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pais e meus irmãos.
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Resumo

Este trabalho propõe o estudo e aplicação de controladores avançados ao seguimento de
trajetórias de robôs móveis com rodas. Este tipo de problema é bastante desafiador do ponto de
vista de controle uma vez que o modelo tem duas entradas e três saı́das, além disso, trata-se de
um modelo não linear. Na literatura existem diversas soluções para o controle de trajetória de
robôs móveis, dentre eles tem-se o Controle Preditivo Baseado em Modelo (MPC) por meio de
modelos linearizados e um controlador não linear denominado neste trabalho de controlador de
Klancar. Os controladores preditivos podem ser aplicados de forma eficiente em plantas com
modelos multivariáveis, em situações na qual a trajetória futura de referência é conhecida e em
sistemas com restrições nas vaiáveis de entrada e de saı́da. Porém, a principal desvantagem
do MPC linearizado é o alto custo computacional o que limita as aplicações práticas. Além
disso, esse controlador especı́fico utiliza um modelo linearizado da planta. Por outro lado, o
controlador de Klancar pode ser mais eficiente que os baseados em modelos lineares, devido às
não linearidades inerentes do modelo. No entanto, a sua solução, por definição, não corresponde
a critérios ótimos o que pode representar uma desvantagem principalmente em sistemas com
restrições e referência futura conhecida. Além disso, neste trabalho é proposta a aplicação
do controle preditivo EPSAC (Extended Prediction Self Adaptive Control) para o controle de
seguimento de trajetórias. Esta estratégia utiliza de forma explı́cita o modelo não linear do
robô, a referência futura, as restrições nas variáveis do robô e solução corresponde a um critério
ótimo. Até onde foi pesquisado pelo autor deste trabalho, não existem relatos da utilização do
EPSAC na robótica móvel, sendo desta forma uma aplicação inédita. Resultados de simulação
são apresentados comparando os controladores estudados, utilizando ı́ndices de desempenhos.
Além disso, os mesmo foram implementados em um robô móvel.

Número de páginas: 73

Palavras-chave:EPSAC, robô móvel,Controle Preditivo, Seguimento de trajetória.
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Abstract

This work proposes a study and application of advanced controller to trajectory tracking of
wheeled mobile robots. This kind of problem is a challenger for controllers once its models has
two inputs and three outputs and is a non-linear model. In the literature there are various solu-
tions to wheeled mobile robots trajectory tracking, among them the Model Predictive Control
(MPC) with linearization model and a non linear control which in this work will be nominated
as Klancar Controller. The Predictive Controllers can be applied efficiently in plants which has
multiple inputs an multiple outputs, in situation that a future reference trajectory is known and
systems with input and output constraints . However, the main disadvantage of MPC is the
high computational effort which limits its practical application. Thus, this specific controller
uses the plants linearization model. On the other hand, the Klancar Controller may be more
efficient than the ones based on linear models, once the model is non linear. However, its solu-
tion, by definition, does not match the optimized criteria which can be a disadvantage mainly
in systems that has constrains and a known future reference. Furthermore, this work proposes
the application of the Predictive Control Extended Prediction Self Adaptive Control (EPSAC)
to wheeled mobile robot trajectory tracking. This control strategy uses explicitly the non linear
robot model, future reference, constraints on the variables and has a optimized solution. And,
to the matter of this work, it has not been found reports of the EPSAC applied in mobile robo-
tics, and is thus an unprecedented application. Simulation results are presented comparing the
controllers studied using performance indices. Else, the controllers were applied in a mobile
robot.

Number of pages:73

Keywords: EPSAC, mobile robot,Predictive Control, trajectory tracking .
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2.2 Robôs móveis com rodas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Tarefas básicas de deslocamentos . . . . . . . . . . . . . . . . . . . . 10
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5 Resultados e discussão 45

5.1 Resultados de simulação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 EPSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.2 Controlador Klancar . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.3 MPC linearizado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.4 Comparação entre os controladores . . . . . . . . . . . . . . . . . . . 52
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5.23 Trajetória do robô - MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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1 Introdução

Desde a antiguidade os seres humanos demonstram interesses por máquinas que sejam se-

melhantes aos seres humanos, não só no aspecto fı́sico, mas que possuam alguma capacidade

coletar, interpretar informações sobre o ambiente que os rodeiam e a partir dessas informações

sejam capazes de tomar alguma decisão; estas são as caracterı́sticas de um robô. Podem-se

dividir os robôs em dois grandes grupos: o primeiro grupo engloba os robôs manipuladores,

amplamente utilizado nas indústrias realizando tarefas repetitivas, tais como soldar, pintar, apa-

rafusar entre outras (CRAIG, 2008). E no segundo grupos tem-se os robôs móveis, que possuem

a capacidade de deslocar-se no espaço e esse deslocamento pode ser tanto terrestre, quanto aéreo

ou mesmo submarino (SIEGWART; NOURBAKHSH, 2004).

Os robôs móveis podem ser utilizados para explorações de locais inacessı́veis aos seres

humanos, como por exemplo, ambientes submarinos, vulcões ou o espaço. Na Fig. 1.2(a) é

apresentado o robô Curiosity desenvolvido pela NASA enviado a Marte para a realização de

estudos (NASA, 2013). Também podem ser utilizado em locais que a proximidade de seres

humanos pode ser prejudicial a saúde, tais como, em Nagatani et al. (2013) é apresentado os

robôs utilizados para avaliar a situação do reator nuclear em Fukushima devido ao terremoto que

atingiu o Japão em 11 de março de 2011 apresentado na Fig. 1.2(b), esses robôs são chamados

de Quincy. E podem ser utilizados ainda em locais que correm o risco de acidentes, por exemplo

no desarmamento de bombas, ou combate a incêndios.

Além dos robôs para executar tarefas perigosas, existem aqueles usados em ambientes

domésticos e de serviços. O robô Rhino, por exemplo, Fig. 1.3(a) desenvolvido pela Universi-

dade de Bonn na Alemanha servia como guia de um museu (BUHMANN et al., 1995). Existe

também o Ashimo, apresentado na Fig. 1.3(b) desenvolvido pelo empresa japonesa Honda,

sendo o primeiro robô humanóide e a Sony desenvolveu um robô de uso pessoal quadrúpede se-

melhante a um cachorro, chamado Aibo, Fig. 1.4(a). Algumas empresas trabalham com robôs

ou kits com peças para montar robôs utilizados na educação, como é o caso do robô NI Lab-

VIEW Robotics Starter Kit, da National Instruments (NI) Fig. 1.4(b) utilizado nesse trabalho.

Os robôs móveis podem ser divididos de acordo com o ambiente na qual se deslocam. Os

robôs móveis terrestres são subdivididos de qual forma esse deslocamento é realizado, dentre
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Figura 1.1: a)Robô Curiosity - NASA b) Robô Quincy - Fukushima, Japão

(a) (b)

Fonte: (NASA, 2013) Fonte: (NAGATANI et al., 2013)

Figura 1.2: a)Robô Rhino b) Robô humanoide Asimo

(a) (b)

Fonte: (BUHMANN et al., 1995) Fonte: (MOTOR, 2013)

entre eles existem os que se deslocam com rodas. E estes são subdivididos em dois grupos: os

omni-direcionais são aqueles que tem a capacidade de se deslocar livremente no plano e os não

- holonômicos são os robôs que não podem se locomover em direções laterais em relação às

rodas, tendo desta forma, restrições na sua locomoção.

O sistemas não-holonômicos estão sendo bastantes estudados, uma vez que são os robôs
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Figura 1.3: a)Robô pessoal Aibo da Sony b) Robô educacional da NI

(a) (b)

Fonte: (AIBO, 2013) Fonte: Autor

móveis mais populares pela facilidade e o custo menor em relação a outras configurações. Con-

siderando que o ambiente em que o robô se encontra não possua obstáculos, pode-se fazer com

que ele se locomova considerando apenas o ponto inicial e o final, ou desejar que o mesmo siga

uma trajetória pré-estabelecida.

Na literatura existem diversas propostas para o controle de trajetória de robôs móveis não-

holonômicos com rodas (WMR), sendo que a grande maioria das propostas usam o modelo para

o robô baseado nas equações da cinemática, sendo denominado modelo cinemático, tanto pela

simplicidade quanto pelo fato da maioria dos robôs terem como parâmetro de entrada as veloci-

dades linear e angular e não valores de aceleração ou torque (KLANCAR et al., 2005). Porém,

existem outras estruturas a serem utilizadas: Kanayama et al (2009) utiliza uma linearização da

equação diferencial do sistema, já em Kim e Oh (1999) é utilizado o método de linearização

entrada-saı́da. Em Kühne et al (2004) o modelo é linearizado levando em consideração o erro

do robô de referência e o robô real.

Entre os controladores propostos na atualidade existem vários ramos de estudos, incluindo

a utilização de inteligência artificial com propostas de utilização de lógica de fuzzy e redes

neurais como o apresentado em Fierro e Lewis (1995), enquanto em Jang e Chung (2009) é

proposto um controlador que combina lógica de fuzzy e redes neurais. Há propostas de con-

troladores PI e PID tanto com estruturas lineares como não linear, em Al-Araji et al (2011)

é proposto um controlador PID adaptativo, já em Klancar et al (2009) o controlador proposto

possui caracterı́sticas de um controlador PI com termos não-lineares. Em Secchi e Mut (2007)

é proposto e analisado a estabilidade de um controlador discreto.

Alguns autores avaliam a utilização de algumas das diversas estratégias de controle predi-
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tivo (Model Predictive Control - MPC). Em Kühne et al (2004) é utilizado um MPC sendo que

o modelo utilizado foi linearizado, já em Hedjar et al (2009) o controlador preditivo calcula o

erro previsto a uma amostra adiantada para determinar o esforço do controlador. Em Andrade

e Torrico (2011) o controlador aplicado utiliza a metodologia Generalized Predictive Control

(GPC).

Dentre as estratégias de controle adaptativo destaca-se Extended Prediction Self Adaptive

Control (EPSAC) com diversas aplicações, tais como em Pop et. al (2012) o controlador EP-

SAC é aplicado no controle de um processo de separação de carbonos isótopos, este processo

possui várias entradas e saı́das, além da presença de atraso, caracterı́sticas bastante comuns na

indústria quı́mica. Até mesmo aplicações na medicina, por exemplo em Hodrea et. al (2008)

um controlador EPSAC não linear (NEPSAC) é utilizado para controlar o nı́vel de glicose em

pacientes com diabetes tipo I, já em Brito et. al (2010) a estratégia de controle EPSAC é utili-

zada para controlar a temperatura e umidade de uma incubadora neonatal e em Méndez et. al

(2011) é estuda a aplicação do controlador em processos de anestesia.

1.1 Justificativa

Até onde foi pesquisado para a realização desse trabalho, não foram encontrados trabalhos

que utilizem o EPSAC para controlar a trajetória de um robô móvel com rodas. O EPSAC possui

caracterı́sticas que o tornam uma excelente opção para a utilização em aplicações referentes à

robótica móvel, em especial no caso de controle de trajetória, destacam-se:

• A capacidade de se trabalhar diretamente com sistemas multivariáveis e com sistemas

não-lineares.

• Utilização direta das restrições no algoritmo de controle

Desta forma, a contribuição deste trabalho consiste da aplicação do controlador preditivo EP-

SAC, para o controle de trajetória de um robô móvel com rodas não-holonômico.

1.2 Objetivos

Esse trabalho tem como principais objetivos:

• Estudo e análise de duas estruturas de controle: um Controle Preditivo que utiliza o mo-

delo cinemático do robô linearizado, proposto por (KÜHNE et al., 2004) e um controlador

com termos não linear proposto por (KLANCAR et al., 2005)
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• Estudo da estratégia de controle preditivo do tipo EPSAC (CAMACHO; BORDONS,

1998) e a extensão do mesmo para a robótica móvel,especificamente o controle de tra-

jetória.

• Estudo comparativo entre as estratégias de controle apresentadas.

• Aplicação dos controladores estudados em um robô móvel didático da National Instru-

ments e análise dos dados obtidos experimentalmente.

1.3 Organização do trabalho

O primeiro capı́tulo é dedicado a introdução do trabalho. No segundo capı́tulo serão apre-

sentado noções e definições sobre robótica móvel, além dos modelos utilizados e as carac-

terı́sticas do robô no qual serão implementado as estratégias de controle. As estratégias de

controle estudadas, retiradas da literatura, serão apresentadas no terceiro capı́tulo. O quarto

capı́tulo será dedicado a apresentação das caracterı́sticas do EPSAC com a sua utilização no

controle de trajetória de um robô móvel com rodas. Em seguida, no quinto capı́tulo serão apre-

sentados os resultados e discussão, tanto de simulação quanto os obtidos no robô da National

Instruments. O sexto e último capı́tulo é dedicado as conclusões do trabalho.
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2 Noções de robótica móvel

A robótica é uma área do conhecimento multidisciplinar abrangendo conceitos de mecânica,

elétrica, computação, automação, inteligência computacional, dentre outras. Os primeiros

robôs, os manipuladores industriais, são da década de 1960. Já os primeiros robôs móveis

são de 1968 e consistiam principalmente de veı́culos teleguiados (Automated Guided Vehicles

- AGVs), utilizados para transportar ferramentas em ambientes industriais e seguindo uma tra-

jetória predefinida (GARCIA et al., 2007).

2.1 Robôs móveis

Um robô móvel é um dispositivo mecânico montado sobre uma base não fixa, que age sob

o controle de um sistema computacional, equipado com sensores e atuadores que o permitem

interagir com o ambiente (PIERI, 2002). Esses dispositivos são capazes de movimentar-se

no seu ambiente seja utilizando pernas ou rodas. Onde que os mais recentes são capazes de

movimentar-se no ar ou embaixo da água. Para o caso especı́fico dos robôs que utilizam rodas,

o controle de posição, orientação e velocidade destes robôs são obtidos através de motores

elétricos que movimentam as rodas (BEKEY, 2005).

A interação do robô móvel com o ambiente que o cerca ocorre através de ciclos de percepção-

ação. Para realizar esses ciclos um robô deve ter sensores, atuadores e capacidade de pro-

cessamento que emula em alguns aspectos do conhecimento humano (BEKEY, 2005). Para

realização de tarefas o robô realiza diversos ciclos de percepção-ação, modificando o estado do

ambiente no qual ele se encontra. O ciclo de percepção-ação pode ser descrito em três passos

fundamentais (PIERI, 2002):

• Os sensores atuam para obter informações acerca do ambiente;

• O processamento das informações obtidas através dos sensores e decisão de que ações

deverão ser executadas;

• Os atuadores executam as ações planejadas.
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Na robótica móvel pode-se considerar que existem basicamente três nı́veis de controle. No

mais alto nı́vel de controle é tomada de decisões, planejamento e mudança de metas. No nı́vel

mais “baixo” de controle é necessário que os motores de acionamento das rodas alcancem a

velocidade desejada de acordo com os requisitos de projeto e limitações fı́sicas da estrutura do

robô. Enquanto o nı́vel intermediário é necessário para projetar os robôs de uma forma que não

colidam com outros robôs ou com obstáculos, enquanto ao mesmo tempo manter a estabilidade

no nı́vel mais baixo (BEKEY, 2005).

Os vários nı́veis de controle discutidos anteriormente são mostrados na Fig. 2.1. A

organização do software é associado com os vários nı́veis é frequentemente denominado arqui-

tetura de controle de um robô. Pode-se observar que os controles de alto nı́vel geram entradas

para os nı́veis mais baixos, mas também existe a realimentação dos nı́veis inferiores para os

nı́veis mais superiores. Sensores disponibilizam entradas para os nı́veis inferiores (e algumas

vezes de nı́veis intermediários) (BEKEY, 2005).

Figura 2.1: Nı́veis de controle em um robô autônomo

Fonte: (BEKEY, 2005)

Observe-se que o bloco superior na 2.1 indica a entrada humana envolvida no alto nı́vel de

controle. O controle de baixo nı́vel é claramente autônomo, enquanto o controle intermediário

é normalmente autônomo nos robôs da atualidade, mas pode ainda envolver algumas entradas

humanas (BEKEY, 2005).

O comando de entrada representado na Fig. 2.2 pode representar, por exemplo, a orientação

desejada das rodas da frente, considerando que estas são as rodas motorizadas. O erro é a
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diferença entre as direções de referência e a direção real. Este sinal de erro é o sinal de entrada

do controlador, o qual um de sinal para os motores que irão movimentar as rodas. A direção

das rodas é medida pelos sensores e comparada com os comandos de entrada. Sistemas desses

tipos são conhecidos como sistemas de controle de realimentação negativa, desde que o sinal de

realimentação tem um sinal oposto de comando de entrada.

Existem diversos tipos de robôs móveis, dentre eles existem aqueles que se deslocam em

terra utilizando rodas. Esse tipo de robô é o utilizado nesse trabalho e será apresentado com

maiores detalhes na sessão seguinte.

Figura 2.2: Sistema básico de controle

Fonte: (BEKEY, 2005)

2.2 Robôs móveis com rodas

Os robôs móveis com rodas são os mais populares entres os robôs móveis terrestres, pois

são robôs com estruturas relativamente fáceis de construção mecânica, além de terem custo

relativamente baixo comparando com os de esteiras e os que se movimentam através de pernas

(PIERI, 2002). As rodas são muito populares não só como meio de locomoção na robótica, mas

como nos veı́culos construı́dos pelos humanos de uma forma em geral, podendo atingir boas

eficiências, e isso com uma implementação relativamente simples (BATLLE; BARJAU, 2009).

Os robôs móveis com rodas podem ser avaliados de acordo com a sua capacidade de

manobras no plano de trabalho, sendo subdivididos em dois grupos nos quais é levado em

consideração a capacidade de deslocamento: os chamados robôs móveis omnidirecional e os

robôs móveis não - holonômicos (BATLLE; BARJAU, 2009) (FIGUEIREDO; JOTA, 2004).

Os robôs denominados de omnidirecional, são aqueles capazes de se movimentar em qual-

quer direção ao longo do plano do solo (x,y) independente da orientação que o robô encontre-se

em relação ao seu eixo vertical. Para essa capacidade de manobras é necessário que as rodas

possam se movimentar em mais de uma única direção, desta forma robôs omnidirecionais nor-

malmente utilizam rodas Suecas, ou esféricas alimentadas (BATLLE; BARJAU, 2009).
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Robôs não-holonômicos

O robô a ser controlado é um sistema não-holonômico. O termo holonômico é atribuı́do ao

fı́sico Hertz e tem como significado: “universal”, “integral”, “integrável”, sendo literalmente

formado pelo prefixo holo que significa o todo, conjunto, totalidade e o sufixo -nomia que é

sinônimo de lei. Desta forma, os sistemas não-holonômicos podem ser interpretados como

sendo sistemas que não são integráveis (FIGUEIREDO; JOTA, 2004).

Os sistemas não-holonômicos são definidos como sendo os sistemas que possuem dimensão

finita tendo algum tipo de restrição imposta a um ou mais estados do mesmo. Estas limitações

podem ter diversas causas, seja ela a conservação do momento angular, ou condições im-

postas pela incapacidade de deslocamento em uma ou mais direções. O efeito da imposição

dessas restrições é que durante o projeto do sistema de controle elas devem ser levadas em

consideração, uma vez que o sistema não tem atuadores em todas as direções do espaço do

problema (FIGUEIREDO; JOTA, 2004).

Apesar da limitação em seus movimentos, os mesmo possuem a capacidade de atingir qual-

quer configuração no espaço onde estão definidos, desde que estes sistemas sejam controláveis

e a configuração atingı́veis. Porém, devido as suas caracterı́sticas as leis de controle não são

simples nem fáceis de serem geradas de forma a garantir a estabilização do sistema; existindo

a necessidade de utilização de ferramentas matemáticas mais elaboradas para análise e projeto,

tais como a geometria diferencial, a utilização de um controle não-linear ou um controle linear

variante no tempo (FIGUEIREDO; JOTA, 2004).

Para a melhoria do projeto de controle de sistemas não-holonômicos é necessário a

consideração das restrições ao movimento uma vez que possibilita o projeto de controladores

multivariáveis, exponencialmente estáveis de forma integrada. A análise e sı́ntese desse tipo de

controladores tem sido um desafio, tendo proporcionado um aumento da utilização das teorias

de controle não linear (FIGUEIREDO; JOTA, 2004).

Na robótica o exemplo de um sistema não-holonômico seria um robô que se move com

acionamento diferencial. Sendo utilizado nesse caso as mesmas estratégias de controle para

sistemas não-holonômicos (FIGUEIREDO; JOTA, 2004).

Sendo uma classe de robôs que alcança uma alta capacidade de manobras, apenas um pouco

inferior aqueles que possuem a configuração omnidirecional. Nesses robôs, movimentos em

uma direção particular pode requerer uma movimentação rotacional inicial. Com um chassi

circular e o eixo de rotação no centro desse robô,esse tipo de robô pode girar sem mudar a sua

posição em relação ao solo. O mais popular desse tipo de robô é o de duas rodas com unidade

de acionamento diferencial no qual as duas rodas rotacionam em torno de um ponto no centro

do robô. Um ou dois pontos adicionais de contato com o solo podem ser utilizados para a
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estabilidade, tal escolha é baseada em aplicações especı́ficas (FIGUEIREDO; JOTA, 2004).

As duas rodas acionadas individualmente, também chamadas de rodas motorizadas, são

as responsáveis pelo movimento do robô. As mudanças de orientação do robô ocorrem de-

vido às diferenças de velocidade entre as mesmas. O robô possui a capacidade de rotacionar

em torno do próprio eixo, na situação que cada roda gira em sentidos contrários, porém com

mesmo módulo de velocidade. Geralmente, é considerado que o corpo do robô tem uma forma

simétrica, as rodas motorizadas encontram-se equidistantes do eixo de simetria e o centro de

massa está no centro geométrico do corpo (FIGUEIREDO; JOTA, 2004). Na continuidade será

apresentado as tarefas básicas de deslocamento para esse tipo de robô.

2.2.1 Tarefas básicas de deslocamentos

Existem duas tarefas básicas de deslocamento para um robô móvel com rodas (WMR -

do inglês Wheeled Mobile Robot) quando se encontra em um ambiente no qual não existem

obstáculos (ORIOLO et al., 2002):

• Movimento ponto a ponto : o robô deve atingir uma configuração desejada a partir de

uma configuração inicial dada.

• Seguimento ou Rastreamento de trajetória: o ponto de referência do robô deve acompa-

nhar uma trajetória no plano cartesiano iniciando em uma configuração inicial dada.

Para realizar essas tarefas pode ser utilizados comandos de pré-alimentação, controle com

realimentação ou uma combinação dos dois. Na realidade, as soluções de realimentação apre-

senta um grau intrı́nseco de robustez. Entretanto especialmente no caso de deslocamento ponto

a ponto, o projeto das leis de controle de realimentação para os sistemas não - holonômicos tem

diversas obstruções estruturais. Controladores que superam essas dificuldades podem levar ao

desempenho não satisfatório no regime transitório. O projeto de comandos de realimentação é

estritamente relacionado ao planejamento de trajetória, e essas soluções levam em consideração

a especificidades cinemática da natureza de um robô móvel não-holonômicos (LUCA et al.,

2001).

Quando utilizando uma estratégia de realimentação, o deslocamento ponto a ponto leva

a um problema denominado estabilização de postura. Sem perdas de generalidade, o obje-

tivo pode ser definido como a origem de uma configuração espacial n-dimensional do robô.

Enquanto para o seguimento de trajetória, na presença de um erro inicial, como por exem-

plo, um inı́cio fora da trajetória, o problema de controle de seguimento assintótico consiste na

estabilização em zero no ep = (ex,ey), erro cartesiano bidimensional em relação a posição do

movimento do robô de referência (LUCA et al., 2001). O objetivo desse trabalho é o controle
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para o seguimento de uma trajetória pré-definida. Existem dois tipos de controle nessa situação,

o controle cinemático e o dinâmico, que serão apresentados na próxima sessão.

2.2.2 Controle de um robô móvel

É possı́vel levantar os modelos cinemáticos e dinâmicos de um robô móvel com rodas. Para

a determinação do modelo cinemático é utilizado álgebra vetorial e matricial (KLANCAR et

al., 2005), para representar e descrever a localização de um objeto no espaço tridimensional

a partir das equações básica da cinemática em relação a um sistema de referência. O modelo

dinâmico relaciona-se com as forças que atuam no corpo (PIERI, 2002), entre elas o torque e

incluem propriedades dinâmicas,tais como a inércia e a massa do robô.

Enquanto o controle cinemático encarrega-se de controlar a trajetória selecionada, porém

caracterı́sticas dinâmicas do robô, tais como inércia, atritos e folgas impedem que a trajetória

de referência e a trajetória real coincidam. O modelo dinâmico do robô é altamente não linear,

multivariável, acoplado e de parâmetros variáveis, seu controle é extremamente complexo.

Controle cinemático

O controle cinemático é baseado nos modelos cinemáticos dos sistemas, que podem ser de

primeira ordem ou de ordem mais alta. O modelo cinemático de primeira ordem é amplamente

utilizado na literatura e na prática por diversas razões, entre elas tem-se (KLANCAR et al.,

2005):

1. A dinâmica do sistema normalmente é negligenciável, uma vez que os motores são rápidos

e robustos, em especial a velocidades moderadas.

2. O design do robô raramente permite a utilização dos valores do torque ou da aceleração

como sendo entrada do sistema.

3. A entrada de um robô móvel normalmente são as velocidades de referências, em alguns

casos a linear e angular, em outros equipamentos são as velocidades, seja ela linear ou

angular, de cada roda.

A partir do modelo escolhido e das tarefas desejadas que o robô realize é escolhido a es-

tratégia de controle mais adequada que resultem uma otimização. Quando é desejado que o

robô percorra uma determinada trajetória através de tempo é utilizado o controle cinemático.

Os dados de entrada do controlador são obtidos através de informações provindas do usuário,

tais como: o ponto de destino ou a trajetória desenhada. E a partir do modelo cinemático do

robô são estabelecidas as velocidades de referência.
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Será utilizado neste trabalho o controle cinemático, uma vez que o objetivo é que o robô

siga uma trajetória pré-definida, tendo como parâmetros de referências as velocidades lineares

e angulares.

2.3 Modelo Cinemático do Robô

O modelo matemático do robô foi determinado a partir das equações da cinemática direta

aplicadas ao robô, levando em consideração que o mesmo possui um motor diferencial para

cada roda e desta forma o comando de velocidade é realizado individualmente em cada roda

motorizada. Para a determinação das equações é considerado que o centro de massa coincide

com o centro geométrico do robô. O modelo é dado pela seguinte relação (KLANCAR et al.,

2005): 
ẋc

ẏc

θ̇c

=


cosθ 0

sinθ 0

0 1


[

v

ω

]
(2.1)

onde v e ω são a velocidade linear e a angular, respectivamente e também as entradas do sistema

u , [v ω]T . O vetor x , [x,y,θ ]T contém os valores de posição e orientação do robô, o ponto

médio do eixo das rodas, em relação a um sistema de coordenadas inerciais global {O,X ,Y},
conforme a Fig. 2.3.Reescrevendo a Eq. 2.1 de forma concisa torna-se a seguinte expressão:

(KÜHNE et al., 2004)

ẋ = f(x,u) (2.2)

As relações apresentadas são para as diferenciais da posição e orientação. Para escrever

as rotinas computacionais do Controle Preditivo do tipo EPSAC é necessário um modelo em

tempo discreto, dando os valores de posição e orientação a cada instante. Este mesmo modelo é

utilizado para o controle PI não-linear, proposto por (KLANCAR et al., 2005), que será apresen-

tado na Seção 3.1 . Para a determinação do controlador é necessário a posição e orientação no

instante de tempo t, os valores disponı́veis são as velocidades linear v e angular ω desta forma

o modelo é discretizado utilizando as aproximações de Euler, e as relações para a posição e

orientação do robô são as seguinte (ANDRADE; TORRICO, 2011):

x(t +1) = x(t)+Tsv(t)cos(θ(t)) (2.3)

y(t +1) = y(t)+Tsv(t)sin(θ(t)) (2.4)

θ(t +1) = θ(t)+Tsω(t) (2.5)

onde Ts é o perı́odo de amostragem.
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Figura 2.3: Sistemas de coordenadas para o robô móvel

Fonte: Autor

2.3.1 Modelo linearizado

O controlador proposto por (KÜHNE et al., 2004), apresentado na seção 3.3 utiliza um

modelo linearizado. Esse modelo é obtido utilizando o cálculo da diferença dos erros de posição

e orientação do robô real em relação ao de referência, considerando que o robô de referência é

descrito pela mesma Eq. 2.2, no qual a trajetória é descrita por xr e o sinal de controle ur, todos

os termos que caracterizam o robô de referência terão com subscrito o ı́ndice r (KÜHNE et al.,

2004) .

ẋr = f(xr,ur) (2.6)

Expandindo o termo a direita da Eq. 2.2 utilizando a Série de Taylor em relação ao ponto (xr,ur)

e descartando os termos de ordem mais altas, tem-se que (KÜHNE et al., 2004):

ẋ = f (xr,ur)+
∂ f (x,u)

∂x

∣∣∣∣x=xr
u=ur

(x− xr)+
∂ f (x,u)

∂u

∣∣∣∣x=xr
u=ur

(u−ur) (2.7)

reescrevendo de forma simplificada:

ẋ = f(xr,ur)+ fx,r(x−xr)+ fu,r(u−ur) (2.8)

onde os termos fx,r e fu,r são jacobianos de f levando em consideração x e u, respectivamente,

estimados em torno do ponto de referência (xr,ur). Subtraindo a Eq. 2.6 da Eq. 2.8, resulta em
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(KÜHNE et al., 2004):
˙̃x = fx,rx̃+ fu,rũ (2.9)

sendo x̃ , x−xr o termo referente ao erro do robô real em relação ao robô de referência, e o

termo ũ , u−ur é associado a pertubação da entrada no controle do sistema (KÜHNE et al.,

2004). Utilizando diferenças avançadas para a aproximação de ẋ, tem-se o seguinte modelo em

tempo discreto:

x̃(k+1) = A(k)x̃(k)+B(k)ũ(k) (2.10)

sendo:

A(k) =


1 0 −vr(k)sinθr(k)Ts

0 1 vr(k)cosθr(k)Ts

0 0 1


e :

B(k) =


cosθr(k)Ts 0

sinθr(k)Ts 0

0 Ts



2.3.2 Veı́culos com condução através de unidades diferenciais

Para os WMR existem dois tipos: os veı́culos com condução pelas rodas dianteiras e os

com condução através de unidades diferenciais. As equações cinemáticas são desenvolvidas

com propriedades básicas geométricas do movimento alcançado (COOK, 2011). Como o robô

utilizado é um com unidades diferenciais nas rodas traseiras, o primeiro tipo não será abordado

neste trabalho.

A entrada do robô utilizado são as velocidades lineares das rodas direita (vd) e esquerda

(ve) já os controladores trabalham com as velocidades lineares e angulares v e ω desta forma é

necessário a conversão de v e ω para vd e ve e depois retornar para v e ω conforme o apresentado

na Fig. 2.4.

Figura 2.4: Diagrama de blocos - mudanças de velocidades

Fonte: Autor

Neste tipo de WMR as rodas de um lado do robô são controladas independentemente. Co-

ordenando as duas velocidades diferentes, pode-se fazer diferentes tipos de movimentos, tais
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como: girar em torno de si mesmo, movimentar-se em linha reta, movimentar-se em um cami-

nho circular ou acompanhar uma trajetória pré-definida (COOK, 2011).

As equações de movimento para um robô conduzido através de rodas com unidades diferen-

ciais, serão definidas a seguir. Seja R o raio instantâneo de curvatura da trajetória de robô. d A

largura do veı́culo (o espaçamento entre as rodas), como o apresentado na Fig. 2.5. Lembrando

que:

v = ωR (2.11)

Figura 2.5: Diagrama de blocos - mudanças de velocidades

Fonte: (COOK, 2011)

A distância da roda esquerda para o eixo de coordenadas é Re = R−d/2, enquanto para a

roda direita é Rd = R+d/2. Desta forma a velocidade linear da roda esquerda:

ve = ω(R−W/2) (2.12)

e da roda direita é:

vd = ω(R+W/2) (2.13)

Subtraindo a Eq. 2.13 de Eq. 2.12, resulta em:

vd− ve = ωd (2.14)

então a velocidade angular do robô é:

ω =
vd− ve

d
. (2.15)
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Resolvendo para o raio de curvatura instantâneo, tem-se que:

R =
ve

ω
+

d
2

ou:

R =
ve

vr−vl
d

+
d
2
=

d
2

vd + ve

vd− ve

Isto resulta na seguinte expressão para velocidade em relação ao eixo longitudinal do robô,

o eixo paralelo a direção das rodas:

vyrobô = ωR =
vd− ve

d
d
2

vd + ve

vd− ve
=

vd + ve

2
(2.16)

Como não existe a movimentação em direções laterais as rodas do robô:

vxrobô = 0, (2.17)

e

ωrobô =
vd− ve

d
. (2.18)

Convertendo para coordenadas globais, tem-se as seguintes expressões:

ẋ =−vd + ve

2
sinθ , (2.19)

ẏ =
vd + ve

2
cosθ , (2.20)

e

ω =
vr− ve

d
. (2.21)

Pode-se ser levado em consideração que as velocidades não podem mudar instantaneamente.

Desta forma, é introduzido como variáveis de controles as taxas de velocidades (COOK, 2011):

v̇d = u1 (2.22)

e

v̇e = u2 (2.23)

2.4 Robô utilizado

O robô móvel utilizado para a realização dos experimentos, foi um equipamento da empresa

National Instruments, modelo NI LabVIEW Robotics Starter Kit R©, mostrado na Fig. 2.6.

O robô possui as seguintes caracterı́sticas (INSTRUMENTS, 2012):

• 2 motores Pitsco Education de 12 V, cada um com 152 rpm de rotação e um torque
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Figura 2.6: Robô National Instruments utilizado

Fonte: Autor

aproximado de 2.1 N.m (300 oz-in);

• Encoder ótico com 400 pulsos por revolução;

• Sensor de distância ultrassônico, com alcance que varia entre 0,02 até 3 m.

• Duas rodas motorizadas com diâmetro de 4 polegadas.

• Uma roda omni direcional que é utilizada para o direcionamento do robô.

A programação do robô é baseada na ferramenta:LabVIEW Robotics. Existem bibliotecas dis-

ponı́veis, ou pode ser feito um algoritmo próprio utilizando o software Labview. Já vem incor-

porado ao equipamento um algoritmo de desvio de obstáculos, um dispositivo de controle de

velocidades das rodas e um dispositivo de aquisição de dados em tempo real.

O programa utilizado para comunicação robô-computador é o Labview. O Labview tem

uma interface gráfica semelhante a um diagrama de blocos, existem bibliotecas, contendo

funções e também blocos prontos de sensores e atuadores, que são incluı́das na instalação

básica dos programas e outras a partir de Download do sı́tio na Internet da National Instru-

ments, também existe a disponibilidade de diagramas de blocos completos. É possı́vel fazer a

simulação do comportamento do robô a partir do Labview, e também criar um bloco no qual

contenha linhas de códigos próprias para o Mathscript.
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3 Controladores para o seguimento de
trajetória

Existem na literatura diversas propostas de controladores para promover o seguimento de

trajetória de um robô móvel. O objetivo desse trabalho é verificar a possibilidade da utilização

da estratégia de controle preditivo EPSAC para o controle de trajetória e comparar seu desem-

penho com dois controladores existentes na literatura. Um desses controladores escolhidos foi

proposto por (KLANCAR et al., 2005) e tem como caracterı́stica a presença de termos não

lineares e apenas um grau de liberdade no controlador, sendo denominados nesse trabalho de

controlador Klancar em homenagem ao autor. O outro controlador escolhido foi proposto por

(KÜHNE et al., 2004) e utiliza uma estratégia de controle MPC, o qual trabalha com um modelo

do robô linearizado em torno da trajetória de referência, sendo por este motivo denominado de

MPC linearizado.

3.1 Controlador Klancar

A estratégia baseia-se no seguinte conceito: quando um robô é controlado para seguir um

caminho de referência normalmente existem erros entre a posição e orientação do robô real e o

determinado pela referência, sendo a posição e orientação ideal, como o mostrado na Fig. 3.1,

os erros podem ser escritos da seguinte forma:
e1

e2

e3

=


cosθ sinθ 0

−sinθ cosθ 0

0 0 1

 .


xr− x

yr− y

θr−θ

 (3.1)

Derivando a função erro, tem-se o seguinte modelo cinemático:
ė1

ė2

ė3

=


cose3 0

sine3 0

0 1

 .
[

vr

ωr

]
+


−1 e2

0 −e1

0 −1

 .
[

v

ω

]
(3.2)

As entradas do robô podem ser expressa, a partir de uma transformação não linear, da

seguinte forma:
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Figura 3.1: Robô seguindo um erro de transformação

(KLANCAR et al., 2005)

u1 = vr cose3− v

u2 = ωr−ω (3.3)

O controlador em malha fechada é definido como sendo, na forma matricial:

[
v

ω

]
=

[
−k1 0 0

0 −sign(vr)k2 −k3

]
.


e1

e2

e3

 (3.4)

ou escrito de forma simplificada:

v = K · e (3.5)

O sistema tem três estados e duas entradas, desta forma a dimensão da matriz de ganho

K é 2× 3. A estrutura do controlador é apresentado na Fig. 3.2, em forma de diagrama de

blocos. A partir da trajetória de referência são determinadas as entradas de pré-alimentação,

essas entradas são as velocidades linear e angulares de referência. Esses valores determinam o

sinal de controle aplicado nos motores de acionamento das rodas do robô.

Para reduzir o erro na direção de movimento e1 a velocidade tangencial deve mudar cor-

respondentemente, da mesma forma a orientação do erro e3 pode ser manipulada através da

velocidade angular do robô. Já o erro da direção ortogonal do movimento pode ser reduzido
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mudando a velocidade angular (KLANCAR et al., 2005).

Figura 3.2: Diagrama de Blocos para o controlador Klancar

(KLANCAR et al., 2005)

A determinação dos ganhos do controlador é feito através da comparação entre os po-

linômios real e desejado caracterı́stico.Para um sistema de segunda ordem o coeficiente de

amortecimento desejado ζ ∈ (0,1) e a frequência natural ωn > 0. Um polo extra em s =−2ζ ωn

aumenta o tempo de subida e diminui o overshoot do sistema.(KLANCAR et al., 2005)

det(sI−A+BK) = s3 +(k1 + k3)s2 +(k1k3 + k2vr +ω
2
r )s+ k1k2evr + k3ω

2
r (3.6)

Desta forma, tem-se os seguintes coeficientes:

k1 = k3 = 2ζ ωn(t)

k2 = g.|vr(t)| (3.7)

sendo o parâmetro g o termo que corresponde ao grau de liberdade no projeto do controle,

parâmetro este que deve ser positivo, g > 0 (KLANCAR et al., 2005). Quanto maior este

parâmetro mais rápida é a resposta do sistema.

3.2 Controle Preditivo

O Controle Preditivo Baseado em Modelos, ou simplesmente Controle Preditivo (MBPC ou

MPC- do inglês Model (Based) Predictive Control ) é uma metodologia de controle que utiliza

o modelo do processo on-line, ou seja dentro do cálculo do controle, para fazer as predições

dos valores de saı́da futuros da planta e desta forma otimizar as ações de controle futuro (CA-

MACHO; BORDONS, 1998). Sendo que o conceito de um controlador MPC não se trata de

uma estratégia de controle especifica e sim um conjunto de metodologias de controle que pos-

suem algumas caracterı́sticas em comum (KEYSER, 2003). A estrutura conceitual do MPC é
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apresentada na Fig. 3.3.

O Controle Preditivo também é conhecido como controle de horizonte retroativo ou controle

de horizonte em movimento. E utiliza a dinâmica explicita do modelo da planta para predizer

os efeitos da reação futura das variáveis manipuladas na saı́da e o sinal de controle obtido pela a

minimização de uma função custo. O desempenho do controlador depende de como a dinâmica

do sistema é representada pelo modelo entrada-saı́da utilizada no projeto do controlador (HOL-

KAR; WAGHMARE, 2010). Essas estratégias estão sendo amplamente aplicadas na indústria

como uma maneira efetiva para tratar os problemas de controles multivariáveis com restrições

(BEMPORAD; MORARI, 1999).

Figura 3.3: Estrutura básica do Controle Preditivo

(BEMPORAD; MORARI, 1999)

As caracterı́sticas básicas das estratégias de controle que compõem a famı́lia de controla-

dores MPC são (CAMACHO; BORDONS, 1998):

• A utilização explicita das predições das saı́das do modelo de processo em instantes de

tempo futuro, denominado horizonte.

• O valor do controle é determinado pela minimização de uma função custo, esta função

pode incluir restrições.

• Estratégia retroativa, trata de uma estratégia na qual a cada instante o horizonte é deslo-

cado para o futuro envolvendo a aplicação do valor do primeiro controle calculado em

cada passo.

As diferenças existentes entre os algoritmos do MPC são: o modelo utilizado para re-

presentar o processo e o ruı́do, a função custo a ser minimizada, se a mesma leva ou não em

consideração a existência de restrições para a determinação do controlador (CAMACHO; BOR-

DONS, 1998). Existe uma ampla utilização dessas estratégias em vários meios tanto no meio

acadêmico quanto na indústria , também sendo utilizado no campo médico.
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No MPC, os modelos de processo podem ser dos tipos lineares ou não lineares. São utiliza-

dos para avaliar o comportamento do sistema. O movimento futuro das variáveis manipuladas

é determinado pela minimização do erro previsto ou da função objetiva (HOLKAR; WAGH-

MARE, 2010).

Os controladores MPC possuem algumas vantagens em relação a outros métodos de con-

trole. Entre elas: a ampla variedade de processos nos quais o controle MPC pode ser aplicado,

sendo esses com dinâmica simples ou complexas, sistemas com um atraso grande, fase não

mı́nima, instáveis, não lineares e multivariáveis. As restrições ser incluı́das diretamente do

projeto do controlador.

A principal desvantagem da utilização de um controlador preditivo é o custo computaci-

onal uma vez que suas derivações são mais complexas do que o controle clássico PID. Se a

dinâmica do processo não sofrer alterações as derivações do controle podem ser determinadas

anteriormente, mas no caso do controle adaptativo, todos os cálculos devem ser realizados a

cada tempo de amostra. Quando restrições são consideradas eleva-se o custo computacional

envolvido (CAMACHO; BORDONS, 1998).

Com os recursos computacionais existentes na atualidade isto não é necessariamente um

problema, mas deve ser levado em consideração que o computador não é utilizado apenas para

o algoritmo de controle, mas também para comunicação entre os operadores, alarmes gravações

entre outros (CAMACHO; BORDONS, 1998).

A disseminação do MPC só foi possı́vel a partir do desenvolvimento e melhorias de tec-

nologias, que atualmente estão atingindo um certo estado de maturidade, essas tecnologias são

necessárias para a aplicação das estratégias de controle MPC. Entre elas tem-se (CAMACHO;

BORDONS, 1998):

1. Identificação e modelamento: existem diversas e poderosas técnicas, sendo possı́vel

trabalhar em ambientes adversos, presença de ruı́dos.

2. Computadores:São equipamentos mais rápidos, confiáveis e acessı́vel, capaz de proces-

sar algoritmos on-line complexos.

3.2.1 Metodologia MPC

A seguinte notação será utilizada durante o texto (CAMACHO; BORDONS, 1998):

• t= ı́ndice de tempo discreto t = 0,1,2,3, ...;

• u(t) = entrada do processo (variável manipulada - VM);

• y(t) = saı́da do processo (variável controlada VC);
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• w(t)= setpoint ou referência;

• u(t + k|t)=valores futuros de entrada, postulados em um tempo t;

• y(t + k|t)=valores previstos para a saı́da, baseado em:

– Medidas disponı́veis no tempo t : y(t),y(t−1), ...,u(t−1),u(t−2), ...

– Valores futuros postulados para a entrada : u(t|t),u(t +1|t), ...

O conjunto de algoritmos que pertencem ao MPC, representados pelo diagrama de blocos

da Fig. 3.4, tem como caracterı́stica a estratégia descrita a seguir (CAMACHO; BORDONS,

1998):

1. O horizonte N determina as saı́da futuras, sendo denominado de horizonte de predição e

determinada para cada instante de tempo t utilizando o modelo de processo. Esses valores

previstos para a saı́da y(t + k|t) para k = 1...N depende dos valores conhecidos,saı́das e

entradas passadas, no instante t e os sinais de controle futuro u(t+k|t), k = 0...N−1, que

serão enviadas para o sistema e calculados.

2. O conjunto de sinais de controle futuro é determinado pelo cálculo da otimização determi-

nado pelo critério em ordem de manter o processo o mais próximo possı́vel da trajetória

de referência w(t + k), esta trajetória pode ser o próprio setpoint ou uma aproximação do

mesmo.

3. O sinal de controle u(t|t) é enviado para o processo enquanto os valores calculados para

o próximo sinal de controle são rejeitados, pois a nova amostra de tempo y(t +1) já é co-

nhecida e o passo 1 é repetido com este novo valor e todas as sequencias são atualizadas.

E o u(t +1|t +1) é calculado utilizando o conceito de horizonte retrocedente.

O modelo utilizado para predizer as saı́das futuras da planta, sendo baseado nos valores

passados e atuais e nos valores propostos de ações de controle ótimo futuro. Essas ações são

calculadas levando em consideração a função custo, que leva em consideração o seguimento de

erro futuro, como também restrições (CAMACHO; BORDONS, 1998).

Consequentemente, tem-se a importância do modelo do processo em relação ao controlador.

O modelo escolhido deve ser capaz de apresentar a dinâmica do processo para desta forma ser

capaz de predizer precisamente as saı́das futuras e também deve ser um modelo de simples

entendimento e também de implementação (CAMACHO; BORDONS, 1998).

Em resumo, temos os algoritmos pertencentes ao MPC tem as seguintes caracterı́sticas em

comum:
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Figura 3.4: Estrutura básica para os controladores MPC

(CAMACHO; BORDONS, 1998)

• Predição através de um modelo do processo,

• Determinação de uma referência para a trajetória ou de set-point,

• Estruturação de uma lei futura de controle,

• Definição de uma função custo e restrições,

• Determinação da otimização do controle

3.2.2 Elementos do MPC

Existem três elementos comuns entre os algoritmos MPC, diferentes opções para cada um

desses elementos podem ser escolhidos de acordo com o algoritmo escolhido, estes elementos

são (CAMACHO; BORDONS, 1998):

• O modelo de predição

• A função objetiva

• O procedimento para a determinação da lei de controle.
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3.2.3 Modelo de predição

O modelo de predição deve ser capaz de capturar a dinâmica do processo, permitir que

as predições sejam calculadas, ser intuitivo e permitir analises teóricas. Essa utilização é ne-

cessário para o cálculo da predição da saı́da do processo em um instante futuro ŷ+ k|t,esses

modelos representam as relações sendo que as diferentes estratégias MPC podem utilizar di-

ferentes modelos de predições. Um modelo de perturbações pode ser levado em consideração

de forma a descrever o comportamento que não é aparente no modelo do processo, tais como:

efeitos de entradas não mensuráveis, ruı́do e erros do modelo. Desta forma, o modelo pode ser

separado em duas partes necessárias para a predição: o modelo atual do processo e o modelo de

perturbações (CAMACHO; BORDONS, 1998).

Modelo do processo

As estratégias de controle MPC podem utilizar diversos tipos de modelos variando de

acordo com a formulação especı́fica para o algoritmo, sendo os mais comumente utilizados: res-

posta ao impulso, resposta ao degrau, funções de transferência, espaço de estado pode ser utili-

zados modelos não lineares, redes neurais e lógica de Fuzzy entre outras formas de representação

(CAMACHO; BORDONS, 1998).

Modelos de perturbações

A escolha do modelo utilizado para representar as perturbações é tão importante quanto a

escolha do modelo do processo. O modelo de pertubações é a diferença entre a saı́da medida

(CAMACHO; BORDONS, 1998).

3.2.4 Função objetivo

Os variados algoritmos MPC propõem diferentes tipos de função custo para obter a lei de

controle. O objetivo é que a saı́da futura (y) no horizonte de controle considerado deve seguir a

um sinal de referência determinado (w) e ao mesmo tempo o esforço de controle (δu) necessário

para a realização dessa tarefa deve ser penalizado. A expressão geral para uma função objetivo

desta forma é (CAMACHO; BORDONS, 1998):

J(N1,N2,Nu) =
N2

∑
j=N1

δ ( j)[ŷ(t + j|t)−w(t + j)]2 +
Nu

∑
j=N1

λ ( j)[δu(t + j−1)]2 (3.8)

Em uma função custo é possı́vel a consideração de (CAMACHO; BORDONS, 1998):

• Parâmetros: N1 e N2 são horizontes de custo mı́nimo e máximo, respectivamente e Nu é

o horizonte de controle que não necessariamente coincide com o horizonte máximo. Os
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significados de N1 e N2 são intuitivos, marcando os limites de instantes no qual é desejado

que a saı́da siga a referência.

• Trajetória de referência: uma das vantagens do controle preditivo é que as evoluções fu-

turas do processo são conhecidas previamente , e desta forma o sistema pode reagir antes

que a mudança seja efetivamente realizada, desta forma evitando-se os efeitos de atraso

na resposta do processo, a evolução futura da referência r(t + k) é conhecida antecipa-

damente em diversas aplicações, como por exemplo na robótica, servos ou em processos

descontı́nuo.A trajetória de referência pode ser utilizada para especificar um comporta-

mento de ciclo de malha fechada; essa idéia é utilizada nos controladores GPC e EPSAC.

• Restrições Na prática todos os processos são sujeitos a restrições. Os atuadores tem

uma faixa limitada de campo de ação assim como uma determinada taxa de variação.

Razões de construção, segurança ou ambiental, até a amplitude dos sensores pode causar

um limite em variáveis, como por exemplo, nı́veis em um tanque, fluxo em tubulações

entre outros. Por essas razões é necessário a introdução de restrições nas funções a serem

minimizadas. Normalmente os limites na amplitude e as taxas de variações do sinal de

controle e os limites na saı́da será considerado:

umin 6 u(t)6 umax ∀t

δumin 6 u(t)−u(t−1)6 δumax ∀t

ymin 6 y(t)6 ymax ∀t

Adicionando essas restrições as funções objetivas na minimização se tornam ainda mais

complexas, então a solução não pode ser obtidas explicitamente como no caso sem restrições

(CAMACHO; BORDONS, 1998).

3.2.5 Obtenção da lei de controle

Para obter os valores do controle a ser aplicado na planta u(t+k|t) é necessário a minimização

da função objetivo J Eq. 3.8. Para fazer isso os valores das previsões de saı́da ŷ(t + k|t) são

calculados como uma função dos valores passados de entrada e saı́da e dos valores de sinais de

controle, fazendo uso do modelo escolhido e o substituindo na função custo, obtendo expressões

as quais as suas minimização tendem aos valores procurados (CAMACHO; BORDONS, 1998).
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3.2.6 Respostas livre e forçada

Uma caracterı́stica tı́pica da maioria dos controladores MPC é a utilização dos conceitos

de resposta livre e resposta forçada. A idéia é expressar a seqüência de controle como sendo a

adição de dois sinais (CAMACHO; BORDONS, 1998):

u(t) = ulivre +u f or (3.9)

O sinal ulivre corresponde as entradas passadas e é mantido constante e igual ao último valor

da manipulação de variáveis em um instante de tempo futuro. Enquanto o sinal u f or é igualado

a zero no passado e feito igual ao próximo movimento do controle futuro (CAMACHO; BOR-

DONS, 1998).

A previsão da sequência de saı́da é separada em duas partes. Um parte refere-se a resposta

livre (ylivre(t)) correspondendo a previsão se saı́da quando a variável de processo manipulada

é feita igual a ulivre(t), a outra, a resposta forçada (y f or(t)) corresponde a previsão da saı́da do

processo quando a sequência de controle é feita igual a u f oc(t). A resposta livre corresponde a

evolução do processo devido ao estado presente, enquanto a resposta forçada ocorre devido aos

movimentos de controle futuro (CAMACHO; BORDONS, 1998).

3.3 Controlador MPC Linearizado

O segundo controlador para seguimento de trajetória de um robô móvel com rodas foi pro-

posto em Kühne et al.(2004) e também utiliza um estratégia de controlador MPC na qual o

método consiste em otimizar as predições do comportamento do processo em relação a sequen-

cia de entradas do controlador futuro.Além da função custo a ser minimizada, essa estratégia

tem como peculiaridade a utilização do modelo do robô linearizado, conforme foi apresentado

na seção 2.3.1. A função objetiva a ser minimizada é a função quadrática dos estados e das

entradas dos controladores (KÜHNE et al., 2004):

Φ(k) =
N

∑
j=1

x̃T (k+ j|k)Qx̃(k+ j|k)+ ũT (k+ j−1|k)Rũ(k+ j−1|k) (3.10)

onde:

N é o horizonte de predição;

Q e R sendo matrizes de peso, onde : Q≥ 0 e R > 0 .

O problema de otimização pode ser definido para determinar ũ? :

ũ? = argminΦ(k) (3.11)
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A cada interação k é calculado a minimização da Eq. 3.10, fornecendo uma sequência de

controle ótimo ũ?(k|k), . . . , ũ?(N−1|k) e o custo ótimo Φ?(k), sendo que a lei de controle é o

primeiro elemento da sequência do controle ótimo,ou seja ũ?(k|k). O diagrama de bloco que

representa a estrutura do controle é apresentado na Fig. 3.5. Para a solução da otimização dois

vetores são definidos (KÜHNE et al., 2004):

Figura 3.5: Diagramas de Blocos MPC linearizado

Fonte: (KÜHNE et al., 2004)

x̃(k+1),


x̃(k+1|k)
x̃(k+2|k)

...

x̃(k+N|k)

 (3.12)

ũ(k),


x̃(k|k)

x̃(k+1|k)
...

x̃(k+N−1|k)

 (3.13)

Desta forma a Eq.3.10 pode ser reescrita como:

Φ(k) = x̃T ∗ (k+1)Q̃x̃(k+1)+ ũT (k)R̃ũ(k) (3.14)

Sendo:



3.3 Controlador MPC Linearizado 29

Q̃ 4
=


Q 0 . . . 0

0 Q . . . 0
...

... . . . ...

0 0 . . . Q

 (3.15)

e:

R̃ 4=


R 0 . . . 0

0 R . . . 0
...

... . . . ...

0 0 . . . R

 (3.16)

Pode-se escrever a expressão x̃(k+1), como sendo:

x̃(k+1) = Ã(k)x̃(k|k)+ B̃(k)ũ(k) (3.17)

sendo as matrizes Ã e B̃ definido como:

Ã(k)
4
=


A(k|k)

A(k|k)A(k+1|k)
...

α(k,0)

 (3.18)

B̃(k),


B(k|k) 0 . . . 0

A(k+1|k)B(k|k) B(k+1|k) . . . 0
...

... . . . ...

α(k,1)B(k|k) α(k,2)B(k+1|k) . . . B(k+N−1|k)

 (3.19)

sendo α(k, j) definido como:

α(k, j)
4
=

N−1

∏
i= j

A(k+ i|k) (3.20)

Reescrevendo a Eq. 3.10, a partir da Eq. 3.14 com as matrizes definidas em Eq. 3.15 e

3.16, a função quadrática se torna:(KÜHNE et al., 2004)

Φ(k) =
1
2

ũT (k)H(K)ũ+ fT (k)ũ(k)+d(k) (3.21)

com:

H(k)
4
= 2(B̃(k)T (k)Q̃B̃(k)+ R̃)

f(k), 2B̃T (k)Q̃Ã(k)x̃(k|k)
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d(k), x̃T (k|k)ÃT Q̃Ã(k)x̃(k|k)

A Matriz H é denominada de matriz Hessiana e deve ser uma matriz definida positiva. Ela

refere-se a parte quadrática da função objetiva. Enquanto f descreve a parte linear e o termo d

é a parte independente de ũ e não influencia na determinação de u?. Para resolver o problema

de otimização deve se considerado que o controle fique dentro de uma faixa, expressando os

valores das restrições do controlador (KÜHNE et al., 2004):

umin(k)6 u(k)6 umax(k) (3.22)

Desta forma, a Eq. 3.11 pode ser reescrita para encontrar ũ?, na qual :(KÜHNE et al., 2004)

ũ? = argmin
ũ

Φ(k) (3.23)

sujeito a :

Dũ 6 d (3.24)

onde Φ(k) é a função objetivo e ũ é a variável livre de otimização. A inequação, apresentada

na Eq.3.24, é a forma geral com a qual descrever restrições em variáveis de controle. Se for

considerado apenas restrições no controle como na Eq. 3.27, tem-se:(KÜHNE et al., 2004)

[
I

−I

]
ũ 6

[
ũmax

−ũmin

]
(3.25)

Podendo ser reescrito da seguinte forma:

ũmin 6 ũ 6 ũmax (3.26)

Como a variável de otimização livre é ũ(k), reescrevendo a Eq. 3.26 levando em consideração

a variável livre, em forma vetorial:(KÜHNE et al., 2004)

umin(k)−ur(k)6 u(k)6 umax(k)−ur(k) (3.27)

com:

umin(k),


umin(k)

umin(k+1)
...

umin(k+N−1)

 (3.28)
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umax(k)
4
=


umax(k)

umax(k+1)
...

umax(k+N−1)

 (3.29)

ur(k),


ur(k)

ur(k+1)
...

ur(k+N−1)

 (3.30)

Como o estado de predição é a função da sequência ótima a ser calculada, é fácil mostrar

que o estado de restrições pode ser escrito genericamente pela Eq. 3.24. Além disso, restrições

nas taxas de mudança de controle e estados pode ser formuladas de maneira similar (KÜHNE

et al., 2004).
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4 Extended Prediction Self Adaptive Control -
EPSAC

O EPSAC é um dos diversos algoritmos pertencente à famı́lia dos Controles Preditivos.

Como tal, possui as caracterı́sticas em comum a todos os algoritmos pertencentes ao MPC,

como a utilização do modelo de processo para obter uma predição dos valores futuros, a

determinação de uma referência para a trajetória. Devido a essas caracterı́sticas é um algo-

ritmo utilizado em uma ampla variedade de processos industriais e sendo pesquisado para pro-

cessos especı́ficos que vão desde o controle em uma torre de destilação (POP et al., 2012) ,

até a aplicação na medicina, como por exemplo o controle de temperatura e umidade em uma

incubadora neonatal(BRITO et al., 2010).

Entre as caracterı́sticas que tornaram o EPSAC uma escolha para o controle de trajetória de

um robô móvel é a possibilidade de se trabalhar com a trajetória de referência para o processo e

a outra é a capacidade de trabalhar diretamente tanto com sistemas não lineares quanto sistemas

MIMO (sistema com múltiplas entradas e múltiplas saı́das, do inglês Multi Input and Multi Out-

put) para robô móvel a ser controlado trata-se de um sistema com duas entradas as velocidades

lineares e angulares v e w, respectivamente e três saı́das a posição no plano cartesiano x e y e a

orientação do robô θ .

Para a utilização de um controlador baseado na metodologia MPC, como é o caso do EP-

SAC, um dos aspectos fundamentais é a predição da saı́da do processo y(t + k|t),k = 1 . . .N2 .

Essa predição é baseada nas medidas disponı́veis no instante de tempo t: y(t),y(t−1), . . .,u(t−
1),u(t− 2), . . . e nos valores futuros estimados para a entrada do sistema: u(t|t),u(t + 1|t), . . .
(KEYSER, 2003).

Para o EPSAC, um modelo genérico é utilizado,a solução desse problema de medição multi

passos é feita através da utilização de técnicas de filtragem. Reescrevendo o modelo do processo

no tempo, tem-se que (KEYSER, 2003):

y(t + k|t) = x(t + k|t)+n(t + k|t) (4.1)
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4.1 Predição do x(t + k|t)

Para a determinação da predição dos valores de x(t + k|t) é utilizado à recursividade do

modelo do sistema. Sendo, duas as possibilidades de configuração: modelo em série e o mo-

delo série-paralelo. O modelo paralelo, também chamado de modelo independente só pode ser

utilizado para processos estáveis, enquanto o modelo em série-paralelo, ou modelo realinhado,

pode ser utilizado também para processos instáveis (KEYSER, 2003). A predição de x(t + k|t)
para aplicação a do robô foi o utilizado o modelo série - paralelo, sendo que o diagrama de

blocos desse modelo é apresentado na Fig. 4.1

Figura 4.1: Diagrama de blocos Modelo Série-Paralelo

Fonte: (KEYSER, 2003)

Para cada instante de amostragem t, a recursão inicia no instante k = 0 e calcula-se o va-

lor de x(t|t) utilizando o vetor de entrada do modelo [x(t− 1)x(t− 2)x(t− 3) . . .u(t− 1)u(t−
2)u(t− 3) . . .], que contém os valores passados conhecidos até o tempo t, disponı́vel no banco

de dados do computador. O valor x(t)≡ x(t|t) deve ser salvo no banco de dados do computador

para a utilização nas próximas amostras. Desta forma, o valor x(t|t) anteriormente calculado

é utilizado como entrada do modelo para determinar os valores de x(t +1|t) e outras variáveis

(KEYSER, 2003).

4.2 Predições para n(t + k|t)

Utilizando as saı́das do processo medidas y(t) calcula-se o valor atual do ruı́do n(t) com

os valores do modelo genérico do processo Eq. 4.1: n(t) = y(t)+ x(t). Os valores anteriores

n(t−1),n(t−2), . . . estão disponı́veis no banco de dados, uma vez que eles foram determinados

em instantes de tempo anteriores. Sendo que para calcular o sinal filtrado de distúrbio é utilizada

a seguinte expressão (KEYSER, 2003):
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n f (t) = D(q−1)
C(q−1)

n(t), com : (4.2)

n f (t) =−c1n f (t−1)− c2n f (t−2)− . . . (4.3)

. . .+n(t)+d1n(t−1)+d1n(t−2)+ . . . (4.4)

Como é desejado que o sistema rejeite sinais de pertubações constante o modelo de perturbações

dado por:

n(t) =
C(q−1)

D(q−1)
e(t) (4.5)

onde C(q−1) é um filtro, o termo D(q−1) refere-se a um integrador e e(t) é modelado como

sendo um ruı́do branco. A conclusão é que o sinal n f (t) pode ser calculado como ruı́do branco

com média zero : n f (t) = e(t). O motivo dessa consideração é que o ruı́do branco por definição

é não-correlacionado e sua melhor predição é o valor médio, desta forma(KEYSER, 2003):

n f = (t + k|t)≡ 0,k = 1 . . .N2 (4.6)

Então a predição para a perturbação é obtida da seguinte forma:

n(t + k|t) = C(q−1)

D(q−1)
n f (t + k|t) (4.7)

n(t + k|t) =−d1n(t + k−1|t)−d2n(t + k−1|t)− . . . . . .+n f (t + k|t)+ c1n f (t + k−1|t)+ . . .

(4.8)

A recursão vai de k = 1 . . .N2. Para o instante de tempo k = 1, o valor do sinal do lado di-

reito da equação n(t|t),n(t−1|t), . . . ,n f (t|t),n f (t−1|t), . . . são conhecidos do banco de dados,

enquanto n f (t + 1|t) ≡ 0 de acordo com a Eq. 4.6. O valor calculado n(t + 1|t) é utilizado no

lado direito da equação, junto com o valor de n f (t +2|t)≡ 0, em ordem para calcular n(t +2|t)
e assim por diante (KEYSER, 2003).

4.3 Resposta base - resposta otimizada

A resposta futura y(t + k|t)é definida conceitualmente e baseada no conceito de sistemas

lineares de sobreposição como sendo (KEYSER, 2003):

y(t + k|t) = ybase(t + k|t)+ yopt(t + k|t) (4.9)

Sendo as que as contribuições têm origens diferentes. O ybase(t + k|t) tem as seguintes
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contribuições, os efeitos do(KEYSER, 2003):

• Perturbações futuras previstas n(t + k|t)

• Controle passado u(t−1),u(t−2), . . .

• O cenário do controle futuro básico ubase(t + k|t),k = 0 . . .N2−1

Sendo esse controle futuro básico definido, a priori, para modelos básicos. A escolha desse

vetor de controle básico é irrelevante, qualquer escolha seja ubase(t + k|t)≡ 0,k = 0 . . .N2−1

ou ubase(t + k|t)≡ u(t−1),k = 0 . . .N2−1, terá como resposta o mesmo cenário de controle

ótimo. Para sistemas não-lineares, essa escolha deve ser feita de uma forma particular (KEY-

SER, 2003).

A componente ybase(t + k|t) pode ser calculado como mostrado anteriormente, sendo à

entrada do modelo o ubase(t + k|t).
Para o yopt(t + k|t) a contribuição é referente ao efeito da ação da otimização do con-

trole futuro δu(t + k|t),k = 0 . . .N2−1 com δu(t + k|t) = u(t + k|t)− ubase(t + k|t), o termo

u(t + k|t) é o controle ótimo. (KEYSER, 2003) É uma prática comum no MPC estrutu-

rar um cenário de controle futuro, desta forma reduzindo os graus de liberdade do vetor

de controle u(t + k|t),k = 0 . . .N2−1. Isso pode ser realizado definindo um horizonte de

controle Nu(com 1 ≤ Nu ≤ N2 )depois a estratégia de controle postulada se torna constate:

u(t + k|t) = u(t +Nu−1|t),k ≥ Nu, desta forma é reduzido os graus de liberdade de N2 para

Nu. Em diversas aplicações práticas, uma versão extremamente simplificada com Nu = 1 tem

bons resultados.

A ilustração dos conceitos de estratégias de controle básico e ótimo são mostrados na Fig.

4.2. Na qual o termo uotm(t + k|t) é o controle desejado e composto de duas parcelas o termo

ubase(t+k|t) cenário de controle básico no futuro diretamente relacionado ao modelo não linear,

enquanto (t + k|t) é o efeito da ação de controle futuro relacionado a parte linear do modelo,

desta forma é feita diversas iterações para que esse termo se aproxime de zero (KEYSER, 2003).

O conceito de horizonte de controle implica que ubase(t + k|t) = ubase(t +Nu−1|t),k ≥ Nu

e δu(t + k|t) = δu(t +Nu−1|t),k ≥ Nu , como o mostrado na figura. A figura indica que a

componente yopt(t + k|t) da Eq. 4.9 é o resultado de δu(t + k|t), sendo o efeito cumulativo da

série de entradas impulso e degrau (KEYSER, 2003).

Um impulso com amplitude δu(t|t) no instante de tempo t, resulta na contribuição hkδu(t|t)
para a saı́da do sistema no instante de tempo t+k, sendo k a quantidade de amostras posteriores,

como o ilustrado na Fig. 4.3 (KEYSER, 2003).

Para um impulso com amplitude δu(t+1|t) no tempo t+1 resulta na contribuição hk−1δu(t+
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Figura 4.2: Ilustração do conceito de resposta base e resposta ótima

Fonte: (KEYSER, 2003)

1|t) para a saı́da do sistema no instante t +k, ou seja, k−1 amostras posteriores, como o obser-

vado na Fig.4.4. E assim, sucessivamente (KEYSER, 2003).

Figura 4.3: Efeito em um instante de tempo t + k do sinal impulso aplicado no instante t

Fonte: (KEYSER, 2003)

A aplicação de um degrau com amplitude δu(t +Nu−1|t) no instante de tempo t +Nu−1

resulta em uma contribuição gk−Nu+1δu(t +Nu−1|t) na saı́da do sistema no instante de tempo

t + k, sendo k−Nu +1 amostras posteriores (KEYSER, 2003).

Sendo que o efeito acumulativo dos efeitos na saı́da do sistema no instante t +K de todos

os impulsos e do degrau aplicados pode ser escrito da seguinte forma (KEYSER, 2003):

yotm = (t + k|t) = hkδu(t|t)+hk−1δu(t +1|t)+ . . .+gk−Nu+1δu(t +Nu−1|t) (4.10)

Os parâmetros h1,h2, . . . ,hk . . .hN2 são os coeficientes de resposta ao degrau do sistema.
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Figura 4.4: Efeito em um instante de tempo t + k do sinal impulso aplicado no instante t +1

Fonte: (KEYSER, 2003)

Enquanto os parâmetros g1,g2, . . . ,gk, . . .gN2 são os coeficientes de resposta ao degrau do sis-

tema. Esses valores podem ser obtidos de duas maneiras a primeira é a forma direta, ou seja,

aplicando um sinal de impulso ou degrau no sistema, isso pode ser aplicado tanto para sistemas

lineares quanto para sistemas não-lineares.Para a segunda, é uma forma analı́tica a partir da

função de transferência ou do modelo de espaço de estado (KEYSER, 2003).

Sendo que h0 = h−1 = h−2 = . . . = g0 = g−1 = g−2 = . . . = 0 e que os coeficientes da

resposta ao impulso podem ser facilmente calculados a partir dos valores dos coeficientes de

resposta ao degrau e vice versa: hk = gk− gk−1, desta forma apenas uma das duas respostas

deve ser calculadas (KEYSER, 2003).

Uma das caracterı́sticas dos algoritmos pertencentes a famı́lias de controle do MPC é que

eles consistem em aplicar uma sequência de controle que minimize uma função custo multi-

estágio da forma (KEYSER, 2003):

J =
N2
∑

k=N1

[y(t + k | t)−w(t + k)]2 +
Nu−1

∑
k=0

λ [∆u(t + k|t)]2 (4.11)

Sujeito a:
ymin ≤ y(t + k|t)≤ ymax ∀ k = 1, ...,N2,

umin ≤ u(t + k|t)≤ umax ∀ k = 0, ...,Nu−1,

∆umin ≤ ∆u(t + k|t)≤ ∆umax ∀ k = 0, ...,Nu−1

(4.12)

onde N1 e N2 são os horizontes de custos mı́nimos e máximos, Nu é o horizonte de controle,

λ é o peso do controle, w(t + k) é o valor nominal ou a seqüência de referência, ∆u(t) é a ação

de controle incremental, ∆ = 1−q−1 e y(t +k | t) é o valor ótimo k a saı́da do sistema um passo

adiante, y(t)dados até o momento t (KEYSER, 2003).
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Utilizando o modelo genérico do processo, as previsões de valores para a saı́da são:(KEYSER,

2003)

y(t + k/t) = x(t + k/t)+n(t + k/t) (4.13)

Considerando a resposta futura como sendo resultado cumulativo de dois efeitos. E o principio

do EPSAC é baseado na minimização dos erros entre a trajetória da referência futura e a saı́da

prevista do processo, calculada como (KEYSER, 2003):

y(t + k/t)i = ylivrei(t + k/t)+ y f ori(t + k/t) (4.14)

Sendo ylivrei a resposta livre determinada pela resposta do modelo genérico, enquanto y f ori

a resposta forçada do sistema é determinada pela sequência de entrada degrau. Desta forma, a

resposta forçada pode ser escrita em forma de matriz (KEYSER, 2003):

Yfor = GU (4.15)

e a equação para a lei de controle torna-se:

Y = Ybase +Yopt = Y+GU (4.16)

sendo:

Y = [y(t +N1/t) . . .y(t +N2/t)]T

Ȳ = [y f ree(t +N1/t) . . .y f ree(t +N2/t)]T

U = [∆u(t/t) . . .∆u(t +Nu−1/t)]T

G =



gN1 0 . . . . . . 0

gN1+1 gN1 0 . . . 0

gN1+2 gN1+1 gN1 0 0
...

...
... . . . ...

gN2 gN2−1 gN2−2 . . . gN2−Nu+1


sendo o controle ótimo a primeira linha do vetor:

u0 =−H−1b (4.17)

onde :

H = 2(PT Qλ P+GT G) e
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bT = 2((Pub +ui)
T Qλ P+(yb−ω)T G)

4.4 EPSAC não-linear

É necessário que algumas considerações sejam feitas para utilizar o algoritmo proposto

para o EPSAC em modelos não lineares, o chamado NEPSAC (EPSAC não-linear), uma vez

que para definir os conceitos de resposta e controle de base e otimizado, foi utilizado o princı́pio

de superposição , então esse conceitos são válidos apenas para sistemas lineares. Porém, para

sistemas não-lineares, através da seleção de uma estratégia de controle base ubase(t + k|t) apro-

priado, o termo yopt(t + k|t) na Eq. 4.9 pode chegar à zero de uma forma gradual e iterativa.

Desta forma, os resultados para a solução ótima é válido também para sistemas não-lineares,

uma vez que o principio de superposição não é mais utilizado. O procedimento do EPSAC, uti-

lizado tanto para sistemas lineares quanto sistemas não-lineares, é descrito da seguinte forma,

para cada amostra de tempo (KEYSER, 2003):

1. Selecione um vetor ubase(t + k|t),k = 0 . . .Nu−1. Para os modelos lineares, essa escolha

é irrelevante para as soluções. Entretanto, para modelos não-lineares, o objetivo deve

ser obter de forma iterativa uma polı́tica de controle ubase(t + k|t) que é o mais próximo

possı́vel da estratégia de controle ótimo u(t + k|t). Desta maneira tornando as ações de

controle ótimo δu(t + k|t) e o termo correspondente yopt(t + k|t) próximo de zero. Para

minimizar o número de iterações deve-se fazer uma boa estimação inicial para o valor de

ubase(t +k|t). Uma escolha simples e efetiva é iniciar com ubase(t +k|t)≡ u∗(t +k|t−1),

ou seja, a polı́tica de controle ótimo é derivada da amostra anterior.

2. Uma vez que foi escolhido ubase(t + k|t),k = 0 . . .Nu−1 é calculado os resultados de

δu(t + k|t),k = 0 . . .Nu−1 e de u(t + k|t) = ubase(t + k|t)+ δu(t + k|t), k = 0 . . .Nu−1,

para um modelo linear é determinado da maneira conforme foi Seção 4.3. Para os mode-

los não-lineares estes não são o controle ótimo uma vez que não é utilizado o princı́pio

de superposição. Porém, é esperado que o resultado de u(.|.) é mais próximo do valor de

que o valor ubase anterior estimado. Para um modelo não-linear é sugerido que:

• continue o procedimento, em uma mesma amostra de tempo, onde

ubase(t + k|t) = ubase(t|t)+δu(t|t) e após retorna-se ao passo 2.

Continuando esse procedimento iterativo é esperado que o ubase(.|.) irá convergir para o

u(.|.) ótimo. A cada intervalo de tempo o ubase(.|.) é mais próximo de u(.|.), isso significa

que os valores de δu(.|.) são menores. Como o mostrado na Fig.4.2, e desta forma, o termo

yopt(.|.) se torna menor. O princı́pio de superposição utilizado na determinação da Eq. 4.9, mas
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é invalido para sistemas não-lineares. Sendo que a cada iteração com a redução do valor de

δu(.|.) também é reduzido o impacto do princı́pio da superposição. Finalmente, quando δu(.|.)
são praticamente zero, o princı́pio de superposição não é mais envolvido e o sinal de controle

calculado será ótimo também para sistemas não-lineares (KEYSER, 2003).

A metodologia abordada acima para o NEPSAC é uma das diversas metodologias utilizadas

o Controle Preditivo não-linear (NMPC - Nonlinear Model Predictive Control), sendo que nas

abordagens NMPC o modelo nunca é linearizado. O modelo não linear é utilizado diretamente

para os cálculos, em todas as iterações, da resposta base ybase(.|.) e também utilizado para

determinar os coeficientes da resposta ao degrau e/ou impulso gi,hi estes são os únicos valores

requeridos para obter a solução do controle (KEYSER, 2003).

4.5 MIMO EPSAC

Foi apresentado nas sessões anteriores foi apresentada metodologia EPSAC para os siste-

mas com apenas uma entrada e uma saı́da ( SISO - Single Input Single Output). Nessa seção

é apresentada a expansão dos conceitos para os sistemas com múltiplas entradas e múltiplas

saı́das (MIMO - Mutiple Input Mutiple Output). Por simplicidade, será apresentado um sistema

com duas entradas e duas saı́das, a expansão para um sistema com nu entradas e ny saı́das é feita

de forma direta. Para um processo com 2 entradas e 2 saı́das, o modelo genérico do processo

Eq. 4.1, torna-se (KEYSER, 2003):

{
y1(t) = x1(t)+n1(t)

y2(t) = x2(t)+n2(t)
(4.18)

Para uma estrutura de modelo paralelo:{
x1(t) = f1[x1(t−1),x1(t−2), . . .u1(t−1),u1(t−2), . . .]u2(t−1),u2(t−2), . . .

x2(t) = f2[x2(t−1),x2(t−2), . . .u1(t−1),u1(t−2), . . .]u2(t−1),u2(t−2), . . .
(4.19)

Para uma estrutura série-paralelo:{
x1(t) = f1[y1(t−1),y1(t−2), . . .u1(t−1),u1(t−2), . . .]u2(t−1),u2(t−2), . . .

x2(t) = f2[y2(t−1),y2(t−2), . . .u1(t−1),u1(t−2), . . .]u2(t−1),u2(t−2), . . .
(4.20)

As funções f1[.] e f2[.] são os modelos do processo e são conhecidas, que podem ter qual-

quer estrutura em geral (linear, não-linear, redes neurais, . . . ). Neste caso, será assumido que

se trata de modelos lineares. As perturbações podem ser modeladas como processos de ruı́dos

coloridos (e1 e e2 são sinais de ruı́do branco) (KEYSER, 2003):
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n1(t) =
C1(q−1)

D1(q−1)
e1(t) (4.21)

e:

n2(t) =
C2(q−1)

D2(q−1)
e2(t) (4.22)

Um preditor de múltiplos passos foi apresentado. E este preditor é diretamente aplicado no

modelo de processo com diversas entradas u1,u2 e pode ser aplicada para calcular y1(t + k|t) e

y2(t + k|t), com k = 1 . . .N2. Utilizando os conceitos de respostas base e otimizada apresentada

4.3, tem -se as seguintes relações (KEYSER, 2003):{
y1(t + k|t) = y1base(t + k|t)+ y1opt(t + k|t)
y2(t + k|t) = y2base(t + k|t)+ y2opt(t + k|t)

(4.23)

com:


y1otm(t +1|t)
y1otm(t +2|t)

...

y1otm(t +N2|t)

=


h11

1 0 0 . . . 0

h11
2 h11

1 0 . . . 0
...

...
... . . . ...

h11
N2

h11
N2−1 h11

N2−2 . . . g11
N2−Nu+1




δu1(t|t)

δu1(t +1|t)
...

δu1(t +Nu−1|t)

+ . . .

. . .+


h12

1 0 0 . . . 0

h12
2 h12

1 0 . . . 0
...

...
... . . . ...

h12
N2

h12
N 2−1 h12

N2−2 . . . g12
N2−Nu+1




δu2(t|t)

δu1(t +1|t)
...

δu2(t +Nu−1|t)



Observações (KEYSER, 2003):

• y1otm indica a parte da saı́da prevista do processo y1(t + k|t) vinda tanto da ação de con-

trole ótimo δu1(t + k|t) e δu2(t + k|t).

• Para um sistema 2x2, 4 resposta ao degrau ou impulso podem ser definidas, as quais

descrevem o efeito da mudança para cada uma das duas entradas em relação as duas

saı́das. Os coeficientes da resposta ao impulso da entrada j para a saı́da i tem a seguinte

notação: hi j
1 ,h

i j
2 ,h

i j
3 , . . ..

• Uma expressão similar a 4.5 pode ser obtida para a segunda saı́da y2otm(t + k|t).

• O horizonte de predição N2 pode ser diferente para as duas saı́das.
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• O horizonte de controle Nu pode ser diferente para as duas entradas.{
Y1 = Y1 +G11 ·U1 +G12 ·U2

Y2 = Y2 +G21 ·U1 +G22 ·U2
(4.25)

A expressão é equivalente 4.16 para os sistemas SISO. (KEYSER, 2003)

4.6 EPSAC para um robô móvel com rodas não-holonômico

O EPSAC está sendo utilizado e estudado em diversas áreas, porém não existe a literatura

aplicação do mesmo para um controle de trajetória de um robô móvel com rodas. O controlador

EPSAC possui caracterı́sticas que o torna uma opção viável para o controle de trajetória de um

WMR, tais como:

• A necessidade do controlador de um set point ou uma referência, que para WMR se trata

da trajetória de referência.

• A possibilidade de trabalhar com sistemas MIMO e não-linear, lembro que o robô móvel

é um sistema MIMO com duas entradas, as velocidades linear e angular, e três saı́das:

posição x, y e a orientação θ . Além da presença de funções trigonométricas caracteri-

zando um sistema não-linear.

• A possibilidade de restrições no controlador, uma vez que o robô possui limites de veloci-

dades que o mesmo pode atingir, esses valores funcionam como restrições no controlador,

para um controlador do tipo EPSAC pode ser incluı́do diretamente nos cálculos.

O controlador tem como objetivo fazer com que o robô siga uma trajetória de referência

pré-determinada. Podendo ser formulado da seguinte forma:

X(k)−Xr(k) = 0, sendo Xr =


xr(k)

yr(k)

θr(k)

 (4.26)

na qual Xr(k) é a trajetória de referência. É comumente associado a trajetória de referência um

robô de referência virtual (KLANCAR et al., 2005), ou seja, um robô que seguiria de forma

perfeita a trajetória. Sendo o modelo cinemático desse robô o mesmo do robô a ser controlado:
xr(k+1) = xr(k)+ vr(k)cosθr(h)Ts

yr(k+1) = yr(k)+ vr(k)senθr(k)Ts

θr = θr +ωrTs

(4.27)
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onde Ts é o tempo de amostragem. Pode ser reescrita de forma mais compacta como sendo:

xr = (k+1) = f (xr(k),ur(k) (4.28)

sendo ur(k) = [vr(k),ωr(k)]T são as entradas do controle de referência.

A função custo a ser utilizada é:

J =
N2
∑

k=N1

[y(t + k | t)−w(t + k)]2 +
Nu−1

∑
k=0

λ [∆u(t + k|t)]2 (4.29)

sujeito a:
ymin ≤ y(t + k|t)≤ ymax ∀ k = 1, ...,N2,

umin ≤ u(t + k|t)≤ umax ∀ k = 0, ...,Nu−1,

∆umin ≤ ∆u(t + k|t)≤ ∆umax ∀ k = 0, ...,Nu−1

(4.30)

onde N1 e N2 são os horizontes mı́nimos e máximo, Nu é o horizonte de controle, λ o peso

do controle, w(t + k) set-point futuro ou a trajetória de referência, ∆u(t) é a ação de controle

incremental, ∆ = 1−q−1 e y(t + k | t) é a predição k-passo a frente da saı́da do sistema y(t) no

instante de tempo t.

É assumido que a estratégia de controle para o robô móvel é constante, desta forma é de-

finido o horizonte de controle Nu como sendo Nu = N, reduzindo os graus de liberdade do

controlador.

O cálculo para a determinação do controlador não será feito utilizando as ferramentas de

otimização dos programas de cálculos, uma vez que os cálculos de otimização aumento o custo

computacional. Para a simplificação será considerado que o controle ótimo é a primeira linha

do vetor:

u0 =−H−1b (4.31)

onde :

H = 2(PT Qλ P+GT G) e

bT = 2((Pub +ui)
T Qλ P+(yb−ω)T G)

Os valores dos termos é apresentado na seção 4.3. Os parâmetros de controle considerados

são os seguintes o horizonte de controle N e a matriz de ponderação Q que possui a seguinte

forma:

Q =


q1 0 0

0 q2 0

0 0 q3


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As restrições utilizadas serão os valores máximo e mı́nimo para as velocidades linear e

angular. Sendo os limites para a velocidade linear vmin = −0.4m/s e vmax = 0.4m/s e para a

velocidade angular ωmin =−0.4rad/s e ωmax = 0.4rad/s. Desta forma, utilizando as equações

do modelo acima e o procedimento apresentado nesse capı́tulo foi escrito o algoritmo para o

controle de trajetória do robô móvel com rodas.
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5 Resultados e discussão

Os resultados serão apresentados em duas partes: a primeira contém os resultados obtidos

pela simulação computacional de cada controle sugerido, comparações entre os mesmo e os

devidos comentários; a segunda parte será apresentada os resultados do controle para o WMR

real.

5.1 Resultados de simulação

O controle sugerido foi implementado em uma rotina computacional para o software Matlab c©.

Uma trajetória foi pré-definida e é uma figura semelhante ao desenho do algorismo que repre-

senta o número oito, sendo composto por duas circunferências de mesmo raio e o mesmo igual

a dois rc = 2m e são tangentes no ponto (0,0). Os valores das velocidades lineares vre f e

ωre f utilizados para realizar a trajetória no tempo requerido são os valores de referência, ou

seja ubase
4
= [vre f ωre f ]. A velocidade linear vre f é constante durante toda a trajetória sendo

vre f = 0,3m/s, a velocidade angular tem o mesmo módulo durante toda a trajetória, porém na

metade tem seu sentido invertido, de 0 a 125s a velocidade angular ωre f = 0,15rad/s e a partir

de 125s até o final com ωre f =−0,15rad/s. A mudança do sinal da velocidade angular indica

que a primeira metade da trajetória, correspondente a primeira circunferência, é realizado em

sentido inverso ao da segunda metade.

Para todos os estudos de simulação: cada um dos três controladores separados com variações

no seus respectivos parâmetros de controle e para uma avaliação conjunta, o robô estará em uma

condição de erro de estado inicial, ou seja, o ponto de partida do robô não é a origem da tra-

jetória. No caso será utilizado como ponto de partida o ponto X0 = [0;−1;π/2] , posicionado a

θ = 90o em relação ao eixo de referência.

Sendo apresentados, os gráficos da trajetória simulada do robô, da variação das velocidades

e do comportamento dos erros para cada valor de saı́da, x, y eθ . Além da analise gráfica foi

definido quatro parâmetros de ı́ndices de desempenho para comparar os algoritmos de controle.

Um ı́ndice de desempenho é uma medida quantitativa de desempenho de um sistema de

controle, sendo um número positivo ou nulo. Então o melhor sistema é definido como o sistema

que minimiza esses ı́ndices. Para ter o máximo de informações possı́veis do desempenho dos
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controladores utilizados foram utilizados quatro ı́ndices de desempenho, sendo eles:

• Integral do quadrado do Erro - ISE (Integral of the Square of the Error). Este ı́ndice

irá discriminar sistemas excessivamente superamortecidos dos subamortecidos:

ISE =
∫ T

0
e2(t)dt

• Integral do valor absoluto do erro - IAE (Integral of the Absolute magnitude of the

Error). Índice utilizado em simulações computacionais:

IAE =
∫ T

0
|e(t)|dt

• Integral do tempo multiplicado pelo valor absoluto do erro - ITAE (Integral of Time

multiplied by Absolute of the Error). Utilizado para reduzir a contribuição de grandes

erros iniciais no valor da integral de desempenho, enfatizando os erros que acontecem

mais tarde na resposta.

ITAE =
∫ T

0
t|e(t)|dt

• Integral do tempo multiplicado pelo quadrado do erro - ITSE (Integral of Time

multiplied by the Squared Error). Este ı́ndice fornece a melhor seletividade dentre os

ı́ndices de desempenho, uma vez que o valor mı́nimo da integral é prontamente discernı́vel

ao serem variados os parâmetros do sistema.

IT SE =
∫ T

0
te2(t)dt

5.1.1 EPSAC

O controlador EPSAC possui duas variáveis de ajuste de controle o horizonte de controle N

e a matriz de ponderação Q, o horizonte de controle deve ser um número inteiro maior que um,

( N ∈ N,N > 1) sendo que Q uma matriz composta de zeros exceto na sua diagonal principal

que contém os termos de parâmetros de ajuste de controle, os parâmetros da diagonal da matriz

q11,q22,q33 podem assumir qualquer valor positivo diferente de zero (qnn > 0,qnn ∈R) . Ambos

os parâmetros quando aumentados melhoram a resposta do sistema.

A avaliação do comportamento dos parâmetros de ajuste do controlador EPSAC foi dividida

em duas partes, sendo cada parâmetro avaliado de forma independente. Na primeira etapa será

avaliado o comportamento do horizonte de controle N enquanto a segunda parte é dedicada a

avaliação da matriz de ponderação Q.

A primeira etapa será avaliado o comportamento da resposta do sistema em relação ao

horizonte de controle N, então a matriz de ponderação Q será mantida constante enquanto será
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ajustado apenas o valor de N. Na segunda etapa, o horizonte de controle será mantido constante

enquanto será ajustado o valor da matriz de ponderação Q, para simplificação apenas o valor

dde ponderação referente a qθ será utilizado como parâmetro de ajuste.

Q =


qx 0 0

0 qy 0

0 0 qθ


Avaliação do comportamento do controlador em relação ao horizonte de predição N

O comportamento do EPSAC em relação ao horizonte de controle N será avaliado para

quatro valores, lembrando que N > 0,N ∈ N, os valores de N avaliado serão N = 2, N = 3,

N = 5 e N = 10 .A matriz de ponderação Q foi mantida com seus valores constante e igual:

Q =


1 0 0

0 1 0

0 0 0,1


Nota-se na Fig 5.1 a melhora de desempenho do controlador quando comparado com o ob-

tido para N = 2 quando os valores de são N = 3 , N = 5 e N = 10, confirmando a hipótese de que

a melhoria de resposta do sistema quando utilizando o horizonte de controle como parâmetro de

controle depende diretamente do valor de N quanto maior o valor de N melhor será a resposta e

maior o tempo necessário para realizar os cálculos.

Para o horizonte de controle N = 5 tem-se que após aproximadamente 12s, o robô simulado

consegue corrigir o erro inicial e acompanhar a referência, como o apresentado na Fig.5.3(a).

Enquanto para N = 10 tem-se que o erro tende a zero em aproximadamente 6s, conforme o

observado na Fig.5.3(b). Porém, o tempo necessário para serem realizados os cálculos é de

0,92s quando N = 10 contra 0,505s necessários sendo o horizonte de controle é N = 5.

Avaliação do comportamento do controlador em relação a matriz de ponderação Q

O horizonte de controle N é mantido constante, enquanto é avaliada a influência da variação

dos valores na matriz Q, será alterado apenas um elemento dentro da matriz, por motivo de

facilitar as comparações futuras e a utilização do controlador, esse parâmetro alterado é deno-

minado como sendo qavaliado. O qavaliado é correspondente a ponderação na variável de saı́daθ ,

a ponderação das outras duas saı́das qx w qy será mantida constante e igual a 1. Desta forma,

para o estudo do comportamento dos parâmetros de controle do EPSAC, a matriz Q pode ser

descrita da seguinte forma:
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Figura 5.1: simulação do WMR utilizando EPSAC a matriz de ponderação Q constante e o
horizonte de controle N variando

Fonte: Autor

Figura 5.2: a) Erro para o N = 5 b) Erro para o N = 10

(a) (b)

Fonte: Autor Fonte: Autor

Q =


1 0 0

0 1 0

0 0 qavaliado


O valor do horizonte de controle N = 2. Os valores avaliados serão qavaliado =
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0,1,0,25,0,5 e 1. O comportamento da matriz de ponderação Q é empı́rico, em alguns

caso quanto maior o valor melhor a resposta em outros ocorre o contrário. A ponderação afeta

diretamente a variável de saı́da correspondente, no caso o θ ; para os três primeiros testes, com

o aumento do qavaliado ocorre uma melhoria da resposta, porém quando qθ = 1 acarreta em

um erro maior do que comparado a resposta para qθ = 0,5, isso ocorre pois o erro passa a ser

influenciado pelas outras duas variáveis. O resultado é apresentado na Fig. 5.3.

Figura 5.3: simulação do WMR utilizando EPSAC a matriz de ponderação Q variando e o
horizonte de controle N constante

Fonte: Autor

5.1.2 Controlador Klancar

O controlador apresentado na seção 3.1. Tem como parâmetro de controle o ganho g que a

única restrição é q g deve ser positivo g > 0, para melhorar a resposta do sistema deve modificar

o valor de g. Quanto maior o valor de g melhor a reposta do sistema, essa melhoria ocorre até

um determinado valor do ganho g, após atingido esse valor o aumento do ganho não acarreta

uma melhor resposta do sistema. Esse valor limite depende das condições iniciais do sistema.

Os valores do coeficiente de amortecimento ζ e a frequência natural ωn são mesmo valores

utilizados por Klancar et al (2005) no artigo de referência, ζ = 0,6 e ωn = 2.

O valor inicial do robô é o mesmo utilizado para simular o controlador EPSAC, sendo a

posição inicial a mesma utilizada para o controlador EPSAC x = [0;−1;π/2] , foi avaliado o

g para três valores g1 = 1, g2 = 5 e g3 = 10 e pode-se observar que quanto maior o valor do g
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melhor é a reposta do sistema, até um certo valor de ganho g após esse valor não há melhorias

consideráveis na resposta, comprovando com a simulação o comportamento da variação do

ganho g na resposta do controlador. Os resultados são apresentados para g = 1,g = 5eg = 10

na Fig. 5.4.

Figura 5.4: Simulação do WMR para o controlador Klancar variando os valores do ganho g.

Fonte: Autor

Porém o controlador Klancar atinge velocidades maiores do que foram determinadas como

limites para o WMR, na Fig. 5.5 é apresentado as velocidades para g = 5 um valor de ganho

que possui uma resposta boa do sistema para a correção do erro inicial, porém é observado uma

velocidade inicial alta.

Conforme foi mencionado anteriormente, ocorre uma variação no valor da velocidade an-

gular, na metade da trajetória devido a mudança de sentido.

5.1.3 MPC linearizado

O procedimento para avaliar o controlador MPC linearizado proposto por Kühne et al

(2004) foi o mesmo utilizado para a avaliação do EPSAC, primeiramente, a matriz de ganho

Q é mantido constante e variado o valor do horizonte de controle N, após apenas um valor da

matriz de ganho Q será variado, depois o valor de N é mantido constante e será variado apenas

um valor da matriz Q pela mesma razão que o procedimento foi realizado para o EPSAC a
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Figura 5.5: Velocidades obtidas pelo WMR para o Klancar com o g = 5.

Fonte: Autor

questão do custo computacional.

Observando que ambas as estratégias a EPSAC e o MPC linearizado são algoritmos perten-

centes ao grupo de controladores MPC e por essa razão apresentam os mesmos parâmetros de

controle, a matriz de ganho Q e horizonte de controle N e por uma questão de comparação futura

entre os controladores os valores utilizados para a simulação do MPC linearizado inicialmente

serão os mesmos que foram simulados para o EPSAC.

O comportamento dos parâmetros de controle do MPC linearizado também é bastante se-

melhante ao comportamento do controlador EPSAC, então à medida que se aumenta os valores

de N ou da matriz de ganho Q existe uma melhoria na resposta do sistema.

Na Fig. 5.6 é apresentado o comportamento do MPC linearizado quanto variado os valores

do termo da matriz de ponderação Q, lembrando que a variação da resposta com a variação

dos termos de Q é empı́rica, quando alterado o valor de qavaliado de 0.1 para 0.25 ocorreu uma

melhora na resposta, quando o valor de qavaliado é igual a 0.5 o mesmo não acontece, e tem-se

um afastamento da trajetória de referência.

Na Fig.5.7 o comportamento do MPC linearizado em relação ao horizonte de controle N é

apresentado, da mesma forma que o EPSAC quanto maior o valor de N melhor é a resposta do

sistema. Incialmente, os valores de N foram os mesmos para a avaliação do EPSAC. Porém,

como a resposta do MPC linearizado com N = 5 não foi satisfatória, foi aumentado o valor de

N sendo avaliado o comportamento do controlador para N = 10 e N = 20, que em teoria deveria

melhorar a resposta do sistema, porém aumenta consideravelmente o esforço computacional

envolvido nos cálculos,
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Figura 5.6: Simulação do WMR utilizando MPC com a matriz de ponderação Q constante e o
horizonte de controle N variando

Fonte: Autor

Figura 5.7: Simulação do WMR utilizando MPC a matriz de ponderação Q variando e o
horizonte de controle N constante

Fonte: Autor

5.1.4 Comparação entre os controladores

O horizonte de controle N,tanto para o EPSAC quanto para o MPC linearizado foi igual

para os dois sendo N = 5, o valor do ganho do controlador Klancar foi definido como g = 5.A
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matriz de ponderação Q, também foi a mesma para os dois controladores, sendo:

Q =


1 0 0

0 1 0

0 0 0,1


Os valores dos parâmetros de controle para cada controlador analisado foram escolhidos

a partir da analise anteriormente apresentado, sendo para o EPSAC os valores de Q e N uma

boa resposta uma vez que corrigiu o erro após aproximadamente T = 12s e o tempo necessário

para tanto foi de Tsim = 0,505s , o parâmetro g do Klancar foi o valor que teve uma resposta

aproximada ao do EPSAC, porém apresenta um valor alto para as velocidades iniciais. Enquanto

o MPC linearizado teve os mesmos valores de Q e N para facilitar a comparação entre os dois.

Vale ressaltar que a melhoria do desempenho dos controladores EPSAC e MPC linearizado

acarreta em um aumento do custo computacional.

É simulado para uma situação na qual o robô tem um erro no estado inicial x0 = [0;−1;π/2],

ou seja, a posição inicial do robô não coincide com a origem da trajetória. Pode-se perceber

pela Fig. 5.8 que apesar do erro inicial todos os controladores conseguem fazer a correção e o

robô segue a trajetória, porém a correção da trajetória quando utilizado o EPSAC é mais rápido

do que para o Klancar (KLANCAR et al., 2005) e o controlador MPC linearizado (KÜHNE et

al., 2004) apresenta, para a situação e utilizados, a pior resposta dentre os três controladores.

É considerado que robô possui uma faixa de operação tanto para as velocidades lineares

e angulares, os limites superiores e inferiores das velocidades funcionam como restrições para

os controladores MPC: o EPSAC e o MPC linearizado, (KÜHNE et al., 2004). Esses valores

são levados em consideração para a determinação dos respectivos controladores, porém o Klan-

car (KLANCAR et al., 2005) não apresenta como é tratado as restrições na determinação dos

valores de sinais de controle. Desta forma, na simulação é percebido que existem valores de

velocidades acima das velocidades máximas desejada.

Na figura 5.9 é observado o pico de velocidade obtido pelo controlador Klancar, enquanto

os outros dois variam as velocidades máximas, dentro da faixa pré-estabelecida. Após, apro-

ximadamente, T = 25s todos os três controladores analisados estabilizam a velocidade linear

em torno de 0,3m/s que é o valor da velocidade de referência, por essa razão é o intervalo

apresentado no gráfico. A velocidade angular estabiliza em torno de 0,15rad/s até a metade

das amostras, após a segunda metade a velocidade estabiliza próximo a −0,15rad/s. Sendo

próximo aos valores das velocidades angulares de referência de cada trecho, que são exata-

mente 0,15rad/s e −0,15rad/s para o primeiro e o segundo trecho respectivamente.

Após T = 10s pode-se observar pela Fig. 5.10 que os valores dos erros de posição x e y e de

orientação θ do controlador EPSAC converge para aproximadamente zero, na figura também é
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Figura 5.8: Saı́da do controlador para o robô simulado - EPSAC, Klancar e MPC linearizado

Fonte: Autor

apresentado a variação dos mesmos erros controlador Klancar, pode-se observar a convergência

quase que ao mesmo tempo do controlador proposto. E observado que os erros de posição e

orientação referente ao controlador MPC linearizado convergem para zero após os outros dois

controladores analisados.

Para facilitar a visualização, o comportamento da variação dos erros de posição x e y e de

orientação θ é apresentado separadamente o detalhe nos instantes iniciais de t = 0 a t = 40s na

Fig. 5.11, uma vez, que após aproximadamente 20s todos os erros tendem a zero.

Na tabela tab. 5.1 são apresentados os valores para os ı́ndices de desempenho supracitado

para cada controlador, vale ressaltar que para cada ı́ndice é calculado para cada saı́da x, y e

θ . Pode-se observar como era esperado, que os valores para o EPSAC e Klancar são bastante

próximos tento um desempenho semelhante, porém o Klancar, não lida com as restrições dife-

rentemente do EPSAC, para os valores do horizonte de predição N e a matriz de ponderação Q
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Figura 5.9: Valores das velocidades lineares e angulares para cada controlador analisado

Fonte: Autor

Figura 5.10: Erros de posição e orientação

Fonte: Autor

dados o MPC linearizado teve o pior rendimento, aumentado o valor de N, ou algum dos valores

da diagonal principal da matriz Q, ou tudo simultaneamente melhoraria a resposta do contro-

lador MPC linearizado, porém o processamento dos cálculos requereria mais do computador,

então teria como principal limitante a capacidade de processamento do equipamento utilizado.

Percebe-se pelos valores da tabela que o comportamento do ISE e do IAE são equivalentes,

com o controlador Klancar com os valores menores, os valores do EPSAC intermediário, mas

próximos ao dos Klancar e os valores para o controlador MPC linearizado bem maiores do

que para os dois primeiros. Enquanto para os valores de ITAE e ITSE é observado que uma

vez tirado o peso dos erros inicias, o Klancar teve a melhor resposta, porém o MPC teve uma

resposta melhor do que o EPSAC, para os erros de x e y. Para θ o comportamento foi semelhante
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Figura 5.11: Erros de posição e orientação - detalhe

Fonte: Autor

ao do ISE e IAE, com a melhor resposta do controlador Klancar, seguido do EPSAC e por último

o MPC linearizado.

Tabela 5.1: Índices de desempenho para cada controlador analisado
ISE IAE

x y θ x y θ

EPSAC 2,7424 9,687 21,370 18,112 24,999 26,7745
MPC 9,3722 13,0743 29,9253 35,9114 33,6918 46,9221

Klancar 2,5898 9,7821 21,2422 16,1493 24,1074 26,7365
ITAE ITSE

x y θ x y θ

EPSAC 3448,79 3502,351 2349,998 102,0024 143,353 186,074
MPC 2730,459 1675,99 2445,888 666,7735 397,3005 549,7377

Klancar 2609,599 2735,37 2551,152 82,2633 131,8667 184,6701

5.2 Aplicação no robô real

Os controladores estudados foram aplicados no Robô Móvel da National Instruments mo-

delo NI LabVIEW Robotics Starter Kit, com caracterı́sticas apresentadas na sessão 2.4. Uma

caracterı́stica do robô utilizado é que o mesmo utiliza o software Labview, desta forma, os

códigos do Matlab foram reescritos para a implementação no robô. O Labview possui requisi-

tos de sistema superiores ao Matlab e os cálculos levam e tempo maior para serem realizados.
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A partir do Labview é embarcado o algoritmo no robô, assim todos os cálculos são realiza-

dos na memória interna do mesmo. O cabo utilizado é conexão entre o robô e um computador

para que os dados sejam coletados enquanto é realizado o experimento, seja possı́vel acompa-

nhar em tempo real os valores alcançado e caso ocorra algum imprevisto parar o robô.

Como era esperado pelos resultados preliminares da simulação em Matlab os controladores

que utilizam estratégia MPC, no caso o MPC linearizado e o EPSAC, possuem na implementação

no robô real um tempo de iteração superiores ao do controlador Klancar. Para o MPC linea-

rizado o tempo de cada iteração foi de 0,250s contra 0,030s para o Klancar. Desta forma,

o tempo de amostragem do MPC foi de TsMPC = 0,3s enquanto os do Klancar o tempo de

TsPI = 0,1s (o mesmo valor utilizado durante a simulação). Enquanto o tempo de cada iteração

do EPSAC variou entre 0,085∼ 0,097s como é muito próximo do valor inicialmente assumido

para o tempo de amostragem ( Ts = 0,1s) este foi aumentado para TsEPSAC = 0,2s.

Por causa da alteração nos tempo de amostragem Ts para cada controlador, a trajetória de

referência foi refeita considerando menos pontos. Essa mudança foi realizada para que o robô

utilizando qualquer um dos três controladores percorresse a trajetória no mesmo tempo. A

proporção utilizada foi a razão entre o tempo de amostragem do controlador Ts do cont e o

tempo utilizado na simulação, assim Pontos Utilizados = Ts cont/0,1, desta forma para o

EPSAC foi considerado a metade dos pontos da trajetória de referência, e para o MPC um terço.

Os testes foram realizados em um espaço onde o piso é de calçamento irregular, por se tratar

de uma área aberta existe a presença de folhas de árvores e outras sujeiras. As condições do

piso e a marcação das posições iniciais e da origem da trajetória são apresentadas na Fig. 5.12 .

Os valores dos parâmetros de cada controlador foram determinados através de diversos testes e

foram escolhidos os valores que conseguiram realizar o controle da trajetória sem que houvesse

uma necessidade de aumentar o valor do tempo de amostragem.

Os dados foram colhidos pelo Labview e exportados em forma de planilhas para ser traba-

lhado no Matlab.

5.2.1 Controlador Klancar

O tempo de amostragem para o controlador Klancar foi o mesmo tempo utilizado na simulação

e portanto a trajetória de referência foi utilizada com todos os pontos inicialmente determina-

dos. A trajetória realizada pelo robô é apresentada na Fig.5.13, pode-se observar que o contro-

lador consegue fazer com que o robô siga a trajetória mesmo com o erro de estado inicial. O

parâmetro do controlador utilizado foi g = 5.

Os valores de entrada do controlador referente as velocidades lineares são apresentados

nas Fig 5.14, pode se observar que a velocidade linear após 10s tende ao valor da referência
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Figura 5.12: Robô no local de teste

Fonte: Autor

velocidade de referência. Vale ressaltar que a velocidade linear de referência é constante durante

toda a trajetória.

A Fig.5.15 apresenta a variação da segunda entrada do controlador: a velocidade angular.

Vale ressaltar que para este controlador não há restrições. Observa-se que após os T = 10s a

velocidade angular tende a referência, porém na metade da trajetória ocorre uma mudança no

sentido da trajetória provocando uma pertubação. Provocando na velocidade angular um valor

de velocidade muito maior do que a referência e logo tende a referência.

A Fig. 5.16, apresenta uma comparação entre os resultados reais e o obtidos quando im-

plementado o controlador Klancar. Pode se observar que as respostas são bastante semelhantes,

tendo as variações esperadas quando implementado um controlador na prática. Vale ressaltar

que não ouve variação no tempo de amostragem entre a simulação e a implementação.

5.2.2 EPSAC

Para a determinação do valor do controlador EPSAC é realizado a minimização da função

custo a cada iteração. O custo computacional para a minimização é superior ao custo do contro-

lador Klancar. O tempo necessário para a realização dos cálculos no Labview chegou ao valor

de 0,095s, desta forma o tempo de amostragem foi corrigido para o valor de TaEPSAC = 0,200s.

A trajetória foi reduzida a metade dos pontos, ou seja, a cada dois pontos foi retirado apenas

um. A trajetória realizada pelo robô é apresentada na Fig.5.17. Os parâmetros utilizados foram
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Figura 5.13: Trajetória do robô com o controlador Klancar

Fonte: Autor

para o horizonte de controle N = 10 e a diagonal da matriz de ponderação diag(Q) = 1,1e0,1.

A velocidade linear é para o controlador EPSAC durante todo o percurso é apresentada na

Fig. 5.18, pode-se observar que após aproximadamente 8s a velocidade vEPSAC acompanha o

valor da vre f .

Para facilitar a visualização a Fig.5.19 apresenta os instantes iniciais do ensaio. Sendo que

no primeiros 8s a velocidade que alcança o valor de aproximadamente vEPSAC = 0,4m/s , o

valor mais alto permitido pelas restrições colocadas no controlador. Após os oito segundos

iniciais a velocidade estabiliza em torno da velocidade de referência, vEPSAC = vre f = 0,3m/s.

A Fig. 5.20 apresenta a velocidade angular para o controlador EPSAC, após aproximada-
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Figura 5.14: Velocidade linear - Klancar

Fonte: Autor

Figura 5.15: Velocidade angular - Klancar

Fonte: Autor

mente 10s a velocidade tende ao valor da velocidade de referência. A variação do sinal que

ocorre na metade do tempo da velocidade de referência é devido a mudança de sentido na tra-

jetória do robô.

O robô apresenta durante toda a sua trajetória um erro em x, que não ocorria na simulação

um dos motivos é que com a redução de pontos da trajetória aparece um erro na própria geração

da trajetória uma vez que estamos aproximando uma circunferência por pequenos segmentos de

reta, e no caso esse segmento é duas vezes maior do que o da simulação. O comportamento do
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Figura 5.16: Comparação entre os resultados da simulação e da implementação no robô para o
controlador Klancar

Fonte: Autor

erro é apresentado na Fig. 5.21.

Na Fig. 5.22 é apresentado os resultados real comparado com os resultados de simulação,

tendo dois valores para o tempo de amostragem, sendo mantido Ta = 0,1s o valor inicial das

simulações e uma simulação com mesmo tempo de amostragem utilizado para a aplicação

real Ta = 0,2s. Apesar da mudança do tempo de amostragem a simulação não apresenta uma

mudança considerável, uma vez que o EPSAC é um controlador preditivo e o controlador consi-

dera as referências futuras. A resposta do real, teve um erro um pouco superior ao da simulação,

mas esse erro é esperado quando implementado no robô e mostra que na prática que o resultado

foi próximo ao esperado.

5.2.3 MPC linearizado

A trajetória realizada pelo controlador MPC é apresentada na Fig. 5.23, vale ressaltar que

devido ao alto tempo que o Labview leva para determinar o controle em torno de 250ms a quan-

tidade de pontos utilizada pela a trajetória de referência foi reduzida a um terço. Os parâmetros

utilizados foram para o horizonte de controle N = 5 e a diagonal da matriz de ponderação
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Figura 5.17: Trajetória do robô - EPSAC

Fonte: Autor

Figura 5.18: Velocidade linear para o robô utilizando controlador EPSAC

Fonte: Autor

diag(Q) = 1,1,0,1. O aumento do valor de N para 7 melhora o desempenho do controlador,

mas o tempo para o calculo de cada iteração chega próximo a 300ms.
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Figura 5.19: Velocidade linear para o robô utilizando controlador EPSAC

Fonte: Autor

Figura 5.20: Velocidade angular para o robô utilizando controlador EPSAC

Fonte: Autor

O modelo linearizado é utilizado diretamente no cálculo dos controladores. Em alguns

testes no robô foi utilizado o modelo não linear o mesmo dos dois controladores estudados, no

caso do robô real ele é utilizado para converter os valores de saı́da dos sensores (velocidade de

cada roda) para os valores de posição, ocorreu uma diminuição no tempo de cálculo, porém foi

mantido o modelo linearizado uma vez que foi o apresentado no artigo de referência (KÜHNE

et al., 2004).

A Fig.5.24 apresenta os valores da velocidade linear,é observado que nos instantes iniciais

a velocidade linear é em torno de vMPC = 0,4m/s, porém a oscilação de ±0,1m/s em torno da
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Figura 5.21: Erro de posição e orientação para o controlador EPSAC

Fonte: Autor

Figura 5.22: Comparação entre os resultados das simulações e da implementação no robô para
o controlador EPSAC

Fonte: Autor
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Figura 5.23: Trajetória do robô - MPC

Fonte: Autor

velocidade de referência, sendo a maior amplitude dos três controladores analisados.

Figura 5.24: Velocidade linear para o robô utilizando controlador MPC

Fonte: Autor

Os valores da velocidade angular é apresentado na Fig. 5.25, observando que a variação em
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torno da velocidade de referência é maior do que a dos outros dois controladores: o EPSAC e o

Klancar.

Figura 5.25: Velocidade angular para o robô utilizando controlador MPC

Fonte: Autor

Os erros de posição (x,y) e orientação θ são apresentados na Fig. 5.26. Pode-se observar

que os valores dos erros obtidos quando utilizado o MPC é maior do que os valores dos outros

dois controladores, essa piora no desempenho do controlador ocorre devido ao fato que este

foi o controlador que trabalho com a menor quantidade de pontos na trajetória devido ao custo

computacional do mesmo.

A Fig. 5.27 apresenta as trajetórias simuladas para a o tempo de de amostragem de 0,1s e

0,3s e a resposta real do controlador. Os tempos de amostragem simulados foram escolhidos,

pois Ta = 0,1s foi o tempo utilizado inicialmente na simulação e também era o tempo desejado

para realizar a implementação real, como não foi possı́vel devido ao custo computacional o

tempo utilizado foi de Ta = 0,3s desta forma foi simulado com esse valor para ser possı́vel a

comparação das resposta.

Como o controlador MPC linearizado é um controlador preditivo o aumento do tempo de

amostragem não interfere na resposta, uma vez que o controlador considera as referências futu-

ras. Não há uma alteração considerável entre as respostas da simulação, o controlador quando

aplicado no robô real, tende a realizar uma trajetória que oscila em relação a trajetória de re-

ferência, uma vez que são necessário três amostras (se comparado com o simulado) para o

controlador tomar uma decisão desta forma quando a velocidade é inferior o controlador au-

menta e quando é coletado novamente os dados o robô está com uma velocidade mais alta do
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Figura 5.26: Erro de posição e orientação para o controlador MPC

Fonte: Autor

que o necessário para chegar a referência desta forma é reduzido e o ciclo se repete.

Figura 5.27: Comparação entre os resultados das simulações e da implementação no robô para
o controlador MPC

Fonte: Autor
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5.2.4 Comparação entre os controladores

.

A Fig. 5.28 apresenta a resposta da implementação dos controladores no robô. Os tempos

de amostragem devido ao custo computacional foi diferente para cada um dos três controlado-

res, sendo para o controlador Klancar TaKlancar = 0,1s, enquanto para o controlador EPSAC

TaEPSAC = 0,2s e para o MPC TaMPC = 0,3s. Para manter as velocidades de referência foi re-

alizado uma correção na trajetória, na qual para o EPSAC é considerado apenas metade dos

pontos, as velocidades referentes aos ı́ndices (1,3,5 . . . ) e para o MPC é utilizado apenas um

terço dos pontos, referentes aos ı́ndices (1,4,7,. . . ).

Pode-se observar que o controlador Klancar teve nessa situação a melhor resposta, porém

como foi apresentado na Seção 5.2.1 não existe restrições para as entradas do controlador. O

controlador EPSAC desenhou a trajetória porém, em especial para a segunda metade da tra-

jetória, com valores de xEPSAC < xre f , enquanto a trajetória quando implementado o controlador

MPC ficou oscilando em torno da trajetória de referência.

Figura 5.28: Comparação entre os resultados da implementação no robô dos controladores
Klancar, EPSAC e MPC

Fonte: Autor
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6 Conclusão

As leis de controle analisadas conseguiram realizar o controle de trajetória mesmo em uma

situação na qual o robô tenha um erro de estado inicial, fazendo com que os erros na posição x

e y e orientação θ do robô tende a zero. Quando foram implementadas no robô real teve que ser

realizado alguns ajustes devido ao tempo que era levado para realizar os cálculos.

O controlador preditivo do tipo EPSAC, utilizado em diversas aplicações, se mostrou uma

boa alternativa para o controle de trajetória de robôs móveis com rodas, tendo a capacidade de

corrigir erro de estado inicial fazendo com que após algumas os erros de posição x,e e orientação

θ tendam zero. Quando implementado no robô real, com os parâmetros utilizados, o EPSAC

conseguiu controlar a trajetória do robô real, mesmo com o erro de estado inicial e presença de

incertezas, tais como: o chão irregular, a presença de obstáculos. Além de erros no modelo uma

vez que foi considerado que o robô tem apenas rolamento não ocorrendo deslizamento durante

a movimentação.

É possı́vel melhorar a resposta do controlador ajustando os parâmetros de controle, em

especial, o horizonte de controle N, levando em consideração que essa melhora ocorre com

um aumento no tempo de cálculo do controlador. Desta forma, a maior limitação desse con-

trolador não é no algoritmo e sim na capacidade de processamento do Hardware envolvido.

Necessitando de um processador mais potente e de um sistema com uma grande capacidade de

armazenamento.

O Controlador Klancar é composto apenas de uma matriz de ganhos com um único parâmetro

de ajuste, para a determinação do controlador é realizado cálculos envolvendo multiplicação da

matriz de ganho pelo vetor dos erros. É o que possui o menor tempo de amostragem. Porém,

para o erro dado não é possı́vel melhorar a resposta do mesmo. Além disso ele originalmente

não possui tratamento para restrições, desta forma pode impossibilitar o uso do controlador

dependendo do robô utilizado.

O controlador MPC linearizado é entre três analisados o com maior tempo para o cálculo

de cada interação, desta forma teve o maior tempo de amostragem e menos pontos na trajetória

ocorrendo a partir desse fato um erro. Além, disso no inı́cio ele passa 0.3 segundos (ou 3

amostras) sem ação. As respostas poderiam ser melhoradas alterando os valores dos parâmetros
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de ajuste do contro, em especial o valor do horizonte de controle N. Porém, isso elevaria o

tempo de cálculo.

O modelo do robô é um modelo MIMO com duas entradas e três saı́das, os controlado-

res Klancar e EPSAC utilizam um modelo não linear do robô esse modelo é obtido através das

equações da cinemática de primeira ordem. Enquanto, o MPC linearizado utiliza o modelo line-

arizado em torno da referência, porém esse controlador apresenta uma redução de desempenho

quanto mais distantes o robô encontrar-se da trajetória de referência.

O fator limitante dos controladores preditivos avaliados foi custo computacional, indicado

pelo tempo necessário para a realização dos cálculos, quando aplicado no robô esse custo foi

elevado pelas limitações do Hardware quanto pelo programa envolvido para realizações do

cálculo. Uma vez, que o robô utilizado é habilitado apenas para o Labview que tem requisitos

de sistemas maiores do que o Matlab utilizado nas simulações.Desta forma, para um robô que

utilize uma plataforma diferente os parâmetros de controle podem ser mais elevados permitindo

uma melhoria na resposta.

Vale ressaltar que o robô tem apenas encoders em cada roda, sendo uma proposta de tra-

balho futuro a utilização de outros sensores para a determinação de posição e destas forma ser

determinado o controle.Outra proposta de trabalho futuro é a redução do custo computacional

dos controladores preditivos. Além disso, não foi realizado o estudo de robustez para cada

controlador sendo uma outra sugestão de trabalho.
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PéREZ, J. A. M. et al. Estrategias de control en la práctica de aneste-
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APÊNDICE A -- Resposta do controlador no

Labview

Figura A.1: Tela do Labview para acompanhamento do deslocamento do robô


