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RESUMO 

 

Carbonos ativados são materiais amorfos representados por uma distribuição de tamanho de 

poros (PSD) que usualmente reproduz a isoterma experimental de N2 a 77 K.  Presentemente 

esta distribuição é obtida com o uso do modelo de carbono ativado de placas paralelas de 

grafeno e isotermas calculadas por simulação molecular. Neste estudo avaliou-se a influência 

do uso de modelos de poros de carbono ativado mais realistas sobre a caracterização, bem 

como a possibilidade de representar o carbono ativado por uma PSD mínima constituída de 

apenas três poros. Isotermas de adsorção foram calculadas utilizando-se o algoritmo de Monte 

Carlo no ensemble grande canônico e comparadas com as isotermas experimentais de 

carbonos ativados comerciais. O método de deconvolução com mínimos quadrados não 

negativos foi utilizado para determinação das PSDs. Observou-se que modelos contendo 

fatores de heterogeneidade mostraram-se mais precisos que os modelos simplificados. Notou-

se ainda que efetivamente o carbono ativado pode ser representado por uma PSD mínima de 

três poros sem perda significativa de precisão. Além disso, demonstrou-se que a distribuição 

mínima pode ser usada para elaborar modelos virtuais de carbono que são úteis no estudo de 

heterogeneidades. Finalmente propomos o uso da PSD mínima em substituição ao cálculo 

clássico de tamanho médio de poros. 

 

Palavras-chave: Carbono ativado. Adsorção. Caracterização textural. Simulação molecular. 
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ABSTRACT 

 

Activated carbons are amorphous materials represented by a pore size distribution (PSD) 

which usually reproduce the experimental isotherm of N2 at 77 K. Presently, we obtain this 

distribution using the activated carbon slit-pore model and isotherms calculated by molecular 

simulation. In this study, we have evaluated the extent to which the use of more realistic 

activated carbon models influences on the characterization, as well as the possibility of 

representing the activated carbon by a minimum three-pore PSD. Adsorption isotherms were 

calculated using the Grand Canonical ensemble within the Monte Carlo method, and 

compared with experimental isotherms of commercial activated carbons. The deconvolution 

method with non-negative least squares was used to determine the PSDs. We observed that 

the models containing heterogeneity factors were more accurate than the simplified models, 

and that activated carbons could be well represented by a minimum three-pore distribution 

without significant loss of precision. Furthermore, we demonstrated that the minimum PSD 

could be applied to formulate virtual porous carbon models that are useful in the 

heterogeneity study. Finally, we propose the use of the minimum PSD to replace the classical 

calculations of average pore size. 

 

Keywords: Activated Carbon. Adsorption. Textural characterization. Molecular Simulation. 
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1 INTRODUÇÃO  

 

1.1 Importância do Tema  

  

Carbono ativado (CA) é um dos principais representantes da classe de materiais 

carbonosos, tais como grafeno, nanotubos e peneiras moleculares de carbono. Este material é 

caracterizado pela elevada área superficial e porosidade desenvolvida, que lhe confere 

excelente capacidade adsortiva. O custo relativamente baixo e a abundância de matéria-prima, 

associados às características texturais, compõem os principais fatores que influenciam na sua 

viabilidade técnica e econômica. 

Dentre as aplicações industriais de CA podem-se citar a estocagem de gases 

combustíveis, separação de gases em química fina, tratamento de efluentes líquidos, sequestro 

de gás carbônico, clarificação e desodorização de produtos alimentícios. A aplicabilidade de 

um carbono ativado, e com isso o seu valor comercial, está associada às suas características 

texturais, que dependem da natureza do material precursor e do processo de ativação ao qual 

foi submetido (DABROWSKI, 2001; MARSH e RODRÍGUEZ-REINOSO, 2006). 

A distribuição de tamanhos de poros (PSD, do inglês: Pore Size Distribution) é a 

principal informação textural de um CA, a partir dela é possível definir as demais informações 

relevantes a respeito da amostra, tais como volume de microporos e área superficial. Técnicas 

para extrair a PSD a partir da isoterma de adsorção de uma molécula-sonda via simulação 

molecular vem sendo utilizadas com êxito em substituição aos modelos fenomenológicos 

(DAVIES et al., 1999; RAVIKOVITCH et al., 2000). 

Para realizar a simulação molecular de CA, deve-se definir o seu modelo 

molecular adequado. A estrutura do CA não é bem definida, podendo ser compreendida como 

uma combinação de poros formados por folhas de grafeno, interconectados e distribuídos 

aleatoriamente (BANSAL e GOYAL, 2005; MARSH e RODRÍGUEZ-REINOSO, 2006). 

Modelos moleculares simplificados são definidos a partir da consideração de que as folhas de 

grafeno que compõem os poros são perfeitas e paralelas (TAN e GUBBINS, 1992), além de 

desconsiderar os efeitos de bordas e de interconectividade. 

Uma forte tendência atual é a de aproximar os modelos moleculares às condições 

reais da amostra, os chamados modelos virtuais de carbono condensados, VPC (BIGGS e 

BUTS, 2006). Tais modelos vão além do modelo convencional de fendas paralelas de folhas 

de grafeno e buscam incorporar efeitos de heterogeneidade geométrica, topológica e química 
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que caracterizam os carbonos ativados reais (DAVIES e SEATON, 1998; DO e DO, 2006; 

AZEVEDO et al., 2010; LUCENA et al., 2010a; OLIVEIRA et al., 2012). 

A PSD é obtida através da combinação linear de um banco de isotermas simuladas 

de poros de diferentes tamanhos (kernel) de forma a reproduzir a isoterma experimental de N2 

a 77 K. É comum encontrar na literatura kernels compostos por até 100 isotermas simuladas, 

contudo, ao tentar simular sistemas mais complexos, como misturas, esta grande quantidade 

de tamanhos de poros se torna um fator complicador, pois demanda um imenso esforço 

computacional. É interessante buscar uma metodologia que utilize um kernel mínimo, 

contendo apenas os tamanhos de poros representativos da amostra. 

 

1.2 Problemática da pesquisa 

 

O modelo molecular simplificado do CA, formado por folhas perfeitas de grafeno 

muitas vezes não é capaz de reproduzir com precisão o comportamento adsortivo de algumas 

amostras, de modo que modelos moleculares mais realistas devem ser analisados. Por outro 

lado, a grande quantidade de isotermas de diferentes tamanhos de poros disponíveis no kernel 

pode adicionar complicações à modelagem do CA, de modo que modelos que levem em conta 

apenas tamanhos de poros representativos podem ser mais aplicáveis. 

 

1.3 Objetivos 

 

1.3.1 Objetivo Geral 

 

Aperfeiçoar o procedimento de caracterização textural via simulação molecular de 

carbonos ativados através do desenvolvimento de modelos moleculares que levam em conta 

fatores de heterogeneidade, bem como propor um modelo formado por um número reduzido 

de tamanho de poros representativos que seja capaz de reproduzir o comportamento adsortivo 

de uma amostra real. 

 

1.3.2 Objetivos Específicos 

 

 Aplicar técnicas de simulação molecular para caracterização textural de 

amostras a partir de suas isotermas de adsorção experimentais. 
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 Propor um modelo molecular de carbono ativado que leve em consideração 

imperfeições nas folhas de grafeno que compõem os poros. 

 Desenvolver um modelo composto de um número mínimo de isotermas 

simuladas de um kernel que seja capaz de representar uma amostra de carbono 

ativado sem perdas significativas de precisão. 

 

1.4 Organização dos capítulos seguintes 

 

O capítulo 2 descreve a fundamentação teórica a respeito dos temas abordados 

neste trabalho. O capítulo 3 traz o detalhamento das técnicas computacionais utilizadas para a 

simulação molecular e para a caracterização textural das amostras, em seguida apresenta as 

características texturais das amostras a serem analisadas e suas respectivas isotermas 

experimentais de adsorção e trata a respeito dos modelos de poros de carbono ativado que 

serão utilizados. O capítulo 4 reúne os resultados obtidos e as discussões referentes a estes 

resultados. O capítulo 5 contém as conclusões a respeito deste trabalho. 
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2 REVISÃO BIBLIOGRÁFICA 

 

2.1 Adsorção 

 

De acordo com Dabrowski (2001), a adsorção pode ser definida como um 

incremento na concentração de uma dada substância nas regiões próximas a uma interface, o 

tipo de adsorção pode ser definido de acordo com a natureza da interface: líquido-gasoso, 

líquido-líquido, sólido-líquido, sólido-gasoso. Os de maior importância industrial são sólido-

gasoso e sólido-líquido. A Figura 1 demonstra o incremento na densidade de moléculas de um 

fluido na proximidade de um sólido. 

 

Figura 1 – Moléculas de um fluido em contato com um adsorvente. 

 

 

Desde a antiguidade a humanidade utiliza os princípios da adsorção para variados 

fins. Os egípcios, por exemplo, utilizavam tabletes de argila, com escrituras supostamente 

mágicas, que deveria ser disperso na água antes do consumo. Atualmente sabe-se que este é 

um bom tratamento para doenças relacionadas à água contaminada (ROBENS, 1994). 

Provavelmente uma das mais antigas referências à adsorção seja em uma passagem na Bíblia, 

em que um experimento sobre adsorção é descrito (BÍBLIA, Juízes, 6, vv. 36-40). 

Scheele em 1773 e Fontana em 1777 reportaram observações a respeito da 

utilização de carvão e argila para captura de gases. O termo adsorção foi proposto por Bois-

Reymond, e introduzido na literatura por Heinrich Kayser somente em 1881 para descrever o 

fenômeno que ocorre na superfície do sólido, em oposição ao termo absorção, que se refere ao 

interior do sólido (DABROWSKI, 2001). 
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Yang (2003) reporta os diversos seguimentos da indústria atual em que a adsorção 

pode ser aplicada com viabilidade técnica e econômica: separação de parafinas, separação dos 

gases constituintes do ar, purificação de hidrogênio, estocagem de gases combustíveis, 

separação olefinas/parafinas, separação nitrogênio/metano, dessulfurização e desaromatização 

de frações de hidrocarbonetos, entre outras aplicações. Impulsionada pelas preocupações 

ambientais e novas aplicações, a demanda por materiais adsorventes tende a aumentar nos 

próximos anos e a cada dia novos adsorventes são desenvolvidos, como é o caso das 

estruturas metalorgânicas (MOFs), que apresentam enorme potencial. 

As forças intermoleculares que regem a adsorção podem ser de natureza polar 

(eletrostática) ou apolar (van der Waals), ou efetivamente pode ocorrer uma reação química 

entre as moléculas do fluido e do sólido. Os casos em que as forças intermoleculares regem a 

adsorção são chamados processos de fisissorção, quando ocorre reação química utiliza-se o 

termo quimissorção. Processos de fisissorção são reversíveis por natureza e normalmente 

exotérmicos. Os mecanismos de quimissorção são mais comuns em processos catalíticos e, 

diferentemente da fisissorção, ocorrem apenas em monocamada (DABROWSKI, 2001). 

O incremento na concentração de partículas fluidas gerado pela presença do 

sólido, denominado concentração em excesso, deve ser calculado pela diferença entre a 

concentração total das partículas na presença do sólido e a concentração no seio do fluido, 

região onde os efeitos de campo de força relacionados ao sólido não mais influenciam. A 

concentração em excesso, ou simplesmente o excesso, é função basicamente da natureza dos 

compostos envolvidos (interações intermoleculares), da concentração do adsorbato (ou 

pressão parcial do adsorbato, no caso do fluido ser um gás) e da temperatura do sistema. Por 

este motivo o equilíbrio pode ser representado através da curva isobárica ou da curva 

isotérmica (MARSH e RODRÍGUEZ-REINOSO, 2006; RUTHVEN, 1984). 

A isóbara de adsorção é obtida variando-se a temperatura do sistema à pressão 

constante, para cada temperatura tem-se a quantidade adsorvida. A isoterma de adsorção é 

obtida com o procedimento inverso, a pressão do sistema varia e a temperatura é mantida 

constante, o processo isotérmico é mais prático e por isso mais utilizado (MARSH e 

RODRÍGUEZ-REINOSO, 2006). 

 

2.2 Carbono Ativado 

 

Carbono ativado, termo traduzido do inglês: Activated Carbon, muitas vezes 

apresentado como carvão ativado, é um dos materiais adsorventes conhecidos há mais tempo 



Capítulo 2 – Revisão Bibliográfica 19 

 

  Silvino, P.F.G. 

e um dos mais importantes da atualidade. As propriedades deste material, na forma de 

madeira carbonizada, são conhecidas desde a antiguidade. Os egípcios, já em 1500 a.C., o 

utilizavam para fins medicinais e agente purificante (BANSAL e GOYAL, 2005), Hipócrates, 

o pai da medicina, pode ter utilizado carvão para tratamentos médicos (MARSH e 

RODRÍGUEZ-REINOSO, 2006). Atualmente, cerca de 60% das aplicações industriais 

envolvendo adsorção utilizam este material (DABRWOSKI, 2001). 

A versatilidade do CA é garantida pela imensa variedade de características que 

podem ser parcialmente controladas durante o processo de síntese. Uma grande gama de 

carbono ativado pode ser produzida, suas aplicações variam desde um simples filtro 

doméstico de purificação de água até recheios de torres de adsorção utilizadas em indústrias 

de química fina (YANG, 2003). 

Os principais pré-requisitos para uma boa fonte de matéria-prima para produção 

de CA é apresentar composição molecular rica em carbono, resistência mecânica adequada e 

porosidade natural. Madeira, sementes e cascas de frutos, bagaço da cana de açúcar, dentre 

outros produtos de origem vegetal podem servir como base para produção de CA. Outros 

materiais precursores podem ser: resíduos industriais, coque do petróleo e até ossos de 

animais. O custo relativamente reduzido e a abundância de matéria-prima, associados às 

características texturais, compõem os principais fatores que influenciam na viabilidade técnica 

e econômica deste material como adsorvente e suporte de catalisador (DABROWSKI, 2001; 

YANG, 2003; MARSH e RODRÍGUEZ-REINOSO, 2006). 

O carbono ativado não e encontrado de forma natural, deve ser sintetizado e sua 

produção é composta basicamente por duas etapas: carbonização e ativação. A primeira etapa 

consiste em carbonizar a matéria-prima pré-condicionada na presença de uma atmosfera 

inerte, cuja função principal é remover a maior parte dos heteroátomos e promover um 

rearranjo molecular dos átomos de carbono que compõem a estrutura do CA. A Figura 2 

demonstra o efeito da temperatura sobre o arranjo molecular do material precursor. Com 

relação à ativação, esta pode ser química ou física e tem como objetivo desenvolver a 

porosidade do material. Na Figura 3 pode-se perceber uma porosidade incipiente antes da 

etapa de ativação (Figura 3 – a). Após a ativação uma parte das paredes que compunham o 

poro é removida (a estruturas mais claras da Figura 3 – b representam as paredes que foram 

removidas), desenvolvendo desta forma a porosidade do material. No processo de ativação 

química utilizam-se reagentes, ácidos ou alcalinos, para o desenvolvimento da porosidade. O 

processo de ativação física exige presença de atmosfera oxidante e temperaturas elevadas 

(YANG, 2003; BANSAL e GOYAL, 2005; MARSH e RODRÍGUEZ-REINOSO, 2006). 
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Figura 2 – Efeito do tratamento térmico sobre a estrutura molecular do carbono ativado. 

 

Fonte: Adaptado de Marsh e Rodríguez-Reinoso (2006). 

 

Figura 3 – Modelo Norit para a estrutura dos poros de CA: (a) porosidade natural, (b) 

porosidade desenvolvida após a ativação. 

 

Fonte: Adaptado de Marsh e Rodríguez-Reinoso (2006). 

 

2.3 Caracterização Textural 

 

A isoterma de adsorção de uma dada molécula-sonda carrega muita informação a 

respeito de um adsorvente. Esta curva, cujo formato é característico da superfície do material, 
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relaciona concentração de equilíbrio do adsorbato na fase adsorvida com a sua concentração 

no seio do fluido (no caso da adsorção em fase gasosa, a concentração na fase fluida é dada 

pela pressão parcial do adsorbato). É tarefa do pesquisador decodificar a isoterma de adsorção 

e traduzi-la em informações superficiais. Marsh e Rodríguez-Reinoso (2006) apresenta uma 

classificação para as isotermas de adsorção segundo a IUPAC, dividido em seis grupos 

definidos de acordo com o seu formato característico (Figura 4).  

 

Figura 4 – Classificação do formato das isotermas de adsorção segundo a IUPAC. 

 

Fonte: Adaptado de Marsh e Rodríguez-Reinoso (2006). 

 

As isotermas Tipo-I atingem valor máximo de adsorção sem que haja inflexão, 

são característicos de materiais que contem microporosidade elevada. As isotermas Tipo-II 

mostram inflexão na região de 10% da pressão de saturação e uma elevação acentuada em 

torno de 90%, são característicos de materiais microporosos. O Tipo-III apresenta curvas 

convexas, características de adsorção em sítios de adsorção fracos. As isotermas Tipo-IV se 

assemelham com as Tipo-II, contudo há formação de histerese, e característico de adsorventes 

mesoporosos. O Tipo-V e característico de sítios de adsorção com baixa energia com 

superfície homogênea mesoporosa. As isotermas Tipo-VI são características de superfícies 

extremamente homogêneas. 

Segundo Roque-Malherbe (2007) os parâmetros que caracterizam um adsorvente 

poroso são: área superficial específica [m².g
-1

], volume total de poros [cm³.g
-1

], volume de 

microporos [cm³.g
-1

] e a distribuição de tamanhos de poros (PSD). A PSD é uma 

representação gráfica da derivada de volume de poros (V) [cm³.g
-1

] pelo tamanho de poro por 

tamanho de poro (H) [Å], ou seja: dV/dH [cm³.g
-1

.Å
-1

] (Figura 5). 
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Para obtenção de informações mais detalhadas, é comum a utilização de modelo 

fenomenológicos baseados na teoria de Dubinin do preenchimento de volume de poros. As 

equações de Dubinin-Radushkevitch, Dubinin-Astakhov e Dubinin-Stoeckli utilizam 

correlações empíricas para a energia de adsorção e a distribuição de tamanhos de poro. O 

modelo de Hovath-Kawazoe correlaciona a variação na energia interna durante a adsorção 

com a média do potencial dentro do poro, considerando as interações fluido-fluido e 

solido-fluido (RAVIKOVITCH et al., 2000). 

Embora ainda sejam bastante utilizados, estes modelos possuem erros associados 

a incertezas fenomenológicas. Técnicas de modelagem molecular podem ser aplicadas à 

caracterização textural, de maneira mais eficiente. Ravikovitch et al. (2000) descrevem uma 

metodologia de obtenção da distribuição de tamanhos de poros (PSD) baseada na comparação 

de isotermas experimentais com coleções de isotermas simuladas obtidas para diferentes 

tamanhos de poros. Estas coleções (Kernels) são obtidas por simulação molecular. 

Davies e Seaton (1998) utilizaram uma metodologia de deconvolução de um 

kernel de isoterma simuladas, com ajuste por mínimos quadrados não negativos com fator de 

regularização. Esta regularização visa obter distribuições mais estáveis e menos dependentes 

do gás sonda, a metodologia de cálculo será detalhada mais adiante. A magnitude da 

suavização, valor do termo de regularização, deve ser suficiente para tornar a PSD mais 

estável, porém não deve ser grande ao ponto de afastá-la dos dados experimentais do CA. 

Duas PSD obtidas com diferentes fatores de regularização para uma mesa amostra, obtidas 

por Davies e Seaton (1998), são ilustrados na Figura 5, onde se nota um ganho de suavização 

com o incremento no fator de regularização. 

 

Figura 5 – Efeito do fator de regularização sobre a PSD. Fator de Reg.: (a) 0,1 e (b) 10. 

 

Fonte: Adaptado de Davies e Seaton (1998). 
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2.4 Simulação Molecular 

 

Simulação molecular consiste em reproduzir fenômenos a nível atômico e aplicar 

princípios da mecânica estatística para prever o comportamento de sistemas macroscópicos. 

Este tipo de simulação permite acesso a informações de difícil ou impossível acesso por rota 

experimental, tais como mecanismo de reação, processos de difusão, fenômenos de adsorção e 

predição de comportamento de fase em condições extremas (ALLEN e TILDESLEY, 1991, 

FRENKEL e SMIT, 2002). 

Alguns autores discutem a qual ramo da ciência a modelagem molecular pode 

pertencer. Maginn (1997) levanta o seguinte questionamento: “Simulação é teoria ou 

experimento?”, Coutinho (2000) demonstra que é possível observar elementos de estudo 

teórico e de experimentação ao se realizar uma simulação. Estes dois autores concordam com 

a classificação da modelagem e simulação molecular como um terceiro ramo da ciência, algo 

entre experimento e teoria. 

Basicamente utilizam-se duas abordagens para a simulação molecular: métodos 

determinísticos (Dinâmica Molecular) e métodos estocásticos (Monte Carlo). A dinâmica 

molecular consiste em integrar as equações de movimento para os átomos que compõem o 

sistema, considerando as forças atuantes, apresenta forte aplicabilidade em simular sistemas 

de natureza dinâmica (MAGINN, 1997). 

O método de Monte Carlo (MC) consiste em gerar aleatoriamente sucessivos 

estados acessíveis de um determinado sistema, aplicando-se uma função de probabilidade de 

modo que os estados mais prováveis sejam mais acessados (ALLEN e TILDESLEY, 1991). O 

nome Monte Carlo remete às características aleatórias do método, semelhantes às dos jogos 

de azar em cassinos, e tem origem no algoritmo descrito por Metropolis (1953). 

À medida que são gerados os estados acessíveis do sistema, a evolução energética 

pode ser analisada (Figura 6). Observam-se claramente duas regiões distintas, uma 

caracterizada pelo decaimento energético, chamada de região de tematização, e outra em que 

os valores de energia do sistema oscilam em torno de uma média, chamada de região de 

equilíbrio. Para determinar a conformação média do sistema são descartados os pontos da 

região de tematização, sendo calculada a média das configurações apenas da região de 

equilíbrio (ALLEN e TILDESLEY, 1991; COUTINHO, 2000). 

Em simulações envolvendo variação de massa no interior do sistema, como é o 

caso da adsorção, utiliza-se o método de Monte Carlo no ensemble Grande Canônico 

(GCMC). Tal método utiliza três movimentos básicos para gerar os estados acessíveis do 
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sistema: criação-destruição, rotação e translação de moléculas, aplicando a distribuição de 

Boltzman para descrever a probabilidade do sistema e as equações de campo de forca para 

calcular a energia do sistema (COUTINHO, 2000). 

 

Figura 6 – Evolução energética de uma simulação com o método de Monte Carlo. 

 

Fonte: Adaptado de Coutinho (2000). 

 

Para quantificar as interações entre as moléculas de adsorbato e adsorvente, 

utiliza-se a equação de campo de força. O potencial descrito por Lennard-Jones (1937) é a 

equação de campo de forca mais utilizada para descrever as interações intermoleculares 

(Equação 1). 

 

𝑈(𝑟𝑖𝑗)  =  4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] (1) 

 

O parâmetro 𝜀ij se refere à energia de interação entre as moléculas (modulo do 

valor mínimo de energia potencial) e o σij representa o parâmetro geométrico da interação 

(distancia onde o potencial é nulo). O potencial atrativo, de longo alcance, termo elevado à 

potência 6, é causado por correlações entre as nuvens eletrônicas que rodeiam os átomos. O 

potencial repulsivo, de curto alcance, termo elevado à potência 12, é causado pela repulsão 

eletrostática entre os átomos (COUTINHO, 2000). Na Figura 7 podem ser vistos os efeitos 

individuais destes dois termos, bem como o potencial total. 
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Figura 7 – Forças que compõe o potencial de Lennard-Jones. 

 

Fonte: Adaptado de Silvino (2011). 

 

Os mecanismos de adsorção em poros se distinguem da adsorção em superfície 

devido a um efeito sinérgico entre os potenciais gerados individualmente pelas superfícies que 

delimitam o poro (Figura 8). Por este motivo a adsorção em materiais que apresentam grande 

quantidade de poros é elevada e o volume total de poros e de microporos são características 

críticas para os adsorventes (MARSH e RODRÍGUEZ-REINOSO, 2006). 

 

Figura 8 – Efeito sinergético dos campos gerados pelas paredes de um poro: (a) influência dos 

potenciais individuais; (b) influência do tamanho de poro. 

 

Fonte: Adaptado de Silvino (2011). 

 

(a) (b) 
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2.5 Modelos virtuais de carbono condensado 

 

Para uma melhor compreensão do modelo molecular de carbono ativado, deve-se 

recordar que durante o seu processo de produção inicialmente é removido a maioria dos 

átomos que não são carbonos, através de uma decomposição térmica. Em seguida, a 

porosidade natural do material é desenvolvida, promovendo o surgimento de novos poros. 

Com isto, o que sobra na estrutura é principalmente carbono, que, devido aos efeitos térmicos, 

tende a se arranjar na forma de empilhamento de folhas de grafeno interconectadas de 

maneira aleatória (Figura 9). Os interstícios compreendidos entre as folhas de grafeno formam 

os poros, cujos tamanhos variam de poucos angstrons até dezenas de nanômetros (BANSAL e 

GOYAL, 2005; BURCHELL, 1999; FURIMSKY, 2008; MARSH e RODRÍGUEZ-

REINOSO, 2006). 

 

Figura 9 – Conformação molecular do carbono ativado. 

 

Fonte: Adaptado de Furimsky (2008). 

 

O carbono ativado não é completamente amorfo, todavia apresenta estruturas 

microcristalinas, uma vez que é formado por folhas de grafeno. Conhecida a estrutura 

molecular, é fácil ver que o carbono ativado pode ser aproximado por uma combinação de 

poros formados por placas de grafeno de diferentes tamanhos orientadas aleatoriamente 

(BANSAL e GOYAL, 2005). 

Definir um modelo molecular capaz de reproduzir o comportamento adsortivo de 

uma amostra é um procedimento crítico para caracterizá-la e realizar simulação molecular. 

Modelos clássicos constam de fendas formadas por placas paralelas e perfeitas de grafeno 
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(TAN e GUBBINS, 1992; KANEKO et al., 1992). Estes modelos, chamados de geometria 

slit-pores, são amplamente utilizados em procedimentos para simulação de materiais 

carbonosos, contudo, não são capazes de reproduzir algumas particularidades de amostras 

mais heterogêneas. Frutuoso (2010) destaca quatro modelos clássicos: Kaneko et al. (1992), 

Segarra e Glandt (1994), Oberlin (1989) e Tan e Gubbins (1992). 

O modelo proposto por Kaneko et al. (1992) baseia-se na teoria da 

microcristalinidade proposta neste mesmo trabalho, que parte do princípio de que a estrutura 

do CA consiste em aglomerados de microcristais formados por folhas de grafite com 

diferentes números de átomos de carbono (Figura 10). Este modelo teve como foco explicar a 

elevada área superficial de alguns materiais carbonosos, obtida pelo método BET. Segundo 

Kaneko e seus colaboradores a adsorção também ocorre nas bordas dos microcristais, de 

modo que estas regiões devem ser contabilizadas no cálculo da área. Uma placa infinita de 

grafeno (sem bordas) tem área superficial total de 2630 m²/g, esta deveria ser a área 

superficial máxima de um material carbonoso. Por outro lado, algumas amostras apresentam 

área superficial superiores a este valor. Se forem consideradas as bordas dos aglomerados 

microcristalinos, esta área pode atingir valores bem maiores, por exemplo, um modelo 

formado por microcristais de 56 átomos de carbono possui área superficial de 5800 m²/g. 

Contudo, por levar em consideração algumas estruturas que não existem em carbonos reais, 

este modelo falha ao tentar descrever os efeitos de uma rede de poros. 

 

Figura 10 – Modelo de CA proposto por Kaneko. 

 

Fonte: Adaptado de Kaneko et al. (1992). 

 

Segarra e Glandt (1994) utilizaram uma metodologia de Monte Carlo reversa, 

onde simulações computacionais são utilizadas para interpretar dados analíticos estruturais, 
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construindo estruturas baseadas em pilhas de folhas de grafeno em formato de discos 

cilíndricos com diferentes números de folhas (Figura 11). Durante a construção 

computacional, são levados em consideração os diâmetros e espessuras dos discos, a 

densidade do arranjo e polaridade das arestas, aplica-se uma metodologia de Monte Carlo, no 

ensemble canônico para minimizar a célula, variando o posicionamento dos discos. Este 

modelo não é muito útil, pois se restringe a ajustar uma estrutura a dados experimentais. 

 

Figura 11 – Modelo de CA proposto por Segarra e Glandt. 

  

Fonte: Adaptado de Segarra e Glandt (1994). 

 

O modelo de Oberlin (1989) deriva de estudos utilizando técnicas de microscopia 

eletrônica, utilizando três níveis estruturais, utilizando o conceito de estruturas básicas de 

placas de grafeno (Figura 12 – a) aglomeradas para formar uma estrutura intermediária mais 

complexa (Figura 12 – b). A combinação destes aglomerados, dispostos de forma aleatória, dá 

origem à forma final do modelo (Figura 12 – c). Embora represente a porosidade melhor que 

o modelo de Kaneko et al. (1992), este modelo gera aglomerados de microcristais de grafite 

muito espessos e incompatíveis com observações experimentais. 

O modelo molecular clássico mais aceito é o de Tan e Gubbins (1992), que 

aproxima uma superfície carbonosa por um empilhamento de placas paralelas e perfeitas de 

grafeno (Figura 13 – a).  A região formada entre dois grupos de empilhamentos dá origem a 

um poro (Figura 13 – b) de modo que a placa mais externa representa a camada superficial do 

poro e as demais representam a porção interna da estrutura do CA. De duas a quatro placas de 

grafeno são utilizadas para cada lado do poro, a introdução de uma quinta placa não apresenta 
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efeito considerável sobre o potencial atuante nas moléculas de adsorbato. Este modelo é 

denominado de geometria slit-pore. 

 

Figura 12 – Modelo de CA proposto por Oberlin: (a) estrutura básica, (b) estruturas 

intermediárias e (c) estrutura final. 

 

Fonte: Adaptado de Oberlin (1989). 

 

Figura 13 – Modelo de CA proposto por Tan e Gubbins: (a) placa perfeita de grafeno e 

(b) fenda formada por placas paralelas de grafeno. 

 

Fonte: Adaptado de Silvino (2011). 

 

A estrutura do CA é então modelada por uma combinação de poros de geometria 

slit, com diferentes tamanhos. Este modelo possui bom desempenho em diversas aplicações, 

porém não é capaz de prever alguns comportamentos de amostras reais de CA. Pesquisas 

recentes (AZEVEDO et al., 2010; LUCENA et al., 2010a; OLIVEIRA et al., 2013) apontam 

para a necessidade de novas considerações a respeito deste modelo simplificado. Os 

chamados Modelos Virtuais de Carbono Condensado (VPCs) incorporam fatores de 

heterogeneidade geométricos, topológicos e químicos ao modelo slit-pore, tais como 

rachaduras, furos, poços e distorções nas placas de grafeno. 

(a) (b) (c) 

(a) (b) 
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Seaton et al. (1997) realizaram estudos a respeito do mecanismo de difusão de 

oxigênio e nitrogênio em peneiras moleculares de carbono (CMSs) utilizando técnicas de 

dinâmica molecular para levantamento da difusividade. Neste estudo observou-se que 

modelos de CMSs utilizando superfícies carbonosas não estruturadas (planos grafíticos 

perfeitos) geram valores de difusividade muito superiores ao que se esperava. A explicação 

para esta diferença foi atribuída à possível presença de orifícios nas superfícies da estrutura 

real, que dificultam a passagem das moléculas fluidas e que foram desconsiderados nos 

modelos moleculares utilizados até então. Os autores propuseram um novo modelo molecular 

para a estrutura do CMSs, consistindo na “corrosão” aleatória das placas que compunham a 

superfície. Tal modelo foi então denominado: Randomly Etched Graphite (REG) (Figura 14). 

 

Figura 14 – Modelo REG, Seaton et al. (1997): (a) placas corroidas e (b) vista lateral. 

 

Fonte: Adaptado de Seaton et al. (1997). 

 

As imperfeições contidas no modelo REG atuaram como armadilhas para os 

átomos que estariam se difundindo na direção paralela aos planos de grafite, oferecendo uma 

maior resistência em comparação ao modelo de planos perfeitos, reduzindo os valores 

difusividade calculados, de modo que reproduziram melhor os dados experimentais. 

Lucena et al. (2010a) avaliou a utilização de modelos de poros atacados sobre a 

PSD gerada, obtendo melhorias nos ajustes das isotermas experimentais. Oliveira et al. (2013) 

obtiveram resultados interessantes com o uso de uma variante do modelo REG, obtido com a 

deposição aleatória de átomos de carbono sobre as folhas de grafeno que compunham o poro. 

Outro trabalho que merece destaque foi desenvolvido por Do e Do (2006), que 

estudaram a modelagem da adsorção em superfícies carbonosas não grafitizadas, utilizando o 

método de Monte Carlo no algoritmo Grande Canônico para simular adsorção de argônio. Foi 

utilizado um modelo de superfícies carbonosas não grafitizadas (NGCB), tomando como base 

o modelo simples grafitizado (GTCB). O termo não grafitizado se refere à introdução de 

(a) (b) 
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imperfeições nas placas de grafeno em diferentes proporções, geradas pela remoção aleatória 

de regiões de átomos. No trabalho de Do e DO, foram feitos furos na estrutura, cujo raio é 

denominado raio efetivo de defeito (Figura 15). A complicação deste modelo é a necessidade 

de se definir o valor deste raio efetivo, o que seria um parâmetro a mais a ser analisado. 

 

Figura 15 – Modelo NGCB, proposto por Do e Do. Da esquerda para a direita, porcentagem 

de defeito: 0, 10, 20 e 30 %, e raio efetivo de defeito de 2,84 Å. 

 

Fonte: Adaptado de Do e Do (2006) 

 

Os autores observaram uma suavização nas isotermas de poros imperfeitos, mais 

evidente à medida que se aumenta o grau de imperfeições (Figura 16 – a), devido à inclusão 

de sítios ativos heterogêneos nas regiões atacadas (Figura 16 – b). Os resultados obtidos por 

Do e Do para o modelo NGCB se mostraram mais próximos de dados experimentais, se 

comparados aos do modelo de placas perfeitas, validando o modelo de poros atacados. 

 

Figura 16 – Resultados obtidos por Do e Do (2006): (a) isotermas de adsorção de argônio a 

87,3 K com modelo NGCB, (b) efeito da heterogeneidade sobre o empacotamento. 

 

Fonte: Adaptado de Do e Do (2006). 
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3 MÉTODOS E MODELOS 

 

3.1 Métodos 

 

3.1.1 Simulação Molecular 

 

As isotermas de adsorção simuladas apresentadas neste trabalho foram obtidas 

utilizando o método de Monte Carlo no ensemble grande canônico (GCMC), que permite três 

movimentos básicos: criação/destruição, rotação e translação, sendo o método mais indicado 

para cálculo de isotermas de adsorção. O método de Monte Carlo consiste em gerar 

aleatoriamente conformações de um sistema a fim de que todas as configurações possíveis 

sejam acessadas. Tomando como base o cálculo da energia do sistema e a distribuição de 

probabilidade de Boltzman, os estados mais prováveis são os mais acessados. A conformação 

média quando o equilíbrio é alcançado define a configuração de equilíbrio do sistema. 

Foi utilizado o modelo átomo-unitário para o nitrogênio (LUCENA et al., 2010a) 

e as interações intermoleculares foram descritas pelo potencial 12-6 de Lennard-Jones 

(Equação 1). Os parâmetros utilizados encontram-se organizados na Tabela 1. As simulações 

foram conduzidas no software comercial de simulação molecular: Materials Studio, da 

fabricante Accelrys. 

  

Tabela 1 – Parâmetros do potencial de LJ para o N2 em CA. 

Parâmetros fluido-fluido (ff; N2-N2). Parâmetros sólido-fluido (sf; C-N2). 

σff (Å) εff/k (K) σsf (Å) εsf/k (K) 

3,62 101,5 3,494 56,4 

Lucena et al. (2010a); Constante de Boltzman, k = 1,3806503 ∙ 10
-23

 J/K 

 

3.1.2 Caracterização Textural 

 

O procedimento para caraterização textural das amostras, através da determinação 

da distribuição de tamanhos de poros via simulação molecular pode ser compreendido como a 

combinação de isotermas simuladas que tende a se aproximar da isoterma experimental. 

Nitrogênio a 77 K ou gás carbônico a temperaturas ambientais (298 ou 973 K) podem ser 

utilizados como gás sonda, o presente trabalho utilizará apenas o nitrogênio. 
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Inicialmente deve-se confeccionar uma coleção de isotermas simuladas, chamadas 

isotermas locais, que servirá como banco de dados para caracterização textural, a esta coleção 

dá-se o nome de kernel. No modelo clássico, cada isoterma desta coleção está associada a um 

distanciamento específico entre as placas de grafeno que compõem o poro, de modo que cada 

isoterma simulada reproduz o comportamento de uma amostra hipotética de CA que apresenta 

um único tamanho de poro. Sabe-se que a existência de amostras com um único tamanho de 

poro é experimentalmente inviável, o que de fato se observa em uma amostra real é uma faixa 

de tamanhos de poros que é característica da amostra. 

Desde que sejam desconsiderados os efeitos de heterogeneidade e 

interconectividade entre os poros, conclui-se que uma amostra de CA real pode ser 

aproximada por uma combinação de amostras hipotéticas de tamanhos únicos. Como 

consequência, a isoterma experimental pode ser aproximada por uma média das isotermas 

locais, ponderada pelo volume de poros referente a cada tamanho. 

Para obter a isoterma experimental de adsorção de amostras de carbono ativado, 

utilizam-se volumetria ou gravimetria, empregando como molécula sonda um gás inerte, 

normalmente nitrogênio ou argônio a 77 K. Tomando como base o kernel, pode-se então 

descrever matematicamente a isoterma de adsorção simulada como (Equação 2): 

 

 Q
T
(p) = ∫ q(p,H)∙f(H)∙dH (2) 

 

Onde “QT(p)” representa a isoterma total (que será aproximada da experimental 

“QEXP(p)”), “p” as pressões da isoterma de adsorção, “q(p,H)” as isotermas locais do kernel e 

“H” os tamanhos de poro simulados. O único dado desconhecido até então é o termo “f(H)”, 

que contém a proporção de cada tamanho de poro a ser ajustada para que a combinação de 

isotermas simuladas seja semelhante à isoterma experimental, em outras palavras, “f(H)” é a 

função de distribuição de tamanhos de poros. Para resolver este sistema, deve-se representá-lo 

na forma matricial (Equação 3): 

 

[

Q
T
(p

1
)

⋮
Q

T
(p

𝑚
)

]  = [

q(p
1
,H1) ⋯ q(p

1
,Hn)

⋮ ⋱ ⋮
q(p

m
,H1) ⋯ q(p

m
,Hn)

] ∙ [
f(H1)

⋮
f(Hn)

] (3) 

 

Conhecendo-se a matriz kernel “q(p,H)”, o procedimento então é realizar um 

procedimento de deconvolução e determinar os valores do vetor PSD, “f(H)”. Estes valores 
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devem tornar o vetor isoterma total “QT(p)” o mais próximo possível do vetor, de mesma 

dimensão, contendo a isoterma experimental “QEXP(p)”. Tendo em vista a unidade de “QT(p)” 

deve ser dada em quantidade de gás sonda adsorvido por massa de adsorvente (ex.: mmol/g) e 

a unidade de “q(p,H)” é quantidade de gás adsorvido por volume do poro (ex.: mmol/cm³), a 

unidade de “f(H)” deve ser dada volume de poro, de tamanhos “H”, por massa de adsorvente 

(cm³/g). 

A deconvolução deste sistema é feita através do método de mínimos quadrados 

não negativos, com fator de suavização (Davies et al., 1999). Este método leva em 

consideração não apenas o somatório do quadrado das distâncias entre a isoterma 

experimental e a simulada, mas também um fator de regularização “𝛼” multiplicado pelo 

somatório das derivadas segundas da “f(H)” em função do tamanho de poro “H”. A função 

objetivo (Equação 4) será: 

 

 erro = ∑ (Q
EXP

(p) − QT(p))²  + α∙ ∑ (
∂²f(H)

∂H²
) → min (4) 

 

O primeiro elemento da função traz o ajuste propriamente dito e o segundo 

elemento promove uma suavização da PSD. Este segundo termo leva em consideração o fato 

de que quando certo tamanho de poro está presente na amostra em grande quantidade, os 

tamanhos de poros próximos a ele devem também estar presentes em quantidades 

semelhantes, tornando o processo de deconvolução mais robusto e menos dependente do 

kernel utilizado. Desta forma o perfil da PSD deve ser tão suave quanto maior for o fator de 

regularização. 

Um fator de regularização crítico deve ser determinado previamente seguindo a 

metodologia da curva “L”, descrito em Wilson (1992) e utilizado para caracterização de CA 

por Davies et al. (1999), que consiste em definir um “𝛼” grande o suficiente para manter a 

PSD suave, mas não a ponto da PSD se distanciar da realidade. Este valor crítico é encontrado 

através de sucessivos ajustes, variando o fator de regularização, plota-se então a curva 

log (𝛼) vs. Erro residual. O método para definir o alfa crítico se baseia em um critério visual, 

onde ponto em que a inclinação desta curva começa a variar de maneira significativa é 

considerado a região do ponto crítico. A Figura 17 apresenta uma curva log (𝛼) vs. Erro 

residual com formato característico, o valor de alfa crítico se encontra identificado. 
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Figura 17 – Curva “L” para definição do fator de regularização crítico (𝛼Crítico). 

 

 

3.2 Amostras de Carbono Ativado 

 

Oito amostras de carbono ativado foram selecionadas, seguindo critérios de 

capacidade adsortiva, material precursor, características texturais conhecidas, grau de ativação 

e disponibilidade. Quatro destes carbonos foram selecionados para analisar a influência do 

material precursor: Maxsorb, WV-1050, Norit-R1 e BPL. Os outros quatro carbonos foram 

escolhidos para analisar a influência do grau de ativação na PSD com modelos de poros 

heterogêneos, foram duas fibras de carbono (CF-P10 e CF-P15) e dois carbonos produzidos a 

partir de casca de coco (W1 e W2). A Tabela 2 traz as principais informações a respeito 

destas amostras. Suas isotermas de adsorção de nitrogênio a 77 K (Figura 18) foram obtidas 

da literatura. O grau de ativação foi quantificado levando-se em consideração a área 

superficial específica e o volume total de poros. 

Além das amostras analisadas, foi realizado um teste tomando o modelo 

molecular de um CA hipotético, proposto por Kumar et al.  (2012), utilizado para analisar os 

efeitos da morfologia do poro no processo de adsorção, sobretudo na seletividade. Tal modelo 

consiste em uma estrutura desordenada de folhas de grafeno compostas por sete anéis 

condensados (Figura 19), sua isoterma simulada foi gerada através do método de Monte Carlo 

no ensemble Grande Canônico. Este modelo deve se comportar como uma amostra 

extremamente heterogênea, de modo que o modelo convencional não seria capaz de gerar 

bons ajustes. Espera-se que um bom ajuste à isoterma de adsorção desta amostra seja obtido 

com o uso de modelos heterogêneos. 

 

 

E
r
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o

Log()
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Tabela 2 – Propriedades texturais e materiais precursores das amostras selecionadas. 

Amostra Fabricante Material Precursor 
Grau de 

Ativação 

Área BET 

(m²/g) 

Vol. total de 

poros (cm³/g) 

Maxsorb
a
 

Kansai Coke 

and Chemicals 
Coque Alto 3100 1,78 

WV-1050
b
 Westvaco Madeira Médio a alto  1615 1,03 

Norit-R1
c
 Norit Madeira Médio 1417 0,63 

BPL
d
 Calgon Carbon Betume Médio 1140 0,577 

W1
e
 - Casca de coco Baixo 520 0.33 

W2
e
 - Casca de coco Médio a alto 1065 0.7 

CF P10
f
 Kaorea Fibra de carbono Baixo 1190 0.46 

CF P15
f
 Kaorea Fibra de carbono Médio a alto 1545 0.76 

a
 Lozano-Castelló et al. (2002); 

b
 Westvaco Commercial Activated Carbon; 

c
 Cabot Norit 

Activated Carbon; 
d
 Russel e LeVan (1994); 

e
 Rios et al. (2009); 

f
 Kaneko et al. (2000). 

 

Figura 18 – Isotermas de adsorção experimentais das amostras de CA. 
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Figura 19 – Estrutura molecular de um carbono ativado hipotético. 

 

 

3.3 Modelos Moleculares 

 

3.3.1 Modelo virtual de poros atacados 

 

O modelo virtual de carbono ativado utilizado baseia-se na geometria slit-pores 

com fatores de heterogeneidade proposto no modelo REG de Seaton et al. (1997). A fenda 

compreendida entre dois grupos de três folhas de grafeno representa um poro (Figura 20 – a). 

Os modelos de poros imperfeitos (Figura 20 – b) são obtidos através da remoção aleatória de 

átomos de carbono das camadas mais internas de grafeno, que compõem a superfície do poro. 

 

Figura 20 – Modelos de poros de CA: (a) poro perfeito, (b) poro atacado. 

      
(a) (b) 
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Este modelo será referido no presente trabalho como modelo de poros atacados, 

em menção ao termo utilizado por Seaton et al. (1997): randomly etched graphite. A 

porcentagem de moléculas de carbono que são removidas será chamada de porcentagem de 

ataque. Um poro 50% atacado, por exemplo, é obtido com a remoção aleatória de metade dos 

átomos de carbono das duas folhas que compõem a superfície do poro, camadas mais internas. 

Foram utilizados dois kernels, um contendo apenas poros perfeitos (kernel-A, 

Figura 21) e outro contendo poros atacados (kernel-B). O kernel-A é composto de vinte e 

duas isotermas geradas com o modelo clássico de poros perfeitos Os tamanhos de poros 

(Tabela 3) variam entre 7 Å, menor tamanho de poro em que o nitrogênio pode entrar, e 53 Å, 

tamanho em o poro se assemelha a duas superfícies livres. 

  

Figura 21 – Isotermas selecionadas do Kernel-A. 

 

 

Tabela 3 – Tamanhos de poros, Hcc, presentes nos kernels. 

Tamanhos de poros – Hcc (Å) 

7,00 9,70 13,90 20,50 31,00 47,50 

7,60 10,70 15,20 22,70 34,40 53,00 
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Estes tamanhos são definidos em relação ao distanciamento de centro a centro das 

folhas de grafeno que compõem a superfície do poro – Hcc. No segundo kernel (kernel-B, 

Figura 22), para cada um dos vinte e dois poros perfeitos do kernel-A, foram geradas 

isotermas de mais três modelos de poros, contendo 25, 50 e 75% de ataque. As isotermas do 

kernel-A também foram utilizadas no kernel-B, sendo consideradas como 0% de ataque e 

totalizando oitenta e oito isotermas. 

 

Figura 22 – Isotermas selecionadas do Kernel-B. 

 

 

É possível atribuir ao grande número de isotermas disponível no kernel-B uma 

possível melhora no ajuste. Contudo, Lucena et al. (2010a) realizaram testes dobrando a 

quantidade de isotermas presentes no kernel de poros perfeitos e identificaram um pequeno 

ganho de ajuste. Para analisar este efeito no kernel de poros imperfeitos, reduziu-se a 

quantidade de isotermas disponíveis no kernel-B. Sete dos vinte e dois tamanhos de poros 

presentes no kernel-B foram selecionados aleatoriamente, cada tamanho com os quatro níveis 

de ataque. O kernel-Teste conta então com apenas vinte e oito, das oitenta e oito isotermas 

presentes no kernel-B, quantidade comparável às vinte e duas isotermas do kernel-A. 
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3.3.2 Modelo virtual baseado em um kernel mínimo 

 

A tendência na literatura é que o kernel de isotermas simuladas seja constituído de 

pelo menos 40 poros (DAVIES e SEATON, 1999) não sendo incomum o uso de kernels com 

mais de 100 poros (RAVIKOVITCH et al., 2000). Uma grande quantidade de poros dificulta 

imensamente a simulação de isotermas multicomponente em carbonos ativados devido ao 

grande volume de resultados que precisa ser gerado. Será avaliada a possibilidade de utilizar 

um kernel mínimo constando apenas três de isotermas simuladas para representação do 

carbono ativado. Sendo possível utilizar tal kernel mínimo, é interessante verificar se um 

modelo virtual de carbono pode ser construído com os poros selecionados. 

O modelo com reduzida quantidade de poros pode ser convenientemente 

modificado posteriormente para inclusão das heterogeneidades. Finalmente, o kernel mínimo 

pode ser um método rápido e eficiente de caracterizar a porosidade substituindo com 

vantagens o tamanho médio de poros obtidos pelo quociente entre o volume total de poros e a 

área superficial medida pela equação de adsorção BET. Esta medida clássica de tamanho 

médio de poros está profundamente arraigada na indústria e não agrega nenhuma informação 

relevante aos parâmetros texturais da amostra. 

 

3.3.2.1 Regimes de preenchimento de poros 

 

Como dito anteriormente, as isotermas de adsorção podem ser classificadas 

quanto à sua forma. Para a adsorção de nitrogênio a 77 K em modelos de poros de carbono 

ativado com geometria slit é possível diferenciar três tipos de isoterma (Figura 23), que estão 

relacionadas aos regimes de preenchimento de poros monocamada bicamada e múltiplas 

camadas (LUCENA et al., 2010b). 
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Figura 23 – Exemplos de isotermas com diferentes regimes de preenchimento de poro. 

 

 

Dentre os tamanhos de poros escolhidos para o kernel-A (Tabela 3), os poros até 

11,5 Å (Figura 24 – a, b) apresentam adsorção em monocamada. O formato de suas isotermas 

em escala semi-logarítmica se dá com apenas um degrau, referente ao preenchimento de poro 

com apenas uma região de energia. As isotermas dos poros intermediários, entre 12.5 e 18.5 Å 

(Figura 24 – c, d), permitem adsorção em bicamada e suas isotermas apresentam dois degraus. 

Os poros maiores, a partir de 20.5 Å (Figura 24 – e) permitem adsorção em múltiplas camadas 

apresentam isotermas de adsorção com dois degraus seguidos de uma região de incremento 

gradual. Estes tamanhos de poro limites são definidos pelo pelos parâmetros geométricos do 

potencial de Lennard Jones (σsf e σff). 

Observe que é considerado monocamada não somente o preenchimento com 

apenas uma camada de gás adsorvido (Figura 24 – a), mas também o preenchimento com duas 

capas de gás (Figura 24 – b). Neste segundo caso á uma camada de gás para cada superfície 

do poro, e estas camadas apresentam igualdade energética, de modo que se formam no mesmo 

ponto de pressão. De maneira semelhante, as isotermas de poros que permitem três (Figura 24 

– c) e quatro (Figura 24 – e) camadas são equivalentes e formam adsorção em bicamada, em 

ambos os casos dois níveis de energia são possíveis. 
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Figura 24 – Regimes de preenchimento de poros em diferentes tamanhos: 7.0 (a), 8.9 (b), 12.5 

(c), 16.6 (d) e 20.5 Å (e) (em cinza: folhas de grafeno; em azul: moléculas de nitrogênio). 

(a) (b) (c) 

(c) (d) 

 

  

3.3.2.2 Obtenção do kernel mínimo 

 

Definidos os três regimes de preenchimento de poros, espera-se representar uma 

amostra de carbono ativado através de um poro pequeno que forma monocamada, um poro 

intermediário representando a formação de bicamada e um poro maior com formação de 

múltiplas camadas. Partindo da PSD obtida com o modelo slit, determinam-se os tamanhos de 

poro mais representativos de cada um dos três regimes de adsorção. 

Com as isotermas destes três tamanhos de poros é montando um kernel mínimo 

(kernel-3) e um novo ajuste é realizado. A nova distribuição de tamanhos de poros (PSD-3), 

contendo apenas três valores, servirá de base para construção de um modelo virtual. 

 

3.3.2.3 Construção do modelo virtual 

 

O modelo virtual de carbono condensado baseado no kernel mínimo consiste em 

uma caixa de simulação formada pelo empilhamento de poros com os tamanhos presentes no 
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kernel mínimo, arranjados de maneira que a distribuição de volume seja definida pela 

distribuição de tamanhos de poros (PSD-3). 

Para ilustrar o procedimento, considere uma amostra cujos tamanhos de poros 

mais representativos sejam 10, 20 e 30 Å. A PSD desta amostra indicou que 30% do volume 

de poros estão na região em torno de 10 Å, 40% em torno do poro de 20 Å e 30% em torno do 

poro de 30 Å. Levando em consideração o tamanho de cada poro, o modelo para esta amostra 

será composto por três poros de 10 Å, dois poros de 20 Å e um poro de 30 Å. Deste modo a 

proporção volumétrica de cada tamanho de poro é equivalente ao indicado pela PSD. Este 

procedimento está esquematizado na Figura 25. 

Um pequeno escalonamento pode ser realizado para aproximar a isoterma 

simulada da experimental, considerado o fato de que uma porcentagem das moléculas de 

carbonos do CA não exerce influência no processo de adsorção. 

 

Figura 25 – Construção do modelo virtual baseado no kernel mínimo. 

 

 

3.3.3 Kernels utilizados  

 

Ao todo foram utilizados quatro kernels, cujas quantidades de poros com 

geometria slit e quantidade de poros com modelo heterogêneo e o objetivo de sua utilização se 

encontram organizados na Tabela 4. 
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Tabela 4 – Resumo dos kernels utilizados. 

Kernel 

Qtd. de isotermas de 

poros com 

geometria slit-pores. 

Qtd. de isotermas 

de poros com 

modelo atacado. 

Objetivo 

Kernel-A* 22 0 
Avaliar o modelo clássico de 

geometria slit-pores. 

Kernel-B* 22 66 
Avaliar o modelo virtual proposto 

de poros atacados. 

Kernel-Teste** 7 21 

Avaliar a influência da quantidade 

de isotermas no kernel sobre a 

qualidade do ajuste. 

Kernel-3*** 3 0 
Servir de base para construção do 

modelo simplificado. 

* Tamanhos de poros de acordo com a Tabela 3; 

** Tamanhos de poros escolhidos aleatoriamente, dentre os da Tabela 3; 

*** Tamanhos de poros representativos dos três regimes de preenchimento de poro, Tabela 3. 
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4 RESULTADOS E DISCUSSÕES 

 

4.1 Caracterização textural com o modelo clássico 

 

4.1.1 Amostras de CA 

 

Inicialmente utilizou-se apenas o kernel-A, foram realizadas caracterizações 

texturais das oito amostras analisadas, o fator de regularização crítico obtido foi 0,2 para todas 

as amostras. Os volumes totais de poro calculados se encontram organizados na Tabela 5. 

Observa-se uma grande proximidade entre os valores experimentais e simulados, apenas as 

amostras de fibra de carbono, CF-P10 e P15, apresentaram valores de volume de poro 

discrepantes. As PSDs obtidas encontram-se organizadas na Figura 26. 

 

Tabela 5 – Volume total de poros, valores experimentais e obtidos com o kernel-A. 

Amostra 
Vol. de poros 

Exp. (cm³/g) 

Vol. de poros 

Sim. (cm³/g) 
Erro Amostra 

Vol. de poros 

Exp. (cm³/g) 

Vol. de poros 

Sim. (cm³/g) 
Erro 

Maxsorb 1,78 1,666 6,4 % W1 0,33 0,328 0,6 % 

WV-1050 1,03 1,12 8,7 % W2 0,7 0,660 5,7 % 

Norit-R1 0,63 0,621 1,4 % CF-P10 0,46 0,668 45,2 % 

BPL 0,577 0,596 3,3 % CF-P15 0,76 0,841 10,7 % 

 

Figura 26 – PSDs obtidas com a deconvolução do kernel-A. 
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Nota-se, de uma maneira geral, que a PSD obtida com nitrogênio a 77 K não 

apresenta boa resolução a região dos microporos inferiores a 10 Å (Hcc), muitas vezes 

denominados ultramicroporos. Na maioria dos casos, o volume de poros desta região 

encontra-se concentrado no poro de tamanho 8,9 Å. 

A distribuição obtida para o Maxsorb foi condizente com as suas características 

texturais, por se tratar de um carbono de elevado grau de ativação, deve conter um grande 

volume de microporos, que é responsável por sua elevada capacidade adsortiva, além de um 

volume considerável de poros de tamanhos intermediários, o que de fato foi observado. Por se 

tratar de uma amostra de médio a elevado grau de ativação, o WV-1050 possui tamanhos de 

poros mais distribuídos, e volume representativo de poros de tamanhos intermediários. 

O fato das isotermas das amostras Norit-R1 e BPL serem próximas faz com que 

suas PSDs também sejam semelhantes. Os seus volumes de microporos foram inferiores ao do 

Maxsorb, o que explica a menor capacidade adsortiva. Os tamanhos de poros se concentram 

na região de microporos, o que explica a proximidade das isotermas com Maxsorb na região 

de baixa pressão. A principal diferença entre as PSDs destes dois carbonos é o maior volume 

de poros maiores que 15 Å na amostra Norit-R1, o que pode ser a causa da distância entre as 

isotermas para pressões maiores. 

Se compararmos as isotermas do Norit-R1, BPL e WV-1050, é possível notar uma 

menor capacidade de adsorção do WV-1050 em relação aos outros dois carbonos para a 

região de baixa pressão. Tal fato explica o menor volume de microporos observado na PSD 

do WV-1050 em relação às PSDs do Norit-R1 e do BPL. A partir de 0,5 kPa esta tendência se 

inverte, e a isoterma do WV-1050 passa a ter valores maiores que os das outras amostras. Este 

comportamento também pode ser explicado através da comparação das PSDs obtidas para 

estas amostras, a do WV-1050 apresenta maior volume de poros de tamanhos intermediários. 

Com relação às PSDs das amostras W1 e W2, se percebe claramente uma relação 

entre as distribuições. Os mesmos tamanhos de poros foram escolhidos, contudo, volumes 

diferentes foram atribuídos a estes. Tal comportamento se explica pelo fato das duas amostras 

apresentarem o mesmo material precursor, variando apenas o grau de ativação, por este 

motivo os volumes de poros da amostra W2, mais ativada, foram superiores. 

As PSDs das amostras CF-P10 e CF-P15 apresentam semelhanças, novamente os 

mesmos tamanhos de poros foram selecionados e um maior volume foi atribuído à amostra 

mais ativada, no caso o CF-P15. Nota-se que o volume dos poros pequenos pouco variou. A 

grande diferença entre as PSDs se deu na região entre 15 e 30 Å. A variação entre os volumes 

de poros calculado e experimental para estas amostras pode ser explicada por erros 
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experimentais relacionados a efeitos difusivos, fortemente relevantes em amostras de elevado 

grau de homogeneidade, como é o caso destas amostras obtidas a partir de fibra de carbono. 

Os ajustes das amostras com maiores capacidades adsortivas (Figura 27), 

Maxsorb e WV-1050, mostraram-se insatisfatórios para pressões inferiores a 10 kPa. O que 

pode ser explicado pela heterogeneidade destas amostras que não puderam ser avaliadas com 

o kernel-A. As isotermas ajustadas para as amostras Norit-R1 e BPL (Figura 28) apresentaram 

falhas para a região de pressão inferior a 1 kPa, contudo, bem menos evidentes que as das 

amostras anteriores, o que pode significar uma menor heterogeneidade destes materiais. Pode-

se concluir que quanto maior o grau de ativação da amostra, e consequente maior grau de 

heterogeneidade, maiores serão os desvios no ajuste com modelos de poros perfeitos. 

 

Figura 27 – Ajustes às isotermas experimentais: Maxsorb e WV 1050 com o kernel A. 

 

 

Figura 28 – Ajustes às isotermas experimentais: Norit R1 e BPL com o kernel-A. 
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Com relação aos ajustes às isotermas dos CAs W1 e W2 (Figura 29), é possível 

notar uma maior qualidade para a amostra menos ativada, no caso o W1. Tal comportamento 

era esperado, uma vez que a amostra W2 apresenta maior grau de ativação, o que pode indicar 

grande heterogeneidade. Espera-se uma melhora no ajuste à isoterma do W2 quando aplicado 

o kernel-B, além de um grande volume de poros heterogêneos para esta amostra. As isoterma 

ajustadas das amostras CF-P10 e CF-P15 (Figura 30) apresentaram qualidade semelhante às 

do W1 e W2, de maneira que o ajuste para a amostra CF-P10 apresentou melhor qualidade 

uma vez que este é o CA com menor grau de ativação. Mais uma vez, espera-se um grande 

incremento na qualidade do ajuste à isoterma da amostra de maior grau de ativação, no caso o 

CF-P15, quando aplicado o modelo contendo poro heterogêneos 

 

Figura 29 – Ajustes às isotermas experimentais: W1 e W2 com o kernel-A. 

 

 

Figura 30 – Ajustes às isotermas experimentais: CF P10 e CF P15 com o kernel-A. 
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4.1.2 Amostra de carbono ativado hipotético 

 

Os resultados obtidos para a amostra hipotética seguiram o que já era esperado, 

uma PSD com poucos tamanhos de poros (Figura 31) e um ajuste insatisfatório (Figura 32). 

Esta amostra representa uma amostra extremamente heterogênea, de forma que um modelo 

simplificado com geometria slit-pores não é capaz de representa-la com qualidade. Desta 

forma, reforça-se a necessidade do modelo heterogêneo para representar amostras fortemente 

heterogêneas. 

 

Figura 31 – PSD obtida com a deconvolução do kernel-A, para a amostra hipotética. 

 

 

Figura 32 – Ajuste à isoterma simulada: CA hipotético com o kernel-A. 
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4.2 Caracterização textural com modelo atacado  

 

A seguir serão analisados individualmente os resultados obtidos para as amostras 

de CA a partir da deconvolução do kernel-B, que contém modelos de poros heterogêneos. As 

distribuições obtidas com o kernel-B devem ser representadas de forma a tornar clara a 

diferença entre os volumes atribuídos aos poros com diferentes porcentagens de remoção 

aleatória de carbonos das folhas de grafeno mais internas, doravante chamada simplesmente 

de porcentagem de ataque. 

 

4.2.1 Maxsorb 

 

Os resultados obtidos com o kernel-B para o Maxsorb seguiram as expectativas 

com relação a esta amostra. Na PSD deste carbono (Figura 33) verifica-se um grande volume 

de poros heterogêneos, distribuídos quase igualmente nos três níveis de ataque, indicando que 

se trata de uma amostra altamente heterogênea. Embora as PSDs obtidas com modelos 

heterogêneos sejam representadas daqui para frente por um gráfico composto por quatro 

PSDs, estas se somam para representar uma PSD total, que foi separada em gráficos de 

diferentes graus de ataque para melhor visualização. O ajuste obtido (Figura 34) apresentou 

grande proximidade com a isoterma experimental, se comparado ao ajuste pobre obtido com o 

kernel-A se torna ainda mais evidente a importância de modelos heterogêneos para modelar 

esta amostra. 

 

Figura 33 – PSD do Maxsorb, obtida com a deconvolução do kernel-B. 
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Figura 34 – Ajuste à isoterma experimental: Maxsorb com o kernel-B. 

 

 

4.2.2 WV-1050 

 

A PSD obtida com a deconvolução do kernel-B para o WV-1050 (Figura 35) 
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uma amostra de elevado grau de heterogeneidade. A isoterma ajustada para esta amostra 

(Figura 36) seguiu o perfil da isoterma experimental em todas as faixas de pressão. 

 

Figura 35 – PSD do carbono ativado WV-1050, obtida com a deconvolução do kernel-B. 
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Figura 36 – Ajuste à isoterma experimental: WV-1050 com o kernel-B. 
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Figura 37 – PSD do carbono ativado Norit-R1, obtida com a deconvolução do kernel-B. 

 

 

1E-4 1E-3 0,01 0,1 1 10 100

0

5

10

15

20

25

30

35

40

WV-1050

Ajuste GCMC N
2
 77K

 Experimental

 Ajuste

 

 

A
d

so
r
ç
ã

o
 [

m
m

o
l/

g
]

Pressão [kPa]

0 10 20 30 40 50 60

0,00

0,05

0,10

0,15

0,20 0 10 20 30 40 50 60

0,00

0,05

0,10

0,15

0,20
0 10 20 30 40 50 60

0,00

0,05

0,10

0,15

0,20

Ataque 0%

 

 

d
V

/d
H

 [
c
m

³/
g

.Å
]

Tamanho de poro [Å]

Ataque 25%

 

 

Ataque 50%

 

 
0 10 20 30 40 50 60

0,00

0,05

0,10

0,15

0,20
Norit R1 Ataque 75%

 

1E-4 1E-3 0,01 0,1 1 10 100

0

5

10

15

20

25

30

35

40

WV-1050

Ajuste GCMC N
2
 77K

 Experimental

 Ajuste

 

 

A
d

so
r
ç
ã

o
 [

m
m

o
l/

g
]

Pressão [kPa]



Capítulo 4 – Resultados e Discussões 53 

 

  Silvino, P.F.G. 

Figura 38 – Ajuste à isoterma experimental: Norit-R1 com o kernel-B. 
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Figura 39 – PSD do carbono ativado BPL, obtida com a deconvolução do kernel-B. 
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Figura 40 – Ajuste à isoterma experimental: BPL com o kernel-B. 
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Figura 41 – PSDs obtidas com a deconvolução do kernel-B, para amostras W1 e W2. 
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Figura 42 – Ajustes às isotermas experimentais: W1 e W2 com o kernel-B. 
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Figura 43 – PSDs obtidas com a deconvolução do kernel-B, para amostras CF P10 e P15. 

 

 

Figura 44 – Ajustes às isotermas experimentais: CF-P10 e CF-P15 com o kernel-B. 
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amostra hipotética se assemelha à superfície do modelo de poros com esta porcentagem de 

ataque. O ajuste, que foi insatisfatório com o uso do kernel-A, apresentou grande qualidade 

com o uso do kernel-B (Figura 46). 

 

Figura 45 – PSD do carbono hipotético, obtida com a deconvolução do kernel-B. 

 

 

Figura 46 – Ajuste à isoterma experimental: CA hipotético com o kernel-B. 
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4.2.7 Avaliação dos Erros Residuais 

 

Os erros residuais obtidos após a minimização da função objetivo (Equação 4) 

para as amostras de CA e a amostra hipotética com os kernels A e B encontram-se 

organizados na Tabela 6. 

 

Tabela 6 – Erros residuais dos ajustes com os kernels A e B. 

Amostra 
Erro 

Amostra 
Erro 

kernel-A kernel-B kernel-A kernel-B 

Maxsorb 16,62 0,97 W1 1,54 0,38 

WV-1050 12,45 0,55 W2 4,74 0,38 

Norit-R1 3,49 0,38 CF-P10 3,33 0,45 

BPL 2,79 0,55 CF-P15 6,87 0,62 

CA Hipotético 44,34 1,34 
   

Erro = ∑ (QEXP(p) − QSIM(p))²  + α∙ ∑ (
𝜕2𝑓(𝐻)

𝜕𝐻2 )   

 

É possível notar que os ajustes obtidos com o kernel-B geraram erros menores que 

os gerados com o kernel-A. É interessante destacar a melhora nos ajustes obtidos com os 

kernels A e B para as amostras Maxsorb e WV-1050, que apresentam maior capacidade 

adsortiva e consequentemente maior grau de heterogeneidade, e para a amostra hipotética, 

cujo erro residual obtido com o kernel-A foi discrepante dos valores obtidos para as outras 

amostras. Com relação às duas duplas de amostras de mesmo material precursor, nota-se que 

as amostras de maior grau de ativação (W2 e CF-P15) apresentam maior erro residual quando 

aplicado o kernel-A. Ao serem avaliados os erros obtidos com o kernel-B, os valores obtidos 

para amostras W1 e W2 foram os mesmos e para as amostras CF-P10 e CF-P15 os valores 

foram próximos.  

 

4.2.8 Influência da quantidade de tamanhos de poros 

 

Os dois carbonos que se mostraram mais sensíveis aos modelos heterogêneos, o 

Maxsorb e o WV-1050, foram caracterizados a partir da deconvolução do kernel-Teste. Sete 

tamanhos de poros foram selecionados para cada amostra, de modo que foram utilizadas duas 

coleções com diferentes tamanhos de poros (Tabela 7). As PSDs obtidas para as amostras 

(Figura 47) mostraram tendência semelhante às obtidas com o kernel-B, com consideráveis 

volumes de poros atacados. Devido à pequena quantidade de poros disponíveis, é possível 
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observar um incremento no valor individual do volume dos poros. Os ajustes (Figura 48) 

foram superiores ao ajuste com o kernel-A, mesmo disponibilizando menos de um terço dos 

tamanhos de poros do kernel-B, desvinculando-se a quantidade de poros ao ganho no ajuste. 

 

Tabela 7 – Tamanhos de poros selecionados para compor os kernels-teste. 

Tamanhos de poros (Å) 

Maxsorb WV-1050 

7,6 8,9 10,7 15,2 7 8,2 9,7 11,5 

18,5 22,7 38,3  16,6 25,1 34,4  

 

Figura 47 – PSDs dos carbonos Maxsorb e WV-1050, obtida com os kernels-Teste. 

 

 

Figura 48 – Ajustes às isotermas experimentais: Maxsorb e WV 1050 com o kernel-Teste. 
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4.3 Kernel mínimo e modelo virtual simplificado 

 

Para o carbono ativado WV-1050 foram selecionados três tamanhos de poros 

perfeitos representativos dos regimes de preenchimento de poro: 8,9, 18,5 e 27,9 Å, que 

formaram um novo banco de isotermas simuladas, o chamado kernel mínimo ou apenas 

kernel-3. O ajuste obtido a partir do kernel-3 (Figura 49) mantém semelhanças com o obtido 

com o kernel-A com acordo entre isotermas simulada e experimental mais pobre para 

pressões P > 5 kPa. De forma geral a perda de informação não foi tão significativa visto que, 

com exceção das pressões acima de 5 kPa, a isoterma continua muito semelhante à obtida 

com a distribuição baseada na coleção com 22 poros. 

O tamanho médio de poros convencional para o WV-1050 é de aproximadamente 

25 Å (valor obtido a partir da PSD com o kernel-A). A distribuição obtida pela deconvolução 

do kernel-3 aponta para uma composição de 3 poros com 8,9, 18,5 e 27,9 Å e volumes de 

0,13, 0,38 e 0,55 cm³/g respectivamente. Um único poro de 25 Å falha totalmente em 

reproduzir a isoterma de adsorção. Além disso, não fornece informação significativa da fração 

de microporos (até 20 Å) que sabemos ser essencial para processos adsortivos. 

 

Figura 49 – Ajuste à isoterma experimental: WV-1050 com o Kernel-3. 
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três poros de 18,5 Å e três poros de 27,9 Å (Figura 50 – a). A isoterma simulada do modelo 

simplificado de VPC foi comparada à isoterma experimental (Figura 50 – b). 

 

Figura 50 – VPC simplificado do WV-1050 (esquerda); Experimental vs. simulada (direita). 
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Figura 51 – Carregamento de poros em quatro pontos de pressão. 
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5 CONSIDERAÇÕES FINAIS 

 

Foram realizadas caracterizações texturais de oito amostras de carbono ativado, de 

diferentes materiais precursores e diferentes graus de ativação, e em todos os casos o ajuste 

obtido pela deconvolução do kernel de poro perfeitos, kernel-A, mostrou-se insatisfatório. De 

forma que o modelo molecular simplificado de carbono ativado não foi capaz de simular com 

exatidão tais amostras. 

O kernel-B, contendo isotermas de poros imperfeitos, mostrou-se eficiente ao 

simular as isotermas experimentais das amostras analisadas com grande precisão, 

demonstrando a necessidade de modelos mais realistas para modelar amostras de carbono 

ativado. Ao analisar a variação entre os ajustes com e sem poros imperfeitos, pode-se 

observar que quanto maior a capacidade adsortiva da amostra, maior a sensibilidade ao 

modelo de poros imperfeitos, o que reforça a hipótese de uma relação direta entre 

heterogeneidade e grau de ativação. 

Um modelo de carbono ativado hipotético foi avaliado e sua isoterma simulada foi 

ajustada analisada como uma isoterma experimental, sendo caracterizado através da 

combinação de poros dos kernels A e B. Claramente o modelo contendo apenas poros 

perfeitos não foi capaz de simular esta amostra, apenas com a introdução de poros imperfeitos 

foi possível uma aproximação entre a isoterma simulada e o ajuste obtido pela deconvolução. 

O teste realizado reduzindo a quantidade de poros disponíveis no kernel-B para 

simular as amostras mais heterogêneas, obteve ajustes satisfatórios. Comprovando que a 

grande quantidade de poros presentes no kernel-B não foi o fator decisivo para o incremento 

na qualidade dos ajustes, e sim a presença de poros heterogêneos. 

No decorrer do estudo notou-se que a PSD mínima pode ser usada com vantagens 

para substituir o cálculo do tamanho médio de poros clássico.  Como já comentamos, o valor 

médio clássico é muito usado na indústria devido à facilidade com que ele pode ser usado 

para comparar diferentes carbonos ativados (apenas um parâmetro). A nossa sugestão de PSD 

mínima agrega dados significativos sem aumentar a dificuldade de interpretação dos 

resultados. 

Como perspectivas futuras espera-se avaliar kernels de modelos atacados obtidos 

com diferentes gases sonda a fim de avaliar a possibilidade de aproximar as distribuições de 

tamanhos de poros obtidas com diferentes gases para uma mesma amostra de CA. Espera-se 

também implementar o VPC composto por tamanhos de poros representativos, através da 

utilização de poros imperfeitos. 
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