPC). Em Kiihne et al (2004) € utilizado um MPC sendo que
o modelo utilizado foi linearizado, ja em Hedjar et al (2009) o controlador preditivo calcula o
erro previsto a uma amostra adiantada para determinar o esforco do controlador. Em Andrade
e Torrico (2011) o controlador aplicado utiliza a metodologia Generalized Predictive Control
(GPC).

Dentre as estratégias de controle adaptativo destaca-se Extended Prediction Self Adaptive
Control (EPSAC) com diversas aplicacdes, tais como em Pop et. al (2012) o controlador EP-
SAC ¢é aplicado no controle de um processo de separacdo de carbonos is6topos, este processo
possui varias entradas e saidas, além da presenca de atraso, caracteristicas bastante comuns na
inddstria quimica. Até mesmo aplicagdes na medicina, por exemplo em Hodrea et. al (2008)
um controlador EPSAC nio linear (NEPSAC) € utilizado para controlar o nivel de glicose em
pacientes com diabetes tipo I, ja em Brito et. al (2010) a estratégia de controle EPSAC € utili-
zada para controlar a temperatura e umidade de uma incubadora neonatal e em Méndez et. al

(2011) € estuda a aplicacao do controlador em processos de anestesia.

1.1 Justificativa

Até onde foi pesquisado para a realizacao desse trabalho, ndo foram encontrados trabalhos
que utilizem o EPSAC para controlar a trajetdria de um robd mével com rodas. O EPSAC possui
caracteristicas que o tornam uma excelente op¢do para a utilizacdo em aplicacdes referentes a

robotica mével, em especial no caso de controle de trajetdria, destacam-se:

e A capacidade de se trabalhar diretamente com sistemas multivaridveis e com sistemas

nao-lineares.
e Utilizacdo direta das restri¢des no algoritmo de controle

Desta forma, a contribui¢do deste trabalho consiste da aplicagdo do controlador preditivo EP-

SAC, para o controle de trajetéria de um robé mével com rodas ndo-holondmico.

1.2 Objetivos

Esse trabalho tem como principais objetivos:

e Estudo e andlise de duas estruturas de controle: um Controle Preditivo que utiliza 0 mo-
delo cinemitico do robd linearizado, proposto por (KUHNE et al., 2004) e um controlador

com termos nao linear proposto por (KLANCAR et al., 2005)
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e Estudo da estratégia de controle preditivo do tipo EPSAC (CAMACHO; BORDONS,
1998) e a extensdo do mesmo para a robdtica mével,especificamente o controle de tra-

jetoria.
e Estudo comparativo entre as estratégias de controle apresentadas.

e Aplicacdo dos controladores estudados em um robé mdvel diddtico da National Instru-

ments e andlise dos dados obtidos experimentalmente.

1.3 Organizacao do trabalho

O primeiro capitulo é dedicado a introducdo do trabalho. No segundo capitulo serdo apre-
sentado nocdes e defini¢des sobre robdtica movel, além dos modelos utilizados e as carac-
teristicas do robd no qual serdo implementado as estratégias de controle. As estratégias de
controle estudadas, retiradas da literatura, serao apresentadas no terceiro capitulo. O quarto
capitulo serd dedicado a apresentacdo das caracteristicas do EPSAC com a sua utilizacdo no
controle de trajetoria de um robd movel com rodas. Em seguida, no quinto capitulo serdo apre-
sentados os resultados e discussao, tanto de simulagdo quanto os obtidos no robd da National

Instruments. O sexto e ultimo capitulo é dedicado as conclusdes do trabalho.



2 Nocoes de robotica moével

A robdética é uma drea do conhecimento multidisciplinar abrangendo conceitos de mecanica,
elétrica, computacdo, automacgdo, inteligéncia computacional, dentre outras. Os primeiros
robos, os manipuladores industriais, sdo da década de 1960. Ja os primeiros robos mdveis
sdo de 1968 e consistiam principalmente de veiculos teleguiados (Automated Guided Vehicles
- AGVs), utilizados para transportar ferramentas em ambientes industriais € seguindo uma tra-

jetodria predefinida (GARCIA et al., 2007).

2.1 Robos moveis

Um rob6 mével € um dispositivo mecanico montado sobre uma base ndo fixa, que age sob
o controle de um sistema computacional, equipado com sensores e atuadores que o permitem
interagir com o ambiente (PIERI, 2002). Esses dispositivos sd@o capazes de movimentar-se
no seu ambiente seja utilizando pernas ou rodas. Onde que os mais recentes sao capazes de
movimentar-se no ar ou embaixo da dgua. Para o caso especifico dos robds que utilizam rodas,
o controle de posicdo, orientacdo e velocidade destes robds sdo obtidos através de motores
elétricos que movimentam as rodas (BEKEY, 2005).

A interacao do robd mével com o ambiente que o cerca ocorre através de ciclos de percepcao-
acdo. Para realizar esses ciclos um robd deve ter sensores, atuadores e capacidade de pro-
cessamento que emula em alguns aspectos do conhecimento humano (BEKEY, 2005). Para
realizacdo de tarefas o robo realiza diversos ciclos de percep¢cao-ag¢ao, modificando o estado do
ambiente no qual ele se encontra. O ciclo de percepcao-a¢cdo pode ser descrito em trés passos
fundamentais (PIERI, 2002):

e Os sensores atuam para obter informagdes acerca do ambiente;

e O processamento das informacdes obtidas através dos sensores e decisdo de que acdes

deveriao ser executadas;

e Os atuadores executam as agdes planejadas.
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Na robética movel pode-se considerar que existem basicamente trés niveis de controle. No
mais alto nivel de controle é tomada de decisdes, planejamento e mudanca de metas. No nivel
mais “baixo” de controle é necessario que os motores de acionamento das rodas alcancem a
velocidade desejada de acordo com os requisitos de projeto e limitacdes fisicas da estrutura do
rob6. Enquanto o nivel intermediario € necessario para projetar os robds de uma forma que nao
colidam com outros robds ou com obsticulos, enquanto a0 mesmo tempo manter a estabilidade
no nivel mais baixo (BEKEY, 2005).

Os vdrios niveis de controle discutidos anteriormente sio mostrados na Fig. 2.1. A
organizagao do software € associado com os varios niveis € frequentemente denominado arqui-
tetura de controle de um robd. Pode-se observar que os controles de alto nivel geram entradas
para os niveis mais baixos, mas também existe a realimentacdo dos niveis inferiores para os
niveis mais superiores. Sensores disponibilizam entradas para os niveis inferiores (e algumas
vezes de niveis intermediarios) (BEKEY, 2005).

Figura 2.1: Niveis de controle em um robd autdonomo

Entrada Humana Planejamento de mudangas Controle de Alto

— na estrutura de Nivel

estabelecimento de metas

Controle de Nivel

Navegacao e Evitar Intermediario

Obstaculos
Controle e atitude de Controle‘ de baixo
estabilidade nivel

Controle de velocidade

Fonte: (BEKEY, 2005)

Observe-se que o bloco superior na 2.1 indica a entrada humana envolvida no alto nivel de
controle. O controle de baixo nivel é claramente autbnomo, enquanto o controle intermediario
¢ normalmente autdbnomo nos robos da atualidade, mas pode ainda envolver algumas entradas
humanas (BEKEY, 2005).

O comando de entrada representado na Fig. 2.2 pode representar, por exemplo, a orientagao

desejada das rodas da frente, considerando que estas sdo as rodas motorizadas. O erro € a
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diferenca entre as direcOes de referéncia e a direcdo real. Este sinal de erro € o sinal de entrada
do controlador, o qual um de sinal para os motores que irdo movimentar as rodas. A direcdo
das rodas é medida pelos sensores e comparada com os comandos de entrada. Sistemas desses
tipos sao conhecidos como sistemas de controle de realimentacao negativa, desde que o sinal de
realimentacao tem um sinal oposto de comando de entrada.

Existem diversos tipos de robds moveis, dentre eles existem aqueles que se deslocam em
terra utilizando rodas. Esse tipo de robd € o utilizado nesse trabalho e serda apresentado com

maiores detalhes na sessdo seguinte.

Figura 2.2: Sistema bésico de controle

. c Sistema Salda
. (Em Controlador controlado
omando de
Entrada - (Planta)

Sensores de
realimentagéo e
compensagao

Fonte: (BEKEY, 2005)

2.2 Robos moveis com rodas

Os robds moveis com rodas sd@o os mais populares entres os robos méveis terrestres, pois
sdo robds com estruturas relativamente faceis de constru¢do mecanica, além de terem custo
relativamente baixo comparando com os de esteiras e os que se movimentam através de pernas
(PIERI, 2002). As rodas sao muito populares ndo sé como meio de locomog¢ado na robotica, mas
como nos veiculos construidos pelos humanos de uma forma em geral, podendo atingir boas
eficiéncias, e isso com uma implementacdo relativamente simples (BATLLE; BARJAU, 2009).

Os robds moveis com rodas podem ser avaliados de acordo com a sua capacidade de
manobras no plano de trabalho, sendo subdivididos em dois grupos nos quais € levado em
consideragdo a capacidade de deslocamento: os chamados robds mdveis omnidirecional e os
robds moveis nao - holonomicos (BATLLE; BARJAU, 2009) (FIGUEIREDO; JOTA, 2004).

Os robods denominados de omnidirecional, sdo aqueles capazes de se movimentar em qual-
quer direc¢do ao longo do plano do solo (x,y) independente da orientagdo que o robd encontre-se
em relac@o ao seu eixo vertical. Para essa capacidade de manobras € necessario que as rodas
possam se movimentar em mais de uma dnica dire¢do, desta forma robds omnidirecionais nor-

malmente utilizam rodas Suecas, ou esféricas alimentadas (BATLLE; BARJAU, 2009).



2.2 Robdés moveis com rodas 9

Robos nao-holonomicos

O robd a ser controlado € um sistema ndo-holonémico. O termo holondmico € atribuido ao
fisico Hertz e tem como significado: “universal”, “integral”, “integravel”, sendo literalmente
formado pelo prefixo holo que significa o todo, conjunto, totalidade e o sufixo -nomia que é
sindbnimo de lei. Desta forma, os sistemas nao-holondmicos podem ser interpretados como
sendo sistemas que nao sdo integraveis (FIGUEIREDO; JOTA, 2004).

Os sistemas nao-holondmicos sdo definidos como sendo os sistemas que possuem dimensao
finita tendo algum tipo de restricdo imposta a um ou mais estados do mesmo. Estas limita¢des
podem ter diversas causas, seja ela a conservacdo do momento angular, ou condi¢des im-
postas pela incapacidade de deslocamento em uma ou mais dire¢des. O efeito da imposi¢ao
dessas restricdes € que durante o projeto do sistema de controle elas devem ser levadas em
consideracdo, uma vez que o sistema nao tem atuadores em todas as dire¢des do espaco do
problema (FIGUEIREDO; JOTA, 2004).

Apesar da limitacdo em seus movimentos, 0s mesmo possuem a capacidade de atingir qual-
quer configuracdo no espago onde estdo definidos, desde que estes sistemas sejam controldveis
e a configuracdo atingiveis. Porém, devido as suas caracteristicas as leis de controle ndao sao
simples nem faceis de serem geradas de forma a garantir a estabiliza¢do do sistema; existindo
a necessidade de utilizagdo de ferramentas matematicas mais elaboradas para andlise e projeto,
tais como a geometria diferencial, a utilizacdo de um controle ndo-linear ou um controle linear
variante no tempo (FIGUEIREDO; JOTA, 2004).

Para a melhoria do projeto de controle de sistemas ndo-holonomicos € necessirio a
consideragdo das restricoes a0 movimento uma vez que possibilita o projeto de controladores
multivaridveis, exponencialmente estaveis de forma integrada. A anélise e sintese desse tipo de
controladores tem sido um desafio, tendo proporcionado um aumento da utiliza¢do das teorias
de controle ndao linear (FIGUEIREDO; JOTA, 2004).

Na robética o exemplo de um sistema nao-holondmico seria um robd que se move com
acionamento diferencial. Sendo utilizado nesse caso as mesmas estratégias de controle para
sistemas nao-holondmicos (FIGUEIREDO; JOTA, 2004).

Sendo uma classe de robds que alcanga uma alta capacidade de manobras, apenas um pouco
inferior aqueles que possuem a configuracdo omnidirecional. Nesses robds, movimentos em
uma direcdo particular pode requerer uma movimentagao rotacional inicial. Com um chassi
circular e o eixo de rota¢do no centro desse robo,esse tipo de robd pode girar sem mudar a sua
posicdo em relagdo ao solo. O mais popular desse tipo de robd € o de duas rodas com unidade
de acionamento diferencial no qual as duas rodas rotacionam em torno de um ponto no centro

do rob6. Um ou dois pontos adicionais de contato com o solo podem ser utilizados para a
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estabilidade, tal escolha € baseada em aplicagdes especificas (FIGUEIREDO; JOTA, 2004).

As duas rodas acionadas individualmente, também chamadas de rodas motorizadas, sdo
as responsaveis pelo movimento do robd. As mudancas de orientacdo do robd ocorrem de-
vido as diferencas de velocidade entre as mesmas. O rob06 possui a capacidade de rotacionar
em torno do proprio eixo, na situacdo que cada roda gira em sentidos contrdrios, porém com
mesmo mdédulo de velocidade. Geralmente, € considerado que o corpo do robd tem uma forma
simétrica, as rodas motorizadas encontram-se equidistantes do eixo de simetria e o centro de
massa estd no centro geométrico do corpo (FIGUEIREDO; JOTA, 2004). Na continuidade sera

apresentado as tarefas bésicas de deslocamento para esse tipo de robo.

2.2.1 Tarefas basicas de deslocamentos

Existem duas tarefas basicas de deslocamento para um robé6 mével com rodas (WMR -
do inglés Wheeled Mobile Robot) quando se encontra em um ambiente no qual ndo existem
obstaculos (ORIOLO et al., 2002):

e Movimento ponto a ponto : o robd deve atingir uma configuragao desejada a partir de

uma configuracao inicial dada.

e Seguimento ou Rastreamento de trajetoria: o ponto de referéncia do rob6é deve acompa-

nhar uma trajetdria no plano cartesiano iniciando em uma configuracao inicial dada.

Para realizar essas tarefas pode ser utilizados comandos de pré-alimentacao, controle com
realimentacao ou uma combinagdo dos dois. Na realidade, as solu¢des de realimentacdo apre-
senta um grau intrinseco de robustez. Entretanto especialmente no caso de deslocamento ponto
a ponto, o projeto das leis de controle de realimentacao para os sistemas nao - holondmicos tem
diversas obstrucOes estruturais. Controladores que superam essas dificuldades podem levar ao
desempenho ndo satisfatério no regime transitério. O projeto de comandos de realimentacdo é
estritamente relacionado ao planejamento de trajetdria, e essas solu¢des levam em consideracdo
a especificidades cinemadtica da natureza de um robd mével nao-holondmicos (LUCA et al.,
2001).

Quando utilizando uma estratégia de realimentacdo, o deslocamento ponto a ponto leva
a um problema denominado estabilizacdo de postura. Sem perdas de generalidade, o obje-
tivo pode ser definido como a origem de uma configuragdo espacial n-dimensional do robd.
Enquanto para o seguimento de trajetoria, na presenga de um erro inicial, como por exem-
plo, um inicio fora da trajetdria, o problema de controle de seguimento assintotico consiste na
estabilizagdo em zero no e, = (ey,ey), erro cartesiano bidimensional em relagdo a posicdo do

movimento do robo de referéncia (LUCA et al., 2001). O objetivo desse trabalho € o controle
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para o seguimento de uma trajetoria pré-definida. Existem dois tipos de controle nessa situagdo,

o controle cinematico e o dindmico, que serdo apresentados na proxima sessao.

2.2.2 Controle de um robo movel

E possivel levantar os modelos cinematicos e dindmicos de um robd mével com rodas. Para
a determinacdo do modelo cinematico € utilizado dlgebra vetorial e matricial (KLANCAR et
al., 2005), para representar e descrever a localizacdo de um objeto no espago tridimensional
a partir das equacgdes bésica da cinemadtica em relacdo a um sistema de referéncia. O modelo
dinamico relaciona-se com as forcas que atuam no corpo (PIERI, 2002), entre elas o torque e
incluem propriedades dinamicas,tais como a inércia e a massa do robd.

Enquanto o controle cinemético encarrega-se de controlar a trajetdria selecionada, porém
caracteristicas dindmicas do rob0, tais como inércia, atritos e folgas impedem que a trajetéria
de referéncia e a trajetoria real coincidam. O modelo dindmico do rob6 € altamente nao linear,

multivaridvel, acoplado e de pardmetros varidveis, seu controle é extremamente complexo.

Controle cinematico

O controle cinemdtico € baseado nos modelos cinematicos dos sistemas, que podem ser de
primeira ordem ou de ordem mais alta. O modelo cinemético de primeira ordem € amplamente
utilizado na literatura e na pratica por diversas razdes, entre elas tem-se (KLANCAR et al.,
2005):

1. A dinamica do sistema normalmente € negligenciavel, uma vez que os motores sdo rapidos

e robustos, em especial a velocidades moderadas.

2. O design do rob6 raramente permite a utilizacdo dos valores do torque ou da aceleragcao

como sendo entrada do sistema.

3. A entrada de um robdé mével normalmente sdo as velocidades de referéncias, em alguns
casos a linear e angular, em outros equipamentos sdo as velocidades, seja ela linear ou

angular, de cada roda.

A partir do modelo escolhido e das tarefas desejadas que o robd realize é escolhido a es-
tratégia de controle mais adequada que resultem uma otimiza¢do. Quando € desejado que o
robo percorra uma determinada trajetdria através de tempo € utilizado o controle cinematico.
Os dados de entrada do controlador sdo obtidos através de informacgdes provindas do usudrio,
tais como: o ponto de destino ou a trajetoria desenhada. E a partir do modelo cinematico do

robo sdo estabelecidas as velocidades de referéncia.
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Sera utilizado neste trabalho o controle cinemaético, uma vez que o objetivo € que o robd
siga uma trajetdria pré-definida, tendo como parametros de referéncias as velocidades lineares

e angulares.

2.3 Modelo Cinematico do Robo

O modelo matematico do robd foi determinado a partir das equagdes da cinematica direta
aplicadas ao robd, levando em consideragdo que o mesmo possui um motor diferencial para
cada roda e desta forma o comando de velocidade € realizado individualmente em cada roda
motorizada. Para a determinacdo das equacdes € considerado que o centro de massa coincide

com o centro geométrico do robd. O modelo é dado pela seguinte relacdo (KLANCAR et al.,

2005):
Xe cosf O
1%
Ye | = | sin6 O [ ] 2.1
. w
0, 0 1

onde v e @ sdo a velocidade linear e a angular, respectivamente e também as entradas do sistema
u=[v ]’ . O vetor x = [x,y,0]" contém os valores de posicdo e orientacdo do robd, o ponto
médio do eixo das rodas, em relagdo a um sistema de coordenadas inerciais global {O,X,Y},
conforme a Fig. 2.3.Reescrevendo a Eq. 2.1 de forma concisa torna-se a seguinte expressao:
(KUHNE et al., 2004)

x =f(x,u) (2.2)

As relagdes apresentadas sdo para as diferenciais da posi¢ao e orientagdo. Para escrever
as rotinas computacionais do Controle Preditivo do tipo EPSAC € necessdrio um modelo em
tempo discreto, dando os valores de posicao e orientacdo a cada instante. Este mesmo modelo é
utilizado para o controle PI nao-linear, proposto por (KLANCAR et al., 2005), que serd apresen-
tado na Secdo 3.1 . Para a determinacdo do controlador € necessario a posi¢do € orientacao no
instante de tempo ¢, os valores disponiveis sdo as velocidades linear v e angular @ desta forma
o modelo é discretizado utilizando as aproximacgdes de Euler, e as relagdes para a posicao e
orientacdo do robd sio as seguinte (ANDRADE; TORRICO, 2011):

x(t+1) =x(t) + Tyv(t)cos(0(1)) (2.3)
Y(t+1) = y(t) + Tev(t)sin(6/(1)) (2.4)
O(t+1)=0(r)+ Ty0(t) (2.5)

onde 7§ € o periodo de amostragem.
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Figura 2.3: Sistemas de coordenadas para o robd movel
Y F 9

Roda

Passiva
’\w

Rodas
Motorizadas

Fonte: Autor

2.3.1 Modelo linearizado

O controlador proposto por (KUHNE et al., 2004), apresentado na secdo 3.3 utiliza um
modelo linearizado. Esse modelo € obtido utilizando o cdlculo da diferenga dos erros de posi¢ao
e orientacdo do robd real em relacdo ao de referéncia, considerando que o robd de referéncia é
descrito pela mesma Eq. 2.2, no qual a trajetdria é descrita por X, € o sinal de controle u;, todos
os termos que caracterizam o robo de referéncia terdo com subscrito o indice r (KUHNE et al.,
2004) .

Xp = f(xy, ur) (2.6)

Expandindo o termo a direita da Eq. 2.2 utilizando a Série de Taylor em relagdo ao ponto (X, up

e descartando os termos de ordem mais altas, tem-se que (KUHNE et al., 2004):

. of (x,u) 9 (x,u)
x= f(xp,ur)+ ol NI (x—x,)+ “ow s, (u—uy) (2.7)
U=u, Uu=u,
reescrevendo de forma simplificada:
X - f(Xl'7 ur) + fx’r (X - Xr) + fu7r(u - ur) (2.8)

onde os termos fy € fy r sd0 jacobianos de f levando em consideracdo X e u, respectivamente,

estimados em torno do ponto de referéncia (Xy,u,). Subtraindo a Eq. 2.6 da Eq. 2.8, resulta em
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(KUHNE et al., 2004):
X = fy X+ fy 0l (2.9)

sendo X £ x — x; o termo referente ao erro do robo real em relagiio ao robo de referéncia, e o
termo @i £ u —u, é associado a pertubacio da entrada no controle do sistema (KUHNE et al.,
2004). Utilizando diferencas avancadas para a aproximacao de X, tem-se o seguinte modelo em

tempo discreto:

X(k+1) =A(k)X(k) +B(k)ii(k) (2.10)
sendo:
1 0 —v.(k)sin6,(k)T;
Ak)=10 1 v.(k)cos8,(k)T;
00 1

cos6,(k)T; 0
B(k) = | sin6,(k)Ty; 0
0 T;

2.3.2 Veiculos com conducao através de unidades diferenciais

Para os WMR existem dois tipos: os veiculos com conducao pelas rodas dianteiras e os
com conducdo através de unidades diferenciais. As equagdes cinemadticas sdo desenvolvidas
com propriedades bésicas geométricas do movimento alcancado (COOK, 2011). Como o robo
utilizado é um com unidades diferenciais nas rodas traseiras, o primeiro tipo nao serd abordado
neste trabalho.

A entrada do robo utilizado s@o as velocidades lineares das rodas direita (v;) e esquerda
(ve) ja os controladores trabalham com as velocidades lineares e angulares v e @ desta forma é
necessdrio a conversdo de v e @ para v, e v, e depois retornar para v e @ conforme o apresentado
na Fig. 2.4.

Figura 2.4: Diagrama de blocos - mudancas de velocidades

V,
Viref Wref ° . L X,y,0

controlador | robd _| controlador ——

Vp w

€1,62,€3

Fonte: Autor

Neste tipo de WMR as rodas de um lado do rob6 s@o controladas independentemente. Co-

ordenando as duas velocidades diferentes, pode-se fazer diferentes tipos de movimentos, tais
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como: girar em torno de si mesmo, movimentar-se em linha reta, movimentar-se em um cami-
nho circular ou acompanhar uma trajetéria pré-definida (COOK, 2011).

As equagdes de movimento para um robd conduzido através de rodas com unidades diferen-
ciais, serdo definidas a seguir. Seja R o raio instantaneo de curvatura da trajetoria de robo. d A
largura do veiculo (o espagamento entre as rodas), como o apresentado na Fig. 2.5. Lembrando

que:

v= R (2.11)

Figura 2.5: Diagrama de blocos - mudancas de velocidades

'Rt g
i \f__
Yrobc\ \

= Y

L

Fonte: (COOK, 2011)

A distancia da roda esquerda para o eixo de coordenadas é R, = R — d /2, enquanto para a

roda direita é Ry = R+ d /2. Desta forma a velocidade linear da roda esquerda:

ve=0(R—W/2) (2.12)

e da roda direita é:
vg=®R+W/2) (2.13)

Subtraindo a Eq. 2.13 de Eq. 2.12, resulta em:
Vg — Ve = 0Od (2.14)
entdo a velocidade angular do robo é€:

0="24"Ve (2.15)
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Resolvendo para o raio de curvatura instantaneo, tem-se que:
R Ve d

o 2

ou:

Ve d dvg+v,

% 2 2V —ve

R =

Isto resulta na seguinte expressao para velocidade em relagdo ao eixo longitudinal do robd,

o eixo paralelo a dire¢do das rodas:

Vi—VedVg+ve vgtve

A= (DR = = 2.16
Fyrobo d 2vi—v. 2 (219
Como nao existe a movimentacdo em dire¢des laterais as rodas do robo:
Virobo = 0, (2.17)
e
Vg —V
Oropy = ——— (2.18)
Convertendo para coordenadas globais, tem-se as seguintes expressoes:
it Gne. (2.19)
2
y= er Ye cos 8, (2.20)
e
Vr - Ve
0= 221
p (2.21)

Pode-se ser levado em consideragdao que as velocidades ndo podem mudar instantaneamente.

Desta forma, € introduzido como variaveis de controles as taxas de velocidades (COOK, 2011):

Vg = Uy (2.22)

Ve = U (2.23)

2.4 Robo utilizado

O robd movel utilizado para a realiza¢do dos experimentos, foi um equipamento da empresa
National Instruments, modelo NI LabVIEW Robotics Starter Kit (R), mostrado na Fig. 2.6.
O robd possui as seguintes caracteristicas (INSTRUMENTS, 2012):

e 2 motores Pitsco Education de 12 V, cada um com 152 rpm de rotacdo e um torque
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Figura 2.6: Robd National Instruments utilizado

Fonte: Autor

aproximado de 2.1 N.m (300 oz-in);
e Encoder 6tico com 400 pulsos por revolucao;
e Sensor de distancia ultrassonico, com alcance que varia entre 0,02 até 3 m.
e Duas rodas motorizadas com didmetro de 4 polegadas.
e Uma roda omni direcional que € utilizada para o direcionamento do robd.

A programacdo do rob6 € baseada na ferramenta:LabVIEW Robotics. Existem bibliotecas dis-
poniveis, ou pode ser feito um algoritmo préprio utilizando o software Labview. Ja vem incor-
porado ao equipamento um algoritmo de desvio de obstaculos, um dispositivo de controle de
velocidades das rodas e um dispositivo de aquisi¢ao de dados em tempo real.

O programa utilizado para comunicagdo robdo-computador € o Labview. O Labview tem
uma interface gréifica semelhante a um diagrama de blocos, existem bibliotecas, contendo
fungdes e também blocos prontos de sensores e atuadores, que s@o incluidas na instalagao
basica dos programas e outras a partir de Download do sitio na Internet da National Instru-
ments, também existe a disponibilidade de diagramas de blocos completos. E possivel fazer a
simulacao do comportamento do rob6 a partir do Labview, e também criar um bloco no qual

contenha linhas de cédigos préprias para o Mathscript.
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3 Controladores para o seguimento de
trajetoria

Existem na literatura diversas propostas de controladores para promover o seguimento de
trajetéria de um robd mével. O objetivo desse trabalho € verificar a possibilidade da utilizagao
da estratégia de controle preditivo EPSAC para o controle de trajetoria e comparar seu desem-
penho com dois controladores existentes na literatura. Um desses controladores escolhidos foi
proposto por (KLANCAR et al., 2005) e tem como caracteristica a presenca de termos nao
lineares e apenas um grau de liberdade no controlador, sendo denominados nesse trabalho de
controlador Klancar em homenagem ao autor. O outro controlador escolhido foi proposto por
(KUHNE et al., 2004) e utiliza uma estratégia de controle MPC, o qual trabalha com um modelo
do robo linearizado em torno da trajetdria de referéncia, sendo por este motivo denominado de
MPC linearizado.

3.1 Controlador Klancar

A estratégia baseia-se no seguinte conceito: quando um robd € controlado para seguir um
caminho de referéncia normalmente existem erros entre a posi¢ao e orientagdao do robd real e o
determinado pela referéncia, sendo a posi¢do e orientagao ideal, como o mostrado na Fig. 3.1,

os erros podem ser escritos da seguinte forma:

el cos@® sinfB O Xp—X
ey | = | —sin@ cos® O |.| y,—y 3.1
e3 0 0 1 6,—6

Derivando a funcdo erro, tem-se o seguinte modelo cinematico:

é1 coses 0 -1 e
Vv, v

é2 - sine3 0 [ + 0 —e] . [ ] (32)
, ®

é3 0 1 0 -1

As entradas do robd podem ser expressa, a partir de uma transformacao nao linear, da

seguinte forma:
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Figura 3.1: Robd seguindo um erro de transformacgao

robd de referéncia

[—r}‘ y})%

robd real

(KLANCAR et al., 2005)

ui =v,C0se3 —v

Uy =@ — O 3.3)

O controlador em malha fechada é definido como sendo, na forma matricial:

€l
v —ki 0 0
= | e (3.4)
() 0 —sign(v))ky —k3
e3
ou escrito de forma simplificada:
v=K-e (3.5)

O sistema tem trés estados e duas entradas, desta forma a dimensdo da matriz de ganho
K é 2 x 3. A estrutura do controlador é apresentado na Fig. 3.2, em forma de diagrama de
blocos. A partir da trajetéria de referéncia sao determinadas as entradas de pré-alimentagao,
essas entradas sao as velocidades linear e angulares de referéncia. Esses valores determinam o
sinal de controle aplicado nos motores de acionamento das rodas do robd.

Para reduzir o erro na direcdo de movimento e; a velocidade tangencial deve mudar cor-
respondentemente, da mesma forma a orientacdo do erro e3 pode ser manipulada através da

velocidade angular do robd. Ja o erro da dire¢do ortogonal do movimento pode ser reduzido
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mudando a velocidade angular (KLANCAR et al., 2005).

Figura 3.2: Diagrama de Blocos para o controlador Klancar

Entradas de u, u,cos(e;)
pré-alimentacao . ulr2)

Transformacao
—em coordenadas
do WMR

Trajetéria Controlador

u
.. —»= WMR q—»
de referéncia

(KLANCAR et al., 2005)

A determinacdo dos ganhos do controlador € feito através da comparagdo entre os po-
lindbmios real e desejado caracteristico.Para um sistema de segunda ordem o coeficiente de
amortecimento desejado { € (0, 1) e a frequéncia natural ®, > 0. Um polo extraem s = —2§ @,

aumenta o tempo de subida e diminui o overshoot do sistema.(KLANCAR et al., 2005)
det(sT — A +BK) = 5° + (ki +k3)s* + (kikz + kv, + @} )s + kikaev, + k3 0} (3.6)
Desta forma, tem-se os seguintes coeficientes:

ki =kz = ZC(I)n(l‘)
ky = g.|v (1)) (3.7

sendo o parametro g o termo que corresponde ao grau de liberdade no projeto do controle,
parametro este que deve ser positivo, g > 0 (KLANCAR et al., 2005). Quanto maior este

parametro mais rapida € a resposta do sistema.

3.2 Controle Preditivo

O Controle Preditivo Baseado em Modelos, ou simplesmente Controle Preditivo (MBPC ou
MPC- do inglés Model (Based) Predictive Control ) € uma metodologia de controle que utiliza
o modelo do processo on-line, ou seja dentro do célculo do controle, para fazer as predi¢des
dos valores de saida futuros da planta e desta forma otimizar as agdes de controle futuro (CA-
MACHO; BORDONS, 1998). Sendo que o conceito de um controlador MPC nio se trata de
uma estratégia de controle especifica e sim um conjunto de metodologias de controle que pos-

suem algumas caracteristicas em comum (KEYSER, 2003). A estrutura conceitual do MPC é
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apresentada na Fig. 3.3.

O Controle Preditivo também € conhecido como controle de horizonte retroativo ou controle
de horizonte em movimento. E utiliza a dindmica explicita do modelo da planta para predizer
os efeitos da reacdo futura das varidveis manipuladas na saida e o sinal de controle obtido pela a
minimizac¢ao de uma fungao custo. O desempenho do controlador depende de como a dindmica
do sistema € representada pelo modelo entrada-saida utilizada no projeto do controlador (HOL-
KAR; WAGHMARE, 2010). Essas estratégias estdo sendo amplamente aplicadas na industria
como uma maneira efetiva para tratar os problemas de controles multivaridveis com restri¢oes
(BEMPORAD; MORARI, 1999).

Figura 3.3: Estrutura basica do Controle Preditivo

Referéncia

lm)

Otimizador

Medicoes

(BEMPORAD; MORARI, 1999)

As caracteristicas basicas das estratégias de controle que compdem a familia de controla-
dores MPC sao (CAMACHO; BORDONS, 1998):

e A utilizacdo explicita das predicdes das saidas do modelo de processo em instantes de

tempo futuro, denominado horizonte.

e O valor do controle é determinado pela minimiza¢cdo de uma fungdo custo, esta fungao

pode incluir restri¢des.

e Estratégia retroativa, trata de uma estratégia na qual a cada instante o horizonte é deslo-
cado para o futuro envolvendo a aplicagdo do valor do primeiro controle calculado em

cada passo.

As diferencas existentes entre os algoritmos do MPC sdo: o modelo utilizado para re-
presentar o processo € o ruido, a fun¢@o custo a ser minimizada, se a mesma leva ou ndo em
consideracgdo a existéncia de restricdes para a determinagao do controlador (CAMACHO; BOR-
DONS, 1998). Existe uma ampla utilizacdo dessas estratégias em varios meios tanto no meio

académico quanto na industria , também sendo utilizado no campo médico.
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No MPC, os modelos de processo podem ser dos tipos lineares ou ndo lineares. Sao utiliza-
dos para avaliar o comportamento do sistema. O movimento futuro das varidveis manipuladas
¢ determinado pela minimizacdo do erro previsto ou da fun¢do objetiva (HOLKAR; WAGH-
MARE, 2010).

Os controladores MPC possuem algumas vantagens em relacao a outros métodos de con-
trole. Entre elas: a ampla variedade de processos nos quais o controle MPC pode ser aplicado,
sendo esses com dindmica simples ou complexas, sistemas com um atraso grande, fase nao
minima, instaveis, ndo lineares e multivaridveis. As restricoes ser incluidas diretamente do
projeto do controlador.

A principal desvantagem da utilizacdo de um controlador preditivo é o custo computaci-
onal uma vez que suas derivagdes sdo mais complexas do que o controle cldssico PID. Se a
dindmica do processo nao sofrer alteragdes as derivacdes do controle podem ser determinadas
anteriormente, mas no caso do controle adaptativo, todos os calculos devem ser realizados a
cada tempo de amostra. Quando restricdes sdo consideradas eleva-se o custo computacional
envolvido (CAMACHO; BORDONS, 1998).

Com os recursos computacionais existentes na atualidade isto ndo € necessariamente um
problema, mas deve ser levado em consideragcdo que o computador ndo € utilizado apenas para
o algoritmo de controle, mas também para comunicacdo entre os operadores, alarmes gravacoes
entre outros (CAMACHO; BORDONS, 1998).

A disseminacdo do MPC s6 foi possivel a partir do desenvolvimento e melhorias de tec-
nologias, que atualmente estdo atingindo um certo estado de maturidade, essas tecnologias sao
necessdrias para a aplicacdo das estratégias de controle MPC. Entre elas tem-se (CAMACHO;
BORDONS, 1998):

1. Identificacao e modelamento: existem diversas e poderosas técnicas, sendo possivel

trabalhar em ambientes adversos, presenga de ruidos.

2. Computadores:Sao equipamentos mais rapidos, confidveis e acessivel, capaz de proces-

sar algoritmos on-line complexos.

3.2.1 Metodologia MPC

A seguinte notagdo serd utilizada durante o texto (CAMACHO; BORDONS, 1998):
e = 1indice de tempo discretor =0,1,2,3,...;
e u(r) = entrada do processo (varidvel manipulada - VM);

e y(t) = saida do processo (varidvel controlada VC);
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e w(t)= setpoint ou referéncia;
e u(t+ k|t)=valores futuros de entrada, postulados em um tempo ¢;
e y(t + k|t)=valores previstos para a saida, baseado em:

— Medidas disponiveis no tempo ¢ : y(¢),y(t — 1), ..., u(t — 1),u(t —2),...

— Valores futuros postulados para a entrada : u(z|t),u(t + 1|t), ...

O conjunto de algoritmos que pertencem ao MPC, representados pelo diagrama de blocos
da Fig. 3.4, tem como caracteristica a estratégia descrita a seguir (CAMACHO; BORDONS,
1998):

1. O horizonte N determina as saida futuras, sendo denominado de horizonte de predi¢do e
determinada para cada instante de tempo ¢ utilizando o modelo de processo. Esses valores
previstos para a saida y(¢ + k|t) para k = 1...N depende dos valores conhecidos,saidas e
entradas passadas, no instante ¢ e os sinais de controle futuro u(r +k|t), k =0...N — 1, que

serdo enviadas para o sistema e calculados.

2. O conjunto de sinais de controle futuro é determinado pelo célculo da otimizagdo determi-
nado pelo critério em ordem de manter o processo 0 mais proximo possivel da trajetoria
de referéncia w(z + k), esta trajetdria pode ser o proprio setpoint ou uma aproximacio do

mesmo.

3. O sinal de controle u(t|t) é enviado para o processo enquanto os valores calculados para
o préximo sinal de controle sdo rejeitados, pois a nova amostra de tempo y(z + 1) ja é co-
nhecida e o passo 1 € repetido com este novo valor e todas as sequencias sdo atualizadas.

E o u(t + 1|t + 1) é calculado utilizando o conceito de horizonte retrocedente.

O modelo utilizado para predizer as saidas futuras da planta, sendo baseado nos valores
passados e atuais e nos valores propostos de acdes de controle 6timo futuro. Essas acdes sdao
calculadas levando em consideragdo a fungdo custo, que leva em consideracao o seguimento de
erro futuro, como também restricdes (CAMACHO; BORDONS, 1998).

Consequentemente, tem-se a importancia do modelo do processo em relagao ao controlador.
O modelo escolhido deve ser capaz de apresentar a dindmica do processo para desta forma ser
capaz de predizer precisamente as saidas futuras e também deve ser um modelo de simples
entendimento e também de implementacio (CAMACHO; BORDONS, 1998).

Em resumo, temos os algoritmos pertencentes ao MPC tem as seguintes caracteristicas em

comum:
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Figura 3.4: Estrutura basica para os controladores MPC
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(CAMACHO; BORDONS, 1998)

Predicao através de um modelo do processo,

Determinacao de uma referéncia para a trajetoria ou de set-point,

Estruturacdo de uma lei futura de controle,

Defini¢ao de uma fungdo custo e restri¢des,

Determinacao da otimizagdo do controle

3.2.2 Elementos do MPC

Existem trés elementos comuns entre os algoritmos MPC, diferentes op¢des para cada um
desses elementos podem ser escolhidos de acordo com o algoritmo escolhido, estes elementos

sdo (CAMACHO; BORDONS, 1998):
e O modelo de predi¢cao
e A funcdo objetiva

e O procedimento para a determinacao da lei de controle.
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3.2.3 Modelo de predicao

O modelo de predicdo deve ser capaz de capturar a dindmica do processo, permitir que
as predi¢cdes sejam calculadas, ser intuitivo e permitir analises tedricas. Essa utiliza¢do € ne-
cessario para o calculo da predi¢do da saida do processo em um instante futuro y + k|r,esses
modelos representam as relacdes sendo que as diferentes estratégias MPC podem utilizar di-
ferentes modelos de predicoes. Um modelo de perturbagdes pode ser levado em consideragao
de forma a descrever o comportamento que nao € aparente no modelo do processo, tais como:
efeitos de entradas ndo mensurdveis, ruido e erros do modelo. Desta forma, o modelo pode ser
separado em duas partes necessarias para a predi¢ao: o modelo atual do processo e o modelo de
perturbacdes (CAMACHO; BORDONS, 1998).

Modelo do processo

As estratégias de controle MPC podem utilizar diversos tipos de modelos variando de
acordo com a formulagao especifica para o algoritmo, sendo os mais comumente utilizados: res-
posta ao impulso, resposta ao degrau, fung¢des de transferéncia, espaco de estado pode ser utili-
zados modelos nao lineares, redes neurais e 16gica de Fuzzy entre outras formas de representacao
(CAMACHO; BORDONS, 1998).

Modelos de perturbacoes

A escolha do modelo utilizado para representar as perturbagdes € tdo importante quanto a
escolha do modelo do processo. O modelo de pertubacdes € a diferenca entre a saida medida
(CAMACHO; BORDONS, 1998).

3.2.4 Funcao objetivo

Os variados algoritmos MPC propdem diferentes tipos de func¢do custo para obter a lei de
controle. O objetivo é que a saida futura (y) no horizonte de controle considerado deve seguir a
um sinal de referéncia determinado (w) e a0 mesmo tempo o esforgo de controle (Su) necessario
para a realizacdo dessa tarefa deve ser penalizado. A expressao geral para uma func¢do objetivo
desta forma ¢ (CAMACHO; BORDONS, 1998):

Ny N,
J(NL,N2,N) = Y 8P+l —w+ )PP+ Y, A)[Suit+j—1D)  (3.8)
J=N J=N

Em uma funcéo custo € possivel a consideracdo de (CAMACHO; BORDONS, 1998):

e Parametros: N; e N, sdo horizontes de custo minimo e maximo, respectivamente e N, é

o horizonte de controle que nio necessariamente coincide com o horizonte maximo. Os
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significados de N e N, sdo intuitivos, marcando os limites de instantes no qual é desejado

que a saida siga a referéncia.

e Trajetoria de referéncia: uma das vantagens do controle preditivo é que as evolugdes fu-
turas do processo sdo conhecidas previamente , e desta forma o sistema pode reagir antes
que a mudanca seja efetivamente realizada, desta forma evitando-se os efeitos de atraso
na resposta do processo, a evolugdo futura da referéncia r(r + k) é conhecida antecipa-
damente em diversas aplicagdes, como por exemplo na robdtica, servos ou em processos
descontinuo.A trajetdria de referéncia pode ser utilizada para especificar um comporta-

mento de ciclo de malha fechada; essa idéia € utilizada nos controladores GPC e EPSAC.

e Restricoes Na pritica todos os processos sao sujeitos a restricoes. Os atuadores tem
uma faixa limitada de campo de ac@o assim como uma determinada taxa de variacgdo.
Razdes de construgdo, seguranca ou ambiental, at€é a amplitude dos sensores pode causar
um limite em varidveis, como por exemplo, niveis em um tanque, fluxo em tubulagdes
entre outros. Por essas razdes € necessdrio a introducao de restricdes nas fungdes a serem
minimizadas. Normalmente os limites na amplitude e as taxas de variagdes do sinal de

controle e os limites na saida sera considerado:

Umin < M(l) < Umax vt
Ymin g y(t) < Ymax vt

Adicionando essas restricoes as fungdes objetivas na minimizacdo se tornam ainda mais
complexas, entdo a solu¢do ndo pode ser obtidas explicitamente como no caso sem restri¢oes
(CAMACHO; BORDONS, 1998).

3.2.5 Obtencao da lei de controle

Para obter os valores do controle a ser aplicado na planta u(¢ +k|r) € necessédrio a minimizagéo
da funcdo objetivo J Eq. 3.8. Para fazer isso os valores das previsdes de saida y(¢ + k|t) sdo
calculados como uma fun¢ao dos valores passados de entrada e saida e dos valores de sinais de
controle, fazendo uso do modelo escolhido e o substituindo na fun¢ao custo, obtendo expressoes

as quais as suas minimizagao tendem aos valores procurados (CAMACHO; BORDONS, 1998).
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3.2.6 Respostas livre e forcada

Uma caracteristica tipica da maioria dos controladores MPC ¢ a utilizacdo dos conceitos
de resposta livre e resposta forcada. A idéia é expressar a seqii€éncia de controle como sendo a
adicao de dois sinais (CAMACHO; BORDONS, 1998):

u(t) = Ujjyre T Ufor 3.9

O sinal uy;,,, corresponde as entradas passadas e € mantido constante e igual ao dltimo valor
da manipula¢do de varidveis em um instante de tempo futuro. Enquanto o sinal uy,, € igualado
a zero no passado e feito igual ao proximo movimento do controle futuro (CAMACHO; BOR-
DONS, 1998).

A previsdo da sequéncia de saida € separada em duas partes. Um parte refere-se a resposta
livre (jire(t)) correspondendo a previsdo se saida quando a varidvel de processo manipulada
é feita igual a uy;,, (1), a outra, a resposta forgada (ys,.(¢)) corresponde a previsio da saida do
processo quando a sequéncia de controle ¢ feita igual a u,.(¢). A resposta livre corresponde a
evolugdo do processo devido ao estado presente, enquanto a resposta for¢cada ocorre devido aos

movimentos de controle futuro (CAMACHO; BORDONS, 1998).

3.3 Controlador MPC Linearizado

O segundo controlador para seguimento de trajetdria de um robd mével com rodas foi pro-
posto em Kiihne et al.(2004) e também utiliza um estratégia de controlador MPC na qual o
método consiste em otimizar as predi¢des do comportamento do processo em relagdo a sequen-
cia de entradas do controlador futuro.Além da funcdo custo a ser minimizada, essa estratégia
tem como peculiaridade a utilizagdo do modelo do robd linearizado, conforme foi apresentado
na secdo 2.3.1. A func¢do objetiva a ser minimizada é a fun¢cdo quadrética dos estados e das
entradas dos controladores (KUHNE et al., 2004):

N
Z (k+ jlk)Qx(k + jlk) +a” (k+ j— 1|k)Raa(k+ j— 1]k) (3.10)

onde:
N € o horizonte de predicao;
Q e R sendo matrizes de peso,onde: Q >0e R >0.

O problema de otimizacdo pode ser definido para determinar @* :

" = argmin®(k) (3.11)
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A cada interagdo k € calculado a minimizacdo da Eq. 3.10, fornecendo uma sequéncia de

controle 6timo @*(k|k),...,0*(N — 1|k) e o custo 6timo d*(k), sendo que a lei de controle é o
primeiro elemento da sequéncia do controle 6timo,ou seja *(k|k). O diagrama de bloco que

representa a estrutura do controle € apresentado na Fig. 3.5. Para a solu¢do da otimizagao dois

vetores sdo definidos (KUHNE et al., 2004):

Figura 3.5: Diagramas de Blocos MPC linearizado

Robd de X,
Referéncia

u,
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Fonte: (KUHNE et al., 2004)

i(k+1]k)

t(k+2
K(k+1)2 x(kf ) (3.12)

i(k+NJk)

(k)

(k) = f(kf 1) (3.13)

#(k+N—1[k)

Desta forma a Eq.3.10 pode ser reescrita como:

®(k) =% * (k+1)Qx(k+ 1)+’ (k)Rii(k) (3.14)

Sendo:
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Q 0
oz |’
0 0 Q
€: )
(R 0
f{é 0 R
00 ... R

Pode-se escrever a expressdo X(k+ 1), como sendo:

%(k4+1) = A(k)%(k|k) +B(k)ii(k)

sendo as matrizes A e B definido como:

A(k)

B(k|k) 0

sendo a(k, j) definido como:

N

ak,j) 2 T] Ak+ilk)

A(k[k)

o(k,0)

Ak+1OB(kK)  B(k+1[k)

a(k, )B(k|k)  o(k,2)B(k+ 1]k)

1

i=j

Reescrevendo a Eq. 3.10, a partir da Eq. 3.14 com as matrizes definidas em Eq.

3.16, a fun¢do quadrética se torna:(KUHNE et al., 2004)

oo | ARKAGK 1K)

B(k+N —1|k)

D(k) = - (H(K) i+ £ (k)i (k) + d(k)

29

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

3.15¢

(3.21)
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d(k) 2 " (k|k)AT QA (k)% (k|k)

A Matriz H € denominada de matriz Hessiana e deve ser uma matriz definida positiva. Ela
refere-se a parte quadratica da fungdo objetiva. Enquanto f descreve a parte linear e o termo d
¢ a parte independente de 1 e ndo influencia na determinac¢do de u*. Para resolver o problema
de otimizacdo deve se considerado que o controle fique dentro de uma faixa, expressando os

valores das restricoes do controlador (KUHNE et al., 2004):

umin(k) < u(k) < umax(k) (3.22)

Desta forma, a Eq. 3.11 pode ser reescrita para encontrar i*, na qual :(KUHNE et al., 2004)

0" = argmin® (k) (3.23)

u

sujeito a :

Du<d (3.24)

onde ®(k) é a funcio objetivo e i € a variavel livre de otimizag¢do. A inequag@o, apresentada
na Eq.3.24, é a forma geral com a qual descrever restricoes em varidveis de controle. Se for

considerado apenas restri¢des no controle como na Eq. 3.27, tem-se:(KUHNE et al., 2004)

e ]
< (3.25)
-1 _ﬁmin

Podendo ser reescrito da seguinte forma:

Como a varidvel de otimizacao livre é @i(k), reescrevendo a Eq. 3.26 levando em consideragio

a variavel livre, em forma vetorial:(KUHNE et al., 2004)

Win (k) _ﬁr(k) < ﬁ<k) < ﬁmax(k) _ﬁr(k) (327)
com:
[ umin(k) |
min k+1
Ton(K) 2 | (_ t) (3.28)
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umax(k)
W (k+ 1)

1>

W (k) (3.29)

Uy (k+N—1)

u, (k)

A u(k+1)

u, (k) (3.30)

u.(k+N—1)
Como o estado de predi¢cdo € a funcao da sequéncia 6tima a ser calculada, € facil mostrar
que o estado de restricdes pode ser escrito genericamente pela Eq. 3.24. Além disso, restri¢des
nas taxas de mudanca de controle e estados pode ser formuladas de maneira similar (KUHNE

et al.,2004).
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4 Extended Prediction Self Adaptive Control -
EPSAC

O EPSAC ¢ um dos diversos algoritmos pertencente a familia dos Controles Preditivos.
Como tal, possui as caracteristicas em comum a todos os algoritmos pertencentes ao MPC,
como a utilizagdo do modelo de processo para obter uma predicdo dos valores futuros, a
determinacdo de uma referéncia para a trajetoria. Devido a essas caracteristicas ¢ um algo-
ritmo utilizado em uma ampla variedade de processos industriais e sendo pesquisado para pro-
cessos especificos que vao desde o controle em uma torre de destilagdo (POP et al., 2012) ,
até a aplicacdo na medicina, como por exemplo o controle de temperatura e umidade em uma
incubadora neonatal(BRITO et al., 2010).

Entre as caracteristicas que tornaram o EPSAC uma escolha para o controle de trajetéria de
um rob6 mavel € a possibilidade de se trabalhar com a trajetdria de referéncia para o processo e
a outra € a capacidade de trabalhar diretamente tanto com sistemas nao lineares quanto sistemas
MIMO (sistema com multiplas entradas e multiplas saidas, do inglés Multi Input and Multi Out-
put) para robd mével a ser controlado trata-se de um sistema com duas entradas as velocidades
lineares e angulares v e w, respectivamente e trés saidas a posi¢do no plano cartesianox ey e a
orientacdo do robd 6.

Para a utilizacdo de um controlador baseado na metodologia MPC, como € o caso do EP-
SAC, um dos aspectos fundamentais é a predi¢do da saida do processo y(t +kl|t),k=1...N, .
Essa predi¢do é baseada nas medidas disponiveis no instante de tempo ¢: y(¢),y(t — 1),...,u(t —
1),u(t —2),... e nos valores futuros estimados para a entrada do sistema: u(¢|t),u(t + 1|t),...
(KEYSER, 2003).

Para o EPSAC, um modelo genérico € utilizado,a solucdo desse problema de medi¢ao multi
passos € feita através da utilizacao de técnicas de filtragem. Reescrevendo o modelo do processo

no tempo, tem-se que (KEYSER, 2003):

y(t +k|t) = x(t +k|t) +n(t+klt) 4.1



4.1 Predicdo do x(t +k|t) 33

4.1 Predigao do x(r +k|t)

Para a determinacgdo da predi¢do dos valores de x(z + k|t) € utilizado a recursividade do
modelo do sistema. Sendo, duas as possibilidades de configuragdo: modelo em série € 0 mo-
delo série-paralelo. O modelo paralelo, também chamado de modelo independente s6 pode ser
utilizado para processos estdveis, enquanto o modelo em série-paralelo, ou modelo realinhado,
pode ser utilizado também para processos instaveis (KEYSER, 2003). A predicao de x(z + k|t)
para aplicag¢do a do rob6 foi o utilizado o modelo série - paralelo, sendo que o diagrama de

blocos desse modelo é apresentado na Fig. 4.1

Figura 4.1: Diagrama de blocos Modelo Série-Paralelo

r

Processo >

Modelo ¥
S/P X n

¥
u

Fonte: (KEYSER, 2003)

Para cada instante de amostragem ¢, a recursdo inicia no instante k = 0 e calcula-se o va-
lor de x(z|¢) utilizando o vetor de entrada do modelo [x(r — 1)x(t —2)x(r —3)...u(t — 1)u(t —
2)u(t —3)...], que contém os valores passados conhecidos até o tempo ¢, disponivel no banco
de dados do computador. O valor x(¢) = x(t|¢) deve ser salvo no banco de dados do computador
para a utiliza¢do nas préximas amostras. Desta forma, o valor x(¢|¢) anteriormente calculado
é utilizado como entrada do modelo para determinar os valores de x(f + 1|¢) e outras varidveis
(KEYSER, 2003).

4.2 Predigoes para n(t + k|t)

Utilizando as saidas do processo medidas y(¢) calcula-se o valor atual do ruido n(¢) com
os valores do modelo genérico do processo Eq. 4.1: n(r) = y(¢) + x(¢). Os valores anteriores
n(t—1),n(t—2),... estdo disponiveis no banco de dados, uma vez que eles foram determinados
em instantes de tempo anteriores. Sendo que para calcular o sinal filtrado de disttrbio € utilizada

a seguinte expressao (KEYSER, 2003):
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D(g™ ")

ng(t) = mn(t), com : (4.2)
nf(t) :—Clnf(t—l)—CZI’Lf(t—Z)—... 4.3)
...+n(t)+d1n(t—1)+d1n(t—2)+... “4.4)

Como € desejado que o sistema rejeite sinais de pertubagdes constante o modelo de perturbacdes

dado por:

n(t) = D(q_l)e(t) 4.5)

onde C(g~!) é um filtro, o termo D(g~!) refere-se a um integrador e e(t) é modelado como
sendo um ruido branco. A conclusdo é que o sinal ny(f) pode ser calculado como ruido branco
com média zero : ny(t) = e(t). O motivo dessa consideragao ¢ que o ruido branco por defini¢do

€ ndo-correlacionado e sua melhor predicao € o valor médio, desta forma(KEYSER, 2003):

nf:(t—i—k’t)EO,k:l...Nz 4.6)

Entao a predi¢do para a perturbagdo € obtida da seguinte forma:

C —1
n(t+klt) = Digl)nf(t—*—k’t) 4.7)
n(t+kjt)=—din(t+k—1t) —don(t +k—1]t) — ... ... +np(t+klt) Fenp(t+k—10t)+...
(4.8)

A recursdo vai de k = 1...N,. Para o instante de tempo k = 1, o valor do sinal do lado di-
reito da equagdo n(t|t),n(t — 1|¢),...,ns(t|t),ns(t — 1|t),... sdo conhecidos do banco de dados,
enquanto 77(t 4+ 1|t) = 0 de acordo com a Eq. 4.6. O valor calculado n(r + 1|¢) ¢ utilizado no
lado direito da equagdo, junto com o valor de n¢(t +2|t) = 0, em ordem para calcular n(r 4 2|r)

e assim por diante (KEYSER, 2003).

4.3 Resposta base - resposta otimizada

A resposta futura y(¢ + k|r)é definida conceitualmente e baseada no conceito de sistemas

lineares de sobreposi¢cao como sendo (KEYSER, 2003):

V(t +k|t) = Ypase(t +k|t) +yop (t + k1) 4.9)

Sendo as que as contribui¢des tém origens diferentes. O ypq5 (7 + k|t) tem as seguintes
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contribui¢des, os efeitos do(KEYSER, 2003):
e Perturbagdes futuras previstas n(z + k|t)
e Controle passado u(r —1),u(t —2),...
e O cendrio do controle futuro basico up(t +k|t),k=0...N, — 1

Sendo esse controle futuro bésico definido, a priori, para modelos basicos. A escolha desse
vetor de controle bdsico ¢ irrelevante, qualquer escolha seja upgs (t +kJt) =0,k =0...N, — 1
OU Upgse(t +k|t) =u(t—1),k=0...N, — 1, terd como resposta 0 mesmo cendrio de controle
otimo. Para sistemas ndo-lineares, essa escolha deve ser feita de uma forma particular (KEY-
SER, 2003).

A componente yp.(t + k|t) pode ser calculado como mostrado anteriormente, sendo a
entrada do modelo 0 upyg (f + k|1).

Para 0 y,,(t + k|t) a contribui¢do ¢é referente ao efeito da agdo da otimizagdo do con-
trole futuro Su(r+klt),k=0...Ny—1 com Su(t + k|t) = u(t + k|t) — upase(t +k|t), 0 termo
u(t +k|t) é o controle 6timo. (KEYSER, 2003) E uma pratica comum no MPC estrutu-
rar um cendrio de controle futuro, desta forma reduzindo os graus de liberdade do vetor
de controle u(t+k|t),k=0...N,—1. Isso pode ser realizado definindo um horizonte de
controle N,(com 1 < N, < N, )depois a estratégia de controle postulada se torna constate:
u(t+klt)=u(t+N,—1|t),k > N,, desta forma é reduzido os graus de liberdade de N, para
N,. Em diversas aplicac¢des préticas, uma versao extremamente simplificada com N, = 1 tem
bons resultados.

A ilustracdo dos conceitos de estratégias de controle basico e 6timo sdo mostrados na Fig.
4.2. Na qual o termo uy, (t + k|t) € o controle desejado e composto de duas parcelas o termo
Upase (t +k|t) cendrio de controle basico no futuro diretamente relacionado ao modelo n@o linear,
enquanto (7 + k|t) é o efeito da agéo de controle futuro relacionado a parte linear do modelo,
desta forma € feita diversas iteracdes para que esse termo se aproxime de zero (KEYSER, 2003).

O conceito de horizonte de controle implica que upgge (t +k|t) = upase (t + Ny — 1]t),k > N,
e Su(t+k|t) = du(t+N,—1|t),k >N, , como o mostrado na figura. A figura indica que a
componente y,; (f +k|t) da Eq. 4.9 € o resultado de u(t + k|r), sendo o efeito cumulativo da
série de entradas impulso e degrau (KEYSER, 2003).

Um impulso com amplitude Su(¢|¢) no instante de tempo ¢, resulta na contribuigao /. Su(t|t)
para a saida do sistema no instante de tempo ¢ + k, sendo k a quantidade de amostras posteriores,
como o ilustrado na Fig. 4.3 (KEYSER, 2003).

Para um impulso com amplitude Su(¢ + 1|t) no tempo 7 + 1 resulta na contribuicao Ay Su(t +
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Figura 4.2: Ilustracdo do conceito de resposta base e resposta 6tima
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Fonte: (KEYSER, 2003)

1|¢) para a saida do sistema no instante ¢ + k, ou seja, k — 1 amostras posteriores, como 0 obser-

vado na Fig.4.4. E assim, sucessivamente (KEYSER, 2003).

Figura 4.3: Efeito em um instante de tempo ¢ + k do sinal impulso aplicado no instante ¢
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tempo
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{ t+k

Fonte: (KEYSER, 2003)

A aplicag@o de um degrau com amplitude Su(f + N, — 1|¢) no instante de tempo t + N, — 1
resulta em uma contribui¢do gx_y,,, Ou(t +N, — 1|t) na saida do sistema no instante de tempo
t +k, sendo kK — N,,+ 1 amostras posteriores (KEYSER, 2003).

Sendo que o efeito acumulativo dos efeitos na saida do sistema no instante ¢ + K de todos

os impulsos e do degrau aplicados pode ser escrito da seguinte forma (KEYSER, 2003):

Yorm = (t +k[t) = I Su(t|t) +he_1Su(t +1|t) + ...+ gx—n,,, Ou(t + N, —1z) (4.10)

Os parametros hy,hy,... hy...hy, sdo os coeficientes de resposta ao degrau do sistema.
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Figura 4.4: Efeito em um instante de tempo ¢ + k do sinal impulso aplicado no instante 7 4 1
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Fonte: (KEYSER, 2003)

Enquanto os pardmetros g1,g2,...,8k,---&nN2 Sa0 0s coeficientes de resposta ao degrau do sis-
tema. Esses valores podem ser obtidos de duas maneiras a primeira € a forma direta, ou seja,
aplicando um sinal de impulso ou degrau no sistema, isso pode ser aplicado tanto para sistemas
lineares quanto para sistemas ndo-lineares.Para a segunda, € uma forma analitica a partir da
func¢do de transferéncia ou do modelo de espaco de estado (KEYSER, 2003).

Sendo que ho =h_1=h_,=...=gy=g-1 =82 = ... =0 e que os coeficientes da
resposta ao impulso podem ser facilmente calculados a partir dos valores dos coeficientes de
resposta ao degrau e vice versa: hp = g — gr_1, desta forma apenas uma das duas respostas
deve ser calculadas (KEYSER, 2003).

Uma das caracteristicas dos algoritmos pertencentes a familias de controle do MPC é que
eles consistem em aplicar uma sequéncia de controle que minimize uma fun¢do custo multi-
estagio da forma (KEYSER, 2003):

N, N,—1
J= Y p+k|t)—wi+k)]*+ ¥ AlAu(r+k|r)]? (4.11)
k=N, k=0

Sujeito a:

Ymin <Y +k[t) <ymax ¥V k=1,..., N2,
Umin < u(t+k|t) <tmax V k=0,...,N,— 1, (4.12)
Attnin < Au(t+klt) < Aupax ¥V k=0,....,N, — 1

onde N; e N, sdo os horizontes de custos minimos e maximos, NV, € o horizonte de controle,
A € o peso do controle, w(z + k) é o valor nominal ou a seqiiéncia de referéncia, Au(t) € a agdo
de controle incremental, A= 1—¢ ! e y(t+k | ¢) é o valor 6timo k a saida do sistema um passo
adiante, y(t)dados até o momento ¢ (KEYSER, 2003).
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Utilizando o modelo genérico do processo, as previsoes de valores para a saida sao:(KEYSER,
2003)

y(t+k/t) =x(t+k/t)+n(t+k/t) (4.13)

Considerando a resposta futura como sendo resultado cumulativo de dois efeitos. E o principio
do EPSAC € baseado na minimizacao dos erros entre a trajetoria da referéncia futura e a saida

prevista do processo, calculada como (KEYSER, 2003):

Y(t+k/t)i = Yiivre,(t +k/t) +ysor,(t +k/1) (4.14)

Sendo yj;,r; a resposta livre determinada pela resposta do modelo genérico, enquanto y s,
a resposta for¢ada do sistema é determinada pela sequéncia de entrada degrau. Desta forma, a

resposta forcada pode ser escrita em forma de matriz (KEYSER, 2003):

Y, = GU (4.15)

e a equacao para a lei de controle torna-se:
Y - Ybase + Yopt — Y + GU (4. 16)

sendo:

Y = [y(t+Ni /1) ...y(t+NaJo)]"
Y= [yfree<t+N1/t) - 'yfree(t+N2/t)]T
U= [Au(t/t)... Au(t+N, —1/1)]"

8N, 0
gN+1 &N 0

G=1| gv+2 &v+1 &vy O

8N,  8N,—1 8N,—2 .-+ &N,—N,+1

sendo o controle 6timo a primeira linha do vetor:
uo=—H 'b (4.17)

onde :

H=2PTQ;P+G'G)e
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bT =2((Pup+u;)" Q3 P+ (yp — ®)" G)

4.4 EPSAC nao-linear

E necessério que algumas consideracdes sejam feitas para utilizar o algoritmo proposto
para o EPSAC em modelos nao lineares, o chamado NEPSAC (EPSAC nao-linear), uma vez
que para definir os conceitos de resposta e controle de base e otimizado, foi utilizado o principio
de superposicdo , entdo esse conceitos sdo validos apenas para sistemas lineares. Porém, para
sistemas ndo-lineares, através da sele¢do de uma estratégia de controle base up,y (f + k|t) apro-
priado, o termo y, (¢ + k|t) na Eq. 4.9 pode chegar a zero de uma forma gradual e iterativa.
Desta forma, os resultados para a solucdo 6tima € valido também para sistemas nao-lineares,
uma vez que o principio de superposi¢ao nao € mais utilizado. O procedimento do EPSAC, uti-
lizado tanto para sistemas lineares quanto sistemas nao-lineares, € descrito da seguinte forma,

para cada amostra de tempo (KEYSER, 2003):

1. Selecione um vetor up, (t +k|t),k = 0...N, — 1. Para os modelos lineares, essa escolha
¢ irrelevante para as solucdes. Entretanto, para modelos nao-lineares, o objetivo deve
ser obter de forma iterativa uma politica de controle up,,(f + k|t) que é o mais préximo
possivel da estratégia de controle 6timo u(f + k|t). Desta maneira tornando as agdes de
controle 6timo du(t + k|t) e o termo correspondente y,, (f + k|t) proximo de zero. Para
minimizar o nimero de iteracoes deve-se fazer uma boa estimacao inicial para o valor de
Upase(t +k|t). Uma escolha simples e efetiva € iniciar com upgg (t +k|t) = u* (¢t + k|t — 1),

ou seja, a politica de controle 6timo € derivada da amostra anterior.

2. Uma vez que foi escolhido upgs(f +kl|t),k=0...N,—1 é calculado os resultados de
Ou(t+klt),k=0...N,— 1 ede u(t +k|t) = upyse(t +k|t) + Su(t +k|t), k=0...N, — 1,
para um modelo linear € determinado da maneira conforme foi Secdo 4.3. Para os mode-
los ndo-lineares estes ndo sdo o controle 6timo uma vez que ndo € utilizado o principio
de superposi¢do. Porém, é esperado que o resultado de u(.|.) é mais préximo do valor de

que o valor up, anterior estimado. Para um modelo nio-linear é sugerido que:

e continue o procedimento, em uma mesma amostra de tempo, onde

Upase(t +Kk|t) = Upase (t|t) + Su(t|t) e apds retorna-se ao passo 2.

Continuando esse procedimento iterativo é esperado que 0 upgg(.|.) ird convergir para o
u(.].) 6timo. A cada intervalo de tempo 0 upys(.|.) € mais proximo de u(.|.), isso significa
que os valores de Ou(.|.) sdo menores. Como o mostrado na Fig.4.2, e desta forma, o termo

Yopi(-|.) se torna menor. O principio de superposigao utilizado na determinagio da Eq. 4.9, mas



4.5 MIMO EPSAC 40

€ invalido para sistemas nao-lineares. Sendo que a cada iteragdo com a reducio do valor de
ou(.|.) também é reduzido o impacto do principio da superposi¢do. Finalmente, quando Su(.|.)
sdo praticamente zero, o principio de superposi¢do ndo € mais envolvido e o sinal de controle
calculado serd 6timo também para sistemas ndo-lineares (KEYSER, 2003).

A metodologia abordada acima para o NEPSAC € uma das diversas metodologias utilizadas
o Controle Preditivo nao-linear (NMPC - Nonlinear Model Predictive Control), sendo que nas
abordagens NMPC o modelo nunca € linearizado. O modelo néo linear € utilizado diretamente
para os célculos, em todas as iteracdes, da resposta base ypus(.|-) € também utilizado para
determinar os coeficientes da resposta ao degrau e/ou impulso g;, ; estes sdo os unicos valores

requeridos para obter a solu¢do do controle (KEYSER, 2003).

4.5 MIMO EPSAC

Foi apresentado nas sessoes anteriores foi apresentada metodologia EPSAC para os siste-
mas com apenas uma entrada e uma saida ( SISO - Single Input Single Output). Nessa secao
¢ apresentada a expansdo dos conceitos para os sistemas com multiplas entradas e multiplas
saidas (MIMO - Mutiple Input Mutiple Output). Por simplicidade, serd apresentado um sistema
com duas entradas e duas saidas, a expansdo para um sistema com 7, entradas e n, saidas € feita
de forma direta. Para um processo com 2 entradas e 2 saidas, o modelo genérico do processo

Eq. 4.1, torna-se (KEYSER, 2003):

{yl(f) x1 (1) +m (1) (4.18)
y2(t) = xa(t) +na(1)

Para uma estrutura de modelo paralelo:

(4.19)

{ x1(t) = fifx1(t—1),x1(t =2), ...y (t — 1),uy (t —2),.. Jup(t — 1), up(t — 2),...
XQ(Z‘) = fz[)cz(l— 1),XZ(I—2>,...M1(I— 1),u1(t—2),...]u2(t— 1),142(1‘—2),...

Para uma estrutura série-paralelo:

{ xi(t) = filr(t = 1)yt =2),..un(t = 1),ur (£ =2),.. Jua(t — 1),un(t —2),.... 420)
xZ(l‘) fz[yz(t—1),y2(t—2),...u1(t—1),u1(t—2),...]u2(t—1),u2(t—2),... .

As fungdes fi[.] e f2[.] sdo os modelos do processo e sdo conhecidas, que podem ter qual-
quer estrutura em geral (linear, nao-linear, redes neurais, ...). Neste caso, serd assumido que
se trata de modelos lineares. As perturbacdes podem ser modeladas como processos de ruidos

coloridos (e; e e sao sinais de ruido branco) (KEYSER, 2003):
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-1

() = %em @21)
e: c 1

na(t) = %.@(z) (4.22)

Um preditor de multiplos passos foi apresentado. E este preditor é diretamente aplicado no
modelo de processo com diversas entradas u;,uy e pode ser aplicada para calcular y, (¢ + k|t) e
y2(t +klt), com k = 1...N,. Utilizando os conceitos de respostas base e otimizada apresentada
4.3, tem -se as seguintes relacoes (KEYSER, 2003):

{ V1(t K1) = Yipase(t +K|t) + y1ope (£ + K1) w2
2(t + k[t) = Yopase (t +klt) + y2op (1 +k[t)
com:
Yiom(t + 1]t) mMt0 0o .. 0 Suy (t)t)
Yiom(t +2[t) it al! 0o .. 0 Suy(t+1|t) .
Viom(E+N20) | BN RN RN 8N | (8w (N — 1)
hi? 0 0o ... 0 Suy(t)t)
n?  hi? 0o ... 0 Suy(t+ 1)r)
“+ . . . .
_h}v’i hy—1 I e g}VZZ_NmL]_ | Sua (1 4Ny —1]1) |

Observacoes (KEYSER, 2003):

® Vo indica a parte da saida prevista do processo y; (¢ + k|t) vinda tanto da agdo de con-

trole 6timo Ouy (¢t +k|t) e Sus(t +k|t).

e Para um sistema 2x2, 4 resposta ao degrau ou impulso podem ser definidas, as quais
descrevem o efeito da mudanca para cada uma das duas entradas em relacdo as duas
saidas. Os coeficientes da resposta ao impulso da entrada j para a saida i tem a seguinte

notagdo: hy k3 hy, ...

e Uma expressdo similar a 4.5 pode ser obtida para a segunda saida yy, ( + k|f).

e O horizonte de predicao N, pode ser diferente para as duas saidas.
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e O horizonte de controle N, pode ser diferente para as duas entradas.

_ (4.25)
Y, =Y2+Gy- Ui+ Gy - Uy

A expressao € equivalente 4.16 para os sistemas SISO. (KEYSER, 2003)

{ Y; :Y1 4+G11- U1 +G12- Uy

4.6 EPSAC para um roboé mével com rodas nao-holonémico

O EPSAC estd sendo utilizado e estudado em diversas areas, porém nao existe a literatura
aplicagdo do mesmo para um controle de trajetoria de um robd mével com rodas. O controlador
EPSAC possui caracteristicas que o torna uma opg¢ao vidvel para o controle de trajetéria de um
WMR, tais como:

e A necessidade do controlador de um set point ou uma referéncia, que para WMR se trata

da trajetdria de referéncia.

e A possibilidade de trabalhar com sistemas MIMO e nao-linear, lembro que o robd movel
¢ um sistema MIMO com duas entradas, as velocidades linear e angular, e trés saidas:
posicdo x, y e a orientacdo 6. Além da presenca de fungdes trigonométricas caracteri-

zando um sistema nio-linear.

e A possibilidade de restri¢des no controlador, uma vez que o robo possui limites de veloci-
dades que o mesmo pode atingir, esses valores funcionam como restri¢des no controlador,

para um controlador do tipo EPSAC pode ser incluido diretamente nos célculos.

O controlador tem como objetivo fazer com que o robd siga uma trajetdria de referéncia

pré-determinada. Podendo ser formulado da seguinte forma:

X(k)—X,(k) =0, sendo X,= | y,(k) (4.26)

na qual X, (k) é a trajetdria de referéncia. E comumente associado a trajetéria de referéncia um
rob6 de referéncia virtual (KLANCAR et al., 2005), ou seja, um robd que seguiria de forma

perfeita a trajetoria. Sendo o modelo cinemaético desse robd 0 mesmo do robd a ser controlado:

xr(k+1) = x.(k) 4+ vr(k) cos 6,(h) T
yr(k+1) =y (k) 4+ v, (k)sen6,(k)Ty (4.27)
er — 9r + ers
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onde T € o tempo de amostragem. Pode ser reescrita de forma mais compacta como sendo:
xr=(k+1) = f(x,(k),ur(k) (4.28)

sendo u, (k) = [v,(k), @,(k)]T sdo as entradas do controle de referéncia.

A funcdo custo a ser utilizada é:

J = % [y(t+k|t)—w(t+k)]2+Nfl/l[Au(t+k|t)]2 (4.29)
k=N, k=0

sujeito a:
Ymin <Y +k[t) <ymax ¥V k=1,..., N2,
Umin S u(t+k|t) <tmax V k=0,...,N,— 1, (4.30)
Auin < Au(t+klt) < Aupax ¥V k=0,...,N, — 1

onde N; e N, s@o os horizontes minimos e maximo, N, é o horizonte de controle, A o peso
do controle, w(t + k) set-point futuro ou a trajetéria de referéncia, Au(z) é a acdo de controle
incremental, A= 1—¢g ! e y(t+k | t) é a predicdo k-passo a frente da saida do sistema y(¢) no
instante de tempo ¢.

E assumido que a estratégia de controle para o robd mével é constante, desta forma é de-
finido o horizonte de controle N, como sendo N, = N, reduzindo os graus de liberdade do
controlador.

O célculo para a determinagao do controlador ndo serd feito utilizando as ferramentas de
otimizagao dos programas de calculos, uma vez que os calculos de otimizagdo aumento o custo
computacional. Para a simplificacdo serd considerado que o controle 6timo € a primeira linha

do vetor:

wo=—H'b (4.31)

onde :
H=2PTQ,P+G'G)e
b = 2((Pup +u;)T QP+ (yp — ©)TG)
Os valores dos termos € apresentado na sec¢ao 4.3. Os parametros de controle considerados
sdo os seguintes o horizonte de controle N e a matriz de ponderagdo Q que possui a seguinte

forma:

g 0 O
Q=0 ¢ 0
0 0 g3
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As restricoes utilizadas serdo os valores maximo e minimo para as velocidades linear e
angular. Sendo os limites para a velocidade linear vy, = —0.4m/s € vyax = 0.4m/s e para a
velocidade angular @,,;;, = —0.4rad /s € Wpyqx = 0.4rad /s. Desta forma, utilizando as equagdes
do modelo acima e o procedimento apresentado nesse capitulo foi escrito o algoritmo para o

controle de trajetdria do robd mével com rodas.
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5 Resultados e discussao

Os resultados serdo apresentados em duas partes: a primeira contém os resultados obtidos
pela simulacdo computacional de cada controle sugerido, comparacdes entre 0s mesmo € 0s
devidos comentérios; a segunda parte sera apresentada os resultados do controle para o WMR

real.

5.1 Resultados de simulacao

O controle sugerido foi implementado em uma rotina computacional para o software Matlab(C).
Uma trajetdria foi pré-definida e € uma figura semelhante ao desenho do algorismo que repre-
senta o nimero oito, sendo composto por duas circunferéncias de mesmo raio e 0 mesmo igual
a dois r, = 2m e sdo tangentes no ponto (0,0). Os valores das velocidades lineares Vref €
oy, utilizados para realizar a trajetoria no tempo requerido sdo os valores de referéncia, ou
seja Upgse 2 [Vre  Ore f]. A velocidade linear v, € constante durante toda a trajetoria sendo
Vrer = 0,3m/s, a velocidade angular tem o mesmo médulo durante toda a trajetéria, porém na
metade tem seu sentido invertido, de 0 a 125s a velocidade angular @,y = 0, 15rad /s e a partir
de 1255 até o final com @,y = —0,15rad /s. A mudanga do sinal da velocidade angular indica
que a primeira metade da trajetdria, correspondente a primeira circunferéncia, € realizado em
sentido inverso ao da segunda metade.

Para todos os estudos de simulacdo: cada um dos trés controladores separados com variagoes
no seus respectivos parametros de controle e para uma avaliagdo conjunta, o robd estard em uma
condicdo de erro de estado inicial, ou seja, o ponto de partida do robd ndo € a origem da tra-
jetéria. No caso serd utilizado como ponto de partida o ponto Xy = [0; —1;7/2] , posicionado a
0 = 90° em relacdo ao eixo de referéncia.

Sendo apresentados, os gréaficos da trajetéria simulada do robd, da variacdo das velocidades
e do comportamento dos erros para cada valor de saida, x, y e0. Além da analise gréfica foi
definido quatro parametros de indices de desempenho para comparar os algoritmos de controle.

Um indice de desempenho é uma medida quantitativa de desempenho de um sistema de
controle, sendo um nimero positivo ou nulo. Entao o melhor sistema é definido como o sistema

que minimiza esses indices. Para ter o mdximo de informagdes possiveis do desempenho dos
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controladores utilizados foram utilizados quatro indices de desempenho, sendo eles:

¢ Integral do quadrado do Erro - ISE (Integral of the Square of the Error). Este indice

ird discriminar sistemas excessivamente superamortecidos dos subamortecidos:
Ty
ISE = / e“(t)dt
0

e Integral do valor absoluto do erro - IAE (Integral of the Absolute magnitude of the

Error). Indice utilizado em simula¢des computacionais:
T
IAE — / le(1)|dt
0

e Integral do tempo multiplicado pelo valor absoluto do erro - ITAE (Integral of Time
multiplied by Absolute of the Error). Utilizado para reduzir a contribuicao de grandes
erros iniciais no valor da integral de desempenho, enfatizando os erros que acontecem

mais tarde na resposta.

T
ITAE = / tle(r)|dr
0

e Integral do tempo multiplicado pelo quadrado do erro - ITSE (Integral of Time
multiplied by the Squared Error). Este indice fornece a melhor seletividade dentre os
indices de desempenho, uma vez que o valor minimo da integral é prontamente discernivel

ao serem variados os parametros do sistema.

T
ITSE:/ te*(1)dt
0

5.1.1 EPSAC

O controlador EPSAC possui duas varidveis de ajuste de controle o horizonte de controle N
e a matriz de ponderacdo Q, o horizonte de controle deve ser um nimero inteiro maior que um,
(N € N,N > 1) sendo que Q uma matriz composta de zeros exceto na sua diagonal principal
que contém os termos de parametros de ajuste de controle, os parametros da diagonal da matriz
q11,922,q33 podem assumir qualquer valor positivo diferente de zero (g, > 0,g,, € R) . Ambos
os parametros quando aumentados melhoram a resposta do sistema.

A avaliacdo do comportamento dos parametros de ajuste do controlador EPSAC foi dividida
em duas partes, sendo cada parametro avaliado de forma independente. Na primeira etapa sera
avaliado o comportamento do horizonte de controle N enquanto a segunda parte € dedicada a
avaliacdo da matriz de ponderacdo Q.

A primeira etapa serd avaliado o comportamento da resposta do sistema em relagdo ao

horizonte de controle N, entdo a matriz de ponderacdo Q serd mantida constante enquanto sera
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ajustado apenas o valor de N. Na segunda etapa, o horizonte de controle serd mantido constante
enquanto serd ajustado o valor da matriz de ponderacdo Q, para simplificagdo apenas o valor

dde ponderagao referente a gg serd utilizado como parametro de ajuste.

g 0 O
0=10 ¢g, 0
0 0 go

Avaliacao do comportamento do controlador em relacio ao horizonte de predicao N

O comportamento do EPSAC em relacdo ao horizonte de controle N serd avaliado para
quatro valores, lembrando que N > O, N € N, os valores de N avaliado serdo N =2, N = 3,

N =5e N =10 .A matriz de ponderacdo Q foi mantida com seus valores constante e igual:

1 0 0
O0=101 0
0 0 0,1

Nota-se na Fig 5.1 a melhora de desempenho do controlador quando comparado com o ob-
tido para N =2 quando os valores de sio N =3 , N =5 e N = 10, confirmando a hipétese de que
a melhoria de resposta do sistema quando utilizando o horizonte de controle como pardmetro de
controle depende diretamente do valor de N quanto maior o valor de N melhor serd a resposta e
maior o tempo necessario para realizar os calculos.

Para o horizonte de controle N = 5 tem-se que apos aproximadamente 12s, o rob6 simulado
consegue corrigir o erro inicial e acompanhar a referéncia, como o apresentado na Fig.5.3(a).
Enquanto para N = 10 tem-se que o erro tende a zero em aproximadamente 6s, conforme o
observado na Fig.5.3(b). Porém, o tempo necessario para serem realizados os célculos € de

0,92s quando N = 10 contra 0,505s necessarios sendo o horizonte de controle € N = 5.

Avaliacao do comportamento do controlador em relacio a matriz de ponderacao Q

O horizonte de controle N é mantido constante, enquanto € avaliada a influéncia da variagao
dos valores na matriz Q, serd alterado apenas um elemento dentro da matriz, por motivo de
facilitar as comparacdes futuras e a utilizacdo do controlador, esse parametro alterado € deno-
minado como sendo Guyatiado- O Gavaliado € correspondente a ponderacdo na varidvel de saida0,
a ponderag¢do das outras duas saidas g, w g, serd mantida constante e igual a 1. Desta forma,
para o estudo do comportamento dos parametros de controle do EPSAC, a matriz Q pode ser

descrita da seguinte forma:
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Figura 5.1: simulacdo do WMR utilizando EPSAC a matriz de ponderacdo Q constante € o
horizonte de controle N variando
Trajetoria do robé EPSAC com variagdo de N
5 -

25
4_
g,
3 15
2t /1
i 05
! 1
E g
=y
At
2t
Refaréncia
=1 ———N=2
......... M=23
A ———N=5
A 1 1 1 1 1 1 _._-_N:(]O
-3 2 1 0 1 2 3

x[rr]
Fonte: Autor

Figura 5.2: a) Erro para o N = 5 b) Erro parao N = 10

Erro EPSAC (N = 5) Erro EPSAC (N=10)

(a) b)

Fonte: Autor Fonte: Autor

10 0
O=101 0
00 Qavaliado

O valor do horizonte de controle N = 2. Os valores avaliados serdo qGuyaliado =
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0,1,0,25,0,5 e 1. O comportamento da matriz de ponderacdo Q € empirico, em alguns
caso quanto maior o valor melhor a resposta em outros ocorre o contrdrio. A ponderagdo afeta
diretamente a varidvel de saida correspondente, no caso o 6; para os trés primeiros testes, com
o aumento do guyariado Ocorre uma melhoria da resposta, porém quando gg = 1 acarreta em
um erro maior do que comparado a resposta para gg = 0,5, 1Sso ocorre pois 0 erro passa a ser

influenciado pelas outras duas varidveis. O resultado é apresentado na Fig. 5.3.

Figura 5.3: simulagdo do WMR utilizando EPSAC a matriz de ponderacdo Q variando e o
horizonte de controle N constante
Trajetoria do rob6 EPSAC com variagéo de Q
5 -

y[m]

Referéncia
—=—g=01
—q=025
———qg=05

. . . . . . . g=1

Fonte: Autor

5.1.2 Controlador Klancar

O controlador apresentado na se¢ao 3.1. Tem como parametro de controle o ganho g que a
Unica restri¢do € q g deve ser positivo g > 0, para melhorar a resposta do sistema deve modificar
o valor de g. Quanto maior o valor de g melhor a reposta do sistema, essa melhoria ocorre até
um determinado valor do ganho g, ap6s atingido esse valor o aumento do ganho ndo acarreta
uma melhor resposta do sistema. Esse valor limite depende das condi¢des iniciais do sistema.

Os valores do coeficiente de amortecimento { e a frequéncia natural @, sio mesmo valores
utilizados por Klancar et al (2005) no artigo de referéncia, { = 0,6 e @, = 2.

O valor inicial do rob6 é o mesmo utilizado para simular o controlador EPSAC, sendo a
posicdo inicial a mesma utilizada para o controlador EPSAC x = [0; —1;7/2] , foi avaliado o

g para trés valores g1 = 1, go = 5 e g3 = 10 e pode-se observar que quanto maior o valor do g
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melhor € a reposta do sistema, até um certo valor de ganho g apds esse valor ndo hd melhorias
considerdveis na resposta, comprovando com a simulagdo o comportamento da variacdo do
ganho g na resposta do controlador. Os resultados sdo apresentados para g = 1,g = Seg = 10
na Fig. 5.4.

Figura 5.4: Simulacdo do WMR para o controlador Klancar variando os valores do ganho g.

Trajetoria do robd - Klancar

5_
41 7N
g
R

3t 2
R
R

Sl -
e

1k 15 2

E o
=

_“]_

2k

S - -
Referéncia

4 TTgs
g=5

_5 1 1 1 1 1 ] ___g:10

3 2 1 0 1 2 3

Fonte: Autor

Porém o controlador Klancar atinge velocidades maiores do que foram determinadas como
limites para 0 WMR, na Fig. 5.5 é apresentado as velocidades para g = 5 um valor de ganho
que possui uma resposta boa do sistema para a correcdo do erro inicial, porém € observado uma
velocidade inicial alta.

Conforme foi mencionado anteriormente, ocorre uma variagdo no valor da velocidade an-

gular, na metade da trajetéria devido a mudanca de sentido.

5.1.3 MPC linearizado

O procedimento para avaliar o controlador MPC linearizado proposto por Kiihne et al
(2004) foi o mesmo utilizado para a avaliacdo do EPSAC, primeiramente, a matriz de ganho
Q ¢ mantido constante e variado o valor do horizonte de controle N, apds apenas um valor da
matriz de ganho Q sera variado, depois o valor de N é mantido constante e serd variado apenas

um valor da matriz Q pela mesma razdo que o procedimento foi realizado para o EPSAC a
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Figura 5.5: Velocidades obtidas pelo WMR para o Klancar com o g = 5.

Velocidades Klancar

3

2 T et

w[mis] wradfs]

Fonte: Autor

questdo do custo computacional.

Observando que ambas as estratégias a EPSAC e o MPC linearizado s@o algoritmos perten-
centes ao grupo de controladores MPC e por essa razdo apresentam os mesmos parametros de
controle, a matriz de ganho Q e horizonte de controle N e por uma questao de comparacdo futura
entre os controladores os valores utilizados para a simulacdao do MPC linearizado inicialmente
serdo os mesmos que foram simulados para o EPSAC.

O comportamento dos parametros de controle do MPC linearizado também € bastante se-
melhante ao comportamento do controlador EPSAC, entdo a medida que se aumenta os valores
de N ou da matriz de ganho Q existe uma melhoria na resposta do sistema.

Na Fig. 5.6 € apresentado o comportamento do MPC linearizado quanto variado os valores
do termo da matriz de ponderacdo Q, lembrando que a variagdo da resposta com a variacdo
dos termos de Q é empirica, quando alterado o valor de ¢,yariado de 0.1 para 0.25 ocorreu uma
melhora na resposta, quando o valor de g,yq/iado € 1gual a 0.5 0 mesmo nao acontece, e tem-se
um afastamento da trajetdria de referéncia.

Na Fig.5.7 o comportamento do MPC linearizado em relacdo ao horizonte de controle N é
apresentado, da mesma forma que o EPSAC quanto maior o valor de N melhor € a resposta do
sistema. Incialmente, os valores de N foram os mesmos para a avaliacdo do EPSAC. Porém,
como a resposta do MPC linearizado com N = 5 ndo foi satisfatoria, foi aumentado o valor de
N sendo avaliado o comportamento do controlador para N = 10 e N = 20, que em teoria deveria
melhorar a resposta do sistema, porém aumenta consideravelmente o esfor¢co computacional

envolvido nos calculos,
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Figura 5.6: Simulacao do WMR utilizando MPC com a matriz de ponderagcdao Q constante € o
horizonte de controle N variando
Trajetoria do robd MPC com variagéo de Q
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Fonte: Autor

Figura 5.7: Simulagdo do WMR utilizando MPC a matriz de ponderac¢do Q variando e o
horizonte de controle N constante
Trajetoria do robé MPC com variagéo de N

Referéncia

*[m]

Fonte: Autor
5.1.4 Comparacao entre os controladores

O horizonte de controle N,tanto para o EPSAC quanto para o MPC linearizado foi igual

para os dois sendo N = 5, o valor do ganho do controlador Klancar foi definido como g =5.A
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matriz de ponderacdo Q, também foi a mesma para os dois controladores, sendo:

10 0
o=|01 0
00 0,1

Os valores dos parametros de controle para cada controlador analisado foram escolhidos
a partir da analise anteriormente apresentado, sendo para o EPSAC os valores de Q e N uma
boa resposta uma vez que corrigiu o erro apds aproximadamente 7 = 12s e o tempo necessario
para tanto foi de Tj;, = 0,505s , o parametro g do Klancar foi o valor que teve uma resposta
aproximada ao do EPSAC, porém apresenta um valor alto para as velocidades iniciais. Enquanto
o MPC linearizado teve os mesmos valores de Q e N para facilitar a comparacdo entre os dois.
Vale ressaltar que a melhoria do desempenho dos controladores EPSAC e MPC linearizado
acarreta em um aumento do custo computacional.

E simulado para uma situagio na qual o robd tem um erro no estado inicial xo = [0; —1; /2],
ou seja, a posi¢ao inicial do robd ndo coincide com a origem da trajetéria. Pode-se perceber
pela Fig. 5.8 que apesar do erro inicial todos os controladores conseguem fazer a correcdo e o
robd segue a trajetdria, porém a corre¢do da trajetoria quando utilizado o EPSAC € mais rdpido
do que para o Klancar (KLANCAR et al., 2005) e o controlador MPC linearizado (KUHNE et
al., 2004) apresenta, para a situacdo e utilizados, a pior resposta dentre os trés controladores.

E considerado que robd possui uma faixa de operagdo tanto para as velocidades lineares
e angulares, os limites superiores e inferiores das velocidades funcionam como restri¢des para
os controladores MPC: o EPSAC e o MPC linearizado, (KUHNE et al., 2004). Esses valores
sdo levados em consideragdo para a determinagao dos respectivos controladores, porém o Klan-
car (KLANCAR et al., 2005) ndo apresenta como € tratado as restricdes na determinacdo dos
valores de sinais de controle. Desta forma, na simulacio € percebido que existem valores de
velocidades acima das velocidades méximas desejada.

Na figura 5.9 € observado o pico de velocidade obtido pelo controlador Klancar, enquanto
os outros dois variam as velocidades maximas, dentro da faixa pré-estabelecida. Apds, apro-
ximadamente, T = 25s todos os trés controladores analisados estabilizam a velocidade linear
em torno de 0,3m/s que é o valor da velocidade de referéncia, por essa razdo € o intervalo
apresentado no gréfico. A velocidade angular estabiliza em torno de 0, 15rad /s até a metade
das amostras, apés a segunda metade a velocidade estabiliza proximo a —0, 15rad/s. Sendo
proximo aos valores das velocidades angulares de referéncia de cada trecho, que sdo exata-
mente 0, 15rad /s e —0, 15rad /s para o primeiro e o segundo trecho respectivamente.

Ap6s T = 10s pode-se observar pela Fig. 5.10 que os valores dos erros de posicao x e y e de

orientacdo 0 do controlador EPSAC converge para aproximadamente zero, na figura também €
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Figura 5.8: Saida do controlador para o robd simulado - EPSAC, Klancar e MPC linearizado

Simulacéo trajetéria Robd Mével

Db ................................ -
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I I 1 1 |
-3 -2 -1 a 1 2 3

Fonte: Autor

apresentado a variacdo dos mesmos erros controlador Klancar, pode-se observar a convergéncia
quase que ao mesmo tempo do controlador proposto. E observado que os erros de posi¢do e
orientagdo referente ao controlador MPC linearizado convergem para zero apds os outros dois
controladores analisados.

Para facilitar a visualizacdo, o comportamento da varia¢do dos erros de posi¢do x e y e de
orientacdo 0 € apresentado separadamente o detalhe nos instantes iniciais de t =0 a ¢t = 40s na
Fig. 5.11, uma vez, que apds aproximadamente 20s todos os erros tendem a zero.

Na tabela tab. 5.1 sdo apresentados os valores para os indices de desempenho supracitado
para cada controlador, vale ressaltar que para cada indice € calculado para cada saida x, y e
0. Pode-se observar como era esperado, que os valores para o EPSAC e Klancar sdo bastante
préximos tento um desempenho semelhante, porém o Klancar, ndo lida com as restri¢des dife-

rentemente do EPSAC, para os valores do horizonte de predi¢do N e a matriz de ponderagao Q
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Figura 5.9: Valores das velocidades lineares e angulares para cada controlador analisado
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Figura 5.10: Erros de posi¢ao e orientacao
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dados o MPC linearizado teve o pior rendimento, aumentado o valor de N, ou algum dos valores
da diagonal principal da matriz Q, ou tudo simultaneamente melhoraria a resposta do contro-
lador MPC linearizado, porém o processamento dos célculos requereria mais do computador,
entdo teria como principal limitante a capacidade de processamento do equipamento utilizado.

Percebe-se pelos valores da tabela que o comportamento do ISE e do TAE sao equivalentes,
com o controlador Klancar com os valores menores, os valores do EPSAC intermediario, mas
proximos ao dos Klancar e os valores para o controlador MPC linearizado bem maiores do
que para os dois primeiros. Enquanto para os valores de ITAE e ITSE € observado que uma
vez tirado o peso dos erros inicias, o Klancar teve a melhor resposta, porém o MPC teve uma

resposta melhor do que o EPSAC, para os erros de x e y. Para 6 o comportamento foi semelhante
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Figura 5.11: Erros de posi¢ao e orientacao - detalhe
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ao do ISE e IAE, com a melhor resposta do controlador Klancar, seguido do EPSAC e por dltimo
o MPC linearizado.

Tabela 5.1: Indices de desempenho para cada controlador analisado
ISE TIAE
X y 0 X y 0
EPSAC  2,7424 9,687 21,370 18,112 24999 26,7745
MPC  9,3722 13,0743 29,9253 359114 33,6918 46,9221
Klancar  2,5898 9,7821 21,2422 16,1493 24,1074 26,7365
ITAE ITSE
X y 0 X y 0
EPSAC 3448,79 3502,351 2349,998 102,0024 143,353 186,074
MPC 2730,459 1675,99 2445888 666,7735 397,3005 549,7377
Klancar 2609,599 2735,37 2551,152 82,2633 131,8667 184,6701

5.2 Aplicacao no robo real

Os controladores estudados foram aplicados no Robd Mével da National Instruments mo-
delo NI LabVIEW Robotics Starter Kit, com caracteristicas apresentadas na sessao 2.4. Uma
caracteristica do robo utilizado € que o mesmo utiliza o software Labview, desta forma, os
codigos do Matlab foram reescritos para a implementagao no robd. O Labview possui requisi-

tos de sistema superiores ao Matlab e os cdlculos levam e tempo maior para serem realizados.
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A partir do Labview € embarcado o algoritmo no rob0, assim todos os calculos sdo realiza-
dos na memoria interna do mesmo. O cabo utilizado é conexdo entre o robé e um computador
para que os dados sejam coletados enquanto € realizado o experimento, seja possivel acompa-
nhar em tempo real os valores alcangado e caso ocorra algum imprevisto parar o robo.

Como era esperado pelos resultados preliminares da simulagdo em Matlab os controladores
que utilizam estratégia MPC, no caso o MPC linearizado e o EPSAC, possuem na implementagao
no robd real um tempo de iteracdo superiores ao do controlador Klancar. Para o MPC linea-
rizado o tempo de cada iteracdo foi de 0,250s contra 0,030s para o Klancar. Desta forma,
o tempo de amostragem do MPC foi de Typc = 0,3s enquanto os do Klancar o tempo de
Typ; = 0, 1s (0 mesmo valor utilizado durante a simulacdo). Enquanto o tempo de cada iteracao
do EPSAC variou entre 0,085 ~ 0,097s como € muito préximo do valor inicialmente assumido
para o tempo de amostragem ( 7y = 0, 1s) este foi aumentado para Tygpsac = 0, 2.

Por causa da alteracdo nos tempo de amostragem 7 para cada controlador, a trajetéria de
referéncia foi refeita considerando menos pontos. Essa mudanca foi realizada para que o robd
utilizando qualquer um dos trés controladores percorresse a trajetéria no mesmo tempo. A
propor¢ao utilizada foi a razdo entre o tempo de amostragem do controlador 7y do cont € o
tempo utilizado na simulagdo, assim Pontos Utilizados = T; cont /0,1, desta forma para o
EPSAC foi considerado a metade dos pontos da trajetdria de referéncia, e para 0o MPC um terco.

Os testes foram realizados em um espago onde o piso € de calcamento irregular, por se tratar
de uma drea aberta existe a presenca de folhas de arvores e outras sujeiras. As condicdes do
piso e a marcagdo das posigdes iniciais e da origem da trajetoria sdo apresentadas na Fig. 5.12 .
Os valores dos parametros de cada controlador foram determinados através de diversos testes e
foram escolhidos os valores que conseguiram realizar o controle da trajetéria sem que houvesse
uma necessidade de aumentar o valor do tempo de amostragem.

Os dados foram colhidos pelo Labview e exportados em forma de planilhas para ser traba-
lhado no Matlab.

5.2.1 Controlador Klancar

O tempo de amostragem para o controlador Klancar foi o mesmo tempo utilizado na simulacao
e portanto a trajetoria de referéncia foi utilizada com todos os pontos inicialmente determina-
dos. A trajetéria realizada pelo robo € apresentada na Fig.5.13, pode-se observar que o contro-
lador consegue fazer com que o robo siga a trajetéria mesmo com o erro de estado inicial. O
parametro do controlador utilizado foi g = 5.

Os valores de entrada do controlador referente as velocidades lineares sdo apresentados

nas Fig 5.14, pode se observar que a velocidade linear apds 10s tende ao valor da referéncia
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Figura 5.12: Rob0 no local de teste
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velocidade de referéncia. Vale ressaltar que a velocidade linear de referéncia € constante durante
toda a trajetdria.

A Fig.5.15 apresenta a variacdo da segunda entrada do controlador: a velocidade angular.
Vale ressaltar que para este controlador ndo ha restricdes. Observa-se que apés os 7 = 10s a
velocidade angular tende a referéncia, porém na metade da trajetoria ocorre uma mudanga no
sentido da trajetdria provocando uma pertubagdo. Provocando na velocidade angular um valor
de velocidade muito maior do que a referéncia e logo tende a referéncia.

A Fig. 5.16, apresenta uma comparagdo entre os resultados reais e o obtidos quando im-
plementado o controlador Klancar. Pode se observar que as respostas sdao bastante semelhantes,
tendo as variacdes esperadas quando implementado um controlador na prética. Vale ressaltar

que ndo ouve varia¢do no tempo de amostragem entre a simulagdo e a implementacao.

5.2.2 EPSAC

Para a determinagdo do valor do controlador EPSAC € realizado a minimizacao da fungdo
custo a cada iteragdo. O custo computacional para a minimizacao € superior ao custo do contro-
lador Klancar. O tempo necessario para a realizacio dos cdlculos no Labview chegou ao valor
de 0,095s, desta forma o tempo de amostragem foi corrigido para o valor de 7,gpsac = 0,200s.
A trajetoria foi reduzida a metade dos pontos, ou seja, a cada dois pontos foi retirado apenas

um. A trajetoria realizada pelo robo € apresentada na Fig.5.17. Os parametros utilizados foram
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Figura 5.13: Trajetdria do robd com o controlador Klancar
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para o horizonte de controle N = 10 e a diagonal da matriz de ponderacdo diag(Q) =1, 1€0, 1.

A velocidade linear € para o controlador EPSAC durante todo o percurso € apresentada na
Fig. 5.18, pode-se observar que apds aproximadamente 8s a velocidade vgpsac acompanha o
valor da v, .

Para facilitar a visualizacao a Fig.5.19 apresenta os instantes iniciais do ensaio. Sendo que
no primeiros 8s a velocidade que alcanga o valor de aproximadamente vgpsac = 0,4m/s , o
valor mais alto permitido pelas restricdes colocadas no controlador. Apds os oito segundos
iniciais a velocidade estabiliza em torno da velocidade de referéncia, vepsac = vyer = 0,3m /s.

A Fig. 5.20 apresenta a velocidade angular para o controlador EPSAC, apds aproximada-
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Figura 5.14: Velocidade linear - Klancar
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Figura 5.15: Velocidade angular - Klancar
Velocidade Angular
06+
———vwelocidade de referéncia
welocidade angular
0.4
21 il |||“\ Il ‘ L \| ‘ ‘ l ‘ ||| |
= T ‘ ‘
g II ‘Hlll | "”‘l Li ’ i | \ Il |l
a0z \ ’ '
0.4 ‘
-0.6
08 1 | 1 | 1 1 | 1 |
u] 10 20 30 40 a0 B0 70 80 a0
tempo (s)

Fonte: Autor

mente 10s a velocidade tende ao valor da velocidade de referéncia. A variacdo do sinal que
ocorre na metade do tempo da velocidade de referéncia € devido a mudanca de sentido na tra-
jetéria do robo.

O robd apresenta durante toda a sua trajetdria um erro em X, que ndo ocorria na simulagao
um dos motivos € que com a reducio de pontos da trajetoria aparece um erro na propria geragao
da trajetéria uma vez que estamos aproximando uma circunferéncia por pequenos segmentos de

reta, e no caso esse segmento € duas vezes maior do que o da simulacdo. O comportamento do
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Figura 5.16: Comparacao entre os resultados da simulacao e da implementag¢ao no rob0 para o
controlador Klancar
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erro € apresentado na Fig. 5.21.

Na Fig. 5.22 € apresentado os resultados real comparado com os resultados de simulagdo,
tendo dois valores para o tempo de amostragem, sendo mantido 7, = 0, Is o valor inicial das
simulacdes e uma simulacdo com mesmo tempo de amostragem utilizado para a aplicacao
real 7, = 0,2s. Apesar da mudang¢a do tempo de amostragem a simulacdo nao apresenta uma
mudanca considerdvel, uma vez que o EPSAC € um controlador preditivo e o controlador consi-
dera as referéncias futuras. A resposta do real, teve um erro um pouco superior ao da simulagao,
mas esse erro € esperado quando implementado no robd € mostra que na prética que o resultado

foi proximo ao esperado.

5.2.3 MPC linearizado

A trajetdria realizada pelo controlador MPC € apresentada na Fig. 5.23, vale ressaltar que
devido ao alto tempo que o Labview leva para determinar o controle em torno de 250ms a quan-
tidade de pontos utilizada pela a trajetoria de referéncia foi reduzida a um terco. Os parametros

utilizados foram para o horizonte de controle N = 5 e a diagonal da matriz de ponderagdo
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Figura 5.17: Trajetdria do robd - EPSAC
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Figura 5.18: Velocidade linear para o robd utilizando controlador EPSAC
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diag(Q) = 1,1,0,1. O aumento do valor de N para 7 melhora o desempenho do controlador,

mas o tempo para o calculo de cada iteragao chega proximo a 300ms.
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Figura 5.19: Velocidade linear para o robd utilizando controlador EPSAC
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Figura 5.20: Velocidade angular para o robo utilizando controlador EPSAC
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O modelo linearizado € utilizado diretamente no calculo dos controladores. Em alguns
testes no robd foi utilizado o modelo nao linear o mesmo dos dois controladores estudados, no
caso do robo real ele € utilizado para converter os valores de saida dos sensores (velocidade de
cada roda) para os valores de posi¢ao, ocorreu uma diminui¢do no tempo de cédlculo, porém foi
mantido o modelo linearizado uma vez que foi o apresentado no artigo de referéncia (KUHNE
et al.,2004).

A Fig.5.24 apresenta os valores da velocidade linear,é observado que nos instantes iniciais

a velocidade linear é em torno de vypc = 0,4m/s, porém a oscilagdo de £0, 1m /s em torno da
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Figura 5.21: Erro de posicao e orientagdo para o controlador EPSAC
Erros - EPSAC

15 T T I

tempofs]

Fonte: Autor

Figura 5.22: Comparacao entre os resultados das simulagdes e da implementacao no robo para

o controlador EPSAC
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Figura 5.23: Trajetdria do robd - MPC
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velocidade de referéncia, sendo a maior amplitude dos trés controladores analisados.

Figura 5.24: Velocidade linear para o robd utilizando controlador MPC
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Os valores da velocidade angular € apresentado na Fig. 5.25, observando que a variacdo em
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torno da velocidade de referéncia € maior do que a dos outros dois controladores: 0 EPSAC e o

Klancar.

Figura 5.25: Velocidade angular para o rob6 utilizando controlador MPC
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Os erros de posi¢do (x,y) e orientacdo 6 sdo apresentados na Fig. 5.26. Pode-se observar
que os valores dos erros obtidos quando utilizado o MPC € maior do que os valores dos outros
dois controladores, essa piora no desempenho do controlador ocorre devido ao fato que este
foi o controlador que trabalho com a menor quantidade de pontos na trajetéria devido ao custo
computacional do mesmo.

A Fig. 5.27 apresenta as trajetorias simuladas para a o tempo de de amostragem de 0, 1s e
0,3s e a resposta real do controlador. Os tempos de amostragem simulados foram escolhidos,
pois T, = 0, 1s foi o tempo utilizado inicialmente na simulag¢do e também era o tempo desejado
para realizar a implementagdo real, como nao foi possivel devido ao custo computacional o
tempo utilizado foi de 7, = 0,3s desta forma foi simulado com esse valor para ser possivel a
comparacao das resposta.

Como o controlador MPC linearizado € um controlador preditivo o aumento do tempo de
amostragem nao interfere na resposta, uma vez que o controlador considera as referéncias futu-
ras. Nao héd uma alteracdo consideravel entre as respostas da simulagdo, o controlador quando
aplicado no robd real, tende a realizar uma trajetdria que oscila em relacdo a trajetéria de re-
feréncia, uma vez que sdao necessdrio trés amostras (se comparado com o simulado) para o
controlador tomar uma decisdo desta forma quando a velocidade € inferior o controlador au-

menta e quando € coletado novamente os dados o rob6 estd com uma velocidade mais alta do
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Figura 5.26: Erro de posicao e orientagdo para o controlador MPC
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que o necessdrio para chegar a referéncia desta forma € reduzido e o ciclo se repete.

Figura 5.27: Comparagao entre os resultados das simula¢cdes e da implementa¢do no robd para
o controlador MPC
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5.2.4 Comparacao entre os controladores

A Fig. 5.28 apresenta a resposta da implementacao dos controladores no robd. Os tempos
de amostragem devido ao custo computacional foi diferente para cada um dos trés controlado-
res, sendo para o controlador Klancar T g;4ucqar = 0, 15, enquanto para o controlador EPSAC
Tuepsac = 0,2s e para o MPC T ypc = 0,3s. Para manter as velocidades de referéncia foi re-
alizado uma corregdo na trajetoria, na qual para o EPSAC € considerado apenas metade dos
pontos, as velocidades referentes aos indices (1,3,5 ...) e para o MPC € utilizado apenas um
terco dos pontos, referentes aos indices (1,4,7,...).

Pode-se observar que o controlador Klancar teve nessa situacdo a melhor resposta, porém
como foi apresentado na Secdo 5.2.1 ndo existe restri¢gdes para as entradas do controlador. O
controlador EPSAC desenhou a trajetéria porém, em especial para a segunda metade da tra-
jetoria, com valores de xgpsac < Xr.f, enquanto a trajetoria quando implementado o controlador

MPC ficou oscilando em torno da trajetdria de referéncia.

Figura 5.28: Comparagdo entre os resultados da implementa¢do no robd dos controladores
Klancar, EPSAC e MPC
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6 Conclusao

As leis de controle analisadas conseguiram realizar o controle de trajetéria mesmo em uma
situacdo na qual o rob6 tenha um erro de estado inicial, fazendo com que os erros na posicao x
e y e orientac@o 6 do robd tende a zero. Quando foram implementadas no robo real teve que ser
realizado alguns ajustes devido ao tempo que era levado para realizar os cédlculos.

O controlador preditivo do tipo EPSAC, utilizado em diversas aplicagdes, se mostrou uma
boa alternativa para o controle de trajetéria de robds méveis com rodas, tendo a capacidade de
corrigir erro de estado inicial fazendo com que ap6s algumas os erros de posi¢ao x, e € orientacao
0 tendam zero. Quando implementado no robd real, com os parametros utilizados, o EPSAC
conseguiu controlar a trajetoria do rob6 real, mesmo com o erro de estado inicial e presenca de
incertezas, tais como: o chao irregular, a presenca de obstaculos. Além de erros no modelo uma
vez que foi considerado que o robd tem apenas rolamento nao ocorrendo deslizamento durante
a movimentagao.

E possivel melhorar a resposta do controlador ajustando os pardmetros de controle, em
especial, o horizonte de controle N, levando em consideracdo que essa melhora ocorre com
um aumento no tempo de cdlculo do controlador. Desta forma, a maior limitacdo desse con-
trolador ndo € no algoritmo e sim na capacidade de processamento do Hardware envolvido.
Necessitando de um processador mais potente e de um sistema com uma grande capacidade de
armazenamento.

O Controlador Klancar € composto apenas de uma matriz de ganhos com um tnico parametro
de ajuste, para a determina¢@o do controlador € realizado calculos envolvendo multiplicacao da
matriz de ganho pelo vetor dos erros. E o que possui o menor tempo de amostragem. Porém,
para o erro dado nao € possivel melhorar a resposta do mesmo. Além disso ele originalmente
ndo possul tratamento para restricoes, desta forma pode impossibilitar o uso do controlador
dependendo do robd utilizado.

O controlador MPC linearizado € entre trés analisados o com maior tempo para o célculo
de cada interacdo, desta forma teve o maior tempo de amostragem e menos pontos na trajetdria
ocorrendo a partir desse fato um erro. Além, disso no inicio ele passa 0.3 segundos (ou 3

amostras) sem acao. As respostas poderiam ser melhoradas alterando os valores dos parametros
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de ajuste do contro, em especial o valor do horizonte de controle N. Porém, isso elevaria o
tempo de cdlculo.

O modelo do rob6 é um modelo MIMO com duas entradas e trés saidas, os controlado-
res Klancar e EPSAC utilizam um modelo ndo linear do robd esse modelo € obtido através das
equacdes da cinematica de primeira ordem. Enquanto, o MPC linearizado utiliza o modelo line-
arizado em torno da referéncia, porém esse controlador apresenta uma redu¢do de desempenho
quanto mais distantes o robd encontrar-se da trajetéria de referéncia.

O fator limitante dos controladores preditivos avaliados foi custo computacional, indicado
pelo tempo necessario para a realizacao dos célculos, quando aplicado no robd esse custo foi
elevado pelas limitacdes do Hardware quanto pelo programa envolvido para realizacdes do
calculo. Uma vez, que o robd utilizado é habilitado apenas para o Labview que tem requisitos
de sistemas maiores do que o Matlab utilizado nas simulacdes.Desta forma, para um robd que
utilize uma plataforma diferente os parametros de controle podem ser mais elevados permitindo
uma melhoria na resposta.

Vale ressaltar que o robd tem apenas encoders em cada roda, sendo uma proposta de tra-
balho futuro a utilizagdo de outros sensores para a determinagdo de posi¢ao e destas forma ser
determinado o controle.Outra proposta de trabalho futuro € a redu¢@o do custo computacional
dos controladores preditivos. Além disso, ndo foi realizado o estudo de robustez para cada

controlador sendo uma outra sugestao de trabalho.
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APENDICE A - Resposta do controlador no

Labview
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Figura A.1: Tela do Labview para acompanhamento do deslocamento do robd
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